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Preface

This volume consists of the proceedings of the 28th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency
(ICATPN 2007). The Petri Net conferences serve as annual meeting places
to discuss the progress in the field of Petri nets and related models of con-
currency. They provide a forum for researchers to present and discuss both
applications and theoretical developments in this area. Novel tools and sub-
stantial enhancements to existing tools can also be presented. In addition, the
conferences always welcome a range of invited talks that survey related do-
mains, as well as satellite events such as tutorials and workshops. The 2007 con-
ference had five invited speakers, two advanced tutorials, and five workshops.
Detailed information about ICATPN 2007 and the related events can be found
at http://atpn2007.ap.siedlce.pl/.

The ICATPN 2007 conference was organized by the Institute of Computer
Science at the University of Podlasie and the Institute of Computer Science of the
Polish Academy of Sciences. It took place in Siedlce, Poland, during June 25-29,
2007. We would like to express our deep thanks to the Organizing Committee,
chaired by Wojciech Penczek, for the time and effort invested in the conference,
and to Andrzej Barczak, for all his help with local organization. We are also
grateful to the Offices of the Siedlce County Governor and Siedlce City Mayor
for their suppport of the local organization.

This year we received 70 submissions from authors from 29 different coun-
tries. We thank all the authors who submitted papers. Each paper was reviewed
by at least four referees. The Program Committee meeting took place in Lei-
den, The Netherlands, and was attended by 20 Program Committee members.
At the meeting, 25 papers were selected, classified as: theory papers (17 ac-
cepted), application papers (5 accepted), and tool papers (3 accepted). We
wish to thank the Program Committee members and other reviewers for their
careful and timely evaluation of the submissions before the meeting. Special
thanks are due to Martin Karusseit, University of Dortmund, for his friendly
attitude and technical support with the Online Conference Service. Finally, we
wish to express our gratitude to the five invited speakers, Samson Abramsky,
Sadatoshi Kumagai, Antoni Mazurkiewicz, Andrzej Tarlecki, and Karsten Wolf,
for their contribution to this volume. As usual, the Springer LNCS team provided
high-quality support in the preparation of this volume.

April 2007 Jetty Kleijn
Alex Yakovlev



Organization

Steering Committee

Wil van der Aalst, The Netherlands Sadatoshi Kumagai, Japan

Jonathan Billington, Australia
Jorg Desel, Germany

Susanna Donatelli, Italy

Serge Haddad, France

Kurt Jensen, Denmark (Chair)
Jetty Kleijn, The Netherlands
Maciej Koutny, UK

Organizing Committee

Wojciech Penczek (Chair)
Andrzej Barczak
Stefan Skulimowski

Tool Demonstration

Wojciech Nabialek (Chair)

Program Committee
Jonathan Billington, Australia

Didier Buchs, Switzerland
José-Manuel Colom, Spain
Raymond Devillers, Belgium
Susanna Donatelli, Italy

Jorge de Figueiredo, Brazil
Giuliana Franceschinis, Italy
Luis Gomes, Portugal
Boudewijn Haverkort, The Netherlands
Xudong He, USA

Kees van Hee, The Netherlands
Monika Heiner, Germany
Kunihiko Hiraishi, Japan
Claude Jard, France

Gabriel Juhds, Slovak Republic
Peter Kemper, USA

Victor Khomenko, UK

Tadao Murata, USA

Carl Adam Petri (Honorary Member)
Lucia Pomello, Italy

Wolfgang Reisig, Germany

Grzegorz Rozenberg, The Netherlands
Manuel Silva, Spain

Alex Yakovlev, UK

Artur Niewiadomski
Wojciech Nabiatek

Jetty Kleijn,

The Netherlands (Co-chair)
Lars Kristensen, Denmark
Johan Lilius, Finland
Chuang Lin, China
Robert Lorenz, Germany
Patrice Moreaux, France
Wojciech Penczek, Poland
Laure Petrucci, France
Michele Pinna, Italy
Lucia Pomello, Italy
Laura Recalde, Spain
Toshimitsu Ushio, Japan
Rudiger Valk, Germany
Frangois Vernadat, France
Karsten Wolf, Germany
Alex Yakovlev, UK (Co-chair)



VIII Organization

Referees

Samy Abbes

Gonzalo Argote

Unai Arronategui
Eric Badouel

Joao Paulo Barros
Marco Beccuti

Marek A. Bednarczyk
Eric Benoit

Robin Bergenthum
Giuseppe Berio

Luca Bernardinello
Henrik Bohnenkamp
Andrzej Borzyszkowski
Anne Bouillard
Roberto Bruni

Nadia Busi

Lawrence Cabac
Javier Campos
Thomas Chatain

Ang Chen

Gianfranco Ciardo
Robert Clarisé

Lucia Cloth

Philippe Darondeau
Massimiliano De Pierro
Jorg Desel

Zhijiang Dong
Boudewijn van Dongen
Till Dérges

Michael Duvigneau
Dirk Fahland

Jean Fanchon

Carlo Ferigato

Joao M. Fernandes
Mamoun Filali

Paul Fleischer

Jana Flochova

Yujian Fu

Guy Gallasch

Pierre Ganty
Fernando Garcia-Vallés
Gilles Geeraerts

Attilio Giordana
Daniele Gunetti
Serge Haddad
Keijo Heljanko
Jarle Hulaas

David Hurzeler
Agata Janowska
Pawel Janowski
Jens Jgrgensen
Michael Kohler
Kathrin Kaschner
Kii Katsu

Kais Klai

Nicolas Knaak
Maciej Koutny
Marta Koutny
Matthias Kuntz
Juan Pablo Loépez-Grao
Linas Laibinis
Charles Lakos

Kai Lampka
Kristian Lassen
Fedor Lehocki
Nimrod Lilith
Niels Lohmann
Levi Lucio

Ricardo Machado
Kolja Markwardt
Peter Massuthe
Sebastian Mauser
Agathe Merceron
Toshiyuki Miyamoto
Daniel Moldt
Salmi Nabila
Apostolos Niaouris
Artur Niewiadomski
Olivia Oanea
Edward Ochmanski
Atsushi Ohta
Ribeiro Oscar
Chun Ouyang
Wieslaw Pawlowski

Luis Pedro

Florent Peres

Denis Poitrenaud

Agata Péhrola

Heiko Rolke

Sylvain Rampacek

Jean-Francois Raskin

Ronny Richter

Matteo Risoldi

Nabila Salmi

Mark Schaefer

Carla Seatzu

Alexander Serebrenik

Dalton Serey

Frederic Servais

Natalia Sidorova

Markus Siegle

Christian Stahl

Martin Schwarick

Maciej Szreter

Shigemasa Takai

Satoshi Taoka

Yann Thierry-Mieg

Simon Tjell

Kohkichi Tsuji

Antti Valmari

Lionel Valet

Robert Valette

Laurent Van Begin

Somsak Vanit-Anunchai

Eric Verbeek

Valeria Vittorini

Daniela Weinberg

Lisa Wells

Matthias
Wester-Ebbinghaus

Michael Westergaard

Dianxiang Xu

Shingo Yamaguchi

Satoshi Yamane

Huiqun Yu

Cong Yuan



Table of Contents

Invited Papers

Petri Nets, Discrete Physics, and Distributed Quantum Computation . . . 1
Samson Abramsky

Autonomous Distributed System and Its Realization by Multi Agent

Sadatoshi Kumagai and Toshiyuki Miyamoto

Petri Nets Without Tokens . ... . 20
Antoni Mazurkiewicz

Toward Specifications for Reconfigurable Component Systems ......... 24
Andrzej Tarlecki

Generating Petri Net State Spaces .......... .. .. ... .. . . ... 29
Karsten Wolf

Full Papers

Markov Decision Petri Net and Markov Decision Well-Formed Net
Formalisms. . . ..o 43
M. Beccuti, G. Franceschinis, and S. Haddad

Comparison of the Expressiveness of Arc, Place and Transition Time
Petri Nets. ..o 63
M. Boyer and O.H. Roux

Improving Static Variable Orders Via Invariants ..................... 83
Gianfranco Ciardo, Gerald Liittgen, and Andy Jinging Yu

Independence of Net Transformations and Token Firing in

Reconfigurable Place/Transition Systems. ............ ... ..., 104
Hartmut Ehrig, Kathrin Ho mann, Julia Padberg,
Ulrike Prange, and Claudia Ermel

From Many Places to Few: Automatic Abstraction Refinement for Petri

Pierre Ganty, Jean-Francgois Raskin, and Laurent Van Begin

A Compositional Method for the Synthesis of Asynchronous
Communication Mechanisms . .............. .o, 144
Kyller Gorgonio, Jordi Cortadella, and Fei Xia



X Table of Contents

History-Dependent Petri Nets .......... i,
Kees van Hee, Alexander Serebrenik, Natalia Sidorova, and
Wil van der Aalst

Complete Process Semantics for Inhibitor Nets ......................
Gabriel Juhas, Robert Lorenz, and Sebastian Mauser

Behaviour-Preserving Transition Insertions in Unfolding Prefixes .. .. ...
Victor Khomenko

Combining Decomposition and Unfolding for STG Synthesis...........
Victor Khomenko and Mark Schaefer

Object Nets for Mobility . .......... i
Michael Kohler and Berndt Farwer

Web Service Orchestration with Super-Dual Object Nets..............
Michael Kohler and Heiko Rolke

Synthesis of Elementary Net Systems with Context Arcs and
Localities . ...
Maciej Koutny and Marta Pietkiewicz-Koutny

Nets with Tokens Which Carry Data ............ ... .. .. ... ... ....
Ranko Lazi¢, Tom Newcomb, Jogl Ouaknine, A.W. Roscoe, and
James Worrell

Operating Guidelines for Finite-State Services .......................
Niels Lohmann, Peter Massuthe, and Karsten Wolf

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios . ..
Robert Lorenz, Sebastian Mauser, and Robin Bergenthum

Utilizing Fuzzy Petri Net for Choreography Based Semantic Web
Services DIiSCOVEry .. ...
Peng Men, Zhenhua Duan, and Bin Yu

Formal Models for Multicast Traffic in Network on Chip Architectures
with Compositional High-Level Petri Nets ......... ... .. .. ... ...
Elisabeth Pelz and Dietmar Tutsch

Name Creation vs. Replication in Petri Net Systems..................
Fernando Rosa-Velardo and David de Frutos-Escrig

Modelling the Datagram Congestion Control Protocol’s Connection
Management and Synchronization Procedures .......................
Somsak Vanit-Anunchai and Jonathan Billington



Table of Contents

The ComBack Method — Extending Hash Compaction with
Backtracking . ...
Michael Westergaard, Lars Michael Kristensen,
Gerth Stglting Brodal, and Lars Arge

Computing Minimal Elements of Upward-Closed Sets for Petri Nets . . ..
Hsu-Chun Yen and Chien-Liang Chen

Tool Papers

ProM 4.0: Comprehensive Support for Real Process Analysis ..........
W.M.P. van der Aalst, B.F. van Dongen, C.W. Giinther,
R.S. Mans, A.K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song,
H.M.W. Verbeek, and A.J.M.M. Weijters

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN .. ..
Alexandre Hamez, Fabrice Kordon, Yann Thierry-Mieg, and
Fabrice Legond-Aubry

Workcraft: A Static Data Flow Structure Editing, Visualisation and
Analysis Tool. ...
lvan Poliakov, Danil Sokolov, and Andrey Mokhov

Author Index . ... ..

XI

445

465

484

495



Petri Nets, Discrete Physics, and Distributed
Quantum Computation

Samson Abramsky

Oxford University Computing Laboratory

Abstract. The genius, the success, and the limitation of process calculi
is their linguistic character. This provides an ingenious way of studying
processes, information flow, etc. without quite knowing, independently
of the particular linguistic setting, what any of these notions are. One
could try to say that they are implicitly defined by the calculus. But
then the fact that there are so many calculi, potential and actual, does
not leave us on very firm ground.

An important quality of Petri’s conception of concurrency is that it
does seek to determine fundamental concepts: causality, concurrency,
process, etc. in a syntax-independent fashion. Another important point,
which may originally have seemed merely eccentric, but now looks rather
ahead of its time, is the extent to which Petri’s thinking was explicitly
influenced by physics (see e.g. [7]. As one example, note that K-density
comes from one of Carnap’s axiomatizations of relativity). To a large
extent, and by design, Net Theory can be seen as a kind of discrete
physics: lines are time-like causal flows, cuts are space-like regions, pro-
cess unfoldings of a marked net are like the solution trajectories of
a differential equation.

This acquires new significance today, when the consequences of the
idea that “Information is physical” are being explored in the rapidly de-
veloping field of quantum informatics. (One feature conspicuously lacking
in Petri Net theory is an account of the non-local information flows aris-
ing from entangled states, which play a key role in quantum informatics.
Locality is so plausible to us — and yet, at a fundamental physical level,
apparently so wrong!). Meanwhile, there are now some matching devel-
opments on the physics side, and a greatly increased interest in discrete
models. As one example, the causal sets approach to discrete spacetime
of Sorkin et al. [§] is very close in spirit to event structures.

My own recent work with Bob Coecke on a categorical axiomatics for
Quantum Mechanics [5], adequate for modelling and reasoning about
quantum information and computation, is strikingly close in the formal
structures used to my earlier work on Interaction Categories [6] — which
represented an attempt to find a more intrinsic, syntax-free formulation
of concurrency theory; and on Geometry of Interaction [I], which can be
seen as capturing a notion of interactive behaviour, in a mathematically
rather robust form, which can be used to model the dynamics of logical
proof theory and functional computation.

The categorical formulation of Quantum Mechanics admits a striking
(and very useful) diagrammatic presentation, which suggests a link to

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 1-IZ 2007.
© Springer-Verlag Berlin Heidelberg 2007
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geometry — and indeed there are solid connections with some of the
central ideas relating geometry and physics which have been so prominent
in the mathematics of the past 20 years [3].
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Autonomous Distributed System and Its Realization by
Multi Agent Nets

Sadatoshi Kumagai and Toshiyuki Miyamoto

Department of Electrical, Electronic and Information Technologies
Osaka University
Suita, Osaka 565-0871, Japan
kumagai@eei.eng.osaka-u.ac.jp

Abstract. Autonomous Distributed Systems (ADS) concept plays a central role
for designing, operating, and maintaining complex systems in these ubiquitously
networked society. Design objectives such as optimality, reliability, and
efficiency are renovated according to this system paradigm. Petri nets and its
related models provide one of the most concrete basis for realizing ADS to cope
with their nondeterministic, concurrent, and asynchronous behavioral features.
On the other hand, autonomous decisions by distributed units based on their own
interests should be coordinated with total system objectives. Multi Agent Nets
are Object-Oriented Colored Petri Nets for implementing autonomous intelligent
units and collaborating actions among distributed units. Here in this paper, the
realization of ADS by Multi Agent Nets are described through several industrial
applications and prototyping that shows paramount versatility of the approach to
hardware-software distributed systems encountered in wide variety of
engineering problems.

1 Introduction

The history of human beings can be seen as a struggle how to organize the society
where individuals tend to enjoy freedom as much as possible. The innovation of
systems for organizing such human society has been rather trial and error and there
could not find any unilateral evolution in the process. It has been observed that the
modern society had based its strength and efficiency on centralized governmental
systems. However, from the beginning of 70’s since the invention of micro processors,
we can realize that all aspects of the society have been changed drastically such as
globalization on one hand and diversity of individuals the other. The characteristics of
post modern industrial society changed accordingly where agility, flexibility, and
robustness are key of core competence. We can say these era as the third industrial
revolution as Alvin Toffler correctly cited in his book, “The Third Wave”, in 1980. The
most significant impact of this innovation, especially on the industrial society, is the
enforcement of individual operating units equipped with sufficient information
acquisition and processing abilities. On the other hand, the organization extends its
scale and complexity without bounds through information and communication

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 3119]2007.
© Springer-Verlag Berlin Heidelberg 2007



4 S. Kumagai and T. Miyamoto

technologies (ICT) and rigid centralized control of the total system has been more and
more difficult or even obstacle. In Japan, reflecting these tendencies, the intensive
research project, called “Autonomous Distribution”, funded by Ministry of Education
began in late 80’s. The author was one of the participants and took a role in prototyping
the communication architecture and formal analysis of Autonomous Distributed
Systems (ADS). Theoretical results such as structural characterization and reachability
for live and bounded free-choice nets obtained in [1,2] are by-products of this project.
Consecutively to this project, the international research project, called “Intelligent
Manufacturing Systems”, funded by Ministry of Trade and Commerce of Japan, has
begun in 1992. In this project, we advocated Autonomous Distributed Manufacturing
Systems (ADMS). ADMS are composed of variety of autonomous production units and
these units can collaborate with each other through communication links to fulfill
overall system tasks without any centralized control mechanism. The key features of
ADS such as agility, flexibility, and robustness are emphasized in ADMS in addition to
its scalable maintainability to cope with product variations of short life cycle in smaller
quantities. As a modeling framework, we proposed Multi Agent Nets (MAN) which are
implemented among a distributed environment for various applications. MAN is a
nested Colored Petri Nets embedded in a Object-Oriented programming similar to other
Object-Oriented nets such as in [3,4]. Comparison of these modeling approach were
made in [5]. Formal approach for nested Petri nets was originated by Valk and Moldt
[6]. Here in this paper, the key concepts of ADS is summarized in Section 2. In Section
3, main features of MAN is explained. In Section 4, the software environment for MAN
to be executed in distributed computers is described. In Section 5, we introduce several
industrial applications of MAN to show the versatility of the approach to ADS
realization. Section 6 is the conclusion.

2 Autonomous Distributed System Paradigm

ADS is a system composed of distributed autonomous agents (units) where each agent
is provided with at least following six capabilities required in the sequence of decision
and action process.

1. recognition of whole or partial state,
intent proposal based on self interest,

3. total evaluation of the expected results of the intention considering the proposals
by other agents,

4. action based on the final decision,

timely communication with other agents,

6. learning for improving decision and collaboration strategies.

b

According to target applications, above functions are specified more precisely, but
the fundamental feature of ADS is an iteration of step (2) and step (3) to reach the final
consensus and decision that leads to the real action taken by individual agent in step (4)
at each time point. Comparing with a centralized system, a drawback of ADS exists in
this iteration process, and the efficiency of ADS depends on how quickly the consensus
can be obtained among the participated agents.
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In the evaluation step (3), each agent must take into account the total optimality and
not just an individual interest. In some cases, the decision must be made against own
interest. In this sense, we can call the ability in step (3) as a collaboration capability. In
many applications, one or two iteration is enough to reach the final decision at each
time point because of the simplicity of the negotiation mechanism. In other words, we
only need collaborative agents with the common “world view or value” for the
objectives of the problem. The learning functions in step (6) speed up the decision
process avoiding negotiating iteration steps. Notwithstanding the above drawback,
ADS has the obvious advantages such as (1) Flexibility, (2) Agility, and (3)
Robustness. Flexibility includes the maintainability and scalability both in design and
operation of the system. Frequent changes of the specifications or requirements of the
system do not affect the basic architecture of ADS but only require the modification of
the function, or simply the number of agent. We do not need to redesign the total system
but just need to redesign the function of agent, or just to increase or decrease the
number of agents according to the scale change. Behavior of ADS is inherently
asynchronous and concurrent. Each agent can act based on its own decision, so agility
is a key feature of ADS whereas the time controlling centralized systems cannot realize
such autonomous behavior. Like as the scalability of ADS, plug-in and plug-out of
agents are flexible so that a damage of a part of agents does not necessarily result in the
total system down. The performability is maintained more easily by the remaining
agents’ efforts. It implies the Robustness of ADS whereas the centralized counterpart is
usually quite vulnerable.

3 Multi Agent Nets

A multi agent net model was shown as a description model for ADS’s in [7]. The
objective of the model is to design a system, to simulate on the model, to analyze
properties of the system, e.g., performance or dead-lock freeness, on the model, and to
control the system by the nets. The model can be used from a design phase through the
real time control with application oriented modifications. In ADS’s, each system
module has its own controller to decide own behavior. In the multi agent net model, a
system is realized by a set of agent nets, and each agent net represents one component
of the system. We call the component an agent, and its net representation as an agent
net. Behavior of each agent is represented by the net structure of an agent net. Each
agent net is an extended colored Petri net (CPN). Figure 1 is an example of the multi
agent net. The figure shows a simple communication protocol. A sender sends a
message and a receiver replies an acknowledge. When there are one sender and one
receiver, the system is represented by a multi agent net with three agent nets. The agent
net with CLASS protocol on their left shoulder is the system, and manage the number
of senders and receivers and their interactions.

In the multi agent net, interaction between agents is activated by a communication
among agent nets, i.e., a rendezvous of agent nets. The agent net with CLASS sender
and receiver describe the behavior of sender and receiver, respectively. Agent nets
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CLASS protocol

P> b o<y P

(&—]

y.message(x) | x.ack(y) '
C(p,)=sender C(p,)=receiver

CLASS sender CLASS receiver

ack

Fig. 1. A Multi Agent Net

belonging to the same agent class have the same net structure, and an agent net is called
an instance of the agent class. Each instance has its own net and state, and instances are
differentiated by their own ID number.

In a multi agent system, it is undesirable that a change in an agent needs changes in
other agents to keep consistency among agents. In order to avoid the propagation, the
multi agent net should be based on the object-oriented methodology like [3,4]. Thus,
each agent net has two parts: an interface part and an implementation part, and other
agent nets are allowed to access only the interface part [7]. This access restriction
technique is well known as encapsulation. In the interface part, methods and their input
places and output ports are specified on the agent net. Such a place is called an input
port (of the method). The implementation part is a net structure without any methods
and arcs to methods. A method represented by a bold bar is a fictitious node only
expressing an action provided for the requirement of other agent nets. To execute the
action, the agent must get tokens in the input places of the method. In Figure 1, a
method is represented by a black-filled box, and arcs from input places are drown by
dashed arrows. For example, the net “sender” provides a method ack, and the net
“receiver” send an acknowledge message via this method. Note that the
implementation part is encapsulated from outside. That is, designers of other agent nets
can only see that sender provides a method ack and its input place is p4. By using this
encapsulation technique, any side effects of changing agent net structure can be
reduced or neglected. Note that ordering relations with respect to method call should
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carefully be examined, since disregards of ordering of method call may cause the
deadlock of the system when an agent net has plural methods. In the multi agent net
model, each agent class has its own color, and it is allowed that an agent net resides in a
place of another agent net as a token [7]. This extension allows us a hierarchical
structures in Petri nets. We call it a recursive structure. In Figure 1, the agent net
“sender” has its color “sender”, and the color specified to place pl in the agent net
“protocol” is also “sender” specified by C(p1)=sender. That is the token in the place p1
in the net “protocol” is the net “sender”. Actually, the token has a reference to the net.
In this case, the net “protocol” is called an upper-level net, and “sender” is called a
lower-level net. Note that there exists an agent net for each token, where the map need
not be a bijection. Thus we can consider that the net structure of the lower-level net is
one of attributes of the upper-level net, and its marking is the value of the attribute. One
of the advantages of this extension is that treating a net as a token enables us to change
the number of agents easily. That is, by changing the number of tokens in the agent net
“protocol”, we can change the number of senders and receivers arbitrarily. A multi
agent net can provide reuses of design resources by inheritances and aggregations of
classes [7]. When class B inherits class A, class A is called a super-class of class B, and
class B is a sub-class of class A. An inheritance of a class implies the inheritance of its
color, namely we can say that class B is class A. Therefore, when the classes have
colors A and B respectively, a token is specified in a place pl with C(pl)=A, whether
the token implies a net in class A or class B. The reverse, however, is not true. That is,
when C(p2)=B, a token that implies a net in class B can exist in p2, but a token that
implies a net in class A can not exist. An inheritance and an aggregation of a class are
done by copying nets of the super-class. Designers can change a part of the net when
the part is copied from the super-class, so long as methods and ordering relations with
respect to method calls are kept unchanged. Besides of these extensions including
object-oriented methodology, we need to provide intelligence on agent nets by putting a
program code on a place or a transition in addition to guards or arc expressions. Such a
program code is called an action on a place or a transition. An action on a place is
executed when a token is put into the place, and an action on a transition is executed
when the transition fires. In order to make program more flexible, agent nets can hold
attribute variables. For example the ID number of each agent net, which we mentioned
in the previous paragraph, is one of such variables. We can use these variables
anywhere in an arc expression, a guard on a transition or in an action. Intelligent
decision of each agent can be expressed in these program codes. For the use of real time
applications, two kinds of notions of time are introduced into the multi agent net model:
a transition invalid time and a token invalid time. Each value is given by an integer
number. The transition invalid time inhibits transition firing. A transition with this
invalid time cannot fire during that period, once it fires. The token invalid time inhibits
use of tokens. A transition can put this invalid time to its output token when it fires. The
token cannot be used during that period. We assume that there is unique clock in the
system, each transition fires according to the clock. When any invalid time is not given,
a transition can fire with zero delay and it can fire again in the same clock if it is
enabled, and the succeeding transition can fire with the token in the same clock.
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4 Software Environment for the Multi Agent Nets

A software environment for the multi agent nets is shown in Fig. 2 [8]. It consists of
three tools and class libraries as follows:

Net Editor: GUI for editing agent nets

Analyzer: It analyzes consistency between agent nets.

Composer: It composes a simulation system of agent nets. Its output is initial state
of agent nets.

Class Libraries: Java class libraries for simulation

Java class libraries are improved considering following points:

— actions,
— invalid times, and
— distributed simulation.

The multi agent net must run on distributed computers which are connected on a
network. Fig. 3 shows structure of the Class Libraries. In the figure, the dark box is Java
class libraries. They are given by vendors. The gray boxes are libraries for the multi
agent nets. The lower library is called Multi Agent Environment (MAE) library. It
provides a multi agents platform and communication ability of agent nets on distributed
computers. In this level, creating and destroying agents, distributing agents to hosts,
naming service of agents and communications between agents are supported. The MAE
consists of three major components: Agent, AgentBase, and Base-Master. Agent
provides a form of agents. The Timer in Fig. 3 is an extension of Agent, and it counts
clocks and distributes clocks to agents. Agent-Base provides server service for
managing agents. There must be a unique base on each host. When an agent is created,
it must be registered in the base on the same host. Base-Master provides server service
for naming service of agents and managing bases. There must be a unique master on
each simulation. It provides the same service of CORBA name server.

Currently communication between computers is realized by using Java RMI
(Remote Method Invocation) on Agent-Base and Agent-Master levels. The higher
library is called Multi Agent Net library. It provides component libraries for agent nets,
e.g., transitions, places, arcs, tokens, and so on. Agents on the MAE can be agent nets
by using these libraries. When some special work on transitions, places or arcs are
required, we can put programs to them as “guards”, “actions” or “arc expressions”. The
guard and the arc expression must be a boolean function. The action is executed when
the transition fires or a token was putted into the place. In the program, we can
use attributes of the net and attributes of the relating token. No other attributes can be
used, and the program is written in Java. By calling native method in the action by JNI
(Java Native Interface), we can control a real system. There may be a case where we
want to use general agents in the multi agent system for which a net structure is not
necessary to be defined. For example, if an agent only calculates a complex function,
no agent nets need to correspond to the agent. These agents may be regular Java agents
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or agents on MAE. The Timer is a kind of these agents. To simulate a system, we must
prepare Java files for initial states. According to the initial states, agent nets are bound.
By starting clock, the simulation starts. Both MAE and MAN libraries have monitoring

functions. Thus while the simulation, we can see instantaneous change of status in the
system.
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5 Realization of ADS by Multi Agent Nets

Once the framework of ADS mechanism is determined and modeled by MAN, we can
realize and implement wide varieties of intelligent distributed systems by modifying
and specifying according to applications’ requirements. Among those applications, we
show typical examples in different fields in this section.

5.1 Next Generation Manufacturing [9]

Flexible Manufacturing Systems (FMS) based on ADS concept are designed by multi
agent nets. Suppose the FMS consists of machine cells, automated guided vehicles
(AGV), information blackboard, and an warehouse. A cell can get an work in constant
delay, after it sends a request for AGV to send the work. Each cell can get the following
information from the blackboard at any time:

— state of buffers on the warehouse and cells,
— current and previous work on cells,

— state of waiting work,

and

— functional ability of cells.

Taking these information into account, each cell decide the following alternatives
autonomously:

— how many and what work to take from the warehouse or from other cells,
— what work to process after the current process is finished,

and

— whether to put works in its own buffer or not.

The warehouse only answer to requests from cells, and decide distribution of works.
In order to simplify the problem, we assume that there are enough AGV and routes so
that collaboration between AGV is not considered. For designing such system, we need
at least three kind of agent nets: the cell, the warehouse and the system. The black board
is realized by an Java object in this simulation. Before we design the cell net and the
warehouse net concurrently, consensus on communications and cooperation must be
established as follows.

— The color of tokens which are passed from a cell to a cell, from a cell to the
warehouse, or from the warehouse to a cell is unified.

— Method names in agent nets are also unified.

— Procedure to change stage of the blackboard is unified.

— Delay of transporting a work is set to a constant number.

— The blackboard is an attribute of cells and warehouse. This means the blackboard is
a common object of agent nets, and each agent net can refer it at any time. Fig. 4
shows an implementation of a cell. The agent nets consists of six parts:



Autonomous Distributed System and Its Realization by Multi Agent Nets

11

Deciding Job

CaleNextJob [__]

UpdateBB [ ]

Processing Job

Taking Job
° ] StartCalc
IRl [ I CalcTakeJob
L]

MAnswer

[ ] ReceiveReply

RequestDenied
BufferBefore

' Moving

Buffer' Number

[ ]
Judg

el

e2

Giving Job

o RequestNextJob

[ [ StartProcess

‘ Processing

o NotProcessing

L] L 1 .
. MRequestCell
OB\lffr‘,l‘Yet O
BufferFinish
[ 1
JudgeGive l
RRequestWarehouse
L] Sending Complete Job
RAnswer
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BufferFinish, and BufferNumber.

— Buffers. This part holds works, and consists of four places, BufferBefore, BufferYet,

Taking jobs part. This part decide jobs to take from other cells or the warehouse (at
the transition CalcTakeJob), and send a request. If the request is denied
(RequestDenied), the process starts or wait for taking a new work. If the request is
accepted (RequestAccepted), the process put new works into the buffer. We put a
invalid period to each token in the place Moving, and after the period the token can

move to BufferBefore.
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— Deciding a next job part. This part decides the next processing work from works in
its own buffer (CalcNextJob). The action code with CalcNextJob refers works in
BufferBefore, gets information about the works and decide next job by it’s own
policy.

— Processing the job part. This part process the work which was decided in the
deciding a next job part (StartProcess), and put a product into the a buffer. Similar to
tokens in the place Moving, tokens in the place Processing have a invalid period.
This period means processing time of the work. This time is variable, and we
calculate it in the action code of the transition StartProcess.

— Giving jobs part. This part deals with requests from other cells. Transitions
JudgeGive or JudgeGive2 judges whether the cell gives the work or not, and answers
are sent from RAnswer.

— Sending complete jobs part. This part request the warehouse to take a product from
its buffer. Intelligence of the cell agent can be added to the agent net by using
programming codes to transitions, places, or arcs, for example, in the action of
CalcNextJob. In Fig. 5(a) and Fig. 5(b), agent nets of the upper level and warehouse
is shown. Tokens in the upper level net represents agent nets of lower level, e.g.,
cells and the warehouse. In this case, we have three cell nets in the system. Fig. 6 is
the screen dump of the simulation.

5.2 Secret Sharing Distributed Storage System[10]

Figure 7 shows an image of an autonomous distributed storage system. This system is a
multi agent system consisting of server agents that reside on storage nodes scattered
throughout the network and client agents that receive requests from users. Our
objective is to implement a system having a high degree of secrecy, reliability, and
robustness according to collaboration between server agents and collaboration between
client agents and server agents. Client agents receive user requests, transfer them to
server agents, and return the results to users. Client agents can communicate with
arbitrary server agents and can switch server agents according to server agent load
conditions or the network state. They provide a nonstop service to clients. A data is
encrypted by secret sharing method into n numbers of fragments, called as shares, and
each share is stored in distributed servers. All server agents have functions for
encrypting and decrypting data and for storing and acquiring shares. For decrypting the

client
’ agent
€D
agent Sserver

agent

client
agent

client
agent

Fig. 7. Distributed Storage System
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Fig. 8. MAN model for a store process

data, we need k shares out of n shares of the data. If there is a store request from a client,
a server agent encrypts the file and sends shares to other server agents based on a
storage policy. A server agent that receives a store request saves received shares on a
local disk to prepare for future requests. If there is a file fetch request from a client, a
server agent collects total k of shares to decrypt the file.

Figure 8 shows an agent net model for a store process. A store task starts by a token
being passed from the “send store request” place of the client to the “receive request”
place of the server. Encryption is performed due to the firing of an “encrypt”
transaction, and the shares and data information are sent from the “send share” and
“send info.” places to other servers. The other servers receive the shares or data
information via the “receive share (info.)” place, and after storing the information in the
“file” place, send back an acknowledgement from “send store ack.” After the server
receives a reception certification of the shares from all servers, it sends back a reception
certification to the client, and the store task is completed. Other basic functions of a
storage system can also be modeled by MAN for implementing the secret sharing
mechanism. The proposed storage system has obvious advantages such as robustness to
unexpected disasters and high reliability against data loss or stealing.

5.3 Distributed Energy Management Systems for CO2 Reduction [11]

We consider a problem to minimize both of energy costs and CO2 emissions in an area
where there exist several independent entities (agents) who consume and/or produce
electric or thermal energy. We adopt a cooperative energy trading decision method
instead of total optimization for which usually competitive entities would not like to
accept. By this method, we want to reduce energy consumption and the amount of the
CO2 emissions at the same time in the entire group without undermining economic
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benefit for each agent. A group consists of agents connected by electrical grids and heat
pipelines. Each agent can buy electricity and gas from the electric power company and
the gas company outside of the group. Electricity and heat can also be bought and sold
between agents in the group. We show an example of a group energy trading system in
Fig. 9. The group shown in Fig. 9 has Factory1 and 2 as producer agents and Building as
a consumer agent. Each agent has demands for electricity and heat with predicted
demand patterns. The producer agents can buy gas and electricity from the outside of the
group, can produce electricity and heat to fill their own demands, and can sell energy in
the group. The consumer agents can buy energy in the group and from the outside of the
group, and can produce energy to fill their own energy demands. Each agent decides its
energy purchase plan and running plan of equipments that maximizes its own economic
profit that will be subject to energy demands and CO2 emissions. Fig. 10 and Fig. 11 are
MAN models for customer agent and supplier agent, respectively. In our energy trading
system, not only unit price of energy but CO2 emission basic unit is taken into account.
A market-oriented programming (MOP) is a method for constructing a virtual perfect
competitive market on computers, making the state of equilibrium which appears as a
result of the interaction between agents involved in the market, and deriving the Pareto
optimum distribution of goods finally. A market economy considered in the MOP is
composed of goods and agents. For formulation of MOP, it is necessary to define (1)
goods, (2) agents, and (3) agent’s bidding strategies. In Fig. 12, we show an example of
a MAN model of markets in the group shown in Fig. 9.
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6 Conclusion

This paper surveys the works and works-in -progress by the authors and their group on
realization of Autonomous Distributed Systems (ADS) by Multi Agent Nets (MAN).
ADS is a universal system concept which plays a central role in this ubiquitously
networked society and the realization technologies are so vital for safe, robust, and
flexible management and operation of such systems. We proposed MAN as one of the
basic modeling and prototyping tools and several applications revealed its versatility
for wide range of engineering and business problems. On a theoretical or formal
verification analysis on MAN, there remains serious works yet to be done. An attempt
to generate an abstract state space for MAN and a verification by ACTL on the abstract
space is a few example of the formal treatment for nested Petri nets like MAN [12 ].
The use of MAN as an executable verification model for high level modeling language
such as UML is also promising and the construction of simulator for UML based
Service Oriented Architecture of business process is undergoing by this group.
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For more than 40 years Petri nets [I] serve as an efficient formal model of con-
current behavior of complex discrete systems. There exists a rich bibliography
of books and works devoted to these methods and many applications of nets
have been already created. The model is extremely simple: it uses three basic
concepts, of places, of transitions, and of a flow relation. The behavior of a net
is represented by changing distribution of tokens situated in the net places, ac-
cording to some simple rules (so-called firing rules). Non-negative integers play
essential role in the description of tokens distribution, indicating the number
of tokens contained in nets places and . Transitions determine way of changing
the distribution, taking off a number of tokens from entry places and putting a
number of tokens in exit places of an active transition. Formally, to any tran-
sition some operations on numbers stored in places are assigned and therefore
the behavior of nets is described by means of a simple arithmetic with adding
or subtracting operations on non-negative integers.
Nets became attractive for several reasons, namely because:

- simplicity of description they offer,

demonstrativeness, mainly due to their graphic representation
- a deep insight into concurrency phenomena,

- facility of applications to basic concurrent systems

However, some of positive features of nets create also their weakness. Namely,
simplicity of the model makes difficult the complex situations description; the for-
malism being well suited to describe basic phenomena may turn out to be difficult
for some real applications. Integers may turn out to be too primitive structures for
dealing with more subtle objects; enlarging the net structure to the real word situ-
ations description could be troublesome. Finally, the intuition appealing graphical
representation may be dangerous for rigorous formal reasoning. For these reasons,
a constantly growing number of different extensions of original nets to the so-called
higher level ones has been invented. In this talk a very modest modification of the
original net concept is discussed, consisting in:

- replacing integers by arbitrary objects for storing in places;
- accepting arbitrary relations as transition activities;
- resigning from a fixed flow direction in the net structure.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 20-23] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Token-free nets. A token-free net (FT-net, for short) is defined by its structure
and specification; the structure is defined by triple (P, T, v), where P, T are finite,
non-empty disjoint sets, of places and transitions respectively, and v C Px T is
a relation called the neighborhood relation. Set

vt)={pl )€}, ) ={t|(p,t) €7}

Say that transitions ¢', ¢ are independent and write (¢',t") € I, if v(¢')N~(t") =
(). The specification of net with structure (P, T, ) is any triple (S, F, ¢"), where S
is a mapping which to each place p € P assigns set .S, (of values of place p), F' is
a mapping which to each p € P and each t € y(p) assigns binary relation F,(t) C
Spx Sy (the transition relation), and oy is a mapping which to each p € P assigns
value 0%(p) € S, (the initial valuation of places). Below, in the left-hand picture,
a TF-net with structure ({p,q,r, s}, {a,b,c,d},{(p,a),(q,a),(q,c),(q,d), (r,b),
(r,e), (s, ), (s,d)}) is presented in a graphical form. In the right-hand picture this
structure is filled up with a specification, giving some initial values x,y, z, u as-
signed to places and transition relations ¢, x, 1 assigned to corresponding edges,

e.g. Fy(a) = x, Fy(c) =1, Fy(d) = x.
a O b a X @) b
p b s
O ¢ Or @' ,0
X
d O d é @

Let (S, F, o) be a specification of net N with structure (P, T,~). Any mapping
o assigning to place p € P its value o(p) € S, is called a valuation. Transition ¢
is enabled at valuation o, if o(p) is in the domain of F,(¢) for any neighbor place
p of t. The behavior of N is defined as follows. Let o/,6” € P — S be two
valuations of places of N, ¢t € T be a transition of N; say that ¢ transforms in
N valuation o’ into o’ (or that ¢ can fire at valuation ¢’) and write o 5y o,
if the following equivalence holds:

;1 1

o =nyo & o'(p),d” (p)) € Fy(t), Vp € P,
a"(p Vp & P

I
q\
S

From this definition it follows that ¢’ 5y o’ implies ¢ to be enabled at o’ (p).
Extend relation —t N to —n for w € T* in the standard way:
o Bno'e o= fw=c¢,
Jo:5'0 Lyo Ly o, fw=ut,ueT* teT.

The set Seq(N) = {w | 3o : 0° %y o} is called the (sequential) behavior of N,
and its elements, traditionally, firing sequences of N.
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Classical place/transition nets are particular cases of TF-net, in which values
of all places are non-negative integers, and relations are either defined by F),(t) =
{n,n+k) | n+k <c} (the pair (p,t) is then represented by an arrow leading
from t to p labeled with &, the multiplicity of that arrow, and with place p labeled
with ¢, the capacity of p), or by F,(t) = {n,n— k) | k < n} (then the arrow,
similarly labeled with k, leads from p to t). The behavior of such nets agrees
with the definition given above.

As another example of a TF-net can serve ‘string nets’, with strings over
alphabet X' are individual values, and relations are either defined by F,(t) =
{(w,wa) | w € X*} or by F,(t) = {(wa,w) | w € *}, for some a € X, or by
F,(t) = {(w,w) | € # w € X*}. Observe also that values assigned to different
places may have different types, e.g. values of some places can be strings, while
those of other ones can be integers.

Composition properties. TF-nets enjoy a composition property similar to
that holding by classical Petri nets [2]. Let N = (P,T,v;S, F,0") be a TF-
net. To each place p € P assign finite automaton A, defined by equality A, =
(8,Ty, Fp, s)), called the local automaton for p in N, where T}, = ~(p), F,(t) C
Sx S, and sg = o%(p). Conversely, given a finite family of local automata
A = (S, T, Fy,8Y), i € I, with Fy(t) C S;x S; for each t € T; and s? € S;,
their composition &;crA; can be defined as TF-net (I,T,v;S, F,0°), where
T = Ui Ti,y ={(i,t) | i € I,t € Ty}, S(i) = S; for i € I, and 0°(i) = ).
Extend Fj(t) to F,(w) for all w € T™:

(s,8") e Fy(e) & s =",
(s,8") € Fy(wt) & 3s: (s',5) € Fy(w) A(s,8") € Fy(t).

for all §',s"” € S,w € T*,t € T. The language accepted by A, is the set L(A,) =
{w|3s: (s, s) € F*(w)}. We have the following composition property:

Seq(&iein) = ker(&,ielL(Ai)),

where w € &crL(A;) & Vie I : m(w,T;) € L(A;), m(w,T;) is the projection of
w onto T;, and ker(L) is the greatest prefix closed subset of language L. A set of
strings is directed, if any two elements of this set are prefixes of another element
of this set. Any maximum prefix-closed directed subset of seq(N) is a full run
of N; the set of all full runs of N is denoted by Seq(N). Cardinality of a full
sequential run (possibly infinite) is called its length.

Net restrictions. Flexibility of choosing arbitrary transition relations as spec-
ification of nets with a common structure offers a possibility of comparison such
specifications. Let N', N be nets with the same structure, say (P, T,~), and with
specifications (S, F”,a9), (S”, F",a9), respectively. Say that net N’ is a restric-
tion of net N, if for each p € P there exists mapping 6, : S, — S}/ such that

s3(p) = 6(s1(0)),  (s,8") € Fy(t) = (6p(s"), 8p(5")) € F/ (1)
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and then write N/ < N”. From the definition of nets behavior it follows easily
N’ < N" = seq(N') C seq(N").

The case when 0, is the identity mapping for each p € P is a particular case of
restriction; then the restriction condition reduces to the inclusion Fy(t) C F}'(t)
for all p € Pt € T, i.e. simply to F/ C F”. Clearly, the restriction relation
is a partial order in the family of all nets with a common structure; the net
with Fj,(t) = 0 (over-specified net, where none of transitions are enabled at
any valuation) is its minimum element. In a net with 0 # F,(t) = S, x S,
any transition at any valuation is enabled (under-specified net), is maximum
element in the above ordering. The question arises if it is possible to adjust the
specification of a net to get a priori chosen behavior of it. A partial answer to
this question is formulated below.

Restricted nets behavior. Let N = (P,T,~;S,F,0") be an arbitrary but
fixed TF-net. Let = be the least equivalence relation in T* s.t. (¢/,¢") € I =
t't" ="t and w' = w", v = v = w'u' = w"u”; then it follows easily that w' €
Seqy AN w' = w” = w” € Seqy. It is also not difficult to show that two strings
w',w"” € seq(N) are equivalent if and only if Vp € P : w(w’,y(p)) = w(w”, v(p))
(their projections on local alphabets are pairwise equal). Extend equivalence
relation = to sets of strings by the equivalence:

W =W & Vpe P {n(wA(p) | we W} = {r(w,y(p) |we W}

This description method origins from basic results of Shields [3]. Possible effects
of restrictions are demonstrated by the following fact. Let Wy € Seq(N). Then
there exists a restriction N’ of N such that any run W’ € Seq(N') is equivalent
to W:

V Wy €Seq(N): I N < N:VW € Seq(N'): W =W,.

This result is a partial answer to the more general question about defining pos-
sibilities of specification restrictions.
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Serious developments concerning formal aspects of software specification, verifi-
cation and development initially addressed programming-in-the-small: descrip-
tion, analysis and verification of relatively simple (iterative) programs. This
phase was marked with achievements like Hoare’s logic [Hoa69], formalising the
earlier proposals concerning proofs of correctness of iterative programs. Early
work of Parnas [Par72D, [Par72a] advanced programming-in-the-large, undertak-
ing the issues of modularity and abstraction. Data abstraction together with the
related issue of step-wise program development, was addressed in another sem-
inal paper by Hoare [Hoa72] ] Work on algebraic specifications (e.g. [GTWTS]|)
initially addressed the problem of specifying (abstract) data types, but soon
grew to a general methodology for specification and systematic development of
software system with an extensive body of work and publications [BKLT91]. Our
relatively recent account of one line of work grown on algebraic specifications
given in [STO7, [Tar03] presents foundations for a comprehensive methodology
for software specification and development, and rightly claims generality of the
approach gained by parameterising on an arbitrary logical system formalised as
an institution [GB92]. Nevertheless, the approach presented there works most
clearly for relatively simple systems built by statically combining well-specified,
hierarchical modules. This is perhaps best visible in particular specification for-
malisms that fit this approach, with CASL developed recently
by the COFT group as a prime example. Oversimplifying grossly: we know best
how to specify and put together purely functional STANDARD ML modules and
their relatively minor variants (even if the EXTENDED ML experiment [KST97]
with embedding specifications into arbitrary STANDARD ML programs was only
partly successful, it certainly does work for specifications of such systems).

In the meantime, the standard practise of building complex software system
changed considerably, for better or worse encompassing many complex program-
ming features with often far from satisfactory semantic and logical tools for their
description and analysis, in spite of considerable amount of work and a whole

* This work was funded in part by the European IST FET programme under the
IST-2005-015905 MOBIUS and IST-2005-016004 SENSORIA projects.

1 I make no pretence of any completeness or even full accuracy of such historical
references here — instead, let me advertise excellent essay [Jon03] on the history of
approaches to, and methods for verification of (sequential imperative) programs.
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spectrum of approaches proposed. For instance, we have object-oriented technol-
ogy [Boo94], with local states of objects, inheritance and dynamic communication
between objects, to mention just a few features not treated directly by specification
formalisms like CASL. Of course, this does not mean that in principle the object-
oriented paradigm cannot be dealt with using the general methodology referred
to above. In particular, many aspects of object-oriented paradigm are covered by
behavioural interpretation of specifications [Rei86l, [GMO0Q, [BHO06, [BST06], where
internal features of a specification (including for instance hidden data to model
the state) are regarded only in so far as they influence the visible behaviour of the
specified system. Still, the practise of object-oriented design and development is
dominated by approaches like UML [BRJ9§|, in spite of its deficiencies and (at
least initially) lack of formal foundations. One aspect of UML which we want
to stress here is that via dozens of kinds of UML diagrams, it offers a consider-
able heterogeneous spectrum of methods to capture various facets of the specified
systems.

The methodology advocated in [ST97] and [BM04] naturally leads to the de-
velopment of systems that are statically composed of a number of mutually
independent, well-specified modules. This is quite orthogonal to the current de-
velopments in the area of, for instance, service-oriented computing, where sys-
tems are configured dynamically out of a collection of available components to
provide a given service (and often decomposed once the desired goal has been
achieved). This dynamic aspect is to some extent present for instance in agent-
oriented technologies (e.g. [Woo0OI]). It seems though that the stress there is on
the search for the right services offered, not so much on the right specification
of the modules that provide the services and on the systematic design of the
overall architectures of such systems.

What I would like to pursue is an approach to specification, design and sys-
tematic development of hierarchical systems that consist of a collection of com-
ponents designed to be combined in a number of possible ways to potentially
fulfil various tasks. It should be possible to reconfigure the resulting systems
dynamically using the components provided. The framework should enable sub-
sequent specification of individual components, their alternative configurations,
the overall system capabilities and properties ensured by particular configura-
tions, as well as the possible system reconfiguration process itself. Moreover, the
framework aimed at should be hierarchical in the sense that overall system spec-
ification should have the same format as specifications of individual components,
so that the components can also be built as such reconfigurable (sub-)component
systems.

This is, so far, a long term goal with not much specific proposals on how
to reach it in any formal and mathematically well-founded way. I would like,
however, to present at least some directions of work and ideas which in my view
are useful prerequisites to achieve such a goal.

Specifications in an Arbitrary Institution. Since the early work on CLEAR [BGS()],
the formalisation of logical systems as institutions [GB84, [GB92] proved to be not
only a powerful conceptual basis for a very abstract version of model theory, but
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first of all, a pragmatically useful technical tool in the design of specification for-
malisms and in the work on foundations of software specification and systematic
development. This started with mechanisms to structure specifications built in
any logical system presented as an institution [ST88a], and then covered a whole
spectrum of standard concepts and ideas in the area [ST97, [Tar03].

Systematic Development and Architectural Specifications. Starting with [STSSD],
the work on fundamentals of specification theory in the framework of an arbitrary
institution included a general foundational view of the systematic development
of correct modular systems from their requirements specifications. This led to
formalisation of the design steps in software development process as architec-
tural specifications [BST02], whereby a modular structure of the system being
developed is designed by listing the units the system is to be built of, providing
their precise specifications, and defining the way in which they are supposed to
be composed to build the overall system.

Heterogeneous Logical Environments. The theory of institutions also offers solid
foundations to deal with heterogeneous specifications [Tar96l [Tar00, [Mos02],
where specifications of various modules of a given system, or various facets of
some modules may be conveniently built in various logical systems, most appro-
priate for the particular task at hand. One related idea is that of heterogeneous
development, where the process of the system development may migrate from
one logical system to another, most appropriate at the given stage. Of course,
to make this meaningful, the logical systems in use, or rather the institutions
that capture them, must be linked with each other by a map of one kind or an-
other [GR02], thus forming a heterogeneous logical environment, which in turn
may be formalised simply as a diagram in a category of institutions.

Architectural Design and Connectors. Architectural specifications mentioned
above provide a tool for designing a static modular structure of the software
system under development. This is not quite the same as the overall system ar-
chitecture, as discussed for instance in [AG97], which deals more with the actual
interconnection between system components in the dynamic process of computa-
tions carried out by the system. One crucial idea there is that in the architectural
design the system components need not be linked directly with each other, but
rather via architectural connectors [FLW03] that are specialised units playing no
other role than to coordinate activity of the components they link.

Systems of Potentially Interconnected Components. What emerges from the
above is a view of systems as collections of components linked with each other by
architectural connectors. One observation in [Zaw06] is that the resulting collec-
tion of interconnected components as a whole may be of a very limuited use, or
may even be inconsistent due to potentially contradictory properties of actions
offered by various components, while its various sub-configurations may amount
to perfectly useful systems. As a consequence we can meaningfully consider sys-
tems of components with their potential interconnections from which only some
are “active” at a given moment. Various techniques, for instance those based
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on graph grammars, may now be used to reconfigure the actual “active” sys-
tem within the possibilities offered by the graph of potential connection between
system components.

The above list indicates the ideas, concepts and results that can be put to-
gether and further developed aiming at foundations for an overall methodology
of specification and development of hierarchical component systems that allow
for system reconfiguration. Preliminary combination of the above ideas and ini-
tial results will be presented at the conference, with a hope to generate a critical
discussion and suggestions of the techniques developed within the field of Petri
nets that may be useful in this context. Undoubtedly though, achieving the
overall goal requires considerable further work.
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Abstract. Most specific characteristics of (Place/Transition) Petri nets
can be traced back to a few basic features including the monotonicity of
the enabling condition, the linearity of the firing rule, and the locality of
both. These features enable “Petri net” analysis techniques such as the
invariant calculus, the coverability graph technique, approaches based on
unfolding, or structural (such as siphon/trap based) analysis. In addition,
most verification techniques developed outside the realm of Petri nets can
be applied to Petri nets as well.

In this paper, we want to demonstrate that the basic features of Petri
nets do not only lead to additional analysis techniques, but as well to
improved implementations of formalism-independent techniques. As an
example, we discuss the explicit generation of a state space. We underline
our arguments with some experience from the implementation and use
of the Petri net based state space tool LoLA.

1 Introduction

Most formalisms for dynamic systems let the system state evolve through read-
ing and writing variables. In contrast, a Petri net marking evolves through the
consumption and production of resources (tokens). This fundamental difference
has two immediate consequences. First, it leads to a monotonous enabling con-
dition. This means that a transition enabled in some state is as well enabled in a
state that carries additional tokens. Second, it leads to the linearity of the firing
rule. This means that the effect of a transition can be described as the addition
of an integer vector to a marking vector.

The Petri net formalism has another fundamental property that it shares with
only some other formalisms: locality. This means that every transition depends
on and changes only few components of a state. In Petri nets, these components
(places) are explicitly visible through the arc (flow) relation.

Many specific Petri net analysis techniques can be directly traced back to
some of these characteristic features of Petri nets. For instance, the coverability
graph generation [KM69[Fin90] is closely related to monotonicity and linearity.
The invariant calculus [LST4[GL83|[Jeng1] clearly exploits linearity of the firing
rule. For structural analysis such as Commoner’s Theorem [Com72] or other
methods based on siphons and traps, monotonicity and locality may be held
responsible. Petri net reduction [Ber86] is based on the locality principle. Analysis
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based on unfoldings [McM92JEsp92] (or partial ordered runs) involves the locality
principle as well. This list could be continued.

On the other hand, there are several verification techniques that do not depend
on a particular modeling language. An example for this class of techniques is state
space based analysis, and—build on top of it—model checking [CESI[QS8I]. The
availability of specific techniques like the ones mentioned above has long been
observed as a particular advantage of Petri nets as a modeling language. Be-
yond this insight, we want to discuss the implementation of a Petri net based
state space generator (LoLA [Sch00c]) in order to show that the basic features
of Petri nets mentioned in the beginning of this section can be used for an effi-
cient implementation of—otherwise formalism-independent—explicit state space
generation.

We start with a short introduction to the tool LoLA and give, in Sec.[3 a brief
overview on some case studies conducted with this tool. In Sec. 4 we consider
the implementation of fundamental ingredients of a state space generator such
as firing a transition or checking for enabledness. Finally, in Sec.[5 we informally
discuss a few Petri net specific issues of state space reduction techniques.

2 The State Space Generation Tool LoLA

The LoLA project started in 1998. Its original purpose was to demonstrate the
performance of state space reduction techniques developed by the author. Most
initial design decisions were driven by prior experience with the state space
component of the tool INA [RS9S].

LoLA can read place/transition nets as well as high-level nets. High-level nets
are immediately unfolded into place/transition nets So, LoLA is indeed a place-
transition net tool while the high-level input can be seen as a shorthand notation
for place/transition nets.

LoL A generates a state space always for the purpose of verifying a particular
property. It implements the in-the-fly principle, that is, it stops state space
generation as soon as the property being verified is determined. The properties
that can be verified include

Reachability of a given state or a state that satisfies a given state predicate;
Boundedness of the net or a given place;

Quasiliveness of a given transition;

— Existence of deadlocks;

Reversibility of the net;

— Existence of home state;

— Liveness of a state predicate;

— Validity of a CTL formula;

— Validity of the LTL formulas F'¢, GF¢, and FG¢, for a given state predicate

o.

LoLA can build a state space in depth-first or breadth-first order, or it can
just generate random firing sequences for an incomplete investigation of the state
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space. While depth-first search is available for the verification of all properties
listed above, the other search methods are restricted to reachability, deadlocks
and quasiliveness.

The following reduction techniques are available in LoLA:

Partial order reduction (the stubborn set method);
The symmetry reduction;

— The coverability graph generation;

The sweep-line method;

— Methods involving the Petri net invariant calculus;
— a simplified version of bit hashing

The techniques are employed only if, and in a version that, preserves the
property under investigation. If applicable, reduction techniques can be applied
in combination.

Using LoLLA amounts to executing the following steps.

1. Edit a particular file userconfig.H in the source code distribution for se-
lecting the class of property to be verified (e.g., “boundedness of a place” or
“model check a CTL formula”) and the reduction techniques to be applied.

2. Translate the source code into an executable file 1ola.

3. Call 1lola with a file containing the net under investigation, and a file spec-
ifying the particular instance of the property (e.g., the name of the place to
be checked for boundedness, or the particular CTL formula to be verified).

4. LoLA can return a witness state or path, an ASCII description of the gen-
erated state space, and some other useful information.

Instead of a stand alone use of LoLLA, it is also possible to rely on one of the
tools that have integrated LoLA, e.g.,

— CPN-AMI [KPA%9),
— The Model Checking Kit [SSE03]

— The Petri net Kernel [KWOT]

3 Some Applications of LoLA

As LoLA can be downloaded freely, we do not have a complete overview on
its applications. In this section, we report on a few case studies conducted by
ourselves, and studies we happen to know about.

Validating a Petri Net Semantics for BPEL [HSS05]

WS-BPEL (also called BPEL or BPELAWS, [Cur+03]) is an XML-based lan-
guage for the specification of web services. Due to an industrial standardization
process involving several big companies, the language contains a lot of non-
orthogonal features. It was thus adequate to give a formal semantics to BPEL
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in order to reason about consistency and unambiguity of the textual specification.
Several formal semantics have been proposed in various formalisms, among them
two which are based on Petri nets. One of the Petri net semantics has been
reported in [HSS05]. It translates every language construct of BPEL into a Petri
net fragment. The fragments are glued together along the syntactical structure
of a BPEL specification. As the fragments interact in a nontrivial way, it was
necessary to validate the semantics. The validation was done by translating
several BPEL specifications into Petri nets and letting LoLLA verify a number of
crucial properties concerning the resulting nets.

The most successful setting in the application of LoLA was the combination of
partial order reduction (stubborn sets) with the sweep-line method. Partial order
reduction performed well as BPEL activities can be executed concurrently (avail-
ability of a significant number of concurrent activities is essential for the partial
order reduction). Furthermore, the control flow of a BPEL specification follows a
pattern of progress towards a fixed terminal configuration. Such progress can be
exploited using the sweep-line method. LoLA detects the direction of progress
automatically (this issue is further discussed in Sec. [).

It turned out that LoLA was able to solve verification tasks for services with
up to 40 BPEL activities while it ran out of memory for a service with little
more than 100 activities. The nets that could be successfully verified consisted
of about 100 to 400 places and 250 to 1.000 transitions. Reduced state spaces
had up to 500.000 states. With the capability of handling BPEL specifications
with 40 or 50 activities, LoLA is well in the region of practical relevance. So,
LoL A has become part of a tool chain for web services that is developed within
the Tools4BPEL project [T4B07]. There, ideas exist to tackle larger processes
through further tuning the translation from BPEL to Petri nets, and through
abstraction techniques to be applied prior to state space verification.

The main lesson learned of this application was that partial order reduction in
combination with the sweep-line method is a powerful combination of reduction
techniques in the area of services.

Detecting Hazards in a GALS Circuit [SRKO05|

GALS stands for globally asynchronous, locally synchronous circuits. A GALS
design consists of a number of components. Each component has its own clock
signal and works like a synchronous circuit. Communication between compo-
nents is organized in an asynchronous fashion. This way, designers try to save
the advantages of a synchronous design (tool support, clearly understood set-
ting) while they tackle the major drawbacks (speed limitation and high energy
consumption due to long distance clock signal paths, energy consumption in idle
parts of the circuit).

In collaboration with the Institute of Semiconductor Physics in Frankfurt/-
Oder, we investigated a GALS circuit for coding and decoding data of the 802.11
wireless LAN protocol. In particular, we translated a so-called GALS wrapper
gate by gate into a place/transition net. A GALS wrapper is the part of a GALS
design that encapsulates a component, manages incoming data, and pauses the
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clock of the component during periods where no data are pending. Consequently,
a wrapper as such is an asynchronous circuit. It consists of five components: an
input port maintaining incoming data, an output port managing outgoing data,
a timeout generator, a pausable clock, and a clock control. All in all, there are 28
gates (logical gates, flip-flops, muller-C-elements, counters, and mutex elements).

We were interested in the detection of hazards in the wrapper. A hazard is a
situation where, due to concurrently arriving input signals, it is not clear whether
the corresponding output signal is able to fully change its value (after arrival of
the first signal) before switching back to the original value. Such an incomplete
signal switch may cause undefined signal values which are then potentially prop-
agated through the whole circuit. The Petri net model was built such that the
occurrence of a hazard in a particular gate corresponds to a particular reachable
marking in the Petri net model of the gate.

LoLLA was applied for solving the various reachability queries. Again, a com-
bination of partial order reduction with the sweep-line method turned out to be
most successful. Nevertheless, LoLA was not able to solve all of the reachability
queries on the original model (having 286 places and 466 transitions). In a sec-
ond approach, the model was replaced by a series of models each modeling one
of the parts of the wrapper in detail while containing abstract versions of the
others. The abstraction was based on the assumption that no hazards occur in
the abstracted part. LoLA was then able to solve all reachability queries. The
largest state space had little more than 10.000 nodes.

We detected eight hazards and reported them to the people in Frankfurt. For
each hazard, we could derive a scenario for its occurrence from the witness paths
available in LoLA. Six of the scenarios could be ruled out through knowledge
about timing constraints. The remaining two hazards were considered as really
dangerous situations. Using LoLLA again, a re-design of the wrapper was verified
as being hazard-free.

The approach of modeling one part of the investigated system in detail while
abstracting the others was the main lesson learned out of this application

Garavel’s Challenge

Back in 2003, Hubert Garavel posted a challenge to the Petri Net Mailing List.
The mail contained a place/transition net with 485 places and 776 transitions
that allegedly stemmed from a LOTOS specification. Garavel was interested in
quasi-liveness of all transitions of the net.

Apart from LoLA, the two symbolic state space tools SMART (by G. Chiardo
and R. Siminiceanu) and Versify (by O. Roig), and the tool TINA (by B.
Berthomieu and F. Vernadat) which used the covering step graph technique
responded to the challenge. The symbolic tools were able to calculate the exact
number of reachable states of the system which was in the area of 1022,

The LoLA approach to the challenge was to generate not just one (reduced)
state space but 776 of them, one for the verification of quasi-liveness of a partic-
ular transition. This way, partial order reduction could be applied very success-
fully. 774 of the queries could be solved this way while two queries ran out of
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memory. For these transitions, we applied then the LoLA feature of generating
random firing sequences. In fact, the sequences are not totally random. Instead,
the probability of selecting a transition for firing is weighted according to a
heuristics which is closely related to the stubborn set method. This heuristics
is quite successful in attracting a firing sequence towards a state satisfying the
investigated property. At least, it worked for the two problematic transitions in
the challenge and we were able to report, for each transition, a path witnessing
its quasi-liveness.

This challenge showed that LoLA can be competitive even to symbolic state
space tools. A major reason for success was the division of the original verification
problem into a large number of simpler verification tasks.

Exploring Biochemical Networks [Tal07]
In a biochemical network, a place represents a substance, tokens in a place repre-
sent presence of the substance. A transition models a known chemical reaction.
A transition sequence that finally marks a place represents a chain of possible
reactions that potentially generates the corresponding substance.

People at SRI use LoLA for exploring reaction paths. According to [Tal07],
they “use LoLA because it is very fast in finding paths”.

The examples show that LoLA can be applied in various areas. It is able to
cope with models of practically relevant systems. The performance of LoLA is
due to at least four reasons:

— LoLA features a broad range of state-of-the-art state space reduction tech-
niques most of which can be applied in combination;

— LoLA offers specialized reduction techniques for every property listed in the
previous section;

— LoLA uses the formalism of place/transition nets which can be handled much
easier than a high-level net formalism;

— The core procedures in LoLLA exploit the basic characteristics of Petri nets
as mentioned in the introduction.

4 Core Procedures in a State Space Generator

In this section, we demonstrate how the basic characteristics of Petri nets can
be taken care of in the implementation of a state space generator. A state space
generator is basically an implementation of a search through the state graph,
typically a depth-first search. The elementary steps of a depth-first search include
the following steps, each discussed in a dedicated subsection. When discussing
complexity, we assume the investigated system to be distributed. Formally, we
assume that there is a fixed value k such that every transition has, indepen-
dently of the size of the net, at most &k pre- and post-places. Several realistic
distributed systems satisfy such a requirement for a reasonably small k, for even
more systems there are only few transitions violating the assumption.



Generating Petri Net State Spaces 35

Firing a Transition

By firing a transition, we proceed from one state to a successor state. In a Petri net,
the occurrence of a transition ¢ changes the marking of at most card(et)+ card(te)
places. According to the assumption made above, this number is smaller than 2k.
By maintaining, for each transition, an array of pre- and post-places, it is indeed
possible to implement the occurrence of a transition in time O(1). The ability to
easily implement the firing process in constant time can be contributed to local-
ity. In fact, other formalisms exhibiting locality have the same opportunity (like
the model checking tool SPIN [Hol91] using the guarded command style language
PROMELA. In contrast, the input language of the model checker SMV [McM02]
does not support explicitly a notation of locality, and it would require a lot of ex-
pensive analysis for an explicit model checker to retrieve information on locality
from SMV input. Note that SMV is not an explicit model checker, so this consid-
eration does not concern SMV as such.

Checking Enabledness

The enabling status of a transition can change only due to the occurrence of a
transition t. So, except, for an initial enabledness check on the initial marking,
the check for enabledness can be reduced to the transitions in et U te. This
approach is again feasible for all formalisms exhibiting locality. For Petri nets,
however, the check for enabledness can be further refined due to the monotonicity
of the enabling condition. If ¢ is enabled before having fired ¢, and ¢ is only
adding tokens to places in et’, it is clear that ¢’ is still enabled after having
fired t. Likewise, a previously disabled ¢ remains disabled if ¢ only removes
tokens from et’. This way, the number of enabledness checks after a transition
occurrence can be significantly reduced. In LoLLA, we maintain two separate
lists of transitions for each ¢: those that can potentially be enabled by ¢ (must
be checked if they have been disabled before), and those that can be potentially
disabled by ¢ (must be checked if they have been enabled before). Through an
additional treatment of all enabled transitions as a doubly linked list (with the
opportunity to delete and insert an element at any position), it is possible to
retrieve a list of enabled transitions in a time linear to the number of enabled
transitions (which is typically an order of magnitude smaller than the overall
number of transitions).

Returning to a Previously Seen Marking

In depth-first search, we typically have a stack of visited but not fully explored
markings. This stack actually forms a path in the state space, that is, the im-
mediate successor of marking m on the stack is reachable from m through firing
a single transition. After having fully explored marking m on top of the stack,
we proceed with its immediate predecessor m’ on this stack. As Petri nets enjoy
the linearity of the firing rule, there is a strikingly simple solution to this task:
just fire the transition backwards that transformed m’ to m. This way, it takes
constant effort to get back to m/.
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For assessing the value of this implementation, let us discuss potential al-
ternatives. Of course, it would be possible to maintain a stack that holds full
markings. Then returning to a previous marking amounts to redirecting a single
pointer. But in depth-first exploration, the search stack typically holds a sub-
stantial number of visited states, so this approach would pay space for time.
In state space verification, space is, however, the by far more limited resource.
Another solution suggests to maintain, for each stack element, a pointer into the
repository of visited markings. This data structure is, in principle, maintained
in any explicit state space verification, so this solution would not waste memory
at the first glance. For saving memory, it is, however, highly recommendable
to deposit visited markings in a compressed form [WL93]. Thus, calculations
on a marking in this compressed form require nontrivial run time. Finally, this
solution prohibits approaches of storing only some reachable markings in the
repository (see Sec. [l for a discussion on such a method).

Maintaining the Visited Markings

According to the proposal to organize backtracking in the search by through
firing transitions backwards, there are only two operations which need to be
performed for on the set of visited markings. One operation is to search whether
a newly encountered marking has been seen before, the other is to insert that
marking if it has not. All other operations, including the evaluation of state
predicates, computing the enabled transitions, computing successor and prede-
cessor markings etc. can be performed on a single uncompressed variable, call
it CurrentMarking (in the case of LoLA: an array of integers). For searching
CurrentMarking and inserting it in the depository, we can look up and insert
its compressed version.

In consequence, it is at no stage of the search necessary to uncompress a
marking! This fact can be exploited for compressions where the uncompression
is hard to realize. In LoLLA, we have implemented such a technique [Sch03] that
is based on place invariants (thus, a benefit from the linearity of the firing rule).
Using a place invariant I, we can express the number of tokens of one place
p in supp(I) in terms of the others. We can thus exempt the value of p from
being stored in any marking. Given n linearly independent place invariants, the
number of values to be stored can be reduced by n. The number n typically
ranges between 20% and 60% of the overall number of places, so the reduction
is substantial. It does not only safe space but time as well. This is due to the
fact that a look up in the depository is now performed on a smaller vector.

Compressing a marking according to this technique is rather easy: we just
need to throw away places marked a “dependent” in a preprocessing stage. Un-
compressing would require an evaluation of the justifying place invariant. In
particular, it would be necessary to keep the invariant permanently in storage!
In LoLA, we do not need to keep them. Concerning space, the additional costs of
the approach, beyond preprocessing, amount to one bit (“dependent”) for each
place. Even in preprocessing, it is not necessary to fully compute the invari-
ants. As explained in [Sch03|, the information about mutual dependency can be
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deduced from an upper triangle form of the net incidence matrix, an interme-
diate stage of the calculation. This, way, invariant based preprocessing requires
less than a second of run time even for a net with 5.000 places and 4.000 transi-
tions. In that particular system, we would have 2.000 linearly independent place
invariants (each being a vector of length 5.000!).

Breadth-First Search

While depth-first search is the dominating technique for state space exploration,
breadth-first search can be used for some purposes as well, for instance for the
calculation of a shortest path to some state. In breadth-first search, subsequently
considered states are not connected by a transition occurrence. Nevertheless,
it is possible to preserve some of the advantages of the backtracking through
firing transitions. In LoLA, we mimic breadth-first search by a depth-first search
with an incrementally increased depth restriction. That is, we proceed to the
next marking to be considered by stepping back a few markings (through firing
some transitions backwards) and then firing some other transitions forward. The
average number of transitions to be fired is reasonably small as the number of
states tends to grow exponentially with increased depth. This is true even for
reduced state spaces, as some of the most powerful reduction techniques require
the use of depth-first search.

5 Reduction Techniques

In this section, we discuss a few state space reduction techniques and show that
the basic characteristics of Petri nets lead to specific solutions.

Partial Order Reduction

Roughly spoken, the purpose of partial order reduction is to suppress as many
as possible interleaved firings of concurrently enabled transitions. This goal is
achieved by considering, in each marking, only a subset of the enabled transi-
tions. This subset is computed such that a given property or class of properties
is preserved in the reduced state space.

It is well-known that locality is the major pre-requisite of the stubborn set
method [Val88] and other methods of partial order reduction [Pel93,[GW9T],
[GKPP95]. Furthermore, linearity of the firing rule turns out to be quite benefi-
cial. The reason is that partial order reduction is, among others, concerned with
permutations of firing sequences. It is typically desired that a firing sequence
reaches the same marking as the permuted sequence. Due to the linearity of
the firing rule, this property comes free for Petri nets. For other formalisms, it
needs to be enforced, as can be seen in [Val91]. This way, other formalisms have
additional limitations in the application of partial order reduction.

For partial order reduction, there is another source of efficiency that is worth
being mentioned. It is not related to the formalism of Petri nets itself, but with
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the tradition of Petri net research. In the area of Petri nets, people have studied
a broad range of singular properties such as boundedness, liveness, reversibility,
reachability, deadlock freedom, etc. Following this tradition, it was apparent
to support each of these properties with a dedicated version of partial order
reduction [Sch99,[Sch00d[KVOQ,[KSVO6]. In contrast, it is the tradition of model
checking to support a rich language or two (such as the temporal logics CTL
[Eme90] or LTL [MP92]). According this line of research, people came up with
reduction techniques that support the whole language [Pel93,[GKPP95]. It is
evident, that a dedicated reduction technique for property X can lead to a
better reduction than a generic technique for a specification language can can
express X. We believe that this observation is crucial for the competitivity of
LoLA in various areas.

The Symmetry Method

Symmetrically structured systems exhibit a symmetric behavior. Exploiting sym-
metry means to suppress consideration of a state if a symmetric state has been
considered before.

Most approaches search for symmetric structures in data types of the spec-
ification. The most popular data type in this respect is the so-called scaler
set [DDHC92] where variables can be compared for equality, used as indices in
arrays and order-independent loops, while there are no constants of that type.
In [CDEH90], a rather sophisticated detection of symmetric structure in data
types is described.

Due to the locality of Petri nets, place/transition nets have a rather fine
grained graphical representation. This feature enables another approach to find-
ing symmetries in the structure: we can compute the graph automorphisms of
the Petri net graph [Sta91l[Sch00al,[Sch00bl[Jun04]. There is a polynomial size
generating set of the automorphism group of a graph, and it can be computed
in reasonable time (though not always in polynomial time). The generating set
is sufficient for an approximated calculation of a canonical representative of a
marking [Sch00D], a method for detecting previously seen symmetric states dur-
ing state space calculation. The graph automorphism based approach to sym-
metry is a unique feature of LoLA and INA [RS98] (both implemented by the
author of this article).

The main advantage of the graph automorphism approach is that it can rec-
ognize arbitrary symmetry groups while the data type approach is restricted to
a couple of standard symmetries.

The Sweep-Line Method

The sweep-line method assumes that there is a notion of progress in the system
evolution. That is, assigning a progress value to each state, successor markings
tend to have larger progress values than their predecessors. This observation
can be exploited by traversing the search space in order of increasing progress
values, and to remove visited markings from the depository which have smaller
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progress value than the currently considered markings. For reason of correctness,
markings which are reached through a transition that decreases the progress
value, are stored permanently, and their successors are encountered.

The original method [Mai0O3Ll[CKMOTLIKM02|] assumes that the progress mea-
sure is given manually. However, exploiting the linearity of the Petri net firing
rule, it is possible to compute a progress measure automatically. The measure
being calculated assigns some arbitrary progress value, say 0, to the initial state.
Then, each transition ¢ gets an offset o(t) such that, if ¢ fired in m leads to m’, the
progress value of m’ is just the progress value of m plus o(t). For correctness, it
is important that different firing sequences from the initial marking to a marking
m all yield the same progress value for m. This can, however, been taken care of
by studying linear dependencies between transition vectors. In LoLLA, we com-
pute the measure by assigning an arbitrary offset, say 1, to each transition in a
maximum size linearly independent set U of transitions. For the remaining tran-
sitions (which are linear combinations of U) the offset is then determined by the
correctness requirement stated above. All applications of the sweep-line method
reported in this article have been conducted with an automatically computed
progress measure.

Cycle Coverage
The depository of visited markings is the crucial date structure in a state space
verification. In explicit methods, the size of the depository grows with the number
of visited states. The number of states to be stored can, however, be reduced in a
trade that sells time for space. By simply exempting states from being stored, we
obviously safe space but lose time as, in a revisit to a forgotten state, its successors
are computed once again. For an implementation of this idea, it is, as for instance
observed in [LLPY97], important to store at least one marking of each cycle in the
state graph. This condition actually ensure termination of the approach.

Thanks to linearity in the Petri net firing rule, it is fairly easy to characterize
a set of states such that every cycle in the state graph is covered. We know
that every firing sequence that reproduces the start marking forms a transition
invariant. Thus, choosing a set of transitions U such that the support of every
transition invariant contains an element from U, it is evident that every cycle in
the state graph contains at least one marking where a transition in U is enabled.
This approach has been described in [Sch03].

Combination of Reduction Techniques

Most techniques mentioned above can be applied in combination. The combined
application typically leads to additional reduction like in the case of joint applica-
tion of partial order reduction with the symmetry method. For some reduction
techniques, we experienced that their joint application with another technique
is actually a pre-requisite for a substantial reduction as such. For instance, the
sweep-line method only leads to marginal reduction for Petri nets with a lot of
cycles [Sch04]. Also, the cycle coverage reduction does not perform well on such
systems [Sch03]. Both methods can, however, lead to substantial (additional!) re-
duction when they are applied to a stubborn set reduced state space. This is due to
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a particular effect of partial order reduction. If a system consists of several, mostly
concurrently evolving, cyclic components, then the almost arbitrary interleaving
of transitions in these components closes a cycle in almost every reachable state.
This causes a tremendous number of regress transitions in the sweep-line method
(and thus a huge number of states to be stored permanently) and a huge number
of states to be stored with the cycle coverage reduction. Partial order reduction
decouples the arbitrary interleaving of concurrent components. A partial order re-
duced state space contains only a fraction of the cycles of the original state space,
and the remaining cycles tend to be significantly larger.

6 Conclusion

Petri nets as a formalism for modeling systems enjoy specific properties including
locality, linearity and monotonicity. These properties lead to specific verification
techniques such as the coverability graph, the invariant calculus, siphon /trap based
analyses, or the unfolding approach. In this article we demonstrated, that the spe-
cific properties of Petri nets are as well beneficial for the implementation of tech-
niques which are otherwise applicable in other formalisms as well. Our discussion
covered explicit state space verification as such, but also a number of state space
reduction techniques all of which can be applied to several modeling languages.

All mentioned methods have been implemented in the tool LoLA. LoLA is
able to solve problems that have practical relevance. We hold three reasons
responsible for the performance of LoLA:

— A consistent exploitation of the basis characteristics of Petri nets,

— A broad variety of reduction techniques which can be applied in many com-
binations, and

— The availability of dedicated reduction techniques for frequently used singu-
lar properties.

In this light, it is fair to say that LoLA is a Petri net state space tool.
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Abstract. In this work, we propose two high-level formalisms, Markov
Decision Petri Nets (MDPNs) and Markov Decision Well-formed Nets
(MDWNSs), useful for the modeling and analysis of distributed systems
with probabilistic and non deterministic features: these formalisms allow a
high level representation of Markov Decision Processes. The main advan-
tages of both formalisms are: a macroscopic point of view of the alternation
between the probabilistic and the non deterministic behaviour of the sys-
tem and a syntactical way to define the switch between the two behaviours.
Furthermore, MDWNSs enable the modeller to specify in a concise way
similar components. We have also adapted the technique of the symbolic
reachability graph, originally designed for Well-formed Nets, producing a
reduced Markov decision process w.r.t. the original one, on which the anal-
ysis may be performed more efficiently. Our new formalisms and analysis
methods are already implemented and partially integrated in the Great-
SPN tool, so we also describe some experimental results.

1 Introduction

Markov Decision Processes (MDP). Since their introduction in the 50’s, Markov
Decision process models have gained recognition in numerous fields including
computer science and telecommunications [13]. Their interest relies on two com-
plementary features. On the one hand, they provide to the modeler a simple
mathematical model in order to express optimization problems in random en-
vironments. On the other hand, a rich theory has been developed leading to
efficient algorithms for most of the practical problems.

Distributed Systems and MDPs. The analysis of distributed systems mainly
consists in (1) a modeling phase with some high-level formalism like Petri nets
(PN) or process algebra, (2) the verification of properties expressed in some logic
(like LTL or CTL) and (3) the computation of performance indices by enlarging
the model with stochastic features and applying either (exact or approximate)
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analysis methods or simulations. In this framework, a MDP may be viewed as a
model of a distributed system where it is possible to perform a non deterministic
choice among the enabled actions (e.g., the scheduling of tasks) while the effect of
the selected action is probabilistic (e.g., the random duration of a task). Then,
with appropriate techniques, one computes the probability that a property is
satisfied w.r.t. the “worst” or the “best” behavior [3l7]. The time model that
will be considered in this paper is discrete: each non deterministic choice is
taken in a given decision epoch, after the probabilistic consequence of the choice
has been performed, a new decision epoch starts.

Here the way we model distributed systems by MDPs is rather different. Dur-
ing a phase, the system evolves in a probabilistic manner until periodically a (hu-
man or automatic) supervisor takes the control in order to configure, adapt or
repair the system depending on its current state before the next phase. In other
words, usual approaches consider that the alternation between non determinis-
tic and probabilistic behavior occurs at a microscopic view (i.e., at the transition
level) whereas our approach adopts a macroscopic view of this alternation (i.e., at
a phase level). It should be emphasized that, depending on the applications, one
or the other point of view should be preferred and that the user should have an ap-
propriate formalism and associated tools for both cases. For instance PRISM [I1],
one of the most used tools in this context, works at the microscopic level whereas
the formalism of stochastic transition systems is based on a macroscopic view [g].
The latter formalism is a slight semantical variation of generalized stochastic Petri
nets [12] where the choice among the enabled immediate transitions is performed
non deterministically rather than probabilistically. Despite its simplicity, this for-
malism has a serious drawback for the design process since the modeler has no
mean to syntactically define the switches between the probabilistic behavior and
the non deterministic one. Furthermore, the difference between the distributed fea-
ture of the probabilistic behavior and the centralized one of the non deterministic
behavior is not taken into account.

Our contribution. In this work, we propose a high-level formalism in order to
model distributed systems with non deterministic and probabilistic features.
Our formalism is based on Well-formed Petri Nets (WN) []. First, we introduce
Markov Decision Petri nets (MDPN): an MDPN is defined by three parts, a
set of active components (e.g., processes or machines), a probabilistic net and a
non deterministic net. Every transition of the probabilistic net is triggered by a
subset of components. When every component has achieved the activities related
to the current probabilistic phase, the supervisor triggers the non deterministic
transitions in order to take some decisions, either relative to a component or
global. Every transition has an attribute (run/stop) which enables the modeler to
define when the switches between the nets happen. The semantics of this model
is designed in two steps: a single Petri net can be derived from the specification
and its reachability graph can be transformed with some additional information,
also specified at the MDPN level, into an MDP.

Distributed systems often present symmetries i.e, in our framework, many
components may have a similar behavior. Thus, both from a modeling and an
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analysis point of view, it is interesting to look for a formalism expressing and ex-
ploiting behavioral symmetries. So we also define Markov Decision Well-formed
nets (MDWN) similarly as we do for MDPNs. The semantics of a model is then
easily obtained by translating a MDWN into a MDPN. Furthermore, we develop
an alternative approach: we transform the MDWN into a WN, then we build the
symbolic reachability graph of this net [5] and finally we transform this graph
into a reduced MDP w.r.t. the original one. We argue that we can compute
on this reduced MDP, the results that we are looking for in the original MDP.
The different relations between the formalisms are shown in the figure depicted
below. Finally we have implemented our analysis method within the GreatSPN
tool [6] and performed some experiments.

MDWN

PN WN

MDP = Reduced MDP

Organization of the paper. In section[2l we recall basic notions relative to MDPs,
then we define and illustrate MDPNs. In section Bl we introduce MDWNs and
develop the corresponding theoretical results. In section dl, we present some ex-
perimental results. In section Bl we discuss related work. Finally we conclude
and give some perspectives in section

2 Markov Decision Petri Net

2.1 Markov Decision Process

A (discrete time and finite) MDP is a dynamic system where the transition
between states (i.e., items of S a finite set) are obtained as follows. First, given
s the current state, one non deterministically selects an action among the subset
of actions currently enabled (i.e., Ag). Then one samples the new state w.r.t. to
a probability distribution depending on s and a € Ay (i.e., p(-|s,a)). An MDP
includes rewards associated with state transitions; here, we choose a slightly
restricted version of the rewards that do not depend on the destination state (i.e.,
r(s,a)). Starting from such elementary rewards, different kinds of global rewards
may be associated with a finite or infinite execution thus raising the problem to
find an optimal strategy w.r.t. a global reward. For sake of simplicity, we restrict
the global rewards to be either the expected total reward or the average reward.
The next definitions formalize these concepts.

Definition 1 (MDP). An MDP M is a tuple M = (S, A, p,r) where:

— S is a finite set of states,
— A is a finite set of actions defined as |
actions in state s,

scs As where A is the set of enabled
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— Vs € S5,Va € As,p(|s,a) is a (transition) probability distribution over S such
that p(s'|s, a) is the probability to reach s’ from s by triggering action a,
— Vs € S,Va € Ag,r(s,a) € R is the reward associated with state s and action a.

A finite (resp. infinite) execution of an MDP is a finite (resp. infinite) se-
quence o = Sgag . . . Sp, (resp. o = Spap . . ) of alternating states and actions, s.t.
Vi, s; € SNa; € As; and p(sit|si,a;) > 0.

The total reward of such an execution is defined by trw(c) = Z?:_Ol r(si,a;)
(resp. trw(o) = lim, o0 Z?:_Ol r(si,a;) provided the limit exists) and its average
reward is arw(o) = | z::ol r(si,ai) (resp. arw(o) = lim, oo } Z?:_Ol r(si,a;)
provided the limit exists).

We denote SEQ*(M) (resp. SEQ°(M)) the set of finite (resp. infinite) se-
quences. A strategy st is a mapping from SEQ™ (M) to A such that st(spag . .. sp)
belongs to As, . Since a strategy discards non determinism, the behavior of M
w.I.t. st is a stochastic process M defined as follows. Assume that the current
execution is some spag .. .S, then a, = st(spag...s,) and the next state s,41
is randomly chosen w.r.t. distribution p(-|s,,a,). Consequently, the reward of
a random sequence of M*! is a random variable and the main problem in the
MDP framework is to maximize or minimize the mean of this random variable
and to compute the associated strategy when it exists. In finite MDPs, efficient
solution techniques have been developed to this purpose [13].

Here we want to model systems composed by multiple active components
whose behavior during a period is described in a probabilistic way and a cen-
tralized decision maker taking some decisions between execution periods (e.g.,
assigning available resources to components). Let us illustrate this kind of sys-
tems by a toy example. Imagine an information system based on two redundant
computers: this system is available as long as one computer is in service. A com-
puter may fail during a period. At the end of a period, the decision maker can
choose to send a single repairman to repair a faulty computer when he is not
yet busy. There is a fixed probability that the repairing ends inside the period.
In this framework, the rewards denote costs (for unavailability and repairs) and
the analysis aims at minimizing them. The MDP corresponding to this system is
shown in Fig. [l where the states description does not maintain the distinction
between the components; this is only possible when the computers are identical.

The design of this MDP is rather easy. However when the system has more
computers and repairmen with different behaviors, then modeling it at the MDP
level becomes unfeasible.

2.2 Markov Decision Petri Net

A Markov Decision Petri Net M is composed by two different parts (i.e. two
extended Petri nets): the probabilistic one NP" and the non deterministic one
N™ called the decision maker; it is thus possible to clearly distinguish and
design the probabilistic behavior of the system and the non deterministic one.
The probabilistic part models the probabilistic behavior of the system and can
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NoRepair

Q .NoRepal
D

State 0: both components are down.

State Or: both components are down
and one is under repair.

Repair
ir

State 1: a single component is down.

State 1r: a single component is down
and under repair.

NoRepair

NoRepair

Hr—— State 2: both components are up.

Fig. 1. Symbolic representation of the MDP modeling in this section

be seen as composition of a set of n components (CompP") that can interact;
instead the non deterministic part models the non deterministic behavior of the
system where the decisions must be taken (we shall call this part the decision
maker). Hence the global system behavior can be described as an alternating
sequence of probabilistic and non deterministic phases.

The probabilistic behavior of a component is characterized by two different
types of transitions Trun?” and T'stopP”. The TrunP” transitions represent in-
termediate steps in a probabilistic behavior phase and can involve several com-
ponents (synchronized through that transition), while the T'stop?” ones always
represent the final step of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system

level (transitions of Tg”d) or at the component level (transitions of 7). The

nd

nd and Tstop;‘d, and Trun;

g
and Tstop?d with the same meaning. The decision maker does not necessarily

control every component and may not take global decisions. Thus the set of
controllable “components” Comp™® is a subset of CompP™ W {ids} where id
denotes the whole system.

The probabilistic net is enlarged with a mapping weight associating a weight
with every transition in order to compute the probabilistic choice between tran-
sitions enabled in a marking. Furthermore it includes a mapping act which asso-
ciates to every transition the subset of components that (synchronously) trigger
the transition. The non deterministic net is enlarged with a mapping obj which
associates with every transition the component which is involved by the transi-
tion. The following definition summarizes and formalizes this presentation.

sets T;'* and T;" are again partitioned in Trun

Definition 2 (Markov Decision Petri Net (MDPN)). A Markov Decision
Petri Net (MDPN) is a tuple MN = (Comp®", Comp™®, NP" N"4) where:

— CompP" is a finite non empty set of components;

— Comp™® C CompP" W {id,} is the non empty set of controllable components;
— NP7 s defined by a PN with priorities [I2] (P, T?", IP", OP", HP"  prioP” , my),
a mapping weight: TP" — R and a mapping act: TP" — 2Comp™ - Moreover
TP" = TrunP™ W T stopP”

N™ s defined by a PN with priorities (P, ™, 1" O™ H" prio™® mg)
and a mapping obj: T" — Comp™®. Moreover T" = Trun™® v Tstop™.
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Furthermore, the following constraints must be fulfilled:

— TP AT = (. A transition cannot be non deterministic and probabilistic.

— Vid € CompP™,3C C Comp*", s.t. id € C and act=1({C}) N Tstop?” # .
Every component must trigger at least one final probabilistic transition.

— Vid € Comp™, obj~1({id}) N Tstop™ # (). Every controllable component
must be the object of at least one final non deterministic transition.

Note that the probabilistic part and the decision maker share the same set of
places and the same initial marking. Let us now introduce the rewards associated
with the MDPN net. As will be developed later, an action of the decision maker
corresponds to a sequence of transition firings starting from some marking. We
choose to specify a reward by first associating with every marking m a reward
rs(m), with every transition ¢ a reward 7t(t) and then by combining them with
an additional function rg (whose first parameter is a state reward and the second
one is a reward associated with a sequence of transition firings). The requirement
on its behavior given in the next definition will be explained when presenting
the semantics of a MDPN.

Definition 3 (MDPN reward functions). Let MN be a MDPN. Then its
reward specification is given by:

— rs : NP — R which defines for every marking its reward value.
— rt: T™ — R which defines for every transition its reward value.
—rg: R xR — R, not decreasing w.r.t its second parameter.

An example of (a portion of) probabilistic and non deterministic subnets is shown
in Fig. Bt in the framework of the MDPN formalism, the annotations on arcs and
next to the places and transitions should be ignored. The decision maker imple-
ments the possible ways of assigning resources (e.g. for component repair) to those
components that need them (e.g. failed components): for each component need-
ing a resource two possibilities are included, namely assign or not assign resource.
The probabilistic part shows 3 system components: two of them are controllable
(let’s call them Proc and Mem), one is not controllable (let’s call it ResCtr). The
Proc and Mem components can work fine or fail, the third one supervises the re-
pair process (when the resource is available) and the Proc and/or Mem resume
phase. T'stop transitions are e.g. WorkFineProc, WaitRepProc, ResumeProc, Re-
sumeMemProc, the first two involving only Proc, the third involving Proc and
ResCtr, the last one involving all three components; the firing of these tran-
sitions mean that the involved components have reached a stable state in the
current decision epoch. Trun transitions are e.g. FailProc, FailMem involving re-
spectively Proc and Mem, and EndRep involving only ResCtr. These transitions
represent intermediate steps in the components evolution (e.g. a failure can be
followed by a wait for repair resource or a resume final step).

MDPN Semantics. The MDPN semantics is given in three steps. First, one
composes the probabilistic part and the decision maker in order to derive a
unique PN. Then one generates the (finite) reachability graph (RG) of the PN.
At last, one produces an MDP from it.
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Fig. 2. Arcs connecting the places Stop?”, Run?® and the transition PrtoNd; arcs
connecting the places Stop??, Run?® and the transition NdtoPr

From MDPN to PN. First we explain the semantics of additional places Stop!”,
Run®” , Stop?®, Run?® Stop§? and Runf?and additional non deterministic
tranbltlonb PrtoNd and NdtoPr. Places Stop?”, Run!" , Stop?®, Run, Stopp?
and Runp? regulate the interaction among the componentb the global system and
the decmon maker. There are places Run , Stop” for every component 4, while
we insert the places Run and S top d if the decision maker takes same global de-
cision and the pair of places Run?® and Stop?? for every controllable component
i € Comp™®. Non deterministic transitions PrtoNd and NdtoPr ensure that the
decision maker takes a decision for every component in every time unit: the for-
mer triggers a non deterministic phase when all the components have finished their
probabilistic phase whereas the latter triggers a probabilistic phase when the de-
cision maker has taken final decisions for every controllable component.

The scheme describing how these additional items are connected together
and with the nets of the MDPN is shown in Fig. 2l The whole PN NP =
(peomp eomp [eomp (eomp  [ICOMp prjocomp ) related to a MDPN MN
is defined below.

— P = P Wiccomp,, {Runt", Stop!" } Wiccomp,. {Run??, Stopi?}
— Teomp = TP" 1y T @ { PrtoNd, thoPr}
— The incidence matrices of N°™? are defined by:
o Vpe PteT™,
Icomp(p’ t) — Ind(p7 t), Ocomp(p’ t) — Ond(p7 t), I{com,p(p7 t) — Hnd(p’ t)
e Vpe Pte TP,
10m0 (p, ) = 177 (p, ), 0°™ (p, ) = OV (p, ), H*"™(p, £) = H" (p, )
Vt € Tstop?” s.t. i € act(t) : I°°™P(Runl” t) = O™ (Stop?” ,t) = 1
Vt € TrunP” s.t.i € act(t) : [°°"P(Runf",t) = O“™P(Runl” t) = 1
Vt € Tstop™® s.t.i € act(t) : [°°™P(Run??,t) = O™ (Stopd t) = 1
vt € Trun™ s.t.i € act(t) : I°°P(Run?® t) = O“°™P(Run?,t) = 1
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o Vi € Compy, : [°°P(Stopt”, PrtoNd) = O“°™P(Runl”, NdtoPr) =1
o Vi € Compyg : [¢°mP(Stop??, NdtoPr,) = O™ (Run?®, PrtoNd) = 1
e for all I(p,t),O(p,t), H(p,t) not previously defined,
190mP (p, £) = O%OmP (p,t) — 0, HEmP(p, £) = o
— Yt € T™, prio(t) = prio™(t), Vt € TP", prio(t) = prioP" (t),
prio(PrtoNd) = prio(NdtoPr) = 1, (actually these values are irrelevant)
~ Vp € Pmg " (p) = mo(p), mg ™" (Run}) = 1,
mocomp(Stop?d) = mgomp(Runfr) = mgomp(Stopr) =0.

RG semantics and transitions sequence reward. Considering the RG obtained
from the PN we observe that the reachability set (RS) can be partitioned into
two subsets: the non deterministic states (RSyq), in which only non determin-
istic transitions are enabled, and the probabilistic states (RSp,), in which only
probabilistic transitions are enabled. By construction, the PN obtained from a
MDPN can never reach a state enabling both nondeterministic and probabilistic
transitions. A probabilistic transition can be enabled only if there is at least one
place Run?" with m(Run?") > 0, while a non deterministic transition can be
enabled only if there is at least one place Run?® with m(Run??) > 0. Initially
only Run?d places are marked. Then only when all the tokens in the Run?d
places have moved to the Stop?® places (through the firing of some transition in
Tstop™?), the transition NdtoPr can fire, removing all tokens from the Stop??
places and putting one token in every Run!” place. Similarly, transition PrtoNd
is enabled only when all tokens have moved from the Run!" to the Stop!” places;
the firing of PrtoNd brings the tokens back in each Run?d place. Thus places
Run?" and places Runl® cannot be simultaneously marked.

Observe that any path in the RG can be partitioned into (maximal) sub-
paths leaving only states of the same type, so that each path can be described as
an alternating sequence of non deterministic and probabilistic sub-paths. Each
probabilistic sub-path can be substituted by a single “complex” probabilistic
step and assigned a probability based on the weights of the transitions firing
along the path. The non deterministic sub-paths can be interpreted according to
different semantics (see [2] for a detailed discussion). Here we select the following
semantics: a path through non deterministic states is considered as a single
complex action and the only state where time is spent is the first one in the
sequence (that is the state that triggers the “complex” decision multi-step). So
only the first state in each path will appear as a state in the MDP (the other
states in the path are vanishing, borrowing the terminology from the literature
on generalized stochastic Petri nets).

Let us now define the reward function for a sequence of non deterministic
transitions, o € (T"%)*; abusing notation we use the same name rt() for the
reward function for single transitions and for transition sequences. The following
definition rt(c) assumes that the firing order in such a sequence is irrelevant
w.r.t. the reward which is consistent with an additive interpretation when several
decisions are taken in one step.
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Definition 4 (Transition sequence reward rt(c)). The reward for a non
deterministic transition sequence is defined as follows:

(o) = 2Lieqna rt(t)|ol:
where |ol; is the number of occurrences of non deterministic transition t in o.

Generation of an MDP given a RG of a MDPN and the reward structure. The
MDP can be obtained from the RG of the PN model in two steps: (1) build
from the RG the RG,q4 such that given any non deterministic state nd and any
probabilistic state pr all maximal non deterministic sub-paths from nd to pr
are reduced to a single non deterministic step; (2) build the RGypp (i-e., a
MDP) from the RG,q such that given any non deterministic state nd and any
probabilistic state pr, all maximal probabilistic sub-paths from pr to nd are
substituted by a single probabilistic step. Finally derive the MDP reword from
rs,rt and rg functions.

Let nd be a non deterministic state reached by a probabilistic transition (such
states will be the non deterministic states of RG,4). We focus on the subgraph
“rooted” in nd and obtained by the maximal non deterministic paths starting
from nd. Note that the probabilistic states occurring in this subgraph are ter-
minal states. If there is no finite maximal non deterministic sub-paths starting
from nd then no probabilistic phase can follow. So the construction is aborted.
Otherwise, given every probabilistic state pr of the subgraph, one wants to ob-
tain the optimal path 0,4, from nd to pr w.r.t. the reward. Once for every
such pr, this path is computed, in RG,4 an arc is added from nd to pr labeled
by 0y4,pr- The arcs starting from probabilistic states are unchanged in RG,q.

Thus the building of RG 4 depends on whether the optimization problem is a
maximization or a minimization of the reward. We only explain the minimization
case (the other case is similarly handled). We compute such a sequence using
the Bellman and Ford (BF) algorithm for a single-source shortest paths in a
weighted digraph where the transition reward is the cost function associated with
the arcs. This algorithm is sound due to our (cumulative) definition for rewards
of transition sequences. Note that if the BF algorithm finds a negative loop
(i.e., where the reward function decreases), the translation is aborted. Indeed
the optimal value is then —oco and there is no optimal sequence: this problem
must be solved at the design level.

We now explain how to transform RG,, into the MDP RGupp. Given a
probabilistic state pr and a non deterministic state nd we want to compute the
probability to reach nd along probabilistic sub-paths. Furthermore, the sum of
these transition probabilities over non deterministic states must be 1. So if in
RG 4, there is a terminal strongly connected component composed by only prob-
abilistic states, we abort the construction. The checked condition is necessary
and sufficient according to Markov chain theory. Otherwise, we obtain the transi-
tion probabilities using two auxiliary matrices. P®™?") a square matrix indexed
by the probabilistic states, denotes the one-step probability transitions between
these states and P9 a matrix whose rows are indexed by the probabilistic
states and columns are indexed by non deterministic states, denotes the one-step
probability transitions from probabilistic states to non deterministic ones. Let us
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describe how these transition probabilities are obtained. These probabilities are
obtained by normalizing the weights of the transitions enabled in pr. Now again,
according to Markov chain theory, matrix P = (Id —P®"P"))~ 1o P(Prnd) wwhere
Id is the identity matrix represents the searched probabilities. A similar trans-
formation is performed in the framework of stochastic Petri nets with immediate
transitions (see [12] for the details).

Finally in the MDP, the probability distribution p(:|nd, o) associated with
state nd and (complex) action o, assuming nd —— pr, is given by the row vector
P[pr, -] and the reward function for every pair of state and action is defined by the
following formula: r(nd, o) = rg(rs(nd), rt(c)). Since rg is not decreasing w.r.t.
its second parameter, the optimal path w.r.t. ¢ found applying the Bellman and
Ford algorithm is also optimal w.r.t. rg(rs(nd), rt(-)).

Discussion The MDPN is a high-level formalism for specifying MDPs. However
this formalism suffers a drawback: by definition, the components are identified
and always distinguished in the state representation, even if they have similar
behavior (i.e., even if one component is an exact copy of another component).
This can have an impact both at the level of the model description (which could
become difficult to read when several components are present), and at the level
of the state space size. In the next section, we cope with these problems by
introducing a higher-level formalism.

3 Markov Decision Well-Formed Net

3.1 WN Informal Introduction

WNs are an high-level Petri net formalism whose syntax has been the start-
ing point of numerous efficient analysis methods. Below, we describe the main
features of WNs. The reader can refer to [4] for a formal definition.

In a WN (and more generally in high-level nets) a color domain is associated
with places and transitions. The colors of a place label the tokens contained in
this place, whereas the colors of a transition define different ways of firing it.
In order to specify these firings, a color function is attached to every arc which,
given a color of the transition connected to the arc, determines the number of
colored tokens that will be added to or removed from the corresponding place.
The initial marking is defined by a multi-set of colored tokens in each place.

A color domain is a Cartesian product of color classes which may be viewed as
primitive domains. Classes can have an associated (circular) order expressed by
means of a successor function. The Cartesian product defining a color domain is
possibly empty (e.g., for a place which contains neutral tokens) and may include
repetitions (e.g., a transition which synchronizes two colors inside a class). A
class can be divided into static subclasses. The colors of a class have the same
nature (processes, resources, etc.), whereas the colors inside a static subclass
have the same potential behavior (batch processes, interactive processes, etc.).

A color function is built by standard operations (linear combination, com-
position, etc.) on basic functions. There are three basic functions: a projection
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which selects an item of a tuple and is denoted by a typed variable (e.g., p, q); a
synchronization/diffusion that is a constant function which returns the multiset
composed by all the colors of a class or a subclass and is denoted Sc, (Sc, )
where C; (C; ) is the corresponding (sub)class; and a successor function which
applies on an ordered class and returns the color following a given color.

Transitions and color functions can be guarded by expressions. An expres-
sion is a boolean combination of atomic predicates. An atomic predicate either
identifies two variables [p = ¢| or restricts the domain of a variable to a static
subclass.

Examples of arc functions, transition guards, color domains can be seen in
the model portions of Fig. Bland Fig. @l The details about the WN notation can
be found in [4].

The constraints on the syntax of WN allow the automatic exploitation of
the behavioral symmetries of the model and the performance of the state-space
based analysis on a more compact RG: the symbolic reachability graph (SRG).
The SRG construction lies on the symbolic marking concept, namely a compact
representation for a set of equivalent ordinary markings. A symbolic marking is a
symbolic representation, where the actual identity of tokens is forgotten and only
their distributions among places are stored. Tokens with the same distribution
and belonging to the same static subclass are grouped into a so-called dynamic
subclass. Starting from an initial symbolic marking, the SRG can be constructed
automatically using a symbolic firing rule [4].

Various behavioral properties may be directly checked on the SRG. Further-
more, this construction leads also to efficient quantitative analysis, e.g. the per-
formance evaluation of Stochastic WNs (SWNs) [E] (a SWN is obtained from
a WN by associating an exponentially distributed delay with every transition,
which may depend only on the static subclasses to which the firing colors belong).

3.2 Markov Decision Well-Formed Net Definition

A Markov Decision Well-formed Net, like an MDPN, is composed by two dis-
tinct parts: the probabilistic one and the non deterministic one, and also in
this case the set of transitions in each part is partitioned into Trun and T stop.
Each part of a MDWN is a WN model: the two parts share the same set of
color classes. A MDWN comprises a special color class, say Cj, representing
the system components: its cardinality |Cy| gives the total number of compo-
nents in the system. This class can be partitioned into several static subclasses
Co = (W= Cox) W (Wr,,+1 Cok) such that colors belonging to different static
subclasses represent components with different behavior and the first m static
subclasses represent the controllable components while the others represent the
non-controllable components. Observe that the model is parametric in the num-
ber of components of each.

Let us describe the specification of transition triggering by components in an
MDWN. First, remember that the firing of a transition ¢ involves the selection a
color ¢ = (¢i5)ic0..njel..e; € cd(t) = Q,cq., Ci*- Thus the subset of components
{co,j}jc1..e, defines which components trigger the firing of ¢(c).
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— When the type (synctype(t)) of t is Some then the subset of components that
trigger this firing is Comp(t, ¢) = {co,j }jedyn(t), Where dyn(t) C {1,...,eo}.
Note that when t is a probabilistic transition, this requires that dyn(t) # 0
whereas when ¢ is a non deterministic one, this requires that |dyn(t)| < 1
(with the convention that dyn(t) = () means that ¢ is a decision relative to
the system). Furthermore in the latter case, we assume that the guard of ¢
entails that when dyn(t) = {co;}, co,; € Wi~ Cok, i.e. ¢ ; is a controllable
component.

— When the type of t is Allbut then the subset of components that trigger
this firing is Comp(t, ¢) = Wyesraricr) Co.k \ {co,itjedyn(r) where static(t) C
{1,...,n0}. Note that this type requires that ¢ is a probabilistic transition.
Additional conditions in the following definition ensure that this set of com-
ponents is not empty.

Definition 5 (Markov Decision Well-formed Net (MDWN)). A Markov
Decision Well-formed is a tuple MDWN = (NP", N™ synctype, dyn, static)
where:

— NP s defined by a WN (P, TP",C,cdP", IP", OP" HP" ¢P" prioP”, my), a
mapping weights for each transition t, from cdPr(t) to R

— N" s defined by a WN (P, T"%,C, cd™, ", O™ H" ¢, prio,mg);

— synctype : TP" UT™ — {Some, Allbut} is a function which associates with
every transition a label, s.t. Yt € T™ = synctype(t) = Some.

— dyn(t), where t € TP" UT™ and cd(t) = Ricio,...ny Ci's is a subset of
{1,...,e0} (cd is either cd’" or cd™®);

— static(t), defined when synctype(t) = Allbut, is a subset of {1,...,ng} where
ngo represents the number of static subclasses in Cy.

Furthermore, the following constraints must be fulfilled:

— TPr N Tnd — @}.

— TP = TrunP” W Tstop?” A T™* = Trun™® & Tstop™®;

— Vt € TP" A synctype(t) = Some = dyn(t) # 0;

— Vit s.t. synctype(t) = Allbut, > ) |Cojl > |dyn(t)| (see discussion
above);

—Vt € T = 0 < |dyn(t)| < 1; moreover the transition guard ¢(t) should
enforce that when t(c) is fireable with ¢ = (¢ik)ico.mkel..e; € cd(t) and
J € dyn(t) then co; € Wi, Cox;

— Veg € Cp, 3t € T'stopP”, Ic € cd(t), s.t. ¢(t)(c) Aco € Comp(t,c) and Yy €
Wie, Cok, 3t € Tstop™,Jc € cd(t), s.t. p(t)(c) Aco € Comp(t,c). These
conditions can be ensured by appropriate syntactical sufficient conditions.

- Y{4,7'} Cdyn(t) Nj # j',Ye = (¢ik)ico.nkel.e; € cd(t) s.t. t(c) is possibly
fireable one must have co j # co j. This should be enforced by the transition
guard.

j€Estatic

Now we introduce the rewards associated to the MDWN. Two types of reward
functions are possible: the place reward and the transition reward. Before intro-
ducing the place reward we must define the set C.
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Definition 6 (C). Let i € {1,...,n}, C; is the set {1,...,n;} where n; is the
number of static subclasses in C;. C is the set of sets {C;}ier with I ={0,...,n}.

We can always map the color class C on the set C such that the definition of the
cd function immediately follows.

Definition 7 (cd). The function CNd( ) is defined as follows:
def

cd = (®Ze1 Ci') = Qe CF
For instance if Co = Co 1 J Co 1 U Co 3 where Co 1 = {compl,compg} Co 2 =
{comps}, Co3 = {comp4} hence Co = {CO 1,C0.1,Co3}, and p € P with ed(p) =
Coy x Cy x Cp then cd( ) = Co X Co X CO, ¢ = (compy, compa, comps) € cd(p)
and €= (1,1,2) € cd(p).
It is important to observe that a unique ¢ corresponds to every c.

Definition 8 (MDWN reward functions).

—rs: ®p€P Ned®) — R is a function which returns for every colored marking
a reward value.

— Vt € T™ rt[t] : cd(t) — R is a vector which associates with every transition
a function defining the reward value of its instances; two instances may be
assigned a different reward value only if there exists a standard predicate
capable to distinguish the two.

—rg: R xR — R is defined as in MDPN.

An example of MDWN is shown in Fig. [3 the same already used to illustrate
MDPNSs, but this time color annotations on arcs, transitions and places are
relevant. In this model we are assuming that there are several instances of Proc,
Mem and ResCtr components (grouped in banks, each with one instance of
each component): rather than replicating the same subnet several times, we use
colored tokens to represent several instances on the same net structure (there is
also another controllable component not shown in the probabilistic subnet, but
visible in the decision maker). Class Cy comprises four static subclasses, one for
each component type. The cardinality of the Proc, Mem and ResCtr subclasses
corresponds to the number of banks in the system. Arcs in Fig. [3 are annotated
with very functions (tuples of projections) and all the variables appearing in the
functions in this example are component parameters. The guards on the arcs
include a term in the form d(x) = CompType to force parameter x to range
within static subclass CompType. The additional terms ¢gy., ¢z-, ¢y- are not
detailed here, but are used to associate components in the same bank: in fact
the probabilistic part of the model must correctly synchronize components of
type Proc, Mem and ResCtr belonging to the same bank (the model represents
a situation where only one resource is assigned to each bank at a time, and it
can be used to resume all failed components in the bank).
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Trun®P” = {FailProc, FailMem, EndRep} all other transitions belong to T'stop””; all variables are
component parameters. All transitions in the decision maker are in Tstop™®. Transition priorities
are denoted m = prio(t) in the figure. Cg 1, Co,2 and Cp,3 are the Proc, Mem and ResCtr subclasses
respectively. Here we have represented the probabilistic transitions with different simbols (double
rectangle, gray rectangle and double gray rectangle) depending on the involved components

Fig. 3. MDWN example. On the left: a portion of probabilistic part, on the right: the
decision maker.

3.3 MDWN Semantics

In this section we are going to describe how it is possible to obtain from an
MDWN model the corresponding MDP model. The two possible methods are
shown in the figure of the introduction.

The first method requires the unfolding of the MDWN in order to obtain an
equivalent MDPN and to derive from this an MDP, but this is not very efficient
in fact it will multiply the number of places, transitions and arcs, moreover if the
number of components is high the cost for computing the results will be high.
In [2] it is possible to find the details of this method.

Instead the second method derives directly from an MDWN model an MDP.
This second method can be decomposed in two steps: the first step defines how
to compose the probabilistic part and the decision maker and to derive from such
composition a unique WN. The second step consists in generating the (finite)
RG of the WN obtained in the first step and then in deriving an MDP from it.
In this way there is no need to produce the intermediate MDPN.

Before describing the second method we must explain the use of the places
Stop}", Run!", Stoptd, Runl®, Stop”d Run;‘d and the non deterministic tran-
sitions PrtoNd and N dtoPr7 that are introduced during the composition phase.

The places StopP”, RunPT, Stopl"d, Runl"d, Stop;‘d and Rungd are used in
order to regulate the interaction among the components, the global system and
the decision maker like the similar places in the semantics for MDPN. The color
domain of the places Stop?”, RunP", Stopfd is Cy, that is they will contain
colored tokens representing the components; while Rungd7 Stopgd are neutral.
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Fig. 4. arcs connecting places Stop?”, Run??, Run”®, and transition PrtoNd and
their functions; arcs connecting places Stop?, Stopy©, Run}® and transition NdtoPr
and their function; example of connection of the decision maker to places Run"d and
Stop™d: component parameters are highlighted in boldface in the arc functions.

The non deterministic transitions PrtoNd and NdtoPr are used to assure that
the decision maker takes a decision for every component in every time unit.

The schema describing how the places Stop?”, Run?", Stopp®, Runp¢, Stop;‘d
and Run;‘d and the transitions PrtoNd and NdtoPr are connected, is shown in
Figll Observe that the basic schema is the same already defined for MDPN but
now the arcs are annotated with function < S > meaning that all components
must synchronize at that point.

Let us describe how to derive a unique WN composing the probabilistic part
with the non deterministic part. Places RunP” and StopP”, introduced above, are
connected with its run/stop transitions of NP" in the same way as for MDPNs;
similarly places Run?d and Stopfd Run;‘d and Stopgd introduced above are
connected to the run/stop transitions of N™¢ as for MDPNs, but now the arcs
must be annotated with the following functions.

— YVt € TPr U T, if synctype(t) = Some then the function is (X icdyn(t) 0,5
where variable zg ; denotes the i-th component of type Cj in the color do-
main of ¢. This function selects the colors of the component that trigger the
transition, thus checking that all of them are still active.

— Vit € Trun?”, if synctype(t) = Allbut then the function is (3
Ziedyn(t) xo4) with the same interpretation.

) 50,5~

jEstatic(t

Observe that the arcs connecting transitions Tg”d and places Run;‘d, Stopgd are
not annotated with any function because these places have neutral color (i.e.
they contain plain black tokens) since they are related to the decision w.r.t. the
whole system.

Once the composed WN is built, its RG can be constructed and transformed
into a MDP following the same two steps already explained for MDPN. Here,
since we start from a high-level net, the resulting reachability graph may be
huge. So the following subsection describe how the properties of WN can be
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extended to MDWN so that a smaller MDP can be directly derived from the
Symbolic Reachability Graph (SRG) of the corresponding WN.

3.4 Theoretical Results on Symmetry Exploitation

In this section, we informally describe how we exploit the symbolic reachability
graph in order to obtain a reduced MDP on which the solution to the original
problem can be computed (see [2] for a complete theoretical development).

First, let us pick a symbolic reachable marking which only enables non deter-
ministic transitions and an ordinary marking belonging to this symbolic marking.
Now let us pick two ordinary firings from this marking corresponding to the same
symbolic firing. Suppose that, at some instant of an execution, a strategy selects
one of these firings. Then, after selecting the other firing, one mimics the original
strategy by applying one of the permutations which lead from the former firing
to the latter one to any subsequent (probabilistic or non deterministic) firing and
let invariant the ordinary marking. Due to our assumptions about the rewards,
the two executions yield the same (total or average) reward. It means that the
choice of the second firing is at least as good as the selection of the first firing.
Since the argument is symmetric, one concludes that the selection of any non
deterministic firing inside a symbolic arc is irrelevant.

Then the reduced MDP obtained from the SRG by considering that a symbolic
firing of a non deterministic transition corresponds to a single decision and that
the weight of probabilistic symbolic firing is the weight of any ordinary firing
inside it (any choice leads to the same weight due to our assumptions) multiplied
by the number of such firings provides an MDP equivalent to the original one
w.r.t. the considered optimization problem. Indeed the rewards do not depend
on the choice of an ordinary marking inside a symbolic marking and the choice
of an ordinary firing inside a symbolic firing. We will call SRG,4 the SRG
where all the transition instances passing only through non deterministic states
are reduced to one non deterministic step and SRGypp the SRG,q where all
probabilistic paths are substituted by single probabilistic arcs.

4 Experiments Discussion

In this section we will present an example modeling a multiprocessor system
where each processor has a local memory, but with also a global shared memory
that can be used by any processor when its local memory fails. Each processor,
local memory and global shared memory can fail independently; however we
consider recoverable failures, that can be solved by restarting/reconfiguring the
failed component. The system includes an automatic failure detection system
that is able to detect and perform a reconfiguration of the failed component
(e.g. by resetting it). The failure detection and recovery system can handle a
limited number k of failures in parallel.

Notice that if a local memory M; and the global shared memory Mg are
both failed at the same time, the processor P; cannot perform any useful work,
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Table 1. Results for the example modeling a multiprocessor system. The RG for
Proc=4 and Mem=4 is not computed because it requires a lot of time; its size is
computed indirectly by the SRG.

Proc=2,Mem=2,Res=2 Proc=3,Mem=3,Res=2 Proc=4,Mem=4,Res=2
Prob. Non det. Time Prob. Non det. Time Prob. Non det. Time

RG 19057 21031 13s 755506 863886 1363s 26845912 31895848 >13h
RG 4 19057 441 9s 755506 4078 2833s
RGumpDP 0 441 2s 0 4078  250s
SRG 9651 10665 9s 132349 150779 284s 1256220 1478606 5032s
SRG,q 9651 219 3s 132349 831 222s 1256220 2368 12795s
SRGuppP 0 219 1s 0 831 28s 0 2360 518s
RG prio 19057 5235 9s 755506 103172 983s 26845912 1863024 >13h
RG 4 prio 19057 411 4s 755506 4078 1830s
RG]VIDP pI‘iO 0 411 2s 0 4078 246s
SRG prio 9651 2697 6s 132349 18904 187s 1256220 96044 3270s
SRG,q prio 9651 219 2s 132349 831 75s 1256220 2368 1560s
SRGupp prio 0 219 1s 0 831 26s 0 2360  234s

even if it is not failed and that if the processor P; and its local memory M,
are simultaneously failed, they are reset together (this is considered as a single
reset operation). The components in this system are: n processors, n local mem-
ories and one global shared memory. A portion of MDWN representation of this
system is depicted in Fig.

The decision maker corresponds to the automatic failure detection and recov-
ery system. Several different recovery strategies can be conceived, and we are
interested in evaluating the most promising ones with respect to some metrics.

An MDPN (or MDWN) model of this system is composed of a submodel
representing all the components of the system (which in turn can be seen as a
combination of several submodels of the single components), and a submodel
representing the failure detection and recovery system, which in this context
corresponds to the decision maker.

The decision maker model may represent any possible recovery strategy, in
this case it should be modeled in such a way that any association of up to k
recovery resources to any subset of failed components at a given time can be
realized by the model.The system must pay a penalty depending of the number
of running processors when the number of running processors is less than a given
threshold and a repair cost for every recovery. More details about this example
are shown in [2]. The table [[] shows the number of states and the computation
time respectively of the RG, RG,q, RGypp, SRG,SRG,q and SRGypp for
different numbers of processors and memories performed with an AMD Athlon
64 2.4Ghz of 4Gb memory capacity. In particular the first, the second and the
third line report the number of states and computation time of the RG, the RG,,4
and the RG,,qp, while the following three lines show the number of states and
the computation time obtained using the SRG technique. It is easy to observe
how the SRG technique wins in terms of memory and time gain with respect to
the RG technique.
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A further reduction of the number of states for this model can be achieved as-
sociating different priorities to the system transitions such that the interleavings
between the non deterministic/probabilistic actions are reduced. For instance
the last six lines in table [l show the reduction in terms of non deterministic
states and time computation obtained imposing an order on the decision maker
choices. (First the decision maker must take all the decisions for the processors
then for the memories and in the end for the global memory).

It is not always possible to use this trick since the actions must be independent;
the priorities in practice must not reduce the set of possible strategies. Our tool
solves the MDPs using the library graphMDP developed at the Ecole Nationale
Suprieure de 1’Aronautique et de I'Espace Toulouse. The optimal strategy is
expressed as a set of optimal actions, such that for every system state an optimal
action is given.

For example if we consider a model with two processors, two memories and two
recovery resources, and with reasonable fault probability, and repair and penalty
costs then we observe that if a fault happens and there is a free recovery resource
then the recovery of this fault starts immediately and the global memory recovery
is preferred with respect the processor recovery and the memory recovery.This
is not always true, e.g. if global memory recovery cost is more than four times
of the memory repair cost.

After having obtained the optimal strategy we would like to synthesize a
new model without non determinism implementing it (this could be achieved by
substituting the decision maker part with a new probabilistic part implementing
the decisions of the optimal strategy): classical Markov chain analysis techniques
could be applied to this model, moreover the new net would constitute a higher
level (hopefully easier to interpret) description for the optimal strategy. Unfor-
tunately this is not always easy (especially when the number of states is large),
but this is an interesting direction of future research.

5 Related Work

In this section we are going to compare our formalism with two other high level
formalisms for MDP: the PRISM language and the Stochastic Transition System
(STS) proposed in [§].

The PRISM language [I1] is a state-based language based on the Reactive
Modules formalism of Alur and Henzinger [I]. A system is modeled by PRISM
language as composition of modules(components) which can interact with each
other. Every model contains a number of local variables used to define it state in
every time unit, and the local state of all modules determines the global state.
The behavior of each module is described by a set of commands; such that a
command is composed by a guard and a transition. The guard is a predicate
over all the (local/nonlocal) variables while a transition describes how the local
variable will be update if the its guard is true.
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The composition of the modules is defined by a process-algebraic expression:
parallel composition of modules, action hiding and action renaming.

Comparing the MDPN formalism with the PRISM language we can observe
that they have the same expressive power: we can define local or global non-
deterministic actions and the reward function on the states and/or on the actions
in both formalisms; such that it is possible to translate MDPN model directly
in a PRISM model. The main difference is that by using the MDPN formalism
one can define complex probabilistic behaviors and complex non-deterministic
actions as a composition of simpler behaviors or actions.

If we compare the PRISM language with the MDWN then we can see that the
MDWN has two other advantages: a parametric description of the model and an
efficient analysis technique making it possible to automatically take advantage
of intrinsic symmetries of the system. In fact the PRISM language has a limited
possibility for parametrization. In order to cope with this problem in [9] it was
presented a syntactic pre-processor called eXtended Reactive Modules (XRM)
which can generate RM models giving to the users the possibility of describing
the system using for instance: for loops, if statements.

Instead several techniques proposed in order to reduce the states explosion
problem in PRISM i.e. in [I0] were based on the minimization of the RG with
respect to bisimulation; but this requires the building of all the state space and
then to reduce it; hence our method gives the possibility of managing models
with a bigger number of states. It generates directly the Lumped MDP without
building all the state space.

A direct comparison between our formalisms and the STS is not possible,
because the STSs are an high level formalism for modeling the continuous time
MDPs. It extends the Generalized Stochastic Petri Net by introducing transitions
with an unspecified delay distributions and by the introducing the possibility of
non-deterministic choice among enabled immediate transitions. In every way we
can observe that the STS has the same problems of GSPN formalism; that make
its utilization less advantageous with respect to the WN. It is also important to
observe that there are no tools supporting this formalism.

6 Conclusion

We have introduced MDPNs, based on Petri nets, and MDWNs, based on Well-
formed nets, in order to model and analyze distributed systems with probabilis-
tic and non deterministic features. From a modeling point of view, these models
support a macroscopic point of view of alternation between the non probabilis-
tic behavior and the non deterministic one of the system and a syntactical way to
define the switch between the two behaviors. Furthermore, MDWNs enable the
modeler to specify in a concise way similar components. From an analysis point of
view, we have adapted the technique of the symbolic reachability graph producing
a reduced Markov decision process w.r.t. the original one, on which the analysis
may be performed. Our methods are already implemented and integrated in the
GreatSPN tool and we have described some experimental results.
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Abstract. In this paper, we consider bounded Time Petri Nets where
time intervals (strict and large) are associated with places (P-TPN), arcs
(A-TPN) or transitions (7-TPN). We give the formal strong and weak
semantics of these models in terms of Timed Transition Systems. We
compare the expressiveness of the six models w.r.t. (weak) timed bisimi-
larity (behavioral semantics). The main results of the paper are : (i) with
strong semantics, A-TPN is strictly more expressive than P-TPN and
T-TPN ; (ii) with strong semantics P-TPN and T-TPN are incompara-
ble ; (ili) T-TPN with strong semantics and 7-TPN with weak semantics
are incomparable. Moreover, we give a classification by a set of 9 relations
explained in Fig. [[4] (p. B0).

1 Introduction

The two main extensions of Petri Nets with time are Time Petri Nets (TPNs) [1§]
and Timed Petri Nets [20]. For TPNs a transition can fire within a time interval
whereas for Timed Petri Nets it has a duration and fires as soon as possible or
with respect to a scheduling policy, depending on the authors. Among Timed
Petri Nets, time can be considered relative to places (P-Timed Petri Nets),
arcs (A-Timed Petri Nets) or transitions (T-Timed Petri Nets) [2TJ19]. The
same classes are defined for TPNs i.e. T-TPN [I8[], A-TPN [I4113] and P-
TPN [16J17). It is known that P-Timed Petri Nets and T-Timed Petri Nets are
expressively equivalent [2T19] and these two classes of Timed Petri Nets are
included in the two corresponding classes T-TPN and P-TPN [19]

Depending on the authors, two semantics are considered for {T,A,P}-TPN:
a weak one, where no transition is never forced to be fired, and a strong one,
where each transition must be fired when the upper bound of its time condition
is reached. Moreover there are a single-server and several multi-server semantics
[84]. The number of clocks to be considered is finite with single-server semantics
(one clock per transition, one per place or one per arc) whereas it is not with
multi-server semantics.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 63 2007.
© Springer-Verlag Berlin Heidelberg 2007
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A-TPN have mainly been studied with weak (lazy) multi-server semantics
[T4UTIT3] : this means that the number of clocks is not finite but the firing of
transitions may be delayed, even if this implies that some transitions are dis-
abled because their input tokens become too old. The reachability problem is
undecidable for this class of A-TPN but thanks to this weak semantics, it enjoys
monotonic properties and falls into a class of models for which coverability and
boundedness problems are decidable.

Conversely T-TPN [18/5] and P-TPN [I6/17] have been studied with strong
single-server semantics. They do not have monotonic features of weak semantics
although the number of clocks is finite. The marking reachability problem is known
undecidable [T5] but marking coverability, k-boundedness, state reachability and
liveness are decidable for bounded T-TPN and P-TPN with strong semantics.

Related work : Ezxpressiveness of models extended with time.

Time Petri Nets versus Timed Automata. Some works compare the expressive-
ness of Time Petri Nets and Timed Automata. In [22], the author exposes mutual
isomorphic translations between 1-safe Time-Arc Petri nets (A-TPN) and net-
works of Timed Automata.

In [3IT0] it was proved that bounded T-TPN with strong semantics form a
strict subclass of the class of timed automata wrt timed bisimilarity. Authors
give in [I0] a characterisation of the subclass of timed automata which admit a
weakly timed bisimilar T-TPN. Moreover it was proved in [3] that bounded 7-
TPN and timed automata are equally expressive wrt timed language acceptance.

Arc, Place and Transition Time Petri Nets. The comparison of the expressiveness
between A-TPN, P-TPN and T-TPN models with strong and weak semantics
wrt timed language acceptance and timed bisimulation have been very little
studied.

In [12] authors compared these models w.r.t. language acceptance. With strong
semantics, they established P-TPN C, T-TPN C,; A-TPNH and with weak se-
mantics the result is P-TPN =, T-TPN =, A-TPN.

In [6] authors study only the strong semantics and obtain the following results:
T-TPN C; A-TPN and P-TPN ¢ T-TPN.

These results of [12] and [6] are inconsistent.

Concerning bisimulation, in [6] (with strong semantics) we have T-TPN Cx
A-TPN, P-TPN C, A-TPN and P-TPN Z., T-TPN. But the counter-example
given in this paper to show P-TPN <, T-TPN uses the fact that the T-TPN ‘a
la Merlin’ cannot model strict timed constrainfd. This counter example fails if
we extend these models to strict constraints.

In [I7] P-TPN and T-TPN are declared incomparable but no proof is given.

Much problems remain open concerning the relations between these models.

! Moreover, all studies consider only closed interval constraints, and from results in
[6], offering strict constraints makes a difference on expressiveness.

2 we note ~, and ~x~ with ~€ {C, C, =} respectively for the expressiveness relation
w.r.t. timed language acceptance and timed bisimilarity.

3 The intervals are of the form [a, b] and they can not handle a behavior like “if z < 17.
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Our Contribution. In this paper, we consider bounded Arc, Place and Transition
Time Petri Nets with strict and large timed constraints and with single-server
semantics. We give the formal strong and weak semantics of these models in
terms of Timed Transition Systems. We compare each model with the two others
in the weak and the strong semantics, and also the relations between the weak on
strong semantics for each model (see Fig. [[4] p.[R0). The comparison criterion is
the weak timed bisimulation. In this set of 9 relations, 7 are completely covered,
and for the 2 others, half of the relation is still an open problem.

The paper is organised as follow: Section[2gives some “framework” definitions.
Section [B] presents the three timed Petri nets models, with strong and weak
semantics. Section [l is the core of our contribution: it lists all the new results
we propose. Section [B] concludes.

By lack of space, the details of some proofs and the relations with conflicting
results are not presented here, but can be found in [9].

2 Framework Definition

We denote AX the set of mappings from X to A. If X is finite and |X| = n,
an element of AX is also a vector in A™. The usual operators +, —, < and =
are used on vectors of A™ with A = N,Q,R and are the point-wise extensions
of their counterparts in A. For a waluation v € AX,d € A, v + d denotes the
vector (v + d)(x) = v(z) + d . The set of boolean is denoted by B. The set
of non negative intervals in Q is denoted by Z(Qx>¢). An element of Z(Qxo) is
a constraint ¢ of the form o <1 = <2 § with a € Q>¢, § € Q>0 U {oo} and
<1, <2€ {<,< }, such that I =[p]. We let It =][0 < x <2 3] be the downward
closure of I and I =[a <1 2] be the upward closure of I.

Let X be a fixed finite alphabet s.t. ¢ € X and X, = X U {e}, with ¢ the
neutral element of sequence (Va € X, : ca = ae = a).

Definition 1 (Timed Transition Systems). A timed transition system (TTS)
over the set of actions X is a tuple S = (Q, Qo, X, —) where Q is a set of states,
Qo C Q is the set of initial states, X is a finite set of actions disjoint from R>g,
—C Q% (ZURsq) x Q is a set of edges. If (g, e,q') €—, we also write g — ¢’
Moreover, it should verify some time-related conditions: time determinism (td),
time-additivity (ta), nul delay (nd) and time continuity (tc).

d d d & dtd’
td = s—sANs—=s"=s=5" ta =s—>sNs 5 =554
nd = Vs:s —s tc = s— s =Vd <d,dsg, s — Sar

In the case of ¢ LN ¢’ with d € Rxq, d denotes a delay and not an absolute
time. A run p of length n > 0 is a finite (n < w) or infinite (n = w) sequence of
alternating time and discrete transitions of the form

do /  ao dy ay dn

P = qo a0 ¢ q S [
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A trace of p is the timed word w = (ag,dp)(a1,d1) - (an,d,)--- that consists
of the sequence of letters of 3.

We write Untimed(p) = Untimed(w) = apay - - - ay - - - for the untimed part of
w, and Duration(p) = Duration(w) = > dj, for the duration of the timed word
w and then of the run p.

Definition 2 (Strong Timed Bisimilarity). Let S1 = (Q1, Q}, ¥, —1) and
Sy = (Q2,Q3, X, —2) be two 774 and ~s be a binary relation over Q1 X Q2.
We write s =g s for (s,s') Exs. ~s is a timed bisimulation relation between

S1 and Sy if:

~ 1 2.
— 51 /5 S2, for all (s1,s2) € Qp x Qf;
. t ) t
— if s1 —1 s) witht € R>q and s1 =g Sa then sy —2 s, for some s,, and
, t t
8] ms sh; conversely if so —o s and s1 =g so then s1 —1 s} for some s
and sy =g sh;
. a . a
—if s1 —1 8] with a € ¥ and s1 =s sa then sy —o sh and s| ~s sh;
. a / ~ a / !~ /
conversely if so —2 5 and s1 =s 2 then s1 —1 §) and s| =s 5.

Two TTS S1 and Sy are timed bisimilar if there exists a timed bisimulation
relation between S1 and So. We write S1 ~s So in this case.

Let S=(Q, Qo, Xz, —) be a TTS. We define the e-abstract TTS 5S¢ = (Q, Q§, X,
—¢) (with no e-transitions) by:

- q <. q' with d € Rx iff there is a run p = ¢ — ¢’ with Untimed(p) = ¢
and Duration(p) = d,

— ¢ 5. ¢ with a € ¥ iff there is a run p = ¢ — ¢/ with Untimed(p) = a and
Duration(p) = 0,

- Q5 =1{q]13¢ € Qo| ¢ = q and Duration(p) = 0 A Untimed(p) = }.

Definition 3 (Weak Timed Bisimilarity). Let S; = (Q1,Q}, Y=, —1) and
Sy = (Q2,Q3, Y-, —2) be two TTS and ~yy be a binary relation over Q1 x Q2.
~yy is a weak (timed) bisimulation relation between Sy and So if it is a strong
timed bisimulation relation between ST and S5.

Note that if S1 ~g S5 then S; ~y So and if S7 &~y Ss then S; and Ss have the
same timed language.
In this paper, we consider weak timed bisimilarity and we note &~ for ~yy.

Definition 4 (Expressiveness w.r.t. (Weak) Timed Bisimilarity). The
class C 1is more expressive than C' w.r.t. timed bisimilarity if for all B’ € C’
there is a B € C s.t. B ~ B’. We write C' Cx~ Cin this case. If moreover there
is a B € C s.t. there is no B’ € C' with B~ B’, then C' C~ C. If both C' Cx C
and C Cx C' then C and C' are equally expressive w.r.t. timed bisimilarity, and
we write C =x C'.

4 Note that they contain no e-transitions.
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3 {T,A,P}-TPN: Definitions and Semantics

The classical definition of TPN is based on a single server semantics (see [8/4]
for other semantics). With this semantics, bounded-TPN and safe-TPN (ie one-
bounded) are equally expressive wrt timed-bisimilarity and then wrt timed lan-
guage acceptance. We give a proof of this result for { 7,4,P}-TPN in [9]. Thus,
in the sequel, we will consider safe TPN. We now give definitions and semantics
of safe {T,A,P}-TPN.

3.1 Common Definitions

We assume the reader is aware of Petri net theory, and only recall a few defini-
tions.

Definition 5 (Petri Net). A Petri Net N is a tuple (P,T,°(.),(.)*, Mo, A)
where: P ={p1,p2, -+ ,pm} 1$ a finite set of places and T = {t1,ta, -+, tp} is
a finite set of transitions; *(.) € ({0,1}F)T is the backward incidence mapping;
()* € ({0,1}")T is the forward incidence mapping; Mo € {0,1} is the initial
marking, A : T — X U{e} is the labeling function.

Notations for all Petri nets

We use the following common shorthands: p € M Lef M) >1, M >"*t Lef Vp :

M(p) > *(t.p), *t = {p *(t,p)=1}, t* = {p (t,p)* =1}, *p = {t (t.p)*>1},

Pt =t (tp) 21

A marking M is an element M € {0,1}f. M(p) is the number of tokens in
place p. A transition ¢ is said to be enabled by marking M iff M > °t, denoted
t € enabled(M). The firing of ¢ leads to a marking M’ = M — *t + t°, denoted
by M - M.

Often, the alphabet is the set of transitions and the labeling function the
identity (X =T, A(t) = t). In these cases, the label of the transition will not be
put in figures.

Notations for all timed Petri nets
In timed extensions of Petri nets, a transition can be fired only if the enabling
condition and some time related condition are satisfied. In the following, the
expressions enabled and enabling refer only to the marking condition, and firable
is the conjunction of enabling and the model-specific timed condition.

Then, t € firable(S) denotes that ¢ is firable in timed state S, and ¢t €
enabled(M) that ¢ is enabled by marking M.

Weak vs. strong semantics

The basic strong semantics paradigm is expressed in different ways depending on
the authors: one expression could be “time elapsing can not disable the firable
property of a transition”, or “whenever the upper bound of a firing interval is
reached, the transition must be fired”. Depending on the models and the authors,
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this principle is described by different equations. In this paper, the one we are
going to use is: a delay d is admissible from state S (ﬁ) iff

t ¢ firable(S +d) = Vd' € (0,d] : t ¢ firable(S +d') (1)

which means that from S, if a transition is not firable after a delay d, it never was
between S and S + d, which is equivalent to say that, if a transition is enabled
now or in the future (without discrete transition firing), it remains firable with
time elapsing.

3.2 Transition Time Petri Nets (T-TPN)

The model. Time Petri Nets were introduced in [I§] and extend Petri Nets
with timing constraints on the firings of transitions.

Definition 6 (Transition Time Petri Net). A Time Petri Net N is a tuple
(P,T,°(.), ()%, Mo, A, I) where: (P, T,°(.),(.)*, Mo, A) is a Petrinet and I : T —
Z(Qx0) associates with each transition o firing interval.

Semantics of Transition Time Petri Nets

The state of T-TPN is a pair (M, v), where M is a marking and v € RL, is

a valuation such that each value v(t;) is the elapsed time since the last time

transition ¢; was enabled. 0 is the initial valuation with Vi € [1..n],0(¢;) = 0.
For Transition Time Petri Net, notations enabled and firable are defined as

follows :

t € enabled(M)
v(t) € I(t)

The newly enabled function Tenabled(ty, M,t;) € B is true if ¢, is enabled by
the firing of transition ¢; from marking M, and false otherwise. This definition of
enabledness is based on [Bl2] which is the most common one. In this framework, a
transition ti is newly enabled after firing t; from marking M if “it is not enabled
by M — °t; and is enabled by M' = M — *t; +¢?” [5].

Formally this gives:

Tenabled(ty, M, t;) = (M — *t; +t7 > *tx) A (M —*t; <°tp) V (tr =t:)) (2)
Definition 7 (Strong Semantics of T-TPN). The semantics of a T-TPN
N is a timed transition system Sy = (Q, qo, —) where: Q = {0,1}F x (R>)",

qo = (My,0), —€ Q x (X UR>q) x Q consists of the discrete and continuous
transition relations:

t € enabled(M) iff M > °t t € firable(M,v) iff {

— the discrete transition relation is defined ¥Vt € T':

t € firable(M,v)
M =M —"°t+t°
(,v) X () if " |
{O if Tenabled(t', M, 1),

Ve T: V() =
) v(t') otherwise.

5 The encoding of the state depends on the model.



Comparison of the Expressiveness of Arc, Place and Transition TPNs 69
— the continuous transition relation is defined Vd € R>y:

vV=v+d
(M, v) 4, (M, V") iff {VteT:t¢ firable(M,v+d) = (3)
(Vd' € 10,d] : t ¢ firable(M,v +d'))

Definition 8 (Weak Semantics of T-TPN). For safe T-TPN, the only dif-
ference of the weak semantics is on the continuous transition relation defined
Vd € Rzo.‘

(M,v) L (M) iff v =v+d

Some examples illustrating the synchronization rule and the difference between
weak and strong semantics can be found in [9].

3.3 Place Time Petri Nets (P-TPN)

The model. Place Time Petri Nets were introduced in [16], adding interval on
places and considering a strong semantics.

Putting interval on places implies that clocks are handled by tokens: a token
can be use to fire a transition iff its age in the place is in the interval of the
place. A particularity of this model is the notion of dead token: a token whose
age is greater than the upper bound of its place can never leave this place: it is
a dead token.

Let dead be a mapping in {0,1}%. dead(p) is the number of dead tokens in
place p (Vp € P : dead(p) < M(p)). We use the following shorthands : M\dead
for M — dead and thus p € M\dead for M (p) — dead(p) > 1.

Definition 9 (Place Time Petri Net). A Place Time Petri Net A is a tuple
(P,T,°(.), (.)%, My, A, I) where: (P, T,°(.),(.)®, Mo, A) is a Petrinet and I : P —
Z(Q>0) associates with each place a residence time interval.

Semantics of Place Time Petri Nets
The state of P-TPN is a tuple (M, dead, v) where M is a marking, dead is the
dead token mapping and v € RY the age of tokens in places. A transition can
be fired iff all tokens involved in the firing respect the residence interval in their
places. Tokens are dropped with age 0. In strong semantics, if a token reaches
its upper bound, and if there exists one firable transition that can consume this
tokens, it must be fired.

For Place Time Petri Net, notations enabled and firable are defined as follows:

t € enabled(M\dead) iff M — dead > °t

t € enabled(M\dead)

t € firable(M, dead, v) iff {Vp € *t,v(p) € I(p)
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Definition 10 (Strong Semantics of P-TPN). The semantics of a P-TPN
N is a timed transition system Sy = (Q, qo, —) where: Q = {0,1}F x {0,1}F x
(RZO)P, qo = (Mp,0,0), —€ Q x (X UR>q) x Q consists of the discrete and
continuous transition relations:

The discrete transition relation is defined ¥Vt € T':

t € firable(M,dead, v)
M= M —*t+t*
(M, dead, v) AW, (M’,dead, V") iff +‘
V()= {o if (dead(p)=0) A (p € t°)

v(p) otherwise.

The continuous transition relation is defined Vd € Rx¢:

(M, dead, v) % (M, dead', V') iff

vV=v+d
Vte T :t ¢ firable(M,dead,v + d) = (Vd' €[0,d] : t ¢ firable(M, dead,v + d'))
‘ ) !
dead' (p) =1 | floeM \dead) A (v'(p) & 1(p)*)
dead(p)  otherwise

Definition 11 (Weak Semantics of P-TPN). The weak semantics is exactly
the same as the strong one without the condition ¥Vt € T : t ¢ firable(M, dead, v+
d) = (Vd' €]0,d]:t ¢ firable(M,dead,v +d')) in the continuous transition
relation.

3.4 Arc Time Petri Nets (A-TPN)

The model. Arc Time Petri Nets were introduced in [23], adding interval on
arcs and considering a weak semantics.

Like in P-TPN, an age is associated to each token. A transition ¢ can be fired
iff the tokens in the input places p satisfy the constraint on the arc from the
place to the transition.

As for P-TPN, there could exist dead tokens, that is to say, tokens whose age
is greater than the upper bound of all output arcs.

Definition 12 (Arc Time Petri Net). An Arc Time Petri Net N is a tuple
(P, T,°(.),(.)%, Mo, I) where: (P,T,°(.),(.)%, My) is a Petri net and I : PxT —
Z(Qx0) associates with each arc from place to transition a time interval.

For Arc Time Petri Net, notations enabled and firable are defined as follows:

t € enabled(M\dead) iff M — dead > °t

t € enabled(M\dead)

t € firable(M, dead, v) iff {Vp € *t,v(p) € I(p.t)
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Semantics of Arc Time Petri Nets. Like for P-TPN, the state of A-TPN
is a tuple (M, dead,v) where M is a marking, dead is the dead token mapping
and v € RY the age of tokens in places. A transition ¢ can be fired iff all
tokens involved in the firing respect the constraint on arc from their place to
the transition. Tokens are dropped with age 0. In strong semantics, if a token
reaches one of its upper bound, and if there exists one transition that consumes
this tokens, it must be fired.

Definition 13 (Strong Semantics of A-TPN). The semantics of a P-TPN
N is a timed transition system Sy = (Q, qo, —) where: @ = {0,1}F x {0,1}F x
(RZO)P, q = (Mop,0), —€ Q x (X UR>o) x Q consists of the discrete and
continuous transition relations: The discrete transition relation has the same
definition that the one of A-TPN (with its specific definition of firable). The
continuous transition relation is defined Vd € R>:

(M, dead, v) % (M, dead’, V) iff

V=v+d

Vi e T :t ¢ firable(M,dead,v +d) = (Vd' € [0,d] : t ¢ firable(M, dead,v + d'))
1 if {p € M\dead

dead'(p) = vt e p®, v/ (p) & I(p,t)*
dead(p)  otherwise (4)

The definition of semantics of A-TPN and P-TPN are very similar: the only
difference is that, in the definition of A-TPN, the timing condition for firable is
Vp € *t:v(p) € I(p,t) as in P-TPN, it’s Vp € °t : v(p) € I(p), and the same for
the condition associated to dead.

Definition 14 (Weak Semantics of A-TPN). The weak semantics is exactly
the same as the strong one without the condition ¥Vt € T : t ¢ firable(M, dead, v+
d) = (Vd' €10,d]:t ¢ firable(M,dead,v+d')) in the continuous transition
relation.

4 Comparison of the Expressiveness Wrt Bisimulation

In the sequel we will compare various classes of safe TPN w.r.t. bisimulation.
We note T-TPN and T-TPN, for the classes of safe Transition Time Petri nets
respectively with strong and weak semantics. We note A-TPN and A-TPN, for
the classes of safe Arc Time Petri nets respectively with strong and weak seman-
tics. We note P-TPN and P-TPN, for the classes of safe Place Time Petri nets
respectively with strong and weak semantics.

A run of a time Petri net N is a (finite or infinite) path in Sys starting in

. t,d .
qo- As a shorthand we write s ) o (where a state s is equal to (M, v) or

(M, dead, v)) for a sequence of time elapsing and discrete steps like s VRIS
Moreover we write N for Sy (i.e. we will use the shorthand : a run p of N or a

state s of N).
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4.1 X-TPN Z~ X-TPN with X € {T, A, P}

P (! ()" P (O—"

[0,0] [0,0] [0,0]

Fig.1. A “non-delay” Fig.2. A “non-delay” Fig.3. A “non-delay”
T-TPN P-TPN A-TPN

Theorem 1 (Weak semantics can not emulate strong semantics)
P-TPN €. P-TPN T-TPN ¢, T-TPN A-TPN . A-TPN

Proof. By contradiction: assume it exist a T-TPN weakly timely bisimular to the
T-TPN of Figure [l From its initial state, a delay of duration d > 0 is possible
(in weak semantics, a delay is always possible). By bisimulation hypothesis, it
should also be possible from the initial state of the strong T-TPN of Figure [Tl
This contradicts our assumption.

The same applies for P-TPN and A-TPN. O

4.2 P-TPN C~ P-TPN
Let N' € P-TPN. We construct a TPN N € P-TPN as follow :

— we start from N = A and My = My,
— for each place p of NV,
e we add in V, the net in the gray box of the figure @ with a token in place
¢
Ppy-
e for each transition ¢ such that p € °¢, we add an arc from ph to ¢ and an
arc from ¢ to ph.

Note that in the gray box, there is always a token either in place p} or in the
place pb.

Fig. 4. The translation from P-TPN into P-TPN

Lemma 1 (Translating a P-TPN into a P-TPN). Let N € P-TPN and
N € P-TPN its translation into P-TPN as defined previously, N' and N are
timed bisimilar.
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Proof. N = (P, T,°(.),(.)*, Mp,I) and N' = (P, T,*(.),(.)®, My, I). Note that
PCPandT CT.
Let (M, dead,v) be a state of N and (M, dead, v) be a state of N'. We define

the relation ~ C (({0,1} x R>0)¥ x ({0,1} x R>0)% by:

(M, dead,v) =~ (M,dead,v) <= Vp € P < (2)dead(p) = dead(p) (5)
3)v(p) =v(p)

Now we can prove that ~ is a weak timed bisimulation relation between A and AV
Proof : First we have (M, deady, vo) =~ (M, deady, vp).
Let us consider a state s = (M, dead,v) € N and a state s = (M, dead,v)
€ N such that (M, dead,v) ~ (M, dead, v).

— Discrete transitions Let t be a firable transition from s = (M, dead,v) in N.

There is a run p; = (M, dead, v) BN (M, deady,vq) (with dead = deady).
It means that Vp € *(t) v(p) € I(p)'. Moreover, M; = M — *t + t* and
Vp € Mi\deady, v1(p) =0 if p € t°.
In N, as (M, dead,v) ~ (M, dead,v) we have Vp € *(t) v(p) € I(p)'. More-
over v(ph) € I(ph)!(with upper bound : oo) and there is a token either in p!
or in pb. Thus, there is a run p; = (M, dead,v) — (My,,dead., ,v.,) L
(M4, deady, vy) with (M., ,dead., ,v.,) ~ (M, dead,v) and M., (ph) = 1. We
have M; = M — *t + t* that is to say M1 (ph) = 1, M1(pt1) =0andVp € P,
M 1(p) = M (p). Moreover dead = dead; andVp € Mi\dead,,v1(p) = 0ifp €
t* and then Vp € P, v1(p) = v1(p). Thus (Ml,deadl, V) & (Ml, deady, 7).

— Continuous transitions In N, from s = (M, dead, v), there is a Tun py =
(M, dead, v) <, (My, deads, vs) such that Vp € M(p),v2(p) = v(p) +d
and M = Ms. Moreover, Vp € M\dead, M2(p) = 1 and deads(p) = 0 if
va(p) € I(p)* and Ma(p) = deadz(p) = 1 if va(p) & I(p)*.

o if there is no firable transition ¢ such that 3p, € °(t) with v(p;) €
I(p)t and vo(py) & I(pe)t. As (M,dead,v) ~ (M,dead,v), we have
Vp € P, M(p) = M(p), dead(p) = dead(p) and v(p) = v(p) and then

in N, there is a run p, = (M,dead,v) 2, (M2, deads, v2) such that
deads = dead and Vp € P, Ms(p) = Ma(p) and vo(p) = va(p) +d =
va(p). Thus (Mo, deads, va) ~ (Maz, deads, 1)

e if there is a firable transition ¢ such that Ip, € *(¢) with v(p;) € I(p
and vo(p;) € I(p:)' (and then dead(p;) = 0 and deads(p;) = 1).
(M,dead,v) =~ (M,dead,v), we have Vp € P, M(p) = M(p), dead(p )
dead(p) and v(p) = v(p). In N, there is a run p, = (M,dead,v) —
(M.,,dead,,,v.,) such that (M.,,dead.,,v.,) ~ (M,dead,v) and
M., (ph) = 0. Thus, there is a run (M.,, dead.,, v.,) 4, (M2, deads, vs)
such that My (p;) = deadz(p:) = 1 and Vp € P, vao(p) = v(p) +d = va2(p)
and then (Mo, deads, vo) ~ (Ms, deads, vs).

6*

o)
As

The converse is straightforward following the same steps as the previous ones.
O
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Theorem 2. P-TPN C~ P-TPN
Proof. As P-TPN ¢~ P-TPN and thanks to Lemma [ O

4.3 A-TPN Cx~ A-TPN
Theorem 3. A-TPN Cc~ A-TPN
Proof. As for Theorem [ O

44 T-TPN ¢~ T-TPN
We first recall the following theorem :

Theorem 4 ([3]). There is no TPN € T-TPN weakly timed bisimilar to Ay €
TA (Fig.[3).

Theorem 5. T-TPN ¢, T-TPN

Proof. We first prove that the TPN Npo € T-TPN of Fig. [ is weakly timed
bisimilar to Ag € 7.A (Fig. [).

Let (¢,v) be a state of Ay € TA where ¢ € {ly, 01} and v(z) € Rx¢ is the
valuation of the clock x. We define the relation = C ({{o,¢1} xRx>g) x ({0,1} x
R>o) by:

(E,U)Q(M,I/) s 6261 < M(P1):0 (6)
(2)v(z) = v(a)

~ is a weak timed bisimulation (The proof is straightforward).
From Theorem [ there is no TPN € T-TPN weakly timed bisimilar to Ay € T.A
(Fig. B) and the TPN Npg € T-TPN of Fig.[6lis weakly timed bisimilar to Ap.
(]

4.5 P-TPN Z~ T-TPN

Lemma 2. The TPN Npy € P-TPN (Fig[7) is weakly timed bisimilar to Ay €
TA (Fig.[3).

Proof. From Lemmal[ll Npy ~ Np;. Obviously, Np1 =~ N7g. And, from proof of
Theorem [El N7g ~ Ag. By transitivity, Npg =~ Ag.
(Npo, Np1, N1 and Ag are respectivly presented in Figures[7 B Bl B). O

Theorem 6
P-TPN ., T-TPN

Proof. From Theorem [ there is no TPN € T-TPN weakly timed bisimilar to
Ao € TA (Fig. B) and the TPN Npy € P-TPN is weakly timed bisimilar to
Ap. O
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a,[0,1]
a;r<l1
—()—————1) A (D
Fig. 5. The Timed Automaton Ag Fig. 6. The TPN Npo € T-TPN

bisimilar to Ao

a
PMM[@—-H
Fig.7. The TPN Npo € P-TPN Fig.8. A TPN Np; € P-TPN

bisimilar to Ao bisimilar to Npo

4.6 T-TPN ¢~ P-TPN and T-TPN ¢~ P-TPN

Definition 15 (Relevant clock of a P-TPN). Let N = (P, T,°(.),(.)°,
My, A, I) be a P-TPN (P-TPN or P-TPN), and s = (M,dead,v) be a state
of N. In s, a clock x associated to a place p € P is said to be relevant iff
M(p) = 1.

We first give a lemma stating that “in P-TPN (P-TPN or P-TPN) a relevant
clock (associated to a token in a marked place p) can become irrelevant or can
be reset only in its firing interval (v(p) € I(p)) 7.

Lemma 3 (Reset of relevant clock in P-TPN). In P-TPN, a relevant clock
can become irrelevant or can be reset only in its firing interval. Let N, be a
P-TPN (P-TPN or P-TPN). Let (M, dead, v) be a state of N such that M (p) > 0
and v(p) > 0. If (M,dead,v) — (M’ dead ,v'") (where — is a discrete or a
continuous transition) and v'(p) =0 or M'(p) = 0 then v(p) € I(p)

Proof. From the semantics of P-TPN (P-TPN or P-TPN), a relevant clock as-
sociated to a place p (M(p) = 1) can become irrelevant or can be reset only
by a discrete transition (M, dead,v) BN (M’,dead,v") such that p € °t (if
p € t* the relevant clock is reset, otherwise it become irrelevant). Then, as
t € firable(M, dead, v), we have v(p) € I(p). 0

Py
v, [0, 00| H(:(D—-H u, [2,2]

Fig.9. The TPN Ny, € T-TPN
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Theorem 7. There is no TPN € P-TPN weakly timed bisimilar to N1 €
T-TPN (Fig.[9).

Proof. The idea of the proof is that in the T-TPN N7y the clock associated to
the transition u can be reset at any time (in particular before 2 time units). In the
P-TPN, time measure is performed by a finite number of clock. We are going
to do this reset more times than this number, outside of their firing interval,
leading to contradiction of Lemma [3]

Assume there is a P-TPN N = (P, T",*(.), (.)’*, M, A’,I') that is weakly
timed bisimilar to N7i. Let us define P~ C P’, the finite set of n places p
of N7 such that the lower bound o/(p) (see section [ for notations a and f3)
of interval I’(p) is non nul. Let us define 6, = min{c/(p) p€ P>}, g =
min {'(p) #0 p € P'}, and § = min,, 3.

Let so = (Mo, 1) be the initial state of Ny and s{, = (M, deady,, ;) the
initial state of \.

The proof is decomposed into three steps:

1. Ps is non empty:

Proof. Let p be a run of N1, p = sg 2, So — 5y.
ex,2 €x,
In N, 3p" = s, (ex.2) sh (e s!,, such that sg, s2 and s, are respec-

. L ;o /
tively bisimilar to sg, s5 and s;,.

0 ) . .
If P is empty, the sequence s, (x0), (enw) exists, and then, u is fired

at date 0, which is a contradiction. a

This means that P~ is non empty, 6 exists and a subset of P~ is used to

measure the 2 time units elapsing from initial state up to ss.

. T 2T u . (ex,7)
2. Let us consider p, = sg — s, —— 2 — s3 in Ny and pl. = s ———

(ex,2—7) i . . .
I — = sl — b its equivalent in N7.

We will now prove that, for all 7 < §, it exists p € P’ such that, in s/,
M'(p) =1and V' (p) = 7.

Proof. First, notice that all marked places are consistent ones, because 7 <
3.

Assume that there is no consistent clock with value 7 in ..

Each consistent clock whose value is 7/ < 7 in s/ has been enabled at
time 7 — 7. Since 7 — 7’ < §, the same run from s}, to s,_,» can be done
in 0 time. Consequently, the state s, can be reached by a run of duration
7/ < 7, which contradict the bisimilation relation between s, and s/.

Then for all 7 < 6, it exists p € P’ such that, in s, M'(p) = 1 and
V' (p) = 7. Moreover, thanks to item[ p € P-. O

3. In N7y, from s,, the firing of v leads to a state bisimilar to sq and then in
N, from s/, the firing of v leads to a state s} bisimilar to so.
. T1 v T2 v Tk v
Let us consider the run s — s;, — s — Sy, — So - — Sy, — S0
. . (ex,71) v (ex,72) v
in Npy with all ; > 0 and p” = s —— s — s} —— st —

T1
2 (e%,7k) /
— s

v . . .
ERRE I — s§ its equivalent in N .
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Each state s is bisimilar to so and then, for each s there is a relevant
clock associated to a place p € P~ whose value is equal to zero (application
of previous item with 7 = 0). Now, assume k > n (n is the size of P-) and
D i<icnTi < 0, at least one relevant clock (associated to a place p € Ps)
has to become irrelevant or has to reset in the run p” whereas v, (p) € I1(p)
contradicting the Lemma a

Corollary 1
T-TPN ¢, P-TPN

Proof. Direct from Theorem [7 O

Moreover, the Theorem [f] remains valid in weak semantics. Indeed, we can con-
sider the net of the Fig. @ with a weak semantic and the proof of Theorem [1]
remains identical. We have then the following corollary.

Corollary 2
T-TPN ¢, P-TPN

4.7 T-TPN Cx A-TPN and T-TPN Cr A-TPN

The proof of this strict inclusion is done in two steps: Lemma @] (in Section E.7)
shows that T-TPN Cn A-TPN (by construction: for each T-TPN, a weak-
bisimilar A-TPN is built), and Lemma[g] shows that it exists a A-TPN bisimilar
to Ag € TA (Fig. Bl) already used in Theorem [ With these two lemmas, the
strict inclusion is straightforward (Section 7).

Weak Inclusion: : T-TPN Cr A-TPN and T-TPN Cr A-TPN

Lemma 4 (From T-TPN to A-TPN)
T-TPN Cn, A-TPN T-TPN C. A-TPN

The proof is done by construction: for each T-TPNN, a weak-bisimilar A-TPN N’
is built. The main issue is to emulate the T-TPN “start clock when all input places
are marked” rule with the A-TPN rule “start clock as soon as the token is in place”.

The main idea is, for each transition ¢ in a T-TPN N, a chain of places
°t0 ..., °t" (with n = |*t|) is built in the translated A-TPN N’, such that
Yopeet M (p) = i <= Mp+(°t") = 1 (with i € [1,7n]). Therefor, the time
interval Iy (t) is set to arc from °¢!"*| to ¢t. Then, the rule “start clock in () when
all input places of ¢ are marked” is emulated by the rule “start clock constraint
in I(°tI"* ¢) when °tI"*l is marked” which is equivalent because I (°t!"l ¢) =
In(t) and 30 coy My (p) =n <= My (°t") = 1.

Of course, the transitions that modify °¢ in NV should have a matching tran-
sition in A that modifies °#°.
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Ezample. The T-TPN of Figure[IQ is translated into the A-TPN of Figure [Tl
Then, the firing condition associated to ¢ is activated only when there is one
token in place °t/"*l (°#2 in the example), that is to say, when there are enough
tokens in the emulated places °t.

With this chain structure, the firing of the transition u (resp. v) must increase
the marking of *¢, i.e. put a token in °t! or °t? (depending on the previous mark-
ing). To achieve this goal, since bisimulation is based on the timed transition
system where only labels of transitions are visible, the transition v can be re-
placed by two transitions, one putting a token in °t' and the other in °t2, as
long as they have the same label. In Figure [[T], these two transitions are called
u(t:0,1) and w12y and A(uo,1)) = A(uga,2)) = A(w) (ﬁ)

Once this done, a little stuff has to be added to handle conflict and reversible
netd1. It should be noticed that the exactly the same translation applies for weak
and strong semantics.

OtO

U(t:0,1) o4l V(£:0,1)
- %{

[0,2] Q U 042 V(¢
[lg ¢ (¢:1,2) t (t:1,2)

[0, 2]

10.2]
[1.1]
—

v

Fig.10. A T- Fig.11. A translation of the T-TPN of Figure [0 into A-TPN
TPN

By lack of space, the details of the translation and the proof are not presented
here and can be found in [9].

A Specific A-TPN

Lemma 5. The TPN Nao € A-TPN of FiglI3 is weakly timed bisimilar to
Ao € TA (Fig.[A).

The bisimulation relation and the proof are identical to those of Lemma [2

Strict Inclusion in Strong Semantics

Theorem 8
T-TPN C~ A-TPN

6 Notation U(t:1,2) is used to denotes that this firing of v makes the marking of *¢ going
form 1 to 2.

" This translation pattern have been used in [7] to translate 7-TPN into P-TPN, but
it was a mistake. The translation only apply in some specific cases: when transitions
are conflict-free or when the lower bound of time intervals is 0 for example (see[d]).
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Proof. Thanks to Lemma @] we have T-TPN Cr, A-TPN. Moreover from Theo-
rem [l there is no TPN € T-TPN weakly timed bisimilar to Ay € T.A (Fig. B)
and from Lemmal[f] the TPN N4g € A-TPN is weakly timed bisimilar to Ag. O

4.8 P-TPN Cx A-TPN and P-TPN Cx~ A-TPN
Lemma 6 (P-TPN included in A-TPN (strong and weak semantics))
P-TPN C. A-TPN P-TPN C. A-TPN

Proof. The translation is obvious: for a given P-TPN N, a A-TPN N’ is built,
with the same untimed Petri net, and such that, Vp,Vt € p® : I'(p,t) = I(p).
Then, considering their respective definitions for enabled, firable and the dis-
crete and continuous translation, the only difference is that, when the P-TPN
condition is v(p) € I(p) or v(p) € I(p)!, the A-TPN condition is Vt € p® : v(p) €
I(p,t) or v(p) € I(p,t)'. And in our translation, I'(p,t) = I(p).

Then, all evolution rules are the same and both are strongly bisimilar. O

Lemma 7 (No P-TPN is bisimilar to a A-TPN). It exists Na; € A-TPN
such that there is no N' € P-TPN weakly timed bisimilar to Nai.

Fig.12. The TPN Na; € A-TPN Fig. 13. The TPN N4o € A-TPN
bisimilar to Ag

Proof. The proof is based on Theorem [l The A-TPN Na; (cf. Fig. @) is
the same net than the T-TPN Npp (cf. Fig. [)). Obviously, Na; and Ny are
(strongly) bisimilar. Then, from Theorem [7] that states that there is no P-TPN
weakly bisimilar to A7y, there neither is any P-TPN weakly bisimilar to N4y .
O

Lemma 8 (No P-TPN is bisimilar to a A-TPN). It exists Na; € A-TPN
such that there is no N' € P-TPN weakly timed bisimilar to Naj.

The proof is the same as for Lemma [7
Theorem 9 (A-TPN are strictly more expressive than P-TPN).
P-TPN Cx A-TPN P-TPN C~ A-TPN

Proof. Obvious from Lemma [6] [7] and
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P-TPN

(6) C~

Fig. 14. The classification explained

4.9 Sum Up

We are now going to sum-up all results in a single location, Figure [[4l

(1) and (7)

(2)

A P-TPN can always be translated into a A-TPN and there exist
some A-TPN that can not be simulated by any P-TPN (Theo-
rem [9)).

A T-TPN can be translated into a A-TPN (Lemmal]). Then, A-TPN
are more expressive than T-TPN. Is this relation strict or not is still
an open problem.

Corrolary [ states that T-TPN Z~ P-TPN But we do not know
more: does it mean that P-TPN are more expressive than T-TPN,
or are both models incomparable is still another open problem.
The strong semantics of A-TPN strictly generalise the weak one
(Theorem []).

Strong and weak T-TPN are incomparable: the weak semantics
can not emulate the strong one (Theorem [I) but there also exist
T-TPN with weak semantics that can not been emulated by any
strong T-TPN (Theorem Hl).

Theorem [2] states that P-TPN Cr P-TPN: in P-TPN, the strong
semantics can emulate the weak one (Lemma[I]), but weak semantic
can not do the opposite (Theorem [I).

A T-TPN can be translated into a A-TPN (Lemma M) and there
exists a A-TPN (Lemmal[g) that can not be emulated by any T-TPN.
Then strict inclusion follows (Theorem []).

T-TPN and P-TPN with strong semantics are incomparable: The-
orem [f] states that there is a P-TPN that can be simulated by no
T-TPN and Corollary [I] states the symmetric.
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5 Conclusion

Several timed Petri nets models have been defined for years and different pur-
poses. They have been individually studied, some analysis tools exist for some,
and the users know that a given problem can be modelled with one or the other
with more or less difficulty, but a clear map of their relationships was missing.
This paper draws most of this map (cf. Fig. [4).

Behind the details of the results, a global view of the main results is following:

— P-TPN and A-TPN are really close models, since their firing rule is the
conjunction of some local clocks, whereas the T-TPN has another point of
view, its firing rule taking into account only the last clock;

— the A-TPN model generalises all the other models, but emulating the 7-
TPN firing rule with A-TPN ones is not possible in practice for human
modeller;

— the strong semantics generalise the weak one for P-TPN and A-TPN, but
not for T-TPN.

There are still two open problems related to the weak semantics of T-TPN:
“is the inclusion of T-TPN into A-TPN strict?” and “does T-TPN generalise
P-TPN or are they incomparable?”.

The next step will be to study the language-based relationships.
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Abstract. Choosing a good variable order is crucial for making sym-
bolic state-space generation algorithms truly efficient. One such algo-
rithm is the MDD-based Saturation algorithm for Petri nets implemented
in SMART'| whose efficiency relies on exploiting event locality.

This paper presents a novel, static ordering heuristic that considers
place invariants of Petri nets. In contrast to related work, we use the
functional dependencies encoded by invariants to merge decision-diagram
variables, rather than to eliminate them. We prove that merging vari-
ables always yields smaller MDDs and improves event locality, while
eliminating variables may increase MDD sizes and break locality. Com-
bining this idea of merging with heuristics for maximizing event locality,
we obtain an algorithm for static variable order which outperforms com-
peting approaches regarding both time-efficiency and memory-efficiency,
as we demonstrate by extensive benchmarking.

1 Introduction

Petri nets [26] are a popular formalism for specifying concurrent and distributed
systems, and much research [32] has been conducted in the automated anal-
ysis of a Petri net’s state space. Many analysis techniques rely on generating
and exploring a net’s reachable markings, using algorithms based on decision
diagrams [1029] or place invariants [TTISTIB4U35].

While decision diagrams have allowed researchers to investigate real-world
nets with thousands of places and transitions, their performance crucially de-
pends on the underlying variable order [1I23]. Unfortunately, finding a good
variable order is known to be an NP-complete problem [2]. Thus, many heuris-
tics for either the static or the dynamic ordering of variables have been proposed,
which have shown varying degree of success; see [I§] for a survey.

In the state-space exploration of Petri nets, place invariants find use in ap-
proximating state spaces [28], since every reachable state must by definition sat-
isfy each invariant, and in compactly storing markings by exploiting functional
dependencies [6I19)27]. This latter use of invariants is also considered when en-
coding places with decision-diagram variables, as it eliminates some variables,
offering hope for smaller decision diagrams during state-space exploration [I7].

* Work supported in part by the National Science Foundation under grants CNS-
0501747 and CNS-0501748 and by the EPSRC under grant GR/S86211/01.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 83 2007.
© Springer-Verlag Berlin Heidelberg 2007



84 G. Ciardo, G. Liittgen, and A.J. Yu

The contributions of this paper are twofold. First, we show that eliminat-
ing variables based on invariance information may actually increase the sizes
of decision diagrams, whence the above ‘hope’ is misplaced. Instead, we show
that merging variables is guaranteed to lead to smaller decision diagrams. While
our merging technique is obviously not applicable for Binary Decision Diagrams
(BDDs), it is compatible with techniques using Multi-way Decision Diagrams
(MDDs), such as SMART’s Saturation algorithm for computing reachable mark-
ings [10]. In addition, merging variables improves event locality, i.e., it decreases
the span of events over MDD levels, rather than worsening it as is the case with
variable elimination. This is important since algorithms like Saturation become
more efficient as event locality is increased.

Second, we propose a new heuristic for static variable ordering which is suit-
able for Saturation. This heuristic combines previous ideas, which only took the
height and span of events into account [39], with variable merging based on lin-
ear place invariants. We implement our heuristic into SMART' [9], generating the
invariants with GreatSPN [7], and show via extensive benchmarking that this
heuristic outperforms approaches that ignore place invariants, with respect to
both time-efficiency and memory-efficiency. Indeed, the benefits of our heuris-
tic are greatest for practical nets, including large instances of the slotted-ring
network [30] and the kanban system [40], which have been tractable only using
ad-hoc variable orderings and mergings found through our intuition and exten-
sive experimentation. This shows that exploiting invariants is key for optimizing
the performance of symbolic state-exploration techniques, provided one uses in-
variance information for merging variables and not for eliminating them.

Organization. The next section provides a short introduction to reachability and
invariant analysis in Petri nets, and to decision diagrams and symbolic state-
space generation. Sec. [3 recalls previous work on static variable ordering for
Saturation, formally analyzes the concepts of variable elimination and merging,
and develops our novel heuristic for static variable ordering. Sec. [ experimen-
tally evaluates our ideas on a suite of models. Finally, related work is discussed
in Sec. Bl while Sec. [l presents our conclusions and directions for future research.

2 Preliminaries

In this section we briefly cover the class of Petri nets considered, self-modifying
nets, and their two main analysis approaches, reachability and invariant analysis.
Then, we discuss decisions diagrams and how they can encode sets of markings
and the transformations that transitions perform on markings. Finally, we survey
a range of symbolic state-space generation algorithms, from the simple breadth-
first iteration to our own Saturation algorithm.

2.1 Petri Nets and Self-modifying Nets

We consider self-modifying nets with inhibitor arcs, described by a tuple of the
form (P,7,F~,FT,F°, m"") where
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— P and T are sets of places and transitions satisfying PN7T = () and PUT # 0.
A marking m € N7 assigns a number of tokens m,, to each place p € P.

— F:PxTxNP =N, FF:PxT xN? =N, and F°: P x 7 xN” — NU{oo} are
|P|x|T| incidence matrices; F,,, F}\,, and F§ , are the marking-dependent
[B4T] cardinalities of the input, output, and inhibitor arcs between p and ¢.

— m"™% is the initial marking.

The evolution of the net from a marking m is governed by the following rules,
keeping in mind that the cardinality of any arc is evaluated in the current mark-

ing, i.e., prior to the firing of any transition:

Enabling: Transition ¢ is enabled in marking m if, for each place p, the input
arc is satisfied, m;, > F,;(m), and the inhibitor arc is not, m;, < F} ;(m).

Firing: Firing enabled transition ¢ in marking m leads to marking n, where,
for each place p, n, = m, — F, ,(m) + F;,(m). We write V;(m) = {n}, to
stress that, for general discrete-state formalisms, the next-state function Ny
for event ¢, applied to a single state m, returns a set of states. Then, we can
write MV;(m) = () to indicate that ¢ is not enabled in marking m.

2.2 Reachability Analysis and Invariant Analysis

The two main techniques for Petri net analysis are reachability analysis and
iwvariant analysis. The former builds and analyzes the state space of the net
(or reachability set), defined as M = {m : 3d,m € N¢(m™*)} = N*(m™?),
where we extend the next-state function to arbitrary sets of markings X C
N7, Ni(X) = Uper Ne(m), write A for the union of all next-state functions,
N(X) = U,e7 Ni(X), and define multiple applications of the next-state function
as usual, NO(X) = X, N4(X) = N(NI1(X)), and N*(X) = Uyen NU(X).

Invariant analysis is instead concerned with deriving a priori relationships
guaranteed to be satisfied by any reachable marking, based exclusively on the
net structure. In nets where the arcs have a constant cardinality independent
of the marking, i.e., ordinary Petri nets with or without inhibitor arcs [26],
much work has focused on the computation of p-semiflows [I4I15], i.e., non-
zero solutions w € N to the linear set of “flow” equations w - F = 0, where
F =F' — F~. Since any linear combination of such solutions is also a solution,
it suffices to consider a set of minimal p-semiflows from which all others can be
derived through non-negative linear combinations. A semiflow w specifies the
constraint » 5 . wy, - m;, = C on any reachable marking m, where the constant
C = ZPE'P Wy, - m;,”” is determined by the initial marking. When marking-
dependent arc multiplicities are present, linear p-semiflows [§], or even more
general relationships [41], may still exist. However, invariant analysis provides
necessary, not sufficient, conditions on reachability; a marking m might satisfy
all known invariants and still be unreachable.

In this paper, we use invariants to improve (symbolic) state-space generation.
We assume to be given a self-modifying net with inhibitor arcs (or a similar
discrete-state model whose next-state function is decomposed according to a
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set of asynchronous events), and a set W of linear invariants, each of the form
> pep Wap -my = C,, guaranteed to hold in any reachable marking m. Then,

— Support(v) = {p € P: W, > 0} is the support of the v** invariant.

— W e NWIXIPI describes the set of invariants. In addition, observe that the
case |Support(v)| = 1 is degenerate, as it implies that the marking of the
place p in the support is fixed. We then assume that p is removed from
the net after modifying it appropriately, i.e., substituting the constant m;,”it
for m, in the marking-dependent expression of any arc and removing any
transition ¢ with F_ ; > m/"" or F , < m/"". Thus, each row of W contains
at least two positive entries.

— The marking of any one place p € Support(v) can be expressed as a function
of the places in Support(v) \ p through inversion, i.e., in every reachable
marking m, the relation my, = (Co — 3 cp\ (3 Wo,q - mg)/ Wy p holds.

We say that a set of non-negative integer variables V' is functionally dependent
on a set of non-negative integer variables V' if, when the value of the variables
in V" is known, the value of the variables in V' is uniquely determined. In our
linear Petri-net invariant setting, V' and V" correspond to the markings of two
sets of places P’ and P”, and functional dependence implies that the submatrix
Wy, pr of W, obtained by retaining only columns corresponding to places in
P’ and rows corresponding to invariants having support in P’ U P”, ie., W =
{v e W : Support(v) C P"UP"}, has rank |P’|. This fundamental concept of
functional dependence is at the heart of our treatment, and could be generalized
to the case of nonlinear invariants where not every place in Support(v) can
be expressed as a function of the remaining places in the support. To keep
presentation and notation simple, we do not discuss such invariants.

2.3 Decision Diagrams

The state-space generation algorithms we consider use quasi-reduced ordered
multi-way decision diagrams (MDDs) [22] to store structured sets, i.e., subsets
of a potential set S = Sk X -+ X 81, where each local set S, for K > 1 > 1,
is of the form {0,1,...,n; — 1}. Formally, an MDD over § is a directed acyclic
edge-labeled multi-graph such that:

— Each node p belongs to a level in {K,...,1,0}, denoted p.lvl.

— There is a single root node r* at level K or 0.

— Level 0 can contain only the terminal nodes 0 and 1.

— A node p at level [ > 0 has n; outgoing edges, labeled from 0 to n; — 1. The
edge labeled by i € §; points to node ¢ at level [ — 1 or 0; we write p[i] = q.

— Given nodes p and q at level [, if p[i] = ¢[i] for all i € S;, then p = q.

— The edges of a node at level [ > 0 cannot all point to 0 or all point to 1.

An MDD node p at level [ encodes, with respect to level m > [, the set of tuples
B(m,p) = Spm x -+ x Sip1 % (Uses, {7} x B = 1,pli])), letting X x B(0,0) =
and X x B(0,1) = X. If m = [, we write B(p) instead of B(l, p). Fig. [l contains
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S = {1000, 1010, 1100,

Si={0,1,2,3) sEOE]
\Vi 1110, 1210, 2000,

S; = {0,1,2} ‘? [o[17]
L z=

f 2010, 2100, 2110,
S2=1{0.1} nognu 9210,3010, 3110,
S ={0,1,2} ﬂg 3200, 3201, 3202,

a == 3210,3211, 3212}

(a) (b) (©) (d)
Fig. 1. An example of an MDD and the set of 4-tuples it encodes

an example where K = 4, showing the composition of the sets S; (a), the MDD
(b), and the set of tuples encoded by it (c). Here, as in [I1], we employ a dynamic
MDD variant where the sets S; are not fixed but are grown as needed, so that
the MDD can be used to encode arbitrary (but finite) subsets of N. The only
overhead in such a data structure is that, since a set §; may grow and change the
meaning of an edge spanning level [ and pointing to node 1, only edges pointing
to node 0 are allowed to span multiple levels, while node 1 can be pointed only
by edges from nodes at level 1. Fig. [[[d) shows how this requires the insertions
of nodes 3 and 6 along edge 2 from 8; we employ a simplified representation
style where terminal nodes and edges to 0 are omitted.

For our class of nets, it might be difficult (and it is generally impossible) to
compute an upper bound on the marking of a place. To store a set of reachable
markings during symbolic state-space generation, we could then use dynamic
MDDs over NIPI_ so that a marking m is simply a tuple encoded in the MDD.
However, this simplistic approach has several drawbacks:

— Even if the (current) bound B, on the marking of a place p is tight, i.e.,
there is a reachable marking m with m, = B, the local set S, might have
“holes”, i.e., no reachable marking n might have n, = ¢, for some 0 <c< B,.
This may waste memory or computation during MDD manipulation.

— If many different markings for p are possible, S, and thus the nodes at level
p, might be too large, again decreasing the efficiency of MDD manipulations.
It might then be better to split a place over multiple MDD levels. This is
actually necessary if the implementation uses BDDs [3], which are essentially
our MDDs restricted to the case where each §; is just {0,1}.

— On the other hand, our symbolic algorithms can greatly benefit from “event
locality” which we discuss later. To enhance such locality, we might instead
want to merge certain places into a single MDD level.

— If some invariants are known, we can avoid storing some of the |P| compo-
nents of the marking, since they can be recovered from the remaining ones.

For simplicity, and since we employ MDDs, we ignore the issue of splitting
a place over multiple levels, but assume the use of K < |P| indexing functions
that map submarkings into natural numbers. Given a net, we partition its places
into K subsets Pk, ..., Py, so that a marking m is written as the collection
of the K submarkings (mg,...,mq). Then, m can be mapped to the tuple of
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the corresponding K submarking indices (ig,...,i1), where i; = ;(m;) and
Y - NPt — N U {null} is a partial function. In practice, each 1/; only needs to
map the set M; of submarkings for P; known to be reachable so far to the range
{0, ..., M| — 1} of natural numbers. We can then define v; dynamically:

— Initially, set M; = {m{"?} and ;(mi") = 0, i.e., map the only known
submarking for P;, the initial submarking, to the first natural number.

— For any other m; € NP \ My, i.e., any submarking not yet discovered, set
1 (my) to the default value null.

— When a new submarking m; for P; is discovered, add it to M; and set

Yi(my) = [My| - 1.

This mapping can be efficiently stored in a search tree and offers great flexibility
in choosing the MDD variables (xk, ..., x1) corresponding to the possible values
of the indices at each level. We can have as little as a single variable (when K =1,
S1 =8 and we perform an explicit reachability set generation), or as many as
|P| variables, so that each place corresponds to a different level of the MDD.

2.4 Symbolic Algorithms to Generate the State Space of a Net

We now focus on building the state space of a net using MDDs, i.e., on computing
S C S corresponding to M. Since the functions ¢;, K > 1 > 1, provide a bijection
between markings and K-tuples, knowledge of S implies knowledge of M. As
they manipulate sets of tuples, not individual tuples, all symbolic state-space
generation algorithms are some variation of the following:

“Build the MDD encoding S, defined as the smallest solution to the
fixpoint equation S = S UN(S) subject to S D S™it”,

where the next-state function A is now applied to tuples instead of markings.

Of course, N is also encoded using either MDDs or related formalisms. The
most common choice is a 2K-level MDD with interleaved levels for the cur-
rent variables x and the mext variables X', i.e., if i’ € N(i), there is a path
(igc, iy ey 1,1} ) from the root of the MDD encoding A to node 1. In our asyn-
chronous context, a disjunctive partition [4] can be used, where each transition
t € 7T is encoded as a separate 2K-level MDD. This is the case in the standard
breadth-first algorithm Bfs shown in Fig.[2l Function Union returns the root of
the MDD encoding the union of the sets encoded by the arguments (all encoded
as K-level MDDs), while function Image returns the root of the MDD encoding
the set of states reachable in one application of the second argument (a 2K-level
MDD) from any state encoded by the first argument (a K-level MDD); both
functions are easily expressed in recursive form. In the figure, we identify sets
and relations with the MDDs encoding them; thus, for example, N[i][i'] means
the node in the MDD encoding A; which is reached by following the edge labeled
¢ from the root and then the edge labeled i’ from the resulting node.

To improve over breadth-first iterations, we have proposed algorithms [T2/T3]
that exploit chaining [33] and event locality. Chaining is based on the observation
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mdd Bfs( mdd S™ ) mdd BfsChaining( mdd S )
1S (_Swm't; 18— Sinit;
2 repeat 2 repeat
3 X0 3 foreach t € 7 do
4  foreach t € 7 do 4 S «— Union(S, Image(S,Ny));
5 X «— Union(X, Image(S,N%)); 5 until S does not change;
6 S« Union(S,X); 6 return S;
7 until S does not change;
8 return S;

void Saturation( mdd S )

1 for/=1to K do N
2  foreach node p at level [ on a path from S to 1 do
3 Saturate(p); e update p in place

void Saturate( mdd p )
1 |« p.lvl;
2 repeat
3 choose ¢ s.t. Top(t) =1,i € Si,i’ €S s.t. pli] # 0 and N¢[i][i'] # 0;
4 pli'] < Union(pli'], ImageSat(pli], Ne[i][i']));
5 until p does not change;

mdd ImageSat( mdd ¢, mdd2 f )

1 if ¢g=0 or f =0 then return O;

2k« q.lvl; o f.lvl =k as well
3 s« new level-k node with edges set to O;

4 foreach i € Si,i’ € Sk s.t. g[i] # 0 and f[i][i'] # 0 do

5 s[i'] « Union(s[i'], ImageSat(q[i], f[i][7']));

6 Saturate(s);

7 return s.

Fig. 2. Breadth-first, chaining, and Saturation state-space generation

that the number of symbolic iterations might be reduced if the application of
asynchronous events (transitions) is compounded sequentially, see BfsChaining
in Fig. Bl While the search order is not strictly breadth-first anymore, the set of
known states at the d*® iteration of the repeat-until loop is guaranteed to be at
least as large with chaining as without.

However, the efficiency of symbolic state-space generation is determined not
just by the number of iterations but also by their cost, i.e., by the size of the
MDDs involved. In practice, chaining has been shown to be quite effective in
many asynchronous models, but its effectiveness can be greatly affected by the
order in which transitions are applied. Event locality can then be used to define
a good ordering heuristic [12], as we explain next.

Given a transition ¢, we define Vs (t) = {z; : 3,7 €S, eN; (i) A iy # iy} and
Vp(t) = {z; : 3, €S, VE#£L i =ju ANG(D) # 0 AN () = 0}, i.e., the variables
that can be modified by ¢, or that can disable, t, respectively. Moreover, we let
Top(t) = max{l: z; € Vi (t)UVp(t)} and Bot(t) = min{l : x; € Vi (t)UVp ()}

We showed experimentally in [12] that applying the transitions ¢ € 7 in an
order consistent with their value of Top, from 1 to K, results in effective chaining.
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Locality is easily determined for our nets since the enabling and firing effect of
a transition ¢ depend only on its input, output, and inhibitor places, plus any
place appearing in the cardinality expression of the corresponding arcs.

Recognizing locality, however, offers great potential beyond suggesting a good
chaining order. If Top(t) = [ and Bot(t) = k, any variable x,, outside this range,
i.e., above [ or below k, is not changed by the firing of transition t. When com-
puting the image in line[d of BfsChaining, we can then access only MDD nodes at
level [ or below and update in-place only MDD nodes at level [, without having
to access the MDD from the root. While Kronecker [25] and matriz diagram [24]
encodings have been used to exploit these identity transformations in N, the
most general and efficient data structure appears to be a decision diagram with
special reduction rules [13]. In this paper, we assume that A} is encoded with
an MDD over just the current and next variables between Top(t) and Bot(t)
included, instead of a 2K-level MDD. If there are no marking-dependent arc
cardinalities, the structure of this MDD is quite simple, as we simply need to en-
code the effect of every input, inhibitor, and output arc connected to ¢; the result
is an MDD with just one node per ‘unprimed’ level. For general self-modifying
nets, a “localized” explicit enumeration approach may be used [13], although a
completely symbolic approach might be preferable.

We can now introduce our most advanced algorithm, Saturation, also shown
in Fig. 2 An MDD node p at level [ is saturated [10] if

Vte T, Top(t) <l = B(K,p) D Ni(B(K,p)).

To saturate node p once its descendants are saturated, we compute the effect of
firing ¢ on p for each transition ¢ such that Top(t) = [, recursively saturating
any node at lower levels created in the process, and add the result to B(p) using
in-place updates. Thus Saturation proceeds saturating the nodes in the MDD
encoding the initial set of states bottom-up, starting at level 1 and stopping
when the root at level K is saturated.

Only saturated nodes appear in the operation cache (needed to retrieve the
result of an ImageSat or Union call, if it has already been issued before with the
same parameters) and the unique table (needed to enforce MDD canonicity by
recognizing duplicate nodes). Since nodes in the MDD encoding the final S are
saturated by definition, this unique property, not shared by any other approach,
is key to a much greater efficiency. Indeed, we have experimentally found that
both memory and run-time requirements for our Saturation approach are usually
several orders of magnitude smaller than for the traditional symbolic breadth-
first exploration, when modeling asynchronous systems.

3 Structural Invariants to Improve Symbolic Algorithms

Structural invariants have been proposed for variable elimination. For example,
[17] suggests an algorithm that starts with an empty set of boolean variables
(places of a safe Petri net) and examines each place in some arbitrary order,
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adding it as new (lower) level of the BDD only if it is not functionally dependent
on the current set of variables. This greedy elimination algorithm reduces the
number of levels of the BDD, with the goal of making symbolic state-space gen-
eration more efficient. However, we argue that this invariant-based elimination
severely hurts locality and is generally a bad idea, not only for Saturation, but
even for the simpler BFS iterations (if properly implemented to exploit locality).
To see why this is the case, consider a transition ¢ with an input or inhibitor
arc from a place p, i.e., p € Vp(t). If p is in the support of invariant v and is
eliminated because all other places in Support(v) already correspond to BDD
levels, the marking of p can indeed be determined from the marking of each
place ¢ € Support(v) \ {p}. However, this not only removes p from Vp(t) but
also adds Support(v) \ {p} to it. In most cases, the span of transition ¢, i.e., the
value of Top(t)—Bot(t)+1, can greatly increase, resulting in a more costly image
computation for N.

The solution we present in Sec. Bl enabled by our use of MDDs instead of
BDDs, is to perform instead wvariable merging. This achieves the same goal of
reducing the number of levels (actually resulting in more levels being eliminated,
since it considers groups of variables at a time, not just individual ones as in [17]),
without negatively affecting locality and actually improving it for a meaningful
class of nets. Then, having at our disposal the invariants, we turn to the problem
of variable ordering, and show in Sec. how our previous idea of minimizing
the sum of the top levels affected by each transition [39] can be extended to take
into account invariants as well, treating an invariant analogously to a transition
and its support as if it were the set of places “affected” by the invariant.

3.1 Using Structural Invariants to Merge State Variables

As one of our main contributions, we first present and prove a general theorem
stating that merging two MDD wvariables based on functional dependence guar-
antees to reduce the size of an MDD. In contrast, we show that placing variables
in the support of an invariant close to each other without merging them, as
suggested by many static and dynamic variable reordering techniques [2TUT9],
may actually increase the size of the MDD. We then adopt our merging theorem
to improve Petri-net state-space encodings with place invariants, and present a
greedy algorithm to iteratively merge MDD variables given a set of place invari-
ants obtained from a structural analysis of a net. Thus, our goal is to determine
both a merging of the MDD variables and an ordering of these merged variables.

Variable merging based on functional dependence. To discuss what hap-
pens to the size of an MDD when merging variables based on functional depen-
dence, one must take into account both the number of nodes and their sizes. To
be precise, and to follow what is done in an efficient “sparse node” implemen-
tation, the size of an MDD node is given by the number of its non-zero edges,
i.e., the number of outgoing edges that do not point to node 0. Thus, since a
node has always at least one non-zero edge, the size of a node for variable x; can
range from one to |S;|. First, we recall a theorem on the number of MDD nodes
required to encode a boolean function f.
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Theorem 1. [38] Using the variable order (zk,...,x1), the number of MDD
nodes for variable z; € §;, for K > 1> 1, in the MDD encoding of a boolean
function f(zk,...,z1) equals the number of different subfunctions obtained by
fixing the values of x, ..., z;41 to all the possible values iy € Sk, ..., 4141 € Si41-

Tk

In the following, we denote by f [ﬂf,fll, -y ip7] the subfunction obtained from f by
fixing the value of xy,, ..., g, t0 ik, ...,ik,, and we use the same symbol for a
boolean function and its MDD encoding, once the variable order is given.

Theorem 2. Consider an MDD f encoding a set X C Sk X --- x & with
variable order m = (2, ...,x1). If ,, is functionally dependent on {xk, ..., zx},
with k> m, then define a new variable xy ,, = kN + T, where n,, = (S,
having domain Sk, = {0,...,|Sk X Sp| — 1}. Let the MDD g encode A(X)
with variable order @ = (Tx, ..., Zht1, Thyms Tho1ls - Tmt1, Lm—1, ---, £1), Where
ATry ooy 1) = (TKy ooy Tl 1y Thoms Ty weees Lot Ty oees T1)-

Then, (1) f[iF, 7] = glizn. T 4,,]; and (2) g requires strictly fewer MDD nodes
and non-zero edges than f.

Proof. Property (1) follows directly from the definition of ., A, and g.
Let v; and v; be the number of nodes corresponding to variable x; in g and f,
respectively. Analogously, let ¢; and ¢; be the number of non-zero edges leaving
these nodes. To establish Property (2), we prove that vy ,, = v and €x mn = €,
v =v; and ¢ = ¢ for x; € {zx, ..., Tht1, Tm—1,--. 21}, and v, < vy and € < ¢
for #; € {xx_1, ..., tm+1}. These relations, in addition to the fact that f contains
additional v, > 0 nodes corresponding to x,, (each of them having exactly one
non-zero edge, because of the functional dependence), show that g is encoded
with at least v, = ¢, fewer nodes and edges than f. We now prove these
relations by considering the different possible positions of variable x; in 7.

Tl Tm Thy,m

Case 1: z; € {Tym—1,...,x1}. Since f[iF,57] = glizns T i, ], we let f1 and g1 be

f _ f[mk ﬂ?m][ﬂ?K Tg4+1 Tk—1 Tm+1 Tm—1 $l+1}
1= Gk T JLERK ) ") G190 Th—19 """ T 19 bn—19 ***) 441

_ [ Tk,m . }[wK Tr+1 Tk—1 Tm+1 Tm—1 5?1-%—1]
91 = Glignm + imllin s 00 kg1 k15 ") Gmt1 bm—19 s G141

and conclude that f; = g;. Recall that the number of nodes of variable z; in f
is the number of different subfunctions f[ix, ..., 5], for all possible ik, ..., 141.
Since f and g have the same set of such subfunctions, we must have v; = v;. To
see that ¢, = ¢ as well, simply observe that each pair of corresponding MDD
nodes, e.g., fi and g;, must have the same number of non-zero edges, since
f1 = g1 implies f1[i!] = g1[i!] for any i; € X}, and the edge 4; is non-zero if and
only if f1[i!] #Z 0.

Case 2: 2; € {xf_1, ..., Tm+1 . Consider two different nodes of z; in g, encoding
two different subfunctions g; and g2, which obviously satisfy g1 # 0 and g2 # 0:

— TK Tk+1 . Thkm . Tk—1 Zi4+1
92 = g[]K7"'7]k+1 3JkMm + JmJk—1 7"'7]l+1]'

TK Tk+1 . Tk,m Tk-—1 ﬂ?l+1]
K 9 U1 9Tk Mm F Gm o T —1 90 G4

g1 =9
Then, define f; and fo as follows, obviously satisfying f; # 0 and fo Z 0, too:

f — f[xK Tk4+1 Tk Tk—1 ﬂ?l+1} f — f[$K Tk+1 Tk Tk—1 ﬂ?l+1]
1= TR ) L4109 k) Tk—19 ") V41 2= JK Y ) Jk+19 Jkd Jk—19 ") Li41]*
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We prove by contradiction that f; and f; must be different and therefore encoded
by two different nodes of variable z; in f. Since x,, is functionally dependent
on {xk, ...,z } and the value of (zk,...,xx) is fixed to (ik,...,ix) for f1 and to
(K, .-, j1) for fa, there must exist unique values i,, and j,, such that fi[37™] 0
and fo[5m] # 0. If f1 and fo were the same function, we would have 4,, = j,, and
f1[ir] = f2[57]. From Property (1), we then obtain g1 = f1[i7] = f2[57] = g2,
a contradiction. Thus, distinct nodes of ¢ must correspond to distinct nodes of
f,ie., v <. Again, to see that ¢; < ¢, observe that the MDD nodes encoding
f1 and g1 must have the same number of non-zero edges because, for all i, € &,

g1li] = f1lir][7}]. Furthermore, if multiple nodes in f correspond to the same
node of g, i.e., if v < v, we also have ¢ < €.

Case 3: 2; € {xk, ..., Tp+1, Tk,m - Observe that g = A(f) and g[7f, ..., 5 }]

©) U4
A(flig, -0 ]), where A; is defined analogously to A, ie., Aj(zy, ..., +) =
(Z1y Tl 1y Thotormy Th—Ts +eoy ot 1y ooy Tm—15 ---s 1), As for Case 1, we can prove that
vy = v and €¢; = ¢ by observing that g and f must have the same subfunctions
and the MDD nodes encoding these subfunctions must have the same number

of non-zero edges. O

Intuitively, merging variable x,, with zj; is not that different from moving it
just below xj, in the variable order, the commonly suggested approach for BDDs
to help reduce the number of nodes [I921]. However, the example in Fig.
illustrates that the latter can instead increase the BDD size. Fig. Bla) shows an
example of MDDs that encodes a boolean function with initial variable order
(d, ¢, b, a), satisfying the invariant a + ¢ + d = 2. Fig. B(b) shows the result of
reordering the MDD to put variables a, ¢, and d close to each other, by swapping
variables b and a. Note that the number of nodes in the second MDD increases
from six to seven, and the number of non-zero edges from seven to eight. Fig.[Bl(¢)
shows instead the result of merging variables a and ¢, where the number of nodes
decreases from six to five and the number of non-zero edges from seven to six,
as predicted by Thm.[2l The meaning of the elements of S; in terms of the value
of the variables assigned to level [ is shown to the right of each MDD. We stress
that this reduction in the number of nodes can only be achieved if the MDDs
are implemented natively, not as the interface to BDDs implemented in [22J36];
this is apparent since Fig. Bl(b) is exactly the BDD that would be built if the
MDD of Fig. Bl(c) were implemented using BDDs.

Focusing now on Petri nets, we restate Thm. [2] in their terminology and use
place invariants to determine functional dependence.

Theorem 3. Consider a Petri net with an ordered partition m of P into the
sets (Pk, ..., P1) and mappings ¢p, : N*' — N U {null}, for K > [ > 1. Let the
ordered partition m be the one obtained by merging Py and Py, into Py}, with
k > m, resulting in the order (P, ..., Pirmys Pe—1, -, Pm+1, Pm—1, ..., P1) and
the same mappings as before, except for the new ¢yp, p, 1 : NPtkmy — NU{null}
to replace ¢ and 1,,,, which must satisfy ¢ ;p, »,.}(mp,, mp, ) = nullif and only
if ¥ (mp,) = null or ¥, (mp, ) = null. Then, if P, is functionally dependent
on Jg s>, Pi, the MDD encoding of any nonempty set of markings & requires
strictly fewer nodes and edges with 7 than with 7.
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0:d=0,1:d=1 d [0]1] =~ 0d=0,1:¢=1  d [0J1] = o0wd-0, 141

0:(c=0,a=0), 1:(c=0,a=1),
2:(c=1,a=0), 3:(c=1,a=1)

0:6=0,1:6=1 @ 0:a=0, La=1 & [0 0:6=0, 1:b=1

0:¢=0, 1:c=1 c [0] 0:c=0, 1l:c=1 ca

0:a=0, 1:a=1 b [0] 0:6=0, 1:b=1

(a) original MDD (b) reordered MDD (c) merged MDD

Fig. 3. An example where moving support variables closer increases the MDD size

Partition InvariantBasedMerging (Invariants Wiy p)
1 K |P|;
2 m— ({px}, - {p1}): e Initialize the partition with one place per class
3 repeat
4 form=K-1to1ldo
5 k = LevelToMerge( K, m,m, Wy p);
6 if £k > m then
7 T (T eoey Tt 1y Tk U Tomy T 1y ooy T 1y Tom—1y ooy T1);
8 K— K-1, e The partition is now one class smaller
9 until 7 does not change;
10 return T;
int LevelToMerge (int L, int m, Partition (Qgr, ..., @1), Invariants Wy, p)
1 foreach k = L downto m + 1 do
2 W —{veW]| Support(v) C Qm UU/L, Q}:
3 if |Qm| = Rank(Wyy o, ) then
4 return k;
5 return m;

Fig. 4. A greedy algorithm to iteratively merge MDD variables using Thm.

Proof. The proof is a specialization of the one of Thm. 2l noting that, there,
we used the mapping =y, = TrNy + Ty, for simplicity. In reality, any mapping
where zj, ,, can uniquely encode any reachable combination of z; and x,, may
be used. This is necessary in practice when using dynamic MDDs, where the sets
Sy, i.e., the bounds on the net places, are not known a priori. [l

Greedy algorithm to merge MDD variables. Based on Thm. Bl Fig. @
illustrates a greedy algorithm to merge as many MDD variables as possible,
given a set of place invariants, while guaranteeing that the number of nodes and
non-zero edges can only decrease.

For a Petri net, procedure InvariantBasedMerging in Fig. Ml takes a set of
linearly independent place invariants, in the form of a matrix Wy p, as input
and assumes one place per variable in the initial MDD variable order (line [2).
The procedure then traverses each level m of the MDD, from top to bottom ac-
cording to the given partition m, and calls procedure LevelToMerge to compute
the highest level k such that the m' partition class 7,,, functionally depends on
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P =Ugs;>, m- It does so by determining the set W’ of invariants whose sup-
port is a subset of 7,, UP’, and by performing Gaussian elimination on submatrix
Ww .. to check whether it has full column rank (line B of LevelToMerge). If
such level k exists, then 7, is merged with 7, otherwise the partition remains
unchanged. Procedure InvariantBasedMerging repeats this merging process until
no more merging is possible, then it returns the final partition .

The procedure has polynomial complexity, since it computes O(|P|?) matrix
ranks, in the worst case. In practice, due to the sparsity of matrix W, the
performance is excellent, as discussed in Sec. @l We postpone to future work a
discussion of whether it achieves the smallest possible number of MDD levels
without increasing the number or size of the nodes according to Thm.

3.2 Using Structural Invariants to Order State Variables

It is well-known that the variable order can greatly affect the efficiency of decision
diagram algorithms, and that computing an optimal order is an NP-complete [2].
Thus, practical symbolic model-checking tools must rely on heuristics aimed at
finding either a good order statically, i.e., prior to starting any symbolic manipu-
lation, or at improving the order dynamically, i.e., during symbolic manipulation.

Focusing on static approaches, our locality-based encoding suggests that vari-
able orders with small span Top(t)—Bot(t)+1 for each transition ¢ are preferable,
both memory-wise when encoding N;, and time-wise when applying N; to com-
pute an image. Furthermore, since Saturation works on the nodes in a bottom-up
fashion, it prefers orders where most spans are situated in lower levels. In the
past, we have then considered the following static heuristics [39):

e SOS: Minimize the sum of the transition spans, >, ,(Top(t) — Bot(t) + 1).
e SOT: Minimize the sum of the transition tops, )., Top(t).
e Combined SOS/SOT: Minimize ), Top(t)* - (Top(t) — Bot(t) + 1).

The combined heuristic encompasses SOS and SOT, since the parameter a con-
trols the relative importance of the size of the span vs. its location. When o = 0,
the heuristic becomes SOS, as it ignores the location of the span, while for a > 1,
it approaches SOT. For the test suite in [39], & = 1 works generally well, con-
firming our intuition about the behavior of Saturation, namely that Saturation
tends to perform better when both the size and the location of the spans is small.

We now propose to integrate the idea of an ordering heuristic based on tran-
sition locality with the equally intuitive idea that an order where variables in
the support of an invariant are “close to each other,” is preferable [29]. How-
ever, given the lesson of the previous section, we also wish to apply our greedy
merging heuristic. There are four ways to approach this:

— For each possible permutation of the places, apply our merging heuristic.
Then, evaluate the score of the chosen objective function (among the three
above), and select the permutation that results in the minimum score. Of
course, this results in the optimal order with respect to the chosen objective
function, but the approach is not feasible except for very small nets.
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— Choose one of the objective functions and, assuming one place per level,
compute an order that produces a low score. Note that this is not necessarily
the minimum score, as this is itself an NP-complete problem. Then, apply
either our greedy merging heuristic, or a modified version of it that ensures
that the achieved score is not worsened.

— Given an initial ordering of the places, use our greedy merging heuristic.
Then, compute an order that produces a low, not necessarily minimal, score
for the chosen objective function, subject to the constraints of Thm. B to
keep the node size linear. For example, if m,+m;+m.=N in every marking
m, if places a and b are not covered by any other invariant, if ¢ and b have
been merged together, and if they are at a level below that of ¢, then we
cannot move them above c. If we did, a node encoding m, and m, could
have O(N 2) nonzero edges, since m,+my is not fixed until we know m..

— Consider an invariant just like a transition, i.e., modify the chosen objective
function to sum over both transitions and invariants, where the support of
an invariant is treated just like the dependence list of a transition. Once the
order is obtained, apply our greedy merging heuristic.

We adopt the last approach in conjunction with the SOT objective function,
for several reasons. First, it is very similar in spirit to our original ordering
approach, yet it adds novel information about invariants to guide the heuristic.
Second, we have reasonably fast heuristics to solve SOT (indeed we even have
a logn approximation algorithm for it), while the heuristics for SOS are not
as fast, and those for the combined SOS/SOT problem are even slower. More
importantly, when applying our greedy merging algorithm after the variable
ordering heuristic, the span of an event is changed in unpredictable ways that
do not preserve the optimality of the achieved score.

A fundamental observation is that, if place p is in the support of invariant v,
any transition ¢ that modifies p must also modify at least one other place ¢ in the
support of v. Thus, if p and p’ are the lowest and highest places of the support of
v according to the current MDD order, merging p with the second lowest place
r in the support will not change the fact that p’ is still the highest place in the
support of v. Analogously, the highest place p” determining Top(t) is at least
as high as ¢, which is at least as high as r, thus, again, p” will still determine
the value of Top(t). Of course, the levels of p’ and p” are decreased by one,
simply because the level of p, below them, is removed. Unfortunately, the same
does not hold when p only controls the enabling or firing of a transition ¢, i.e.,
if there is an inhibitor arc from p to ¢ or if p appears in the marking-dependent
cardinality expression of arcs attached to t. In that case, merging p to a higher
level k might increase the value of Top(t) to k. Thus, for standard Petri nets
with no inhibitor arcs and for the restricted self-modifying nets considered in
[8], merging is guaranteed to improve the score of SOT, although it does not
necessarily preserve optimality.

One danger or treating invariants like transitions in the scoring heuristic is
that the number of invariants can be exponentially large, even when limiting
ourselves to minimal ones (i.e., those whose support is not a superset of any other
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support). In such cases, the invariants would overwhelm the transitions and the
resulting order would de facto be based almost exclusively on the invariants. To
avoid this problem, we compute a set of linearly independent invariants and feed
only those to our heuristic for SOT; clearly, this set will contain at most |P|
elements, whence it is of the same order as |7 | in practical models.

4 Experimental Results

We have implemented our static variable ordering merging ideas based on place
invariants in the verification tool SMART'[9], which supports Petri nets as front-
end and reads an invariant matrix generated by the Petri-net tool GreatSPN [7].
This section reports our experimental results on a suite of asynchronous Petri
net benchmarks for symbolic state-space generation.

We ran our experiments on a 3GHz Pentium workstation with 1GB RAM.
Benchmarks mmgt, dac, sentest, speed, dp, q, elevator, and key are safe Petri
nets taken from Corbett [I6]. Benchmarks knights (board game model), fms
and kanban [A0] (manufacturing models), and slot [30], courier [42], and ralep
[20] (protocol models) are Petri nets (without marking-dependent arcs, since
GreatSPN does not accept this extension) from the SMART' distribution.

Results. The first five columns of Table [[l show the model name and parame-
ters, and the number of places (#P), events (#7T') and place invariants computed
by GreatSPN (#1). The remaining columns are grouped according to whether
the static variable order, computed via a fairly efficient logarithmic approxima-
tion for SOT, uses just the place-event matrix (Event) or the combined place-
event-invariant matrix (Event—+Inv). The approximation uses a randomized
procedure, thus different parameters for the same model may result in different
performance trends. For example, with Event, merging reduces the runtime of
courier from 251 to 68sec when the parameter is 40, but has negligible effect
when the parameter is 20.

The time for static variable ordering is stated in column Time Ord. For
each group, we further report results according to whether variable merging is
employed; method No Merge just uses the static order and therefore has one
MDD variable per place of the Petri net, while Merge starts from the static
order and merges variables using the proposed greedy algorithm of Fig. @l

In addition, we state the run-time, peak, and final memory usage if the state-
space generation with Saturation completes within 30 minutes. For Merge, we
also report the number of MDD variables merged (#M). The run-time spent
for merging variables is not reported separately because it is quite small, always
less than 5% of the total run-time, for any of the models. The time needed by
GreatSPN to compute the invariants is shown in column Time Inv.

Discussion. From Table [Il we see the effectiveness of the new static variable
ordering by comparing the two No Merge columns for Event and Event+Inv.
The latter performs much better than the former on mmgt, fms, slot, courier, and
kanban, slightly worse on elevator and knights, and similarly on the remaining
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Table 1. Experimental results (Time in sec, Memory in KB;“>1800” means that run-time exceeds 1800 sec or memory exceeds 1GB)

Event Event+Inv

Model N #P#T #I Time No Merge Merge Time Time No Merge
Ord Time PeakFinal Time PeakFinal#M Inv Ord Time PeakFinal Time
mmgt 3122172 47 40 1.85 1575 83 1.78 1485 77 12 0.02 3.0 0.96 838 46 0.93
mmgt 4158232 48 6.0 18.05 20645 295 17.10 19294 280 14 0.02 5.0 4.71 5385 142 4.78
dac 15105 73 183 1.0 0.24 30 26 0.20 21 19 28 0.02 1.0 0.24 28 27 0.18
sentest 752521023315 2.0 0.55 49 44 0.25 20 17 157 1.07 2.0 0.53 49 45 0.23
sentest 100 327 1275665 5.0 0.71 70 65 0.32 27 24 207 3.48 5.0 094 64 61 0.3
speed 1 29 31 10 0.0 0.07 48 6 0.06 32 4 10 0.01 0.0 0.09 44 6 0.07
dp 12 72 48 48 0.0 0.16 19 15  0.09 9 7 36 0.01 1.0 0.17 18 15 0.09
q 1163194 492 5.0 0.84 715 349 0.72 619 294 27 0.09 5.0 0.77 524 336 0.65
elevator 3326782 693 28.0 47.06 6570 1620 45.39 6532 1412 9 1.87 21.0 49.73 7403 1654 47.71
key 2 94 92 774 0.0 0.26 86 72 0.23 90 58 16 0.45 0.0 0.25 91 71 0.26
key 31291335491 3.0 0.54 231 161 0.53 210 145 18127.11 2.0 0.51 211 146 0.46
knights 5243401 91 2.0 9.20 3321 60 7.03 2138 39 25 0.03 2.0 12.37 4084 60 9.5
fms 20 38 20 27 0.0 258 1388 334 2.76 1371 317 3 0.01 0.0 0.39 189 66 0.5
fms 40 38 20 27 0.0 26.34 10480 1786 27.20 10418 1724 3 0.01 0.0 2.28 755 250 2.57
fms 80 38 20 27 0.0 93.59 19159 9068 110.20 18923 8831 3 0.01 0.0 31.16 9420 1383 32.7
slot 20 160160 42 2.0 >1800 - - >1800 - - — 001 20 1.57 1658 122 1.35
slot 40 320320 82 12.0>1800 - —>1800 - - — 0.03 80 10.96 11802 481 8.56
courier 20 45 34 13 0.0 7.35 698 871 720 6816 775 13 0.01 1.0 4.14 2693 267 3.89
courier 40 45 34 13  0.0251.06 108562 4260 68.22 39397 1126 13 0.01 1.0 25.38 12282 1127 24.99
courier 80 45 34 13  1.0>1800 - - >1800 - - - 0.01 1.0191.34 57385 5902 187.28
kanban 20 16 16 6 0.0307.66 51522 33866 192.56 44343 26687 4 0.01 0.0 0.93 513 55 1.23
kanban 40 16 16 6  0.0539.11 134734 49478 402.62 113223 45753 4 0.01 0.0 7.61 3043 240 8.91
kanban 80 16 16 6  0.0>1800 - —>1800 - - — 0.01 0.0 85.02 20404 1249 99.07
ralep 7 91140 21 2.0 22.73 25767 3424 20.64 21552 2526 21 0.01 3.0 23.00 27704 3349 22.82
ralep 8104168 24 2.0 99.79 90499 9166 106.03 80117 6572 24 0.01 6.0 85.20 88486 7872 81.5

Merge
Peak Final #M
829 43 12
5375 132 14
20 19 28
20 17 157
24 22 208
29 4 10
9 7 36
442 280 29
7359 1443 9
102 58 15
196 136 18
2584 39 25
180 57 3
749 244 3
9301 1263 3
1213 90 41
8540 353 81
2441 229 13
11413 994 13
50540 5212 13
443 45 4
2777 206 4
19367 1124 4
24258 2613 21
66893 6006 24
27

ralep 9117198 27  2.0359.68 238313 17531 429.62 223186 12605 27 0.01  3.0361.09 232590 15463 387.61 196297 11891
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benchmarks. The run-time for variable order computation is normally a small
percentage of the run-times. The same can be said for invariant computation,
with the exception of two models, sentest and key, where GreatSPN computes a
large number of (non-minimal) invariants and requires more run-time than state-
space generation itself (pathologically so for key with parameter 3). However,
it must be stressed that the run-times for state-space generation are the ones
obtained using our heuristic; if we were to use random or even just not as good
orders, the state-space generation run-times would be much larger.

To see the effectiveness of invariants-based variable merging, one can com-
pare the No Merge and Merge columns of Table [[l for either Event and
Event+Inv. Merging almost always substantially improves the peak and final
memory usage and results in comparable or better run-time performance, with
up to a factor of three improvement for memory and time.

Even if merging is guaranteed to reduce the size of a given MDD, applying
this idea is still a heuristic, as it changes the value of Top for the transition
in the net, in such a way that Saturation may apply them in a different order
that results in a larger peak size (in our benchmarks, this happens only for key
with parameter 2). Overall, though, we believe that our ordering and merging
heuristics can pave a way to a fully automated static ordering approach. This
has a very practical impact, as it does not require a modeler to come up with a
good order, and it reduces or eliminates altogether reliance on dynamic variable
reordering, known to be quite expensive in practice.

5 Related Work

Most work on developing heuristics for finding good variable orders has been
carried out in the context of digital-circuit verification and BDDs. Our focus in
this paper is on static ordering, i.e., on finding a good ordering before construct-
ing decision diagrams. In circuit verification, such approaches are typically based
on a circuit’s topological structure and work on the so-called model connectivity
graph, by either searching, evaluating, or decomposing this graph. Grumberg,
Livne, and Markovitch [I8] present a good survey of these approaches and pro-
pose a static ordering based on “experience from training models”. Dynamic
grouping of boolean variables into MDD variables is proposed in [36]; however,
invariants are not used to guide such grouping.

Our approach to static variable ordering with respect to Petri nets stands
out as it considers place invariants and proposes variable merging instead of
variable elimination. It must be pointed out that Pastor, Cortadella, and Roig
mention in [29] that they “choose the ordering with some initial support from
the structure of the Petri net (the P-invariants of the net)”; however, no details
are given. More fundamentally, though, our work here shows that ordering using
invariants is simply not as effective as ordering and merging using invariants.

Invariants are one popular approach to analyzing Petri nets [32/34]. With
few exceptions, e.g., work by Schmidt [35] that utilizes transition invariants and
research by Silva and his group [5] on performance throughput bounds, most
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researchers focus on place invariants. On the one hand, place invariants can help
in identifying conservative upper bounds of a Petri net’s reachable markings.
Indeed, place invariants provide necessary, but not sufficient conditions on the
reachability of a given marking. This in turn can benefit state-space generation
algorithms, as is demonstrated, e.g., by Pastor, Cortadella, and Pefia in [28].

On the other hand, place invariants can be used to reduce the amount of
memory needed for storing a single marking [6I35], by exploiting the functional
dependencies described by each invariant. When storing sets of markings with
decision diagrams, this eliminates some decision-diagram variables. To determine
which exact places or variables should be dropped, Davies, Knottenbelt, and
Kritzinger present a heuristic in [I7]. In that paper they also propose an ad-hoc
heuristic for the static variable ordering within BDDs, based on finding pairs of
similar subnets and interleaving the corresponding places’ bit-vectors.

For the sake of completeness we note that general functional dependencies
have also been studied by Hu and Dill [T9]. In contrast to work in Petri nets where
generated invariants are known to be correct, Hu and Dill do not assume the
correctness of given functional dependencies, but prove them correct alongside
verification. Last, but not least, we shall mention the approach to static variable
ordering taken by Semenov and Yakovlev [37], who suggest to find a “close to
optimal ordering” via net unfolding techniques.

6 Conclusions and Future Work

This paper demonstrated the importance of considering place invariants of Petri
nets when statically ordering variables for symbolic state-space generation. Pre-
vious work focused either solely on optimizing event locality [39], or on eliminat-
ing variables based on invariance information [I7]. The novel heuristic proposed
in this paper enhances the former work by exploiting place invariants for merging
variables, instead of eliminating them as is done in all related research. While
merging is not an option for BDDs, it is suitable for MDD-based approaches,
including our Saturation algorithm [I0]. We proved that merging MDD vari-
ables always reduces MDD sizes, while eliminating variables may actually en-
large MDDs. In addition, for standard Petri nets, merging never breaks event
locality and often improves it, thus benefiting Saturation.

The benchmarking conducted by us within SMART [9] showed that our heuris-
tic outperforms related static variable-ordering approaches in terms of time-
efficiency and memory-efficiency. Most importantly, this is the case for practical
examples, such as large instances of the slotted-ring network and the kanban
system which had been out of reach of existing state-space exploration technol-
ogy before. Hence, using invariants in variable-ordering heuristics is crucial, but
it must be done correctly. In particular, the widespread practice of eliminating
variables based on invariance information is counter-productive and should be
abandoned in favor of merging variables.

Future work should proceed along two directions. On the one hand, we wish
to explore whether our greedy merging algorithm is optimal, in the sense that
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it reduces an MDD to the smallest number of MDD variables according to our
merging rule. On the other hand, we intend to investigate whether place invari-
ants are also beneficial in the context of dynamic variable ordering.
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Abstract. Reconfigurable place/transition systems are Petri nets with
initial markings and a set of rules which allow the modification of the net
during runtime in order to adapt the net to new requirements of the envi-
ronment. In this paper we use transformation rules for place/transition
systems in the sense of the double pushout approach for graph trans-
formation. The main problem in this context is to analyze under which
conditions net transformations and token firing can be executed in arbi-
trary order. This problem is solved in the main theorems of this paper.
Reconfigurable place/transition systems then are applied in a mobile
network scenario.

Keywords: integration of net theory and graph transformations, parallel
and sequential independence of net transformations and token firing.

1 Introduction

In [23], the concept of reconfigurable place/transition (P/T) systems has been
introduced that is most important to model changes of the net structure while
the system is kept running. In detail, a reconfigurable P/T-system consists of
a P/T-system and a set of rules, so that not only the follower marking can be
computed but also the structure can be changed by rule application to obtain a
new P/T-system that is more appropriate with respect to some requirements of
the environment. Moreover these activities can be interleaved.

For rule-based transformations of P/T-systems we use the framework of net
transformations [I7,[18] that is inspired by graph transformation systems [34].
The basic idea behind net transformation is the stepwise development of P/T-
systems by given rules. Think of these rules as replacement systems where the
left-hand side is replaced by the right-hand side while preserving a context. Petri
nets that can be changed, have become a significant topic in the recent years,
as the adaption of a system to a changing environment gets more and more
important. Application areas cover e.g. computer supported cooperative work,
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multi agent systems, dynamic process mining or mobile networks. Moreover,
this approach increases the expressiveness of Petri nets and allows a formal
description of dynamic changes.

In this paper we continue our work by analyzing under which conditions a
firing step is independent of a rule-based transformation step. Independence
conditions for two firing steps of P/T-systems, i.e. being conflict free, are well-
known and closely related to local Church-Rosser properties for graph resp.
net transformations (see [34,[I7,[I8]) that are valid in the case of parallel and
sequential independence of rule-based transformations. In [I7] conditions for
two transformation steps are given in the framework of high-level replacement
systems with applications to net transformations, so that these transformation
steps applied to the same P /T-system can be executed in arbitrary order, leading
to the same result. But up to now it is open under which conditions a net
transformation step and a firing step are independent of each other. In more
detail, we assume that a given P/T-system represents a certain system state.
The next evolution step can be obtained not only by token firing, but also by
the application of one of the rules available. Hence, the question arises, whether
each of these evolution steps can be postponed after the realization of the other,
yielding the same result. Analogously, we ask ourselves if they can be performed
in a different order without changing the result.

In Section[2 we present an interesting application of our concept in the area of
mobile ad-hoc networks. While Section [3] reviews the notions of reconfigurable
nets and net transformations, in Section El our main theorems concerning the
parallel and sequential independence of net transformation and token firing are
achieved. In Section [Bl we show how these concepts and results can be put into
the more general framework of algebraic higher-order nets. Finally, we outline
related work and some interesting aspects of future work in Section

2 Mobile Network Scenario

In this section we will illustrate the main idea of reconfigurable P /T-systems in
the area of a mobile scenario. This work is part of a collaboration with some
research projects where the main focus is on an adaptive workflow management
system for mobile ad-hoc networks, specifically targeted to emergency scenariod].
So, as a running example we use a scenario in archaeological disaster/recovery:
after an earthquake, a team (led by a team leader) is equipped with mobile
devices (laptops and PDAs) and sent to the affected area to evaluate the state
of archaeological sites and the state of precarious buildings. The goal is to draw a
situation map in order to schedule restructuring jobs. The team is considered as
an overall mobile ad-hoc network in which the team leader’s device coordinates
the other team member devices by providing suitable information (e.g. maps,
sensible objects, etc.) and assigning activities. A typical cooperative process to
be enacted by a team is shown in Fig. [[l as P/T-system (PNy, M;), where we

! MOBIDIS - [http://www.dis.uniromal.it/pub/mecella/projects/MobiDIS| MATIS -
http://www.mais-project.it, IST FP6 WORKPAD - http://www.workpad-project.eu/
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Fig. 1. Firing steps Select Building and Go to Destination

assume a team consisting of a team leader as picture store device and two team
members as camera device and bridge device, respectively.

To start the activities of the camera device the follower marking of the P/T-
system (P Ny, M) is computed by firing transition Select Building and we obtain
the new P/T-system (PNy, M/) depicted in the middle of Fig.[Il In a next step
the task Go to Destination can be executed (see right-hand side of Fig. [I]).

To predict a situation of disconnection a movement activity of the bridge
device has to be introduced in our system. In more detail, the workflow has
to be extended by a task to follow the camera device. For this reason we pro-
vide the rule prodyoow depicted in the upper row in Fig. [ In general, a rule
prod = ((L, Mp) L (K, M) = (R, Mg)) is given by three P/T-systems called
left-hand side, interface, and right-hand side, respectively, and a span of two (spe-
cific) P/T-morphisms ! and r. For the application of the rule prodyoiew to the
P/T-system (PNy, My) (see Fig.[I) we additionally need a match morphism m
that identifies the relevant parts and has to respect the so-called gluing condition

(see Section [)). Then the transformation step (PNy, M) Prodigio (PN, M>)
as shown in Fig. [ is given as follows: first, the transitions Go to Destina-
tion and Send Photos are deleted and we obtain the intermediate P/T-system
(PNy, My); then the transitions Go to Destination, Send Photos and Follow
Camera Device together with their (new) environments are added. Note that a
positive check of the gluing condition makes sure that the intermediate P/T-
system is well-defined. Analogously, the application of the rule prodyoiow to the
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P/T-system (PNy, M{) in the middle of Fig. [dlleads to the transformation step

(PNy, M{) P72 (PN, M}) in Fig.

Note that in general token game and rule applications cannot be interleaved,
e.g. if the transformation rule deletes the transition or a part of the marking
used for the token firing. Thus we are looking for conditions such that firing
steps and transformation steps can be performed in any order leading to the
same P /T-system. In Section Ml we define in more detail conditions to ensure the
independence of these activities.

Summarizing, our reconfigurable P/T-system ((PN1, M), {prodoiow}) con-
sists of the P/T-system (PN, M) and the set of rules {prodfoiiow } with one rule
only. We can consider further rules, e.g. those given in [9)31], leading to a more com-
plex reconfigurable P /T-system. But in this paper we use the simple reconfigurable
P /T-system as an example to help the reader understand the main concepts.

3 Reconfigurable P/T-Systems

In this section we formalize reconfigurable P /T-systems. As net formalism we use
P /T-systems following the notation of “Petri nets are Monoids” in [28]. In this
notation a P/T-net is given by PN = (P, T, pre, post) with pre- and post domain
functions pre, post : T — P® and a P/T-system is given by (PN, M) with mark-
ing M € P® where P? is the free commutative monoid over the set P of places
with binary operation @, e.g. the monoid notation M = 2p; & 3ps means that
we have two tokens on place p; and three tokens on ps. Note that M can also
be considered as function M : P — N where only for a finite set P’ C P we
have M (p) > 1 with p € P’. We can switch between these notations by defining
dpepMp)-p=M ¢ P®. Moreover, for My, My € PP we have M; < My if
M;i(p) < Ms(p) for all p € P. A transition ¢t € T is M-enabled for a marking
M e P® if we have pre(t) < M, and in this case the follower marking M’ is given
by M’ = M & pre(t) @ post(t) and (PN, M) —— (PN, M) is called firing step.
Note that the inverse © of & is only defined in M7 © Ms if we have My < Mj.

In order to define rules and transformations of P/ T-systems we introduce P /T-
morphisms which preserve firing steps by Condition (1) below. Additionally they
require that the initial marking at corresponding places is increasing (Condition
(2)) or even stronger (Condition (3)).

Definition 1 (P/T-Morphisms)

Given P/T-systems PN; = (PN;, M;) with PN; = (P;,T;, pre;, post;) for i =
1,2, a P/T-morphism [ : (PNy, My) — (PNa, Ms) is given by f = (fp, fr) with
functions fp: P, — Py and fr : T1 — Ts satisfying

(1) flef opre; = pres o fr and flﬂf o post; = posts o fr and
(2) Mi(p) < Ma(fp(p)) for allp € Pi.

Note that the extension fg : PP — P of fp: P — Py is defined by
oo kiopi) =3 ki fr(pi). (1) means that f is compatible with pre- and
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Fig. 2. Transformation step (PNi,M1) =" (PNa2, M>)

post domain, and (2) that the initial marking of PNy at place p is smaller or
equal to that of PNy at fp(p).
Moreover the P/T-morphism f is called strict if fp and fr are injective and

(3) Mi(p) = Ma(fp(p)) for allp € Py.

The category defined by P/T-systems and P/T-morphisms is denoted by PTSys
where the composition of P/T-morphisms is defined componentwise for places
and transitions.

Remark 1. For our morphisms we do not always have f;B(]Vfl) < M,. E.g. My =
p1 @ p2, My = p and fp(p1) = fp(p2) = p implies f5 (M) = 2p > p = My, but
Mi(p1) = Mi(p2) = 1 = Ma(p).
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Fig. 3. Transformation step (PN, M) PN, My)

As discussed in our paper [23] we are able to define the gluing of P/T-systems via
P/T-morphisms by pushouts in the category PTSys. Informally, a pushout in
a category CAT is a gluing construction of two objects over a specific interface.
Especially we are interested in pushouts of the form where [ is a strict and c is a
general morphism. So, we can apply rules. Vice versa, given the left-hand side of
a rule (K, M) R (L, My,) (see Def. B)) and a match m: (L, My) — (PNy, M)
we have to construct a P /T-system (P Ny, Mo) !

such that (1) becomes a pushout. This con- (K, M) > (L, My)
struction requires the following gluing condi- c (1) m

tion which has to be satisfied in order to apply v v

a rule at a given match. The characterization (PNo, Mo) > (PNy, My)

of specific points is a sufficient condition for the existence and uniqueness of
the so called pushout complement (P Ny, My), because it allows checking for the
applicability of a rule to a given match.

Definition 2 (Gluing Condition for P/T-Systems)

Let (L, M) ™% (PNy, My) be a P/T-morphism and (K, M) 4 (L, My) a strict
morphism , then the gluing points GP, dangling points DP and the identification
points IP of L are defined by

GP:l(PKUTK)
DP = {pEPLEtE (T1\mT(TL)) ( )Eprel(t)GBpostl(t)}
IP= {pe P € PL:p#p /\mP() mp(p')}

U{t e Tp|3 € T it £t Amp(t) =mp(t)}
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A P/T-morphism (L, M) = (PNy, My) and a strict morphism (K, M) 4

(L, My) satisfy the gluing condition, if all dangling and identification points are
gluing points, i.e DP UIP C GP, and m is strict on places to be deleted, i.e.

Vp € PL\I(Pk) : Mp(p) = Mi(m(p))-

Ezample 1. In Section 2] examples of P/T-morphisms are given in Fig. [ by
(K, My) 5 (L, M) and (L, ML) 25 (PNy,Mi). For the dangling points we
have DP = Py, while the set of identification points I P is empty. So, these P/T-
morphisms satisfy the gluing condition because the gluing points GP are also
equal to the set of places P, and all places are preserved.

Next we present rule-based transformations of P/T-systems following the double-
pushout (DPO) approach of graph transformations in the sense of [34,17], which
is restrictive concerning the treatment of unmatched transitions at places which
should be deleted. Here the gluing condition forbids the application of rules in
this case. Furthermore, items which are identified by a non injective match are
both deleted or preserved by rule applications.

Definition 3 (P/T-System Rule)

A rule prod = ((L, M) L (K,Mg) = (R, MRg)) of P/T-systems consists of
P/T-systems (L, My), (K, Mkg), and (R, Mg), called left-hand side (LHS), in-
terface, and right-hand side (RHS) of prod respectively, and two strict P/T-
morphisms (K, M) 4 (L, My) and (K, Mg) = (R, Mg).

Note that we have not yet considered the firing of the rule nets (L, My,), (K, Mg)
and (R, Mpr) as up to now no relevant use could be found. Nevertheless, from a
theoretical point of view simultaneous firing of the nets (L, M), (K, Mg) and
(R, MR) is easy as the morphisms are marking strict. The firing of only one of
these nets would require interesting extensions of the gluing condition.

Definition 4 (Applicability of Rules)
A rule prod = ((L,Mp,) L (K,Mg) = (R,MRg)) is called applicable at the
match (L, Mp) 2 (PNy, My) if the gluing condition is satisfied for 1 and m. In

this case we obtain a P/T-system (PNy, My) leading to a net transformation
prod,m

step (PNy,My) "= (PN, Ms) consisting of the following pushout diagrams
(1) and (2). The P/T-morphism n : (R, Mg) — (PNa, Mz) is called comatch of
the transformation step.

(L, M) <

(Kv MK) "o (Rv MR)
m (1) c (2) n
\ \ \
(PNI’M1)<Z* (PN07M0) 7A*>(.P]\/v2,.2\42)

Now we are able to define reconfigurable P/T-systems, which allow modifying
the net structure using rules and net transformations of P/T-systems.
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Definition 5 (Reconfigurable P/T-Systems)
Given a P/T-system (PN, M) and a set of rules RULES, a reconfigurable P/T-
system is defined by (PN, M), RULES).

Examples of rule applications and of a reconfigurable P/T-system can be found
in Section

4 Independence of Net Transformations and Token Firing

In this section we analyze under which conditions net transformations and to-
ken firing of a reconfigurable P/T-system as introduced in Section B can be
executed in arbitrary order. These conditions are called (co-)parallel and se-
quential independence. Note that independence conditions for two firing steps
of P/T-systems are well-known and independence of two transformation steps is
analyzed already for high-level replacement systems with applications to Petri
net transformations in [I7]. We start with the situation where a transformation
step and a firing step are applied to the same P/T-system. This leads to the
notion of parallel independence.

Definition 6 (Parallel Independence)
A transformation step (PNy, My) prodygn (PNa, M) of P/T-systems and a firing
step (PNy, M) 4, (PNy, Mj) for ty € Ty are called parallel independent if

(1) ty is not deleted by the transformation step and
(2) Mr(p) < M{(m(p)) for all p € P, with (L, M) = LHS(prod).

Parallel independence allows the execution of the transformation step and the
firing step in arbitrary order leading to the same P /T-system.

Theorem 1 (Parallel Independence). Given parallel independent steps
(PNy, My) P24 (PNy, M) and (PNy, My) 2 (PNy, M]) with t; € Ty then
there is a corresponding to € Ty with firing step (P Ny, Ms) L2, (PNy, M}) and
a transformation step (PNy, M) prodym’ (PNa, M) with the same marking MJ.

(PNy, My)

(PNo, M) (PNy, M)

%

(PN27 Mé)

/X

Remark 2. Cond. (1) in Def. [fis needed to fire to in (PN2, M3), and Cond. (2) in
Def. [Blis needed to have a valid match m’ in (PN, M7). Note that m/(z) = m(x)
forall x € P, UTy.
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Proof. Parallel independence implies that ¢; € T} is preserved by the transfor-

prod,m

mation step (PNy, My) "= (PNa, Ms). Hence there is a unique ¢y € Ty with
I*(to) = t1. Let to = r*(tp) € Tz in the following pushouts (1) and (2), where [*
and r* are strict.

(LuML) = (K7 MK) i (Rv MR)
m (1) (2) n
\ \ \
(PNI’M1)<Z* (PN07M0) 7A*>(.P]\/v2,.2\42)

Now ¢; being enabled under M; in PN; implies prei(t1) < M;. Moreover,
I* and r* strict implies preg(to) < My and pres(ta) < Ms. Hence to is enabled
under M5 in PNy and we define MY = My & pres(ta) @ posta(ta).

Now we consider the second transformation step, with m’ defined by m/(z) =
m(x) for x € P, UTy,.

(L,ML)< (K,MK) " >(R,MR)

m’ (1) (2" n’
\ \ \
(PNy, M) <l*’ (PNg, M) T*/> (PNy, M)

m’ is a P/T-morphism if for all p € Py, we have

(a) Myp(p) < Mi(m/(p)),
and the match m’ is applicable at M7, if

(b) IPUDP C GP and for all p € P, \ I(Pg) we have My (p) = M{(m(p)) (see
gluing condition in Def. ().

Cond. (a) is given by Cond. (2) in Def. [6l because we assume that (PNy, M)

PO PNy, My) and (PN, M) -2 (PNy, M}) with ¢, € Ty are parallel inde-
pendent. Moreover, the match m being applicable at M; implies IPUDP C GP
and for all p € Pp \ I[(Pg) we have M (p) = M1(m(p)) = M{(m ( )) by Lemma

[ below using the fact that there is a firing step (PNy, M;) — (PNy, My).
The application of prod along m’ leads to the P/T-system (PN, MY), where
(x) = I*(x), r(x) = r*(x) for all x € Py UTp, and n*(z) = n*(z) for all
x € PRUTR.

Finally, it remains to show that M) = MJ. By construction of the transfor-

prod,m

mation steps (PN1, My) "™ (PNy, My) and (PNy, M]) 22" (PNy, MY) we

have

(1) for all pg € Py: Ma(r* (p )) Mo(po) = My(I*(po)),

(2) for all p € Pp\ 7(Pk): Ma(n(p)) = Mg(p),

(3) for all po € Po: MY (r*(po)) = M{(po) = M{(I*(po)) and
(4) for all p € P\ r(Pk): My (n'(p)) = Mgr(p).

/—\
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By construction of the firing steps (PNy, M) 4 (PNy, My) and (PN, Ms)
L2, (PNay, M}) we have

(5) for all p; € Pi: M{(p1) = My(p1) © prei(t1)(p1) @ posti(t1)(p1) and
(6) for all pgy € Po: My(p2) = Ma(p2) © prea(ta)(p2) ® posta(tz)(p2)-

Moreover, [ and r* strict implies the injectivity of [* and r* and we have

(7) for all pg € Po: preg(to)(po) = pre1(t1)(I*(po)) = prea(te)(r*(po)) and
posto(to)(po) = posti(t1)(I*(po)) = posta(t2)(r*(po))-

To show that this implies
(8) My = My,
it is sufficient to show

(8a) for all p € Pr\ r(Pk): M§(n'(p)) = Mi(n(p)) and
(8b) for all pg € Po: M3 (r*(po)) = M5(r* (po))-

First we show that condition (8a) is satisfied. For all p € Pg \ r(Pk) we have

4) ©) (©)
M3 (n/(p)) = Mr(p) = Ma(n(p)) = My(n(p))
because n(p) is neither in the pre domain nor in the post domain of ¢s, which
are in *(Py) because to is not created by the rule (see Lemmal[ll applied to the
inverse rule prod—1).
Next we show that condition (8b) is satisfied. For all pg € Py we have

5

MP(r*(po) 2 M)
2 M
(

5

(:) M (I* (po
1) and (7
():()M 2o

o(r*
(i) Mé r*(po

S

)
) © prea(t1) (" (po)) @ posty(t1) (1" (po))
) © prea(t2)(r*(po)) & posta(t2)(r” (po))
)

It remains to show Lemma [I] which is used in the proof of Theorem [l

Lemma 1. For all p € P, \ [(Px) we have m(p) & dom(t1), where dom(ty) is
union of pre- and post domain of t1, and ty is not deleted.

Proof. Assume m(p) € dom(ty).

Case 1 (t; = m(t) for ¢ € T1): t1 not being deleted implies ¢ € I(Tk). Hence
there exists p’ € dom(t) C I(Pk), such that m(p’) = m(p); but this is a
contradiction to p € Pr \l(Px) and the fact that m cannot identify elements
of l(PK) and PL \Z(PK)
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(PNg, M§/) (PNg, M4/")

Select Building

zzzzzz

eeeee

Matching Matching

Fig. 4. P/T-systems (PN2, M5') and (PN2, M3")

Case 2 (t1 € m(TL)): m(p) € dom(t1) implies by the gluing condition in Def.
Bl that p € I(Pk), but this is a contradiction to p € Pr, \ I(Pk).

Ezample 2. The firing step (PN, M) Select Byilding (PNy, M]) (see Fig.[I) and

the transformation step (PNp, M;) prodigo (PNa, Ms) (see Fig. ) are par-
allel independent because the transition Select Building is not deleted by the
transformation step and the marking M7, is empty. Thus, the firing step can be
postponed after the transformation step or, vice versa, the rule prod;oyow can
be applied after token firing yielding the same result (PN, M}) in Fig.

In contrast the firing step (PNy, M7) Go to Desgination (PNy, M{") (see Fig. )

and the transformation step (PN, M7) Prodigio (PNo, MY}) (see Fig.B) are not
parallel independent because the transition Go to Destination is deleted and
afterwards reconstructed by the transformation step (it is not included in the
interface K). In fact, the new transition Go to Destination in (PN, M}) could
be fired leading to (PN2, M}) (see Fig. M) and vice versa we could fire Go to
Destination in (PNy, M{) and then apply prodyoiow leading to (PNa, MJ') (see
Fig. @), but we would have MY £ MJ'.

In the first diagram in Theorem [Il we have required that the upper pair of steps
is parallel independent leading to the lower pair of steps. Now we consider the
situations that the left, right or lower pair of steps are given - with a suitable
notion of independence - such that the right, left and upper part of steps can be
constructed, respectively.
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Definition 7 (Sequential and Coparallel Independence). In the following
diagram with LHS(prod) = (L, Mp), RHS(prod) = (R, Mg), m and m’ are
matches and n and n' are comatches of the transformation steps with m(x) =
m/(x) for x € P, UTy and n(z) =n'(z) for x € PrUTg, we say that

(PNy, My)
(prod,m,n \
(PN2, M>) (PNy, M)
x %m'm')
(PN27 Mé)

1. the left pair of steps, short ((prod,m,n),ts), is sequentially independent if
(a) to is not created by the transformation step
(b) Mr(p) < Mj(n(p)) for allp € Pr

2. the right pair of steps, short (t1,(prod,m’,n’)), is sequentially independent
if
(a) t1 is not deleted by the transformation step
(b) My (p) < Mi(m/(p)) for allp € P,

3. the lower pair of steps, short (ta, (prod,m’,n’)), is coparallel independent if
(a) to is not created by the transformation step
(b) M(p) < Ma(n'(p)) for all p € Pr

Example 3. The pair of steps (Select Building, (prodsoiiow, m’,n')) depicted in
Fig. [ is sequentially independent because the transition Select Building is not
deleted by the transformation step and the marking My, is empty. Analogously,
the pair of steps ((prodsoiow, m,n), Select Building) depicted in Fig. [flis sequen-
tially independent because the transition Select Building is not created by the
transformation step and the marking Mpg is empty. For the same reason the pair
(Select Building,(prodfoiiow, m’,n')) is coparallel independent.

Remark 3. Note that for prod = ((L, Mp) & (K,Mg) = (R, Mg)) we have

r l

prod~! = ((R,Mg) <« (K,Mg) — (L,Mp)) and each direct transformation

(PN, M) Brog (PN3, Ms) with match m, comatch n and pushout diagrams (1)

—1
and (2) as given in Def. [ leads to a direct transformation (PNs, M>) prod,

(PN1, M;) with match n and comatch m by interchanging pushout diagrams
(1) and (2).
Given a firing step (PNy, M) - (PNy, M) with M| = M; © prei(t1) @
—1
posty(t1) we can formally define an inverse firing step (PNy, M7) b, (PNy, M)
with My = M] © posty(t1) & prei(t1) if posti(t1) < Mj{, such that firing and
inverse firing are inverse to each other.
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Matching Matching Matching

Fig. 5. Pair of steps (Select Building, (prodsoiiow, m',n’))

Formally all the notions of independence in Def. [ can be traced back to
parallel independence using inverse transformation steps based on (prod=1,n,m)
and (prod—1,n’,m’) and inverse firing steps tfl and t5 ! in the following diagram.

(PNy, M)
(prod,m,n t1
prod™"n,m) t!
(PN2, M3) (PNy, My)

ts (prod,m’,n’

A

£ Frod1 ! m')

(PN27 MQ)

N

1. ((prod,m,n),t3) is sequentially independent iff ((prod—1,n,m), t3) is parallel
independent.

2. (t1, (prod,m’,n’)) is sequentially independent iff ((prod,m’,n’),t;") is par-
allel independent.

3. (ta, (prod,m’,n’)) is coparallel independent iff ((prod—",n’,m’),t; ") is par-
allel independent.

Now we are able to extend Theorem [l on parallel independence showing that

resulting steps in the first diagram of Theorem [l are sequentially and coparallel
independent.

Theorem 2 (Parallel and Sequential Independence). In Theorem[d, where
we start with parallel independence of the upper steps in the following diagram with
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matchm and comatchn, we have in addition the following sequential and coparallel
independence in the following diagram:

(PNl,Ml)
(PNo, M) (PNy, M)
X prod,m’,n’)
(PN27M5)

1. The left pair of steps, short ((prod,m,n),ts), is sequentially independent.
2. The right pair of steps, short (t1, (prod,m’,n’)), is sequentially independent.
3. The lower pair of steps, short (ta, (prod,m’,n’)), is coparallel independent.

Proof. We use the proof of Theorem [

1. (a) to is not created because it corresponds to t; € Ty which is not deleted.
(b) We have Mg(p) < Mj(n(p)) for all p € Pgr by construction of the
pushout (2') with M} = M.
(a) tp is not deleted by the assumption of parallel independence.
(b) Mr(p) < Mi(m(p)) for all p € P, by pushout (1).
3. (a) to is not created as shown in the proof of 1. (a).
(b) Mg(p) < Ma(n(p)) for all p € Pg by pushout (2).

(PNg, Mg) (PNgy, Mj)

Select Building Select Building

Select
prodyoliow Zoomon Building Zoomon

E—— E—

eeeeee

Fig. 6. Pair of steps ((prodysoiiow, m,n), Select Building)
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In Theorem[Plwe have shown that parallel independence implies sequential and
coparallel independence. Now we show vice versa that sequential (coparallel) inde-
pendence implies parallel and coparallel (parallel and sequential) independence.

Theorem 3 (Sequential and (Co-)Parallel Independence)

1. Given the left sequentially independent steps in diagram (1) then also the
right steps exist, s.t. the upper (right, lower) pair is parallel (sequentially,
coparallel) independent.

2. Given the right sequentially independent steps in diagram (1) then also the
left steps exist, s.t. the upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in diagram (1) then also the
upper steps exist, s.t. the upper (left,right) pair is parallel (sequentially, se-
quentially) independent.

(PNy, M)

L

(PNay, My) (1) (PN, M7)

/X

to prod,m’,n’)

(PN2, Mj)

Proof 1. Using Remark B left sequential independence in (1) corresponds to
parallel independence in (2). Applying Theorem [Il and Theorem ] to the left
pair in (2) we obtain the right pair such that the upper and lower pairs are
sequentially and the right pair coparallel independent. This implies by Remark[3]
that the upper (right, lower) pairs in (1) are parallel (sequentially, coparallel)
independent.

(PNy, M)

(pro% \

(PNQ,MQ) (2) (PNl,M{)

x p’r’Odil,'n/,m/)

(PN2, Mj)

The proofs of items 2. and 3. are analogous to the proof of 1.

5 General Framework of Net Transformations

In [23], we have introduced the paradigm ”nets and rules as tokens” using a
high-level model with suitable data type part. This model called algebraic higher-
order (AHO) system (instead of high-level net and replacement system as in [23])
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exploits some form of control not only on rule application but also on token firing.
In general an AHO-system is defined by an algebraic high-level net with system
places and rule places as for example shown in Fig. [[l where the marking is given
by a suitable P/T-system resp. rule on these places. For a detailed description of
the data type part, i.e. the AHO-SYSTEM-signature and corresponding algebra
A, we refer to [23].

In the following we review the behavior of AHO-systems according to [23].
With the symbol Var(t) we indicate the set of variables of a transition ¢, i.e.,
the set of all variables occurring in pre- and post domain and in the firing-
condition of ¢t. The marking M determines the distribution of P/T-systems and
rules in an AHO-system, which are elements of a given higher-order algebra A.
Intuitively, P/T-systems and rules can be moved along AHO-system arcs and can
be modified during the firing of transitions. The follower marking is computed
by the evaluation of net inscriptions in a variable assignment v : Var(t) — A.
The transition ¢ is enabled in a marking M, if and only if (¢, v) is consistent, that
is if the evaluation of the firing condition is fulfilled. Then the follower marking
after firing of transition ¢ is defined by removing tokens corresponding to the net
inscription in the pre domain of ¢ and adding tokens corresponding to the net
inscription in the post domain of ¢.

p1 : System po : Rules

token game n n transformation

t : Transitions —— (PN1,M1) |Jeoo-|™ :Mor <L> prodgoliow
cod m =n
enabled(n, t) =tt | fire(n, t) transform(r, m) applicable(r, m) = tt

(AHO-SYSTEM-SIG,A)

Fig. 7. Algebraic higher-order system

The transitions in the AHO-system in Fig. [1 realize on the one hand firing
steps and on the other hand transformation steps as indicated by the net in-
scriptions fire(n,t) and transform(r,m), respectively. The initial marking is
the reconfigurable P /T-system given in Section[Z] i.e. the P/T-system (PN, M)
given in Fig. [[lis on the place p1, while the marking of the place ps is given by
the rule prod fouew given in Fig.[21 To compute the follower marking of the P/T-
system we use the transition token game of the AHO-system. First the variable
n is assigned to the P/T-system (PNy, M7) and the variable ¢ to the transition
Select Building. Because this transition is enabled in the P/T-system, the firing
condition is fulfilled. Finally, due to the evaluation of the term fire(n,t) we
obtain the new P/T-system (PN, M7) (see Fig. [II).

For changing the structure of P/T-systems the transition transformation is
provided in Fig. [l Again, we have to give an assignment v for the variables
of the transition, i.e. variables n, m and r, where v(n) = (PN, Mi), v(m)
is a suitable match morphism and v(r) = prodyoiow. The firing condition cod
m = n ensures that the codomain of the match morphism is equal to (PNy, M),
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while the second condition applicable(r, m) checks the gluing condition, i.e. if
the rule prodyonow is applicable with match m. Afterwards, the transformation
step depicted in Fig. [2] is computed by the evaluation of the net inscription
transform(r,m) and the effect of firing the transition transformation is the
removal of the P/T-system (PN, My) from place p; in Fig. [ and adding the
P/T-system (PNa, Ms) to it. The pair (or sequence) of firing and transformation
steps discussed in the last sections is reflected by firing of the transitions one
after the other in our AHO-system. Thus, the results presented in this paper are
most important for the analysis of AHO-systems.

6 Conclusion

This paper continues our work on "nets and rules as tokens” [23] by transferring
the results of local Church-Rosser, which are well known for term rewriting and
graph transformations, to the consecutive evolution of a P/T-system by token
firing and rule applications. We have presented conditions for (co-)parallel and
sequential independence and we have shown that provided that these conditions
are satisfied, firing and transformation steps can be performed in any order,
yielding the same result. Moreover, we have correlated these conditions, i.e. that
parallel independence implies sequential independence and vice versa, sequential
(coparallel) independence implies parallel and coparallel (parallel and sequential)
independence. The advantage of the presented conditions is that they can be
checked syntactically and locally instead of semantically and globally. Thus,
they are also applicable in the case of complex reconfigurable P /T-systems.
Transformations of nets can be considered in various ways. Transformations
of Petri nets to another Petri net class (e.g. in [7[I0,[35]), to another modeling
technique or vice versa (e.g in [2LBL1526L[B3,[014]) are well examined and have
yielded many important results. Transformation of one net into another without
changing the net class is often used for purposes of forming a hierarchy, in terms
of reductions or abstraction (e.g. in [22[I62012/]]) or transformations are used
to detect specific properties of nets (e.g. in [3l[4L[6,29]). Net transformations that
aim directly at changing the net in arbitrary ways as known from graph trans-
formations were developed as a special case of high-level replacement systems
e.g. in [I7]. The general approach can be restricted to transformations that pre-
serve specific properties as safety or liveness (see [30,[32]). Closely related are
those approaches that propose changing nets in specific ways in order to pre-
serve specific semantic properties, as equivalent (I/O-) behavior (e.g in [IL11]),
invariants (e.g. in [I3]) or liveness (e.g. in [19,[37]). Related are also those ap-
proaches that follow the "nets as tokens”-paradigm, based on elementary object
nets introduced in [36]. Mobile object net systems [24,21] are an algebraic for-
malization of the elementary object nets that are closely related to our approach.
In both cases the data types, respectively the colors represent the nets that are
the token nets. Our approach goes beyond those approaches as we additionally
have rules as tokens, and transformations of nets as operations. In [24] con-
currency aspects between token nets have been investigated, but naturally not
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concerning net transformations. In [27] rewriting of Petri nets in terms of graph
grammars are used for the reconfiguration of nets as well, but this approach
lacks the "nets as tokens”-paradigm.

In this paper we present main results of a line of research] concerning for-
mal modeling and analysis of workflows in mobile ad-hoc networks. So, there
is a large amount of most interesting and relevant open questions directly re-
lated to the work presented here. While a firing step and a transformation step
that are parallel independent can be applied in any order, an aspect of future
work is under which conditions they can be applied in parallel leading to the
notions of parallel steps. Vice versa a parallel step should be splitted into the
corresponding firing and transformation steps. This problem is closely related
to the Parallelism Theorem for high-level replacement systems [I7] which is the
basis of a shift construction for transformation sequences. Moreover, it is most
interesting to transfer further results which are already valid for high-level re-
placement systems, e.g. confluence, termination and critical pairs [I7]. We plan
to develop a tool for our approach using the graph transformation engine AG
as a tool for the analysis of transformation properties like independence and ter-
mination, meanwhile the token net properties could be analyzed using the Petri
Net Kernel [25], a tool infrastructure for Petri nets different net classes.
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Abstract. Current algorithms for the automatic verification of Petri nets suffer
from the explosion caused by the high dimensionality of the state spaces of prac-
tical examples. In this paper, we develop an abstract interpretation based analysis
that reduces the dimensionality of state spaces that are explored during verifica-
tion. In our approach, the dimensionality is reduced by trying to gather places
that may not be important for the property to establish. If the abstraction that is
obtained is too coarse, an automatic refinement is performed and a more precise
abstraction is obtained. The refinement is computed by taking into account infor-
mation about the inconclusive analysis. The process is iterated until the property
is proved to be true or false.

1 Introduction

Petri nets (and their monotonic extensions) are well-adapted tools for modeling con-
current and infinite state systems like, for instance, parameterized systems [1]. Even
though their state space is infinite, several interesting problems are decidable on Petri
nets. The seminal work of Karp and Miller [2] shows that, for Petri nets, an effective
representation of the downward closure of the set of reachable markings, the so-called
coverability set, is constructible. This coverability set is the main tool needed to decide
several interesting problems and in particular the coverability problem. The coverability
problem asks: “given a Petri net N, an initial marking m( and a marking m, is there a
marking m/’ reachable from mq which is greater or equal to m”. The coverability prob-
lem was shown decidable in the nineties for the larger class of well-structured transition
systems [3, [4]]. That class of transition systems includes a large number of interesting
infinite state models including Petri nets and their monotonic extensions.

A large number of works have been devoted to the study of efficient techniques for
the automatic verification of coverability properties of infinite state Petri nets, see for
example [3} [6] [7, 8]. Forward and backward algorithms are now available and have
been implemented to show their practical relevance. All those methods manipulate,
somehow or other, infinite sets of markings. Sets of markings are subsets of IN* where
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IN is the set of positive integers and k£ is the number of places in the Petri net. We call
k its dimension. When k becomes large the above mentioned methods suffer from the
dimensionality problem: the sets that have to be handled have large representations that
make them hard to manipulate efficiently.

In this paper, we develop an automatic abstraction technique that attacks the dimen-
sionality problem. To illustrate our method, let us consider the Petri net of Fig.[I(a). This
Petri net describes abstractly a system that spawns an arbitrary number of processes
running in parallel. There are two independent critical sections in the system that corre-
spond to places py, p5 and to places pg, pg. One may be interested in proving that mutual
exclusion is ensured between py and ps. That mutual exclusion property is local to a
small part of the net, and it is intuitively clear that the places pg, p7, Ps, P9, P10, P11, P12
are irrelevant to prove mutual exclusion between py4 and ps. Hence, the property can
be proved with an abstraction of the Petri net as shown in Fig. [[(b) where the places
{p1,ps, 7, P8, P9, P10, P11, P12} are not distinguished and merged into a single place
p’. However, the current methods for solving coverability, when given the Petri net of
Fig. [a) will consider the entire net and manipulate subsets of IN'2. Our method will
automatically consider sets of lower dimensionality: in this case subsets of IN®.

@ {te,ts} ®

Fig. 1. A Petri net with two distinct mutual exclusion properties (a) and its abstraction (b)

Our algorithm is based on two main ingredients: abstract interpretation and auto-
matic refinement. Abstract interpretation is a well-established technique to define,
in a systematic way, abstractions of semantics. In our case, we will use the notion of
Galois insertion to relate formally subsets in IN* with their abstract representation in
IN* with &' < k. This Galois insertion allows us to systematically design an abstract
semantics that leads to efficient semi-algorithms to solve the coverability problem by
manipulating lower dimensional sets. We will actually show that the original cover-
ability problem reduces to a coverability problem of lower dimensionality and so our
algorithm can reuse efficient implementations for the forward and backward analysis
of those abstractions. When the abstract interpretation is inconclusive, because it is not
precise enough, our algorithm automatically refines the abstract domain. This refine-
ment ensures that the next analysis will be more precise and that the abstract analysis
will eventually be precise enough to decide the problem. The abstraction technique that
we consider here uses all the information that has been computed by previous steps
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and is quite different from the technique known as counterexample guided abstraction
refinement [9)].

We have implemented our automatic abstraction technique and we have evaluated
our new algorithm on several interesting examples of infinite state Petri nets taken from
the literature. It turns out that our technique finds low dimensional systems that are
sufficiently precise abstractions to establish the correctness of complex systems. We
also have run our algorithm on finite state models of well-known mutual exclusion
protocols. On those, the reduction in dimension is less spectacular but our algorithm
still finds simplifications that would be very hard to find by hand.

To the best of our knowledge, this work is the first that tries to automatically abstract
Petri nets by lowering their dimensionality and which provide an automatic refinement
when the analysis is not conclusive. In [10], the authors provide syntactical criterion to
simplify Petri nets while our technique is based on semantics. Our technique provides
automatically much coarser abstractions than the one we could obtain by applying rules
in [10].

Due to the lack of space the omitted proofs can be found in a technical report avail-
ableathttp://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries and Outline

We start this section by recalling Petri nets, their semantics and the coverability prob-
lem. Then, we recall the main properties of existing algorithms to solve this coverability
problem. We end the section by giving an outline of our new algorithm.

Petri Nets and Their (Concrete) Semantics. In the rest of the paper our model of
computation is given by the Petri net formalism. Given a set S we denote by |S| its
cardinality.

Definition 1 (Petri nets). A Petri net N is given by a tuple (P, T, F, mq) where:

— P andT are finite disjoint sets of places and transitions respectively,

- F = (Z,0) are two mappings: T,O: P x T +— IN describing the relationship
between places and transitions. Once a linear order has been fixed on P and on
T, T and O can be seen as (|P|,|T|)-matrices over N (IN'PXIT1 for short). Let
t € T, Z(t) denote the t-column vector in IN'* of T.

— my Is the initial marking. A marking m € NPl is a column vector giving a number
m(p) of tokens for each place p € P.

Throughout the paper we will use the letter & to denote | P|, i.e. the dimensionality of
the net. We introduce the partial order <C IN* x IN* such that for all m,m’ € INF .
m < m/ iff m(i) < m/(i) for all ¢ € [1..k] (where [1..k] denotes the set {1,...,k}).
It turns out that < is a well-quasi order (wqo for short) on INF meaning that for any
infinite sequence of markings m, ma, ..., my, ... there exists indices ¢ < j such that
m; < mj.
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Definition 2 (Firing Rules of Petri net). Given a Petri net N = (P, T, F,mg) and
a marking m € IN* we say that the transition t is enabled ar m, written m(t), iff
Z(t) < m. If t is enabled at m then the firing of t at m leads to a marking m’, written
m(tym’, such that m’ = m — Z(t) + O(t).

Given a Petri net we are interested in the set of markings it can reach. To formalize the
set of reachable markings and variants of the reachability problem, we use the following
lattice and the following operations on sets of markings.

Definition 3. Let k € IN, the powerset lattice associated to IN® is the complete lattice
(p(]Nk), c,u,n, 0, ]Nk) having the powerset of IN* as a carrier, union and intersection
as least upper bound and greatest lower bound operations, respectively and the empty
set and INF as the C-minimal and C-maximal elements, respectively.

We use Church’s lambda notation (so that ' is AX. F'(X)) and use the composition
operator o on functions given by (f o g)(z) = f(g(x)). Also we define fi*! = fio f
and f = A\z.x. Sometimes we also use logical formulas. Given a logical formula v
we write [¢] for the set of its satisfying valuations.

Definition 4 (The predicate transformers pre, pre, and post). Let N a Petri net
given by (P, T, F,myg) and let t € T, we define pre y[t], pre y[t], post 5 [t]: p(INF) —
o(IN*) as follows,

prexlt] € AX. {m e IN* | 3m/: m’ € X Am(t)ym'}
pren[t] € AX. {m e IN* | Z(t) & m v m € prey[t](X)}
posty[t] L AX. {m/ € N* | Im:m e X Am(t)ym'} .

The extension to the set T of transitions is given by,

Iy = AX . User IN[EI(X) if fv is prey or post y
AX. Nier [N[EIX) for fn = prey.s

In the sequel when the Petri net IV is clear from the context we omit to mention N as
a subscript. Finally we recall a well-known result which is proved for instance in :
forany X,Y C IN* we have

post(X) CY & X C pre(Y) . (Ge)

All those predicate transformers are monotone functions over the complete lattice
(p(]Nk), c,u,n, (D,]Nk) so they can be used as building blocks to define fixpoints
expressions.

In p(IN*), upward-closed and downward-closed sets are particularly interesting and
are defined as follows. We define the operator | (resp. 1) as AX. {z/ € IN¥ | 3z: 2 €
XAz <a}@esp. AX. {o/ ¢ N* |3z: 2 € X Az < 2'}). Aset S is <-downward
closed (<-dc-set for short), respectively <-upward closed (<-uc-set for short),
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iff | S = S, respectively 1S = S. We define DCS(IN¥) (UCS(IN)) to be the set of
all <-dc-sets (<-uc-sets). Those closed sets have natural effective representations that
are based on the fact that < is a wqo. A set M C IN* is said to be canonical if for any
distinct , y € IN* we have = £ y. We say that M is a minor set of S C Nk if M C S
andVs e Sdm e M: m < s.

Lemma 1 ([13]). Given S C ]Nk, S has exactly one finite canonical minor set.

So, any <-uc-set can be represented by its finite set of minimal elements. Since any
<-dc-set is the complement of a <-upward-closed, it has an effective representation.
Sets of omega-markings is an equivalent alternative representation [2]].

We now formally state the coverability problem for Petri nets which corresponds to
a fixpoint checking problem. Our formulation follows [12]].

Problem 1. Given a Petri net N and a <-dc-set .S, we want to check if the inclusion
holds:

IfpAX. {mo} U post(X) C S (1)
which, by [[12, Thm. 4], is equivalent to
{mo} C gfpAX. S Npre(X) . 2)

We write post*(myg) and pre”(S) to be the fixpoints of relations (I)) and (@), respec-
tively. They are called the forward semantics and the backward semantics of the net.
Note also that since S is a <-dc-set, post*(mg) C S if and only if | (post*(mg)) C S.

Existing Algorithms. The solutions to problem[lfound in the literature (see [14} [13]])
iteratively compute finer overapproximations of | (post*(my)). They end up with an
overapproximation R satisfying the following properties:

posty(mg) CR (A1)
R € DCS(IN%) (A2)
postny(R) CR (A3)
posty(mg) TS —-RCS (A4)

The solutions of [14}[T3]] actually solve problem[Ilfor the entire class of well-structured
transition systems (WSTS for short) which includes Petri nets and many other interest-
ing infinite state models. In [2]] the authors show that | (post*(my)) is computable for
Petri nets and thus the approximation scheme presented above also encompasses this
solution. All these solutions have in input an effective representation for (1) the initial
marking my, (2) the predicate transformer post 5y associated to the Petri net N and (3)
the <-dc-set S.

In the literature, see for example [4]], there are also solutions which compute the set
pre” (S) by evaluating its associated fixpoint (see (@)). Since [4], this fixpoint is known
to be computable for WSTS and thus also for Petri net.!

! The fixpoint expression considered in [4] is actually different from (@) but coincides with its
complement.
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All these algorithms for Petri nets suffer from the explosion caused by the high dimen-
sionality of the state spaces of practical examples. In this paper, we develop an analysis
that reduces the dimensionality of state spaces that are explored during verification.

Overview of Our Approach. In order to mitigate the dimensionality problem, we
adopt the following strategy. First, we define a parametric abstract domain where sub-
sets of IN* are abstracted by subsets of IN* where k' < k (k' being a parameter). More
precisely, when each dimension in the concrete domain records the number of tokens
contained in each place of the Petri net, in the abstract domain, each dimension records
the sum of the number of tokens contained into a set of places. Using this abstract do-
main, we define abstract forward and abstract backward semantics, and define efficient
algorithms to compute them. In those semantics, sets of markings are represented by
subsets of ]Nk/. If the abstract semantics is not conclusive, it is refined automatically
using a refinement procedure that is guided by the inconclusive abstract semantics.
During the refinement steps, we identify important concrete sets and refine the current
abstract domain to allow the exact representation of those sets.

The rest of our paper formalizes those ideas and is organized as follows. In Sect. 3,
we define our parametric abstract domain and we specify the abstract semantics. We
also show how the precision of different domains of the family can be related. In Sect. 4,
we define an efficient way to overapproximate the abstract semantics defined in Sect. 3.
In Section 5 shows how to refine automatically abstract domains. We define there an
algorithm that given a concrete set M computes the coarsest abstract domain that is
able to represent M exactly. In Sect. 6, we put all those results together to obtain our
algorithm that decides coverability by successive approximations and refinements. In
Sect. 7, we report on experiments that show the practical interest of our new algorithm.

3 Abstraction of Sets of Markings

Partitions. At the basis of our abstraction technique are the partitions (of the set of
places).

Definition 5. Let A be a partition of the set [1..k] into k' classes {Ci}icp.i). We
define the order = over partitions as follows: A < A" iff VC € A3C' e A’: C C (.
It is well known, see [[[G], that the set of partitions of [1..k] together with < form a
complete lattice where {{1},...,{k}} is the <-minimal partition, {{1,...,k}} is the
=<-maximal partition and the greatest lower bound of two partitions Ay and As, noted
Ay N Ay is the partition given by {C' | 3C1 € A1 3C5 € Ag: C=C1NCy AC # (0}
The least upper bound of two partitions A1 and As, noted A1 Y As is the finest partition
such that given C' € Ay U Ay and {a1,a2} C C we have 3C" € A1 Y Az: {a1,a2} C
.

Partitions will be used to abstract sets of markings by lowering their dimensionality.
Given a marking m (viz. a k-uple) and a partition A of [1..k] into &’ classes we abstract
m into a k’-uple m’ by taking the sum of all the coordinates of each class. A sim-
ple way to apply the abstraction on a marking m is done by computing the product of a
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matrix A with the vector of m (noted A-m). So we introduce a matrix based definition
for partitions.

Definition 6. Let A be a partition of [1..k] given by {C;}ic[1..1). We associate to this
partition a matrix A 1= (a;j)w xk sSuch that a;; = 1if j € C;, a;; = 0 otherwise.
So, A € {0,1}¥ %k We write A¥'** to denote the set of matrices associated to the
partitions of [1..k] into k' classes.

We sometimes call such a A an abstraction.

Abstract Semantics. We are now equipped to define an abstraction technique for sets
of markings. Then we focus on the abstraction of the predicate transformers involved
in the fixpoints of (1) and @).

Definition 7. Ler A € A¥** we define the abstraction function os: p(INF) —
p(]Nk/) and the concretization function v : p(IN*) — o(IN®) respectively as follows

aa CAX {Az|reX} AN {z|AreX]).

In the following, if A is clear from the context, we will write «v (resp. ) instead of
a (resp. v4). Given the posets (L, <) and (M,C) and the maps « € L — M,y €
M — L, we write (L, <) <_L» (M, C) if they form a Galois insertion [[I1]], that is

(03

Vee LVye M: a(x) Cy <z < y(y) and ooy = A\x. 2.

Proposition 1. Let A € A* **, we have (p(IN¥), ) <_%» (p(IN*), ©).

Proof. From Def.[]lit is clear that v and y are monotone functions.
Let X C N¥and YV C NV,

a(X)CY

c{Az|zeX}CY def.[]]
SVrizeX - AzeY

X C{z|AzeY}

= X CH(Y) def.[7

We now prove that & o v(Y') = Y. First, note that for all y € Y there exists x € vy(y). In
particular, given y € Y we define = € IN® such that for any i € [1..k’] all components
of class C; equals to 0 but one component which equals to y(4). It is routine to check
that A -z = y,ie. x € y(y).

aey(Y)=a{z|AzeY))
={Az|AxeY} def.[]
=Y by above O
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Given a Galois insertion, the theory of abstract interpretation [11]] provides us with a
theoretical framework to systematically derive approximate semantics. The concrete
forward semantics of a Petri net IV is given by posti (mg). Since we have a Galois
insertion, post’y; (mo) has a unique best approximation in the abstract domain. This
value is a(postyy (mo)).

Unfortunately, there is no general method to compute this approximation without
computing post’; (mg) first. So instead of trying to compute this abstract value, we
compute an overapproximation. Let F be an overapproximation of a(post} (mo)) and
let B be an overapproximation a(pre i (S)). The following lemma shows the usefulness
of such approximations.

Lemma 2. Given a Petri net N and a <-dc-set S we have
V(F) € S — postiy(mo) € §
{mo} € v(B) — posty(mo) € S

Abstract interpretation tells us that to compute an overapproximation of fixpoints
of a concrete function, we must first approximate this function by an abstract function
and compute the fixpoint of this abstract function in the abstract domain. Among the
abstractions of a function f is the most precise one. In [[[1] the authors show that, in the
context of a Galois insertion, themost precise approximation of f is unique and given by
a o f o~.So to approximate a(post i (mo)) and a(pre  (S)) we obtain the following
fixpoint expression in the abstract domain:

fpAX. a({mo} Upost(v(X)))  and  gfpAX.a(SNpre(v(X))) , ()

respectively. This definition naturally suggests to concretize the argument, then apply
f and finally to abstract its result. In practice applying this methodology leads to in-
efficient algorithms. Indeed the explicit computation of v is in general costly. In our
settings it happens that given an effective representation of M the effective representa-
tion of the set (M) could be exponentially larger. In fact, let A be a partition of [1..k]

given by {C;}ici.) and let o € IN", we have |y(i)| = [Licp. v (m(?(;:ll(z"il_l).
Section[lis devoted to the definition of the most precise approximation without explic-

itly evaluating ~.

Refinement. As mentioned in Sect. [2 our algorithm is based on the abstraction re-
finement paradigm. In that context, if the current abstraction A; is inconclusive we
refine it into an abstraction A;; which overapproximates sets of markings and predi-
cate transformers more precisely than A;. Here follows a result relating the precision of
abstractions with their underlying partitions.

Lemma 3. Ler A, A’ be two partitions of [1..k] such that A < A" and M C INF,
Ya o aa(M) Cyaroaa (M) .

So by refining partitions, we refine abstractions. We will see in Sect. 5] how to use this
result systematically in our algorithm and how to take into account previous computa-
tions when a refinement is done. The following result tells us that if two partitions are
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able to represent exactly a set then their /ub is also able to represent that set. So, for any
set M there is a coarsest partition which is able to represent it.

Lemma 4. Let A, A1, Ay be three partitions of [1..k] such that A = Ay Y Ay and
M C IN*, we have

o va, caa, (M) M .
lf{'YAQOOéAQ(M)gM then ya o ax(M) C M . )

Proof. First given an abstraction A, we define uy = v4 o ay. Let m € M and
m’ € pa({m}). We will show that there exists a finite sequence 4, ,pa,,,- - Ha,,
such that m' € pa, o pa,, o...opa, ({m})andVj € [1.n]:d; € [1..2]. Then we
will conclude that m’ € M by left hand side of (@).

It is well known that given a set .S, the set of partitions of .S coincides with the set of
equivalence classes in S. So we denote by = 4 the equivalence relation defined by the
partition A.

We thus get m’ € pa({m}) iff m’ is obtained from m by moving tokens inside the
equivalence classes of = 4. More precisely, let v € IN, and a, b two distinct elements of
[1..k] such that (@, b) €=, and two markings my, ma € IN* such that

mi(q) +v ifg=a
ma(q) =S mi(q) —v ifg=0b
m1(q) otherwise.

Intuitively the marking my is obtained from m, by moving v tokens from b into a. So,
since on one hand b and a belong to the same equivalence class and, on the other hand
ms and my contain an equal number of tokens we find that mg € 4 ({m1}).

Now we use the result of [16, Thm. 4.6] over the equivalence classes of a set. The

theorem states that (a, b) €= 4 iff there is a sequence of elements ¢y, . .., ¢,/ of [1..k]
such that

(ciycit1) €=a, or  (ci,Ciy1) €=a, %)
fori € [1.n' — 1] and @ = ¢1, b = ¢, From ¢y, . .., ¢,y we define a sequence of n'’

moves whose global effect is to move v tokens from b into a. So given my, the marking
obtained by applying this sequence of n’ moves is mo. Moreover, by eq. (3) we have
that each move of the sequence is defined inside an equivalence class of =4, or =4,.
Hence each move of the sequence can be done using operator j14, Or (i 4,.

Repeated application of the above reasoning shows that m’ is obtained by moving
tokens of m where moves are given by operators 14, and p4,. Formally this finite
sequence of MOVes fi4; , HA,, ;- - -, HA;, issuch that

Vje[ln]:ij €[1.2] and m' € pa, opa, o...opa, ({m}) .

i2

Finally, left hand side of () and monotonicity of i, , p14, shows that m’ € M. O
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4 Efficient Abstract Semantics

In this section, we show how to compute a precise overapproximation of the abstract
semantics efficiently without evaluating the concretization function . For that, we show
that to any Petri net N of dimensionality k and any abstraction A € A* ** we can
associate a Petri net N of dimensionality &’ whose concrete forward and backward
semantics gives precise overapproximations of the abstraction by A of the semantics of
N given by (@).

Abstract Net. In order to efficiently evaluate the best approximation of post y [t] and
pre [t] foreach t € T', without explicitly evaluating y, we associate for each IV and A
a Petri net N.

Definition 8. Let N be a Petrinet given by (P,T', F,my) and let A € ARk We define
the tuple (P, T, F, mg) where

- Pisaset of k' places (one for each class of the partition A),
- F'=(Z,0) is such that T YA Tanda® ¥ 4.0,

— g is given by A-my.
The tuple is a Petri net since ing € ]Nlpl, andf, Oe NUPHTD We denote by N this

Petri net.

To establish properties of the semantics of this abstract net (given in Prop.[2land Prop.[3]
below), we need the technical results:

Lemma 5. Let A € A¥** qnd X C IN*,

’YOJ,(X)ZLO'Y(X) and aol(X):loa(X) :

In the sequel we use the property that the abstraction function « is additive (i.e. a(A U
B) = a(A) U«a(B)) and that 7y is co-additive (i.e. y(AN B) = v(A) N ~(B)).

Forward Overapproximation. The next proposition states that the most precise ap-
proximation of the predicate transformer post ,; is given by the predicate transformer
post g, of the abstract net.

Proposition 2. Given a Petrinet N = (P, T, F,myg), A € A XE and N the Petri net
given by def.[8 we have
AX. a0 post o y(X) = AX. post (X)) .

Proof. Definition @ states that post 5 = AX. | J,cp post y[t](X). Thus, for t € T, we
show that o o post [t] o y(m) = post g[t](11). Then the additivity of a shows the
desired result.
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Foreacht € T, for each m € ]Nk/,

a o post n[t] o y(m)
= a o posty[t]({m | m € y(m)})

=a({m—Z(t) +O() | m € (i) NI(t) < m}) def.
= {A-(m—TI(t) + O)) | m € y(1h) AZ(t) < m} def.[7

={Am—-AZt)+ A O®F) | me~ym)ANI(t)<m}

={a(m)—AZ({t)+ A O@) | m € v(m) ANI(t) < m} def of o

={m—-AZ{t)+ A O®F) | m e ~v(m) NZ(t) < m} —
= {m—TZ(t) + O@) | m € v() AI(t) < m} def.
= {1 —Z(t) + O(t) [ {Z(t)} € | o v(m)} def of |
= {im —Z(t) + O() | {z<t>} Cvye ()} Lem. B
= {m—Z(t)+O(t) | a({Z(t)}) C | ()} —
={m—-Z(t)+0) |Z(t) < m} def. [
= post x [t](m) def. 2 0

The consequences of PropQlare twofold. First, it gives a way to compute a o post 5 © 7y
without computing explicitly  and second since post i, = « o post o v and N is a
Petri net we can use any state of the art tool to check whether post’ (o) € «(S) and

conclude, provided v o a(S) = 5, that y(post’ (mo)) C S, hence that post, (mg) €
S by Lem.

Backward Overapproximation. The backward semantics of each transition of the
abstract net is the best approximation of the backward semantics of each transitions
of the concrete net. However, the best abstraction of the predicate transformer pre 5
does not coincide with pre x as we will see later. To obtain those results, we need some
intermediary lemmas (i.e. Lem. [6] [l and [§)).

Lemma 6. Given a Petri net N = (P, T, F,mq) and A € A¥ ** we have

AX. a0 prey o y(X) = AX. preg(X) .
Proof. The proof is similar to the proof of Prop.2with O (resp. (5) replaced by 7 (resp.
7) and vice versa. O
Lemma 7. Given a Petrinet N = (P, T, F,mq) and a partition A = {C}}jen..1 of
[1.k], if 3i € [1.k]: Z(i,t) > 0 and {i} & A then a({m € IN* | Z(t) & m}) = N*.

Proof. Besides the hypothesis assume i € C; and consider [ € [1..k] such that | € C;
and [ # i. The set {m € IN* | Z(¢) & m} is a <-de-set given by the following formula:

\/ zp < I(p,t).
pE[L..k]
Z(p,t)>0
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We conclude from ¢ € [1..k] and Z(i,t) > O that [x; < Z(¢,t)]={(v1, -, Vi, ..., V) |
vi < Z(i,t)}, hence that o([z; < Z(i,1)]) = IN¥ by {i,I} C C; € A, and finally

that a([z; < Z(i,t)]) € a([V pen..k) zp < Z(p,t)]) by additivity of c. It follows that
Z(p,t)>0

a({m e N* | Z(t) £ m}) = a<uv§(euj.k]o zp < I(p,1)]) = NV, u

Lemma 8. Givena Petrinet N = (P, T, F,my), apartition A = {C}}jen..1 of [1..K]
and N the Petri net given by def.B if for any i € [1..k]: Z(i,t) > 0 implies {i} € A,
then a({m € N* | Z(t) ¢ m}) = {m e N¥' | Z(t) & m)}.

Proof
a({m e N* | Z(t) £ m})
={A-m|meN"AZ(t) £ m}) def. of
={A-m|meN"ANA-Z(t) £ A-m} hyp.
—{A-m|meNAZ(t) ¢ A-m} def. of 7
—{meN|3ImelN:m=A mAZ(t) £ m}
— {meN"|Z(t) ¢ m} tautology u|

We are now ready to state and prove that pre g [t] is the best approximation of pre y [t].
Proposition 3. Given a Petri net N = (P, T, F,mq), a partition A = {Cj}jcn1.x
of [1..k] and N the Petri net given by def.[8 we have

_ N* if3i € [1.K]: |Ci| > 1AT(i,t
AX. o prey[t] o y(X) = N if ZE.[ ¢l > (i,¢)>0

AX. preg[t](X) otherwise.

Proof
a o prey[t] o y(5)
= aoprey[t]({m € N* | m €~(5)})

— a({m | (Z(t) £ m) v (Z(0) < m Am — (1) + O(1) € 7(S)}) det. of e y ]
=a({m|Z#) £ mPHUa({m|Zt) <mAm—I(t)+O(t)€~(S))}) additivity of
=a({m | Z(t) £ m})Uao prey[t] o v(S) def of pre \ [t]
=a({m | Z(t) £ m}) U preg[t](9) by Lem.[d

We now consider two cases:
- Ji € [1.k]: Z(i,t) > 0 and {i} ¢ A. From Lemma[7] we conclude that o o
prey|t] o () = N¥
- Vi € [1..k]: Z(i,t) > 0 implies {i} € A. In this case we have
ae preylt] e 1(S) = {m e N* | Z(t) & m} Upreg[f)(S)  byLem.B
— e [11(S) def of e y 1
O
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Now, let us see how to approximate pre 5. We can do that by distributing @ over N as
shown below at the cost of an overapproximation:

afp(AX. a(S N prey o (X)) @

= gfp(AX.a(S 1 () pren(t] o ¥(X))) def of pre
teT

C gfp(AX.a(S)N [ aopreylt] e ¥(X))  a(ANB)Ca(d)Na(B)
teT

Thus, this weaker result for the backward semantics stems from the definition of
prey given by (),. prey[t] and the fact that a is not co-additive (i.e. a(A N B) #
a(A) Na(B)).

5 Abstraction Refinement

In the abstraction refinement paradigm, if the current abstraction A; is inconclusive it
is refined. A refinement step will then produce an abstraction A; 1 which overapproxi-
mates sets of markings and predicate transformers more precisely than A;.

We showed in Lem. [3 that if partition A refines A’ (i.e. A < A’) then A represents
sets of markings (and hence function over sets of markings) more precisely than A’.
Note also that the partition A where each class is a singleton (i.e. the <-minimal parti-
tion) we have 4 o a4 (S) = S for any set of markings S. Thus the loss of precision
stems from the classes of the partition which are not singleton.

With these intuitions in mind we will refine an abstraction A; into A;;1 by splitting
classes of A; which are not singleton. A first idea to refine abstraction A; is to split
a randomly chosen non singleton class of A;. This approach is complete since it will
eventually end up with the <-minimal partition which yields to a conclusive analysis
with certainty. However, we adopt a different strategy which consists in computing for
A,41 the coarsest partition refining A; and which is able to represent precisely a given
set of markings.

Now we present the algorithm refinement that given a set of markings M com-
putes the coarsest partition A which is able to represent M precisely. The algorithm
starts from the <-minimal partition then the algorithm chooses non-deterministically
two candidate classes and merge them in a unique class. If this new partition still rep-
resents M precisely, we iterate the procedure. Otherwise the algorithm tries choosing
different candidates. The algorithm is presented in Alg.[Il

Let A = {Ci}iep..i1) be a partition of [1..£], we define Ac, = {C;} U {{s} | s €
[1..k] A s ¢ C;}. We first prove the following lemma.

Lemma9. Let A = {C;}ic1..1) be a partition of [1..k], M C IN* we have:

yaeaa(M)CM & N yag, o aaq (M) S M .
CieA
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Algorithm 1. refinement

Input: M/ C IN¥

Output: a partition A of [1..k] such that y4 o axq(M) C M

Let Abe {{1},{2},...,{k}}:

while E'Ci,Cj cA: C; 7’5 Cj andyAciucj o aAciqu (M) C M do
1 Let €5, Cj € Asuch that C; # Cj and yac, e, © @ac,ue, (M) S M;
2 A= (AN{C;,CjH) U{C; UG}

The following two lemmas and the corollary state the correctness and the optimality of
Alg.[l

Lemma 10. Given M C ]Nk, the partition A returned by refinement(M ) is such that
YA © aA(M) =M.

Proof. Tnitially A = {{1},...,{k}} sova o aa(M) =M andsoy4 o ax(M) C M
which is an invariant maintained by the iteration following Lem. a

Lemma 11. Given M C IN* and A be the partition returned by refinement(M ). There
is no partition A’ with A < A’ and A # A’ such that v o ap (M) = M.

Proof. Suppose that such a partition A’ exists. Since A < A’, 3C;,C; € A3IC' €
A" (C; #C;) ANC;UC; C C'. We conclude from Lem.Qland var o aear (M) C M.

By monotonicity we have that Y., ¢, © Qac,uc, (M) € vag, © aa,, (M) C M.
Since M C Yac,ue, © @Ac,ue, (M) by Galois insertion, we conclude that Y., ¢, ©
QAc,uc;y (M) =M.

Hence, the condition of the while loop of the refinement algorithm is verified by A,
hence the algorithm should execute at least once the loop before termination and return
a partition A” such that A < A” and A # A”. O

Putting together Lem. @ and [Tl we get:

Corollary 1. Given M C IN®, the partition A returned by refinement(M) is the coars-
est partition such that v o aa(M) = M.

6 The Algorithm

The algorithm we propose is given in Alg. 2l Given a Petri net NV and a <-dc-set .S, the
Algorithm builds abstract nets N with smaller dimensionality than N (line[), analyses
them (lines [BF13), and refines them (line [[3) until it concludes. To analyse an abstrac-
tion N, the algorithm first uses a model-checker that answers the coverability problem
for N and the <-dc-set o;(S) using any algorithm proposed in [14]). Besides
an answer those algorithms return an overapproximation of the fixpoint post*N(n/z\o)
that satisfies A1—4. If the model-checker returns a positive answer then, following the
abstract interpretation theory, Algorithm 2] concludes that posty (mg) C S (line [6).
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Otherwise, Algorithm [ tries to decide if {mo} ¢ prey(S) checking the inclusion
given by (@) (line[0F13). The fixpoint of @) is computable ([4]) but practically difficult
to build for the net N and S. Hence, our algorithm only builds an overapproximation by
evaluating the fixpoint on the abstract net N instead of N, i.e. we evaluate the fixpoint
9fpAX. i (S)N(,er @i © prey[t] o (X)) whose concretization is an overapproxima-
tion of gfpAX. S N pre, (X). Since the abstractions N have a smaller dimensionality
than N, the greatest fixpoint can be evaluated more efficiently on N. Moreover, at the
ith iteration of the algorithm (7) we restrict the fixpoint to the overapproximation R;
of post’, (ai(mo)) computed at line 3 and (ii) we consider a;(Z;) instead of «;(S).
Point (¢) allows the algorithm to use the information given by the forward analysis
of the model-checker to obtain a smaller fixpoint, and point (i¢) is motivated by the
fact that at each step i we have gfpAX. a;(S) N R; N (), @i © prey[t] o v:(X) €
a;(Z;) C a;(S). That allows us consider a;(Z;) instead of «;(.S) without changing the
fixpoint, leading to a more efficient computation of it (see [4]] for more details). Those
optimisations are safe in the sense that the fixpoint we evaluate at line@ldoes not contain
a;(mo) implies that posty (mg) € S, hence its usefulness to detect negative instances
(line [I0).

If the algorithm cannot conclude, it refines the abstraction. The main property of
the refinement is that the sequences of Z/s computed at line [l is strictly decreas-
ing and converge in a finite number of steps to prey(S) N R where R is an in-
ductive overapproximation of post} (myp). Suppose that at step i, we have Z;11 =
pren (S)NR. Hence, yi+1 © a1 (pren (S)NR) = pren (S) NR. If postyy (mg) C S
then post’ (mo) C prey(S) N'R and the abstract interpretation theory guarantees
that post’ (@i+1(mo)) € i1 (prey (S) NR) C ait1(S), hence the model-checker
will return the answer OK at iteration ¢ + 1. Moreover, if posty (mo) € S then
{mo} & prey(S), hence {mo} € prey(S) N'R, and the algorithm will return KO
at step i + 1 because we have Z; ;1 = prey(S) N'R, hence {mo} € a;1(Ziy1) by
monotonicity of «v; 1 and Z;11 does not include {mg}. Again, we do not evaluate the
greatest fixpoint pre y (S) because the dimensionality of N is too high and the evalua-
tion is in general too costly in practice. Hence, we prefer to build overapproximations
that can be computed more efficiently.

We now formally prove that our algorithm is sound, complete and terminates.

Lemma 12. In Algorithm[2 for any value of i we have posty (mg) C vi(R;).

Proof. We conclude from condition Al that posty (mo) < R;, hence that
a;(posty (mp)) € R, by abstract interpretation and finally that posty (mo) C 7 (R;)

by ‘T—l» O

Proposition 4 (Soundness). If AlgorithmPlsays “OK” then we have post*(mg) C S.
Proof. 1f Algorithm says “OK” then

R: C «;(S)

= %i(Ri) € i o i (S) 7; is monotonic
=7 (R;)) C S Line2I3land Lem. 10l
= posty(mo) C S Lem.[12
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Algorithm 2. Algorithm for the coverability problem, assume {mg} C S
Data: A Petri net N = (P, T, F,my), a <-dc-set S

1 ZO =S

2 Ap = refinement(Zy)

3fori=0,1,2,3,... do

4 Abstract: Given A;, compute N given by def.[§l

Verify: (answer,R;) = Checker(myg, post 5, ;(.S))

5
6 if answer == OK then

7 return OK

8 else

9 LetS; = gfpAX. Ozi(Zi) NR; mﬂtETai 0]5\7”/61\[[15] O'Yi(X)
10 if my € S; then

1 return KO

12 end

13 end

14 Let Ziyy = Z;Nyi(Ri) Noprey (7i(Si))

15 Refine: Let A;y; = A; A refinement(Z;41)

16 end

We need intermediary results (Prop.[3] and Lem. [I3)) to establish the completeness of
Algorithm[2] The following result is about greatest fixpoints.

~

Proposition 5. Let S, R, R C IN* such that R C R, post(R) C R and post(ﬁ) CR.

afpAX. (SN RN pre(X)) = RN gfpAX. (SN RN pre(X)) .

Lemma 13. In Alg.Qif post’;(mqg) C S then for any i we have post’y,(mg) C Z;.
N N

Proof. The proof is by induction on <.

base case. Trivial since line[I] defines Z; to be .S.

inductive case. Line [0 shows that ~;(S;) overapproximates gfpAX.Z; Nvy;(R;) N
pre (X)), hence that Z; 11 2 gfpAX. Z; Nv;(R;) N pre (X)) by line[T4l

posty (mo) C Z hyp
= posty(mo) C gfpAX. Z; N pre 5 (X) def of post 3 (mo), (Ge) p.127]
= post iy (mo) C vi(Rs) N gfpAX. Z; N pre y(X) Lem.[12]
& posty(mo) C gfpAX. Zi Ni(Ri) Npren(X)  Prop.Bl post y (vi(Ri)) C 7i(Ri)
= posty(mo) C Z by above .

Proposition 6 (Completeness). If Alg.Qsays “KO” then we have posty (mg) C S.
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Proof. 1f Algorithm says “KO” then

o ¢ S,

== a(mo) g SZ def Of’ﬁl\o
< mo € vi(Si) <%—7»
& mo € vi(afpAX. i(Z) NRi N () o o pre[t] o 7i(X)) def of S;

teT
= mo € vi(gfpAX. ai(Zi) N © vi(Ri) N ﬂ a; o prey[t] o vi(X)) <—%
teT )
= mo € vi(gfpAX. ai(Zi Nv:(Ri) N prey (1:(X)))) a(N:) € Na(-)
= mo ¢ gfpAX. Zi N yi(Ri) N prey (X) —
< UIfpAX.mo U post(X) € Z; N vi(Rs) @ =0
= IfpAX.mo U post(X) € Z; Lem.[12
= IfpAX.mo U post(X) ¢ S Lem.[13]
O

Proposition 7 (Termination). Algorithm[2terminates.
Proof. Itis clear by line[[4] that we have
20221224 2 Zig1 2 -

Consider the sequence of Z;’s and assume that from index ¢ we have Z; 1 = Z;.

Ziv1 = Z; N yi(Ri) Npren (7:(Si)) def of Z; 41
= Ziv1 €S Ni(R:) Nprey(7:(S:)) ZiCZy=S
= Zit1 CSNv(Ri)Nprey(Z;) pre  is monotonic,y;(S;) C Z;
© Ziy1 € SNY(Ri) Nprey(Zitr) Ziv1=Zi
& Z; CSNy—1(Rjz1) Nprey(Z;) letj=i+1
= Z; C SN Z; C pren(Z;) glb
& Z; C S Aposty(Z;) C Z; (Go)
= a;j(Z;) C a;(S) Ny o postn(Z;) C aj(Z;) «; is monotonic
= a;(Z;) C 0 (S) Ao posty (v o o (Z;)) C o (Z;) line 15, Lem. 10
= a;(Z;) € a;(S) A post(a;(Z;)) € o;(Z;) Prop. 2

Then, either mg C «;(Z;) and so Thm. 4] shows that
IfpAX. Mo U post o (X) € a;(S)
= 7 (IfpAX. mo U post (X)) € v; o (S)
= 7 (IfpAX.mo U post (X)) € S by line 213 and Lem.[3]
and line [6] shows that the algorithm terminates. Or we have,
mo ¢ o;(Z;)
= 77/7;) 7@ Sj Sj - Oz]‘(Zj) by line

and line [I0] shows that the algorithm terminates.
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Table 1. Var: number of places of the Petri net; Cvar: number of places of the abstraction that al-
low to conclude; Ref: number of refinements before conclusion; time: execution time in seconds
on Intel Xeon 3Ghz

Example Var Cvar Ref time

ME 5 4 3 0.02
multiME 12 5 3 2.69
Unbounded PN FMS 22 4 3 830
CSM 14 9 4 11.78
mesh2x2 32 9 4 340

mesh3x2 52 9 4 3357
Example Var Cvar Ref time

lamport 11 9 4 8.50
Bounded PN
ounde dekker 16 15 4 602

peterson 14 12 5 21.5

Now we assume that the sequence of Z;’s strictly decreases, i.e. Z;;; C Z;. First
recall that the ordered set (C, DCS (IN®)) is a wgo. We conclude from A2, Lem.[3 <-
dc-set are closed to pre and N that for any value of i in Alg.Blwe have Z; € DCS(IN*).
However < defines a wqo and following [[14, Lem. 2] there is no infinite strictly decreas-
ing sequence of (C, DCS(IN®)), hence a contradiction. O

7 Experimental Results

We implemented Alg.2lin C using the symbolic data structure of to represent and
manipulate sets of markings. We used, for the model-checker referenced at line [3 the
algorithm of [13].

We tested our method against a large set of examples. The properties we consider
are mutual exclusions and the results we obtained are shown in Table[Il We distinguish
two kind of examples. Parameterized systems describe systems where we have a pa-
rameterized number of resources: ME [, Fig. 1], MultiME (Fig. [ of Sect.2), CSM
Fig. 76, page 154], FMS [19], the mesh 2x2 of Fig. 130, page 256] and its
extension to the 3x2 case. For all those infinite state Petri nets, the mutual exclusion
properties depend only on a small part of the nets.

The mesh 2x2 (resp. 3x2) examples corresponds to 4 (resp. 6) processors running in
parallel with a load balancing mechanism that allow tasks to move from one processor
to another. The mutual exclusion property says that one processor never processes two
tasks at the same time. That property is local to one processor and our algorithm builds
an abstraction where the behaviour of the processor we consider is exactly described
and the other places are totally abstracted into one place. In that case, we manipulate
subsets of IN? instead of subsets of IN*? for mesh 2x2 or IN*? for mesh 3x2.

For the other examples, we have a similar phenomenon: only a small part of the Petri
nets is relevant to prove the mutual exclusion property. The rest of the net describes



142 P. Ganty, J.-F. Raskin, and L.Van Begin

other aspects of the parameterized system and is abstracted by our algorithm. Hence, all
the parameterized systems are analysed building an abstract Petri net with few places.
The bounded Petri Net examples are classical algorithms to ensure mutual exclusion
of critical sections for two processes. In those cases, our method concludes building
very precise abstractions, i.e. only few places are merged. The reasons are twofold: (7)
the algorithms are completely dedicated to mutual exclusion, and (i) the nets have been
designed by hand in a “optimal” manner. However and quite surprisingly, we noticed
that our algorithm found for those examples places that can be merged. In our opinion,
this shows that our algorithm found reductions that are (too) difficult to find by hand.

Execution Times and Future Improvements. For all the examples we considered, the
execuion times of the checker on the abstract Petri nets that allows Algorithm[2]to
conclude are smaller than the execution times of the checker on the concrete Petri nets,
showing the interest of reducing the dimentionality of Petri nets before verification. For
instance, the execution time of the checker on the concrete Petri nets of the mesh2x2 is
1190 seconds, and the mesh3x2 is greater than 5 hours (on Intel Xeon 3Ghz). Hence,
for those examples Algorithm[2]is much more efficient than directly check the concrete
Petri net. We also noticed that our prototype spends most of its time in the refinement
step. We currently use a naive implementation of Algorithm [l that can be greatly im-
proved. As a consequence, some research effort are needed to define efficient techniques
leading to reasonable cost for refinement of Petri nets.
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Abstract. Asynchronous data communication mechanisms (ACMs)
have been extensively studied as data connectors between independently
timed concurrent processes. In previous work, an automatic ACM syn-
thesis method based on the generation of the reachability graph and the
theory of regions was proposed. In this paper, we propose a new synthe-
sis method based on the composition of Petri net modules, avoiding the
exploration of the reachability graph. The behavior of ACMs is formally
defined and correctness properties are specified in CTL. Model checking
is used to verify the correctness of the Petri net models. The algorithms
to generate the Petri net models are presented. Finally, a method to
automatically generate C++ source code from the Petri net model is
described.

Keywords: Asynchronous communication mechanisms, Petri nets, con-
current systems, synthesis, model checking, protocols.

1 Introduction

One of the most important issues when designing communication schemes be-
tween asynchronous processes is to ensure that such schemes allow as much
asynchrony as possible after satisfying design requirements on data. When the
size of computation networks becomes large, and the traffic between the process-
ing elements increases, this task becomes more difficult.

An Asynchronous Communication Mechanism (ACM) is a scheme which man-
ages the transfer of data between two processes, a producer (writer) and a con-
sumer (reader), not necessarily synchronized for the purpose of data transfer.
The general scheme of an ACM is shown in Figure[Il It includes a shared mem-
ory to hold the transferred data and control variables. In this work it is assumed
that the data being transferred consists of a stream of items of the same type,
and the writer and reader processes are single-threaded loops. At each iteration
a single data item is transferred to or from the ACM.

Classical semaphores can be configured to preserve the coherence of write and
read operations. However, this approach is not satisfactory when data items are
large and a minimum locking between the writer and the reader is expected [4].

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 144-{IG3] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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: ACM |
_ 1 [ Control | |
w ! variables| |
1
i [ Shared | !
| memory [
data ' _—----—-_. data

Fig. 1. ACM with shared memory and control variables

By using single-bit unidirectional variables, the synchronization control can
be reduced to the reading and writing of these variables by extremely simple
atomic actions [6]. Variables are said to be unidirectional when they can only
be modified by one of the processes. This provides the safest solution for a
maximum asynchrony between the writer and the reader. In particular, if the
setting, resetting and referencing of control variables can be regarded as atomic
events, the correctness of ACMs becomes easy to prove.

ACMs are classified according to their overwriting and re-reading policies [36].
Overwriting occurs when the ACM is full of data that has not been read before. In
this case the producer can overwrite some of the existing data items in the buffer.
Re-reading occurs when all data in the ACM has been read by the consumer. In
this case the consumer is allowed to re-read an existing item. Table[Ilshows such a
classification. BB stands for a bounded buffer that does not allow neither overwrit-
ing nor re-reading. RRBB stands for an ACM is that only allows re-reading. On the
other hand, the OWBB scheme allows only overwriting. Finally, the OWRRBB scheme
allows both re-reading and overwriting.

Table 1. Classification of ACMs

No re-reading Re-reading
No overwriting BB RRBB
Overwriting OWBB OWRRBB

The choice of using a particular class of ACM for a particular job is generally
based on data requirements and system timing restrictions [46]. For the re-reading
ACM class, it is more convenient to re-read the item from the previous cycle rather
than an item from several cycles before. For overwriting, the typical cases consist
of overwriting either the newest or the oldest item in the buffer [6[9/2]. Overwrit-
ing the newest item in the buffer [9] attempts to provide the reader with the best
continuity of data items for its next read. Continuity is one of the primary reasons
for having a buffer of significant size. Overwriting the oldest item is based on the
assumption that newer data is always more relevant than older.

1.1 ACM Example

Now consider an RRBB ACM with three data cells. The single-bit (boolean)
control variables r; and w;, with ¢ € {1,2,3}, are used to indicate which cell
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each process must access. Initially the reader is pointing at cell 0, 7o = 1 and
ry = ro = 0, and the writer to cell 1, wy; = 1 and wyg = wy = 0. The shared
memory is initialized with some data. This scheme is shown in Figure

w0=0
writer 4 wi=1

@ w2=0

cell0 cell 1 cell 2

(new data) (empty) (empty)
ﬁ ro=1
reader< r1=0
r2=0

Fig. 2. Execution of RRBB ACM with 3 cells

The writer always stores some data into the ACM and then attempts to
advance to the next cell releasing the new data. In this way, a possible trace for
the writer is (wrqwrowrowry ), where wr; denotes “write data on cell i”. A similar
behavior applies to the reader. A possible trace for the reader is (rdord;rdyrds).

In an RRBB ACM, no overwriting and allowing re-reading imply the following
behavior:

— The writer first accesses the shared memory and then advances to the next
cell, but only if the reader is not pointing at it.

— The reader first advances to the next cell if the writer is not there and then
performs the data transfer, otherwise it re-reads the current cell.

In general, and depending on how the read and write traces interleave, coher-
ence and freshness properties must be satisfied.

Coherence is related to mutual exclusion between the writer and the reader.
For example, a possible trace for this system is (wriwrardy - - - ). After the writer
executing twice, the next possible action for both processes is to access cell 0.
This introduces the problem of data coherence when the reader and the writer
are retrieving and storing data on the same memory locations.

Freshness is related to the fact that the last data record produced by the
writer must be available for the reader. On the ACMs studied in this work, the
reader always attempts to retrieve the oldest data stored in the shared memory
that has not been read before. This means that the freshness property imposes
a specific sequencing of data, i.e. the data is read in the same order that it is
written. Depending on the ACM class, some data may be read more than once
or may be missed. However, the sequence should be preserved. For the example
above, one possible trace is (wrirdowrerdird; ---). Note that at the moment
the reader executes the first rd; action, the writer has already executed a wrs.
This means that there is some new data on cell 2. But the reader is engaged to
execute rd; again, which violates freshness.
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With a correct interleaving both processes will avoid accessing the same data
cell at the same time, the writer will not be allowed to overwrite unread data,
and the reader will have the possibility of re-reading the most recent data only
when there is no unread data in the ACM. For the example above, a correct
trace is (wrirdordywrerdiwrordewry). Observe that the sub-trace rdjwrard;
does not contradict the fact that the reader only re-reads any data if there is no
new one available. This is because after the first rd; there is no new data, then
the reader prepares to re-read and from this point it will engage on a re-reading
regardless the actions of the writer.

Algorithm 1. RRBB ACM with 3 cells

Require: Boolean wo, w1, w2 Require: Boolean rg,r1, 72

Require: External Boolean rg, 71,72 Require: External Boolean wo, w1, w2
1: process writer() 1: process reader()

2 wi =15 wo = wa = 0; 2 ro:=1;7r1 =12 :=0;

3 loop 3 loop

4 if wo =1A7r1 =0 then 4 if ro =1 Aw; =0 then

5: write cell 1; 5: ro:=0;r =1

6: wo = 0; wy := 1 6: read cell 1;

7 else if w1 = 1A 72 =0 then 7 else if /o = 1 Aw; = 1 then
8 8

: write cell 2; : read cell 0;
9: wi = 0; wa 1= 1; 9: else if r1 =1 A w2 =0 then
10: else if wa = 1A 719 =0 then 10: r1:=0;r2:=1;
11: write cell 0; 11: read cell 2;
12: wa = 0; wo = 1; 12: else if 1o = 1 Awy =1 then
13: else 13: read cell 1;
14: wait until some r; is modified;  14: else if ro = 1 A wp =0 then
15: end if 15: ro = 0; ro :=1;
16: end loop 16: read cell 0;
17: end process 17: else if ro = 1 A wp =1 then
18: read cell 2;
19: end if

20:  end loop
21: end process

A possible implementation of the example above is described in Algorithm [I1
The writer is shown on the left side and the reader on the right. Each process
consists of an infinite loop. This is just a simple abstraction of the real behavior
of a process, in which the ACM operations are combined with the data processing
actions. At each ACM operation:

— The writer first writes to the shared memory and then tries to advance to
the next cell by modifying its control variable w, if this is contradictory to
the current values of the reader’s control variable r, the writer waits. Note
that when the writer is waiting, the data item just written into the ACM is
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not available for the reader to read because the writer has not yet completed
its move to the next cell.

— The reader first tries to advance to the next cell by modifying its control
variable r, if this is contradictory to the current values of the writer’s control
variable w, no modification to r occurs, in either case (with or without
successfully advancing) the reader then reads (or rereads) from cell r. Note
that cell » cannot be accessed by the writer, even if its content has already
been read by the reader.

In other words, at any time, each of the writer and reader processes “owns” a
cell, and for data coherence purposes any cell can only “belong to” one of these
processes at any time. Furthermore, since only binary control variables are used,
the size of this description grows with the size of the ACM. This means that
more variables are needed, and for overwriting ACM classes it is more difficult
to correctly deal with all of them.

In the rest of this paper, a Petri net based method for the automatic synthesis
of ACMs is presented. The method receives as input a functional specification
consisting of the ACM class that should be implemented by the ACM and the
number of cells it should have. As output, it produces the source code imple-
menting the operations with the ACM. The implementation can be either in
software (e.g. C++ or Java) or hardware (e.g. Verilog or VHDL).

In this paper, we will provide C++ implementations. For instance, the C++
code for the 3-cell RRBB ACM described above is shown in Figures [ and [7}

In the next sections, the methodology presented in the paper will be described.
The behavior of the RRBB ACM class will be formally defined and the method
to generate its implementation will be detailed. Due to the limited space, the
OWBB and OWRRBB classes will not be discussed in detail. However, the prin-
ciple used to generate the RRBB implementations also applies to the overwriting
ACM classes.

2 Overview of the Approach

In previous work [II8IT0], a step-by-step method based on the theory of regions
for the synthesis of ACMs was presented. The method required the generation
of the complete state space of the ACM by exploring all possible interleavings
between the reader and the writer actions. The state space of the ACM was
generated from its functional specification. Next, a Petri net model was obtained
using the concept of ACM regions, a refined version of the conventional regions.
This work proposes the generation of the Petri net model using a modular
approach that does not require the explicit enumeration of the state space. The
Petri net model is build by abutting a set of Petri net modules. The correctness
of the model can then be formally verified using model checking. The relevant
properties of the ACM, coherence and freshness, can be specified using CTL
formulae. This paper also extends previous work by introducing an approach
to automatically generate the implementation of the ACM from the Petri net
model. Figure [§ shows the design flow for the automatic generation of ACMs.
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8 T (e o
Model ] ! :

generation 1 | Implementation model : 1 | Verilog code
: /© /© »»: : ’
: o/ i generation : -
]

Fig. 3. The design flow

Compared to the previous work, the new approach has the advantage of not
dealing with the entire state space of the ACM when generating the Petri net
model. It is obtained in linear time. On the other hand, it requires to verify
the model generated to provide enough evidence of its correctness. Observe that
it is possible to obtain the ACM implementation without doing verification. In
practice, the new approach allows to obtain the Petri net model when the size
of the ACM grows.

2.1 Models for Verification and Implementation

The two basic paradigms on the approach presented in this paper are automation
and correctness. For that reason, from the functional specification of an ACM,
two formal models are generated:

— An abstract model, that describes the possible traces of the system and that is
suitable for model checking of the main properties of the ACM: coherence and
freshness. These properties can be modeled using temporal logic formulae.

— An implementation model, that is suitable for generating a hardware or soft-
ware implementation of the ACM. This model is generated by the composi-
tion of basic Petri net modules and contains more details about the system.
This model is required to narrow the distance between the behavior and the
implementation.

For a complete verification of the system, a bridge is required to check that the
implementation model is a refinement of the abstract model. For such purpose,
the Cadence SMV Model Checker [5] has been used.

The Cadence SMV extends the CMU SMV model checker by providing a
more expressive description language and by supporting a variety of techniques
for compositional verification. In particular, it supports refinement verification
by allowing the designer to specify many abstract definitions for the same signal.
It can then check if the signal in a more abstract level is correctly implemented
by another abstraction of lower level.

Thus, the correctness of the generated ACMs is verified as follows:

1. The abstract and implementation models of the ACM are generated.
2. The properties of the ACM are specified in CTL and model checked on the
abstract model.
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3. The implementation model is verified to be a refinement of the abstract
model.

In the forthcoming section, the abstract and implementation models for the
class of RRBB ACMs are presented.

3 The Abstract Model for RRBB ACMs

The abstract model for an RRBB ACM is specified as a transition system. The
state of the ACM is defined by the data items available for reading. For each
state, o defines the queue of data stored in the ACM. More specifically, o is a
sequence: 0 = agay - - - aj—16;, with j < n, where n is size of the ACM. q; is the
last written data, and ag is the next data to be retrieved by the reader. The size
of the ACM is given by its number of cells, i.e. the maximum number of data
items the ACM can store at a certain time.

o must also express if the processes are accessing the ACM or not. This is done
by adding flags to the ap and a; items. a¥’ indicates that the writer is producing
data a;, and this data is not yet available for reading. Similarly, aj is used to
indicate that the reader is consuming data ag.

Observe that o can be interpreted as a stream of data that is passed from
the writer (on the left) to the reader (on the right). There are four events that
change the state of the ACM:

— rdp(a): reading data item a begins.
— rde(a): reading data item a ends.
rp(a): writing data item a begins.
re(a): writing data item a ends.

[
g g

The notation (0;) = (0;) denotes the occurrence of event e from state (o;) to
state (0;), whereas (o) = L is used to denote that e is not enabled in ().

In RRBB ACMs, the reader is required not to wait when starting an access to
the ACM. In the case there is no new data in the ACM, the reader will re-read
some data that was read before.

The writer can add data in the ACM until it is full. In such case, the writer
is required to wait until the reader retrieves some data from the ACM. The
reader always tries to retrieve the oldest non-read data and, if all data in the
ACM has been read before, then it attempts to re-read the last retrieved data
item.

Definition [l formally captures the behavior of RRBB ACMs. Rules model
the behavior of the writer. Rules [ model the behavior of the reader.

Definition 1 (RRBB transition rules). The behavior of an RRBB ACM is
defined by the following set of transitions (n is the number of cells of the ACM
and the cells are numbered from 0 ton —1):
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wry(a) rdy(a)

1. {o) (ca™) if |o| <n 4. (ao) (a" o)
wry(a rde(a .
2. )Y 1 it ol =n 5. (a70) " (0) if o] >0 A 0 £ bV
wre(a)
3. (ca™y —— (oa) o\ rde(a)
6. {a") — (a)
7. (@b e (gpy

Rulemodels the start of a write action for a new data item a and signaling that
it is not available for reading (a™). Rule Bl models the completion of the write
action and making the new data available for reading. Finally, rule 2 represents
the blocking of the writer when the ACM is full (o] = n).

Rule @ models the beginning of a read action retrieving data item « and
indicating that it is being read (a”). Rule Bl models the completion of the read
operation. In this rule, a is removed from the buffer when other data is available.
On the other hand, rules[fl and [ model the completion of the read action when
no more data is available for reading. In this case, the data is not removed from
the buffer and is available for re-reading. This is necessary due to the fact that
the reader is required not to be blocked even if there is no new data in the ACM.

It is important to observe that in the state (a"b“) the next element to be
retrieved by the reader will depend on the order that events wr(b) and rd.(a)
occur. If the writer delivers b before the reader finishes retrieving a, then b will
be the next data to be read. Otherwise, the reader will prepare to re-read a.

Definition [I] was modeled using the Cadence SMV model checker and fresh-
ness and coherence properties were verified. Each process was modeled as an
SMV module. In the SMV language, a module is a set of definitions, such as
type declarations and assignments, that can be reused. Specifically, each process
consists of a case statement in which each condition corresponds to a rule in
Definition [l The SMV model obtained from Definition [l will be used in Sec-
tion M to verify a lower level specification of the ACM. Next, the specification of
the coherence and freshness properties is discussed.

3.1 Coherence

To verify the coherence property it is necessary to prove that there is no reachable
state in the system in which both processes are addressing the same segment of
the shared memory.

In the ACM model described by Definition[I] the reader always addresses the
data stored in the first position of the ACM, represented by o. On the other
hand, the writer always addresses the tail of the ACM. To prove coherence in

this model it is only necessary to prove that every time the reader is accessing
the ACM, then:

— it is addressing the first data item, and
— if the writer is also accessing the ACM, then it is not writing in the first
location.
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In other words, if at a certain time the shared memory contains a sequence of
data o = agpai - - - aj_1a;, with j < n, where n is the size of the ACM. Then:

AG(a"€eo—(a"=aN(a¥ €0 —a¥=a; Nj>0))

The formula above specifies that for any reachable state of the system (AG),
if the reader is accessing the ACM, then:

1. It is reading a data from the beginning of the buffer (a" = ay);
2. If the writer is also accessing the ACM, then it is not pointing at the begin-
ning of the queue ((¢" € 0 — a® =a; Aj > 0)).

3.2 Freshness

As discussed before, freshness is related to sequencing of data. Now, let us as-
sume that at a certain time the shared memory contains a sequence of data
o = apay ---aj_1a;j, with j < n, a; is the last written data, and ag is the next
data to be retrieved by the reader. Then, at the next cycle the ACM will contain
a sequence of data o’ such that one of the following is true:

1. ¢/ = o0: in this case neither the reader has removed any data item from the
head of ¢ nor the writer has stored a new item in its tail;

2. ¢/ = apai1 ---aj_1a;a541: in this case the reader has not removed any item
from the head of o, but the writer has added a new item to the tail;

3. 0/ = a1---aj_1a;: and, finally, in this case the reader has removed a data
item from the head of o.

The above can be specified by the following CTL formula:
AG(Jo] =2 = AX((Jo'| >=z Ao’ =cT) V(o' |=x—1A0" =07)))

where o1 is used to denote aga; - - ~Gj_1G OT agay ---a;—1a;a;4+1 and o~ is used
to denote a1 ---aj_1a;. Observe that [I] and [2] are captured by the same same
CTL sub-formula, which is given by the left side of the V inside the AX operator.

The guidelines introduced above can be used to generate an SMV model for
any RRBB ACM with three or more data cells. After that, the model can be
verified against the CTL formulas for coherence and freshness. Observe that the
number of CTL formulas needed to specify freshness grows linearly with the
size of the ACM. This is because, for each possible size of ¢, it is necessary to
generate another CTL formula.

4 The Implementation Model and Its Verification

The modular approach for the generation of ACMs is now introduced by means
of an example, including the generation of a Petri net implementation model
and its verification.
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4.1 Generation of the Implementation Model

A Petri net model for a 3-cell RRBB ACM will be generated and mapped into a
C++ implementation. As stated before, this new modular approach is based on
the definition of a set of elementary building blocks that can be easily assembled
to construct the entire system.

The repetitive behavior of the writer consists of writing data into the i*" cell,
checking if the reader process is addressing the next cell and, in the negative
case advancing to it, otherwise waiting until the reader advances. In a similar
way, the reader is expected to retrieve data from the i cell, check if the writer
is accessing the next cell and, in the negative case advancing to it, otherwise
preparing to re-read the contents of the i** cell.

Two modules to control the access of each process to the it" cell are defined.
One corresponds to the behavior of the writer and the other to the behavior of
the reader. The modules are shown in Figure @l

(a) writer module (b) reader module

Fig. 4. Basic modules for the writer and the reader

In Figure [{(a)] a token in place w; enables transition wr;, that represents the
action of the writer accessing the i* cell. The places with label (w = i), (w = j),
(w # i) and (w # j) indicate if the writer is pointing at the i*" or at the j**
cell. (r # j) indicates when the reader is pointing at the 5 cell. If transition Aij
is enabled, then the reader is not pointing at cell j, the writer has just finished
accessing the i*" cell and it can advance to the next one. The places (w = 1),
(w = j), (w # i) and (w # j) model the writer’s control variables, and they
are also used by the reader to control its own behavior. Note that j = (i 4+ 1)
mod n.

The same reasoning used to describe the writer’s module also applies to the
reader’s. The difference is that the reader should decide to advance to the next
cell or to re-read the current cell. This is captured by the two transitions in
conflict, ps and p;;. Here the decision is based on the current status of the
writer, i.e. if the writer is on the j*" cell or not, captured by a token on places
(w = j) or {w # j) respectively. It is easy to realize that there is a place invariant
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involving those places, since the sum of tokens is always equal to one, and only
one of the transitions in conflict can be enabled at a time.

In order to create a process, it is only necessary to instantiate a number
of modules, one for each cell, and connect them. Instantiating modules only
requires replacing the ¢ and j string by the correct cell numbers. For example,
to instantiate the writer’s module to control the access to the 0% cell, the string
1 is replaced by 0 and j by 1. Connecting the modules requires to merge all the
places with the same label. Figure [ depicts the resulting Petri net models for
the writer and reader of a 3-cell RRBB ACM.

r=0

r=1

r=2

(a) writer process (b) reader process

Fig. 5. The write and read processes for a 3-cell RRBB ACM

After creating the processes, they can be connected by also merging places
with same label on both sides. In this case, the shadowed places in each module
will be connected to some place on the other module.

Definition 2] formally introduces the concept of a module. In this definition,
it is possible to see that a module is an ordinary Petri net model that has some
“special” places called ports. A port is a place that models a control variable.
The local ports model the control variables that are updated by the process to
which it belongs, while the external ports model the control variables updated by
the other process. Ports are used to identify control variables when synthesizing
the source code for an ACM.
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Definition 2 (Petri net module). A Petri net module is a tuple MODULE =
(PN,LOC,EXT,T,,T.) such that:

1.

o o

PN is a Petri net structure (P, T, F) with:

(a) P being finite set of places.

(b) T being finite set of transitions.

(c) F C(PxT)J(T x P) being a set of arcs (flow relation).

LOC C P is a finite set of local ports.

EXT C P is a finite set of external ports such thatp € EXT <= pe = ep.
Places in EXT are said to be read-only.

. T, C T is a finite set of transitions such that t € T, <= t models a media

access action.

T. C T is a finite set of transitions such that t € T, <= t models a control
action.

T.UT.=T and T,NT. = 0.

M, C (T, x N) is a relation that maps each access transition t € T, into an
integer that is the number of the cell addressed by t.

M. C (T. x N x N) is a relation that maps each control transition t € T,
into a pair of integers modeling the current and the next cells pointed by the
module.

Definitions [B] and M formally introduce the writer and reader basic modules,
respectively.

Definition 3 (RRBB writer module). The RRBB writer module is a tuple
WRITER = (PN, LOC,,, EXT,,) where:

NS G oo =

PN, is as defined by Figure

LOC, = {(w = i), (w = ), (1 Z i), (w # j)}
EXT, = {{r # j)}

T, = {wri}

Te = {Xij}

M, = {(wri, i)}

Mc = {()‘ljazaj)}

Definition 4 (RRBB reader module). The RRBB reader module is a tuple
READER = (PN,,LOC,, EXT,) where:

NS G oo =

PN, is as defined by Figure

LOC, = {<T = i), <T = .7>7 <T 7& i), <T 7’é .7>}
EXT, = {{w=j),{w#j)}

T, = {rdi}

Te = { i, ptij }

Ma = {(Td’L,Z)}

Me = {(pii, i,9), (pij, i, 5)}

The connection of two modules, MOD; and MOD., is defined as another Petri
net module that is constructed by the union of them. Definition [ captures this.
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Definition 5 (Connection for Petri net modules). Given two Petri net
modules MOD1 and MODy, where:

— MOD; = (PNy,LOCy, EXTy, Ty, , T¢,, My, , M.,) and
— MODy = (PNy, LOCy, EXT5, Ty, , Te,, My, M.,).

The union of them is a Petri net module m = (PN, LOC, EXT,T,,T., M,, M)
such that:

1. PN = PN1|UPNsy where P = Py\J P, If two places have the same label
them they are the same, T =T, |JT2 and F = Fy |J F>.

LOC = LOC, |JLOCs.

EXT = EXT\JEXT>.

Ty =Ty UTs,.

T.=T, T,

M, = M,, U M,,.

M, = M., |JM,,.

NS s Lo o

The complete ACM model can also be generated by the union of the Petri net
models of each resulting process. The procedure is as introduced by Definition [
except that rules 2] and [l do not apply.

The last required step is to set an appropriated initial marking for the Petri
net model. This can be done using Definition [l

Definition 6 (Initial marking for RRBB ACMs). For any Petri net model
of an RRBB ACM, its initial marking is defined as follows. All the places are
unmarked, except in these cases:

1. My(w;) =1, ifi=1.
2. Mo({(w =1)) =1, ifi = 1.
3. Mo((w #14)) =1, ifi #1.
4. MO(Ti) = ]., ZfZ =0.
5. Mo({r =1i)) =1, if i = 0.
6. Mo((r#14)) =1, if i #0.

Observe that according to Definition [6 the writer is pointing at the 15 cell of
the ACM and reader is pointing to the 0 cell. By this, it can be deduced that
the ACM is assumed to be initialized with some data on its 0% cell.

4.2 Verification of the Implementation Model

The Petri net model generated using the procedure discussed above will be
used to synthesize source code (C++, Java, Verilog, etc.) that implements the
behavior specified by the model. So, it is necessary to guarantee that such a
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model is correct with respect to the behavior given by Definition [Ilin Section B
In this work, it is done by applying refinement verification. In other words it is
necessary to verify if the low-level specification, given by the Petri net model ob-
tained as described above, implements correctly the abstract specification given
by Definition [

Since Definition [l was specified with the SMV language, it was necessary to
translate the Petri net ACM model into SMV. The PEP tool [3] provides a
way for translating a Petri net model into SMV and was used in our synthesis
framework for such purpose.

The Petri net model specifies the mechanisms to control access to the ACM,
but it does not model the data transfers. Since the goal is to check if the im-
plementation model refines the abstract model, it is necessary to model data
transfers in the implementation model. For that reason, a data array with the
size of the ACM was added to the implementation model. For each event mod-
eling a data access action, it was necessary to add the actions simulating the
storage and retrieval of data in the array.

The following steps summarize what should be done to add the glue between
the implementation and the abstract models.

1. Add a data array, with the same size as the ACM, to the SMV code of the
Petri net model.

2. Identify in the SMV code generated by PEP the piece of code modeling the
occurrence of each transition ¢ of the Petri net model.

3. If t is a reader’s action and ¢ € T,, then the data stored in the i, where
(t,i) € M,, position of the data array created in step 1 should be read.

4. If t is a writer’s action and ¢t € T,, then a new data item should be stored
in the i*", where (¢,4) € M,, position of the data array created in step 1.

Note that the only control actions included in the model are required to
avoid the non-determinism in the extra control variables. For instance, it is not
desirable to allow non-deterministic changes in the values stored in the data
array. By doing the above modifications in the SMV code of the generated Petri
net model, it is possible to verify if the implementation model is a refinement
of the abstract model with respect to the data read from the data array. It
is important to note that the CTL formulae are defined in terms of the data
array. Thus, if both models always read the same data from the array, and if the
abstract model satisfies coherence and freshness, then the implementation model
will also satisfy those properties and it can be used to synthesize the source code
for the ACM.

Following the procedure described above a tool to automatically generate
ACMs was designed and implemente(ﬂ. A number of RRBBs with different sizes
(starting from 3) where generated and proved to be correct for all cases.

! See http://acmgen.sourceforge.net/ for details.



158 K. Gorgonio, J. Cortadella, and F. Xia

5 Synthesizing the Source Code

The implementation is generated from the Petri net model of each process. And
the resulting source code is based on the simulation of the net model. So, the
synthesis method consists of:

1. Create the shared memory as an array of the size of the desired ACM.

2. For each place p of the model, declare a Boolean variable vp named with the
label of p and initialize it with the value of its initial marking. Note that if
p € EXT then it will in practice be initialized by the other process, since in
this case vp is seen as an external variable that belongs to another process.

3. For each transition ¢ of the model, map into an if statement that is evaluated
to true when all input variables of ¢ are true. The body of the statement
consists of switching the value of the input places of ¢ to false and output
places to true. If ¢ models an access action, also add to the body of the if
actions to write (or read) a new data item to (or from ) the shared memory.

In order to perform the steps above, templates are used to define a basis
for the source code of the ACM, then some gaps are fulfilled. More precisely,
such gaps consist of: the declaration of the shared memory of a given size, the
declarations of the control variable and the synthesis of the code that controls
the access to the ACM.

Observe that the generation of the source code is performed from the Petri
net model of each process and not from the model of the composed system.
Algorithm 2 defines the basic procedure for the declaration and initialization of
the control variables.

Algorithm 2. Control variables declaration and initialization

1: for all p € P do
2: if p € LOC then

3: Declare p as a local Boolean variable

4: Initialize variable p with My(p)

5: Make variable p a shared one

6: elseif p e EXT then

T Create a reference to a Boolean variable p that has been shared by the other
process

8 else

9: Declare p as a local Boolean variable

10: Initialize variable p with Mo (p)

11:  end if

12: end for

In the first case, p is declared as a local Boolean variable that can be shared
with the other processes and initialized with the initial marking of p. In the
second case p is a shared Boolean variable that was declared in the other process
and in that case it cannot be initialized since it is a read-only control variable,
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from the point of view of the process being synthesized. Finally, in the third
case, p is declared as a private Boolean variable and is initialized with the initial
marking of p. In other words, each place will be implemented as a single bit
unidirectional control variable. And each variable can be read by both processes
but updated only by one of them.

Up to now the control part has not been synthesized, and there is no indication
on how the data is passed from one side to the other. The shared memory can
be declared statically as a shared memory segment and the only action needed
to create it is to set the amount of memory that should be allocated to it.

Finally, the synthesis of the control for the reader and writer processes are
introduced by Algorithms [3] and [ respectively.

Algorithm 3. Synthesis of control for the reader
1: for allt € T do

2:  if t € T, with (t,i) € M, then

3: Create new if statement

4: Vp € ot add to the if condition p = true
5: Vp € ot add to the if body p = false

6: Vp € te add to the if body p = true

7 Add to the if body an instruction to read data from the i** ACM cell
8: elseif t € T, with (¢,4,j) € M. then

9: Create new if statement

10: Vp € ot add to the if condition p = true
11: Vp € ot add to the if body p = false
12: Vp € te add to the if body p = true

13:  end if

14: end for

In Algorithm [3] the first case captures the synthesis of control to a data read
transition addressing the i*" cell. The condition to the control is given by the
pre-set of t and if it is satisfied then its pre-set it switched to false and its post-
set to true. And some data is read from the i*" cell. The second captures the
synthesis of control to a control transition. As in the previous the condition is
given by the pre-set of ¢t and then its pre-set it switched to false and its post-set
to true.

Algorithm[is similar to Algorithm[Bl The difference is that instead of reading
some data from the i cell, the process will write some data into it.

The approach described here was used in the generation of C++ implementa-
tions for ACMs. In Figures[6land[[the methods that perform the shared memory
accesses and control actions to the 3-cell RRBB ACM introduced in Section €l
are shown.

In Figure it is possible to see the method that actually writes some data
into the ACM. Line 3 captures the transition wrg in the Petri net model enabled.
In this case: the variables implementing its pre-set are turned to false, line 4;
the variables implementing its post-set are turned to true, line 5; and some
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Algorithm 4. Synthesis of control for the writer
1: for allt € T do

2: if t € T, with (¢,i) € M, then

3: Create new if statement

4: Vp € ot add to the if condition p = true
5: Vp € ot add to the if body p = false

6: Vp € te add to the if body p = true

7 Add to the if body a instruction to write new data on the i ACM cell
8: elseif ¢t € T, with (¢,4,j) € M. then

9: Create new if statement

10: Vp € ot add to the if condition p = true
11: Vp € ot add to the if body p = false
12: Vp € te add to the if body p = true
13:  end if
14: end for

data is written into the 0" cell of the ACM, line 6. Note that the val is the new
data to be sent and shm data implements the shared memory. Note that each if
statement refers to some transition in the Petri net model.

1. wvoid Writer::Send(acm_t val) { 1 acm_t Reader::Receive (void) {
2. 2
3. if (w0 == true) { //wr0 3 acm_t val;
4. w0 = false; 4
5 pwo = true; 5 if (r0 == true) {
6. *(shm_data + 0) = val; o L0l faleeE
7. } else if (wl == true) { //wrl 7' 0=t '
8. wl = false; prd = true;
9 pwl = truei 8 val = *(shm_data + 0);
1(.). * (shm data,+ 1) = val; 9 } else if (rl == true) {
11. ) else if (w2 == true) { //wr2 10 rl = false;
12. w2 = false; 11. prl = true;
13. pw2 = true; 12. val = *(shm_data + 1);
14. * (shm_data + 2) = val; 13. } else if (r2 == true) {
15. } 14. r2 = false;
16. } 15. pr2 = true;
16. val = *(shm_data + 2);
17. }
18.
19. return(val) ;
20. }
(a) Writer::Send() (b) Reader::Receive()

Fig. 6. Access actions implementation

The same reasoning applies to the reader access method shown in Figure
The only difference is that instead of writing into the ACM, it reads from there.

The methods implementing the control actions are somewhat more complex,
but follow the same principle. The implementation of the writer’s control actions
are given by the method in Figure As before, the same idea is used, im-
plementing each control transition as an if statement whose condition is given
by the variables of the pre-set and the body consists of switching the pre-set to
false and the post-set to true. For example, the code implementing the firing
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of transition \g; is given by lines 3 to 14 of Figure Observe that we0 and
wneO stands for w = 0 and w # 0 respectively.

The writer’s control actions are inside an infinite loop whose last instruction
is a call to a pause()E function. This is done because if there is no A transition
enabled, with the writer pointing at the " cell, it means that the reader is
pointing at the (i+1)" cell. And in this case the writer should wait for the reader
to execute. By using the pause() function in line 17, busy waiting algorithms
are avoided. Also, note that the exit from the loop is done by a break statement,
as in line 13.

1. id Reader::M id

1. void Writer::Lambda(void) { 2 Voif (igpezz t;L(l\em;&) ¢

2. while (true) { 3. *wel == true) { // m0_0

3. if (*wel == true && 4 r0p = false:

4. *wnel == true && 5' r0p7 true: !

5. wlp == true && : T L .

6. *rnel == true) { // 10_1 & kill(pairpid, SIGCONT);

7 *wed = false: 7. } else if (*re0 == true &&

. ! 8 *rnel == true &&

8. *wnel = false; : T

9. wOp = false; 9. ]:OP 777Erue &&

10. wl = true; 10. . wnel == true) { // m0_1

11. *wne0 = true; 11. *reO = false;

12. *wel = true; 12. rnel = false;

13. break; 13. rOp = false;

14. } 14. rl = true;

15. if (...) {...} // 11.2 15. *rne0 = true;

16. if (...) {...} // 12_0 16. *rel = true;

17. pause () ; 17. kill (pair_pid, SIGCONT) ;

18 } 18 } else if (...) {... // ml_1

19. 1} 19. } else if (...) {... // ml_2
20. } else if (...) {... // m2_2
21. } else if (...) {...} // m2_0
22. )

(a) Writer::Lambda() (b) Reader::Mu()

Fig. 7. Control actions implementation

The control actions of the reader process are implemented by the method
in Figure Again, each transition is implemented as an if statement. For
instance, pgo is implement by the code from line 2 to 6 and pg; is implemented
in lines 7 to 17. It is important to observe that every time the reader executes a
control actions, it sends the signal SIGCONT to the writer, as in lines 6 and 17.
This is to wake up the writer in the case it is sleeping due to a pause().

Finally, the methods generated above need to be integrated into the commu-
nicating processes. As explained before and shown in Figure 8 the writer first
calls the Send() and then the Lambda() methods. On the other hand, the reader
first calls the Mu() and then the Receive() methods. In the code generated these
operations are encapsulated into two public methods: Write() and Read(), avail-
able for the writer and reader respectively. With this, the correct use of the
communication scheme is ensured.

2 The pause() library function causes the invoking process (or thread) to sleep until
a signal is received that either terminates it or causes it to call a signal-catching
function.
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Fig. 8. Flowchart for communicating processes

In this Section an automatic approach to generate source code from Petri
net models was discussed. The algorithms introduced here only gives conceptual
ideas on what needs to be done for the synthesis of the code. When executing the
procedure, many details related to the target programming language has to be
taken into account. The algorithms above were implemented to generate C++
code to be executed on a Linux system. The reader should consult [7] for more
details on creating shared memory segments on UNIX systems.

6 Conclusions and Future Work

This work introduces a novel approach to the automatic synthesis of ACMs. The
method presented here is based on the use of modules to the generation of Petri
net models that can be verified against a more abstract specification.

Firstly, the behavior of RRBB ACMs was formally defined and the proper-
ties it should satisfy were described by CTL formulas. Then the procedure of
generating the Petri net models was presented, including the definition of the
basic modules and the algorithms required to instantiate and connect them. It
was argued how the the resulting model is translated to an SMV model in order
to be verified against the more abstract model defined in the beginning of the
process. Finally, a C+4 implementation is generated from the Petri net model.

Compared to the previous work [I], the method of generating Petri net models
introduced here has the disadvantage of requiring model checking to guarantee
its correctness. In the previous approach based on ACM regions, it was guaran-
teed by construction. However, the cost of executing the ACM regions algorithms
is too high. And when it becomes limited by the state-space explosion problem,
no implementation Petri net model could be generated and synthesis fails. In the
approach proposed here, state-space explosion is limited to the verification of the
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Petri net implementation model. This step is off the design flow (see Figure [3).
Thus we could generate C++ codes from the implementation model whether it can
be verified or not. An unverified implementation nonetheless has practical engi-
neering significances because the Petri net model is highly regular and its behavior
can be inferred from that of similar ACMs of smaller and verifiable size.

The next step into the direction of the automatic generation of ACMs is to
provide a formal proof that the procedure of generating the net models is correct
by design. With this, it will be possible to skip the verification step. And the
time required to synthesize devices that can be trusted will drastically reduce.
Also it is necessary to introduce formally the mechanisms used in the overwriting
ACM classes. Finally, it is a primary goal to be able to generate the ACMs in
the form of a Verilog code that can be used to synthesize a piece of hardware.
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Distinction for Research from the Generalitat de Catalunya and by the EPSRC
(grant EP/C512812/1) at the University of Newcastle upon Tyne.
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Abstract. Most information systems that are driven by process models
(e.g., workflow management systems) record events in event logs, also
known as transaction logs or audit trails. We consider processes that
not only keep track of their history in a log, but also make decisions
based on this log. To model such processes we extend the basic Petri
net framework with the notion of history and add guards to transitions
evaluated on the process history. We show that some classes of history-
dependent nets can be automatically converted to classical Petri nets
for analysis purposes. These classes are characterized by the form of
the guards (e.g., LTL guards) and sometimes the additional requirement
that the underlying classical Petri net is either bounded or has finite
synchronization distances.

1 Introduction

Numerous state-of-the-art enterprise information systems contain a workflow
engine, which keeps track of all events as a part of its basic functionality. In
this paper we consider processes that not only record the events but also make
choices based on the previous events, i.e. based on their history. The ability of
a system to change its behavior depending on its observed behavior is known
as adaptivity and in this sense this paper is about a special class of adaptive
systems.

In classical Petri nets the enabling of a transition depends only on the avail-
ability of tokens in the input places of the transition. We extend the model by
recording the history of the process and introducing transition guards evaluated
on the history. To illustrate the use of history, we consider a simple example of
two traffic lights on crossing roads.

Ezample 1. Figure [ (left) presents two traffic lights, each modelled by a cycle
of three places and three transitions. The places model the states of each traffic
light (red, green and yellow), and the transitions change the lights from one color
to the next color. We assume that in the initial state both lights are red.

We want the system to be safe and fair, i.e., the traffic lights are never green
at the same time, the right traffic light can become green at most R times more
than the left traffic light, and similarly, the left traffic light can become green
at most L times more than the right traffic light. Usually one takes R = 1 and

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 164-{I83] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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YellowL YellowR YellowL YellowR

GreenL GreenR GreenlL GreenR

Fig. 1. Traffic lights: without restrictions (left) and alternating (right)

\ #{a)=#{b} and #{e}<#{b}+Rk
YellowL

YellowR YellowL YellowR

RedL

GreenR

#{d)=#{e} and #{b}<#{e}+L |

Fig. 2. A history-dependent Petri net with parameters R and L (left) and the history
guards replaced according to Theorem 23l for R =1 and L = 2 (right)

L =0,or R=0 and L = 1, implying alternating behavior of the traffic lights.
In order to obtain the alternating behavior one traditionally adds control places
p and ¢ as in the right-hand side of Figure [Il This figure models the situation
with R = 0 and L = 1. Note that it is not easy to generalize this construction
for arbitrary R and L.

Our approach consists in making the guards explicit as shown in left-hand
side of Figure @2l To ensure safety, we require that b can fire only if the right
traffic light is red, i.e., transitions d and e have fired the same number of times.
The guard of b is written then as #{d} = #{e}. Similarly, e obtains the guard
#{a} = #{b}. In order to guarantee fairness, we require that in any history, b
fires at most L times more than e, i.e. #{b} < #{e} + L, and e fires at most R
times more than b, i.e., #{e} < #{b} + R. To ensure this we add the additional
requirement #{b} < #{e} + L to the guard of b and the additional requirement
#{e} < #{b} + R to the guard of e. This results in the history-dependent Petri
net shown in Figure 2 (left).

Using history we can separate the modeling of the standard process informa-
tion (switching the traffic light to the following color) from additional require-
ments ensuring the desired behavior. Hence, we believe that introducing



166 K. van Hee et al.

history-dependent guards amounts to enhanced modeling comfort. Observe also
that global access to the history allows to ease modeling of synchronous choices.
Assume that at a certain point a choice has to be made between transitions a
and b. Assume further that the only impact of this choice is somewhere later in
the process: a’ has to be chosen if a has been chosen and b’ has to be chosen if b
has been chosen. A classical solution of this problem involves creating two places
pa and p, with the only incoming arc coming from a (b) and the only outgoing
arc leading to a’ (0'). Rather than cluttering our model with additional places,
we set the guard of @’ (V') to demand that a (b) has been chosen before.

In this paper we consider two approaches to introduce history into the Petri
net model: (1) token history, where each individual token carries its own history,
i.e., history can be seen as special kind of color, and (2) global history, where there
is a single centralized history and every transition guard is evaluated on it (like
in our traffic lights example). Token history can be used in distributed settings
where different components do not have information about the actions of other
components. Global history is in fact a special case of token history for transparent
systems where all components are aware of the actions of other components.

By introducing history-dependent guards, we increase the expressive power.
On the traffic lights example, we can easily see that we can check the emptiness
of a place using history: RedR is empty if and only if #{e} — #{d} = 1. Hence,
we can model inhibitor arcs and consequently our formalism is Turing complete.
Since, we are interested not only in modeling but also in verification, we iden-
tify a number of important classes of global history nets (e.g. nets with LTL
guards) that can be transformed to bisimilar classical Petri nets and provide
corresponding transformations. For instance, the history-dependent net on the
left-hand side of Figure 2] can be automatically transformed to the classical net
on the right-hand side (we took R =1 and L = 2).

Due to the Turing completeness, not every history-dependent net can be repre-
sented by a classical Petri net. We are still interested in simulation and validation
of history-dependent nets. Simulation and validation are however complicated
by the fact that the representation of the current state of the system requires in
general an unbounded amount of memory, due to the growth of the history. We
solve this problem for a Turing complete subclass of global history nets (in which
we use event counting, but not event precedence in the guards) by defining a
transformation to bisimilar inhibitor nets. Inhibitor nets, though being Turing
complete, have a state representation of a fixed length (a marking), which makes
the simulation and validation feasible.

The remainder of the paper is organized as follows. After some preliminary
remarks in Section 2, we introduce the notion of event history together with a
history logic in Section [Bl Section @l introduces token history nets and Section [
introduces global history nets. In Section[6we show how to map several subclasses
of global history nets with counting formulae as guards to classical Petri nets
or inhibitor Petri nets, and in Section [1] we describe a transformation of global
history nets with LTL guards to classical Petri nets. Finally, we review the related
work and conclude the paper.
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2 Preliminaries

N denotes the set of natural numbers and Z the set of integers.

Let P be a set. A bag (multiset) m over P is a mapping m : P — N. We
identify a bag with all elements occurring only once with the set containing the
elements of the bag. The set of all bags over P is denoted by N*. We use +
and — for the sum and the difference of two bags and =, <, >, < and > for the
comparison of bags, which are defined in a standard way. We overload the set
notation, writing () for the empty bag and € for the element inclusion. We write
e.g. m = 2[p| + [q] for a bag m with m(p) = 2, m(q) = 1, and m(z) = 0 for all
x & {p,q}. As usual, |m| and |S| stand for the number of elements in bag m and
in set .S, respectively.

For (finite) sequences of elements over a set P we use the following notation:
The empty sequence is denoted with €; a non-empty sequence can be given by
listing its elements.

A transition system is a tuple E = (S, Act,T) where S is a set of states, Act is
a finite set of action names and T' C S x Act x S is a transition relation. We say
that FE is finite if S is finite. A process is a pair (F, sg) where F is a transition
system and so € S an initial state. We denote (s1,a,52) € T as s1 ——p so,
and we say that a leads from s; to so in E. We omit E and write s 2
whenever no ambiguity can arise. For a sequence of action names o = ay ...a,
we write $1 —— s, when s; = sY 1
means that there exists a sequence o € T* such that s; — so. We say that sy
is reachable from s, if and only if s; — s. Finally, the language of a process
(E, 50), denoted £(E, s¢), is defined as {0 | 0 € T*,3s : sp — s}.

ai a2 a *
— s — ... — §" = s5. Next, s1 — $g

Definition 2. Let Ey = (S, Act, Ty), Es = (So, Act,Ts) be transition systems.
A relation R C 81 X Sy is a simulation if and only if for all s1,s) € S1, 52 € Sa,
51 —p, s} implies that so B, sh and s} R sh for some sh € S.

FE4y and E5 are bisimilar if there exists a relation R C S x Sa such that both
R and R~ are simulations.

Next we introduce a number of notions related to Petri nets.

Definition 3. A Petri net N over a fized set of labels X is a tuple (P, T, F, A),
where: (1) P and T are two disjoint non-empty finite sets of places and tran-
sitions respectively; we call the elements of the set P U T nodes of N; (2)
F: (PxT)U(T x P) — N is a flow relation mapping pairs of places and
transitions to the naturals; (3) A : T — X is a labeling function that maps
transitions of T to action labels from X.

An inhibitor net is a tuple (P, T, F, A, I) such that (P, T, F, A) is a Petri net
and I C P x T is a set of inhibitor arcs.

We present nets with the usual graphical notation. For any pair of nodes x, y
with F(x,y) > 1, we say that (z,y) is an arc with weight F(x,y).
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Given a transition ¢t € T, the preset °t and the postset t® of t are the bags
of places where every p € P occurs F'(p,t) times in *°¢ and F(¢,p) times in ¢°.
Analogously we write *p, p® for pre- and postsets of places.

A marking m of N is a bag over P; markings are states (configurations) of a
net. A pair (N,m) is called a marked Petri net. A transition ¢t € T' is enabled in
marking m if and only if *¢ < m and moreover, for inhibitor nets, m(p) = 0 for
any p such that (p,t) € I. An enabled transition ¢ may fire. This results in a new
marking m’ defined by m/ L —t+t*. We interpret a labeled Petri net N as a
transition system/process (N, A(T), —) / (NP A(T),—), mg) respectively,
where markings play the role of states and labels of the firing transitions play the
role of action names. The notion of reachability for Petri nets is inherited from
the transition systems. We denote the set of all markings reachable in net N
from marking m as R (m). We will drop N and write R(m) when no ambiguity
can arise. A marked net (N, myg) is called bounded if its reachability set is finite.

3 Event History and History Logic

In this section we present the general notion of event history. In the coming
sections we investigate two kinds of nets that use event history: token history
nets and global history nets.

One might expect an event history to be a totally ordered series of events.
However, information on the relative order of events registered by different com-
ponents might be missing. Therefore, we define a history as a partial order.

Definition 4. Given a set of action labels X', a history is a labeled poset, i.e.,
a triple (E,<,)\), where E is a set of events coming from a fixed universe, <
is a partial order on E and \ : E — X is a labeling function. If E = ) the
corresponding history is called the empty history and denoted by e.

Two histories (E1,<1,A1) and (Ea, <2, A2) are consistent if and only if the
transitive closure of <1 U <o is a partial order for E1 U Ey and M\ (e) coincides
with Ag(€) for any e € E1 N Es.

We define two operations to create a new history out of existing histories: ez-
tension and union.

Definition 5. The extension (E, <, ) :: £ of a history (E, <, \) with an event
labeled by € is the history (EU{e}, <¢, A¢), where e is a new event ¢ is defined
as < U{(z,e) |z € E} and Ay maps e to £ and coincides with A on E.

The union (Eq, <1, A\1)U(Ea, <2, \2) of consistent histories is defined as (FyU
Es, <, A\ U Xo), where < is the transitive closure of <1 U a.

These operations will be used in the next sections on token history and global
history for Petri nets. In global history nets each firing of a transition extends

! Note that it is essential that e is a “fresh” identifier not present in E but also not
used in any “known” history.
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the global history. In token history nets, tokens created by a transition firing
carry the union of histories of the consumed tokens extended with the firing
event.

Next we present a language of history-dependent predicates that will be used
in the guards of history-dependent nets. From here on we assume a countable
set Var of variables to be given.

Definition 6. Given a set X of labels and x € Var, we define a formula ¢, a
term q and a label expression | over X as follows:
= false | o = ¢ lz <z |¢g<q|l==
qu=N [ (#Var: )| (qg+q)
I ==X | Ax)

Sets of formulae, terms and label expressions over X are denoted as Fx, Qs
and Ly, respectively.

Using the definition above we can define the following short-hand notations
in the standard way: true, =, A, V, >, >, <, = (comparisons of terms). We
omit brackets if this does not introduces ambiguities. The counting operator
# is powerful enough to express the standard quantifiers: We write 3z : ¢ for
(#z : ¢) > 0 and Vo : ¢ for (#x : ¢) = (Fx : true). For a finite set of labels
S ={s1,...,8,}, £ € S stands for ({ == s1 V... VL ==3s,) and #S stands for
(#x: M=x) € S). Finally e; < ea means that (e < e3) A (e < eq).

In order to define the semantics we introduce the notion of an assignment
defined as a mapping of variables from Var to events from E. Given a variable x,
an event e and an assignment v, v[z — e| denotes the assignment that coincides
with v for all variables except for & which is mapped to e.

Definition 7. Given a history H = (E, <, \) and an assignment v, the eval-
uation eval and the truth value of a formula are defined by mutual structural
induction. The evaluation function eval maps a term q to N as follows:

q if g e N;
eval(H,v,q) =  [{e € E | (H,v[z — ¢]) |F ¢}| if ¢ is #a :
eval(H,v,q1) + eval(H,v, q2) if ¢ is ¢1 + qo.

Similarly, eval maps a label expression [ to X':

l if l € X

eval(H,v,1) = {A(V(g;)) if 1is A().

Finally, the truth value of a formula s defined as follows:

— (H,v) E false is always false;

— (H,v) =1 = @ if not (H,v) |= 1 or (H,v) |= pa;
— (H,v) Ex 2z if v(z) < v(xe) or v(xy) coincides with v(xa);
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— (H,v) E q1 < q2 if eval(H,v,q1) < eval(H,v,q2) (< is the standard order
on the naturals);
— (H,v) Ely ==y if eval(H,v,l1) coincides with eval(H,v,l53).

One can show that for closed terms and formulae, i.e., terms and formulae where
all variables appear in the scope of #, the result of the evaluation does not depend
on v. Therefore, for a closed term ¢ we also write eval(H,q) and for a closed
formula ¢ we also write H = ¢. The set of closed formulae over X' is denoted
CFx.

To illustrate our language, we return to the traffic light example from Figure[2l
The guards of transitions are formulated according to Definition

4 Token History Nets

In this section we introduce token history nets as a special class of colored Petri
nets [I1] with history as color. The tokens of an initial marking have an empty
history and every firing of a transition ¢ produces tokens carrying the union of
the histories of the consumed tokens extended with the last event, namely the
firing of transition ¢ labeled by A(t).

Definition 8. A token history net N is a tuple (P,T,F, A, g) such that Np =
(P,T,F,A) is a labeled Petri net and g : T — CF p¢ry defines the transition
guards.

The semantics of a token history net is given by the transition system defined
as follows:

Color is the set of possible histories (E, <, \) over the label set A(T'). A state
m of a token history net N is a bag of tokens with histories as token colors, i.e.,
a marking m : (P x Color) — N.

The transition relation is specified by: m —— m' if and only if there exist a
transition t with A(t) = a, a history H and two bags cons and prod of tokens
such that:

— H =, c)ccons ¢ (H is the unified history),

cons < m (tokens from cons are present in m),

= D (p.e)ccons Pl = °t (tokens are consumed from the right places),

prod =3 .a[(p, H :: A(t))] (prod is the bag of tokens to be produced),
— m’ =m — cons + prod, and

H Eg(t) (ie., the guard evaluates to true given the unified history H ).

A token history net is thus defined by attaching a guard to all transitions of a
classical Petri net. A transition guard is evaluated on the union H of histories of
consumed tokens. Recall that the union of two histories is defined for consistent
histories only. We will call a marking consistent if the union of all its token
histories is defined. The following lemma states that consistency of markings is an
invariant property (observe that a transition firing cannot destroy consistency).
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Fig. 3. A token history net

Lemma 9. Let m be a consistent marking and m — m’ for some marking m/'.
Then m' is consistent.

Proof. Proof of the lemma relies on the fact that a fresh event is used every time
histories are extended.

To conclude this section we illustrate the semantics of token history nets.

Example 10. Consider the token history net in Figure Bl Firings of transition
d are allowed iff there is only one event labeled by a in the union of the his-
tories of tokens consumed from places p and ¢, i.e. tokens on p and ¢ origi-
nate from the same initial token. Let the sequence abcabe fire from the initial
marking, which results in the marking m = [(p, H1)] + [(p, H2)] + [(¢, H3)] +
[(q, Ha)] with Hy = ({e1,e2}, {e1 < e2}, {(e1,a), (e2,0)}), Hz = ({es, €5}, {es <
65}7 {(647 a)7 (657 b)}>7 H; = <{617 63}7 {61 = 63}7 {(617 a)v (637 C)}> and Hy =
({ea, €6}, {ea < ec}, {(ea,a), (es,c)}). The transition labeled d can fire consuming
tokens [(p, H1)] and [(g, H3)] since the tokens share event e; in their history. The
produced token is [(s, Hs)] with Hs = ({e1,e2,e3,e7},{e1 < ea,e1 < e3,e1 <
er,ea < er,e3 < er}, {(e1,a), (e2,b), (es,c), (e7,d)}). This transition cannot fire
one.g. [(p, H1)] and [(q, H4)] since the union HyUH, contains two events (e; and
e4) labeled by a while the guard specifies that the number of a events should
be one (#{a} = 1). Token history allows thus distinguishing between tokens
originating from different firings of the same transition, i.e., mimicking another
popular color, namely case identifiers.

5 Global History Nets

In this section we introduce global history nets, where history is a separate object
accessible when the guards of transitions are evaluated.

Definition 11. A global history net N is a tuple (P, T, F, A, g) such that Np =
(P,T,F,A) is a labeled Petri net and g : T — CF y() defines the transition
guards.

The semantics of global history nets is defined as follows:

A state of N is a pair (m, H) where m is a marking of Np and H is a history
over A(T). The transition relation is specified by: (m, H) —— (m', H') if and
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only if there exists t € T such that A(t) = a, *t <m, H = g(t), m =m—°t+1°
and H' is H :: A(t).

Given a global history net N we denote by S(IN) the set of all states of the
net. Analogously to marked Petri nets we consider marked global history nets
being pairs (N, (m, H)) such that N is a global history net and (m, H) € S(N).
The set of states reachable from (m, H) in N is denoted Ry ((m, H)); the set of
states reachable from an initial state (mg, €) is thus Ry ((mo, €)).

The interleaving semantics results in the following property:

Proposition 12. Let N = (P,T,F, A, g) be a global history net and (m, (E, <
,A)) € Ry ((mo,€)). Then < is a total order on E.

Note that history does not contain information which transitions exactly have
fired, but labels of those transitions only. Therefore, knowing the initial marking
and the history, we cannot reconstruct the current marking in general. However,
it can easily be seen that if A is injective the current marking can be derived
from the initial marking an history.

Proposition 13. Let N = (P, T, F, A, g) be a global history net such that A is
injective. Then, for a given H: (my, H),(mo, H) € Ry ((mo,€)) implies my =
mao.

This proposition implies that we are able to express conditions on the marking by
using global history nets with injective labeling. To illustrate this, we introduce
#°p as a shorthand for Zte.p #{A(t)} for some place p, i.e., #°p is the number
of tokens produced to the place p. Similarly, #p® denotes Ztep. #{A(t)}, i.e.,
the number of tokens consumed from p according to the history. (Note that
the sum is taken over a bag.) Now, let mgy be the initial marking of a global
history net N where A is injective, and assume (m, H) € Ry ((mo,¢)). Clearly,
m(p) = mo(p) — #p°® + #°p for any p € P. Hence, we can express any condition
on the current state in a transition guard. For example, we can simulate inhibitor
arcs by adding the condition mg(p) — #p°® + #°p = 0. Since inhibitor nets are
known to be Turing complete (cf. [I7]), global history nets with unique labels
are Turing complete as well.

Corollary 14. Global history nets N = (P, T, F, A, g) are Turing complete.

Next we discuss the implications of Corollary[Idlon the expressive power of token
history nets.

Token history vs. global history. Observe that in general it is impossible
to derive the corresponding token histories from the history of a global history
net. Consider the net from Figure[3 as a global history net and suppose that its
global history is aabc. One cannot derive whether the tokens on places p and ¢
will share the history event labeled by a or not. On the other hand, in general
it is impossible to reconstruct the corresponding global history from a given
marking of a token history net, since no information is available on the order of
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truly concurrent firings. So marking m from Example [I0] can be obtained as a
result of firing sequences abcabe, aabbee, abacbhe, ete. and have the corresponding
global history. We can however mimic a global history net with a token history
net.

The key idea behind our construction is adding a new place p* with one
initial token, connected to all transitions. Since the token in p* is updated at
each firing, it will keep a global log. Since all transitions are connected to p*,
their guards will be evaluated on the same history as in the original global
history net. Formally, given a global history net N = (P, T, F, A, g) with initial
marking mg, we construct a token history net N’ = (P’, T, F’, A, g) with initial
marking m(, such that P/ = P U {p*} (with p* ¢ P being the new place),
F'(n1,n2) = F(ny,ng) for (n1,n2) € (P xT)U (T x P) and F'(ny,n2) =1
for (n1,n2) € ({p*} x T) U (T x {p*}), and Vp € P : m{((p,e)) = mo(p),
my((p*,€)) = 1 and m{(z) = 0 in all other cases. N’ is called the log extension
of N. It is easy to show that both nets are indeed bisimilar.

Lemma 15. (N,mg) and (N',m{) as above are bisimilar.

Proof. (Idea) Note that in any reachable marking, the token on p* contains the
global history of N/, while the histories in the tokens of N’ are partial suborders
of the global history. (N, mg) and (N’,m()) are bisimilar by construction.

Corollary 16. Token history nets are Turing complete.

Proof. By Lemma [T5 and Corollary [[4

It is easy to map both a token history net and a global history net onto a colored
Petri net with token values being histories. Figure Ml shows a screenshot of CPN
Tools simulating the two traffic lights from Example [Il controlled by history.
Note that we added place global to store the global history.

The remainder of this paper focuses on global history nets.

6 Global History Nets with Counting Formulae Guards

In this section we consider global history nets with guards being counting for-
mulae, i.e., formulae that do not explore the precedence of events <. Formally,
a counting formula ¢ is defined as

pu=fase|lo=p|qg<q|l==

where ¢ and [ are terms and label expressions as in Definition

Note that global history nets with counting formulae guards are Turing com-
plete since they allow zero testing on the marking of a place. To facilitate sim-
ulation and validation of these nets, we show that every global history net with
counting formulae guards can be transformed into a bisimilar inhibitor net. Fur-
thermore, we identify conditions on the global history net implying that the net
can be translated to a bisimilar classical Petri net.
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[ CPM Tools (Version 2.0.0 - March 2006) =10/ x|
> Tool box | main
»Help
» Options |
vhistory.con |
Step: 3 |
Time: 0 |
» Options |
» History
¥Dedlarations
» Standard dedlarations
YHistory types
vuse "wil-functions.sml?
vcolset Event = int;
v colset Events = list Evi
v colset Rel = product E}
¥ colset Order = list Rel;
¥ colset Label = string;
¥ colset Map = product €
¥ colset Mapping = list ¥
¥ colset History = produ
v globref vnewevent = ¢
¥ History functions
vfun mergeh((esl,01,m
vfun geth([)) = ((LO1,0)-
wval token = ((1,(0,0]) : £
vfun new_event() = let
vfun ext3([).e) = (]
ext3(e2:ies,e) = (e2,8_ o :
viun ext2((es or.m),ab, History Histary
vfun ext(h,lab) = ext2(k
wfun makeh(h,lab) = ex
vfun counth((],lab) = 0
counth((_lab1)::es lal
vfun count((es,or,m):Hi
¥ History variables smulat»on

TvarhhahLha e .|’°| M [ k MJ

nh, 1°([218,214,210],((210,214) (214,
D 8).(21]0.218)]:[("18, "d"),(214,"F"),(

Histary. nh
1°([218,214,210],[(210,214),(214,21

A 8),(210,218)],[(218,"d"),(214,""),(21

L oan) o

Y History guards
wvalL=2; 1 None Tlightl light2 " lights
vval R-l'
vfun g_a(h:History) = true:boal;

'fung bih: Hls:ory) (count{h,"d") = count(h,"e")) andalso (count(h,"b") < count(h,"2") + L):bool;

vfun ory) = true:bool;

vfuno d mstory) true:bool;

vfun g_e(h:History) = (count(h,"a") = count{h,"b")) andalsa (count(h,"e") < count(h,"") + R):bool;

vfun g_f(h:History) = true:bool;

Fig. 4. The history-dependent Petri net with parameters R en L and using a global
place to record history simulated using CPN Tools

6.1 Nets with Counting Formulae as Guards vs. Inhibitor Nets

We start with the simplest form of counting formulae, namely (#A4) p (#B + k)
for some A, B C X, p € {>,<} and k € N. For the sake of brevity we call these
expressions basic counting formulae (over A and B). Note that taking B equal
to () we obtain (#A) p k (since #0 = 0).

Lemma 17. Let (N, mg) be a marked global history net with N = (P, T, F, A, g)
such that for any t € T, g(t) is a basic counting formula. There exists a marked
inhibitor net (N',mg) bisimilar to (N, mg).

Proof. We apply to the net (N, mg) an iterative process of guard elimination
resulting in (N, m(,). At every iteration step we will replace one of the transi-
tion guards of the current net by true, adding some places and transitions to
preserve the net behavior. The process terminates when all guards are true, i.e.
we obtained a regular inhibitor net.

Let t be a transition whose guard we eliminate at the next step and let g(t)
be #A p #B+k for some A, B C X, p € {>,<} and k € N. We can assume that
A and B are disjoint, since (#A4) p (#B + k) if and only if (#(A\ B)) p (#(B\
A)+ k).

Figure [0 shows the basic idea of the eliminating a transition with guard
g(t). Consider, for example the case p equals <. Figure [f(a) sketches the rel-
evant features of the initial net and Figure Blb) shows the net where guard
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0]

a » a
777777777777 A A AWmm”A,/’
initial: invariant:
+1 max{0, #A-#B+1 )
s
«invariant: initial. o~ invariant:
| maxto#B#Atksty T | max(0#B#A)
b | | b | |
— B/ B — )\ = B/
(b) g(t) = #A < #B+k removed (c) g(t) = #A = #B+k removed

Fig. 5. Replace the guard by places s and s’, duplicate transitions, and inhibitor arcs

g(t) = (#A < #B + k) is eliminated. Note that A and B refer to the sets of
transitions having a label from A respectively B. For the purpose of illustration,
we show a transition with label ¢ € A and a transition with label b € B (note
that may not be such transitions).

In order to mimic the guard g(¢), we add places s and s’, where s will contain
max{0, #B —#A+k+1} tokens while s’ will contain max{0, #A —#B} tokens.
Note that g(t) = (#A4 < #B + k) evaluates to true if and only if there is at
least one token in s, therefore we add a bidirectional arc between s and ¢. In the
initial marking mo(s) = k + 1 and mo(s’) = 0.

To support the computations on s and s’, we need to duplicate all transitions
with a label from A U B, i.e., for every v such that A(v) € A or A(v) € B we
add a transition v' with *v" = ®v, v'®* = v®, and A(v’) = A(v). The resulting sets
of transitions are referred to as A’ and B’ in Figure Bl(b). It is essential to note
that the transitions are mutually exclusive in terms of enabling and that s and
s" are non-blocking, i.e., if v € T was enabled in the original net, then either v
or v’ is enabled in the net with inhibitors.

The construction for p equal to > is similar as shown in Figure Blc). Note
that the initial marking has been updated and that ¢t now tests for the presence
of k41 tokens in s where s always contains max{0, #4 — #B + 1} tokens.

The transformation is repeatedly applied until no guarded transition is left. The
bisimilarity of (N, mg) and (N’,m() can be trivially proven by induction. O
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(a) The net with guard is (b) The net without history is
finite but without history it is bounded, but with history
unbounded. there are inifinitely many

reachable states

Fig. 6. Bounded and unbounded nets

Our interest in transitions with basic counting formulae as guards is motivated
by the fact that any non-trivial counting formula is equivalent to a disjunction
of conjunctions of basic counting formulae.

Lemma 18. Any counting formula ¢ can be written in disjunctive normal form
where the literals are positive basic counting formula (i.e. without negations), so
¢ = true or ¢ = false or p = ;(\;¥i;) and each v;; is a basic counting
formula.

Theorem 19. Let (N, m) be a marked global history net with N = (P, T, F, A, g)
such that for any t € T, g(t) is a counting formula. There exists a marked
inhibitor net (N',m') bisimilar to (N, m).

Proof. (Idea) By Lemma we consider only disjunctions of conjunctions of
basic counting formulae. First we transform our net to a net where all guards are
conjunctions of basic counting formulae by applying the following construction:
Every transition ¢ with a guard ¢ V ¢ is replaced by transitions ¢, with the
guard ¢, and ty with the guard ¢, where *¢, = *ty, = *¢, t3, = {3, = {* and
Alt,) = Alty) = A().

At the next step we eliminate conjuncts from the guards one by one by apply-
ing the construction depicted in Figure Bl The only difference is that we apply
the construction to a transition ¢ with a guard (#A p #B + k) A ¢, and the
guard of ¢ in the resulting net is then . a

Boundness and analyzability of global history nets. Although the con-
struction referred to in the proof of Theorem[Idis applicable to any global history
net with counting formulae as guards, the resulting net contains inhibitor arcs
and therefore, cannot be analyzed easily because of Turing completeness. How-
ever, it is well-known that inhibitor arcs can be eliminated in bounded inhibitor
nets. Boundedness of classical or inhibitor Petri nets is in principle finiteness of
its state space. Hence it is interesting to explore “finiteness notions” for global
history nets.

Finiteness of Ry ((mo,€)) for a global history net N = ((P,T,F, A, g)) does
not imply boundedness of the underlying Petri net ((P,T, F, A), mo) and vice
versa. In Figure [6] we see two global history nets. The underlying Petri net
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shown in Figure [Bla) is unbounded, while the global history net has a finite
state space due to the transition guard. The underlying Petri net shown in
Figure [B(b) is bounded, while the global history net has an infinite state space
just because it has an unbounded history. Still, the behavior of this net is clearly
analyzable, since it is possible to construct a classical Petri net bisimilar to it.
The latter observation motivates our interest in the existence of a classical Petri
net bisimilar to a global history net.

In the two following subsections we discuss sufficient conditions for the exis-
tence of a bisimilar classical Petri net.

6.2 Guards Depending on the Marking Only

In this subsection we give conditions on the guards that allow a transformation
into an equivalent bounded Petri net. So global history nets satisfying these
conditions will accept regular languages. We consider here guards that depend
only on the marking. As stated by Proposition if transitions have unique
labels, then a marking is uniquely determined by the history.

Definition 20. Given a global history net N = (P, T, F, A, g) with A being in-
jective, we say that a formula ¢ is a marking formula if there exists a formula
¥, @ =1, such that ¥ is a counting formulae and every basic counting formula
in 1 is of the form (#°p) p (#p° + k) for p € P or (#°p+ k) p (#p°), k € N
and p € {<,>}.

Theorem 21. Let N = (P,T,F, A, g) be a global history net with injective A
such that for any t € T, g(t) is a marking formula. If the underlying Petri
net ((P, T, F, A), mg) is bounded, then there exists a bounded marked Petri net
bisimilar to (N, (mg, €)).

Proof (Idea). We construct a net N’ = (P',T', F", A) and a marking m{, such
that (N, m{) bisimilar to (N, mg). We start by adding a duplicate place p’ for
every place p € P such that *p’ = p® and p’® = °p. Since the underlying Petri
net is bounded, there exists b € N such that for any reachable marking m and
any place p, m(p) < b. We take n greater than the sum of b and the maximum
of all constants in the guards. We define myg, for N’ as follows: Vp € P : m{(p) =
mo(p) Amg(p') = n —mg(p). Observe that m(p) + m(p’) = n for any reachable
marking m. Moreover, by construction, #°p = #p'® and #p® = #°p’ for any
place p.

Without loss of generality we assume that transition guards are conjunctions
of the form (#°p) p (#p°® + k) with k& > 0 and p € {<,>}. Indeed, first, the
proof of Theorem shows how general counting formulae can be reduced to
basic counting formula. Second, if the guard is of the form (#°p + k) p #p°, by
the previous observation, we obtain (#p'® + k) p #°p/, i.e., (#°0') p’ (#p'® + k)
with p’ being the comparison dual to p, i.e. p’ € {<,>}\ {p}. We denote the
resulting net N = (P, T’ F’, A). Next we are going to add arcs depending on
the guards of V.
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We distinguish between two cases. Let g(t) be (#°p) < (#p°®+k). Then t may
fire only if the number of tokens consumed from p does not exceed the number
of tokens produced to p by more than k, i.e., the number of tokens produced to
p’ does not exceed the number of tokens consumed from p’ by more than k. In
other words, m{(p) has at least k tokens. Moreover, if ¢ € *p’ then ¢ may fire
only if p’ contains at least F’(p,t) tokens. Therefore, we add an arc between p’
and t: F"(p',t) = max{F'(p/,t),m,(p") — k}, i.e., max{F(¢t,p),n — k — mo(p)}.
To complete the transformation, observe that we are not allowed to change the
behavior of the original net. Thus, we need to return tokens to p’. To this end we
add an arc between t and p': F''(t,p") = F'(t,p") + max{0, m{(p) —k— F'(p', 1)},
ie., F(p,t) +max{0,n —k —mo(p) — F(t,p)}.

Observe that this case also covers the situation when g(t) is (#°p) > (#p°®+k)
and k = 0. Therefore, we assume in the second case ((#°p) > (#p°® + k))
that k£ > 0. Similarly to the previous case, we add two arcs between p and t:
F'(p,t) = max{F'(p,t), k+m{(p)}, i.e., max{F (p, t), k+mo(p)}, and F"(t,p) =
F'(t,p) +max{0, k+mg(p) — F'(p, 1)}, i.e., F(t,p) +max{0, k+mo(p) — F(p,t)}.

In both cases ¢ can fire if and only if the guard holds and the firing does not
change the behavior of the original net. O

6.3 Counting Formulae with Bounded Synchronization Distance

In this subsection we consider a condition on guards that allows to transform
a global history net to a bisimilar Petri net, which is not necessarily bounded.
We use here an important concept in Petri nets introduced by Carl Adam Petri:
synchronization distance [AITT3]. We use a generalization of this notion, the
so-called y-distance [16].

Definition 22. Let (N, mg) be a Pelri net and n be the number of transitions
in N. For a weight vector y € Z™ the y-distance of (N, mg) is defined by

D((N7 m0)7y) = sup ZJT -0,
cEA

where yT is the transpose of y, o is the Parikh vector of ¢ and A the set of all
executable finite firing sequences. The synchronization set is

Sync((N,mo)) = {y € Z" [ D((N,mo),y) < o0}

In the net on the right-hand of Figure [0l transitions b and ¢ can fire infinitely
often. If we take the underlying classical Petri net, the transitions are completely
independent of each other and the y-distance is co for any weight vector with at
least one positive component. If we consider the global history net instead, the
number of the firings of ¢ never exceeds the number of the firings of b by more
then 11. Hence the y-distance with y = (—1,1) is 11. On the other hand, the
number of firings of b is not restricted by the number of the firings of ¢, and the
y-distance for y = (1, —1) is oo.

For two label sets A and B, the characteristic weight vector for (A,B), denoted
Y(A,B), is the weight vector with components equal to 1 for transitions with labels
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A/ A/

initial: u initial: u
iant: invariant:
max{O#B-#As) max{0,#A-#8+0)
33 777777777777777 B/
(a) g(t) = #A = #B+k removed (b) g(t) = #A = #B+k removed

Fig. 7. Transforming nets with synchronization distance restrictions

in A, —1 for transitions with labels in B and 0 for all other vector components
(recall that we may safely assume that A and B are disjoint). We denote the
Yy(a,p)-distance by d(A, B) and we call it the characteristic distance (A,B). In
[16], an algorithm is given to decide whether y € Sync((n, mo)) and to determine
the y-distance by examining a finite set of vectors.

Theorem 23. Let N = (P, T, F, A, g) be a global history net with initial marking
mo such that for any t € T, g(t) is a disjunction of conjunctions of counting
formulae of the form #A p #B + k with p € {<,<,>,>}, for each of which
the following property holds: if p is < then d(A,B) < oo and if p is > then
d(B, A) < oo in the underlying Petri net ((P,T,F, A),mqg). Then there exists a
marked Petri net (N',m{) bisimilar to (N, mg).

Proof. (Idea) The proof is done by construction. Disjunctions and conjunctions
are taken care of as in Theorem [I9 Therefore, we restrict our attention to the
following special case: the guard of transition ¢ is a basic counting formula of
the form #A p #B + k.

For the first case, where p is <, we set © = max{k,d(A, B)} + 1. Note that
u < k implies that the guard of ¢ will always be evaluated to true, and thus may
be trivially removed. So we assume that u > k. We apply the construction shown
at the left-hand side of Figure [l A new place s is added with F(b,s) =1 for all
b such that A(b) € B, F(s,a) = 1 for all a such that A(a) € A, and F(s,t) =
F(t,s) = u— k. Furthermore, the initial marking is m{(s) = u. Transition ¢ can
fire if and only if s contains at least u — k tokens. Note that u — k > 0 and that
for any reachable state (m, H) we have m/(s) = u+#B—#A > u—d(A, B) > 0.
Therefore t can fire only if #B — #A > —k and the transitions with labels in
A or B are thus not restricted in their firings.

The second case, displayed in the right-hand net of Figure [ is similar:
u = max{k,d(B, A)} + 1, the arcs are reversed, F(s,t) = F(t,s) = u + k and
mg(s) = u. O
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cancel

Fig. 8. A net with an LTL-guard

7 Global History Nets with LTL Guards

Now we consider the class of global history nets with LTL guards. We consider
the next-free variant of LTL, since the next time operator (X) should better be
avoided in a distributed context and it is not robust w.r.t. refinements. LTL-
formulae are defined by ¢ ::= false | ¢ = ¢ | ¢ Ug | A, where A C X and U is
the temporal operator until.

Standard LTL works on infinite traces, while our history is always finite. There-
fore, we interpret formulae on a trace we observed so far. Let H = (e1 ...¢e,) be
a global history. We define A(e;) as (A(e;) € A), and (¢ U)(e;) as Jex = ((e; <
er) NE(er) ANVem = ((ei = em) A(em < er)) = dlem)). We say that H = ¢
ifft H = ¢(e), ie., Ve : ((Ve; : e < e;) = ¢(e)) is evaluated to true. Due to the
finiteness of the formula, every LTL formula can be rewritten to a finite formula
in our logic. Note that our interpretation of U coincides with the standard one.

Based on the temporal operator U we introduce additional temporal operators
O (“eventually”) and O (“always”) in the standard way: O¢ := true U¢, O¢ :=
—(0—9).

We will show now how to translate a global history net with LTL guards to a
(classical) Petri net.

While LTL formulae over infinite traces can be translated to Bilichi automata,
LTL formulae over finite traces can be translated to finite automata. [5] presents
a translation algorithm that modifies standard LTL to Biichi automata conver-
sion techniques to generate finite automata that accept finite traces satisfying
LTL formulae. The main aspect of modification there is the selection of accepting
conditions. The automata generated are finite automata on finite words. There-
fore, they can be made deterministic and minimized with standard algorithms
[10].

Let N = (P,T,F, A, g) be a given global history net. At the first step of our
transformation we build a finite deterministic automaton whose edges are labeled
by action names from A(T) for every non-trivial (not true or false) transition
guard. Then we transform this automaton into a marked Petri net (which is a
state machine) where a token is placed on the place corresponding to the initial
state of the automaton, and final places obtain auxiliary labels true and non-final
places are labeled by false.
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Fig. 8 shows a simplistic example for a credit card company, where a credit
card can be issued, reported lost, used for a payment or cancelled. The pay-
ment transition pay has a guard requiring that the payment is possible only
if the card has not being lost or cancelled after its last issue (O({issue} A
O(—{lost, cancel})). The net corresponding to the guard is shown on the right
hand side of the figure. Note that this net can perform an arbitrary sequence of
steps, and the place “true” has a token when the guard on the history should
be evaluated to true and “false” when the guard should be evaluated to false.

At the next step we build the net Ng which is a synchronous product of
the Petri net Np = (P, T, F, A) with the guard nets N;, by synchronizing on
transition labels. Namely, the set of places Ps of the synchronous product is
the union P U (U; P;) of places of N and the places of the guard nets; every
combination of transitions ¢, t1, ..., t,, where t € T,t; € T; and A(t) = A;(¢;) for
all i, is represented in T's by a transition t’ with *t' = *t+".*t;, t'* =t*+> . 1;°
and A(t") = A(¢).

The guard nets can perform any arbitrary sequence from X* and Ng has thus
the same behavior as Np. Now we restrict the behavior of Ng by taking the
evaluations of guards into account. To achieve it, we add biflow arcs between
every transition ¢ € Ng and every true-place corresponding to the guard net of
this transition. The obtained net is bisimilar to the original global history net
by construction.

8 Related Work

Histories and related notions such as event systems [I9] and pomsets [8I3] have
been used in the past to provide causality-preserving semantics for Petri nets.
Unlike our approach, these works did not aim at restricting the firings by means
of history-dependent guards. Baldan et al. [2] use two different notions of history.
First of all, they consider semi-weighted nets, i.e., nets where every token can
be uniquely identified by means of tokens used to produce it, transition that
produces it and the name of the place where it resides. This idea is similar in
spirit to our token history. However, the authors do not make this notion of
history explicit nor do they discuss additional operations that can be performed
on histories. Neither this notion, nor history as configuration used by the authors
in study of causality, can be used to restrict firings of transitions by means of
guards as suggested in our approach.

History-dependent automata [12] extend states and transitions of an automa-
ton with sets of local names: each transition can refer to the names associated to
its source state but can also generate new names which can then appear in the
destination state. This notion of history implies that one cannot refer to firings
of other transitions but by means of shared names. We believe that the ability
to express dependencies on previous firings explicitly is the principal advantage
of our approach.

Operations on pomsets similar to our union and intersection appeared under
different names in [6/I4/TI8]. The major distinction is due to unimportance of
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the events’ identities in these approaches. Therefore, these operations make use
of disjoint sum to define a union and bijectively rename the events to define
an intersection. Therefore, these operations are defined for any pomsets. Unlike
the existing approaches, we take the identities of the events into account. This
guarantees that common parts of histories appear only once in their union, and
only truly common events appear in the intersection.

y-distance and related notions were studied starting from [I7IT3I16]. Silva and
Murata [15] introduced group-B-fairness, where they extend the synchronization
distance notion from single transitions to the groups of transitions, like we do in
Subsection The focus of Silva and Murata’s paper is however on group-B-
fair nets, i.e., nets such that any pair of transition sets from a given transition
covering is in a group-B-fair relation. Unlike their work, Theorem 23] demands
being in a group-B-fair relation only for sets of transitions corresponding to sets
of labels used in the guards.

9 Conclusion

In this paper we emphasize the importance of taking history into account while
modelling processes. Historical information is present in most state-of-the-art en-
terprise information systems. Moreover, it allows to separate process information
from safety constraints, improving the readability and maintainability of models.

We have provided means to model history-dependent processes by extending
the classical Petri nets model and considered two ways of incorporating history:
token history nets and global history nets. To provide analysis, simulation and
validation facilities, we have put a link from global history nets to classical
and inhibitor Petri nets. Namely, we have identified several subclasses of global
history nets that can be automatically transformed to classical Petri nets. For
the class of global history nets with counting formulae as guards we have defined
a transformation to inhibitor nets. Finally, observe that global history nets can
be easily implemented in CPN Tools [].

Future work. For the future work we plan to adapt our token net framework
for modelling component-based systems. We intend to extend the language of
operations on histories by adding projection in order to allow information hid-
ing and intersection to check disjointness/presence of common parts in token
histories. The guard language will allow to evaluate conditions both on separate
tokens and on their combinations.

We are going to develop a method for transforming broader subclasses of
global history nets to classical and inhibitor Petri nets. For instance, our trans-
formation of global history nets with LTL guards can be easily extended for LTL
with Past. We also consider developing a transformation for global history nets
with LogLogics [9] guards, a three-valued variant of LTL+Past on finite traces.

Acknowledgement. We are grateful to Jan Hidders and Jan Paredaens for a
number of fruitful discussions at the early stages of this research.



History-Dependent Petri Nets 183

References
1. CBN Tools http://wiki.daimi.au.dk/cpntools/cpntools.wiki
2. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Sci-
ence 323(1-3), 129-189 (2004)

Best, E., Devillers, R.R.: Sequential and concurrent behaviour in Petri net theory.
Theoretical Computer Science 55(1), 87136 (1987)

. Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general net theory.

In: Proceedings of the Advanced Course on General Net Theory of Processes and
Systems, London, UK, pp. 21-163. Springer, Heidelberg (1980)

Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, IEEE Computer Society (Full version avail-
able as a technical report) pp. 412-416 (2001)

Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61,
199-224 (1988)

Goltz, U., Reisig, W.: Weighted Synchronic Distances. In: Girault, C., Reisig, W.
(eds.) Selected Papers from the First and the Second European Workshop on Ap-
plication and Theory of Petri Nets. Informatik-Fachberichte, vol. 52, pp. 289-300.
Springer, Heidelberg (1981)

Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and
Control 57(2/3), 125-147 (1983)

van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: LogLogics:
A logic for history-dependent business processes, vol. 65(1) (2007)

Hopcroft, J., Ullman, J.: Introduction to Automata, Theory, Languages, and Com-
putation. Addison-Wesley, London (1979)

Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. In: Monographs in Theoretical Computer Science, Springer, Heidelberg (1997)
Montanari, U., Pistore, M.: History-dependent automata: An introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1-28.
Springer, Heidelberg (2005)

Petri, C.A.: Interpretations of net theory. Technical Report ISF-Report 75.07
(1975)

Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In:
Parikh, R. (ed.): Logics of Programs. LNCS, vol. 193, pp. 269-283. Springer, Hei-
delberg (1985)

Silva, M., Murata, T.: B-fairness and structural b-fairness in Petri net models of
concurrent systems. J. Comput. Syst. Sci. 44(3), 447-477 (1992)

Suzuki, I., Kasami, T.: Three measures for synchronic dependence in Petri nets.
Acta Inf. 19, 325-338 (1983)

Valk, R.: On the computational power of extended Petri nets. In: Winkowski, J.
(ed.): Mathematical Foundations of Computer Science 1978. LNCS, vol. 64, pp.
526-535. Springer, Heidelberg (1978)

Wimmel, H., Priese, L.: Algebraic characterization of Petri net pomset semantics.
In: Mazurkiewicz, A.W, Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 406-420. Springer, Heidelberg (1997)

Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets. LNCS, vol. 255, pp. 325-392. Springer, Heidelberg (1986)


http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Complete Process Semantics for Inhibitor Nets

Gabriel Juhés2, Robert Lorenz!, and Sebastian Mauser!
! Department of Applied Computer Science,

Catholic University of Eichstitt-Ingolstadt
{robert.lorenz, sebastian.mauser}@ku-eichstaett.de
2 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia
gabriel.juhas@stuba.sk

Abstract. In this paper we complete the semantical framework proposed in
for process and causality semantics of Petri nets by an additional aim and develop
process and causality semantics of place/transition Petri nets with weighted in-
hibitor arcs (pti-nets) satisfying the semantical framework including this aim.
The aim was firstly mentioned in [8]] and states that causality semantics deduced
from process nets should be complete w.r.t. step semantics in the sense that each
causality structure which is consistent with the step semantics corresponds to
some process net. We formulate this aim in terms of enabled causality structures.

While it is well known that process semantics of place/transition Petri nets
(p/t-nets) satisfy the additional aim, we show that the most general process se-
mantics of pti-nets proposed so far [13]] does not and develop our process seman-
tics as an appropriate generalization.

1 Introduction

The study of concurrency as a phenomenon of system behavior attracted much attention
in recent years. There is an increasing number of distributed systems, multiprocessor
systems and communication networks, which are concurrent in their nature. An impor-
tant research field is the definition of non-sequential semantics of concurrent system
models to describe concurrency among events in system executions, where events are
considered concurrent if they can occur at the same time and in arbitrary order. Such
non-sequential semantics is usually deduced from the so called step semantics of a con-
current system model.

For the definition of step semantics it is generally stated which events can occur in a
certain state of the system at the same time (synchronously) and how the system state
is changed by their occurrence. Such events form a step (of events). Given an initial
state, from this information all sequences of steps which can occur from the initial
marking can easily be computed. The set of all possible such step sequences defines the
step semantics of a concurrent system model. A step sequence can be interpreted as a
possible observation of the systems behavior, where the event occurrences in one step
are observed at the same time and the event occurrences in different steps are observed
in the order given by the step sequence.

Non-sequential semantics are based on causal structures — we will also call them sce-
narios in the following — which allow to specify arbitrary concurrency relations among

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 1844203.2007.
(© Springer-Verlag Berlin Heidelberg 2007
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events. Non-sequential semantics for this paper is a set of scenarios. A scenario al-
lows (generates) several different observations, since the occurrence of events which
are concurrent in the scenario can be observed synchronously or also in arbitrary order.
Therefore, a given scenario only represents behavior of the system if it is consistent
with the step semantics in the sense that all of its generated observations belong to
the step semantics of the system. Non-sequential semantics which consists only of sce-
narios satisfying this property we call sound w.r.t. step semantics. On the other hand,
all scenarios which are consistent with the step semantics represent behavior of the sys-
tem. Non-sequential semantics which contains al/ such scenarios we call complete w.r..
the step semantics. In other words, a complete non-sequential semantics includes each
causal structure satisfying that all observations generated by the causal structure are
possible observations of the system. Note here that if we add causality to a causal struc-
ture which is consistent with the step semantics the resulting causal structure is again
consistent with the step semantics (since it generates less observations). Thus, a com-
plete non-sequential semantics can be given by such causal structures consistent with
the step semantics satisfying that removing causality from the causal structure results
in a causal structure not consistent with the step semantics. Such causal structures ex-
press minimal causal dependencies among events. Altogether, complete non-sequential
semantics represent minimal causalities.

Therefore, an important aim of each semantical framework for the definition of a
non-sequential semantics of particular formalisms for concurrent systems is that a non-
sequential semantics is defined sound and complete w.r.t. the step semantics of the for-
malism. In this paper we consider this aim for Petri nets. These are one of the most
prominent formalisms for understanding the concurrency phenomenon on the theoreti-
cal as well as the conceptual level and for modeling of real concurrent systems in many
application areas [7]. The most important and well-known concept of non-sequential
semantics of Petri nets are process semantics based on occurrence nets [4/3]. From the
very beginning of Petri net theory processes were based on partial orders relating events
labeled by transitions (an event represents the occurrence of a transition): Any process
directly defines a respective partial order among events, called the associated run, in
which unordered events are considered to be concurrent. Since adding causality to a
run still leads to possible system behavior, a non-sequential semantics of a Petri net can
also be given as the set of sequentializations of runs (a sequentialization adds causality)
of the net. This set is also called causal semantics of the net, since it describes its causal
behavior. Note that in most cases partial orders are suitable to describe such behavior
but sometimes generalizations of partial orders are needed as appropriate causal struc-
tures. In the case of inhibitor nets under the so-called a-priori semantics [6], so called
stratified order structures (so-structures) represent the causal semantics.

Since the basic developments of Petri nets, more and more different Petri net classes
for various applications have been proposed. It turned out to be not easy to define
process semantics and related causality semantics in the form of runs for such net
classes. Therefore, in (in the context of defining respective semantics for inhibitor
nets) a semantical framework aiming at a systematic presentation of process and causal-
ity semantics of different Petri net models was developed (see Figure 3 in Section [3)):
Any process semantics should fulfill the reasonable aims stated by the framework.
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These aims are reduced to several properties that have to be checked in a particular
practical setting. The most important of these aims is the soundness of process seman-
tics and causality semantics w.r.t. step semantics as described above. For Petri nets,
soundness means that each observation generated by a process or a run is a possible
step occurrence sequence of the Petri net. But this general framework — as well as many
other particular process definitions for special Petri net classes — does not regard the
described aim of completeness. In the Petri net context, process and causality seman-
tics are complete w.r.t. step semantics if each causality structure consistent with the step
semantics adds causality to or is equal to some run of the Petri net. Instead another aim
of the framework from requires a kind of weak completeness, saying that each step
occurrence sequence should be generated by some process.

For place/transition nets (p/t-nets) a labeled partial order (LPO) which is consistent
with the step semantics is called enabled [17/18|8]). It was shown in that an LPO is
enabled if and only if it is a sequentialization of a run corresponding to a process (see
also [17/18I8]). Thus, process and causality semantics of p/t-nets are sound and com-
plete w.r.t. step semantics. In particular, from the completeness we deduce that enabled
LPOs with minimal causal dependencies between events (thus maximal concurrency)
— so called minimal enabled LPOs — are generated by processesEl This is an essen-
tial property of p/t-net processes and justifies their success as non-sequential semantics
describing system behavior.

Therefore, the aim of completeness should also hold for process semantics of other
Petri net classes. To this end, we included it in the semantical framework of [13]]. We will
discuss the aim of completeness for process definitions of inhibitor nets. As stated in
[13]], Petri nets with inhibitor arcs are intuitively the most direct approach to increasing
the modeling power of Petri nets”. Moreover inhibitor nets have been found appropriate
in various application areas [1I3]. Accordingly, for these net classes various authors
proposed process definitions regarding different interpretations of the occurrence rule
of inhibitor nets. In this paper we will focus on the most general class of pti-nets and
its process definition from E We show that the general a-priori process definition
of does not fulfill the aim of completeness and propose appropriate changes of the
process semantics. Thus we develop an alternative process definition which fulfills the
complete semantical framework of Figure Blincluding the aim of completeness.

As mentioned in the context of the a-priori semantics, LPOs are not expressive
enough to describe the causal behavior of a pti-net. Instead, so-structures are used on
the causal level. Thus the aim of completeness can be formulated for this net class in the
following way: For any enabled so-structure there is a process with associated run in
the form of an so-structure such that the enabled so-structure sequentializes the run. As
in the case of LPOs, an so-structure is enabled if it is consistent with the step semantics
of pti-nets in the above described sense.

The paper is structured as follows: First the basic notions of pti-nets, processes of
pti-nets, so-structures (see [13]]) and enabled so-structures are introduced (section [2).
Then in section 3] the semantical framework of will be discussed in the context of

! In case of p/t-nets and their processes (runs), not each enabled LPO is a run and there are also
non-minimal runs, but each minimal enabled LPO is a minimal run.
2 We will briefly consider alternative process definitions for inhibitor nets in the conclusion.
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introducing a new requirement — the aim of completeness. Subsequently in the main
part of the paper (section ) we will show why the a-priori process semantics for pti-
nets in does not fulfill the aim of completeness. Based on these considerations
we propose an alternative process semantics implementing the complete semantical
framework including the aim of completeness.

2 Preliminaries

In this section we recall the basic definitions of so-structures, pti-nets (equipped with the
a-priori semantics) and process nets of pti-nets, and finally define enabled so-structures.

Given a set X we will denote the set of all subsets of X by 2% and the set of all
multi-sets over X by N¥. A set can always be viewed as a multi-set m with m < 1 and
correspondingly a multi-set m < 1 can always be viewed as a set. We further denote
the identity relation over X by idx, the reflexive, transitive closure of a binary relation
R over X by R*, the transitive closure of R by RT and the composition of two binary
relations R, R’ over X by Ro R'.

Inhibitor nets are an extension of classical Petri nets enhanced with inhibitor arcs. In
their simplest version inhibitor arcs test whether a place is empty in the current mark-
ing (zero-testing) as an enabling condition for transitions. In the most general version
of pti-nets, inhibitor arcs test if a place contains at most a certain number of tokens
given by weights of the inhibitor arcs (instead of zero-testing). In pictures inhibitor arcs
are depicted by arcs with circles as arrowheads. Figure [I] shows a pti-net, where the
transitions ¢ and v test a place to be empty and transition w tests a place to hold at most
one token. As explained in [6I12I13], "earlier than” causality expressed by LPOs is not
enough to describe causal semantics of pti-nets w.r.t. the a-priori semantics. In Figure[I]
this phenomenon is depicted: In the a-priori semantics the testing for absence of tokens
(through inhibitor arcs) precedes the execution of a transition. Thus ¢ cannot occur later
than u, because after the occurrence of u the place connected with ¢ by an inhibitor
arc (with weight O representing zero-testing) is marked. Consequently the occurrence
of ¢ is prohibited by this inhibitor arc. Therefore ¢ and » cannot occur concurrently
or sequentially in order v — t. But they still can occur synchronously or sequentially
in order t — wu, because of the occurrence rule “’testing before execution” (details on
the occurrence rule can be found later on in this section). This is exactly the behavior
described by ¢ not later than w”. After firing ¢ and u we reach the marking in which
every non-bottom and non-top place of the net NI contains one token. With the same
arguments as above the transitions v and w can occur in this marking synchronously
but not sequentially in any order. The relationship between v and w can consequently
be expressed by a symmetric not later than” relation between the respective events -
none may occur later than the other. The described causal behavior of N1 is illustrated
through the run x(AON) on the right side of Figure[Tl The solid arcs represent a (com-
mon) “earlier than” relation. Those events can only occur in the expressed order but not
synchronously or inversely. Dashed arcs depict the “not later than” relation explained
above. Partial orders can only model the “earlier than” relation, but it is not possible to
describe relationships as in the example between ¢ and u as well as between v and w,
where synchronous occurrence is possible but concurrency is not existent.
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O O Oaon  xao0N)

Fig. 1. A pti-net NI (inhibitor arcs have circles as arrowheads), an a-process AON of NI and
the associated run x(AON)

Altogether there exist net classes including inhibitor nets where synchronous and
concurrent behavior has to be distinguished In [6] causal semantics based on so-
structures (like the run x(AON)) consisting of a combination of an "earlier than” and a
“not later than” relation between events were proposed to cover such cases.

Before giving the definition of stratified order structures (so-structures), we recall
the notion of a directed graph. This is a pair (V, —), where V is a finite set of nodes
and —C V x V is a binary relation over V called the set of arcs. Given a binary relation
—, we write a — b to denote (a,b) € —. Two nodes a,b € V are called independent
w.rt. — if @ 4 band b 4~ a. We denote the set of all pairs of nodes independent w.r.t.
— by co_, C V xV.A (strict) partial order is a directed graph po = (V, <), where <
is an irreflexive and transitive binary relation on V. If co. = idy then (V, <) is called
total. Given two partial orders po; = (V, <1) and poo = (V, <3), we say that po 5 is
a sequentialization (or extension) of po 1 if <;C<s.

So-structures are, loosely speaking, combinations of two binary relations on a set
of events where one is a partial order representing an “earlier than” relation and the
other represents a not later than” relation. Thus, so-structures describe finer causalities
than partial orders. Formally, so-structures are relational structures satisfying certain
properties. A relational structure (rel-structure) is a triple S = (V, <, C), where V is
a set (of events),and < C V x V and C C V x V are binary relations on V. A rel-
structure S’ = (V, <’, ') is said to be an extension (or sequentialization) of another
rel-structure S = (V, <, C), written S C &', if < C <’ and = C .

Definition 1 (Stratified order structure). A rel-structure S = (V,<,C) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u,v,w e V:

(CHu i£ u. (CHuCvCwAu#w=— ul w.
(CAu<v=uCv. (CHhuCv<wVu<vLCw=— u~<w.

In figures, < is graphically expressed by solid arcs and C by dashed arcs. According to
(C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs which

3 Further examples of such net classes are briefly mentioned in the conclusion.
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can be deduced by (C3) and (C4). It is shown in [6] that (V, <) is a partial order (thus
a partial order can always be interpreted as an so-structure with — = <). Therefore,
so-structures are a generalization of partial orders. They turned out to be adequate to
model the causal relations between events of complex systems regarding sequential,
concurrent and synchronous behavior. In this context < represents the ordinary “earlier
than” relation (as in partial order based systems) while — models a “not later than”
relation (recall the example of Figure[T)).

Similar to the notion of the transitive closure of a binary relation the {-closure S of
arel-structure S = (V, <, C) is defined by S© = (V, <g0,Cs0) = (V, (XULC)* 0 <o
(RUD)* (RuUD)* \ idy). Arel-structure S is called {-acyclic if <go is irreflexive.
The {-closure S© of a rel-structure S is an so-structure if and only if S is {-acyclic
(for this and further results on the {>-closure see [6]).

For our purposes we will only consider labeled so-structures (LSOs). Nodes of an
LSO represent transition occurrences of a Petri net (constituted by node labels as in
Figure[T)). Formally LSOs are so-structures S = (V, <, C) together with a set of labels
T and a labeling functionl : V' — T. A labeling function [ is lifted to a subset Y of V'
in the following way: [(Y') is the multi-set over T given by [(Y)(¢) = |l (t) N Y| for
every t € T'. We use the notations defined for so-structures also for LSOs.

We introduce an important subclass of so-structures similar to the subclass of total
orders in the case of partial orders.

Definition 2 (Total linear so-structure). An so-structure S = (V, <, C) is called total
linear if cox = (C\<) Uidy. The set of all total linear extensions (or linearizations)
of an so-structure S’ is denoted by lin(S").

Total linear so-structures are maximally sequentialized in the sense that no further <-
or - relations can be added maintaining the requirements of so-structures according to
Definition [l Therefore the linearizations lin(S’) of an so-structure S’ are its maximal
extensions. Note that a total linear so-structure lin = (V, <, ) represents a sequence
of (synchronous) steps 7y ... 7, (we also write lin = 77 ...7,). A (synchronous) step
is a set of cyclic C-ordered events (forming a so called C-clique — such events can only
occur synchronously as explained in the context of Figure[Il) and the sequential ordering
is caused by <-relations between these steps. That means 7; ... 7, and (V, <, C) are
related through V' = (Ji_; 75, < = U, ;7 x 7y and C = (Ui, 7 x i) \ idy) U <.
For example, the linearizations of the run x(AON) in Figure [[] are the sequences of
(synchronous) steps tu{v, w} and {¢,u}{v, w}. By abstracting from the nodes of a
total linear LSO lin = (V, <, C,[) representing 7y ... T, every step (set) of events 7;
can be interpreted as a step (multi-set) {(7;) of transitions using the labeling function.
This is a general principle. That means we will interpret such a (synchronous) step
sequence 7 . .. 7 of events based on a total linear LSO lin = (V, <, C, 1) as a sequence
olin = U(m1) ... l(7y,) of (synchronous) transition steps in a Petri net. Thus, we often do
not distinguish total linear LSOs and respective sequences of transition steps in a Petri
net. Lastly we need the notion of prefixes of so-structures. These are defined by subsets
of nodes which are downward closed w.r.t. the C-relation:
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Definition 3 (Prefix). Let S = (V, <, ) be an so-structure and let V! C V be a set
of events such that v’ € V', u C v = u € V'. Then V' is called prefix w.r.t. S. A
prefix V' of u € V '\ V' is a prefix w.r.t. S satisfying (v < u = v € V).

The prefixes w.r.t. K(AON) in Figure[Il are the event sets {¢}, {¢,u} and {¢,u, v, e}.
The only prefix of w is {¢,u}, since v and w may not occur in a prefix of w (w C v)
and u has to occur in a prefix of w (u < w). We have the following relation between
prefixes and linearizations of so-structures:

Lemma 1. Let V' be a prefix (of u € V) w.rt. an so-structure S = (V,<,C), then
there exists lin € lin(S) such that V' is a prefix (of u) w.r.t. lin.

Proof. lin = 11 ...7T, can be constructed as follows: 4 = {v € V' | Vo' € V' :
vV Avlh, e ={ve V' \n | W e V"\ 71 : v £ v} and so on, i.e. we define
7, C V' as the set of nodes {v € V' \ (U;;ll ;) | Yo' e V''\ (U;;ll ;) 1 v A v}

which are minimal w.r.t. the restriction of < onto the node set V" (UZ;;11 7;), as long as

V’\ (U;;ll 7;) # 0. Then continue with the same procedure on V\ V' = V'\ (U;_, 75),

ie. 71 = {veV\ (U;:1 ;) | Yo' e V'\ (U;:1 7;) : v' A v} and so on. By
construction V” is a prefix (of u) w.r.t. lin. A straightforward computation also yields
lin € lin(S). O

A prefix V'’ w.r.t. a total linear so-structure lin = 7 ... 7, always represents a primary
part of the respective (synchronous) step sequence, i.e. V' = J <; 7j for some i €
{0,...,n}. If V' is a prefix of u, then u € ;4. -

Next we present the net class of pti-nets (p/t-nets with weighted inhibitor arcs). As
usual, a p/r-net is a triple N = (P, T, W), where P is a finite set of places, T is a finite
set of transitions and W : (P x T)) U (T' x P) — N is the weight function representing
the flow relation. The pre- and post-multi-set of a transition ¢ € 7" are the multi-sets of
places given by °t(p) = W(p,t) and t* (p) = W (¢, p) for all p € P. This notation can
be extendedto U € N” by *U(p) = 3_,., U(t) *t(p) and U* (p) = >, U(1)E* (p)
forall p € P. Analogously we can define pre- and post-multi-sets of multi-sets of places
as multi-sets of transitions. Each m € N is called a marking of N and each U € NT
is called a step of N. U is enabled to occur in m if and only if m > °U. In this case,
its occurrence leads to the markingm’ =m — *U + U*®.

Definition 4 (Pti-net). A marked pti-net is a quadruple NI = (P, T, W, I, mg), where
Und(NI) = (P,T,W) is a p/t-net (the underlying net of NI), my the initial marking of
NIandI: P xT — NU{oo} is the inhibitor (weight) function (we assume oo > n
for every n € N). For a transition t the negative context ~t € (N U {co})¥ is given
by ~t(p) = I(p,t) for all p € P. For a step of transitions U, ~U € (NU {oo})F is
givenby ~U(p) = min({oco}U{ "t(p) | t € U}). A place p with ~t(p) # oo is called
inhibitor place of t.

A step of transitions U is (synchronously) enabled to occur in a marking m if and
only if it is enabled to occur in the underlying p/t-net Und(N 1) and in addition m <
~U. The occurrence of U leads to the marking m' = m — *U + U®. This is denoted

U . L ;
by m — m'. A finite sequence of steps of transitions 0 = Uy ...U,, n € N, is
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called a step (occurrence) sequence enabled in a marking m and leading to m,,, denoted

. . . U
by m -5 m,,, if there exists a sequence of markings my, ..., my such that m —-
U. U,
my —= ... % my,. By EX(NI) we denote the set of all step sequences of a marked
pti-net N1.

Note that I(p,t) = k € N implies that ¢ can only occur if p does not contain more than
k tokens (as explained in the context of the inhibitor arc connected with w in Figure [T));
k = 0 coincides with zero-testing. Accordingly I(p,t) = co means that the occurrence
of t is not restricted through the presence of tokens in p. Thus a p/t-net can always be
interpreted as a pti-net with I = oco. In graphic illustrations, inhibitor arcs are drawn
with circles as arrowheads and annotated with their weights (see Figure [I). Inhibitor
arcs with weight co are completely omitted and the inhibitor weight 0 is not shown
in diagrams. The definition of enabledness in Definition M reflects the considerations
about the a-priori testing explicated above: the inhibitor constraints are obeyed before
the step of transitions is executed. For an example, see Figure[Iland the explanations at
the beginning of this section.

Now we introduce the process semantics for pti-nets as presented in [13]. The prob-
lem is that the absence of tokens in a place — this is tested by inhibitor arcs — cannot
be directly represented in an occurrence net. This is solved by introducing local extra
conditions and read arcs — also called activator arcs — connected to these conditions.
These extra conditions are introduced ”on demand” to directly represent dependencies
of events caused by the presence of an inhibitor arc in the net. The conditions are artifi-
cial conditions without a reference to inhibitor weights or places of the net. They only
focus on the dependencies that result from inhibitor tests. Thus, activator arcs repre-
sent local information regarding the lack of tokens in a place. The process definition of
is based on the usual notion of occurrence nets extended by activator arcs. These
are (labeled) acyclic nets with non-branching places (conditions) (since conflicts be-
tween transitions are resolved). By abstracting from the conditions one obtains an LSO
representing the causal relationships between the events. In the following definition B
represents the finite set of conditions, E the finite set of events, R the flow relation and
Act the set of activator arcs of the occurrence net.

Definition 5 (Activator occurrence net). A labeled activator occurrence net (ao-net)
is a five-tuple AON = (B, E, R, Act, ) satisfying:

B and F are finite disjoint sets,

RC (BxE)U(E x B)and Act C B x E,

| °bl], |b® | < 1 foreveryb € B,

the relational structure S(AON) = (E, <10¢s Cioc, U E) = (E, (RoR)|gxrU(Ro
Act), (Act™1 o R) \ idg, | g) is {-acyclic,

lis a labeling for BU E.

The LSO generated by AON is k(AON) = (E, <aon, Caon, l|g) = S(AON)©.

The relations <, and ;.. represent the local information about causal relationships
between events. Figure 2 shows their construction rule. x£(AON) captures all (not only
local) causal relations between the events (see also Figure[I). Note that Definition [Blis
a conservative extension of common occurrence nets by read arcs.
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Fig. 2. Generation of the orders <, and T, in ao-nets

The initial marking MIN Aon of AON consists of all conditions without incoming
flow arcs (the minimal conditions w.r.t. R). The final marking MAX son of AON con-
sists of all conditions without outgoing flow arcs (the maximal conditions w.r.t. R).
There are two different notions of configurations and slices for ao-nets. A set of events
D C E is a strong configuration of AON, ife € D and f —<;C e implies f € D. D is
called a weak configuration of AON, if ¢ € D and f(=<joc UC o) Te implies f € D. A
strong slice of AON is a maximal (w.r.t. set inclusion) set of conditions S C B which
are incomparable w.r.t. the relation R o <}, . o R, denoted by S € SSL(AON). A weak
slice of AON is a maximal (w.r.t. set inclusion) set of conditions S C B which are
incomparable w.r.t. the relation R o (<o U Cjoe)* © R, denoted by S € WSL(AON).
In the example occurrence net from Figure[[l[WSL| = 4 and [SSL| = 12.

Every weak configuration is also a strong configuration and every weak slice is also
a strong slice. In it is shown that the set of strong slices of AON equals the set of
all sets of conditions which are generated by firing the events of a strong configuration.
An analogous result holds for weak slices and weak configurations. SSL(AON) equals
the set of all sets of conditions reachable from the initial marking MIN pon in AON
and WSL(AON) equals the set of all sets of conditions from which the final marking
MAX on is reachable in AON (using the standard a-priori occurrence rule of elemen-
tary nets with read arcs [13])). By MAR(C) we denote the marking resulting from the
initial marking of a net by firing the multi-set of transitions corresponding to a (weak
or strong) configuration C'.

Now we are prepared to define processes of pti-nets as in [13]. The mentioned artifi-
cial conditions are labeled by the special symbol A. They are introduced in situations,
when a transition ¢ € T tests a place in the pre- or post-multi-set of another transition
w € T for absence of tokens, i.e. when I(p,t) # oo and *w(p) + w*® (p) # 0O for
some p € P. Such situations are abbreviated by w —o ¢. If w —o ¢ holds, then any
two occurrences f of w and e of ¢ are adjacent to a common A-condition representing
a causal dependency of f and e. That means there exists a condition b € B such that
(b,e) € Act and *f(b) + f* (b) # 0 (remember that *f, f* € BY are multi-sets over
B) — abbreviated by f —e e (see requirement 6. in Definition [6). Thus the axiomatic
process definition in is as follows:

Definition 6 (Activator process). An activator process (a-process) of N1 is an ao-net

AON = (B W B, E, R, Act,l) satisfying:

1. I(B)C PandI(E) C T.
2. The conditionsin B = {b | Je € E : (b,e) € Act} are labelled by the special
symbol A.
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3. mg = l(MINAON N B)

Foralle € E, *l(e) =1(*enN B)andl(e)® =l(e®* N B).

5. Forall b € B, there are unique g,h € E such that *b+b* = {g}, (b,h) € Act
and l(g) —o l(h).

6. Foralle, f € E, ifI(f) —o l(¢) then there is exactly one ¢ € B such that f —e ¢
through c. _

7. Foralle € E and S € SSL(AON), if *eU{b € B | (b,e) € Act} C S then
(SN B) < ~le).

R

The set of a-processes of N1 (given by this axiomatic definition) is denoted by (N T).
For AON € o(N1I) the generated so-structure k(AON) is called a run (associated to
AON).

The occurrence net AON in Figure[Tis indeed an a-process: All A-labeled conditions
satisfy 5. All A-labeled conditions which are necessary according to 6. are drawn. Con-
dition 7. must be simply verified for the strong slices produced by strong configura-
tions, e.g. MAR(0), MAR({¢}), MAR({u}), MAR({u, t}) and so on. Thus, x(AON)
is arun.

The requirements 1., 3., 4. in Definition [] represent common features of processes
well-known from p/t-nets. They ensure that a-processes constitute a conservative gen-
eralization of common p/t-net processes. That means, the set of processes of Und(/N1)
coincides with the set of processes resulting from «(/NI) by omitting the A-labeled
conditions (omitting the A -conditions from an a-process AON leads to the so called un-
derlying process UAON of AON). If NT has no inhibitor arcs (thus NI = Und(N1))
a-processes coincide with common processes. Thus, Definition[@] can also be used to de-
fine processes of p/t-nets. The properties 2. and 5. together with the rule 6. — describing
when A-conditions have to be inserted — constitute the structure of the A-conditions.
The requirement 7. expresses that in the strong slices of AON the inhibitor constraints
of the pti-net have to be properly reflected. That means, for events enabled in a certain
slice of AON the respective transitions are also enabled in the respective marking in the
pti-net V1.

We finally formally define, when we consider an LSO S to be consistent with the step
semantics X of a given pti-net (Definition ). Such LSOs we call enabled (w.r.t. the
given pti-net). Intuitively it is clear what enabledness means: The transitions associated
to the events of an LSO can be executed in the net regarding all given concurrency
and dependency relations. For the formal definition the concurrency and dependency
relations described by S are reduced to the set of step sequences sequentializing S
(given by lin(S)). Such step sequences can be considered as observations of S, where
transition occurrences within a step are observed at the same time (synchronously), and
step occurrences are observed in the order given by the step sequence. If each such
observation of S is an enabled step occurrence sequences of the pti-net, S is consistent
with the step semantics.

Definition 7 (Enabled LSO). An LSO S = (V, <, C, 1) is enabled w.r.t. a marked pti-
net NI = (P,T,W,1,mg) if and only if every lin € lin(S) represents an enabled
(synchronous) step sequence oy, in EX(NI) (of NI). ELCS(NI) is the set of all
so-structures enabled w.r.t. a given marked pti-net N I.



194 G. Juhas, R. Lorenz, and S. Mauser

With this definition one can easily check that the run x(AON) in Figure[lis enabled
w.r.t. NI: The two linearizations of k(AON) represent the sequences of synchronous
steps tu{v, w} and {¢, u}{v, w} which are both executable in N1I.

Definition [7]is consistent with and a proper generalization of the notion of enabled
LPOs in the context of p/t-nets: An LPO lpo = (V, <,l) with [ : V' — T is enabled
w.r.t. a marked p/t-net (P, T, W, my) if each step sequence which extends lpo is a step
occurrence sequence enabled in myg. Since in LPOs concurrent and synchronous tran-
sition occurrences are not distinguished, here a step is considered as a set of events
labeled by transitions (transition occurrences) which are concurrent.

Beside the consistency of Definition [7] with the definition of enabled LPOs, there
are two general semantical arguments justifying this definition: First the set of total lin-
ear LSOs lin(S), which are tested for enabledness in the Petri net, represents S. This is
shown in [6] by the following generalization of Szpilrajns theorem [16] to so-structures:
S = (V.Nw.<.0etins) = Nv,<.0)etin(s) T)- Second the set lin(S) can express ar-
bitrary concurrency relations between transition occurrences of a pti-net, since con-
currency equals the possibility of sequential occurrence in any order and synchronous
occurrence. Thus, considering more generally sequences of concurrent steps of syn-
chronous steps instead of simply sequences of synchronous steps does not lead to a
higher expressivity of concurrency. These two arguments justify the choice of synchro-
nous step sequences as the operational semantics (of executions) of pti-nets. Thus the
definition of enabled LSOs based on synchronous step sequences and total linear LSOs
constitutes the adequate causal semantics.

3 The Semantical Framework

In a general framework for dealing with process semantics of Petri nets was pro-
posed (see Figure 3 left part). It aims at a support for a systematic development of
process and causality semantics for various Petri net classes using a common scheme.
In Figure 3l the abbreviations mean the following. PN represents a Petri net model
together with an operational occurrence rule. £X" are executions such as step sequences
in accordance to the occurrence rule employed by PA. LAN represents the process se-
mantics given by labeled acyclic nets such as occurrence nets. LEX are labeled execu-
tions such as step sequences of nets in LAN . Finally, £LCS are labeled causal structures
describing net behavior through causality relations between events. The arrows indicate
functions that define and relate the different semantical views. They represent the con-
sistency requirements for process semantics according to this framework. w yields the
set of executions (step sequences) providing the operational semantics (Definition €]
for pti-nets). o defines the axiomatic process definition (Definition[6)). x associates so
called runs to the process definition (Definition [6); x<(LAN) C LCS defines the set
of runs of a net. A represents the operational semantics of the process definition given
by labeled step sequences (defined through a slight modification of the step occurrence
rule of elementary nets with read arcs under the a-priori semantics [13]]). Through ¢ a
labeled execution can be interpreted as an ordinary execution (defined as trivial mod-
ification omitting labels). € and ¢ relate a labeled causal structure with its generated



Complete Process Semantics for Inhibitor Nets 195

Fig. 3. Left: The semantical framework of [13]]. Right: The left semantical framework extended
by the completeness-requirement that any enabled causal structure has to be a sequentialization
of a run; this is depicted through £LCS and the adjacent arcs labeled by ¢ and v

labeled executions (e respectively ¢ are given as linearizations respectively intersections
in the case of LSOs). Finally, 7 represents the operational process definition starting
from executions.

This framework defines reasonable requirements for process semantics. It provides
a schematic approach to ensure that process and causality semantics developed for a
special Petri net class are consistently defined. In the framework is condensed to
five properties that have to be checked in each particular setting. Two of these properties
state that all mappings in Figure[Blare total and all mappings returning sets do not return
the empty set. Consistency is formulated there as the following separated properties:

Soundness: The process definition LAN should be sound w.r.t. the step semantics EX
in the sense that every run should be consistent with the step semantics.

Weak completeness: LAN should be weak complete w.rt. EX in the sense that £X
should be reproducible from LAN .

Construction of processes from step sequences: A process in LAN should be con-
structible from each step sequence in £X” generated by the process (by ).

Consistency of runs and processes (called Fitting in [13]))): Processes and correspond-
ing runs should generate the same step sequences.

Runs are reconstructible from step sequences (called Representation in [13])): Runs
from LCS should be reconstructible from step sequences in EX by ¢ o €.

But an important feature of process semantics relating runs and step semantics is not
present in this framework. On the one hand, ¢ o€ ensures that each run is consistent with
the step semantics (soundness). On the other hand, there is no requirement guarantee-
ing the converse, that each causal structure which is consistent with the step semantics
is generated by a run through adding causality to it (completeness). For p/t-nets this is
fulfilled (as mentioned in the Introduction), since every enabled LPO is a sequentializa-
tion of a run [IT]]. Together with the reverse statement that runs are enabled (soundness),
completeness guarantees that there are runs and processes which express all valid causal
behavior of the net regarding as much concurrency as possible. That means, the minimal
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causal dependencies in a net are reflected in the process semantics. To represent such
an aim of completeness, we add new relations to the semantical framework (Figure 3]
right part) by the introduction of enabled causal structures ££CS. The arc labeled by
6 represents the definition of enabled labeled causal structures £LCS from the opera-
tional semantics £X. The arc labeled with v relates enabled labeled causal structures
(ELCS) and runs (k(LAN) C LCS) in the above sense by assigning a run with less
causality to each enabled labeled causal structure (for which such a run exists). For-
mally, a labeled causal structure is said to have less causality then a second one, if each
labeled execution in £X’ generated by the second one is also generated by the first one
(where the labeled executions generated by a labeled causal structure are given by ¢).
Thus, through v o 6 we add an additional property to the process framework that we
call the aim of completeness.

Definition 8 (Aim of completeness). The mapping 6 assigns a set of step sequences
EX onto the set of causal structures ELCS enabled w.r.t. EX. The mapping 1 assigns
a run LCS with less causality to each enabled causal structure in ELCS for which such
a run exists.

The aim of completeness states that the mapping ) is total, i.e. that each enabled
causal structure adds causality to some run.

The absence of the aim of completeness in the framework of leads to process defin-
itions that do not have to represent minimal causal behavior. According to a process
definition that equals the operational step semantics (processes are step sequences) is
a valid process semantics. But the set of step sequences is not a reasonable process
semantics and process definitions not producing the minimal causalities are not really
useful. The aim of completeness in our framework solves this problem. It implies that
minimal enabled labeled causal structures coincide with (minimal) runs: On the one
hand a minimal enabled labeled causal structure has to be a sequentializations of a run,
on the other hand runs have to be enabled — so runs cannot have less causalities than
minimal enabled labeled causal structures.

4 Process Semantics of Pti-nets

The definition of a-processes from section 2l meets all requirements of the left semanti-
cal framework in FigureBlas shown in [[13]]. In the setting of pti-nets the additional aim
of completeness states that each enabled so-structure extends some run of the pti-net.
We show in this section that a-processes do not fulfill the aim of completeness. More-
over, we develop an alternative process definition preserving all the other requirements
of the semantical framework, such that the aim of completeness is fulfilled.

The basic intuition behind the fact that the a-processes from Definition [6] do not
generate minimal causalities is as follows: The definition uses constraints introduced
through artificial A-labeled conditions. They do not have counterparts on the pti-net
level, but rather represent dynamic causal relationships between events. Therefore, it
is possible that the definition of the A-conditions does not reflect the causalities in the
original pti-net such that too many constraints are introduced in the runs generated by
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Fig.4. A pti-net N1, an a-process AON1.1 of NI; and the associated run x(AON7.1) to-
gether with an ao-net AONj » that is a candidate to be a process of NI;, and the associated
run K(AON7 2). This example from shows that a-processes (mandatory) introduce unneces-
sary causalities.

a-processes. In this section we will step by step illustrate via examples why the aim of
completeness does not hold for a-processes and adapt their definition such that this aim
is finally fulfilled (all the other requirements will be preserved).

In the following we give two examples of LSOs enabled w.r.t. a marked pti-net,
which do not extend a run of the considered net. Each of these examples leads to a spe-
cific modification of Definition[6l We assume that events in these examples are labeled
by the identity mapping, i.e. u, ¢ and z are events representing the occurrence of the
transitions [(u) = w, I(t) = t and [(z) = z. The place connected to z by an inhibitor
arc in each example we denote by p.

The first example gave the authors of themselves. The a-process AONj 1 in
Figure[ shows that the technique of introducing A-labeled conditions according to De-
finition [6] in general generates too many constraints in the associated run x(AONj 1):
”One may easily verify that we can safely delete one of the activator arcs (but not both),
which leads to another a-process generating weaker constraints than AON; ;”. Indeed,
deleting for example the A-condition between t and z the resulting ao-net AONj o is
a reasonable process. The other A-condition orders « and z in sequence v — z and ¢
can occur concurrently to this sequence. On the other hand, omitting the A-condition
between ¢ and z contradicts 6. of Definition [6] because there holds ¢+ —o z. That means
AON; 5 is not an a-process (in particular the quoted statement is not exactly true). Thus,
the LSO x(AON; o) is enabled but does not sequentialize a run (since it can only be
generated by an ao-net without a A-condition adjacent to ¢ and z). An analogous ob-
servations holds symmetrically when deleting the A-condition between u and z instead
between t and z. Consequently, the first modification of Definition [f] is to replace re-
quirement 6. by requirement 6.”. According to 6.”, the unique condition ¢ € B is only
possible instead of required. Then the problem discussed above is solved and the ao-net
AON; 5 is actually a process.

6. Foralle, f € F, if f —e e then there is exactly one ¢ € B such that f —e e through
c.
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Fig.5. A pti-net N2, an ao-net AON> that is a candidate to be a process of NIs, and the
associated run x(AONz). The ao-net models executable causalities that cannot be generated
with a-processes.

The net N I5 of Figure 3] shows that the aim of completeness is still not fulfilled: If
u and ¢ occur causally ordered in sequence u — ¢ then z can fire concurrently to this
sequence because the place p never contains more than one token. It is even possible to
fire z concurrently to the synchronous step {u, ¢}. Consequently <(AON>), requiring
solely that u occurs “not later than” ¢, is enabled (check Definition [7). The only pos-
sibility to introduce such a causal dependency between v and ¢ on the process level is
through a A-condition between « and ¢. This is illustrated by the ao-net AON» (compare
Figure[2). But according to 5. of Definition[fl AON3 is not an a-process, since I(u) +o
[(t). Thus, a run which is extended by x(AON3) has no ordering between u, ¢ and z.
This is not possible because such a run is not enabled (the step sequence t — z — u
cannot be fired). That means x(AON3) does not sequentialize a run. Altogether, in 5.
an important possibility of generating causal dependencies from inhibitor arcs via A-
conditions is not present. Allowing A-conditions as in AONs solves this problem lead-
ing to a process having k(AON3) as its associated run. This A-condition represents the
causal dependency of u and ¢ caused by the inhibitor arc (p, z). It reflects the inhibitor
testing of z and not of w or ¢. A generalization of 5. allowing A-conditions also in sit-
uations as in this example is a next necessary step towards the aim of completeness.
Loosely speaking, we will allow to insert A-conditions additionally in the following
situation: If a transition, testing some place via an inhibitor arc, occurs concurrently to
transitions consuming and producing tokens in this place, these transition occurrences
must eventually be ordered via a A-condition. This A-conditions is intended to ensure
that tokens are consumed not later than produced in order to restrict the maximal num-
ber of tokens in this place according to the inhibitor weight. To this end, we replaces 5.
by the weaker requirement 5.”. It introduces a more general structural construction rule
of A-conditions using this intuition as follows:

5’ Forall b € B, there are unique g, h € E such that *b+b* = {g}. (b,h) € Act
and additionally [(g) — I(h) or *I(h)NI(g)®* N "z #Pforaz e T.

But the modifications proposed so far still do not ensure that AONj is a process,
since AON; does not fulfill 7. of Definition[@ The conditions resulting from only firing
t in the initial marking establish a strong slice S and z fulfills *z U {b € B | (b,2) €
Act} C S. That means that using the standard occurrence rule of elementary nets with
read arcs under the a-priori semantics S constitutes a reachable marking in the
process net and z is enabled in this marking in the process net. But obviously in the pti-
net z is not enabled in the marking resulting from firing ¢. This problem can be resolved
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as follows: In AONjs the event ¢ can fire in the initial marking, although the A-condition
generates the ordering “u not later than ¢”. Thus, firing ¢ in the initial marking disables
w. This means that we could have omitted © from AON, which leads to a different
ao-net. Consequently, it is a proper assumption that ao-nets should model only such
behavior in which every event of the ao-net actually occurs. Under this assumption,
firing ¢ in the initial marking is not a valid behavior of the ao-net and therefore the
problematic marking S is not a marking of interest. The markings of interest are the
markings reachable from the minimal conditions (MIN s0on, ) in the ao-net from which
we can reach the maximal conditions (MAX son,). That means, all events of the ao-net
not fired yet can still be executed starting in the respective marking. These markings are
represented by the weak slices of the ao-net. Therefore, we replace 7. by 7.”, where SSL
(strong slices) are replaced by WSL (weak slices) reflecting the above assumption:

7’ Foralle € E and S € WSL(AON), if *e U{b € B | (b,e) € Act} C S then
(SN B) < ~le).

This is a generalization of Definition [] since WSL C SSL. From the intuitive point
of view the two alternative formulations 7. and 7.” focus on different aspects: While the
consideration of SSL completely reflects the occurrence rule of elementary nets with
read arcs, the consideration of WSL additionally postulates that no event of the ao-net
may completely be disabled. This second assumption is also used in for defining
the executions LEX through the mapping A in the semantical framework of Figure
Bt X represents all step sequences of an a-process in LAN in which every event of
the process occurs. In this sense the change of the occurrence rule of ao-nets explained
above is an adaption to the idea of mandatory regarding all events used in the operational
semantics of ao-nets anyway. Therefore, this slightly altered occurrence rule of ao-nets
(that we will use) is completely consistent to the executions of ao-nets and thus even
fits better into the semantical framework.

Replacing 5., 6. and 7. by 5., 6. and 7." in Definition [f] as described here ensures
that the ao-net AONy is a process. So the above considerations lead to the following
alternative process definition and thus a change of the mapping « in Figure 3] (denoted
by o instead of o in Definition [Q):

Definition 9 (Complete activator process). A complete activator process (ca-process)
of NI is an ao-net AON = (B W B, E, R, Act, ) satisfying:

1. I(B)C Pandi(E) C T.

2. The conditionsin B = {b | 3e € E : (b,e) € Act} are labelled by the special
symbol A.
mo = l(MINAON n B)
4. Foralle € E, *l(e) =1(*eN B) andl(e)® =1(e®* N B).
For all b € B, there are unique g,h € E such that *b+b* = {g}, (b,h) € Act
and additionally 1(g) — I(h) or *I(h)N1(g)* N ~z# D foraz e T.
Foralle, f € E, if f —e e then there is exactly one ¢ € B such that f —e e through
c.
Forall e € E and S € WSL(AON), if *e U{b € B | (b,e) € Act} C S then
(SN B) < ~le).

W

“

S

~
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The set of ca-processes of N1 is denoted by o/ (NI). For AON € o/ (N1) the generated
so-structure kK(AON) is called a run (associated to AON).

Note that the requirements 1.,3.,4. of Definition[@]are preserved in Definition[@and thus
also ca-processes constitute a conservative generalization of common p/t-net processes.
Omitting the A-conditions from a ca-process AON leads to the so called underlying
process Und(AON) of AON, which is a process of Und(NT). We will show now as
the main result of this paper that the ca-process definition actually fulfills the aim of
completeness. Due to lack of space, we only give a sketch of the proof (which has three
pages). The complete proof can be found in the technical report [10]].

Theorem 1. For every enabled LSO S = (E, <,C,1) of a pti-net NI there exists a
ca-process AON € o/ (NI) whereas S is an extension of the run k(AON).

Proof (Sketch). The LPO lpog = (E, <,!1) underlying S is enabled w.r.t. Und(N1).
Thus there exists a process UAON = (B, E, R',l’) of Und(N1) fulfilling that lpog
sequentializes the run x(UAON). The basic idea is now to construct an ao-net AON
from UAON by adding all A-conditions to UAON which can be added according to
property 5.” while not producing causal dependencies contradicting S. Then this ao-net
AON = (BWB, E, R, Act,l) is the sought ca-process. It is clear that AON satisfies 1. -
4.,5” and 6.”. Thus, it only remains to show that AON meets condition 7.” of Definition
i.e. that givene € E and S € WSL(AON) with *eU{b € B | (b,e) € Act} C S
it holds that I(S N B) < ~I(e). For this, we fix a weak configuration C' of AON with
S = MAR(C) and show that [(e) is executable in the pti-net after the occurrence of
the transitions corresponding to events in C. To this end, we define a prefix Cp,.. of
e in S containing as many events from C' as possible. Using that S is enabled, we
can deduce that [(e) is executable in the pti-net after the occurrence of the transitions
corresponding to events in Cp,..: By Lemma[Ilthere is lin € lin(S) such that Cp,. is a
prefix of e w.r.t. [in. Because S is enabled the total linear so-structure lin = 71 ... 7,
represents an enabled synchronous step sequence of NI with Cp,. = U;;ll 7; and
e € 7; (fori € {1...n}). This implies that e can occur after C,.. Finally C},. can
be transformed in several steps into the set C' and in each step it can be shown that the
transformation does not disable [(e). O

In the following we briefly explain that the other aims of the semantical framework are
still fulfilled by the new process definition:

Soundness: Using Proposition 5.19 of it is easy to see that every run is enabled, i.e.
if AON € o/(NT), then ¢(e(k(AON))) C w(NI).

Consistency of runs and processes: Processes and runs generate the same step se-
quences, i.e. if AON € o/(NI), then ¢(k(AON)) = A(AON) (that means the rules for
constructing causal relationships between events from processes as shown in Figure 2]
are correct). This follows since in proposition 5.19 of this relation was shown for
arbitrary ao-nets (note here that the construction rules of the involved mappings A, s
and ¢ have not changed in contrast to [13], only the process definition constituting the
starting point of this relation is changed).
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Weak completeness: Any execution of the pti-net (£X) given by w(NT) is generated
from a ca-process, i.e. for any execution 0 € £X there exists an ca-process AON €
o (N1I) with o € ¢(A(AON)) (w(NT) € Uronea (v ?(A(AON))). This also holds
for ca-processes, because this is the relation generalized in comparison to a-processes
(the aim of completeness is a generalization of the weak completeness property).

Runs are reconstructible from step sequences: Each run is the intersection of all obser-
vations it generates, i.e. ¢ o € reconstructs a run. This relation holds because of the gen-
eralization of Szpilrajns theorem to so-structures described in the preliminaries (note
that in this context nothing is changed in contrast to [13])).

Construction of processes from step sequences: There is no obvious way to generalize
the constructive definition of 7w from because especially the new requirement 6.” of
Definition[J]is problematic: Now it is no more mandatory but optional to introduce A-
conditions between certain transitions (the transition candidates can be identified with
5.”) and one has to check whether 7.” holds (7. holds by construction). There is the fol-
lowing constructive process definition that is based directly on the axiomatic definition:
Given an enabled step sequence o of NI a ca-processes can be generated as follows:

— Construct a usual p/t-net process of Und(NI) (based on an occurrence net) starting
from o.

— Introduce arbitrary A-labeled conditions in accordance with 5. and 6.” of Definition

— Check 7. of Definition B if it is fulfilled the construction is finished, else perform
the next step.

— Introduce further A-labeled conditions in accordance with 5. and 6.” of Definition
then go back to the previous step.

All processes constructible with this algorithm produce the set of ca-processes 7’(o)
generated by 0. Moreover, the ca-processes generated from a step sequence o are the
ca-processes having o (provided with respective labels) as an execution. This algorithm
always terminates because there are only finite many possible A-labeled conditions in
accordance with 5.” and 6.” of Definition[d Introducing all such possible A-conditions
obviously leads to a ca-process, i.e. 7.” is then fulfilled in step 3. More precisely, the
number of possible A-conditions is at most quadratic in the number of events which
means that the number of repetitions of the steps 3 and 4 of the algorithm is polynomial.
Thus, only checking 7.” in step 3 may be not efficient, since there exists an exponential
number of (weak) slices in the number of nodes. But current research results on a similar
topic summarized in [[14] show that there exists an algorithm polynomial in time solving
this problem: In we present an algorithm (based on flow theory) that can be used
to calculate step 3 in polynomial time (of degree O(n?)). Therefore, with this construc-
tion the requirements interrelated with the mapping 7 in the semantical framework of
Figure[are also fulfilled.

5 Conclusion

In this paper we have developed a general semantical framework that supports the defin-
ition of process semantics and respective causal semantics for arbitrary Petri net classes.
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The framework is based on the semantical framework from [13]] additionally requiring
that process semantics should be complete w.r.t. step semantics: Each causal structure
which is consistent to step semantics — such causal structures we call enabled — should
be generated from a process net. Since for the description of causal net behavior of pti-
nets under the a-priori semantics labeled so-structures are applied, the notion of enabled
so-structures has been introduced. We were able to show that the process definition for
pti-nets from [13]] is not complete w.r.t. step semantics and to identify a structural gener-
alization of this process definition which is complete (while still satisfying all the other
requirements of the framework of [13]).

Possible further applications of the results of this paper are on the one hand the
usage of the semantical framework on further Petri net classes in order to check existing
process semantics and to evolve new process semantics. In the context of the paper, this
is in particular interesting for existing inhibitor net semantics [T9I6/2T2I13!8]: While
most aims of are checked for those process semantics, the new aim of completeness
is not (probably because this is the most complicated aim). Nevertheless a lot of these
process semantics seem to satisfy the aim of completeness (at least for the process
semantics of elementary nets with inhibitor arcs under the a-priori semantics as well
as the a-posteriori semantics there are formal proofs [9]). On the other hand the ca-
processes of this paper constitute a process definition for pti-nets under the a-priori
semantics expressing minimal causalities and can thus be useful e.g. for model checking
algorithms based on unfoldings.
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Abstract. Some design methods based on Petri nets modify the original
specification by behaviour-preserving insertion of new transitions. If the
unfolding prefix is used to analyse the net, it has to be re-unfolded after
each modification, which is detrimental for the overall performance.

The approach presented in this paper applies the transformations di-
rectly to the unfolding prefix, thus avoiding re-unfolding. This also helps
in visualisation, since the application of a transformation directly to the
prefix changes it in a way that was ‘intuitively expected’ by the user,
while re-unfolding can dramatically change the shape of the prefix. More-
over, rigourous validity checks for several kinds of transition insertions
are developed. These checks are performed on the original unfolding pre-
fiz, so one never has to backtrack due to the choice of a transformation
which does not preserve the behaviour.

Keywords: Petri net unfoldings, transition insertions, transformations,
Petri nets, encoding conflicts, STGs, asynchronous circuits.

1 Introduction

Some design methods based on Petri nets modify the original specification by
behaviour-preserving insertion of new transitions. For example, Signal Transi-
tion Graphs (STGs) are a formalism widely used for describing the behaviour of
asynchronous control circuits. Typically, they are used as a specification language
for the synthesis of such circuits [2I5/I8]. STGs are a class of interpreted Petri
nets, in which transitions are labelled with the names of rising and falling edges
of circuit signals. In the discussion below, though we have in mind a particu-
lar application, viz. synthesis of asynchronous circuits from STG specifications,
almost all the developed techniques and algorithms are not specific to this ap-
plication domain and suitable for general Petri nets (e.g., one can envisage the
applications to action refinement).

Circuit synthesis based on STGs involves: (i) checking the necessary and suffi-
cient conditions for the STG’s implementability as a logic circuit; (ii) modifying,
if necessary, the initial STG to make it implementable; and (iii) finding an ap-
propriate Boolean cover for the next-state function of each output and internal
signals, and obtaining them in the form of Boolean equations for the logic gates
of the circuit.
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Step (i) of this process may detect state encoding conflicts, which occur when
semantically different reachable markings (i.e., enabling different sets of output
signals) of the STG have the same binary encoding, i.e., the binary vector con-
taining the value of each signal in the circuit, as illustrated in Figures [fa,b).
A specification containing such encoding conflicts is not directly implementable:
intuitively, at the implementation level the only information available to the cir-
cuit is the encoding, and so it is unable to distinguish between the conflicting
states.

To proceed with the synthesis, one first has to resolve the encoding conflicts
(step (ii) of the process), which is usually done by adding one or more new
internal signals helping to distinguish between conflicting states, as illustrated
in Figures [[l(d,e). Hence, the original STG has to be modified by insertion of
new transitions, in such a way that its ‘external’ behaviour does not change.
Intuitively, insertion of new signals extends the encoding vector, introducing
thus additional ‘memory’ helping the circuit to trace the current state.

One of the commonly used STG-based synthesis tools, PETRIFY [3[5], per-
forms all of these steps automatically, after first constructing the state graph (in
the form of a BDD [1]) of the initial STG specification. While the state graph
based approach is relatively well-studied, the issue of computational complex-
ity for highly concurrent STGs is quite serious due to the state space explosion
problem [I7]; that is, even a relatively small STG can (and often does) yield a
very large state space. This puts practical bounds on the size of control circuits
that can be synthesised using such techniques, which are often restrictive, espe-
cially if the STG models are not constructed manually by a designer but rather
generated automatically from high-level hardware descriptions (e.g., PETRIFY
often fails to synthesise circuits with more than 20-25 signals).

In order to alleviate this problem, Petri net analysis techniques based on
causal partial order semantics, in the form of Petri net unfoldings [6I8], were
applied to circuit synthesis. Since in practice STGs usually exhibit a lot of con-
currency, but have rather few choice points, their complete unfolding prefixes
are often exponentially smaller than the corresponding state graphs; in fact, in
many of the experiments conducted in [S[12] they are just slightly bigger then the
original STGs themselves. Therefore, unfolding prefixes are well-suited for both
visualisation of an STG’s behaviour and alleviating the state space explosion
problem. The papers [I2II3I14] present a complete design flow for complex-gate
logic synthesis based on Petri net unfoldings, which completely avoids generating
the state graph, and hence has significant advantage both in memory consump-
tion and in runtime, without affecting the quality of the solutions. Moreover,
unfoldings are much more visual than state graphs (the latter are hard to under-
stand due to their large sizes and the tendency to obscure causal relationships
and concurrency between the events), which enhances the interaction with the
user.

Arguably, the most difficult task in the complex-gate logic synthesis from
STGs is resolution of encoding conflicts, which is usually done by signal inser-
tion. This is the only part of the design flow presented in [T2JI3I14] which may
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Fig.1. An STG modelling a simplified VME bus controller (a), its state graph with
an encoding conflict between two states (b), a finite and complete unfolding prefix
with two configurations corresponding to the CSC conflict (¢), a modified STG where
the encoding conflict has been resolved by adding a new signal csc (d), and its state
graph (e). The order of signals in the binary encodings is: dsr, ldtack, dtack, lds, d], csc].

require human intervention. In fact, the techniques presented in [I4] are tar-
geted at facilitating the interaction with the user, by developing a method for
visualisation of encoding conflicts.
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Fig.2. A Petri net with the transformation shown in dashed lines (a), an unfolding
prefix before the transformation (b), the ‘intuitively expected’ unfolding prefix of the
modified net (¢), and the result of re-unfolding (d). The unfolding algorithm proposed
in [6I8] was used for (b,d).

The tool described in [14] works as follows. First, the STG is unfolded and the
encoding conflicts are computed and visualised. Then a set of potentially useful
signal insertions is computed and arranged according to a certain cost function.
Then the user selects one of these transformations, the STG is modified and the
process is repeated until all the encoding conflicts are eliminated. It is currently
the responsibility of the user to ensure that the selected transformation is valid
— although some validity checks are performed by the tool, it does not guarantee
the correctness. Moreover, some of these correctness checks are performed after
the STG has been modified and re-unfolded, i.e., the tool has to backtrack if the
chosen transformation happens to be incorrect (e.g., due to the user’s mistake).

The approach presented in this paper improves that in [I4] in several ways.
First, it applies the transformation not only to the STG, but also directly to
the unfolding prefix, thus avoiding re-unfolding at each step of the method. This
also helps in visualisation, since the application of the transformation directly
to the prefix changes it in a way that was ‘intuitively expected’ by the designer,
while re-unfolding of the modified STG can dramatically change the shape of the
prefix (due to different events being declared cut-off, as illustrated in Figure [2))
to which the designer got ‘used to’. Moreover, rigourous checks of correctness are
developed. These checks are performed on the original unfolding prefiz, so the
algorithm never has to backtrack due to the choice of an incorrect transforma-
tion. These features also make the described approach easier for full automation,
as described in [10].

Also, there are some problem-specific advantages. In general, not all the encod-
ing conflicts are resolved by a single transformation (hence the need for multiple it-
erations in the approach of [I4]). If the shape of the prefix has changed only slightly
and in a predictable way, the unresolved encoding conflicts computed for the orig-
inal prefix can be transferred to the modified one, which is not generally possible
with re-unfolding. This considerably improves the efficiency of the method.
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It should be noted that performing the transformations directly on the prefix is
not trivial, since one has to guarantee the completeness of the resulting prefix (in
fact, as shown below, naive algorithms are incorrect). The main difficulty comes
from the need to look beyond cut-off events of the prefix. Though the idea of
transforming the prefix is not new, to our knowledge, this is the first time it is
done with a rigourous proof of correctness. In fact, since the transformed prefix
can be quite different from that obtained by re-unfolding the modified STG, it
is complete in a different sense, and to justify the proposed approach we employ
rather heavy machinery from the unfolding theory, viz. canonical prefizes [I1].
Since the formal presentation requires from the reader familiarity with those
techniques, it is delegated (together with all the proofs) to technical report [9]
(available on-line), and this paper is aimed at an informal presentation of the
results.

2 Basic Notions

In this section, we first present basic definitions concerning Petri nets, and then
recall notions related to unfolding prefixes (see also [GISITTITH]).

2.1 Petri Nets

A net is a triple NV £ (P, T, F) such that P and T are disjoint sets of respec-
tively places and transitions, and F C (P x T)U (T x P) is a flow relation.
A marking of N is a multiset M of places, i.e., M : P — N = {0,1,2,...}.
We adopt the standard rules about drawing nets, viz. places are represented as
circles, transitions as boxes, the flow relation by arcs, and markings are shown
by placing tokens within circles. In addition, the following short-hand notation
is used: a transition can be connected directly to another transition if the place
‘in the middle of the arc’ has exactly one incoming and one outgoing arc (see,
e.g., FiguresM(a,c,d)). As usual, *z = {y | (y,2) € F} and 2* = {y | (z,y) € F}
denote the pre- and postset of z € P UT, and we define *Z = U.cz *# and

Z* = J,cp 2® for all Z C PUT. We will assume that *t # 0, for every t € T'.
N is finite if PUT is finite, and infinite otherwise. A net system or Petri net is
a tuple X £ (Px,Tx, Fx, Ms) where (Px,Tx, Fy) is a finite net and My is an
initial marking. Whenever a new Petri net X' is introduced, the corresponding
elements Py, T, F; and My are also (implicitly) introduced.

We assume the reader is familiar with the standard notions of the theory of
Petri nets (see, e.g., [15]), such as enabling and firing of a transition, marking
reachability, deadlock, and net boundedness and safeness. A finite or infinite
sequence o = tytlots ... of transitions is an ezecution from a marking M if t;
can fire from M leading to a marking M’ and ¢/ = taot3... is an execution
from M’ (an empty sequence of transitions is an execution from any marking).
Moreover, o is an execution of X if it is an execution from M. For a transition
t € T, and a finite execution o we will denote by #;0 the number of occurrences
of t in 0. A transition is dead if no reachable marking enables it, and live if from
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any reachable marking M there is an execution containing it. (Note that being
live is a stronger property than being non-dead.)

2.2 Unfolding Prefixes

A finite and complete unfolding prefix Prefs, of a Petri net X' is a finite acyclic
labelled net which implicitly represents all the reachable states of X' together
with transitions enabled at those states. Intuitively, it can be obtained through
unfolding Y, by successive firings of transitions, under the following assumptions:
(a) for each new firing a fresh transition (called an event) is generated; (b) for
each newly produced token a fresh place (called a condition) is generated. The
resulting object Unfy, is called the unfolding of X. We will denote by hx the
function mapping the events and conditions of Unfs to the corresponding places
and transitions of X, and if hx(z) = y then we will refer to x as being y-labelled
or as an nstance of y. Unfy. is acyclic, and the precedence relation < on its
nodes will be called the causal order.

A configuration C' is a finite set of events of Unfy, such that (i) for every
e € C, f <eimplies f € C (i.e., C is causally closed), and (ii) for all distinct
e,f € C,%nN°®f =0 (ie. there are no choices between the events of C).
Intuitively, a configuration is a partial-order execution, i.e., an execution where
the order of firing of some of its events (viz. concurrent ones) is not important.
For a transition ¢ of X and a configuration C' of Unfy, we will denote by #.C
the number of t¢-labelled events in C, and for an event e of Unfy, [e]x will
denote the local configuration of e, i.e., the minimal (w.r.t. C) configuration
of Unfy, containing e. Moreover, Mark(C') will denote the final marking of C,
i.e., the marking of X reached by the execution hyx(e1)hx(e2)...hs(er), where
€1, €3,...,¢e is any total ordering of the events of C' consistent with <.

Unfy is infinite whenever X has an infinite execution; however, if X' has finitely
many reachable states then the unfolding eventually starts to repeat itself and
can be truncated (by identifying a set of cut-off events beyond which it is not
generated), yielding a finite prefix Prefs,. Unfolding algorithms declare an event e
cut-off if there is a smaller (w.r.t. some well-founded partial order <, called an
adequate order, see [6IT1]) corresponding configuration C' in the already built part
of the prefix containing no cut-off events and such that Mark([e]) = Mark(C).
It turns out that prefixes built in this way are complete, i.e., (i) every reachable
marking M of X is represented in such a prefix by means of a configuration C'
containing no cut-off events and such that Mark(C) = M; and (ii) all the firings
are preserved, i.e., if a configuration C' of Prefy, containing no cut-off events
can be extended by an event e of Unfy, then e is in Prefy, (it may be a cut-off
event). Hence, the unfolding is truncated without loss of information and can,
in principle, be re-constructed from Prefs. For example, a finite and complete
prefix of the STG in Figure [Ii(a) is shown in part (¢) of this figure.

Efficient algorithms exist for building finite and complete prefixes [6/8], which
ensure that the number of non-cut-off events in the resulting prefix never ex-
ceeds the number of reachable states of Y. In fact, complete prefixes are often
exponentially smaller than the corresponding state graphs, especially for highly
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concurrent Petri nets, because they represent concurrency directly rather than
by multidimensional ‘diamonds’ as it is done in state graphs. For example, if
the original Petri net consists of 100 transitions which can fire once in parallel,
the state graph will be a 100-dimensional hypercube with 2'°° vertices, whereas
the complete prefix will coincide with the net itself. The experimental results
in [12] demonstrate that high levels of compression can indeed be achieved in
practice.

3 Transformations

In this paper, we are primarily interested in SB-preserving transformations,
i.e., transformations preserving safeness and behaviour (in the sense that the
original and the transformed Petri nets are weakly bisimilar, provided that the
newly inserted transitions are considered silent) of the Petri net. This section
describes several kinds of transition insertions.

3.1 Sequential Pre-insertion

A sequential pre-insertion is essentially a generalised transition splitting, and is
formally defined as follows.

Definition 1 (Sequential pre-insertion). Given a Petri net X, a transition
t € Tx and a non-empty set of places S C °t, the sequential pre-insertion St
1s the transformation yielding the Petri net X", where

— Psu £ Pg U {p}, where p ¢ Ps UTs is a new place;
— Tsu ETx U {u}, where u ¢ Py UTx U{p} is a new transition;

~ Fgu = (Fg\ {(s,0)ls € S} U {(s,u)ls € S} U {(u,p), (p,1)};
— Msu(q) = Ms(q) for all ¢ € Ps, and Msu(p) = 0.

We will write it instead of St if S = °t, and st instead of {s} lt. O

The picture below illustrates the sequential pre-insertion {p1, p2} U t.

@
syle -
&

One can easily show that sequential pre-insertion always preserves safeness
and traces (traces are firing sequences with the silent (i.e., newly inserted) tran-
sitions removed). However, in general, the behaviour is not preserved, and so a
sequential pre-insertion is not guaranteed to be SB-preserving. In fact, it can
introduce deadlocks, as illustrated in the picture below.

b1

®
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Hence, one has to impose additional restrictions on the transformation to
guarantee that it is SB-preserving. One can easily show that it is enough to
require that the newly inserted transition never ‘steals’ tokens from the preset of
any enabled transition, i.e., its firing cannot disable any other transition (see [9,
Proposition 1]). This condition is a simple reachability property which can be
efficiently tested on the original unfolding prefix before the transformation: one
has to check that for each transition ¢ € S®\ {¢} there is no reachable marking
M covering S U *t’. This test is co-NP-complete in the size of the prefix, but in
practice the set S is small, and it can be efficiently performed using, e.g., the
techniques described in [8]. Moreover, in important special cases, e.g., if |S| =
1 or S = °t, simple polynomial algorithms exist, and in the case S® = {t},
the property is always satisfied and so the reachability analysis can be skipped
altogether.

3.2 Sequential Post-insertion

Similarly to sequential pre-insertion, sequential post-insertion is also a generali-
sation of transition splitting, and is formally defined as follows.

Definition 2 (Sequential post-insertion). Given a Petri net X, a transition
t € T's, and a non-empty set of places S C t°, the sequential post-insertion ¢S
1s the transformation yielding the Petri net X", where

— Psu Z Py U {p}, where p ¢ Ps UTs is a new place;

— Tsu = Tx U{u}, where u ¢ Ps UTs U{p} is a new transition;
Fru 2 (Fs \ {(t:5)ls € S}) U {(t,), (5,)} U { (1, 5)ls € S};

— Msu(q) = Ms(q) for all g € Ps, and Msx.(p) = 0.

We will write € instead of t1.S if S =t°, and t1s instead of t 1 {s}. O

The picture below illustrates the sequential post-insertion ¢ {q1, ¢2}.

One can easily show that sequential post-insertions always preserve safeness
and behaviour, and hence are always SB-preserving.
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3.3 Concurrent Insertion

Concurrent transition insertion can be advantageous for performance, since the
inserted transition can fire in parallel with the existing ones. It is defined as
follows.

Definition 3 (Concurrent insertion). Given a Petri net X, two of its tran-

sitions t',t"" € Tsx, and an n € N, the concurrent insertion t — I t" is the

transformation yielding the Petri net X%, where

Psu = Ps U{p,q}, where p,q ¢ Ps UTs are two new places;
Tsu = Ts U {u}, where u ¢ Py UTs U{p,q} is a new transition;
- FE“ = FE U {(tlap)v (pu u)v (’U,, q)7 (Q7 t//)};

Msu(s) = Ms(s) for all s € Ps;, Msu(p) = n and Msu(q) = 0.

We will write t' — t” instead of t' — O ¢ and t' X% ¢ instead of th —t". §
A concurrent insertion can be viewed as a two-stage transformation. In the

first stage, a new place p with n tokens in it is inserted between ' and t”;

this transformation will be denoted # -2 ¢ (or ¢/ O ort & it g

is 0 or 1, respectively), and the resulting Petri net will be denoted Y. Then,

the sequential pre-insertion p ¢ is applied. The picture below illustrates the

concurrent insertion t; e, t3 (note that the token in p is needed to prevent a

deadlock).

b))

RSO

In general, concurrent insertions preserve neither safeness nor behaviour. In
fact, safeness is not preserved even if n = 0 (e.g., when in the original net ¢’
can fire twice without ¢” firing), and deadlocks can be introduced even if n =1
(e.g., when in the original net ¢ should fire twice before ¢’ can become enab-
led). Hence, one has to impose additional restrictions on the transformation to
guarantee that it is SB-preserving.

Since (*u)® = {u}, u cannot ‘steal’ a token from the preset of any other

enabled transition, and thus p ! t” is always SB-preserving. Hence, instead of

I t”, it is enough to

t’@

investigating the validity of a concurrent insertion ¢’ ——

investigate the validity of the corresponding place insertion t”. One can
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observe that if the place inserted by the transformation ¢’ L, s implicif]

then the behaviour is preserved. Hence, checking that a place insertion ¢’ @, 4

is SB-preserving amounts to checking that the newly inserted place is safe and
implicit in the resulting Petri net X7; however, these conditions should be checked

using Prefs, rather than Prefs,.

Given a place insertion ¢ @, 1 and a finite execution o of ¥ (respectively, a

configuration C of Unfy), we define Tokens(c) = n+#y o —#u o (respectively,
Tokens(C) = n + #4C — #,+C). Intuitively, Tokens(o) is the final number
of tokens in the newly inserted place (provided that o is an execution of the

modified Petri net as well), i.e., this is the marking equation (see [I5JT6]) for this

place. One can observe (see [J, Proposition 2]) that ¢’ D, is SB-preserving

iff for any finite execution o of ¥, Tokens(o) € {0, 1}, or, equivalently, for any
configuration C' of Unfy,, Tokens(C) € {0,1}; i.e., t' and " should alternate in
any execution o of X, and, if n = 0 then ¢’ should precede ¢t in o and if n =1
then ¢” should precede ¢’ in o[ Any execution of X or configuration of Unfs,

violating this condition will be called bad.

One can show (see [0, Corollary 1]) that if ¢’ D, s SB-preserving then

either ¢ and t" are dead or

1 if #ye]x =0 for some ¢’-labelled event e in Prefsy,
10 otherwise.

(1)

In effect, this means that in an SB-preserving place insertion #’ @, , only t/
and t” need to be specified, and n can be calculated using (l). Note that even if
t’ and ¢ are dead, () still can be used to calculate n, since the choice of n does
not matter in such a case.

Now we show how the correctness conditions formulated above can be checked
using Prefs.. The main difficulty is that a bad configuration of Unfs. can contain
cut-off events, and so a part of it can be not in Prefy,, i.e., one has to look beyond
cut-off events of the prefix.

The key idea of the algorithm below is to check for each cut-off event e with
a corresponding configuration C' (note that Mark([e]s) = Mark(C)) that af-
ter insertion of p the final markings of [e¢]x» and C will still be equal, i.e., C
will still be a corresponding configuration of e. This amounts to checking that
Tokens([e]s) = Tokens(C). It turns out that if this condition holds and there
is a bad configuration in Unfs, then one can find a bad configuration already in
Prefy, [9, Proposition 3].

The following algorithm, given ¢’ and t”, checks whether the transformation

2,y SB-preserving, where n € {0,1} is computed using formula (). The

computation is performed using Prefy, (no need to unfold the modified net).

L A place p is called implicit if the absence of tokens in it can never be the sole reason
of any transition in p® being disabled, i.e., if for each reachable marking M such that
M(p) = 0 and for each transition ¢t € p®, M(p’) = 0 for some place p’ € °t\ {p},
see [16].

2 This property is closely related to the concept of synchronic distance [15).
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Algorithm 1 (Checking correctness of a place insertion)

Inputs Prefy, and a place insertion t/ @i 3.

Step 1 If Tokens(le]s) ¢ {0,1} for some instance e of t' or ¢’ in Prefs, then
reject the transformation and terminate.

Step 2 If Tokens([e]s) # Tokens(C) for some cut-off event e of Prefy, with a
corresponding configuration C' then reject the transformation and terminate.

Step 3 Accept the transformation.

One can show (see [9, Proposition 3|) that Algorithm [ never accepts a
non-SB-preserving transformationﬁ However, sometimes it can reject an SB-
preserving transformation at Step 2. Nevertheless, this is conservative, and [9]
Proposition 5] shows that if ¢’ or ¢ is live (i.e., in practically important cases)
then Algorithm [ is exact. Moreover, this algorithm runs in polynomial (in the
size of Prefy,) time.

4 Insertions in the Prefix

Unfolding algorithms [6/8] compute at each step the set of possible extensions,
i.e., the set of events which can be appended to the currently built part of the
prefix. Since even the simpler problem of checking if this set is non-empty is NP-
complete in the size of the prefix [7, Section 4.4], and the unfolding algorithms
perform many such steps, their runtime can be quite large.

This section explains how to perform a transition insertion directly in the
prefix, avoiding thus a potentially expensive re-unfolding. The main technical
difficulty is that the resulting prefix can be very different from the one obtained
by re-unfolding X", as illustrated in Figure 2l Thus it is not trivial to prove
the completeness of the former prefix. For this, we obtain a characterisation of
this prefix using a different adequate order, and apply the theory of canonical
prefixes developed in [I1] (the details can be found in the technical report [9]).

First, we establish the relationship between the configurations of Unfy, and
Unfs., assuming that X" is obtained from X by a sequential pre- or post-
insertion of a transition u. Below we denote by & the operation of extending
a configuration by an event: C @ e = C U {e}, provided that C' and C' U {e}
are configurations and e ¢ C. Let C be a configuration of Unfy, and C* be a
configuration of Unfy.. It turns out that:

1. The set (C*) = {e € C* | hxu(e) # u} is a configuration of Unfsy,.
2. There exists a unique configuration ¢(C') of Unfy. containing no causally
maximal instances of u and such that ¥ (p(C)) = C. Moreover, there are

3 In general, a cut-off event e can have multiple corresponding configurations. However,
in practice only one of them is stored with the cut-off event. Hence one can imagine
a situation when a cut-off event has several corresponding configurations and the
property Tokens([e]s) = Tokens(C') holds for some of them but not the others. One
can observe that AlgorithmdI] rejects a non-SB-preserving transformation no matter
which of these configurations was stored with e.
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(d)

Fig.3. A Petri net with the transformation shown in dashed lines (a), its unfol-
ding before the transformation (b), the incomplete unfolding prefix obtained by naive
splitting (c), and a complete unfolding prefix after the transformation (d)

at most two configurations in Unfs., ¢(C) and ¢(C) @ e (where hxu(e) =
u), such that ¥(o(C)) = Y(p(C @ e)) = C. We define by ¢(C) the latter
configuration if it exists, and (C') = ¢(C) otherwise.

Now, assuming that < is an adequate order on the configurations of Unfy,,
we define the relation <" on the configurations of Unfs. as C' <™ C" iff either
P(C) <Y (C") or P(C') = P(C") and #,C" < #,C”. Tt turns out that <™ is an
adequate order on the configurations of Unfy. [9, Proposition 7], and if one runs
the unfolding algorithm for X* using <* as the adequate order and with some
other minor changes discussed in [9, Propositions 8, 9] then the resulting prefix
will coincide with that obtained by modifying Prefs, using one of the algorithms
discussed below.

4.1 Sequential Pre-insertion

Given a sequential pre-insertion S ¢, we now show how to build Prefs. from
Prefs,. (Note that St is not necessarily SB-preserving.) First of all, it should
be noted that the naive algorithm which simply splits each t¢-labelled event is,
in general, incorrect: it can result in an incomplete prefix or even in an object
which is not an unfolding prefix, as illustrated in Figures 3] and @ Below we
describe an algorithm based on a different idea. It inserts an instance of u in
every position in the prefix where it is possible (much like a step of the unfolding
algorithm) and then ‘re-wires’ the instances of ¢.
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Fig.4. A Petri net with the transformation shown in dashed lines (a), its unfolding
before the transformation (b), the result of naive splitting which is not an unfolding
prefix due to the redundancy of nodes (c), and the correct unfolding after the trans-
formation (d)

Algorithm 2 (Sequential pre-insertion in the prefix)

Inputs Prefs. and a sequential pre-insertion St in X.
Outputs A complete prefix of X*.

Step 1 For each co-sef] X containing no post-cut-off conditions and such that
hs(X) = S, create an instance of the new transition u, and make X its
preset; create also an instance of the new place p, and make it the postset of
the inserted transition instance.

Step 2 For each t-labelled event e (including cul-off events), let X C ®e be such
that hx(X) = S (note that X is a co-set); moreover, let f be the (unique)
u-labelled event with the preset X, and c be the p-labelled condition in f*°.
Remove the conditions in X from the preset of e, and add c there instead.

Step 3 For each cut-off event e with a corresponding configuration C', replace
the corresponding configuration of e by o(C).

It is shown in [9, Proposition 8] that Algorithm 2] yields a correct prefix even
if the pre-insertion is not SB-preserving (some additional information about the
form of the resulting prefix is also given there).

* A set X of conditions of Prefy, is a co-set if the conditions in X can be simultaneously
marked, i.e., if there is a configuration C' of Prefs, such that X C (min< Prefy, U
C*®)\ °C, where min< Prefy, is the set of causally minimal conditions of Prefs,.
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In the worst case, the performance of this algorithm can be quite poor, since
there can be an exponential in the size of the prefix number of co-sets X such
that hx(X) = S, and even a simpler problem of checking if there exists such
a co-set is NP-complete. However, this algorithm still favourably compares to
re-unfolding, since it is very similar to a single step of the unfolding algorithm.
Moreover, in important special cases, e.g., if |S| = 1 or S = °¢, this algorithm
can be implemented to run in polynomial time.

4.2 Sequential Post-insertion

Given a sequential post-insertion ¢S, we now show how to build Prefy. from
Prefy,. (Recall that sequential post-insertions are always SB-preserving, and so
there is no need to check the validity of ¢15.) The algorithm presented below
is based on splitting u-labelled events, but special care should be taken when
handling cut-off events (a naive approach may result in an incomplete prefix,
as illustrated in Figure [). In particular, if a corresponding configuration C' of
a cut-off event e has an instance e’ of ¢ as a maximal event then e is not split
(just its postset is amended), and the corresponding configuration becomes ¢(C')
(i.e., the instance of u after €’ is not included into it).

Unfortunately, it may be no longer possible to choose the corresponding con-
figurations of some of the cut-off events. In general, it is difficult to guarantee
completeness without re-unfolding parts of the prefix, and the algorithm be-
low can sometimes terminate unsuccessfully. In such a case, one either can re-
unfold the Petri net (and thus the algorithm can be seen as a relatively cheap
test whether a potentially much more expensive re-unfolding can be avoided)
or simply discard the transformation (which makes sense when there are many
alternative transformations to choose from).

Below, a configuration C' of Prefy, is called u-extendible if there is a t-labelled
event g € C such that no instance ¢ € ¢°® of a place from S is in the preset of
any event of C. (Intuitively, if C' is u-extendible then the configuration ¢(C') of
Prefs. can be extended by an instance of u).

Algorithm 3 (Sequential post-insertion in the prefix)

Inputs Prefs. and a sequential post-insertion t1.5 in X.
Outputs A complete prefiz of .

Step 1 If there is a cut-off event e with a corresponding configuration C such
that [e] s is u-extendible and C' is not u-extendible then terminate unsuccess-
fully.

Step 2 For each t-labelled event e (including cut-off events): let X C e® be
the (unique) co-set satisfying hx,(X) = S. In the postset of e replace the
conditions in X by a new instance ¢ of p. If e is not a cut-off event then
create a new instance of u with the preset {c} and the postset X.

Step 3 For each cut-off event e of Prefs. with a corresponding configuration C':
replace the corresponding configuration of e by p(C) if [e]s is u-extendible
and by ©(C) otherwise. (In the latter case the corresponding configuration
may become non-local, even if C was local).
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Fig.5. A Petri net with a sequential post-insertion shown by dashed lines (a), its
unfolding before the transformation (b), the incomplete unfolding prefix obtained as
the result of naive splitting (c), and a complete unfolding prefix after the transforma-
tion (d)

It is shown in [9, Proposition 9] that if Algorithm [ successfully terminates
then the result is correct (some additional information about the form of the
resulting prefix is also given there). Moreover, it runs in polynomial (in the size
of Prefy,) time.

4.3 Concurrent Insertion

For clarity of presentation, the concurrent insertion ¢’ I 4 0 the prefix is

performed in two stages: first, a place insertion ¢’ B, s done, followed by

the sequential pre-insertion p{t”, as explained in Section B3l (In practice, these

two stages can easily be combined.) Furthermore, we assume that Algorithm [I]

accepts the transformation ¢’ @, 4. The following algorithm, given such a

place insertion, builds Prefs, from Prefs. Intuitively, Prefs, is obtained by
adding a few p-labelled conditions to Prefs, and appropriately connecting them
to instances of ¢ and t”.

Algorithm 4 (Place insertion in the prefix)

Inputs Prefs, and a place insertion t’ @ in x accepted by Algorithm [
Outputs A complete prefix of XP.
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Step 1 Ifn =1 then create a new p-labelled (causally minimal) condition.

Step 2 For each t'-labelled event e (including cut-off events), create a new p-
labelled condition ¢ and the arc (e, c).

Step 3 For each t"-labelled event e (including cut-off events): If #ve]s = 0
then create a new arc (c,e), where c is the causally minimal p-labelled con-
dition created in Step 1; else create a new arc (c,e), where c is the (unique)
p-labelled condition in the postset of the (unique) causally mazimal t'-labelled
predecessor of e.

It is shown in [9, Proposition 10] that if Algorithm [I] accepts a place inser-

tion ' 2> ¢ then Algorithm [ is correct (some additional information about

the form of the resulting prefix is also given there). This follows from the fact
that Algorithm Ml introduces no new causal constraints, since the instances of "
consume only the conditions produced by their causal predecessors (or the one
created in Step 1 of the algorithm), and so Prefy, has the same set of configura-
tions as Prefs. Thus the adequate order does not change, and there is no need
for the algorithm to amend the corresponding configurations of cut-off events.

Algorithm @l runs in polynomial (in the size of Prefy,) time. Moreover, the
algorithm performing a concurrent insertion in the prefix (composed of Algo-
rithm @ followed by Algorithm[2) is also polynomial, since the pre-insertion pt”
is a special case for which Algorithm 2l can be implemented to run in polynomial
time.

5 Optimisation

This section discusses several techniques allowing one to reduce the number of
transformations which have to be considered, as well as to propagate informa-
tion across different iterations of the algorithm for resolving encoding conflicts,
avoiding thus repeating the same validity checks.

5.1 Equivalent Transformations

Sometimes a sequential post-insertion ¢ .5 yields essentially the same net as
a sequential pre-insertion S’ t/, where t € **t’; in particular, this happens if
SUS Ct*net’ and |*p| = |p°| =1 for all p € SUS’. In such a case there is no
reason to distinguish between these two transformations, e.g., one can convert
the post-insertion into an equivalent pre-insertion whenever possible. Moreover,
since post-insertions are always SB-preserving, there is no need to check the
validity of the resulting transformation.

5.2 Commutative Transformations

Two transformations commute if the result of their application does not depend
on the order they are applied. (Note that a transformation can become ill-defined
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after applying another transformation, e.g., t ! {p, ¢} becomes ill-defined after
applying ¢ p.) One can observe that:

— a concurrent insertion always commutes with any other transition insertion;
— a sequential pre-insertion and a sequential post-insertion always commute;

— two sequential pre-insertions St and S’ 1’ commute iff ¢ £ ¢’ or SNS" = (;
— two sequential post-insertions £1.5 and #'1S" commute iff ¢ # ¢’ or SN.S’" = ().

It is important to note that an SB-preserving transition insertion remains SB-
preserving if another commuting SB-preserving transition insertion is applied
first. Hence transformations whose validity has been checked can be cached, and
after some transformation has been applied, the non-commuting transformations
are removed from the cache and the new transformations that became possible in
the modified Petri net are computed, checked for validity and added to the cache.
(In particular, in our application domain, there is no need to check the validity
of a particular transformation if it was checked in some preceding iteration of
the algorithm for resolving encoding conflicts.)

A composite transition insertion is a transformation defined as the composi-
tion of a set of pairwise commutative transition insertions. Clearly, if a composite
transition insertion consists of SB-preserving transition insertions then it is SB-
preserving, i.e., one can freely combine SB-preserving transition insertions, as
long as they are pairwise commutative. This property comes useful for our ap-
plication domain [I0]: typically, several transitions of a new internal signal have
to be inserted on each iteration of the algorithm for resolving encoding conflicts,
in order to preserve the consistency [2J5] of the STG, i.e., the property that for
every signal s, the following two conditions hold: (i) in all executions of the STG,
the first occurrence of a transition of s has the same sign (either rising of falling);
(ii) the rising and falling transitions of s alternate in every execution. (Consis-
tency is a necessary condition for implementability of an STG as a circuit.) For
example, in Figure[Il[d) a composite transformation comprising two commuting
SB-preserving sequential insertions (adding the new transitions csc™ and csc™)
has been applied in order to resolve the encoding conflict while preserving the
consistency of the STG.

6 Conclusions

In this paper, algorithms for checking correctness of several kinds of transition
insertions and for performing them directly in the unfolding prefix are presented.
The main advantage of the proposed approach is that it avoids re-unfolding.
Moreover, it yields a prefix similar to the original one, which is advantageous for
visualisation and allows one to transfer some information (e.g., the yet unresolved
encoding conflicts) from the original prefix to the modified one.

The algorithms described in this paper have been implemented in our tool
MPSAT, and successfully applied to resolution of encoding conflicts in STGs [10].
Though some of these algorithms are conservative, in practice good transfor-
mations are rarely rejected. In fact, the experimental results conducted in [10]
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showed that when MPSAT was aiming at optimising the area of the circuit, the
resulting circuits were in average 8.8% smaller than those produced by PET-
RIFY. This is an indication that in this application domain there are usually
many available transformations, and so rejecting a small number of them is not
detrimental.

In future work, we intend to extend the method to other transformations, in
particular concurrency reduction [4].
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Abstract. For synthesising efficient asynchronous circuits one has to
deal with the state space explosion problem. In this paper, we present a
combined approach to alleviate it, based on using Petri net unfoldings
and decomposition.

The experimental results show significant improvement in terms of
runtime compared with other existing methods.

Keywords: Asynchronous circuit, STG, Petri net, decomposition, un-
folding, state space explosion.

1 Introduction

Asynchronous circuits are a promising type of digital circuits. They have lower
power consumption and electro-magnetic emission, no problems with clock skew
and related subtle issues, and are fundamentally more tolerant of voltage, tem-
perature and manufacturing process variations. The International Technology
Roadmap for Semiconductors report on Design [ITR05] predicts that 22% of the
designs will be driven by ‘handshake clocking’ (i.e., asynchronous) in 2013, and
this percentage will raise up to 40% in 2020.

Signal Transition Graphs, or STGs [Chu87, [CKKT02|, are widely used for
specifying the behaviour of asynchronous control circuits. They are interpreted
Petri nets in which transitions are labelled with the rising and falling edges of
circuit signals. An STG specifies which outputs should be performed at a given
state and, at the same time, it describes assumptions about the environment,
which can send an input only if it is allowed by the STG. We use the speed-
independent model with the following properties:

— Input and outputs edges can occur in an arbitrary order.

— Wires are considered to have no delay, i.e., a signal edge is received simul-
taneously by all listeners.

— The circuit must work properly according to its formal description under
arbitrary delays of each gate.

Synthesis based on STGs involves: (a) checking sufficient conditions for the im-
plementability of the STG by a logic circuit; (b) modifying, if necessary, the

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 223 2007.
© Springer-Verlag Berlin Heidelberg 2007
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initial STG to make it implementable; and (c) finding appropriate Boolean next-
state functions for non-input signals.

A commonly used tool, PETRIFY ﬂm, performs all these steps auto-
matically, after first constructing the reachability graph of the initial STG spec-
ification. To gain efficiency, it uses symbolic (BDD-based [Bry86]) techniques to
represent the STG’s reachable state space. While this state-space based approach
is relatively simple and well-studied, the issue of computational complexity for
highly concurrent STGs is quite serious due to the state space explosion prob-
lem [Val98|; that is, even a relatively small STG can (and often does) yield a
very large state space. This puts practical bounds on the size of control cir-
cuits that can be synthesised using such techniques, which are often restrictive
(e.g., PETRIFY often fails to synthesise circuits with more that 25-30 signals),
especially if the STG models are not constructed manually by a designer but
rather generated automatically from high-level hardware descriptions, such as
BaLsa [EB02] or TANGRAM [Ber93].

In order to alleviate this problem, Petri net analysis techniques based on
causal partial order semantics, in the form of Petri net unfoldings, were applied
to circuit synthesis. Since in practice STGs usually exhibit a lot of concurrency,
but have rather few choice points, their complete unfolding prefixes are often
exponentially smaller than the corresponding state graphs; in fact, in many of the
experiments conducted in [KhoO3, [KKY04] they are just slightly bigger than the
original STGs themselves. Therefore, unfolding prefixes are well-suited for both
visualisation of an STG’s behaviour and alleviating the state space explosion
problem. The papers [KKY00, present a complete design
flow for complex-gate logic synthesis based on Petri net unfoldings, which avoids
generating the state graph at all stages, and hence has significant advantage
both in memory consumption and in runtime, without affecting the quality of
the solutions. Moreover, unfoldings are much more visual than state graphs (the
latter are hard to understand due to their large sizes and the tendency to obscure
causal relationships and concurrency between the events), which enhances the
interaction with the user.

The unfolding-based approach can often synthesise specifications which are
by orders of magnitude larger than those which can be synthesised by the state-
space based techniques. However, this is still not enough for practical circuits.
Hence, we combine the unfolding approach with decomposition. Intuitively, a
large STG can be decomposed into several smaller ones, whose joint behaviour
is the same as that of the original STG. Then these smaller components can be
synthesised, one by one, using the unfolding-based approach. STG decomposition
was first presented in [Chu87] for live and safe free-choice nets with injective la-
belling, and then generalised to STGs with arbitrary structure in [VW02, [VKO05].

This combined framework can cope with quite large specifications. It has been
implemented using a number of tools:

PUNF — a tool for building unfolding prefixes of Petri nets [Kho(3].
MPSAT — a tool for verification and synthesis of asynchronous circuits; it uses

unfolding prefixes built by PUNF, see [KKY04, [KKY06].
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DEsiJ — a tool for decomposing an STG into smaller components. It
implements also the techniques of combining decomposition and unfolding
presented in this paper and uses PUNF and MPSAT for synthesis of final
components and for verification of some properties during decomposition,

see [VW02, VK05, SVWEKOE].

2 Basic Definitions

In this section, we present basic definitions concerning Petri nets and STGs, and

recall notions related to unfolding prefixes (see also [ERV02] [Kho03| [Mur89]).

2.1 DPetri Nets

A net is a triple N = (P, T, W) such that P and T are disjoint sets of respectively
places and transitions, and W : (P xT)U(T x P) - N ={0,1,2,...} is a weight
function. A marking M of N is a multiset of places, i.e., M : P — N. We adopt
the standard rules about drawing nets, viz. places are represented as circles,
transitions as boxes, the weight function by arcs, and markings are shown by
placing tokens within circles. In addition, the following short-hand notation is
used: a transition can be connected directly to another transition if the place
‘in the middle of the arc’ has exactly one incoming and one outgoing arc (see,

e.g., Figs. M(a)). As usual, *z = {y | W(y,z) > 0} and 2* = {y | W(z,y) > 0}
denote the pre- and postset of z € PUT, and we define *Z £ U.cz *# and

Z* = U,cp 2® for all Z C PUT. We will assume that *t # 0, for every t € T
N is finite if P UT is finite, and infinite otherwise. A net system or Petri net
is a tuple X = (P, T, W, My) where (P,T,W) is a finite net and My is an initial
marking.

A transition ¢ € T is enabled at a marking M, denoted M][t), if, for every
p € °t, M(p) > W(p,t). Such a transition can be fired, leading to the marking

df

M’ with M'(p) = M (p) — W (p,t)+ W (t,p). We denote this by M[t)M’. A finite
or infinite sequence o = tytsts . .. of transitions is a firing sequence of a marking
M, denoted Mo}, if M[t1)M' and o’ = tot3... is a firing sequence of M’ (an
empty sequence of transitions is a firing sequence of any marking). Moreover, o
is a firing sequence of X if My[o). If o is finite, M[o) M’ denotes that o is a firing
sequence of M reaching the marking M’. A marking M’ is reachable from M if
Mo)M' for some firing sequence o. M is called reachable if it is reachable from
My; [Mp) denotes the set of all reachable markings of X'. Two distinct transitions
t1 and ty are in (dynamic) conflict if there is a reachable marking M, such that
MTt1), MJte) but for some place p, W(p,t1) + W(p,t2) > M(p). A dynamic
conflict implies a structural conflict, i.e. *t; N *ty # .

A transition is dead if no reachable marking enables it. A transition is live
if any reachable marking M enables a firing sequence containing it. (Note that
being live is a stronger property than being non-dead.) A net system is called
live if every of its transition is live; it is called reversible if the initial marking is
reachable from every reachable marking.
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A net system X is k-bounded if, for every reachable marking M and every
place p € P, M(p) < k, safe if it is 1-bounded, and bounded if it is k-bounded
for some k € N. The set of reachable markings of X' is finite iff ' is bounded.

2.2 Signal Transition Graphs
A Signal Transition Graph (STG) is a triple I' = (X, Z, £) such that X is a net

system, Z is a finite set of signals, generating the finite alphabet Z+ £ Zx {+, -}
of signal transition labels, and £ : T — Z*U{\} is a labelling function. The signal
transition labels are of the form 2T or 27, and denote a transition of a signal
z € Z from 0 to 1 (rising edge), or from 1 to 0 (falling edge), respectively. We will
use the notation z* to denote a transition of signal z if we are not particularly
interested in its direction. I" inherits the operational semantics of its underlying
net system X', including the notions of transition enabling and firing sequences,
reachable markings and firing sequences.

We lift the notion of enabledness and firing to transition labels: M [¢(¢))) M’ if
MT[tyM’. This is extended to sequences as usual — deleting A-labels automatically
since \ is the empty word. A sequence w of elements of Z+ is called a trace of a
marking M of I' if M|w)), and a trace of I if it is a trace of My. The language of
I", denoted by L(I), is the set of all traces of I'. I" has a (dynamic) auto-conflict
if two transitions ¢; and to with £(t1) = £(t2) # A are in dynamic conflict.

An STG may initially contain transitions labelled with A called dummy transi-
tions. They are a design simplification and describe no physical reality. Moreover,
during the decomposition, certain transitions are labelled with A at intermedi-
ate stages; this relabelling of a transition is called lambdarising a transition, and
delambdarising means to change the label back to the initial value. The set of
transitions labelled with a certain signal is frequently identified with the signal
itself, e.g., lambdarising signal z means to change the label of all transitions
labelled with z* to .

We associate with the initial marking of I" a binary vector v9=(v9, ..., Ulz)) €
{0,1}1%1 where each v corresponds to the signal z; € Z; this vector contains the
initial value of each signal. Moreover, with any finite firing sequence o of I" we
associate an integer signal change vector v” = (v, vg,. .. v(g) € Z)?1, so that
each v7 is the difference between the number of the occurrences of z; —labelled
and z; —labelled transitions in o.

I'is consistend] if, for every reachable marking M, all firing sequences ¢ from
My to M have the same encoding vector Code(M) equal to v° + v, and this
vector is binary, i.e., Code(M) € {0,1}/%]. Such a property guarantees that, for
every signal z € Z, the STG satisfies the following two conditions: (i) the first
occurrence of z in the labelling of any firing sequence of I" starting from M has
the same sign (either rising of falling); and (ii) the transitions corresponding to
the rising and falling edges of z alternate in any firing sequence of I'. In this
paper it is assumed that all the STGs considered are consistent. (The consistency

! This is a somewhat simplified notion of consistency; see [Sem97] for a more elaborated
one, dealing also with certain pathological cases, which are not interesting in practice.
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of an STG can easily be checked during the process of building its finite and
complete prefix [Sem97]; moreover, all the transformations used in this paper
preserve consistency.) We will denote by Code, (M) the component of Code(M)
corresponding to a signal z € Z.

The state graph of I' is a tuple SGp = (S, A, My, Code) such that: S = [Mo)

is the set of states; A = {M KONV | M € [Mo) N M[t)M'} is the set of
state transitions; My is the initial state; and Code : S — {0,1}%l is the state
assignment function, as defined above for markings.

The signals in Z are partitioned into input signals, Z;, and output signals,
Zo (the latter may also include internal signals). Input signals are assumed to
be generated by the environment, while output signals are produced by the logic
gates of the circuit. For each signal z € Zp we define

a [10f M[z%));
Out (M) = {0 otherwise.

Logic synthesis derives for each output signal z € Zp a Boolean next-state
function Nzt. defined for every reachable state M of I" as follows:

Nzt (M) = Code, (M) & Out, (M) ,

where @ is the ‘exclusive or’ operation.

The value of this function must be determined without ambiguity by the
encoding of each reachable state, i.e., Nzt (M) should be a function of Code(M)
rather than of M, i.e., Nat,(M)=F,(Code(M)) for some function F, : {0, 1}41 —
{0,1} (F. will eventually be implemented as a logic gate). To capture this, let
M’ and M" be two distinct states of SGp. M’ and M" are in Complete State
Coding (CSC) conflict if Code(M') = Code(M") and Out,(M') # Out,(M") for
some output signal z € Zp. Intuitively, a CSC conflict arises when semantically
different reachable states of an STG have the same binary encoding. I satisfies
the CSC property if no two states of SGp are in CSC conflict. (Intuitively, this
means that each output signal is implementable as a logic gate).

An example of an STG for a data read operation in a simple VME bus
controller (a standard STG benchmark, see, e.g., [CKKT02]) is shown in Fig-
ure [[[(a). Part (b) of this figure shows a CSC conflict between two different
states, My and My, that have the same encoding, 10110, but Nzty(M7) =0 #
Nztg(Ms) = 1 and Natygs(M1) = 0 # Nxtygs(M2) = 1. This means that the
values of Fy(1,0,1,1,0) and Fjqs(1,0,1,1,0) are ill-defined (they should be 0
according to M7 and 1 according to Ms), and thus these signals are not imple-
mentable as logic gates.

2.3 Unfolding Prefixes

A finite and complete unfolding prefir of an STG I' is a finite acyclic net
which implicitly represents all the reachable states of I" together with transitions
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Fig. 1. VME bus controller: the STG for the read cycle (a), its state graph showing a
CSC conflict (b), its unfolding prefix with the corresponding conflict core, and a way
to resolve it by adding a new signal csc (c), and a complex-gate implementation (d).
The signal order in binary encodings is: dsr, dtack, lds, ldtack, d.

enabled at those states. Intuitively, it can be obtained through unfolding I', by
successive firings of transitions, under the following assumptions: (i) for each
new firing a fresh transition (called an event) is generated; (ii) for each newly
produced token a fresh place (called a condition) is generated.

The unfolding is infinite whenever I" has an infinite firing sequence; however,
if I' has finitely many reachable states then the unfolding eventually starts to
repeat itself and can be truncated (by identifying a set of cut-off events) without
loss of information, yielding a finite and complete prefix. Fig.[Il(c) shows a finite
and complete unfolding prefix (with the only cut-off event depicted as a double
box) of the STG shown in Fig. [[(a).

Efficient algorithms exist for building such prefixes [ERV02, [Kho03|], which
ensure that the number of non-cut-off events in a complete prefix can never
exceed the number of reachable states of I'. However, complete prefixes are
often exponentially smaller than the corresponding state graphs, especially for
highly concurrent Petri nets, because they represent concurrency directly rather
than by multidimensional ‘diamonds’ as it is done in state graphs. For example,
if the original Petri net consists of 100 transitions which can fire once in parallel,
the state graph will be a 100-dimensional hypercube with 2190 vertices, whereas
the complete prefix will coincide with the net itself.

Since practical STGs usually exhibit a lot of concurrency, but have rather
few choice points, their unfolding prefixes are often exponentially smaller than
the corresponding state graphs; in fact, in many of the experiments conducted
in [KhoO3, [KKY04] they were just slightly bigger than the original STGs them-
selves. Therefore, unfolding prefixes are well-suited for both visualisation of an
STG’s behaviour and alleviating the state space explosion problem.
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3 Unfolding-Based Synthesis

Due to its structural properties (such as acyclicity), the reachable states of an
STG can be represented using configurations of its unfolding. A configuration C'
is a downward-closed set of events (being downward-closed means that if e € C
and f is a causal predecessor of e then f € C) without choices (i.e., for all distinct
events e, f € C, there is no condition ¢ in the unfolding such that the arcs (c, e)
and (¢, f) are in the unfolding). Intuitively, a configuration is a partially ordered
firing sequence, i.e., a firing sequence where the order of firing of some of its
events (viz. concurrent ones) is not important.

A CSC conflict can be represented in the unfolding prefix as an unordered
conflict pair of configurations (Ci,C3) whose final states are in CSC conflict,
as shown in Fig. [[l(c). It was shown in [KKY04] that the problem of checking if
there is such a conflict pair is reducible to SAT, and an efficient technique for
finding all CSC conflict pairs was proposed.

Let (C1,C3) be a conflict pair of configurations. The corresponding comple-
mentary set CS is defined as the symmetric set difference of C7 and Cs. CS is a
core if it cannot be represented as the union of several disjoint complementary
sets. For example, the core corresponding to the conflict pair shown in Fig. [l(c)
is {e4,...,es,e10} (note that if C; C Co then the corresponding complementary
set is simply Cs \ C1).

One can show that every complementary set CS can be partitioned into Cy \ Cs
and Cy \ Cy, where (C,C5) is a conflict pair corresponding to CS. Moreover,
if C1 C C5 then one of these parts is empty, while the other is CS itself. An
important property of complementary sets is that for each signal z € Z, the
differences between the numbers of zt— and z~-labelled events are the same in
these two parts (and are 0 if C; C C5). This suggests that a complementary set
can be eliminated (resolving thus the corresponding encoding conflicts), e.g., by
introduction of a new internal signal, csct, and insertion of its transition into
this set, as these would violate the stated property. (Note that the circuit has
to implement this new signal, and so for the purpose of logic synthesis it is
regarded as an output, though it is ignored by the environment.) To preserve the
consistency of the STG, the transition’s counterpart, csc¢™, must also be inserted
outside the core, in such a way that it is neither concurrent to nor in structural
conflict with escT. Another restriction is that an inserted signal transitions must
not trigger an input signal transition (the reason is that this would impose
constraints on the environment which were not present in the original STG,
making it ‘wait’ for the newly inserted signal). Intuitively, insertion of signals
introduces additional memory into the circuit, helping to trace the current state.

The core in Fig.[Dl(c) can be eliminated by inserting a new signal, csc™t, some-
where in the core, e.g., concurrently to e; and eg between ey and e7, and by
inserting its complement outside the core, e.g., concurrently to e;; between eg
and e12. (Note that the concurrent insertion of these two transitions avoids an
increase in the latency of the circuit, where each transition is assumed to con-
tribute a unit delay.) After transferring this signal into the STG, it satisfies the
CSC property.
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It is often the case that cores overlap. In order to minimise the number of
performed transformations, and thus the area and latency of the circuit, it is
advantageous to perform such a transformation that as many cores as possi-
ble are eliminated by it. That is, a transformation should be performed in the
intersection of several cores whenever possible.

This idea can be implemented by means of a height map showing the quanti-
tative distribution of the cores. Each event in the prefix is assigned an altitude,
i.e., the number of cores it belongs to. (The analogy with a topographical map
showing the altitudes may be helpful here.) ‘Peaks’ with the highest altitude
are good candidates for insertion, since they correspond to the intersection of
maximum number of cores. This unfolding-based method for the resolution of
encoding conflicts was presented in [MBKY03].

Once the CSC conflicts are resolved, one can derive equations for logic gates
of the circuit, as illustrated in Fig. EI](d) An unfolding-based approach to this
problem has been presented in [KKY06]. The main idea of this approach was
to generate the truth table for each such equation as a projection of a set of
reachable encodings to some chosen support, which can be accomplished with
the help of the incremental SAT technique, and then applying the usual Boolean
minimisation to this table.

The results in [KKY04, MBKY03, [KKY06] form a complete design flow for
complex-gate synthesis of asynchronous circuits based on STG unfoldings rather
than state graphs, and the experimental results conducted there show that it
has significant advantage both in memory consumption and in runtime, without
affecting the quality of the solutions.

4 STG Decomposition

In this section, the STG decomposition algorithm of [VW02], [VK05] is outlined,
in order to understand the new contributions properly.

Synthesis with STG decomposition works roughly as follows. Given a consis-
tent STG I, an initial partition (In;, Out;);cr of its signals is chosen, satisfying
the following properties.

— (Out;)ier is a partition of the output signals of the original STG (the sets
In; may overlap with In; and Out; if i # j).

— If two output signals z1, zs are in structural conflict in I", then they have to
be in the same Out;.

— If there are t,t' € T with t € (¢*)° (t is called syntactical trigger of t'), then
L(t") € Out; implies £(t) € In; U Out;.

Then the algorithm decomposes I" into component STGs, one for each element
in this partition, together implementing I'. Each component is obtained from
the original STG by lambdarising the signals which are not in the corresponding
element of the partition, and then contracting the corresponding transitions
(some other net reductions are also applied — see below). Then, from each
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component a circuit is synthesised, and these circuits together implement the
original specification.

Of course, the decomposition must preserve the behaviour of the specification
in some sense. In [VW02] [VK05L [SV05], the correctness was defined as a variation
of bisimulation, tailored to the specific needs of asynchronous circuits, called
STG-bisimulation.

Typically, the computational effort (in terms of memory consumption and
runtime) needed to synthesise a circuit from an STG I’ is exponential in the size
of I'. Hence, if the components produced by the decomposition algorithm are
smaller than I, the decomposition can be seen as successful. (Note that in the
worst case the components can be as large as the original STG, but this rarely
happens in practice).

We now describe the operations which the algorithm applies to an initial
component until no more A-labelled transitions remain.

Contraction of a A-labelled transition. Transition contraction can be applied to
a A-labelled transition ¢ if *¢N¢* = (), and for each place p, W(t,p), W(p,t) < 1;
it is illustrated in Figure 2l Intuitively, ¢ is removed from the net, together with
its surrounding places *¢Ut®, and the new places, corresponding to the elements
of °t x t*, are added to the net. Each new place (p,q) € °t X t*® inherits the
connectivity of both p and ¢ (except that ¢ is no longer in the net), and its
initial marking is the total number of tokens which were initially present in p
and ¢. (The formal definition of transition contraction can be found in [VW02]

VKO3, [KS06]).

The contraction is called secure if either (°t)* C {t} (type-1 secure) or *(t°) =

{t} and My(p) = 0 for some p € ¢* (type-2 secure). It is shown in [VW02] [VK05]
that secure contractions of A-labelled transitions preserve the language of the

STG.

(a) (b)

Fig. 2. Transition contraction: initial net (a), and the one after contraction of ¢ (b)

Deletion of an implicit place. 1t is often the case that after a transition contrac-
tion ¢mplicit places (i.e., ones which can be removed without changing the firing
sequences of the net) are produced. Such places may prevent further transition
contractions, and should be deleted before the algorithm proceeds.
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Deletion of a redundant transition. There are two kinds of redundant transitions.
First, if there are two transitions with the same label which are connected to
every place in the same way, one of them can be deleted without changing the
traces of the STG. Second, a A-labelled transition ¢ with *¢ = ¢® can also be
deleted, since its firing does not change the marking and is not visible on the
level of traces; observe, that this is valid for any marking of the adjacent places.

Backtracking. As it was already mentioned, not every A-labelled transition can
be contracted by the decomposition algorithm. There are three possible reasons
for this:

— The contraction is not defined (e.g., because *t N t® # 0).

— The contraction is not secure (then the language of the STG might change).

— The contraction introduces a new auto-conflict (i.e., a new potential source
of non-determinism which was not present in the specification is introduced;
this is interpreted that the component has not enough information (viz. input
signals) to properly produce its outputs).

If none of the described reduction operations are applicable, but the com-
ponent still has some A-labelled transitions, backtracking is applied, i.e., one
of these A-labelled transitions is chosen and the corresponding signal is delamb-
darised, i.e., this input is added to the initial partition and the new corresponding
initial component is derived and reduced from the beginning. This cycle of re-
duction and backtracking is repeated until all A-labelled transitions of the initial
component can be contracted. This means that backtracking is only needed to
detect these additional input signals; if they are known in advance, one can per-
form decomposition completely without backtracking. (In the worst case, all the
lambdarised signals are delambdarised).

The described decomposition algorithm is non-deterministic, i.e., it can apply
the net reductions in any order; the result has been proven to be always correct.
In [SVWKOG], different ways to determinise it are described. One of them was
tree decomposition, which greatly improves the overall efficiency of decomposi-
tion process by re-using intermediate results. Since it is the base for CSC-aware
decomposition introduced below, we describe it briefly.

4.1 Tree Decomposition

In our experiments, it turned out that in most cases some initial components
have many lambdarised signals in common. Therefore, the decomposition al-
gorithm can save time by building an intermediate STG C’, from which these
components can be derived: instead of reducing both initial components inde-
pendently, it is sufficient to generate C’ only once and to proceed separately
with each component afterwards, thus saving a lot of work.

Tree decomposition tries to generate a plan which minimises the total amount of
work using the described idea. We introduce it by means of an example in Figure[3l
Let I" be an STG with the signal set {1, 2, 3,4, 5}. Furthermore, let there be three
components Cy, Co, Cs3, and let {1,2,3}, {2,3,4}, {3,4,5} be the signals which
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(a) (b) ©

/2,3 2(3)
1,2,3 2,3,4 3,4,5 12,3) (2,3)4 3,4,5 12,3 2,3)4 34,5

Fig. 3. Building of a simple decomposition tree for three components and five signals.
Leafs from the left: components C1, Cs, Cs5. (a) the initial situation; (b) two components
merged; (c) the final decomposition tree.

are lambdarised initially in these components. We build a tree guiding the decom-
position process, such that its leafs correspond to the final components, and every
node u is labelled with the set of signals s(u) to be contracted.

In (a) the initial situation is depicted. There are three independent leaves
labelled with the signals which should be contracted to get the corresponding
final component. A possible intermediate STG C’ for C; and Cy would be the
STG in which signals 2 and 3 have been contracted. In (b), C' is introduced
as an common intermediate result for C7 and Cy; the signals 2 and 3 no longer
have to be contracted in Cy and Cy (they appear in brackets) and the leaves are
labelled with {1} and {4}, respectively. In (c), a common intermediate result for
C’ and C5 with the label {3} is added, yielding the final decomposition tree.

From this use of a decomposition tree, it is clear that in an optimal decom-
position tree the sum of all |s(u)| should be minimal. Decomposition trees are
very similar to preset trees in [KKO01]; there it is shown that computing an op-
timal preset tree is NP-complete, and a heuristic algorithm is described which
performs reasonably well. We use this algorithm for the automatic calculation
of decomposition trees.

The decomposition algorithm guided by such a decomposition tree traverses it
in the depth-first order. It enters the root node with the initial STG I containing
no lambdarised signals. Upon entering a node u with an STG I, the algorithm
lambdarises and contracts the signals s(u) in I3, (and performs other possible
reductions) and enters each child node with its own copy of the resulting STGH
If u is a leaf, the resulting STG is a final componentﬁ

4.2 CSC-Aware Decomposition

On the basis of tree decomposition, we now introduce CSC-aware decomposition.
Our aim is to reduce the number of CSC conflicts in the components generated

2 As an important technical improvement, the intermediate result of a component is
not copied for each child. Instead, throughout the decomposition, a single STG is
held in memory, and an undo stack is used to restore the ‘parent’ STG whenever the
algorithm returns to the parent node. This is much faster and uses far less memory
than keeping multiple (and potentially large) STGs.

3 There are some twists in this setting considering backtracking, which is handled a bit
different in contrast to ‘ordinary’ decomposition; in particular, the decomposition
tree can be modified during the decomposition process, cf. [SVWEKOQ6].
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by the decomposition algorithm. Ideally, if the original specification is free from
CSC conflicts then this should be the case also for the components.

During its execution the algorithm has to determine if an STG has CSC
conflicts. This is checked externally with PUNF and MpsaT [Kho03|, [KKY04].
It works essentially as tree decomposition, with the following differences, cf.
Figure @l When a leaf is reached, we check whether the corresponding final
component has CSC conflicts. If no, the component is saved as the final result.
Otherwise, for each detected CSC core a constituting pair of firing sequences
leading to the conflicting states is stored in the parent of the leaf.

When the algorithm returns to this parent node, it checks whether this CSC
conflict is still present in the local intermediate STG. However, using MPSAT
may be expensive at this point, as the corresponding STG is larger than the
final component. Instead, we map the stored firing sequences from the final
component to this STG using the inverse projections introduced below, and
check if they still lead to states which are in a CSC conflict. For every conflict
which is not destroyed, this results in a new pair of firing sequences which is
propagated upwards in the tree, and so on. On the other hand, if the conflict
disappears, these inverse projections are analysed as described below, and signals
which helped to resolve the conflict are determined and delambdarised in the
corresponding child node, and the algorithm tries to process it again. If no CSC
conflicts remain in the final component (due to the delambdarised signals), it is
saved as the final result.

When all pairs of firing sequences corresponding to CSC conflicts are consid-
ered, the algorithm proceeds with the next child of the current node. If there
are no more children left, it goes up to the parent of the current node and deals
with the corresponding firing sequences. Eventually, the algorithm reaches the
root node for the last time and terminates.

1. contract signals

2. go down to child node

3. contract signals B ,-"10. eventually, go up and restore intermdiate STG

8. handle firing sequences from children, possibly move them up to parent

4. go down to child node ,A

9. go down to next child

5. contract signals _-”7. go up and restore intermediate STG
6. check CSC

6a. fulfiled, output component

6b. not fulfiled, save firirng sequences in parent

Fig. 4. Outline for CSC-aware decomposition. Step 8 is repeated every time a node is
entered from a child, step 9 includes contraction and detection of CSC conflicts.
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This algorithm is complete, i.e., it guarantees for a specification with CSC
that each component has CSC, too. This is due to the fact that a pair of firing
sequences corresponding to a CSC conflict in a component can be moved up
to the root node (via a sequence of inverse projections), where CSC is given
initially. In practice, one can stop moving up a pair of firing sequences after
several iterations and try to resolve CSC conflicts with new internal signals
instead. Therefore, the algorithm is still applicable to specifications which have
CSC conflicts initially.

The inverse projection of a firing sequence is defined as follows. Let I" and I
be two STGs such that IV is obtained from I" by a secure contraction of some
transition ¢. If ¢/ is a firing sequence of I'’, we call a firing sequence o of I" an
inverse projection of ¢’ if ¢’ is the projection of o on the transitions of I".

Since the contraction of ¢t was secure, the inverse projection can be calculated
easily: it is enough to fire the transitions of ¢’ in I', one by one, while possible. If,
at some point, a transition of ¢/ cannot be fired then ¢ is fired (it is guaranteed to
be enabled in such a case). This process is continued until all the transitions of ¢’
are fired, yielding 0. One can see that a shortest inverse projection is computed
by the described procedure.

If I'" is obtained from I' by a sequence of secure contractions, its firing se-
quences can still be inversely projected to I" by computing a sequence of inverse
projections for each individual contraction.

If I'" has a CSC conflict, there is a corresponding pair of firing sequences
(o), %) such that the corresponding signal change vectors v”1 and v°2 coincide.
If the inverse projection (o1,09) of this pair is such that v7! # v72 then the
corresponding conflict is likely to be destroyed by delambdarising the signal
corresponding to the contracted transition.

5 Combining Decomposition and Unfolding Techniques

In this section we describe how our unfolding and decomposition tools can be
used to combine their advantages and to compensate for each other’s shortcom-
ings. PUNF and MPSAT can perform logic synthesis, but not for very large STGs.
On the other hand, DEs1J can handle very large STGs quite efficiently because
it performs only local structural operations, but it has to make conservative
assumptions frequently to guarantee correctness.

The strategy we adopted is as follows. While the STGs are large, only struc-
tural conservative checks are made, as it may be computationally very expensive
to perform the exact tests. After some reductions have been performed, it be-
comes feasible to check exact reachability-like properties using PUNF and MPSAT
(logic synthesis is still not feasible at this stage). Eventually, when the compo-
nents are small enough, logic synthesis is performed.

While DESIJ can handle and produce non-safe nets, PUNF and MPSAT need
safe nets. Therefore, we accept only safe nets as specifications (which is no serious
restriction) and perform only safeness-preserving contractions during decompo-
sition. They are discussed in the following subsection.
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During the decomposition process the decomposition algorithm checks from
time to time the following reachability-like properties:

— The decomposition algorithm should backtrack if a new dynamic auto-conf-
lict is produced. The corresponding conservative test is the presence of a new
structural auto-conflict.

— It is also helpful to remove implicit places. The corresponding conservative
test looks for redundant places [Ber87]; they are defined by a system of linear
inequalities. Checking this condition with a linear programming solver is also
quite expensive, and therefore DES1J looks only for a subset called shortcut
places [SV.I05].

— In order to apply MpsaT, the STG must be safe. In general, a transition
contraction can transform a safe STG into an non-safe (2-bounded) one.
The corresponding conservative structural conditions guaranteeing that a
contraction preserves safeness are developed below.

If the STG is not too large, all of the mentioned dynamic properties can
also be checked exactly with a reachability analysis. Since we only consider safe
nets here, reachability-like properties can be expressed as Boolean expressions
over the places of the net. For example, the property p; A pa A —ps holds iff
some reachable marking has a token in p; and py and no token in ps. (Such
properties can be checked by MPSAT.) Below we give Boolean expressions and
the corresponding conservative tests for the properties listed above.

Safeness-Preserving Contractions

A transition contraction preserves boundedness, but, in general, it can turn a safe
net into a non-safe one, as well as introduce duplicate (weighted) arcs. However,
since unfolding techniques are not very efficient for non-safe net, we assume
that the initial STG is safe, and perform only safeness-preserving contractions,
i.e., ones which guarantee that if the initial STG was safe then the transformed
one is also safe. (Note that the transitions with duplicate (weighted) arcs must
be dead in a safe Petri net, and so we can assume that the initial and all the
intermediate STGs contain no such arcs).

We now give a sufficient structural condition for a contraction being safeness-
preserving. Then we will show how this can be checked with a reachability anal-
ysis and also how a single unfolding prefix can be used for checking if each
contraction in a sequence of contractions is safeness-preserving. (The proofs of
all the results can be found in the technical report [KS06]).

Theorem 1 (Structural safeness-preservation). A secure contraction of a
transition t in a net I' is safeness-preserving if
1) |°t|=1 or
2) [t°| =1, *(t*) = {t} and
a) I' is live and reversible

b) My(p) =0 with t* = {p}
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Fig. 5. Examples of non-safeness-preserving contractions

Figure [B] shows two counterexamples: the leftmost net violates the condition
that either the pre- or postset of ¢ has to contain a single place; one can see that
the contraction of ¢ generates a non-safe net. The net in the middle violates the
condition *(¢*) = {t} in the second case in Theorem [ (i.e., that the place in the
postset of ¢ must not have incoming arcs other than from ¢); the rightmost net
is obtained by contracting ¢ in the net in the middle.

In practice, the decomposition algorithm checks the condition 2b) which makes
no assumptions about the net which are difficult to verify. This is important since
there exist STGs which are neither live nor reversible, e.g., ones which have some
initialisation part which is executed only once in the beginning.

If the specification is guaranteed to be live and reversible, it is also possible to
use condition 2a); then the following lemma is needed to apply such contractions
repeatedly.

Proposition 2. Secure transition contractions and implicit place deletions pre-
serve liveness and reversibility.

So far, we only considered structural conditions for a contraction to be safeness-
preserving; now we describe the dynamic conditions.

Theorem 3. Let I' be a safe STG and t € T such that the contraction of t is
secure. The contraction of t is safeness-preserving iff the following property does

not hold:
(o))

To check these reachability properties with MPSAT one has to generate the un-
folding prefix with PUNF first, which can take considerable time. It is therefore
impractical to generate it for checking the safeness-preservation of a single con-
traction. Instead, our algorithm uses a single unfolding prefix to check if a se-
quence of several subsequent contractions is safeness-preserving. (This technique
is described in more detail in the technical report [KS06]).
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Implicit Places

As it was already mentioned, the deletion of implicit places is important for
the success of the decomposition. As a conservative condition, DES1J looks for
shortcut places. On the other hand, unfolding-based reachability analysis makes
it possible to check exactly whether a place is implicit: a place p is implicit iff
the following property does not hold:

“pA \/ /\q

tep® ge*t\{p},

It is possible to detect all implicit place of a net with a single unfolding. Ob-
serve first, that the deletion of an implicit place cannot turn a non-implicit place
into an implicit one. Indeed, suppose p; is implicit and deleted in X', yielding
X1, and po is implicit and deleted in Xy, yielding Xs. Then F'S(X) = FS(X1) =
F'S(X5) by definition of implicit places, where F'S(X') denotes the set of all firing
sequences of X. Suppose now that po is deleted first in X, yielding X1, and p; is
deleted in X7, yielding X9 again. Then F.S(X) C FS(X}) C FS(X3) = FS(X),
since deleting places can only increase the set of firing sequences. Therefore
FS(X) = FS(X{) = FS(X3), which shows that po is implicit in X. It is there-
fore sufficient to iterate once over all places and to delete every implicit one.

Furthermore, the unfolding of a net in which an implicit place was deleted
can be obtained from the original unfolding by deleting all occurrences of this
place. For the above reachability analysis we get the same effect automatically,
because deleted places will not occur in the corresponding property.

Dynamic Auto-conflicts
A conservative test for the presence of an auto-conflict is the presence of two
transitions with the same label (distinct from \) and overlapping presets. Un-
folding-based reachability analysis makes it possible to check exactly for the
presence of an auto-conflict as follows.

In a safe STG distinct transitions ¢; and to such that ®t; N ®ty # () are in
dynamic conflict iff the following property holds:

A v

pE®t1Ut2

Using this exact test can reduce the number of times the decomposition al-
gorithm has to backtrack, which ultimately can result in the improved runtime
and smaller final components.

6 Results

We applied the described combined approach to several benchmark examples
with and without CSC conflicts, and compared the results with the stand-alone
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synthesis with MPSAT and PETRIFY. (The tool for CSC conflict resolution and
decomposition described in [CCOG [Car03] was not available from the authors.)
In the tables, all times are given as (minutes:)seconds. The benchmarks were
performed on a Pentium 4 HT with 3 GHz and 2 GB RAM.

We worked with two types of benchmarks. The first group are pipelines which
have CSC initially. As expected, the new approach produces components without
CSC conflicts, i.e., the signals which are necessary for preventing CSC conflicts
are kept in the components (the original approach of [VW02], VK05, [SVWKOG]
would have contracted some of them).

Our combined approach decomposes and synthesises these benchmarks (see
Table[l]) quite quickly compared with PETRIFY (aborted after 6 hours). However,
MPSAT alone is much faster for these examples and needs less than a second for
any of them. This is because these benchmarks are relatively small, with up to
257 nodes and up to 43 signals.

Table 1. Results for the pipeline benchmarks

Benchmark DEgs1J PETRIFY
2PP.ARB.NCH.(03.CsC 1 1
2PP.ARB.NCH.(06.CSC 2 14
2PP.ARB.NCH.(09.CSC 4 1:54
2PP.ARB.NCH.12.CSC 10 32:55
2pPpP-wK.03.csc 1 1
2PP-WK.06.CSC 2 9
2PP-wK.09.Ccsc 3 31
2PP-WK.12.Ccsc 18 24:36
3PP.ARB.NCH.(03.CsC 1 4
3PP.ARB.NCH.(06.CSC 3 2:14
3PP.ARB.NCH.(09.CsC 7 84:17
3PP.ARB.NCH.12.CSC 22 > 360:00
3PP-wK.03.Ccsc 1 1
3PP-wWK.06.CSC 3 31
3PP-WK.09.Ccsc 7 34:08
3PP-WK.12.CSC 22 > 360:00

The second group of benchmarks are newly generated; they are STGs de-
rived from BALSA specifications. These kind of benchmarks was used before
by [CCOG]. The benchmark SEQPARTREE(21,10) from there is nearly the same
as SEQPARTREE-05 here; the difference is that we did not hide the internal
handshake signals. However, this is also possible for our approach and will most
likely lead to further speedups, as discussed in Section [

These examples are generated out of two basic BALSA handshake compo-
nents (see [EB02]): the 2-way sequencer, which performs two subsequent hand-
shakes on its two ‘child’ ports when activated on its ‘parent’ port, and the 2-way
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Fig. 6. SEQPARTREE-03. Filled dots denote active handshake ports (they can start a
handshake), blank nodes denote passive ones. Each port is implemented by two signals,
an input and an output. If two ports are connected the parallel composition merges
these four signals into two outputs.

Table 2. Results of the handshake benchmarks

Size Signals Combined
Benchmark |P| = |T| |In| —|Out| Deco. Synthesis X
SEQPARTREE-05 382 — 252 33 —93 2 1 3
SEQPARTREE-06 798 — 508 65 — 189 4 2 6
SEQPARTREE-07 1566 — 1020 129 — 381 10 4 14
SEQPARTREE-08 3230 — 2044 257 — 765 48 10 57
SEQPARTREE-09 6302 — 4092 513 — 1533  4:55 24 5:19
SEQPARTREE-10 12958 — 8188 1025 — 3069 68:09 1:39 69:48

paralleliser, which performs two parallel handshakes on its two ‘child’” ports when
activated on its ‘parent’ port; either can be described by a simple STG. The
benchmark examples SEQPARTREE-N are complete binary trees with alternat-
ing levels of sequencers and parallelisers, as illustrated in Figure [@ (IV is the
height of the tree), which are generated by the parallel composition of the el-
ementary STGs corresponding to the individual sequencers and parallelisers in
the tree. We also worked with other benchmarks made of handshake components
(e.g., trees of parallelisers only); the results did not differ much, so we considered
exemplarily only SEQPARTREE-N.

These benchmarks have CSC conflicts initially, and MPSAT was used in the
end to resolve them in each component separately. The experimental results in
Table 2] show the real power of our method. The corresponding STGs are very
large, and we consider it as a important achievement that the proposed combined
approach could synthesise them so quickly. As one can see, an STG with more
than 4000 signals is synthesised in less than 70 minutes. PETRIFY and MPSAT
alone need more than 12 hours (aborted) for either of these benchmarks.

In contrast to the decomposition method of [CCO3L[CCO6] we allow components
with more than output. This was utilised here: the initial partition was chosen
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such that each component of the decomposition corresponds to one handshake
component. Other partitions of the outputs might lead to further speedups.

7 Conclusion

The purely structural decomposition approach of [VW02, VK05, [SVWEKOG] can
handle large specifications, but it does not take into account the properties
of STGs related to synthesisability, such as the presence of CSC conflicts. In
contrast, MPSAT can resolve CSC conflicts and perform logic synthesis, but it is
inefficient for large specifications. In this paper, we demonstrated how these two
methods can be combined to synthesise large STGs very efficiently.

One of the main technical contributions was to preserve the safeness of the STGs
throughout the decomposition, because MPSAT can only deal with safe ST Gs. This
is not just an implementation issue or a compensation for a missing MPSAT fea-
ture, but it is also far more efficient than working with non-safe nets, for which
unfolding techniques seem to be inefficient. We also showed how dynamic proper-
ties like implicitness and auto-conflicts can be checked with unfoldings and how
these checks can be combined with cheaper conservative structural conditions.

Future research is required for the calculation of the decomposition tree, the
size of which is cubic in the number of signals and exceeds the memory usage for
decomposition and synthesis by far. Here, heuristics are needed which explore
the tradeoff between the quality of the decomposition tree and the amount of
memory needed for its calculation.

Furthermore, we consider the handling of handshake based STGs as very
important. Handshake circuits allow to synthesise very large specifications at the
expense of a heavy overencoding of the resulting circuit, i.e., they have a lot of
unnecessary state-holding elements, which increase the circuit area and latency.
Decomposition can help here in the following way: instead of synthesising each
handshake component separately, one can combine several such components,
e.g., as it was done for SEQPARTREE-N, hide the internal communication signals
and synthesise one circuit implementing the combination of the components
using the proposed combined approach.
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Abstract. This paper studies mobile agents that act in a distributed
name space. The difference between belonging to a name space (where
objects can be accessed directly via pointers) and migrating between
name spaces (where objects have to be treated as values, that can be
copied into network messages) is taken account of by introducing Petri
net based formalism, employing the nets-within-nets paradigm.

This formalism, called mobile object nets, generalises the well-
established theory of elementary object nets, which has seen many ap-
plications over the last decade.

While mobile object nets provide a solution to the specific modelling
problem mentioned above, they are much more generic and not restricted
to this domain.

Keywords: Mobile agents, name spaces, nets-within-nets, object nets,
Petri nets.

1 Introduction

Mobility induces new challenges for dynamic systems, which need a new concep-
tional treatment. In this article we formalise mobile agents acting in a mobility
infrastructure like that in Figure [l In this figure, the infrastructure is com-
posed of the two buildings A and B represented in the system net. Buildings can
be seen as a metaphor, e.g., for different hosts on a distributed network. The
two buildings are connected via the mobility transfer transitions ¢4 and tg. One
mobile agent is present inside building A as a net token.

Inside the building the agent has access to a workflow describing how the agent
is allowed to use services, i.e. the building’s infrastructure. The agent can decide
to use the building’s infrastructure by synchronising with the access workflow’s
transitions. The transition inscriptions (given in the syntax of the tool RENEW
[KWD704]) generate the set of synchronisations (t,ta), (t3,t21), (ts,t22), and
(tr,t23)-

The initial marking po = (p1,p20) is a nested multiset, which reflects the fact
that we model a hierarchical scenario (an agent located inside a building). In
this scenario the mobile agent’s net is copied to the places p» and ps by execution
of transition ¢1. The agent’s initial marking My = poo disables all events except
for the synchronisation (ta,t29). After the synchronisation the agent’s marking

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 244 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Building B

p6 on:a3() p7,
[15]

Building A O A

Fig. 1. A mobile agent’s environment

becomes M7 = po; which enables the synchronisation (¢3,t21). The agent can
now travel from building A to B via transition t4. The arrival of the agent at
building B enables (t5,%22). At this point the agent’s marking has evolved to
Ms = po3 and in building A the place ps is marked. Nevertheless, this is not
sufficient to enable (7, ta23), since we have to take into account that the agent’s
token pog is still at building B. This token is unavailable until the agent moves
back to building A via ts. When the agent is back inside the building A at place
ps then (t7,123) is enabled. After firing ¢g the final marking u = (p19.p24) is
reached.

When modelling this scenario we have to distinguish two kinds of movement:
Movement within a building and movement from one building to another. When
moving whithin a building, the agent has full access to all services (e.g. service
stations, information servers, etc.). On the other hand, when moving to a dif-
ferent building the environment may change dramatically: Services may become
unavailable, they may change their name or their kind of access protocols. This
leads to the usual problem that within the same environment (e.g. the memory
of a personal computer) we can use pointers to access objects (as done for Java
objects), which is obviously impossible for a distributed space like a computer
network: For example when a Java program transfers an object from machine
A to B via remote method invocation (RMI) it does not transfer the object’s
pointers (which are not valid for B); instead Java rather makes a deep copy of
the object (called serialisation) and transfers this value over the network. The
value is used to generate a new object at B which can be accessed by a fresh
pointer.

Among the wealth of research on defining mobile systems, in recent years a
variety of formalisms have been introduced or adopted to cover mobility: The
approaches can be roughly separated into process calculi and Petri net based
approaches. The 7-calculus [MPW92], the Ambient-calculus [CGGO0] and the
Seal calculus [VC98] are just three of the more popular calculi. Approaches

dealing with mobility and Petri nets can be found in [Val98], [Bus99], [Lom00],
[XD00], [Hix02], [KMR03], [BBPP04], [Lak05], and [KF06).
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Continuing previous work [KMRO3| [KF06] we study object-based Petri nets,
especially, to model mobile agents. In this paper we generalise the established
formalism of elementary object system (FEos) [Val98] to cover requirements of
mobile systems. The formalism we introduce here is called mobile, elementary
object system (mobile E0s).

Valk introduced two fundamental semantics (i.e. firing rules) for Eos called
reference semantics and value semantics (cf. [Val98]) which correspond to the
two ways of handling objects in Java-like programming languages: Reference
semantics accesses object nets using pointers, while value semantics is a kind of
copy semantics.

The difference between the two is the concept of location for net tokens which
is explicit for value semantics but not for reference semantics, since it is unclear
which reference can be considered as the location of a net token. As shown in
[KMRO3] the concept of mobility cannot be expressed adequately by reference
semantics due to the possibility of side-effects. Reference semantics considers all
places as one single name space. In Figure [[l when the agent executes (¢5,t22)
at building B, then the effect becomes visible immediately at building A. This
is undesired, since it should become visible only after the agent returns to A.

For value semantics each place is its own name space, so it cannot simulate the
global name Spaceﬂ as demanded by our scenario for the access inside buildings.
When firing ¢; two net tokens with independent marking are created. When firing
(ta,t20) the effect is only visible in the copy moving from ps3 to p4, but not for the
net token in py. Since py and py are in different name spaces for the normal firing
semantics the effect is not visible at py and (¢3, t21) never becomes enabled.

Mobile E0S overcome the shortcomings of E0S by introducing modelling con-
structs that allow us to define name spaces that are larger than one place (as
value semantics does) but do not necessarily comprise of the whole net (as ref-
erence semantics does). The fact that mobile EOs subsume value and reference
semantics is reflected by the fact that they are strictly more expressive than
Eos, since they are able to simulate inihibitor nets.

The paper is structured as follows. Section [2] defines elementary object sys-
tems. In Section (] we extend these to mobile Eos. In Section F] we prove some
properties of mobile E0s including the simulation of inhibitor nets. Section
introduces object nets where the system net is clustered into locations and we
demonstrate how mobile EOs are used to implement name spaces.

2 Object Nets
Object nets generalise place/transition nets. We recall basic notations.

Multisets. The definition of Petri nets relies on the notion of multisets. A multiset
m on the set D is a mapping m : D — N. Multisets are generalisations of sets in

! The concept of locality makes value semantics richer than reference semantics — for
example the reachability problem becomes undecidable while boundedness remains
decidable (cf. [KR04]). However, reference semantics can be simulated by a (larger)
P/T net, so analysis methods can be applied directly.
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the sense that every subset of D corresponds to a multiset m with m(d) <1 for
all d € D. The notation is overloaded, being used for sets as well as for multisets.
The meaning will be apparent from its use.

Multiset addition m, ms : D — Nisdefined component-wise: (m; +ms)(d) :=
m; (d)+my(d). The empty multiset 0 is defined as 0(d) = 0 for alld € D. Multiset-
difference m; — my is defined (m; — ms)(d) := max(m;(d) — ms(d),0). We use
common notations for the cardinality of a multiset |m| := }_,, m(d) and mul-
tiset ordering m; < ms where the partial order < is defined by m; < my <=
Vde D : ml(d) < mg(d)

A multiset m is finite if |m| < oco. The set of all finite multisets over the
set D is denoted MS(D), so we also denote m € MS (D). The set of all finite
multisets MS (D) over D naturally forms a monoid with multiset addition + and
the empty multiset 0. Multisets can be identified with the commutative monoid
structure (MS(D),+,0).

Multisets are the free commutative monoid over D since every multiset has
the unique representation in the form m =}, , m(d) - d where m(d) denotes
the multiplicity of d. Multisets can be represented as a formal sum in the form
m = ZL’:{ x; where x; € D.

Any mapping f : D — D’ can be extended to a mapping f* : MS(D) —
MS(D’) on multisets in a linear way: f* (31", ;) = >_i, f(z;). This includes
the special case f#(0) = 0. We simply write f to denote the mapping ff. The
definition is in accordance with the set-theoretic notation f(A) = {f(a) | a € A}.

P/T Nets Place/transition nets (P/T nets) are Petri nets with arc weights,
expressed by multisets, and the possibility of multiple tokens on each place.

Definition 1. A P/T net N is a tuple N = (P, T, pre, post), such that:

1. P is a set of places.
2. T is a set of transitions, with PNT = ).
3. pre,post : T — MS(P) are the pre- and post-condition functions.

A marking of N is a multiset of places: m € MS(P). A P/T net with initial
marking m is denoted N = (P, T, pre, post, m).

We use the usual notations for nets like ®x for the set of predecessors and z*® for
the set of successors for a node z € (PUT).

A transition t € T of a P/T net N is enabled in marking m iff Vp € P :
m(p) > pre(t)(p) holds. The successor marking when firing ¢ is m’(p) = m(p) —

pre(t)(p) + post(t)(p). We denote the enabling of ¢ in marking m by m %

Firing of ¢ is denoted by m % m’. The net N is omitted if it is clear from the

context.

2.1 Elementary Object Systems

Object nets are Petri nets which have Petri nets as tokens — an approach called
the nets-within-nets paradigm, proposed by Valk [Val91l Val03] for a two lev-
elled structure and generalised in [KR03|, [KR04] for arbitrary nesting structures.
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Objects nets are useful to model the mobility of active objects or agents (cf.
[KMREOT] and [KMR03)).

Figure [2 shows an example object net. The Petri nets that are used as tokens
are called net tokens. Net tokens are tokens with internal structure and inner
activity. The nets as tokens perspective is different from place refinement, since
tokens are transported while a place refinement is static. Net tokens can be
viewed as a kind of dynamic refinement of states.

P9

Fig. 2. An Object Net

An elementary obJect system (E0s) is composed of a system net, which is a
P/T net N = (P, T, pre, post) and a finite set of object nets A' = {N1,...,N,},
which are P/T nets given as N = (Py, T, prey, posty). Each N € N models
a different mobile agent in the system. In the example in Figure [[] we have the
special case that |[N| = 1, i.e. there is only one agent in the system.

Without loss of generalisation we assume that all sets of nodes (places and
transitions) are disjoint. So, P U Unen P is a disjoint union (cf. Definition [).

The system net places are typed by the mapping d : P — {e} UN with
the meaning that a place p of the system net may contain only black tokens if
d(p) = e and only net tokens of the object net type N if d(p) = N. The set of
system net places of the type N is d~}(N) C P.

The typing d is called monotonous iff V¢ € T : YN e N : N € d(*t) = N €
d( *). We restrict EOs to monotonous mappings to ensure monotonicity of the
firing rule (see Theorem H] below).

Markings. Each net token in an EOS is an instances of an object net. Usually,
we have several, independent net tokens derived from the same object net. The
net tokens usually have different markings. A marking p € My of an Eos OS
is a nested multiset where M s is the set of all possible markings, defined in the
following way:

MN—M5<( Yoy x{oy)u U (- <N>st<PN>>> (1)

NeN
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A marking of an Eos OS is denoted p = L‘il(]/fk, M;,) where Py is a place
in the system net and M, is the marking of the net token of type d(py).

Let p = Zlkﬂl(f)k, M) be a marking of an Eos OS. By using projections on
the first or last component of an E0S marking p, it is possible to compare object
system markings. The projection IT*(u) on the first component abstracts from
the substructure of a net token:

m () 6o = £ 5 @)

The projection IT% (1) on the second component is the abstract marking of
all the net tokens of type N € N without considering their local distribution in
the system net.

1 (0 Gt ) = 30 ) M 3)

k=1 k=1
where the indicator function 7y : P — {0,1} is my(p) = 1 iff d(p) = N.

Events. The Eo0s firing rule is defined for three cases: system-autonomous firing,
object-autonomous firing, and synchronised firing. For the sake of uniformity of
the firing rule, for each N € N, we add the idle transitions ey for the object
net where pre(ex) = post(ey) = 0 and the set of idle transitions {¢; | p € P}
where pre(e;) = post(ep) = D for the system net.

Let C be the set of all mappings C': N — Jyea(Tnv U {en}) such that each
C' € C maps each object net N € N to one of its transitions ¢ € Ty or the
idle transition ey, i.e. C(N) € (Tny U {en}). The idle map ec € C is defined
ec(N)=ey forall N € N. For N = {Ny,..., N, } we denote C € C as the tuple

An event of the whole system is a pair (7,C) where 7 is a transition of the
system net or e5 and C' € C:

T:{(?,C)‘?efu{eﬂﬁe13}/\060}\{(eﬁ,ec)lﬁeﬁ} (4)

An event (7, C) has the meaning that 7 fires synchronously with all the object
net transitions C'(N) for N € N. Note, that (ep, €c) is excluded because it has
no effect. By the construction of 7 each system net transition has exactly one
synchronisation partner in the object net N € A. This partner might be an
idle-transition. System-autonomous events have the form (%\7 ec). For a single
object-autonomous event at the location p we have 7 = €5 and for all except one
object net N we have C(N) = ey, i.e. |C(N)\ ec| = 1.

A set © C 7 is called a synchronisation structure. In the graphical represen-
tation of object nets, synchronisation structures are defined by transition labels
of the form : name() which means that a labelled system net transition has to
be synchronised with an object net transition with the same label (where labels
of the form ey and ez are ommitted).
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Definition 2. An Eos is a tuple OS = (]\Af,./\/, d, 0, 1p) such that:

. N is a P/T net, called the system net.

. N is a finite set of P/T nets, called object nets.

. d:P— {e} UN is a monotonous typing of the system net places.
. © CT isa finite synchronisation structure.

. o € My is the initial marking.

Gr i~ Lo o~

We name special properties of EOS:

— An Eos is minimal iff it has exactly one type of object nets: |N| = 1.
— An Eos is pure iff it has no places for black tokens: d=*(e) = 0.

An Eos is p/t-like iff it has only places for black tokens: d(ﬁ) = {e}.
— An Eos is unary iff it is pure and minimal.

Ezample 1. Figure [J shows an Eos with the system net N and the object
nets N' = {Ny, Na}. The nets are given as N = (P, T, pre,post) with P =
{p1,....po} and T = {t}; Ny = (P, Ty, pre,,post;) with P, = {ay,b} and
Ty = {t1}; and Ny = (P,, T, pre,, post,y) with Py = {ag, ba, co} and Ty = {t2}.

The typing is d(p1) = d(p2) = d(ps) = N1, d(p3) = d(p7) = d(ps) = N2, and
d(ps) = d(ps) = d(pg) = e. The typing is illustrated in Figure Bl by different
colours for the places. There are only autonomous events:

O = {(tv (€N17€N2))} U {(€ﬁ7 (tla 6N2))7 (6ﬁ7 (€N17t2)) | ]/56 ﬁ}

The initial marking has black tokens in ps and ps, two net tokens in p;, and one
net token each in ps and ps:

p=(p1,0) + (p1,a1 + b1) + (p2,a1) + (p3,a2 + b2) + (p4,0) + (ps,0)

Note, that for Figure 2l the structure is the same for the three net tokens in p;
and po but the net tokens’ markings are different.

We have to consider three different kinds of events: system-autonomous firing,
object-autonomous firing, and synchronised firing. Due to the idle step we have
a uniform structure of events (7,C) € 7 and the conditions on A and p for the
different kinds of firing are expressed by the enabling predicate ¢:

¢((7,C), A, p) <= II'(\) = pre(7)) Al (p) = post(T) A
VN € N : I13,()\) > prey (C(N)) A
YN € N+ T3 (p) = T3,(N) - prey (C(N)) + posty (C(N))

1. The first conjunct expresses that the first component of the nested multiset
A corresponds to the pre-condition of the system net transition 7: IT1(\) =
pre(T).

2. In turn, a nested multiset p € M is produced, that corresponds with the
post-set of T in its first component.
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3. An object net transition 7 is enabled if the combination of the net tokens
of type N enable it, i.e. II%(\) > prey(C(N)).

4. The firing of 7 must also obey the object marking distribution condition
I3 (\) = II3(p) — prex(C(N)) + posty(C(N)) where posty(C(N)) —
prey(C(N)) is the effect of the object net’s transition on the net tokens.

For system-autonomous events (£, e¢) the enabling predicate ¢ can be simpli-
fied further. We have prey(en) = posty(ex) = 0. This ensures that I7%(\) =
1% (p), i.e. the sum of markings in the copies of a net token is preserved with
respect to each type N. This condition ensures the existence of linear invariance
properties (cf. [KR04]). Analogously, for an object-autonomous event we have
the idle transition 7 = €5 for the system net and the first and the second con-
junct in ¢ is: IT*(\) = pre(7) = p = post(7) = II'(p). So, there is an addend
A = (p, M) with d(p) = N and the marking M enables the object net transition.

The predicate ¢ does not distinguish between markings that coincide in their
projections. To express this fact we define the equivalence = C MJQ\/ that relates
nested markings which coincide in their projections:

a B I (a)=I"(B) A\VN e N : I3 () = IT% () (5)

The relation « = 3 abstracts from the location, i.e. the concrete net-token, in
which a object net’s place p is marked as long as it is present in o and 3. For
example, we have

(D, p1 + p2) + (P',p3) = (P, p3 +p2) + (P, p1)

which means that 2 allows the tokens p; and ps to change their locations (i.e.
p and p'). It is not allowed that the token itself is modified, i.e. the token p;
cannot change into p/.

Lemma 1. The enabling predicate is insensitive with respect to the relation =2:
(T, C), N, p) <= YN, p': N =AAp =p=o((7,C),N,p)

Proof. From the definition of ¢ one can see that the firing mode (}, p) is used
only via the projections IT'2. Since N =2 X, p’ = p expresses equality modulo
projection ¢ cannot distinguish between A\ and A, resp. p’ and p.

Firing an event (7, C) involving the system net transition 7 removes net tokens
in the pre-conditions together with their individual internal markings. Since the
markings of EOS are nested multisets, we have to consider those nested multisets
A € M that are part of the current marking, i.e. A < p.

For the definition of firing we use the projection equivalence to express that
on firing the system net collects all relevant object nets for the particular firing
mode and combines them into one virtual object net that is only present at the
moment of firing. Due to this collection the location of the object nets’ tokens
is irrelevant and can be ignored using projection equivalence.
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Definition 3. Let OS be an EOS and let p, /' € My be markings. The tran-
sition (7,C) € T is enabled in mode (X, p) € M3, if the following holds:

ASpAIN P (V=X AP Zp)AO((F,C), N, p)

The successor marking is defined as p' =y — X+ p.

We write p % i’ whenever g EO0n), ' for some mode (A, p).

os

From Lemma [Il and Def. Bl we conclude that A %
all X, o/ with X' 2 X and ¢/ & p that X' %
enabling condition given in Definition Bl can be strengthened:

p iff we have for

p'. Hence, we see that the

(7.C)(A\p)
W0

YO0, 1 s (A< A (7, 0), A, ) (6)

Fig. 3. The EOS of Figure @ after the firing of (, (ex,, €x,))

Ezample 2. Consider the Eos of Figure @ again. The event (¢, (ex, , €n,)) is en-
abled in mode (X, p) € M3, with

A= (p1,a1 +b1) + (p2, a1) + (p3, a2 + b2) + (pa,0) + (ps5,0)
P = (vaal + a; + bl) + (p77a2) + (p87b2) + (p970)

After firing in this mode we obtain the successor marking (cf. Figure Bl):
NI = (pla 0) + (vaal + a1+ bl) + (p77a2) + (pSu b2) + (p97 0)

A transition £ € T with an an object net N that is present in the postset but
not in the preset (i.e. N & d(*t) and N € d(£*)) generates net tokens of type N.
The firing rule ensures that these net tokens carry the empty marking since in
this case (7, C) is enabled in mode (), p) only if all object nets in p of this type
N carry the empty marking.
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The converse case, i.e. N € d(*t) and N ¢ d(¢*), which destroys net tokens of
type N, is forbidden by the monotonous typing, since it yields a contradiction:
In this case (7,C) is enabled in mode (), p) only if all object nets in A of this
type N carry the empty marking: I7%,(A) = 0. Hence, not all pairs (\, p) with
A <X )\ are also firing modes, i.e. the firing rule would not be monotonous.

2.2 Name Spaces for EOS

With Eos we can define a system net like that in Figure [l but the net struc-
tures for the buildings do not have the intended meaning. As discussed in the
introduction, the firing rule for EOS treats each place as a singular name space.

In the following we define a mobility system with more flexible name spaces.
Given an E0s the system net N is decomposed into locations (the name spaces)
and mobility parts. A location is a subnet L = (P, T, pre;,post;) of the
systemnet N, i.e. P, C P,T;, C T, pre; = pre|r, p,,and post; = post|r, p,.
Location nets are disjoint.

The location nets are connected by transitions T,, C T that describe the
movement from one location to another.

Definition 4. A locality infrastructure is the tuple LS = (L, Ny,) where:

1. L is a finite set of disjoint nets, called locations, given as L = (P, Ty,
pre;,posty).

2. Ny, = (P, Tin, Pre,,, pre,,) is the mobility infrastructure disjoint from all
L € L where P,, =0 and for all t,, € T, exist two location nets L,L" € L
with L # L' that are connected by tp,:

{pe P|pre,(tm)(p) >0} € PLA{p € P|post,,(tm)(p) > 0} C Pr/

The net N(LS) := (P, T, pre, post) generated by an infrastructure LS is given
by P=Upe, Pr, T=TnUUpc, T, pre = pre,, U, pre;, and post =
post,, UlJ.c, post,.

A mobility system is the pair (OS,LS) where OS = (]\Af,./\/, d,0, ug) is an
Eos and LS = (L, N,,) is a locality infrastructure generating the system net:
N(LS) = N.

Ezample 3. The Eos in Figure [Il has two locations A and B indicated by the

buildings’ borderlines: P4 = {p1,p2, p3, p4, Ps, P8, P9, P10}, Ta = {t1,t2,t3, 17,18}
and Pg = {ps,ps} T = {ts5}. The mobility transitions are T}, = {t4,%s}.

3 Mobile EOS

A first attempt at a solution to redefine the firing rule was to make it respect the
structure of the mobility system (OS, LS). Following this approach we changed
the firing rule to allow local and global access. However, the approach turns out
to be unnecessarily specific to the domain of name spaces. Instead we extend
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the formalism in a more general way. (Section [ describes how these extensions
are actually used to model name spaces).

So far the firing rule was insensitive with respect to the relation = which
ignores the system net location of an object net’s token but requires that the
total number of tokens in different copies of the same object net place adds up to
the number expected when firing the respective transition in a traditional net.
We generalise this notion by using a more general relation.

For E0s each place is its own name space. To define clusters of places be-
longing to the same name space we introduce conversion sets: An equivalence «
on the object net’s places P = Jy Py is called a conversion, its equivalence
classes are conversion sets. Let P/.. denote the set of equivalence classes of
— and let g.. : P — P/., be the natural surjection of P/.,, i.e. the func-
tion that maps each place p € P to the conversion set that p belongs to:
g—(p) = {p' | P < p}. For the identity conversion <« = idp we obtain
g as the injection: g;q, (p) = {p}.

Definition 5. A mobile EOS is a pair (OS, <) where OS is an EOs and < is
a conversion equivalence on the object nets’ places P = |Jycpn Pn-

We extend < to an equivalence on nested multisets. The equivalence <« iden-
tifies v, B € M whenever the sum of tokens in all net tokens of type N (which
is 113 () and I1%,(8)) is equal in both nested multisets modulo «:

a—f = I'(a) =" (B) ANYN € N : gE (L5 () = g2 (X () (7)

The relation a < 3 abstracts from the concrete location p in the system net in
which an object net place p is marked, and additionally allows token conversions
via <.

Lemma 2. For all o, f € M and all coversions < we have o = = a < f3.
In particular, for <= idp we have a = [ <= «a < f3.

Proof. Directly from () and ().

We modify the firing rule given in Definition [B] using the equivalence « instead
of =.

Definition 6. Let (0OS, <) be a mobile EOS and let p, ' € My be markings.
The transition (7,C) € T is «>-enabled in mode (X, p) € M3, if the following
holds:

ASEAIN, (X o N A () = p) AG(F,C), N, )

The successor marking is defined as u' = p — A+ p.

4 Relating Mobile EOS to EOS

There is an obvious construction of a P/T net, called the reference net, which is
constructed by taking as the set of places the disjoint union of all places and as
the set of transitions the synchronisations.
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Definition 7. Let OS = (]V,J\/', d, 0, o) be an EoS. The reference net RN(OS)
is defined as the P/T net:

RN(OS) = ((ﬁ U UNeN PN> , 0, pre®™ post®™, RN(HO))
where pre™ (and analogously post™ ) is defined by:

pre™((7,C)) = pre(7) + Y prey(C(N))

and for markings we define:

lul [l
RN (Zk_l(pka)) = Zk:lpk + My,

The net is called reference net because it behaves as if each object net was
accessed via pointers and not like a value. We have the following property
Proposition 1]:

Theorem 1. Let OS be an Eos. Every transition (7,C) € T that is activated
in OS for (A, p) is so in RN(OS):
(7.0)

—% ' = RN 7.)
Hos # (1) RN(0S)

RN (')

If we use RN(OS) as the only object net (i.e. /= {RN(0S)}) and a system net
that has one single place only, then this EOs simulates the reference semantics.
So, we have shown that for EOS the reference semantics is a special case of
the (value) semantics. As another property we obtain, that the definition of
—-enabling is a canonical extension of the value semantics given in [KR04]:

Theorem 2. The mobile EOS (0S,idp) has the same behaviour as the EOS
OS: The transition (7,C) € T s enabled in mode (X, p) for OS iff it is idp-
enabled in mode (X, p) for (OS, ).

Proof. From Lemma 2l we have a =2 8 <= « <  whenever <+ = idp. So,
Definition [f] simplifies to Definition Bl and each transition (7,C') € 7 is enabled
in mode (A, p) for value semantics iff it is id p-enabled in the mobile EOS.

The special case of < = idp expresses the fact that on firing, the system net

collects all relevant object nets for the particular firing mode and combines them

into one virtual object net that is only present at the moment of firing. Due to

this collection, the location of the object net’s tokens is irrelevant and is ignored.
For Eos reachability is undecidable [K6h06, Theorem 2].

Theorem 3. Reachability is undecidable for non-minimal, pure EOS and for
minimal, non-pure EOS.

For Eos boundedness remains decidable [Koh06, Theorem 7).
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Theorem 4. Boundedness is decidable for EOS.

The following theorem shows that mobile E0OS are more powerful than Eo0s,
because neither reachability nor boundedness nor coverability are decidable for
inhibitor nets while boundedness is decidable for EoS.

Theorem 5. Mobile EOS can simulate Petri nets with inhibitor arcs.

We recall the definition of inhibitor nets:

Definition 8. An inhibitor net is a tuple (N, A) where N is a P/T net and
AC (P xT)is a set of inhibitor arcs.

A transition t € T is enabled in marking m (denoted m (Nt—m>) iff m %

and m(p) = 0 for all p € ( At). The successor marking is m’(p) = m(p) —
pre(t)(p) + post(t)(p) for allp € P.

A place p € ( At) is called an inhibitor place of t. For an inhibitor net a transition
t is disabled whenever an inhibitor place is marked. If A = () then an inhibitor
net (N, A) behaves as the P/T net N itself.

In the following we define for an arbitrary inhibitor net a mobile EOs that
simulates it. This is sufficient to prove Theorem [Bl

s

O»r Or O (p,0) Ob.{t})
O et O Z O
O O O, oW, {th

(a) Inhibitor net (N, A) (b) Net N (c) Net Ny (d) Net Ny

Fig. 4. The inhibitor net (NN, A) and its subnets

Given an inhibitor net (N, A) we define Z := {0} U {{¢} | ¢t € inh(T)} where
inh(T') is the subset of transitions with inhibitor arcs: inh(7T") := (PA ). For the
inhibitor net N in Figured (a) we have Z = {0, {t}}.

For each Z € Z we define the P/T net

Nz :=((P\(AZ)) x{Z},0,0,0)

which is obtained by dropping all transitions and the places that are tested for
emptiness by the transition in Z. To make all the nets Nz disjoint we use Z
as the second component for the places. The nets Ny and Ny are shown in
Figures[ (¢) and (d).

Next we construct a mobile EOs Inh(N, A) for the inhibitor net (N, A). We use
N ={Nyz | Z € Z} as the set of object nets. The system net contains the place
Po that carries net tokens of type N, i.e. d(py) = N, and one place p? for each
Z € Z with d(p?) = Ny. For each transition t € T we add the transitions ¢’ and
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The system net N

he net token on
AT
© N
£ ) 'S
ép’ /
\_ _/

Fig. 5. The simulating net Inh(N, A)

Y

—~

=
O
N

" and one place pt*} in the system net with the arcs py — ¢ — pttt — ¢ — po.
© synchronises each system net transition # with the transition ¢ in the object
net N. The conversion < is defined to allow the transfer of tokens between p
and all (p, Z). The construction is illustrated in Figure [ for the inhibitor net

depicted in Figure [ (a).
Definition 9. Given the inhibitor net (N, A) define the mobile EOS

Inh(N, A) = (N,N,d, 0, 1), <)

~

The system net N is gwen by P = {po} U {p{t} | teT}, T={¢1|teT},
and pre(t')(po) = pre(®”)(p!*}) = post(?')(p'") = post(t”)(po) = 1 for all
t €T (and 0 everywhere else).

The set of object nets is N ={N}U{Nz | Z € Z}.

The typing is defined d(py) = N and d(p?) = Nz for all Z € Z.
O={F,C)|teT NC={t}U{en, |0#Z€Z}}U{(t" en) |t € T}.
The initial marking is po = (po, Mo).

The conversion < is defined by the family C = {C, | p € P} of conversion
sets Cp :={p}U{(p,2) | Z € Z}.

S Grds Lo

Mobile Eos simulate inhibitor nets directly by Inh(N, A), which also proves
Theorem Bl

Theorem 6. Let (N, A) be an inhibitor net. Then we have:

#.0)

t / ~
M M <— M
N (Po, M) Inh(N,A)

(51007 ({11}) <52 o, )
Proof. We show that transition ¢ is enabled in marking M for the inhibitor net
iff (#,C) where C = {t)} U{en, | 0 # Z € Z}} is enabled in the marking
(Po, M) for Inh(N, A).

Assume that ¢ is enabled in marking M in (N, A). Consider the marking
(po, M). In the system net the preset of ? and in the net token the preset of
t is sufficiently marked. By the definition of the conversion < it is possible to
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convert the marking M of the object net N into a marking of the object net
Ny iff M (p) = 0 for all tested places p € ( At). The marking of the net token is
modified from M to M’ x {Z} due to the internal action of the net token which
corresponds to the firing of ¢ in the inhibitor net,

Conversely, if (#,C) is enabled in the marking (po, M) then M (p) > W (p,t)
for all p € *¢. By the conversion we obtain M (p) = 0 for all (p) € ( At) since there
is no corresponding place (p, Z) in Nyz. Hence, ¢ is enabled in the inhibitor net
for marking M. Since the system net of Inh(N, A) is a state machine when firing
(¥, C) the place p? is marked, enabling only . It is clear that (Z,C)(#", ex) is
the only firing sequence.

The correct correspondence of the markings M’ x {{t}} and M’ follows from
the fact that the conversion relation modifies only the second component of the
marking while the first reflects the marking of the inhibitor net. Since the initial
marking is puo = (po, Mp) we have a simulation of the inhibitor net.

5 Name Spaces and Mobile EOS

Given a mobility system (OS, LS) we define a mobile EOS Mob(0S) that allows
global access only within a location. The main idea is similar to the construction
of RN(OS). As it is shown by Theorem [I] the global access which is defined by
reference semantics is characterised by the P/T net RN(OS) which is obtained
by fusing the system with all the object nets according to the synchronisation
relation. The resulting net describes one single name spaces.

p20 p21 p22 p23 p24

Fig. 6. The Mobile Agent in Building A

If we have different name spaces defined by a locality infrastructure, we fuse
only the subnet of the system net that describes a name space: Each location
L € L of the locality infrastructure is fused with the object nets. If we fuse the
name space named Building A of Figure [Il with the agent’s object net then we
obtain the P/T net of Figure[fl (Note, that we kept the graphical layout and
indicated the transition fusion by dotted lines).

Given a locality infrastructure LS = (£, N,;,) the new system net N’ has one
place py, for each location L € £: P’ = {p, | L € L}. The transitions are the
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mobility transitions: T =T. By definition there is exactly one location L for
each t,, € T,, such °t,, C Pr. Analogously, there is exactly one L’ such that
tm® C Pr.. For all mobility transitions t,, € Ty, that connect L with L' we add
pr, and py. as side conditions of ¢,, in the new system net.

For each location net L € £ we define the object net Nyr  that is the union
of L with the object nets N € N (where each node is tagged with L to make the
nets Ny z disjoint). Each system net place py, carries tokens of type N(N, L).
The net N (N, L) models agents within the name space L.

The movement transitions t¢,, € T, in the system net N’ are synchronised by
O with the corresponding transition (¢,,, L) of the object net Nar ..

The initial marking po can be denoted in the form pug = > ;.. pr where
= ZLiLll(pL,iaML,i) and pr; € Pp for all L and ¢. The new EOs marks
each place py, with marking Zl‘;ﬁ' pL,i+ (M x {L}), which is the corresponds
exactly with the marking 7, in the object net Ny 1.

The conversion < is defined by the conversion sets Ey,, for all N € /. Each
conversion set En , := {(p, L) | L € L} contains the new object net places (p, L)
that describe the same place p — only at different locations L.

Definition 10. Let (OS, LS) be a mobility system with OS = (]V,./\/'7 d, 0, 1)
and LS = (L, Ny,). Define the mobile EOS

Mob(0S) := (N', N, d', €, ), <)
where:

1. The system net is N' = (ﬁ’,f’,ﬁ%/,[%s\t/) where P! = {pr | L € L},
T' = T,,, and pre(ty,)(pr) = post(tm)(pr) = 1 if *tm C Py Vtn® C Pp
and 0 otherwise.

2. The set of object nets is N' = {Nar,, | L € L} where Ny, = (P, T, pre,
post) is defined for each location L = (P, Ty, pre;,post;) € L by:

Pi=PyUUyen(Py x {L})
T:={(7CL)|(7,0C)eOANTETL}
U{(tm, L) |ty € T A (tm® € Pp V *tm C Pp)}

pre(7,C, L)) = pre(7) + > . pre(r)

re; (t,, ,ifpeP
pre((tnnL))(p) = {Op L( )(p) otﬁerwige

Analogously for post.

FEach system net place pr, carries tokens of type Ny, i.e. d(pr) = Na L.

20 ={(tm,C) | tmy € Tra A C = {(tm,L) | (tm®* € PV *ty € PL)}} U

{eny . | Navp € N'A=(tn® € PLV °t,, C Pr)}

5. The initial marking is pg = > c(PL), LiﬁlpL,i + (M, x {L})), where
Mo = D pep bz and pp = Zliﬁl(pL@ML,i), such that pr; € Pr, for all L
and 1 <14 <|upl.

6. The conversion < is defined by the family of conversion sets € = {Ea4,) |
A€ A pe Pa} with Ey )= {(p,L) | L € L}.

> e
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on:a3()

A O ——(OP ] 0. OPT o
g 3 E
O

&

Building A

Fig. 7. A mobile agent’s environment

The resulting mobile E0s constructed from the Eos in Figure [l is shown in
Figure[d Each building is represented by a separate place. These two places are
connected by the mobility transitions ¢4 and tg. The mobility transitions ¢4, and
tg are also present in each agent net allowing the transfer between buildings.
The subnets defined by P4 and T4 as well as Pg and T describe the buildings.
They are now present as part of the agent net. The agent’s and the buildings’
events are synchronised via channel inscriptions.

The mobile Eos Mob(0S) defines the desired behaviour: Within the same
location L, an object net has global access to all the resources of the name
space, since they are all in the same net: Ny 1. Different locations are isolated
since they are in different net tokens.

6 Conclusion

In this paper we have investigated mobile agents that act in a distributed name
space. There is a fundamental difference between belonging to a name space and
migrating between name spaces. An object belonging to a name space can be
accessed directly via pointers, but when migrating between name spaces, objects
have to be treated as values that can be copied into network messages.

For the modelling of mobile systems it is essential that the formalism used
supports both representations. To accomplish this, we have defined mobile E0S,
a generalisation of the well-established formalism of E0Ss. The main extension is
the use of conversion equivalences for the firing rule.

We have shown that mobile E0OS subsume reference and value semantics. Fur-
thermore we have proved that they are strictly more expressive than Eos: While
boundedness is decidable for EOs it is not for mobile EOS since it is possible
to construct an mobile EOS which simulates a given inhibitor net. We have also
showed in an example that mobile E0OS are suitable for expressing the intended
behaviour for distributed name spaces.
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Abstract. Refinement of Petri nets is well suited for the hierarchical
design of system models. It is used to represent a model at different
levels of abstraction.

Usually, refinement is a static concept. For some inherent dynamic do-
mains as for example the modelling of web services, we need a more flex-
ible form of refinement, e.g. to bind web services at run-time. Run-time
binding allows for a flexible orchestration of services. The requirement of
dynamic refinement at run-time is quite strong. Since we would like to
redefine the system structure by itself, transition refinement cannot be
implemented by a model transformation. Instead, an approach is needed
which allows for dynamic net structures that can evolve as an effect of
transitions firing.

In previous work we introduced nets-within-nets as a formalism for the
dynamic refinement of tokens. Here we consider an extension of nets-
within-nets that uses special net tokens describing the refinement structure
of transitions. Using this formalism it is possible to update refinements, in-
troduce alternative refinements, etc. We present some formal properties of
the extended formalism and introduce an example implementation for the
tool RENEW.

Keywords: duality, refinement, nets-within-nets, Petri nets, super-dual
nets.

1 DMotivation: Web Service Orchestration

Web services [ACKMO3] are a standard means to integrate services distributed
over the Internet using standard web technologies like HTTP, XML, SOAP,
OWL, WSDL, BPEL4AWS etc. (cf. [Got00, [OASO7]). Conceptually, this approach
is very similar to remote procedure calls in CORBA [COR07]. The main differ-
ence is that web services focus on the semantic level of services using semantic
web techniques (formal ontologies for data and processes). The semantic level
allows for an automated dynamic binding depending on the available services.
This enables the programmer to concentrate on the orchestration of web services.

To give an example, have a look a the Petri net in Figure [Il which defines a
simple web service workflow: The scenario describes the organisation of a journey
from S to D. This task is split into two major sub-tasks that are executed in

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 263 2007.
© Springer-Verlag Berlin Heidelberg 2007
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buy flight rent car

(|
1

book hotel

Fig. 1. Web Service Workflow

parallel. The first sub-task organises a flight from S to an airport A that is close
to the final destination D and a car to travel from the airport A to D. The
second task is to book a hotel at D.

buy flight rent car

book hotel

enter dates pay per
credit card

Fig. 2. Refinement of the Web Service

For each transition of the net in Figure [Il we use a specific web service. We
assume that each web service itself is modelled by a Petri net (cf. [KMOOG],
[Mar05], [NMO03]). Then the resulting system model is obtained by refinement.
This approach corresponds to the usual top-down design of a software product.
Figure 2l shows the refinement of the transition book hotel where the travel dates
have to be filled in before the hotel is booked.

A Petri net formalism supporting transition refinement has the advantage
over other formalisms that the original abstract net of the early design stages
does not have to be redefined, but is continuously used for the later models and
for the implementation models. An example of such a formalism is the one of
(hierarchical) Coloured Petri Nets [Jen92] used in the Design/CPN tool [Des07].

Unfortunately the proposed transition refinement procedures in [Jen92] only
support static refinements that cannot be changed at runtime. For web services
the refinement is however not static. Usually we have a look-up services which
provides a whole repository of services that can be used alternatively. Usually
the user can decide which service is best for him with respect to costs, timing,
convenience etc. Figure [3] shows a repository with three subnets that can be
used for the refinement of the transition book hotel. The rhombic nodes named
(un)bind web service are used to formalise this dynamic refinement. The intended
meaning is the following: whenever the action bind web service is executed one
subnet is removed from the web service repository and the subnet is used as
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buy flight rent car
(] () (|

S "\ S
i fork
book hotel

bind web service
unbind web service
web service repository

book hotel #1

book hotel #2 enter dates pay per book hotel #3
credit card
enter dates on account enter dates pay never

Fig. 3. Dynamic Refinement using a Repository

the refinement of the transition book hotel. The action unbind web service is the
reverse operation.

In the formalism developed in this article, the rhombic nodes are used like

places since they connect transitions. We regard the rhombic nodes as places to
avoid introducing additional modellings constructs.
The “only” novelties our new formalism require, are marked transitions and the
firing of places(sic!) Also we use nets as tokens. The nets with these properties
are called Super-Dual Object Nets. They are a variant of the nets-within-nets
approach of Valk [Val03], therefor the term Object Nets; they are called super-
dual because places are also marked and are able to fire.

The remaining sections are structured as follows: In Section 2l we introduce our
approach of marked transitions for Petri nets. We define super-dual nets and their
firing rule. In SectionBlwe describe how the concept of super-dual nets can be lifted
to object nets and give an definition of the new formalism of super-dual object nets.
In Section [ we describe how super-dual object nets can be simulated by object
nets. SectionBlexplains a first attempt to integrate dynamic transition refinement

in RENEW [Kum0O1, KWD¥04]. The paper ends with a conclusion.

2 Introduction to Super-Dual Petri Nets

This section starts with a short remainder of Petri nets basics. This is to avoid
notational confusions. After that, super-dual nets will be introduced.

! Note, that the repository is a proper transition with the implementing nets as its
marking.
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2.1 Basic Definitions

The definition of Petri nets relies on the notion of multi-sets. A multi-set on
the set D is a mapping A : D — N. The set of all mapings from D to N is
denoted by NP. Multi-sets are generalisations of sets in the sense that every
subset of D corresponds to a multi-set A with A(x) < 1 for all x € D. The
empty multi-set 0 is defined as 0(z) = 0 for all © € D. The carrier of a multi-
set A is dom(A) := {z € D | A(z) > 0}. The cardinality of a multi-set is
|A| := > cpA(z). A multi-set A is called finite iff |A| < oo. The multi-set
sum A + B is defined as (A + B)(z) := A(z) + B(x), the difference A — B by
(A — B)(z) := max(A(z) — B(z),0). Equality A = B is defined element-wise:
Ve € D : A(x) = B(z). Multi-sets are partially ordered: A < B <= Vz €
D : A(z) < B(x). The strict order A < B holds iff A < B and A # B. The
notation is overloaded, being used for sets as well as multi-sets. The meaning
will be apparent from its use.

In the following we assume all multi-sets to be finite. A finite multi-set A
can be considered as the formal sum A = >, A(z) -z = > I | x;. Finite
multi-sets are the freely generated commutative monoid. If the set D is finite,
then a multi-set A € NP can be represented equivalently as a vector A € NIPI,

Any mapping f : D — D’ can be generalised to a homomorphism f#: N? —
NP’ on multi-sets: f# (32", a;) = Y., f(a;). This includes the special case
f#(0) = 0. These definitions are in accordance with the set-theoretic notation
f(A) ={f(a) | a € A}. In this paper we simply use f instead of f*.

2.2 DPetri Nets

A Petri net is a tuple N = (P, T, F) where P is a set of places, T is a set of
transitions, disjoint from P, i.e. PNT =0, and F C (P x T)U (T x P) is the
flow relation. Some commonly used notations for Petri nets are ®y := ( F'y) for
the preset and y® := (y I ) for the postset of a net element y.

To simplify the definition of duality and conjugation we only consider ordinary
Petri nets, i.e. we do not deal with arc weights. The mappings F'~, F'T are defined
by F~(t)(p) = |F N {(p.)}| and F*(8)(p) := |F N {(t.p)}].

A marking of a net N is a multi-set of places: m € N¥. Places are depicted
as circles, transitions as rectangles, and the flow relation as arcs between the
nodes. The marking is visualised as m(p) tokens on the place p.

A marked Petri net is a tuple (N, mg) consisting of a Petri net and a start
marking. Throughout this paper, we speak of Petri nets or simply nets instead
of (ordinary) marked Petri nets.

A multi-set of transitions u € N7 of a net N is enabled in marking m iff
Vp € P:m(p) > F~(u)(p) holds. The enablement of u in marking m is denoted
by m . A transition multi-set u enabled in m can fire in the successor marking
m’ where m’(p) = m(p) — F~ (u)(p) + F*(u)(p). Firing is denoted by m - m’.

Using multi-set operators m — is equivalent to m > F~ (u), and the successor
marking is m’ = m — F~(u) + F*(u).
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2.3 Super-Dual Nets

Super-dual nets have been introduced in [KR06]. A super-dual net contains a
G-flow (short: a glow) G C (PxTUT x P) as an additional structure. G connects
places and transitions the same way as the flow F', but with a different semantics
(see below).

Definition 1. A super-dual net is a tuple SD = (P, T, F,G) where

— P is a set of places,

— T is a set of transitions with PN'T = (),

— FC(PxTUT x P) is the flow relation, and
— GC(PxTUT x P) is the glow relation.

The preset w.r.t. the glow G is By := ( Gy) and the postset is y® := (yG ).
Analogously to the flow mappings we define the glow mappings G—,G* : T —
(P —N) by G~(1)(p) := |G " {(p, )} and G+ (8)(p) := |G N {(t, p)}].

In super-dual nets, also the transitions may be marked. A marking of a super-
dual net is a multi-set of places and transitions: m € N(PYT) The tokens on
transitions are called pokens. A poken is visualised as a little filled square. A
marked super-dual net is denoted as (P, T, F, G, m).

For super-dual nets, the firing rule considers the firing of transitions as well
as the firing of places.

1. A marking m enables a transition ¢ only if its preset °¢ is marked and ¢ itself
is marked. For a transition multi-set u € N7 we define enabling by:

m(p) > F~(u)(p) forallpe P
m(t) > u(t) forallteT

This means, that the number of pokens m(t) limits the maximal concurrency
of the transition ¢. Thus m(¢) = 0 describes a disabled transition.

2. Conversely, a marking m enables a place p only if its preset ®p is marked
and p itself is marked. For a place multi-set u € N” we define enablement
by:

m(p) > u(p) forallp € P
m(t) > G (u)(t) forallteT

Ezample 1. Cf. the net in Figure @l The place ps; is connected by glow arcs
(the dashed ones) with transitions ¢; and ¢s. In the depicted marking, only the
transition ¢; is enabled — more exactly: it is enabled twice. Despite the fact, that
the preset of transition to is marked, it is not enabled, since t5 itself is unmarked.
Firing of p5 transfers a poken from ¢; to ¢35, and ¢, is then enabled.

Both cases — firing of transitions and of places — can occur in a single step.

Definition 2. A multi-set of places and transitions u € NPT of o super-dual

net SD is enabled in the marking m € NPUT) | denoted by m =, iff

m(p) > F~(u|r)(p) + u(p) for all p € P and
m(t) > G~ (ulp)(t) +u(t) forallteT.
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Lo

Of Q"

Fig. 4. The super-dual net SD

An enabled multi-set u can fire, denoted by m — m’, resulting in the successor
marking m’ defined by

m'(p) = m(p) — F~ (u|r)(p) + F(ur)(p)
m’'(t) = m(t) — G~ (ulp)(t) + G*(ulp)(t).

Define pre(u) := F~(u|r) + G~ (u|p) and post(u) := F*(ulr) + Gt (u|p).
Using multi-set notations m - is equivalent to m > pre(u) + u. The successor
marking is m’ = m — pre(u) + post(u).

Duality. Given a super-dual net SD = (P, T, F,G,m), the dual net (inter-
changing transitions and places) is defined as SD? := (T, P, F,G,m) and the
conjugated net (interchanging flow and glow) is SD¢ := (P, T, G, F,m). Note,
that also the dual of a marking can be considered for super-dual nets. We have
the commutativity: SD = $D?. For the super-dual net of Figure [l these con-
structions are illustrated in Figure Bl

The following property justifies the name “super-dual nets”.

Proposition 1. Let SD be a super-dual net. SD corresponds to SD

u / u /
m-—m <= m-——m
SD Sped
Proof. Simultanously interchanging P and T as well as F' and G in Definition 2]
is the identity transformation.

Components. We define the F-component SD|r and the G-component SD|g
of a marked super-dual net SD = (P, T, F,G,m) as:

SD|p := (P, T, F,m|p) (1)
SD|¢ = (P, T,G,m|r) (2)

Both constructions are illustrated in Figure [l Note, that the components
SD|r and the dual of the G-component, SD|¢ (but not SD|q itself) are Petri
nets.

The following proposition relates the behaviour of a super-dual net to that of
its components.



Web Service Orchestration with Super-Dual Object Nets 269
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Fig. 5. Duality and Conjugation

p1 t1 p2 p1 t1 p2
&———0 @) (=wl @)
p5 p5
®
p3 2 p4 p3 2 p4
@——O0——-20
SD|r SD|c © ©

Fig. 6. The F- and the G-component

Proposition 2. Let m € NPYT) e o marking of a super-dual net SD =
(P, T,F,G). Let u € NPYT) Then for the F-component and the dual of the
G-component we have (For the proof see [KROG)):

VvueN':m > m' < (m|pL>m’|p/\m|T:m’\T2u)
SD SD|r

Vvue N’ :m —— m’ < (m|TL>m’|T/\m|P=m/|PZu)
SD SDIE,

3 From Object Nets to Super-Dual Object Nets

We are interested in a dynamic refinement of transitions, i.e. a refinement that
can be changed at runtime. This change should be made by the net itself. Our
basic approach is to regard sub-nets as special tokens of transitions. As men-
tioned in the introduction this approach proposes two extensions to the Petri
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net formalism: (1) Petri nets can be used as tokens and (2) transitions may be
marked.

The first extension of Petri nets to object nets — also known as the nets-
within-nets approach — has been proposed by Valk [Val91l, [Val03], and further
developed e.g. in [Far99], [Lom00], and [KR03| [KR04]. The Petri nets that are
used as tokens are called net-tokens. Net-tokens are tokens with internal struc-
ture and inner activity. This is different from place refinement, since tokens
are transported while a place refinement is static. Net-tokens are some kind of
dynamic refinement of states.

3.1 Object Nets and Object Net Systems

In the following we give a condensed definition of object net systems. For sim-
plicity reasons we abstract from the syntax of inscriptions of net elements and
synchronisations as it is used for reference nets [Kum0OI] in the RENEW tool (cf.
KWD04)).

Object net systems have the set of object nets as their colour set. In [KR03]
we generate the net-tokens via instantiation from a finite set of nets. In this
definition, we assume for simplicity reasons an arbitrary set of object nets:

N ={No,Ny,...}

One object net models black tokens: @ € N. This net has one initally unmarked
place and no transitions.

In coloured nets, each transition ¢ fires according to a mode b generated from
transition guards, arc expressions and variable assignments. Let B be the set of
firing modes. Each object net is a tuple

N = (Py,Tn, Fx, F¥)

where Fy, Fy : Ty — (B — (Py — NV)). Given a binding b Fy (t)(b)(p) is a
multiset of object nets.

Let P denote the union of all place components: P := |Jyca Py. Assume
analogously defined union sets for transitions 7', etc.

A marking p of an object net system maps each place to a multi-set of object

nets:
w:P— W

Here p(p)(IN) > 0 describes the fact, that the place p is marked with wu(p)(V)
net-tokens of the type IN.

Transitions in different nets may be synchronised via channels. In RENEW,
channels are also used to exchange parameters. Each transition has at most one
uplink, which is passive, and several downlinks, which are active in the sense
that they choose the synchronisation partner. Due to this structure we obtain
tree-like synchronisations. The formal definition is based on the synchronisation
trees. The set of all synchronisation trees is 7 = J,,~( 7 where

Toi={(t,0)01--0k) [teTAbEBAVI<i<k:0; €U, T} (3)
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The predomain F~ (and analogously for F*) is extended to F~ : © — (Py —
NV) by:

~ B koo~
E=((t,0)[01---0x)) = F~()(b) + ) F~(6:) (4)
Definition 3. An Object Net System is a tuple OS = (N, 0, o) where

— N is a set of object nets,
— O C T is the set of system events, and
— o s the initial marking.

As usual we have i LR p iff > F~(0) and o/ = i — F—(6) + F+ (). This firing
rule describes the reference semantics of object nets — for an in-deep comparison

of alternative firing rules cf. [Val03, [KR04].

3.2 Super-Dual Object Nets

Similarly to the extension of Petri nets to super-dual nets in section 2 we extend
the object net formalism by using nets as pokens, called net-pokens. The net-
pokens can be used as a dynamic refinement (similar to a sub routine) of the
transitions they mark. Figure[flshows a super-dual object net with nets on places
and on transitions.

t2

p1 * p2

Fig. 7. A Petri net with nets as tokens for places and transitions

Since these refinements are defined as markings it is possible to move net-
pokens using the token-game of object nets. In Figure [ the place p “fires” the
net-poken from to to t. Transition ¢ is then marked by two net-pokens, which
means that there are two modes of refinement for t. The equivalent net containing
the conflict between the possible refinement is given in Figure

Each object net is a super-dual object net N = (Py, Ty, Fiy, Fn, G, GY)
where G : Ty — (B — (Py — NV)) define the inscriptions for glow arcs. One
net models black pokens: ® € N. Each net-poken N € N has one transition
starty with empty preset and one transition endy with empty postset. These
transitions are used to start (or end, respectively) the dynamic refinement im-
plemented by the net-poken. From a practical point of view it is reasonable to
require that the net is unmarked when the refinement is started (i.e. when tran-
sition starty fires) and is unmarked again when it is ended by endy. We do not
adopt such a restriction here to allow a general definition.
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t2

p1 - p2

:
start : ; end
N2 N2

Fig. 8. Equivalent refinement after firing of place p

A marking p of a super-dual object net system maps each place and transition
to a multi-set of object nets:

p:(PUT) — NV
In analogy to 7 we define a tree structure of places: P = UnZO ‘P, where

Pn={@b)m--m]|pe PN\be BAVI <i<k:mec.,P}. (5

The mappings G~ and G+ are defined analogously to F~ and Ft.
The mapping v : (P UT) — NPYD) constructs a multiset by removing the
nesting structure:

vale &) =x Y () (6)

Here, v(6)(t,b) is the number of occurences of (¢, ) in the nested structure 6.

A dynamically refined transition ¢ is enabled in a mode N where N is the
net-poken implementing the refinement. If N is the black poken ®, then this
transition is not refined and synchronisation is possible. If N is not the black
poken, it is used as a dynamic refinement of ¢. This refinement splits ¢ into a
start and an end part: (¢,b, N, start) and (¢,b, N, end).

R={(t,b,N,a) |t TAbe BA®™#N € N,a € {start,end}} (7)

Definition 4. A Super-Dual Object Net System SDOS = (N, 0, ug) consists
of the following components:

— N is a set of object nets,
— O C(TUPUR) is the set of system events, and
— po s (PUT) = NV s the initial marking.

The set of system events @ contains elements from 7, P, and R. So, we have
different kinds of firing modes:

p(t)(®) > Y, v(0)(t,b). Then 1/ = pu— F~(0) + F*(0).
2. 0 € ©NP: As usual we have u = p/ iff V& € T : p(t) >
1(p)(®) > 3y g ¥(0)(p,b). Then p' = p — G~ (7) + G* ().

1. 8 € ©N7T: As usual we have p LN w it Vp € P:oulp) > ﬁ_(ﬂ)(p) and

Q)

~(m)(t) and
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3. 0 € ©NR: A dynamic refinement has two parts.
— The control is carried over from ¢ to a refining net-poken N:
(t,b,N,start) _
—————— W = Vp € P:ulp) = F(t)(b)(p)
A p(t)(N) > 1A p(starty)(®) > 1
A p =p—F~(t)(b) + FT(startn)(b)
— The control is given back from N to t:
t,b,N,end _
WONend) iy p e Pe pu(p) = F(endy)(5)(p)

A p(t)(N) = 1A plendy) (W) > 1
A p = p—F~(endy)(b) + F*(£)(b)

Proposition 3. Object nets are a special case of super-dual object nets: Each
object net system is simulated by a super-dual object net system.

Proof. The super-dual object net system is obtained from the object net system
adding no glow arcs marking all transitions with enough black-pokens. To allow
all synchronisations 6 € O, the transition ¢ is marked with max{v(6)(¢,b) | b €
B,0 € O} black-pokens. Then the super-dual object net system behaves the
same way as the object net system since we have no refinements and no events
0 € ©NP. All the events § € © N7 are enabled correspondingly and the effect
is the same as for the object net system.

4 Simulating Super-Dual Object Nets

In our previous work [KR0O6] we have shown that super-dual nets can simulate
Petri nets and, more interesting, that Petri nets can simulate super-dual nets —
both in respect to the possible firing sequences. The construction uses the dual
of the G-component (i.e. SD|%), renames all nodes = to (¥ and combines it
with the F-component. The result is the simulating Petri net N(SD) (Figure
illustrates the construction for the net SD of Figure @).

pi t p2
p1 t1 p2
] [ t1(d) t1(d) p2(d)
p5
p5
p5(d)
p3 t2 p4
p3 t2 p4
] ] p3(d) t2(d) pa(d)

SD|, N(SD)

Fig. 9. The simulating net N(SD)
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1 start

o=~ ]

Fig. 10. Adding the dual component to the net of Figure [

We will now lift our results to object nets and super-dual object nets to
come back to the goal of this work, dynamic refinement of transitions. The
construction for super-dual object nets is similar to the construction of N(SD)
for super-dual nets. We illustrate the construction of the simulating object net
0S(SDOS) at the example net from Figure [l The construction involves two
steps: In the first step the dual of the G-component (the unfilled nodes) is added
to the F-component (the filled nodes) as side conditions for each object net. The
refining net-pokens become net-tokens. The resulting net is given in Figure
Note, that the side transitions named pgd) and pgd) have no effect. The same
holds for the side condition named p. These nodes might be omitted. In the
second step we split each transition ¢ of the F-component into two parts: tsa
and t.,q, similarly to the construction suggested in the introduction. Transition
tstart Synchronises with the input transition starty, i.e. it starts the refining
subnet N. Similarly, t¢,4 synchronises with the output transition. The resulting
net — omitting synchronisation inscriptions — is given in Figure [T}

We formalise this dualisation construction in the following. The element in
the dual component corresponding to n € P U T is denoted n(¥). The mapping
P maps each transition ¢ to its dual, i.e. the place t{4) and each place p to its

N2N

@

Fig. 11. Adding the start/end structure
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dual, i.e. the place p(®: fX(n) =nif n € X and f¥X(n) = n¥ if n ¢ X. The
notation extends to pairs: fX((a,b)) = (fX(a), fX(b)) and to sets: fX(A) =
{f%(a) | @ € A}. This definition also extends to the nested structures P and 7
the usual way: f*(z[¢1 ... &) = X (2)[f* (&) ... fF(&)]-

For each marking p in the super-dual object net the marking in the simulating
net 7i is defined by ji(p) = u(p) and fi(t) = u(t?) or shorter for n € PUT:

a(n) = u(f7(n)) (®)

The simulating event 0 is defined according to the three kinds of firing: a
synchronisation of transitions § € © N7 is simulated by 6. A synchronisation
of places § € © NP is simulated by 6¥. Both cases are subsumed by the
definition 0 := f7(6). The start event (¢,b, N, start) € © N R is simulated by
the synchronisation of ts4,+ (i.e. the first part of ¢) with the starting transition
starty of the refining net N:

(tstarta b) [(StartNa b) []]
Similarly for the event (¢,b, N, end). This leads to the following definition:

g.o L1, if6 e 0N (TUP) ;
= {(ta,b)[(azv,b)[]], if 0= (t,b,N,a) € ONR, € {start, end} 9)

The notation extends to sets: © = {0 | § € O}.

Definition 5. Given a super-dual object system SDOS = (N, O, o) we define
the object net system

0S(SD0OS) = ({N | N € N'}, 6, Jio)

where N = (fP(PUT), fT(PU T)7/}*::, /ﬁ) and with the bindings B=BxN
the pre- and post conditions are defined by:

FEt)(b)(p), ifn=pe P

FE(t)(b,N)(n) = { N, ifn=t@ te T
0, otherwise
and
- GE(p) (b)), if n=1t@ eT@
FE@D) (b, N)(n) = { N, ifn=pePpP
0, otherwise

Then we have the following simulation property:

Proposition 4. Let SDOS be a super-dual object net. For the object net system
0S(SDOS) we have:
p— = i —
SDOS 08(8DOS)
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Proof. 1t is easy to observe from the construction, that whenever an event ¢ of
SDOS is enabled in i then the event 6 of is enabled in g in the simulation object
net system OS(SDOS). This holds for the three cases of firing modes. No other
events are enabled and the successor markings correspond.

This approach of expressing dynamic transition refinement using object nets
is (partially) implemented as a special construct in our tool RENEwW. In the
following we will illustrate the tool extension for the domain of dynamic
workflows.

5 Transition Refinement: A First Approach in Renew

The concept of dynamic refinement is especially valuable in the context of work-
flow management systems. Dynamic refinements can be used to replace a sub
workflow with a more up-to-date version respecting some preservation rules, like
workflow inheritance (cf. [vdAB02]).

A first attempt to implement dynamic transition refinement in the Petri net
tool RENEW was done in the so-called workflow plug-inf [JKMUNO2]. Among
various means for the definition and execution of workflows a so-called task
transition was implemented. The task transition does not exactly meet our
design criteria for dynamic refinement, but comes close enough to take a
look.

The task transition implements two features. The first is irrelevant for the
topic of this paper: the execution of a task transition may be canceled (see
[TKMUNOQ2]). The second feature is close to the desired behaviour of a refined
transition postulated in Section [l

Statically, a task transition looks like a normal transition with bold lines at
the left and right side of its rectangle figure — see for example transition book
hotel in the net travelWorkflow in the middle of Figure[T2 It is inscribed with a
triple consisting of a task (bookHotel), i.e. the net’| that refines the transition,
a set of parameters (hotelData) to pass to this net and the expected result that
should be passed back. It is important to notice, that the task associated to
a task transition need not be statically associated but may be exchanged at
runtime. The task transition therefore puts dynamic transition refinement down
to dynamic place refinement in terms of nets-within-nets.

When firing a task transition, the transition gets marked with the subnet that
refines it. RENEW treats this refinement token just as an ordinary token, so that
the usual means for inspection and manipulation are available.

What is missing to fully meet our design criteria is — besides some implemen-
tation details — a better support for the separation of net refinement tokens from
other tokens. This could be done in terms of a net type hierarchy.

2 RENEW offers a powerful plug-in concept making it easy to implement new function-
ality in all areas of net design, simulation and analysis.

3 Note, that in the workflow implementation a task is not necessarily a net, but may
also be Java code.
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# Reference Net Workshop ..-

File Edit Layout Attributes Met Simulation Plugins Tools Windows Help

Selection Toal

X travelWorkflow i

s

buy flight
["buyFlight” flightData, result]

rent car | 4

P

["remCar" carData, result]
["baokHaotel", hotelData, result]
I 1
LI
book hotel

q] i [ D] |

3% bookHotel o e e

enter dates pay per credit card L4
["enterDates" hotelData, result]  [“pavCreditCard”, cardData, result]
3 O {1 O, {1 O ]
sstartfactivity, hotelData) ‘endiactivity, resulty
q I [ D] ]

Fig. 12. The workflow modelled with task transitions

6 Related Work

To the best of our knowledge there are no publications describing dynamic tran-
sition refinements for Petri nets. There exists, however, a small amount of publi-
cations on Petri nets that can modify their structure at runtime and, separated
from these, on duality in Petri nets.
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Our approach describes a special kind of Petri nets that can modify their
structure via dynamic refinement of transitions. A first approach to the ability
of structure changing at runtime are self-modifying nets [Val78] which allow for
arc weights that are marking depending. A special case is the empty marking
that temporarily deletes arcs from the net. Another approach to structure mod-
ification in Petri nets is that of mobile nets [Bus99], algebraic nets with graph
rewriting [HEMO5], and recursive nets [HP99].

Duality is an important concept in Petri’s general net theory and is discussed
in [GLTR0Q]. Petri only considers unmarked nets, so no “problems” with tokens on
transitions arise. The restriction to unmarked nets is renounced by Lautenbach
[Lan03]. However, his concept of duality differs from the one presented in this
paper. He considers firing in the dual reverse net N”%. In his approach transitions
become marked and places fire the tokens, which are lying on transitions, in the
reversed arc direction. Additionally, contrary to our approach, for his definition
a token on a transition disables its firing.

7 Conclusion

In this presentation we studied the dynamic refinement of transitions. Following
the ideas of extending Petri nets to super-dual nets, we generalised object net
systems to super-dual object systems. Super-dual object net systems are nets-
within-nets allowing nets as tokens both on places and on transitions. Transition
marking nets, called net-pokens, may be moved around from one transition to
another. They refine the transition they are actually marking. This offers the
desired properties of a dynamic, run-time refinement procedure that is controlled
by the net itself.

Super-dual object nets are related to an implementation of a workflow exten-
sion plugin of the RENEW tool. This extension has a special notion of dynamically
refinable transitions, called tasks. These task transitions are executed by instan-
tiating a net-token that implements a sub-workflow. In accordance with our
definitions these sub-workflows are the dual of normal workflows, i.e. they have
a unique input transition and a unique output transition. The workflow manage-
ment system can make use of this mechanism when replacing sub-workflows by
updates at runtime. This can be done easily by moving net-tokens around or cre-
ating new ones at runtime, e.g. as a result of a planning process. One can think
of mobile workflows implemented by mobile agents in the style of [KMRO3].
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Abstract. We investigate the synthesis problem for ENCL-systems, de-
fined as Elementary Net Systems extended with context (inhibitor and
activator) arcs and explicit event localities. Since co-located events are
meant to be executed synchronously, the behaviour of such systems is
captured by step transition systems, where arcs are labelled by sets of
events rather than by single events. We completely characterise transi-
tion systems generated by ENCL-systems after extending the standard
notion of a region — defined as a certain set of states — with explicit in-
formation about events which, in particular, are responsible for crossing
its border. As a result, we are able to construct, for each such transition
system, a suitable ENCL-system generating it.

Keywords: theory of concurrency, Petri nets, elementary net systems,
localities, net synthesis, step sequence semantics, structure and behav-
iour of nets, theory of regions, transition systems, inhibitor arcs, activator
arcs, context arcs.

1 Introduction

We are concerned with a class of concurrent computational systems whose dy-
namic behaviours exhibit a particular mix of asynchronous and synchronous
executions, and are often described as adhering to the ‘globally asynchronous
locally synchronous’ (or GALS) paradigm. Intuitively, actions which are ‘close’ to
each other are executed synchronously and as many as possible actions are always
selected for execution. In all other cases, actions are executed asynchronously.
Two important applications of the GALS approach can be found in hardware
design, where a VLSI chip may contain multiple clocks responsible for synchro-
nising different subsets of gates [I], and in biologically motivated computing,
where a membrane system models a cell with compartments, inside which reac-
tions are carried out in co-ordinated pulses [2]. In both cases, the activities in
different localities can proceed independently, subject to communication and/or
synchronisation constraints.

To formally model GALS systems, [3] introduced Place/Transition-nets with
localities (PTL-nets), defined as PT-nets where transitions are assigned to ex-
plicit localities. Each locality identifies transitions which may only be executed
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synchronously and in a maximally concurrent manner. The idea of adding local-
ities to an existing Petri net model was taken further in [4], where Elementary
Net Systems (EN-systems) replaced PT-nets as an underlying system model. In
this paper, we build on the work reported in [4], by considering EN-systems ex-
tended with two non-standard kinds of arcs, namely inhibitor arcs and activator
(or read) arcs, collectively referred to as context arcs following the terminology
of [5]. The resulting model will be referred to as Elementary Net Systems with
Context Arcs and Localities (or ENCL-systems).

It is worth pointing out that both inhibitor arcs (capturing the idea the en-
abling of a transition depends on a place being unmarked) and activator arcs
(capturing the idea the enabling of a transition depends on a place being marked
by more tokens than those consumed when the transition is fired) are presumably
the most prominent extensions of the basic Petri net model considered in the
literature. Such context arcs can be used to test for a specific condition, rather
than producing and consuming resources, and proved to be useful in areas such
as communication protocols [G], performance analysis [7], and concurrent pro-
gramming [8]. More recently, [9] applied context arcs to deal with several salient
behavioural features of membrane systems, such as promoters, inhibitors and
dissolving as well as thickening of membranes.

Os

{%I
by

Fig. 1. A producer/consumer system with a business conscious producer
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2]
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Consider the ENCL-system in Figure [lmodelling a producer/consumer system
consisting of one producer (who can execute events p1, p2 and p3), and two
consumers (who can execute events c1, c2, ¢3 and c4). The buffer-like condition
b in the middle holds items produced by the event p1 and consumed by c1. The
activator arc between pl and bs (represented by an edge ending with a small
black circle) means that the producer adds a new item to the buffer only if there
is a consumer waiting for it, and the inhibitor arc between p3 and b3 (represented
by an edge ending with a small circle) means that the producer can leave the
production cycle only when no customer is eager to get the produced items. It
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is assumed that all the events executed by the producer belong to one locality,
while all the events executed by the consumers belong to another locality. To
indicate this in the diagram, we use different shading for the boxes representing
events assigned to different localities.

In terms of possible behaviours, adding localities can have a significant impact
on both the executability of events and reachability of global states. For example,
under the standard net semantics the model in Figure[Ilwould be able to execute
the step sequence {p1}{c1}, but the execution model of ENCL-systems rejects
this. The reason is that after {p1}, it is possible to execute the step {c1,c4}
consisting of two co-located events, and so executing c1 alone would violate the
maximal concurrency execution rule within the locality assigned to the events
used by the consumers. A possible way of ‘repairing’ this step sequence would
be to add the ‘missing’ event, resulting in the legal step sequence {p1}{c1, c4}.
Another legal step sequence is {p1}{p2, c1, c4}, where the second step is maxi-
mally concurrent in a global sense, as it cannot be extended any further. Note
also that the event p3 is not enabled at the beginning since b3 contains a token
and there is an inhibitor arc linking p3 and b3, and after {p1}{p2,c1,c4} the
event p1l is not enabled since b3 is now empty and there is an activator arc linking
pl and bs.

The Petri net problem we are going to investigate in this paper, commonly
referred to as the Synthesis Problem, is in essence concerned with model transfor-
mation, from a class of transition systems (sometimes called reachability graphs)
to a class of Petri nets. The key requirement is that the Petri net obtained from a
given transition system should capture the same behaviour, i.e., its reachability
graph should be isomorphic to the original transition system. This problem was
solved for the class of EN-systems in [I0], using the notion of a region which links
nodes of transition systems (global states) with conditions in the corresponding
nets (local states). The solution was later extended to the pure bounded pT-
nets [II], general Petri nets [12], safe nets [I3] and EN-systems with inhibitor
arcs [I4U15], by adopting the original definition of a region or using some ex-
tended notion of a generalised region [16].

In a previous paper [4], we have solved the synthesis problem for the class
of Elementary Net Systems with Localities (ENL-systems). In doing so, we in-
troduced io-regions, a generalisation of the standard notion of a region of a
transition system, as the latter proved to be insufficient to deal with the class
of ENL-systems (and hence also for ENCL-systems considered in this paper). To
explain the idea behind io-regions, consider the transition system shown in Fig-
ure 2l(a), which is isomorphic to the reachability graph of the ENL-system shown
in Figure 2(b). (Note that the two events there, e and £, are assumed to be
co-located.) The standard region-based synthesis procedure would attempt to
construct the conditions of the net in Figure P(b), by identifying each of these
with the set of the nodes of the transition system where it ‘holds’. For example,
the region corresponding to b; comprises just one state, r = {s;,;: }. Similarly,
r" = {s} is a region where by holds. (Note that there are two more ‘trivial’ re-
gions, {Sinit, s} and @, which are ignored by the synthesis procedure.) However,
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Sinit bl b3
{e, £} e
(@) 1 O On ®

Fig. 2. A transition system with co-located transitions e and £ (a), and a corresponding
ENL-system (b)

this is not enough to construct the ENL-system in Figure 2(b) since there are
only two non-trivial regions and we need four, one for each of the conditions.

An intuitive reason why the standard construction does not work for the
transition system in Figure Pa) is that the ‘set-of-states’ notion of region is
not rich enough for the purposes of synthesising ENL-systems. The modification
to the original notion proposed in [4] is based on having also explicit input and
output events of a set of states, which point at those events which are ‘responsible’
for entering the region and for leaving it. More precisely, an io-regions is a triple:
t = (in,r, out), where r is a set of states, in is a set of events which are responsible
for entering r, and out is a set of events which are responsible for leaving r. In the
case of the example in Figure [Z(a), one can find four non-trivial io-regions: t; =
(@, {Sinit}v {e}) T2 = ({e}a {8}7 @}), t3 = (@7 {sinit}7 {f}) and vq = ({f}7 {8}7 @).
Now one has enough regions to construct the conditions of the ENL-system in
Figure 2(b), namely each t; corresponds to b;.

In this paper, we will extend the idea of an io-region to also cope with context
arcs. Briefly, we will base our synthesis solution on context regions (or c-regions),
each such region being a tuple (r,in, out, inh, act) where the two additional
components, inh and act, carry information about events which are related with
r due to the presence of a context arc.

The paper is organised as follows. In the next section, we introduce formally
ENCL-systems. After that we define ENCL-transition systems and later show that
the reachability graphs of ENCL-systems are indeed ENCL-transition systems. We
finally demonstrate how to construct an ENCL-system corresponding to a given
ENCL-transition system.

2 ENCL-Systems

Throughout the paper we assume that £ is a fixed non-empty set of events.
Each event e is assigned a locality £(e), and it is co-located with another event f
whenever £(e) = £(f).

Definition 1 (net with context arcs). A net with context arcs is a tuple
net £ (B,E,F,1,A) such that B and E C & are finite disjoint sets, F C (B x
EYU(ExB) and I,ACBx E.
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The meaning and graphical representation of B (conditions), E (events) and F'
(flow relation) is as in the standard net theory. An inhibitor arc (b,e) € I means
that e can be enabled only if b is not marked (in the diagrams, it is represented
by an edge ending with a small circle), and an activator arc (b,e) € A means
that e can be enabled only if b is marked (in the diagrams, it is represented
by an edge ending with a small black circle). In diagrams, boxes representing
events are shaded, with different shading being used for different localities (see
Figure [[). We denote, for every x € BUE,

v L {y|(y,2) € F} v Sy | (x,y) € F}
o2 {y| (v,y) e TUTT} w={y|(zy) e AUATY

and we call the above sets the pre-elements, ®x, post-elements, x®, inh-elements,
¢, and act-elements, 4. Moreover, we denote

df df df
2 =%z Uz ‘4=z U'x ¢t LUty

All these notations extend in the usual way (i.e., through the set union) to sets of
conditions and/or events. It is assumed that for every event e € E, e® and ®¢ are
non-empty sets, and ®e, e*, *e and “e are mutually disjoint sets. For the ENCL-
system in Figure [l we have *bs = {c2}, b} = {p1,p3} and *p3 = *p1 = {b3}.

Definition 2 (ENCL-system). An elementary net system with context arcs
and localities (ENCL-system) is a tuple encl = (B, E,F,I, A, cinit) such that
Netener = (B,E,F,1,A) is the underlying net with context arcs, and ciniz C B is

the initial case. In general, any subset of B is a case.

The execution semantics of encl is based on steps of simultaneously executed
events. We first define the set of valid steps:

Unad S{uCE|u#0 AVe,fecu: et f="N"f*=0}.

For the ENCL-system in Figure[I] we have {p1, c2,c3} € Ugncr, but {p1,cl,cd} ¢
Uener since p1®* N °cl # @.

A step u € Uener is enabled at a case ¢ C B if *u* C ¢ and *u® Nec= @, and
there is no step ut {e} € Uener satisfying £(e) € £(u), *e* C c and *e*Nec = 2.

For the ENCL-system in Figure [I we have that {p1,c4} is a step enabled
at the initial case, but {p3,c4} is not since bz belongs to ¢ and there is an
inhibitor arc between p3 and bs. We also note that u = {p2,c1} is not enabled
at the case ¢ = {ba,b, b3, bs} because it can be extended by an event e = c4
according to the definition of enabledness.

The above definition of enabledness is based on an a priori condition: the acti-
vator and inhibitor conditions of events occurring in a step obey their respective
constraints before the step is executed. In an a posteriori approach (see [5]), the
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respective properties must also be true after executing the step. Yet another
definition for enabling when activator arcs (or rather read arcs) are involved is
given in [I7].

The transition relation of nete,(, denoted by —net,, .., is then given as the
set of all triples (c,u,c’) € 2P x Ugner x 28 such that u is enabled at ¢ and
' =(c\*u)Uu’.

The state space of encl, denoted by Cener, is the least subset of 28 containing
Cingt such that if ¢ € Cener and (¢, u, ') € —per,,., then ¢ € Cener. The transition
relation of encl, denoted by —n.i, is then defined as — ¢, ., restricted to Cener ¥
Uenet X Cener- We will use ¢ —=¢ne ¢ to denote that (c,u,c’) € —ener. Also,
¢ —% enet if (¢,u,¢) € —ener, for some ¢’. For the ENCL-system in Figure [Tt

1 {p2,cl,c4}
Cinit {p—}>enc[ {b2,b,b3,b6} ————cnct {b1,ba,b5} .

Proposition 1 ([]). If c et ¢ then c\ ¢ =*u and ¢’ \ ¢ = u®.

3 Step Transition Systems and Context Regions

In this section, we first recall the notion of a general step transition system
which, after further restrictions, will be used to provide a behavioural model for
ENCL-systems, and introduce the notion of a context region.

Definition 3 (transition system, [I8/19]). A step transition system is a
triple ts = (S, T, $init) where:

TSvys1 S is a non-empty finite set of states.
TSvys2 T CSx (26\{@}) x S is a finite set of transitions.
TSvys3 Sinit € S s the initial state.

Throughout this section, the step transition system ts will be fixed. We will
denote by & the set of all the events appearing in its transitions, i.e.,

We will denote s — s' whenever (s,u,s’) is a transition in 7', and respectively
call s the source and s’ the target of this transition. We will also say that the
step u is enabled at s, and denote this by s ——-.

For every event e € &, we will denote by T, the set of all the transitions
labelled by steps containing e, T, = {(s,u,s") € T | e € u}, and by U, the set of
all the steps labelling these transitions, U, = {u | (s,u,s’) € T.}.

We now introduce a central notion of this paper which is meant to link the
nodes of a transition system (global states) with the conditions in the hypothet-
ical corresponding net (local states).
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Definition 4 (context region). A context region (or c-region) is a tuple
t = (r,in, out, inh, act) € 2% x 28t x 28t x 2t 9Ets
such that the following are satisfied, for every transition s — s' of ts:

serands ¢rimply lunin| =0 and |un out| = 1.
s¢rands €rimply lunin| =1 and |un out| = 0.
uNinh # @ implies s ¢ r.

u N act # & implies s € r.

uN out # & implies s € r and s & r.

unin # @ implies s ¢ r and s’ € r.

i Ninh =& and out N act =

RS G e =

df daf . df daf . df
We denote |t| = r, *t = in, t* = out, *t = inh and ‘v = act.

The step transition system shown in Figure [2(a) has the following c-regions:

vy =(9,0,0,0,9) v = (9,9,0,{e}, )
3 = (2,9,0,{f}, ) v = (9,9,0,{e f},92)
= ({sinit, s}, 9, 9,9, D) v = ({Sinit, s}, 9, 9,9, {e})
7 = ({Sinit, s}, 9,9,9,{f}) ts = ({Sinit, s}, 9,9,9,{e, f})
= ({simu},2,{£}, @, 2}) 10 = ({8imi}, 2, {f}, 2, {e})
= ({8init}, 2, {e}, 2, 5}) vtz = ({8init}, &, {e}, 7, {£})
= ({s}.{£},2,9,2}) v = ({s}, {£}, 2, {e}, 2})
ts = ({s},{e},2,2,2}) v = ({s}, {e}, 2, {f},2).

In the rest of this section, we discuss and prove properties of c-regions which
will subsequently be needed to solve the synthesis problem for ENCL-systems.

Trivial c-regions. A c-region v is t¢rivial if || = @ or |t] = S; otherwise
it is non-trivial. For example, the step transition system shown in Figure [2(a)
has eight trivial c-regions (ty, ..., ts) and eight non-trivial c-regions (vo, ..., t1g).
Note that only non-trivial c-regions will be used in the synthesis procedure.

Proposition 2. If v is a trivial c-region then ®°t =1t®* = @.
Proof. Follows from Definition F}(5,6) and TSYs2. O

Proposition 3. If v is a c-region then the complement of v, defined as v =
(S\ [t],x®, *t, <, *v), is also a c-region.

Proof. Follows directly from Definition [l O
The set of all non-trivial c-regions will be denoted by REG and, for every
state s € S, we will denote by REG the set of all the non-trivial c-regions

containing s, REG, = {t € REGy, | s € [t]}. For the example in Figure B(a), we
have REGSM” = {tg, t10,T11, ‘Clg} and t12 = tyg.



288 M. Koutny and M. Pietkiewicz-Koutny

Lattices of c-regions. We call two c-regions, v and t’, compatible if it is the
case that |t| = |¢/[, *t = ¢/ and t* = v*. We denote this by v ~ /. For two
compatible c-regions, v and t/, we define their union and intersection, in the
following way:

Ut = (o], %, e, e U, U Y) and N = (o], % e, en e, en ) .

Moreover, we denote t < v/ whenever ®r C ®t/ and ¢ C <t’. For the example in
Figure [Z(a), we have t; =~ to ~ t3 ~ tg, ta Utg = t4 and t15 =< ty6.

Proposition 4. If v is a c-region, and inh C *v and act C %t are two sets of
events, then (||, ®t, t°, inh, act) is also a c-region.

Proof. Follows directly from Definition [ O

Proposition 5. If v and v’ are compatible c-regions, then t Ut and t Nt are
also c-regions.

Proof. The first part follows directly from Definition @, and the second from
Proposition [4 O

Given a c-region t, the equivalence class of c-regions compatible with t, denoted
by [t]~, forms a complete lattice w.r.t. the partial order < and the operations
U (join) and N (meet). The <-minimal and <-mazimal c-regions it contains are
given respectively by:

(Jel,*v e 2,2)  and (I %, (J*% [ J ).

veft]y  vEt]x

The step transition system in Figure Pfa) has six <-minimal c-regions (t1, ts,
tg, t11, t13 and ty5) and six <-maximal c-regions (ty, ts, t10, t12, t14 and tig).

We feel that the algebraic properties enjoyed by sets of compatible c-regions
will be useful in the synthesis procedure aimed at constructing optimal ENCL-
systems. We will come back to this issue later on.

Relating regions and events. Given an event e € &, its sets of pre-c-regions,
°e, post-c-regions, e°, inh-c-regions, ®e, and act-c-regions, e, are respectively
defined as:

°%¢ & {v € REGy, | € € t°} e® = {v € REGy, | € € *t}

¢ Z {tc REG, |e€ )} “e= {t € REG | e € *t}.

Moreover, °e® £ °cUe®, % £ °e U and 9e® = ¢° U %e. All these notations
can be applied to sets of events by taking the union of sets of regions defined
for the individual events. For the step transition system in Figure[2(a), we have
°e = {tlhtlg} and Of = {t16}~
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Proposition 6. If s — s is a transition of ts, then:

1. v € °u implies s € |t| and s’ ¢ ||.
2. v e u® implies s ¢ |t| and s" € |¢|.
3. v € %u implies s ¢ |t|.
4. v € “u implies s € |t|.

Proof. Follows directly from the definitions of °u, u°, u and “u as well as
Definition [F)3,4,5,6). O

The sets of pre-c-regions and post-c-regions of events in an executed step are mu-
tually disjoint. Moreover, they can be ‘calculated’ using the c-regions associated
with the source and target states.

Proposition 7. If s — s is a transition of ts, then:

1. en°f =g and e° N f° = @, for all distinct e, f € u.
2. “unu’® =g.
3. °u = REGs \ REGy and u°® = REGy \ REG;.

Proof. (1) Suppose that v € °en °f, ie., e, f € v*. This means, by Defini-
tion F(5), that s € |t] and s’ ¢ |¢|. Thus, by Definition E(1), |[uN<®| = 1, a
contradiction with e, f € uNt®. The second part can be shown in a similar way.

(2) Suppose that t € °uNu. Then, by PropositionBl(1,2), s € |t| and s ¢ |¢|,
a contradiction.

(3) We only show that REGs \ REGy = °u, as the second part can be shown
in a similar way. By Proposition [0, °v € REGs; and °u N REGy = &. Hence
°u C REG; \ REGy . Suppose that t € REG, \ REG, which implies that s € ||
and s’ ¢ [t|. Hence, by Definition B{(1) and s — s', uNt® # @. Thus v € °u
and so REG \ REGy C °u. Consequently, REG, \ REGy = °u. ad

The next two propositions provide a useful characterisation of inh-c-regions and
act-c-regions of an event in terms of transitions involving this event. For example,
if v is an inh-c-region of event e, then no transition involving e lies completely
within v. In what follows, for an event e and a c-region t, we denote Bf =
{(s,u,s’) € T, | s,8" € |t|} to be the set of all transitions involving e which are

buried in t, i.e., their source and target states belong to |t|.
Proposition 8. Ife € &, and v € e, then one of the following holds:

1. B =9, B # @ and v ¢ °u, for all u € U.
2. BE=0,e¢vandreu®\ °u, for all u € U,.

Proof. Suppose that (s,u,s’) € T.. From t € ®e C %u and Proposition B(3), we
have that s ¢ |v|. Hence B = & and v ¢ °u, for all u € U.. We will now show
that either BS # @, or that e ¢ *t and v € u®, for all u € U,.

Suppose that B¢ = @. We first observe that e ¢ °t since it follows directly
from e € *t (as v € Ye) and Definition BY(7). What remains to be shown is that
if (s,u,s") € T. then v € u°. We already know that s ¢ |t|. Moreover, since
B¢ = @, we have s’ € |t|. This means, by Definition H{(2), that |u N *t| = 1.
Hence there is f € u such that f € ®t, and so v € f° C u°. O
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Proposition 9. Ife € £ and v € “e, then one of the following holds:

1. B¢ =0, B # @ and v ¢ u®, for all u € U,.
2. B =0, e¢r® and v e “u\u®, for all u € U,.

Proof. Similar to that of Proposition Bl O

It is easy to show that a step can be executed at a state only if the inh-c-regions
of the former do not comprise the latter, and the act-c-regions do.

Proposition 10. If s — s’ is a transition of ts, then “u N REG, = @ and
Yu C REG,.

Proof. Suppose that t € “uNREG, # @. Then from t € ®u and Proposition B](3)
we have that s ¢ [t| which contradicts t € REG. Suppose now that t € “u. From
Proposition [6(4) we have that s € ||, and so v € REG;. 0

Proposition 11. If e € &, then °e° N (PeU‘e) = 2.

Proof. Suppose that t € € N %e # @. Then e € *t N *t # @, contradicting
Definition B{(7).

Suppose now that t € °e N ®e # @. By Proposition 8 one of the following
two cases holds:

Case 1: There is (s,u,s’) € T, such that s,s’ ¢ |t]|. By v € °e, we have that v €
°u, and so from Proposition[dit follows that s € |¢| and s" ¢ ||, a contradiction.
Case 2: e ¢ °t and v € u°® for some u € U, # @&. Then v ¢ €° and there is
(s,u,s’) € T. such that s ¢ |t| and s’ € |r|. On the other hand, by v € °e C °u
and Proposition [6l we have s € |t| and s’ ¢ |¢|, a contradiction.

Hence °e° N %e = @, and °e®° N “e = @ can be shown in a similar way. O

To characterise transition systems generated by ENCL-systems, we will need the
set of all potential steps Uy of ts, given by:

Ue S{uC & |u#@ AVe,feu:e#f=°eN°f° =a}.

Proposition 12. If s —— s’ is a transition of ts, then u € Ug.

Proof. Follows from TSvys2 and Proposition [7(1,2). O

Thin transition systems. In general, a c-region v cannot be identified only
by its set of states [t|; in other words, ®t, t*, ®t and “t may not be recoverable
from |t|. However, if the transition system is thin, i.e., for every event e €
we have that {e} € U,, then different c-regions with the same sets inh and act
are based on different sets of states.

Proposition 13 ([4]). If ts is thin and t # ¢ are c-regions such that *t = *t/
and <v = ', then |t| # |v/].
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4 Transition Systems of ENCL-Systems

We now can present a complete characterisation of the transition systems gen-
erated by ENCL-systems.

Definition 5 (ENCL-transition system). A step transition system ts =
(S, T, sinit) is an ENCL-transition system if it satisfies the following axioms:

AXIOM1  For every s € S\ {sinit}, there are (so,ug, 1), -, (Sn—1,Un—1,5n) €
T such that sg = Sin;t and s, = s.
AXIOM2  For every event e € Es, both °e and e° are non-empty.
AxioMm3  For all states s,s' € S, if REG; = REGy then s = s.
Axiom4 Ifs€ S and u € Uy are such that
— °u? C REG, and “u° NREG; = @ and
— there is no step uW {e} € Uy with the event e satisfying £(e) €
£(u), °e? C REGs and Ye® NREG, = @,
then we have s ——.
AXIOM5  If s == then there is no step uw{e} € Uy with the event e satisfying
£(e) € £(u), °e® C REG, and ®e®° NREG, = @.

In the above, AXioM1 implies that all the states in ts are reachable from the
initial state. AXIOM2 will ensure that every event in a synthesised ENCL-system
will have at least one input condition and at least one output condition. AX1o0M3
was used for other transition systems as well, and is usually called the state
separation property [16J20], and it guarantees that ts is deterministic. AXiom4
is a variation of the forward closure property [20] or the event/state separation
property [16]. AXIOM5 ensures that every step in a transition system is indeed
a maximal step w.r.t. localities of the events it comprises.

Proposition 14. If s — s and s — 5", then s’ = s".
Proof. Follows from Proposition [7[3) and AXI1om3. O

The construction of a step transition system for a given ENCL-system is
straightforward.

Definition 6 (from net system to transition system). The transition sys-

tem generated by an ENCL-system encl is tSenc( £ (Cenets —encls Cinit ), WheTe Cingt
is the initial case of encl.

Theorem 1. {s., is an ENCL-transition system.

Proof. See the Appendix. O

5 Solving the Synthesis Problem

The translation from ENCL-transition systems to ENCL-systems is based on the
pre-, post-, inh- and act-c-regions of the events appearing in a transition system.
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Definition 7 (from transition system to net system). The net system
associated with an ENCL-transition system ts = (S, T, Sinit) 1S:

enclg < (REGs, sy Fis, Its, Ats, REGy,,,,,)
where Fis, Iis and Ay are defined thus:
Fio £ {(t,e) € REG X Es [t € %€} U {(e,t) € Es X REGy, |t € €°}
Is £ {(r,e) € REG x & | T € %€} (1)
Atﬁ £ {('C, 6) € REG X gtg | T e 46} .

L] o

Proposition 15. For every e € &, we have °e = ®e, e® = €°*, ®e = *e and
e = e,
Proof. Follows directly from the definition of encls. O

Figure [ shows the ENCL-system associated with the step transition system
shown in Figure 2l(a). It is, clearly, not the net system shown in Figure 2Ib),
as it contains twice as many conditions as well as four context arcs which were
not present there. This is not unusual as the above construction produces nets
which are saturated with conditions as well as context arcs. In fact, the whole
construction would still work if we restricted ourselves to the <-maximal non-
trivial c-regions, similarly as it has been done in [21] for EN-systems with in-
hibitor arcs. But the resulting ENCL-system would still not be as that shown
in Figure P(b). In fact, the latter would be re-constructed if we took all the =-
minimal non-trivial c-regions of the step transition system shown in Figure[2(a).
However, taking only the <-minimal c-regions would not work in the general case
(the ENCL-transition system shown in Figured(c) provides a suitable counterex-
ample), and that it is possible to use them in this case is due to the maximally
concurrent execution rule which underpins ENCL-systems. What this example
implies is that in order to synthesise an optimal net (for example, from the
point of view of the number of conditions and/or context arcs), it is a good idea
to look at the whole spectrum of c-regions arranged in the lattices of compatible
c-regions (and, in any case, never use two different c-regions, t and v/, such that
t=Xv).

Theorem 2. encly is an ENCL-system.

Proof. All one needs to observe is that, for every e € &, it is the case that:
*c # @ # ¢°, which follows from AxioM2 and Proposition I8 ®eNe® = &,
which follows from Propositions [(2) and I3 and ®e® N (*e U *e) = @, which
follows from Propositions [[1] and O

We finally show that the ENCL-system associated with an ENCL-transition system
ts generates a transition system which is isomorphic to ts.
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ti5 Ti6 Ti4 t13

Fig. 3. ENCL-system synthesised from the ENCL-transition system in Figure 2{(a)

Proposition 16. Let ts = (S, T, Sinit) be an ENCL-transition system and
encl = enclys = (REGys, Eis, Fis, Iis, Ats, REGy,,,,) = (B, E, F, 1, A, Cinit)
be the ENCL-system associated with it.

1. Cener = {REGS ‘ s € S}
2. —ena= {(REGs,u, REGy ) | (s,u,s’) € T}.

Proof. Note that from the definition of Ci.1, every ¢ € Ciyer is reachable from
Cingt 10 encl; and that from AXIOM1, every s € S is reachable from s;,;; in ts.

We first show that if ¢ ——¢qer ¢ and ¢ = REGg, for some s € S, then there is
s € S such that s — s’ and ¢ = REGy. By ¢ —enet ¢, 4 € Uener is a step such
that *u* C c and *u® Nc = @, and there is no step u W {e} € Uen satisfying
£(e) € £(u) and *e* C c and *e®* N ¢ = @. Moreover, ¢’ = (c\ *u) U u®.

Hence, by Proposition I3 and Axiom4, u € Uy and s — ', for some s’ € S.
Then, by Proposition [[(3), REGy = (REG, \ °u) U u°. At the same time, we
have ¢ = (¢ \ *u) Uwu®. Hence, by Proposition [[f and ¢ = REG,, we have that
¢ = REGy.

As a result, we have shown (note that ¢;,;; = REGy,, € {REG, | s € S}) that

Cenc[ - {REGS ‘ s € S}
—enet © {(REG57U7 REGS’) | (Sauvs/) € T} .

We now prove the reverse inclusions. By definition, REG,,, € Cener. It is
enough to show that if s — s’ and REGs; € Ciener, then REGy € Cener and
REG,; —enet REGy. By Axiom5 and Propositions [[(3), T2 00 and 05} « is a
valid step in encl which is enabled at the case REG,. So, there is a case ¢’ such
that REG, ——ener ¢ and ¢ = (REG, \ *u) U u®. From Propositions [7(3) and I3
we have that ¢ = REG, . Hence we obtain that REGs ——enct REGy and so also
REGy € Cener- a

Theorem 3. Let ts = (5,7, Sinit) be an ENCL-transiltion system and encl =
enclys be the ENCL-system associated with it. Then ts.nc; s isomorphic to ts.
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Proof. Let ¢ : S — Cener be a mapping given by ¥(s) = REGg, for all s € S
(note that, by Proposition [[6(1), ¢ is well-defined). We will show that 1 is an
isomorphism for ts and ts.,.

Note that 9 (sini) = REGs,,. By Proposition (1), ¢ is onto. Moreover,
by AXIOM3, it is injective. Hence v is a bijection. We then observe that, by
Proposition [[8(2), we have (s,u,s’) € T if and only if (¢(s), u, ¥ (s")) E—encr-
Hence 1) is an isomorphism for ts and ts,y,;. a

Figure @ shows two further examples of the synthesis of ENCL-systems. The first
one, in Figure @j(a,b), illustrates a conflict between two events, and the synthe-
sised ENCL-system utilises two <-minimal c-regions, vt = ({sinit }, &, {e, £}, &, )
for the upper condition, and its complement t for the lower one. The second ex-
ample, in Figure @(c,d), exemplifies a situation when a correct solution has been
obtained without using only <-maximal c-regions. However, an attempt to use
only =<-minimal c-regions would fail, as the resulting ENCL-system (shown in
Figure Bl(a)) allows one to execute the step sequence {e}{f} which is impossible
in the original transition system. Moreover, Figure Bl(b) shows a correct syn-
thesis solution based solely on <-maximal c-regions. When compared with that
in Figure Hl(d) it looks less attractive since the latter uses fewer context arcs.
It should already be clear that to synthesise ‘optimal’ ENCL-systems it will, in
general, be necessary to use a mix of various kinds of c-regions, and the devel-
opment of suitable algorithms is an interesting and important topic for further
research.

fe}  {f}
s AN

(b)

Sinit
fer | {f}
o/ {e,f} \o

Fig. 4. A transition system with co-located events e and £ (a), and a corresponding
ENCL-system (b); and a transition system with differently located events e and £ (c),
and a corresponding ENCL-system (d)
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O, O
2]
@ O O

Fig. 5. ENCL-system synthesised from the transition system in Figure [d{c) using only
=-minimal non-trivial c-regions (a), and only =<-maximal non-trivial c-regions (b)

6 Concluding Remarks

In this paper, we solved the synthesis problem for EN-systems with context arcs
and localities, by following the standard approach in which key relationships
between a Petri net and its transition system are established via the notion of a
region. Moreover, in order to obtain a satisfactory solution, we augmented the
standard notion of a region with some additional information, leading to the
notion of a c-region. We then defined, and showed consistency of, two behaviour
preserving translations between ENCL-systems and their transition systems.
Throughout this paper it has always been assumed that events’ localities are
known in advance. In particular, this information was present in the input to the
synthesis problem. However, one might prefer to work only with step transition
systems, and determine the localities of events during the synthesis procedure
(perhaps choosing an ‘optimal’ option). This could, of course, be done by con-
sidering in turn all possibilities for the locality mapping £. Unfortunately, such
an approach would be hardly satisfactory as there are B|g,,| different candidate
mappings, where B,, is the n-th number in the fast-growing sequence of Bell
numbers. But it is not necessary to follow this ‘brute-force’ approach, and two
simple observations should in practice be of great help. More precisely, consider
a step transition system ts = (S, T, Sinit). If it is generated by an ENCL-system
with the locality mapping £, then the following hold, for every state s € S:

— If s ™% and s —% then £(e) # £(f), for all e € u and f € w.

— If s = and there is no w C u such that s —— then £(e) = £(f), for all
e, feu.

Thus, for the example transition systems in Figures Pl(a) and H(c), we have
respectively £(e) = £(f) and £(e) # £(f), and so the choice of localities we made
was actually the only one which would work in these cases. On the other hand,
for the step transition systems in Figures[@(a) and [Gl(a), the above rules do not
provide any useful information. Indeed, in both cases we may take £(e) = £(f)
or £(e) # £(f), and in each case synthesise a suitable ENCL-system, as shown
in Figure[§(b) for the example in Figure[fl(a). Note that these rules can be used
for a quick decision that a step transition system is not a valid ENCL-transition
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A © ©
L L] L]

£} [£] [£]
(a) O O (b)

Fig.6. A step transition system where no assumption about co-locating the events
has been made (a), and two corresponding ENCL-systems with different locality map-

pings (b)

system; for example, if we have s; {Lf} and s1 1o, and so {Lf} and —s9 ﬁn for

two distinct states, s; and so, of the same step transition system.

Previous work which appears to be closest to what has been proposed in
this paper is due to Badouel and Darondeau [16]. It discusses the notion of a
step transition system (generalising that introduced by Mukund [I2]), which
provides a much more general framework than the basic EN-transition systems;
in particular, by dropping the assumption that a transition system should exhibit
the so-called intermediate state property:

a+
sTB g — 3" s 2 P,

But the step transition systems of [I6] still exhibit a subset property:

s = s
Neither of these properties holds for ENL-transition systems (and hence also for
ENCL-transition systems). Instead, transition systems with localities enjoy their
weaker version. More precisely, for ENL-transition systems we have:

B B

+
i = ' — s ANs ),

!/ @ 1
s—8 = (s—s

and for ENCL-transition systems, we have:

For example, the first of these properties implies that the transition system in
Figure Hl(c) cannot be generated by an ENL-system, and so the use of some
context arcs is unavoidable as shown, e.g., in Figure @(d). We feel that both
properties might be useful in finding out whether (or to what extent) the theory
of [I6] could be adopted to work for the ENCL-transition systems as well.
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Appendix: Proof of Theorem 1l

Clearly, ts.nc is a step transition system. We need to prove that it satisfies the
five axioms in Definition Bl Before doing this, we will show that, for every b € B,

t = ({c € Cenet | b€ ¢}, b, b, *b, *b)

is a (possibly trivial) c-region of ts.ncr. Moreover, if @ # |tp| # Cencr then v, is
non-trivial.

To show that Definition E] holds for v, we assume that ¢ ——ener ¢ in Sener,
and proceed as follows:

Proof of Definition [JJ(1) for v,. We need to show that ¢ € |t| and ¢ ¢ |t
implies [uN b =0 and |uNb®| = 1.

From ¢ € || (¢ ¢ |tp]) it follows that b € ¢ (resp. b ¢ ¢’). Hence b € ¢\ ¢'.
From Proposition [l we have ¢\ ¢ = *u and ¢’ \ ¢ = u®. Hence b € *u and, as
a consequence, there exists e € u such that b € ®e, and so e € b®. We therefore
have e € u N b®. Hence |uNb®| > 1. Suppose that there is f # e such that
f €unb®. Then we have f € v and b € ®f which implies b € ®f N ®e, producing
a contradiction with e, f € 4 € Ueqer. Hence |[uNbd®| = 1.

From b ¢ ¢ and ¢’ \ ¢ = u®, we have b ¢ u®. Let g € u (u # & by definition).
Then b ¢ ¢°, and so g ¢ °b. Hence |u N *b| = 0.

Proof of Definition[J|(2) for v,. Can be proved similarly as Definition [{(1).
Proof of Definition[J(3) for t,. We need to show that un*b # @ implies ¢ ¢ |t .

From u N *b # @ we have that there is e € u such that e € *b and so b € ®e.
Thus, since u is enabled at ¢ in encl, b & c. Hence ¢ ¢ ||

Proof of Definition[J|(4) for t,. Can be proved similarly as Definition EY3).
Proof of Definition[J|(5) for t,. We need to show that uNb® # & implies ¢ € |t
and ¢ ¢ |tp|. From Proposition [[] we have ¢\ ¢ = ®u and ¢’ \ ¢ = «®. From
uNb® # & we have that there is e € u such that e € b°*, and so b € ®e. Hence
be®u=c\c,andsobecandb¢ . Hence ¢ € |ty and ¢ ¢ |ty

Proof of Definition[})(6) for t,. Can be proved similarly as Definition E{(5).
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Proof of Definition[J|(7) for t,. We need to show that *b N *b = b*N b = 2.
This follows directly from the fact that encl is an ENCL-system, where for every
event e, the sets ®e, e®, *e and e are mutually disjoint.

Clearly, if & = |tp| # Cener then v, is a non-trivial c-region.

Proof of Axtom1. Follows directly from the definition of Ciy..

Proof of AX1oM2. We observe that if e € &, then {v, | b € e} C °e and
{vy | b€ e*} Ce° (follows from ®e # @ # e®, Proposition 2l and the definitions
of e, € and tp). This and ®e # & # e® yields °e # & # e°.

Proof of AXioMm3. Suppose that ¢ # ¢’ are two cases in Cepner. Without loss of
generality, we may assume that there is b € ¢\ ¢’. Hence ¢ € |v| and ¢ ¢ |vp].
Thus, by the fact that v, is not trivial (& # |tp| # Cener) and v, € REG. \ REG,
Ax10M3 holds.

Proof of Axiom4. Suppose that ¢ € Cener and u € Uy, ,, are such that °u® C
REG. and “u® N REG. = @ and and there is no u @ {e} € Uy,,,, satisfying:
£(e) € £(u) and °e? C REG. and e° N REG. = @. We need to show that
C —encl-

We have already shown that for e € £, ., b € e implies t;, € °e, and b € e°®
implies v, € €°. From this and u € Uy, ., we have that u € Uepr.

First we show ®u C c¢. Let e € u. Consider b € ®*e. We have already shown that
this implies t, € °e. From °u C REG,, we have that t;, € REG,, and so ¢ € |t].
Consequently, b € c. Hence, for all e € u we have ®e C ¢, and so *u C c.

Now we show that u®* Nc¢ = @. Let e € u. Consider b € e®. We have already
shown that this implies t;, € €°. From u® N REG. = &, we have that t;, ¢ REG,,
and so ¢ ¢ |vy|. Consequently, b ¢ c. Hence, for all e € u we have e®* Nc = &,
and so u®*Nc=gd.

Now we show that *uNc = @. Suppose to the contrary that ®unc # @. Then
there is e € u such that *eNc # @, and as a consequence there is b € ®e such that
b € ¢. Hence, ¢ € |tp| and so |t # . We now prove that |ty # Cener- Suppose
[ts]l = {c € Cener | b € ¢} = Cener- Then b is a condition present in every case ¢ of
encl making it impossible for any step containing e to be enabled (b € *¢). This,
in turn, contradicts the fact that e € &,, ., (as an event in u € Uy, ) and
must appear in some step labelling a transition from tsen.(. Hence |tp| # Cener,
and so t, is a non-trivial c-region. From b € *e we have e € *b = ®v;,, which
means that t, € ®e. Consequently, v, € u. From this and u N REG, = @ we
have v, ¢ REG,, and so ¢ ¢ |v,|. Consequently b ¢ ¢, and so we obtained a
contradiction. Hence *unc = @.

Now we show that “u C c. Suppose to the contrary that there is b € “u '\ c.
From b € *u we have that there is e € u such that b € “e. From b ¢ ¢ we
have that ¢ ¢ |t], and so |tp| # Cenct- We now prove that |tp| # @. Assume
that |vp] = @. This implies that, for all ¢ € Cencr, b ¢ c. But this would make it
impossible to execute any step containing e in encl. This, in turn, contradicts the
fact that e € &, ., and so it must appear in some step labelling a transition in
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tsencr. Hence |vy| # @, and so the c-region t, is non-trivial. From b € “e we have
that e € 4b = <v,. Consequently, we have that v, € “e, and so t, € “u. From this
and “u C REG, we have that v, € REG,, and so ¢ € |t;|. Consequently b € ¢,
and so we obtained a contradiction. Hence *u C c.

All what remains to be shown is that there is no step uw{e} € U,y satisfying:
£(e) € £(u), *e* C c and *e* Nc = @. Suppose that this is not the case, and
uW{e1} € Uener is a step satisfying these conditions. We consider two cases.

Case 1: There is no uW{e1 } W{f} € Uener such that £(f) € L(uwW{er}),*f*Cec

and *f* N ¢ = @. This implies ¢ u%}em[. By Proposition [[2] we have that

uW{er} € Ugs,,.,- Moreover, £(e1) € £(u) and, by Propositions[7|(3) and [0, we
have °(u W {e1})” € REG. and ©(u W {e;})° NREG, = @. We therefore obtained
a contradiction with our assumptions.

Case 2: We can find u W {e1} W {e2} € Uener such that £(e2) € L(u W {e1}),
*o4 C c and *e3®* N¢c = @. Then we consider Cases 1 and 2 again, taking
u {e1} W{ez} instead of u W {e;}. Since the number of events in F is finite, we
will eventually end up in Case 1. This means that, eventually, we will obtain a
contradiction.

Proof of Axiom5. We need to show that if ¢ — ¢ then there is no u ¥ {e} €
Ug,,., satisfying £(e) € £(u), °e® C REG.. and ®e® N REG,. = .
Suppose to the contrary that there is u W {e} € Uy, ., as above (f).

We have already shown that for e € £, ., b € e implies t;, € °e, and b € e°®
implies v, € e°. From this and u W {e} € Uy, ., we have u W {e} € Uencr.

We will show that ®e C c¢. Consider b € ®e. We have that b € ®e implies
t, € %e. But °e C REG., and so t, € REG.. This means that ¢ € |t], and
consequently b € c. Hence ®e C c.

We now show that ¢® Nc = @. Consider b € ¢®*. We have that b € e® implies
t, € e°. But e° N REG, = &, and so t, ¢ REG,.. This means that ¢ ¢ ||, and
consequently, b ¢ c. Hence e®* Nc = &.

Now we show that ®¢ N ¢ = @. Suppose to the contrary that b € *eNc # @.
We have already shown in the proof of Axiom4 that for e € E,,.,, b € *eNc
implies v, € %e. But ®e NREG. = &, s0 1t ¢ REG.. This means ¢ ¢ |tp|, and so
b ¢ ¢, a contradiction.

Finally, we show that “e C ¢. Suppose to the contrary that there is b € <e\ c.
We have already shown in the proof of Axiom4 that for e € &, b € ‘e \ ¢
implies v, € “e. But ‘e C REG,, so t, € REG.. This means that ¢ € |v;| and,
consequently b € ¢, a contradiction.

As a result, assuming that (1) holds leads to a contradiction with ¢ —— ¢pc(.
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Abstract. We study data nets, a generalisation of Petri nets in which
tokens carry data from linearly-ordered infinite domains and in which
whole-place operations such as resets and transfers are possible. Data
nets subsume several known classes of infinite-state systems, including
multiset rewriting systems and polymorphic systems with arrays.

We show that coverability and termination are decidable for arbitrary
data nets, and that boundedness is decidable for data nets in which
whole-place operations are restricted to transfers. By providing an en-
coding of lossy channel systems into data nets without whole-place oper-
ations, we establish that coverability, termination and boundedness for
the latter class have non-primitive recursive complexity. The main result
of the paper is that, even for unordered data domains (i.e., with only the
equality predicate), each of the three verification problems for data nets
without whole-place operations has non-elementary complexity.

1 Introduction

Petri nets (e.g., [I]) are a fundamental model of concurrent systems. Being more
expressive than finite-state machines and less than Turing-powerful, Petri nets
have an established wide range of applications and a variety of analysis tools
(e.g., 2]).

The analysis tools are based on the extensive literature on decidability and
complexity of verification problems ([3] is a comprehensive survey). In this paper,
we focus on three basic decision problems, to which a number of other verification
questions can be reduced:

Coverability: Is a marking reachable which is greater than or equal to a given
marking?

Termination: Are all computations finite?

Boundedness: Is the set of all reachable markings finite?

By the results in [4l5], each of coverability, termination and boundedness is
ExPSPACE-complete for Petri nets.

Many extensions of Petri nets preserve decidability of various verification
problems. Notably, affine well-structured nets were formulated in [0] as an el-
egant extension of Petri nets by whole-place operations. The latter are resets,

* Supported by the EPSRC (GR/S52759/01) and the Intel Corporation.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 301 2007.
© Springer-Verlag Berlin Heidelberg 2007
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which empty a place, and transfers, which take all tokens from a place and put
them onto one or more specified places (possibly several times). Hence, two sub-
classes of affine WSNs are reset nets and transfer nets, in which whole-place
operations are restricted to resets and to transfers, respectively. As shown in [6],
coverability and termination for affine WSNs, and boundedness for transfer nets,
are decidable. However, compared with Petri nets, there is a dramatic increase
in complexity: it follows from the results on lossy channel systems in [7] that cov-
erability and termination for reset nets and transfer nets, and boundedness for
transfer nets, are not primitive recursivel] It was proved in [9] that boundedness
for reset nets is undecidable.

Another important direction of extending Petri nets is by allowing tokens
to carry data from infinite domains. (Data from finite domains do not increase
expressiveness.) For example, in timed Petri nets [I0], each token is equipped
with a real-valued clock which represents the age of the token. Multiset rewriting
specifications over constraint systems C [L1JI2] can be seen as extensions of Petri
nets in which tokens may carry data from the domain of C and transitions can be
constrained using C. In mobile synchronizing Petri nets [13], tokens may carry
identifiers from an infinite domain, and transitions may require that an identifier
be fresh (i.e., not currently carried by any token).

In this paper, we focus on the following two questions:

(1) Is there a general extension of Petri nets in which tokens carry data from
infinite domains, in which whole-place operations are possible, and such that
coverability, termination and boundedness are decidable (either for the whole
class of extended nets or for interesting subclasses)?

(2) If the answer to the previous question is positive, and if we restrict to the
subclass without whole-place operations, do coverability, termination and
boundedness remain EXPSPACE-complete (as for Petri nets), or are their
complexities greater? What happens if we restrict further to the simplest
data domains, i.e. those with only the equality predicate?

Data nets. To answer question (1), we define data nets, in which tokens carry
data from linearly-ordered infinite domains. As in Petri nets, transitions consume
and produce tokens. For a transition to be firable, we can require that the data
which are carried by the tokens to be consumed are ordered in a certain way.
In addition to such data, transitions can choose finitely many other data, which
satisfy further ordering constraints and which may or may not be present in the
current marking. In the production phase, tokens which carry either kind of data
can be put into the marking. Data nets also support whole-place operations.

In the next few paragraphs, we introduce data nets in an informal but detailed
manner, for clarity of the subsequent discussion of contributions of the paper and
relations to the literature. As an alternative order of presentation, the reader may
wish to postpone the following and read it in conjunction with Section[2.2] where
data nets are defined formally.

! Recall the Ritchie-Cobham property [8, page 297): a decision problem (i.e. a set) is
primitive recursive iff it is solvable in primitive recursive time/space.
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Data nets are based on affine WSNs [6]. Markings of an affine WSN are vectors
in IN?, where P is the finite set of all places. A transition ¢ of an affine WSN is
given by vectors Fy, H, € IN¥ and a square matrix G, € IN¥*F_ Such a transition
is firable from a marking m iff m > F}, and in that case it produces the marking
(m — F;)G; + H;. Whole-place operations are performed by the multiplication

Since a linear ordering = is the only operation available on data, markings
of data nets are finite sequences of vectors in IN* \ {0}. Each index j of such
a marking s corresponds to an implicit datum dj, and we have that j < j’ iff
d; < dj. For each p € P, s(j)(p) is the number of tokens which carry d; and
are at place p. We say that such tokens are at index j. Now, each transition ¢
has an arity oy € IN. For a transition ¢ to be fired from a marking s, we choose
nondeterministically oy mutually distinct data. Some of those data may be fresh
(i.e., not carried by any token in s), so picking the a; data is formalised by
first expanding s to a finite sequence s; by inserting the vector 0 at arbitrary
positions, and then picking an increasing (in particular, injective) mapping

AL — {1, st}

such that each occurrence of 0 is in its range. Now, such a mapping ¢ partitions
{1,...,|s¢|} into a; singletons and oy + 1 contiguous “regions” as follows, where
the Reg; ;1) are region identifiers:

Looo, o) = 1,e(1),e(1) + 1, ,0(2) = 1, oo i), ea) + 1, .0 | sy
~ ~ - ~ ~ - ~ -~ -
Rego,1) Reg(q,2) Regay,a4+1)

The action of ¢ on s with respect to s; and ¢ is determined by vectors F; and
Hy, and a square matrix G¢, whose elements are natural numbers, and which are
indexed by

({1, ;o) U{Reg(; 41y : 0<i<ap}) x P

It consists of the following stages, where 4,4’ € {1,...,az}, R, R" € {Reg; ;11 :
0<i<a}andp,p €P.

subtraction: for each i and p, F;(i,p) tokens at index (i) are taken from B
multiplication: all tokens are taken simultaneously, and then:
— for each token taken from p at index (i), G¢(i,p,',p’) tokens are put
onto p’ at index «(4'), and for each j’ in region R’, G¢(i,p, R, p’) tokens
are put onto p’ at index j;
— for each token taken from p at index j in region R, G¢(R,p, i, p’) tokens
are put onto p’ at index ¢(i’), and G¢(R, p, R, p’) tokens are put onto p’
at index j;
addition: for each ¢ and p, H,(i,p) tokens are put onto p at index ¢(z), and for
each j in region R and p, H;(R,p) tokens are put onto p at index j.

2 In order to have well-structuredness (see Proposition [7) and for simplicity, entries
F;(R,p) are not used, and neither are entries G¢(R,p, R',p") with R # R’, so they
are assumed to be 0.
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Ezample 1. Consider P = {p1,p2} and a transition ¢ with oy = 1 given by:

Gi Rego,1y 1 Regg o
01 00 00 p
10 00 00 po
00 20 30 pm
00 01 30 po
00 00 10
00 02 01 po

pP1p2 P1P2 P1p2

Fy Regony 1 Reg )
00 11 00 Reg(o’l)
P1p2 P1P2 P1Pp2
1
Hy Regpy 1 Reggy g
00 21 60 Reg (i )
P1 P2 P1PpP2 P1P2

From a marking s, in terms of data represented by the indices of s, transition
t is fired as follows:

1. a datum d is chosen nondeterministically, such that each of p; and py contain
at least 1 token carrying d (so, d cannot be fresh);

2. for each datum d’ < d, all tokens at p; carrying d’ are transferred to po, and
vice-versa;

3. for each token at p; or ps carrying d, and each d’ = d, 3 tokens carrying d’
are put onto py;

4. the number of tokens at p; carrying d is multiplied by 2;

5. for each token at ps carrying d’ = d, 2 tokens carrying d are put onto ps.

Since H; = F;Gy, the addition stage of performing ¢ exactly “undoes” the sub-
traction stage, so t performs only whole-place operations.

In Section[Z2 the above will be formalised so that ¢ is firable from s with respect
to sy and ¢ iff sy > [[Ft]]lffl, and in that case it produces the marking obtained
from (sy — [[Ft]]lb‘ng)[[Gt]]lbsTI + [[Ht]]lﬁl by removing each entry 0, where [[Ft]]lﬁl,
[[Gt]]lf*l and [[Ht]]lf*l are appropriate “expansions” of F}, Gy and Hy, indexed by
{1,...,]s¢|} x P.

Since vectors 0 which correspond to fresh data can be inserted at arbitrary
positions to fire a transition, the linear ordering on data is assumed to be dense
and without least and greatest elements. Having a least or greatest element can
easily be simulated, and density is not a restriction when considering only finite
computations (as is the case for the coverability problem).

We show that affine WSNs [6] are equivalent to a class of data nets whose
transitions have arity 1. Data nets also subsume timed Petri nets [10] and timed
networks [I4], in the sense that systems obtained after quotienting by time re-
gions can be simulated by data nets, where the data domain is fractional parts
of clock values. Monadic multiset rewriting specifications over order constraints
on rationals or reals [I1] and over gap-order constrains on integers [I2] can be
translated to data nets, subject to the remarks above about density. Mobile
synchronizing petri nets [I3], lossy channel systems [I5], and polymorphic sys-
tems with one array of type (X, <) — {1,...,n} or with two arrays of types
(X,=) = (V,<) and (X,=) — {1,...,n} [I6/I7, can also be expressed using
data nets.
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Decidability. Using the theory of well-structured transition systems [I8], we
prove that coverability and termination for arbitrary data nets, and bounded-
ness for data nets in which whole-place operations are restricted to transfers, are
decidable. Thus, question (1) posed above is answered positively. The decidabil-
ity of coverability for data nets subsumes the results in [GTOT4TTIT2T3ITHIT6IIT])
that coverability is decidable for the respective classes of infinite-state systems
mentioned above, and in most cases the proof in this paper is more succinct.

Hardness. To question (2) above, we obtain the following answers. We say that
a data net is Petri iff it does not contain whole-place operations, and unordered
iff it makes use only of equality between data (and not of the linear ordering).

— By providing a translation from lossy channel systems to Petri data nets,
we establish that coverability, termination and boundedness for the latter
class are not primitive recursive. The encoding uses the linear ordering on
the data domain, for picking fresh data which are employed in simulating
writes to channels.

— The main result of the paper is that coverability, termination and bound-
edness for unordered Petri data nets are not elementary, i.e., their compu-
tational complexities cannot be bounded by towers of exponentials of fixed
heights. That is a surprising result, since unordered Petri data nets are highly
constrained systems. In particular, they do not provide a mechanism for en-
suring that a datum chosen in a transition is fresh (i.e., not present in the
current marking). The result is proved by simulating a hierarchy of bounded
counters, which is reminiscent of the “rulers” construction of Meyer and

Stockmeyer (e.g., [19]).

By translating Petri data nets and unordered Petri data nets to subclasses of
systems in [TIIT2IT3ITEITT], the two hardness results yield the same lower bounds
for corresponding decision problems for such subclasses. In particular, we obtain
non-elementariness of verifying monadic multiset rewriting specifications with
only equality constraints [I1] and of verifying polymorphic systems with two
arrays of types (X, =) — (Y, =) and (X,=) — {1,...,n} [I6].

Paper organisation. Section [ contains preliminaries, including definitions of
data nets and of several relevant subclasses, some basic results, and an example.
In Section Bl we present the translation from lossy channel systems to Petri
data nets. Sections [ and [ contain the decidability and hardness results. Some
remaining open problems are discussed in Section [6

2 Preliminaries

Sets, quasi-orders and mappings. For n € IN, let [n] = {1,...,n}. We write IN,
for IN U {w}. The linear ordering < on IN is extended to IN,, by having n < w
for each n € IN.

A set A and a relation < on A form a quasi-order iff < is reflexive and
transitive. We write a1 < as iff a1 < as and as £ a;.
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For any A’ C A, its upward closure is A’ ={a € A : o’ € A’ -a’ < a}. We
say that A’ is upwards-closed iff A’ = TA’. A basis of an upwards-closed set A’
is a subset A” such that A’ = 1A”. Downward closure (written |A’), closedness
and bases are defined symmetrically.

A mapping f from a quasi-order (A, <) to a quasi-order (A’, =’) is increasing
iff a1 <as = f(al) =</ f(ag).

Vectors and matrices. For sets A and B, let AP denote the set of all B-indexed
vectors of elements of A, i.e., the set of all mappings B — A. For example,
INUIXIT s the set of all n x n’ matrices of natural numbers. For a € A, let
a € AP denote the vector whose each entry equals a. Let Id € INP*P denote
the identity square matrix.

A quasi-ordering < on A induces the following quasi-ordering on AP: v < v
iff v(b) < v'(b) for all b € B.

/

Sequences and bags. For a set A, let Seq(A) denote the set of all finite sequences
of elements of A. For s € Seq(A), let |s| denote the length of s, and s(1), ...,
s(|s|) denote its elements.

For s,s" € Seq(A) and a € A, we say that s’ is an a-ezpansion of s (equiva-
lently, s is the a-contraction of s') iff s is obtained by removing each occurrence
of a from s’

For s,s" € Seq(A), we write s ~ s" iff s’ can be obtained from s by permuting
its entries. We define the set Bag(A) of all finite bags (i.e., multisets) of elements
of A as the set of all equivalence classes of ~. Let s denote the equivalence class
of s, i.e., the bag with the same elements as s.

Suppose (A, <) is a quasi-order. The quasi-ordering < induces quasi-orderings
on Seq(A) and Bag(A) as follows. For s,s" € Seq(A), we write s < s’ iff there
exists an increasing ¢ : [|s|] — [|s’[] such that s(i) < s'(¢(7)) for all i € [|s]]. For
b,b" € Bag(A), we write b < b’ iff there exist s € b and ¢’ € b’ such that s < s’

Well-quasi-orderings. A quasi-ordering < on a set A is a well-quasi-ordering iff,
for every infinite sequence a1, as, ... € A, there exist ¢ < j such that a; < a;.

Proposition 2 ([20]). Whenever = is a well-quasi-ordering on a set A, the
induced orderings on Seq(A) and Bag(A) also are well-quasi-orderings.

2.1 Affine Well-Structured Nets

We recall the notion of affine well-structured net ﬂﬁﬂﬁ Such a net is a tuple
(P,T,F,G, H) such that P is a finite set of places, T is a finite set of transitions,
and for each t € T, F; and H; are vectors in ]NP7 and Gy is a matrix in INPX*P,

Markings of an affine WSN (P, T, F, G, H) are vectors in IN¥. A marking m/
can be obtained from a marking m by firing a transition ¢t € T, written m Lom ,
iff m Z Ft and m’ = (m — Ft)Gt + Ht.

3 For technical reasons, the formalisation of affine WSNs in this paper is slightly
different, but equivalent.
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As was shown in [6], Petri nets and many of their known extensions are
special cases of affine WSNs. In particular, Petri nets and their extensions by
(generalised) resets and transfers are equivalent to the classes of affine WSNs
(P,T,F,G, H) determined by the following restrictions:

Petri nets: Vie T -G, = Id
reset nets: Vie T -Gy < Id
transfer nets: Vi€ T,pe P-3p' € P-Gi(p,p') >0

2.2 Data Nets

Given n € IN, let Regs(n) = {Reg(; ;41 : 0 <i<n}. Foreach0<i<mn,m2>n
and increasing ¢ : [n] — [m], let [Reg(; ;. y[7" = {j € [m] : «(4) <j < (i + 1)},
where by convention +(0) = 0 and «(n + 1) m+ 1.

A data net is a tuple (P, T, «, F, G, H) such that:

P is a finite set of places;

— T is a finite set of transitions;

for each t € T, oy € IN specifies the arity of t;

for each t € T, F, € INUetUEegs(a))xP 4 Fi(R,p) = 0 whenever R €

Regs(ay) and p € P;

— foreach t € T, Gy € N ((fore] U Regs(on)) x P)? , and Gy(R,p, R',p") = 0 whenever
R, R’ € Regs(at), R # R’ and p,p’ € P;

— for each t € T, H, € INUelWRegs(an))x P

Suppose (P, T, a, F, G, H) is a data net, and t € T. Any m > oy and increasing
t: [oy] — [m] determine the following instances of Fy, G; and Hy:

— [E]™ e NIMXP is defined by
[[Ft]]zn(b(z)vp) = Ft(z7p) [[Ft]]zn(.]ap) = Ft(Rvp) for .] € [[R]]Zn
— [G]™ € NXP) g defined by

[Ge]7" (u(i), p, o), p") = Gi(i, p, ', ')
(G (u(0). p. 7 #) = Ghlisp. R,p)  for j' € [R]”
[[Gt]] (.7 p,l ( )7]7/) Gt(R p,t /7 /) for .7 € [[R]]T
(G (4. p. g, 0") = Ge(R,p, R, p')  for j € [R]}
[Ge]™ (4, p,4"0") =0 otherwise
— [H]™ € NP s defined in the same way as [F;]™.

A marking of a data net (P,T,«, F,G, H) is a finite sequence of vectors in
IN"'\ {0}. A marking s’ can be obtained from a marking s by firing a transition
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t € T, written s 5 s', iff there exist a O-expansion s; of s and an increasing
v ¢ [ou] = [|s¢]] such that{]

(i) {J : s:(j) =0} C Range(1);
(i) s > [F]
(iii) s is the O-contraction of (sy — [[Ft]]lbs*l)[[Gt]]lLsfl + [[Ht]]lbs*l.

. t,sy, .
We may also write s —— &, or just s — &'.

Proposition 3. For any data net, its transition system (Seq(IN* \ {0}), =) is
finitely branching.

2.3 Decision Problems
We consider the following standard problems:

Coverability: Given a data net, and markings s and s’, to decide whether some
marking s” > ¢’ is reachable from s.

Termination: Given a data net, and a marking s, to decide whether all com-
putations from s are finite.

Boundedness: Given a data net, and a marking s, to decide whether the set
of all markings reachable from s is finite.

Coverability, termination and boundedness for affine WSNs are defined in the
same way.

2.4 Classes of Data Nets

We now define several classes of data nets. Figure [[l shows the inclusions among
classes of data nets and affine well-structured nets in Propositions B, B B and
below. In addition, the mapping NV — N and its inverse (see Proposition[G]) pro-
vide a correspondence between unary transfer data nets (resp., unary Petri data
nets) and transfer nets (resp., Petri nets). The dashed line represents the fact
that Proposition [@ does not provide a reduction for the boundedness problem.

Unordered data nets. A data net (P,T,«, F,G, H) is unordered iff:

(i) for each t € T, R, R’ € Regs(a;) and p,p’ € P, we have G¢(R,p,R,p’) =
Gt(R/7p7 Rlap/) and Ht(Rap) = Ht(Rlvp);

(i) for each ¢t € T and permutation 7 of [ay], there exists t' € T such that Fy,
Gy and Hy are obtained from Fy, G and H, (respectively) by applying =
to each index in [ay].

Given an unordered data net (P, T, a, F, G, H), we write t ~ t" iff t and ¢’ have
the property in (ii) above. That defines an equivalence relation on 7', and we

* In (i) and (iii), s; is treated as a vector in INIstI1X7
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(unordered data nets) transfer data nets

unary data nets =
affine WSNs

Petri data nets

transfer nets

Fig. 1. Inclusions among classes of data nets

write ¢ for the equivalence class of t. From the following proposition, the same-

bag relation ~ between markings is a bisimulation on the transition system of
(P,T,a,F,G, H)H

. t
Proposition 4. For any unordered data net, whenever s; — so and sj ~ s,

t/
we have s} — sh for some t' ~t and sh ~ ss.

Unary data nets. A data net (P,T,«, F,G, H) is unary iff:

(i) foreach t € T, ay = 1;
(ii) for each t € T, there exists p € P such that F;(1,p) > 0;
(iii) for each t € T, R € Regs(1) and p,p’ € P, we have G¢(1,p,R,p') = 0,
Gi(R,p,1,p') = 0, Gi(R,p,R,p) = 1, Gy(R,p,R,p') = 0 if p # p', and
Hy(R,p) = 0.

Proposition 5. Any unary data net is an unordered data net.

Given a unary data net N = (P, T,a, F,G, H), let N = (P,T,F,G, H) be the
affine WSN such that F', G and H are obtained from F;, G; and H, (respectively)
by removing entries which involve indices from Regs(1). Observe that, conversely,
for each affine WSN N’ in which no transition is firable from 0, there is a
unique unary data net A such that N' = A’. Both N'+— A and its inverse are
computable in logarithmic space.

% Conditions (i) and (ii) in the definition of unordered data nets suggest an alternative
formalisation, where only one region is used for indexing F', G and H, and only
one transition from each equivalence class is represented. Such a formalisation is
more succinct (exponentially in transition arities), but that issue is not important
in this paper. In addition, by Proposition F] markings of unordered data nets can be
regarded as bags.
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Proposition 6. (a) For any unary data net N', we have that s — s’ iff |s'| = ||
and there exists i € [|s]] with s(i) = §'(i) in N and s'(j) = s(j) for all j # i.
(b) Coverability of s' from s in a unary data net N is equivalent to existence of
an increasing ¢ : [|s'|] — [|s|] such that s'(i) is coverable from s(u(i)) in N
for each i € [|s]].
Termination (resp., boundedness) from s in a unary data net N is equivalent

to N being terminating (resp., bounded) from s(i) for each i € [|s].
(¢) Coverability of m’ from m, termination from m and boundedness from m in

an affine well-structured net N are equivalent to coverability of (m') from
(m), termination from (m) and boundedness from (m) (respectively) in N .

Note that Proposition [@ (¢) can be extended to affine WSN with transitions
firable from 0 by adding an auxiliary place in which a single token is kept.

Transfer data nets. A data net (P,T,«, F,G, H) is transfer iff:

(i) for each ¢t € T, i € [oy] and p € P, we have G.(i,p,i',p’) > 0 for some
i' € [oy] and p’ € P;

(ii) for each t € T', R € Regs(ay) and p € P, either we have G¢(R,p,i,p') > 0
for some i’ € [a;] and p’ € P, or we have G¢(R,p, R,p’) > 0 for some p’ € P.

Observe that (i) and (ii) are satisfied by the transition ¢ in Example [Il

. t ) .
Proposition 7. (a) Whenever s1 — sz in a data net and s§ > s1, there exists
¢
sh > so such that s — ).
t . .
(b) Whenever s; — s2 in a transfer data net and sy > si1, there erists s, > so

t
such that sy — sb.

Petri data nets. In Petri data nets, whole-place operations are not allowed, and
transitions can produce tokens carrying only data which were chosen during the
firing. Formally, a data net (P,T,a, F, G, H) is Petri iff:

— foreach t € T, Gy = Id;
— for each t € T, R € Regs(coy) and p € P, Hi (R, p) = 0.

Proposition 8. Any Petri data net is a transfer data net.

2.5 Example: A File System

As an illustration, we now show how a file system which permits unboundedly
many users, user processes and files can be modelled as a data net. A vari-
ety of other examples of systems expressible using data nets can be found in
[LOTATTT2T3T5T6], including a real-timed mutual exclusion protocol, a dis-
tributed authentication protocol, a communication protocol over unreliable chan-
nels, and a leader election algorithm.

We suppose there are two categories of users: administrators and staff mem-
bers. Let Administrator be a finite set consisting of all possible states which an
administrator process can be in, and let Staff be such a set for staff-member
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processes. (We assume that Administrator and Staff are disjoint.) We consider
two file permissions, so let Permissions = {private, public}. We also suppose
Contents is a finite set of all possible file contents. If file contents is unbounded,
the Contents set may consist of finitary abstractions, which include information
such as file names.

The set of places is

P = Administrator U Staff U (Permissions x Contents)

Tokens represent user processes and files, and data which they carry represents
user identities. More specifically:

— a token at place a € Administrator carrying datum d represents a process
of administrator d and which is in state a;

— a token at place b € Staff carrying datum d represents a process of staff
member d and which is in state b;

— a token at place (r,c) € Permissions X Contents carrying datum d repre-
sents a file owned by user d, and with permission r and contents c.

To express a write by a staff-member process in state b to a file with contents
¢, which changes b to b’ and ¢ to ¢/, we define a transition write(b, b, ¢, ). It
involves one user, SO Qyrite(hp’,c,cr)y = 1. Firstly, it takes one token from place b
and one token from place c. They must carry the same datum, which ensures
that the user owns the file.

erite(b,b’,c,c’) (L b) =1 erite(b,b’,c,c’) (L C) =1

The transition involves no whole-place operations, so Gyrite(b,t/,c,cr) = Id. Fi-
nally, it puts one token onto place b’ and one token onto place ¢, which carry
the same datum as the two tokens taken in the first stage.

erite(b,b',c,c’)(L b/) =1 erite(b,b’,c,c’)(la C/) =

The remaining entries of Fyrite(n,pr e,y a0 Hyrite(n,b,c,cr) are 0.

As a slightly more complex example, we can express a change of ownership of
a file with permission r and contents ¢ from an administrator to a staff member.
It involves an administrator process which changes state from a to a’, and a staff-
member processes which changes state from b to b’. Since two users are involved,
we have Qcnange(r,c,a,a/,b,6') = 2- As in the previous example, Gepange(r,c,a,a’,b,0') =
Id and we show only entries which are not 0:

Fchange(r,(' a,a’,b,b") ( <T7 C>) 1 Hchange(r,c,a,a’,b,b’) (27 <'I", C>) =1
Fcha.nge (r,c,a,a’,b,b’) (L a)=1 Hchange(r,c,a,a’,b,b/)(L CL/) =1
Fcha.nge (r,c,a,a’,b,b’) (2a b) 1 Hchange(r,c,a,a’,b,b') (2a b/) =1

In the change(r,c,a,a’,b,b") transition, it is assumed that the administrator
identity is smaller than the staff-member identity. To cover the opposite case,
and to have an unordered data net, we define a transition change(r, ¢,b, b, a,a’).
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The definition is the same as that of change(r, ¢, a,a’,b,b’), except that indices
1 and 2 are swapped when defining Fepange(r,c,b,b,a,a’) a0d Hcnange(r,c,b,b/ a0’ -

The data net having the three sets of transitions introduced so far is unordered
and Petri. Implementing the following action makes it no longer Petri, in fact
not even a transfer data net: all processes and files of a staff member who has a
process which is in state b are removed from the system. We have acrasnp) = 1,
Ferasnp)(1,0) = 1, the remaining entries of Firagnp) and all entries of Herasn(s)
are 0, and:

/

for p,p’ € P

Gcrash (]- p71 p 0
0 for R € Regs(1) and p,p’ € P
0
1

) =
Gcrash( )(]- pvR p)
G(crash(s (R p,1 p/)
) =
P)=

/

for R € Regs(1) and p,p’ € P
for R € Regs(1) and p € P
otherwise

Gcrash(s (R pa R P
G(crash( )(R p, R

Many interesting properties of the file system can be formalised as coverabil-
ity, termination or boundedness properties. For example, that there is never a
user who is both an administrator and a staff member amounts to none of the
markings s, for a € Administrator and b € Staff being coverable, where
[sa.] =1, sab(1)(a) = $4.6(1)(b) =1, and s4,(1)(p) =0 for all p € P\ {a,b}.

3 Reset Nets and Lossy Channel Systems

In this section, we first show how Petri data nets can express reset nets, which
establishes the dashed inclusion in the diagram in Section 24l The translation
preserves coverability and termination properties of reset nets.

Secondly, we show that Petri data nets can also express lossy channel systems
[15]. The translation provides reductions of the location reachability and termi-
nation problems for lossy channel systems to the coverability, termination and
boundedness problems for Petri data nets. Thus, the latter three problems will
be shown non-primitive recursive: see Theorem [I41

Proposition 9. (a) Coverability for reset nets is Turing reducible in polynomial
space to coverability for Petri data nets.

(b) Termination for reset mets is reducible in polynomial space to termination
for Petri data nets, and to boundedness for Petri data nets.

Proof. We define a translation from reset nets N' = (P, T, F, G, H) to Petri data
nets N = (P,T,a,ﬁ, é,fl) For each t € T, let s be a sequence consisting of
all p € P which are reset by t, i.e., such that G(p,p) =0 (each occurring once)
The set of places of N is formed by adding a place to P: P = P {p}- In N

each place p € P will store a single token, carrying a datum which represents the
place p of A/. The place p will store as many tokens carrying the datum which
represents a place p as there are tokens at p in N. More precisely, for markings
m of N and s of N, we write m ~ s iff for each p € P, there exists j, € [|s|]
such that: s(j,)(p) = 1, s(4')(p) = 0 for all j # j,, and s(j,)(p) = m(p). The
relation ~ will be a bisimulation between A and N.
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_ The transitions of N are pairs of transitions of A and enumerations of P:
T ={t, : t €T A[|P|] & P}. Suppose m = s, and let 7 be the enumeration of
P such that 7= (p) < 7= (p') iff j, < j,. We shall have that:

(i) only transitions of the form %, are firable from s;
(ii) m 5 m/ implies s == s’ for some m’ ~ s';
(iii) s I, o implies m L m/ for some m’ = s'.

Consider any i, € T. We set o; = |P|+|s}|. Indices i € [|P|] will be used
to pick data which represent the places of A, and indices |P| + 7 will be used to
pick fresh data (which are greater than all existing data) to simulate the resets of
t. Since G; = Id is required for N to be a Petri data net, it remains to define F;_
and .F:TEW so that (1)—(iii) above are satisfied. Each entry not listed below is set to 0:

F;_(i,m(i))

o H (in(0)
H; (1P| £ i,50(0))

F; (i,p) = Fu(x(i)) (i€ [P])
B (i,0) = Hi(x(i)  (n(i) & s))
H; (IP|+i,p) = H(s2()) (i € [Is?]])

1
1
1

Since any enumeration m of P is storable in polynomial space, we have that
polynomial space suffices for the translation. R

Given a marking m of NV, let s be a marking of A/ such that m = s. For (a),
we have by (i)—(iii) above that a given marking m’ is coverable from m in A iff
some minimal s’ such that m/ ~ s’ is coverable from s in A. For the first half
of (b), we have by (i)—(iii) above that A terminates from m iff ' terminates
from s. For the second half, let A’ be obtained from A’ (in logarithmic space)
by adding a place p’ and ensuring that each transition increases the number of
tokens at j'. Let s” be an arbitrary extension of s to place p’. We have that A
terminates from m iff A7 is bounded from s’. ]

A lossy channel system is a tuple S = (Q,C, X, A), where @ is a finite set
of locations, C is a finite set of channels, Y is a finite alphabet, and A C
QxC x{,7} x ¥ x Q is a set of transitions.

A state of S is a pair (g, w), where ¢ € Q and w : C — X*. For each ¢ € C,
the word w(c) is the contents of channel ¢ at state (g, w).

To define computation steps, we first define perfect computation steps, which
either write a letter to the end of a channel, or read a letter from the beginning
of a channel. For states (g1, w1) and (ga, w2), we write (g1, w1) —perf (g2, w2) iff
there exist ¢ € C' and a € X such that:

— either (¢1,¢,!,a,¢q2) € A and we = wi[c — (w1(c))al,
—or {q1,¢,7,a,q2) € A and wy = wafc — a(wz(c))].

Let C denote the “subword” well-quasi-ordering on X*, obtained by lifting
the equality relation on X' (see Proposition ). For example, we have abba C
abracadabra. For states (¢, w) and (¢’,w’), we write (¢, w) 3 (¢’,w’) iff ¢ = ¢
and w(c) Jw'(c) for all ¢ € C, i.e., (¢',w') is obtained from (g, w) by losing zero
or more letters.
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A computation step (q,w) — (¢’,w’) of S consists of zero or more losses,
followed by a perfect computation step, followed by zero or more losses. Thus, the
— relation is defined by composing the — ¢,y and 3 relations: — = J —p¢rp 3.

The following are two key decision problems for lossy channel systems:

Location reachability: Given a lossy channel system, a state (¢, w) and a
location ¢', to decide whether some state (¢’,w’) is reachable from (g, w).

Termination: Given a lossy channel system, and a state (g, w), to decide whe-
ther all computations from (g, w) are finite.

Proposition 10. (a) Location reachability for lossy channel systems is reducible
in logarithmic space to coverability for Petri data nets.

(b) Termination for lossy channel systems is reducible in logarithmic space to
termination for Petri data nets, and to boundedness for Petri data nets.

Proof. Given a lossy channel system S = (Q,C, X, A), we define a Petri data
net Ns = (P, T,«a, F,G, H) as follows. We shall have that Ns is computable in
logarithmic space.

Let P=QWC W (C x X). States (g, w) of S will be represented by markings
s € Seq(INP \ {0}) as follows. At places in @, there will be one token, which is
at ¢, and which carries a datum d which is minimal in s. For each ¢ € C' with
w(c) empty, place ¢ will contain one token which carries d. For each ¢ € C' with
w(c) = ay ---ap and k > 0, there will be data d < df < --- < df, such that:

— place ¢ contains one token which carries dg;
— for each a € X, place (c,a) contains one token carrying d$ for each i € [k]
with a; = a, and possibly some tokens carrying data greater than dj,.

Formally, we write (g, w) =~ s iff:

— s(1)(¢) =1, and s(j)(¢') = 0 whenever either j > 1 or ¢’ € Q\ {¢};

— for each ¢ € C with w(c) =&, s( )(¢) =1, and s(j)(c )—Oforallj >1;

— for each ¢ € C with w(c¢) = a1 ---ax and k > 0, there exist 1 < j{ < --- < j§
such that s(j5)(c) = 1, s(j’)(c) = 0 for all j* # ji, and for each 1 < j’ < j¢
and o’ € X, we have

s(7)(e.a) = {

For each read transition of S, there will be 1+|X| transitions of s, depending
on whether the channel will become empty after the read, or the last letter of
the new channel contents will be a':

T = {<Q17Ca!aa7q2> : <q1ac7!7aaq2> S A}U
{<Q17Ca ?aa7q2a8>a <C]170a ?aa7q2aa/> : <q1ac7?7aaq2> S A/\CL/ S E}

1, if there exists i € [k] with j' = j¢ and o/ = q;
0, otherwise

When defining oy, F; and H; for ¢t € T below, we show only entries which are
distinct from 0. Since Ng is a Petri data net, we have Gy = Id for each t € T.
We shall have that, in computations of Ns, losses can happen only when
reads are performed, but that will be sufficient for the result we are proving.
Losses will occur when the datum which identifies the end of a channel and
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corresponds to the last letter is made smaller than the datum which corresponds
to the second last letter. (Observe that, in data nets, we cannot specify that a
transition be firable from a marking only if the latter contains no data which is
between two particular data. If that were not so, perfect channel systems which
are Turing-powerful would be expressible).

Writes are performed using the minimal datum, which is then decreased:

Xq1.c,)\a,q2) = 2 H(lecxl’a’@)(l’qQ) =1
F(Q1707!707q2>(2’ q1) =1 H(lecvhay%)(l? (c, a>) =1

Reads which make a channel ¢ empty alter the datum carried by the token at
place ¢ to be the minimal datum:

F(Ql’c’?,a;thuﬁ)(l?qﬁ =1 QAqy,e,?,a,q2,6) = 2
F<Q1’C’?;G;QZ;5> (270) =1 H(lecﬁ’a’@’ﬁ)(l’ qQ) =1
F<Q1;C;?’Q’QZ’5><2’ <c7 a’>) =1 H(Ql’c’?,a,tIz’E)(l’ C) =1

The remaining reads from channel ¢ decrease the datum carried by the token at
place ¢ to a value which identifies an occurrence of some a':

F<111,C,7,a,q2,a’)(]-7q1) =1 Xqy,¢,7,a,q2,a’) = 3
F(ql,c,?,a,qz,a’>(37c) =1 H(m,c,?,a,qg,a’}(la CI2) =1
F<q1’c’?)a)q2)a/>(3, (c,a)) =1 H<q1’c’?)a)q2)a/>(2, c)=1
F(ql,c,?,a,qg,a’>(27 <C’ Cl/)) =1 H(ql,c,?,a,qz,a’>(2a <Cv 0,/>) =1

Now, the definition of M5 ensures that the ~ relation is an inverse simulation:
whenever (q,w) ~ s and s — ¢, there exists (¢/,w’) such that (¢’,w’) = s’ and
(g, w) — (q, w/>'

We write (g, w) C ~ s iff there exists (¢, w') such that (g, w) C (¢, w’) and
(¢",wh) ~ s. It is straightforward to check that the C =~ relation is a simu-
lation: whenever (¢, w)C~s and (g,w) — (¢’,w’), there exists s’ such that
(¢, w)YE=s and s — §'.

To establish (a), given a state (g, w) and a location ¢’ of S, let s be such that
(g, w) ~ s, and let s’ be such that |¢'| = 1, §'(1)(¢') = 1, and s'(1)(p) = 0 for
all p € P\ {¢'}. By the properties above, we have that some state (¢’,w’) is
reachable from (g, w) iff some marking s” > s is reachable from s.

For the termination part of (b), if s is such that (¢,w) & s, then S has an
infinite computation from (g, w) iff /s has an infinite computation from s. For
the boundedness part, we modify As by adding an auxiliary place and ensuring
that each transition increases the number of tokens at that place. a

4 Decidability

The following two lemmas will be used in the proof of Theorem[I3below. The first
one, due to Valk and Jantzen, provides a sufficient condition for computability of
finite bases of upwards-closed sets of fixed-length tuples of natural numbers. The
second lemma shows that, for computing a pred-basis of the upward closure of a
marking of a data net, it suffices to consider markings up to a certain computable
length.
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Lemma 11 ([21]). Suppose B is a finite set. A finite basis of an upwards-
closed set V.C INP is computable iff it is decidable, given any v € INZ, whether

Vo) # 0. o

For a transition system (S, —) and S C S, we write Pred(S’) for {s € S :
s’ € §'- s — §'}. If transitions are labelled by ¢ € T, we write Pred(S’) for

{s€S:3/ el s}

Lemma 12. Given a data net N, a transition t of N', and a marking s’ of N,
a natural number L is computable, such that whenever s € Predi(1{s'}) and
|s| > L, there exists § < s with § € Pred,(1{s'}) and |5| < L.

Proof. Suppose N = (P,T,«, F,G, H), and let
L=o;+|s|+ (e +1)x 2P —1)x M

where M = max{s'(i)(p) : i € [|'|]] A p € P}.

Consider s € Pred(1{s'}) with |s| > L. For some s;, ¢ and s” > s, we have

DI ¢ Let st = (81— [E]E G + [H, ] Since s” is the 0-contraction
of s¥, there exists an increasing ¢ : [|s'[] — [|st]] such that s'(¢) < s%(2/(7)) for all
i€ [ls']

For each nonempty P, C P, let

sit={icllsill 1 ¥vpe P si(i)p) >0 < pe Py}

Since [s;| > |s|, there exist 0 < j < o and nonempty Py C P such that
P P s P
|1, "] > M, where I; " = ([[Reg(j’jﬂ)]]lb tl \ Range(/)) N s "
Pick an index z% € If* of si, and let i' € [|s|] be the corresponding index of
5. Let 71 be the increasing mapping [|s¢| — 1] — [|s|] with i} & Range(r;), and
7 be the increasing mapping [|s| — 1] — [|s|] with i' & Range(7). Then let s
(resp., s') be obtained from s; (resp., s) by removing the entry z% (resp., il),
91 Sl Sl
n =7 'ou, and 8%’1 = (s — [[Ft]]lL(lfl)[[Gt]]lnTl + [[Ht]]lbfl. By the definition of I]P+
P . . :
and || 1> M, we have that sﬁr’l(z)(p) > M whenever sﬁr’l(z)(p) # s{(7:(1))(p)-
Hence, s{" > ', 50 s* € Pred,(1{s'}).

By repeating the above, we obtain s > s!' > s > ... sl5I=F ¢ Pred,(1{s'})
such that |s*| = |s| — k for all k. Setting 5 = s/~ completes the proof. O

Theorem 13. (a) Coverability and termination for data nets are decidable.
(b) Boundedness for transfer data nets is decidable.

Proof. Suppose N = (P, T, «, F,G, H) is a data net. By Propositions 2] Bl and [7]
we have that the transition system of AV is finitely-branching and well-structured
with strong compatibility, and also with strict compatibility if A is transfer
(using the terminology of [I8]). Moreover, < between markings of N is a decid-
able partial ordering, and Succ(s) = {s’ : s — s’} is computable for markings
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s. Hence, termination for data nets and boundedness for transfer data nets are
decidable by [1I8, Theorems 4.6 and 4.11].

To establish decidability of coverability by [I8, Theorem 3.6], it suffices to
show that, given any ¢t € T and a marking s’, a finite basis of Pred;(1{s'}) is
computable. (By Proposition [q (a), Pred:(1{s’}) is upwards-closed).

First, we compute L as in Lemma[[2 For any 0 < < L, increasing 7 : [[] —
[] and increasing ¢ : [a;] — [I4] such that [I;] = Range(n) U Range(t), let

Predimvb(T{s'}) ={s:l=s| AT >5" s L, s}
where s 22 s” means that s ——"% s for some st such that Range(n) = {j :

s+(j) # 0} (necessarily, l; = |s4|). From the definition of transition firing, we have

that s =10 o iff 54 > [Fi]+ and s” is the O-contraction of (st — [F[GeL +

[[Ht]]i*. Hence, each Predi)n)L(T{s’}) is an upwards-closed subset of IN"*[| By
Lemma [T2] it remains to compute a finite basis of each Predi)n)L(T{s’ 1.
Suppose that [, 7 and ¢ are as above. Given any s € ]fo[l], we have as in
[6] that Predimvb(T{s’}) N {s} # 0 iff sy > [[Ft]]iT and s” > s', where st is the
0-expansion of s such that [y = |s{| and Range(n) = {j : s4(j) # 0}, s” is
the O-contraction of (s; — [[Ft]]i*)[[Gt]]i* +[H: 't and the required operations are
extended to w by taking limits: w > n, w+n=n4+w=w+w=w,w—n=uw,
0xw=0,and n X w = w for n > 0. Therefore, by Lemma [1] a finite basis of

Predimvb(T{s’}) is computable. |
5 Hardness

Theorem 14. Coverability, termination and boundedness for Petri data nets
are mot primitive recursive.

Proof. As shown in [7], location reachability and termination for lossy channel
systems are not primitive recursive. It remains to apply Proposition [IT a

Theorem 15. Cowverability, termination and boundedness for unordered Petri
data nets are not elementary.

Proof. For n € IN, the tetration operation a {} n is defined by a {t 0 = 1 and
af (n+1)=am,
The non-elementariness of the three verification problems follows from showing
that, given a deterministic machine M of size n with finite control and two
2 f n-bounded counters, an unordered Petri data net Ay, which simulates M
is constructible in logarithmic space. A counter is m-bounded iff it can have
values in {0,...,m — 1}, i.e., it cannot be incremented beyond the maximum
value m — 1. The following counter operations may be used in M: increment,
decrement, reset, iszero and ismax.

It will be defined below when a marking of Ay represents a configuration
(i.e., state) of M. Let us call such markings “clean”. We write s — , s’ (resp.,
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5 —x s')iff s — s" and s’ is clean (resp., not clean). Hence, s —% — , s’ means
that s’ is clean and reachable from s by a nonempty sequence of transitions in
which every intermediate marking is not clean, and s /4% means that there does
not exist an infinite sequence of transitions from s in which no intermediate
marking is clean. M will be simulated in the following sense by Ny from a
certain initial marking sy, where ¢; is the initial configuration of M:

— we have s; /4% and:
e there exists s; —3 — /s’ such that cr is represented by s';
o for all s; =% — /', ¢ is represented by s';
— whenever c is represented by s, we have s /4% and:
e if ¢ has a successor ¢, there exists s —3 —, s’ with ¢’ represented by s’;
e for all s =3 — /', c has a successor ¢’ which is represented by s'.

That M halts (i.e. reaches a halting control state from ¢;) will therefore be
equivalent to a simple coverability question from s;, and to termination from
s7. After extending M by a place whose number of tokens increases with each
transition, that M halts becomes equivalent to boundedness from s;.

Each clean marking s of Ny, will represent a valuation v of 3n counters Cj,
¢} and CY for k € [n]. C), and CJ, are the two counters of M, and for each
k € [n], Cy, C}, and C} are 2 f} k-bounded. (Counter C; will not be used, so
it can be omitted.) N will have places Op, 1p, scratchp, lockp, checkedp
and uncheckedp for each D € {Cy,C,,C} : k € [n]}, as well as a number
(polynomial in n) of places for encoding the control of M and for control of
Np. A valuation v is represented by s as follows:

— for each k € [n] and D € {C, C},, C}'}, places scratchp, lockp and checked p
are empty, and uncheckedp contains exactly 2 f+ (k — 1) tokens and they
carry mutually distinct data;

— for each k € [n], D € {Cy,C},C}/} and i € [2 f (k — 1)], if the i-th bit
of v(D) is b € {0,1}, then for some datum d carried by a token at place
unchecked p, the number of tokens at bp which carry d is ¢, and the number
of tokens at (1 — b)p which carry d is 0;

— for each k € [n] and D € {C}, C,,,C}'}, each datum carried by a token at 0p
or 1p is carried by some token at uncheckedp.

Counters Cq, C] and C{ are 2-bounded, so operations on them are trivial
to simulate. For each k& < n, counter operations on Cyy1, C;,, and C}/, | are
simulated using operations on C, C} and C}/. The following shows how to
implement iszero(D), where D € {Cyy1,Cj 1, C/ . The other four counter
operations are implemented similarly.

for Cp :==0to (21 k) —1do

{ guess a datum d and move a token carrying d from uncheckedp to lock p;
for C}, := 0 to Cj do { move a token carrying d from Op to scratchp };
for C}, := 0 to Cj do { move a token carrying d from scratchp to Op };
move the token from lockp to checkedp };

for Cp :==0to (21 k) —1do

{ move a token from checkedp to uncheckedp }
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Observe that iszero(D) can execute completely iff, for each ¢ € [2 {} k], the datum
d guessed in the i-th iteration of the outer loop represents the i-th bit of v(D)
and that bit is 0. Place lockp is used for keeping the datum d during each such
iteration, and it is implicitly employed within the two inner loops.

It remains to implement routines setup(D) for k € [n] and D € {Cy, C},,C}'},
which start from empty Op, 1p, scratchp, lockp, checked p and unchecked p, and
set up Op and unchecked p to represent D having value 0. Setting up C4, C7 and
Cf is trivial. To implement setup(D) for k < n and D € {Cry1,C) 1,C} 1},
we use Cy, C) and C}/ which were set up previously. The implementation is
similar to that of iszero(D), except that all three of Cy, C}, and C}/ are used,
since whenever a datum d is picked to be the i*" datum at unchecked p for some
i € [2 1 k], two nested loops are employed to ensure that d is distinct from each
of i — 1 data which are carried by tokens already at uncheckedp. O

6 Concluding Remarks

We have answered questions (1) and (2) posed in Section [Il As far as we are
aware, Section [l contains the first nontrivial lower bounds on complexity of
decidable problems for extensions of Petri nets by infinite data domains.

The results obtained and their proofs show that data nets are a succinct
unifying formalism which is close to the underlying semantic structures, and
thus a useful platform for theoretical investigations.

The proof of Theorem[I3ldoes not provide precise upper bounds on complexity.
It should be investigated whether upper bounds which match the lower bounds in
the proofs of Theorems[I4] and [[H] are obtainable. In particular, are coverability,
termination and boundedness for unordered Petri data nets primitive recursive?

Let us say that a datanet is [, m-safe iff each place other than some [ places never
contains more than m tokens. It is not difficult to tighten the proofs of Theorems[I4]
and[IH]to obtain that coverability, termination and boundedness are not primitive
recursive for 1, 1-safe Petri data nets, and not elementary for 2, 1-safe unordered
Petri data nets. That leaves open whether we have non-elementarity for 1, 1-safe
unordered Petri data nets. That class suffices for expressing polymorphic systems
with one array of type (X, =) — (Y, =) without whole-array operations [T6/17].

We are grateful to Alain Finkel for a helpful discussion.
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Abstract. We study services modeled as open workflow nets (oWFN)
and describe their behavior as service automata. Based on arbitrary
finite-state service automata, we introduce the concept of an operating
guideline, generalizing the work of [IJ2] which was restricted to acyclic
services.

An operating guideline gives complete information about how to prop-
erly interact (in this paper: deadlock-freely and with limited communi-
cation) with an oWFN N. It can be executed, thus forming a properly
interacting partner of N, or it can be used to support service discovery.

An operating guideline for N is a particular service automaton S
that is enriched with Boolean annotations. S interacts properly with
the service automaton Prov, representing the behavior of N, and is able
to simulate every other service that interacts properly with Prov. The
attached annotations give complete information about whether or not a
simulated service interacts properly with Prov, too.

1 Introduction

In real life, we routinely use complicated electronic devices such as digital cam-
eras, alarm clocks, mobile phones, CD players, vending machines, etc. Using such
a device involves complex interaction, where information from the user to the
device flows via pushing buttons or spinning wheels while information is passed
from the device to the user via displays or blinking LEDs.

In some cases, we do not even abstractly know what is going on inside the de-
vice. Nevertheless, we are typically able to participate in the interaction. Besides
ergonomic design, help from experienced friends, or trial-and-error exploration,
it is often the user instructions which help us to figure out what to do at which
stage. The typical features of user instructions (at least good ones) are:

— they are shipped with, or pinned to, the device,

— they are operational, that is, a user can execute them step by step,

— they are complete, that is, they cover the full intended functionality of the
device,

* Partially funded by the BMBF project “Tools4BPEL”.
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— they use only terms related to the interface (buttons, displays, etc.) without
trying to explain the internal processes.

In the virtual world, services [3] replace the devices of the real world. Still,
using a service may require involved interaction with the user (which can be
another service, like in service-oriented computing []). With the concept of an
operating guideline, we are going to propose an artifact that, in the virtual world,
plays the role of user instructions in the real world. In particular, we will show
that it exhibits the characteristics listed above. Moreover, we show that the
operating guideline for a service can be automatically computed and be used for
automatically checking proper interaction between services.

In contrast, a public view of a service (a condensed version of the service
itself) has been proposed as another artifact for explaining the interaction with
the service [5l6]. Public views, however, do neither match the second nor the
fourth item of the list above.

Our approach is based on the behavior of open workflow nets (oWFN) [2].
oWFN are a class of Petri nets which has been proposed for modeling services.
oWFN generalize and extend the classical workflow nets [7]. The most impor-
tant extension is an interface for asynchronous message passing. This interface
allows us to compose services to larger units. Suitability of oWFN for modeling
services has been proven through an implemented translation from the indus-
trial service description language WS-BPEL [§] into oWFN [9/I0]. While there
are many partial formalizations for WS-BPEL, the translation to oWFN is fea-
ture complete. Other feature complete formalizations are based on abstract state
machines [TTIT2].

We describe the behavior of an oWFEFN with the help of a service automa-
ton. A service automaton basically records the internal states of an oWFN. The
transitions of the automaton are labeled with information about message pass-
ing through the mentioned interface. Service automata form the basis of the
proposed operating guidelines.

Operating guidelines have so far been introduced for acyclic services [12].
In this paper, we extend our previous results and introduce the concept of an
operating guideline for an arbitrary finite-state service N. The operating guide-
line of N is a distinguished service automaton S that properly interacts with NV,
together with Boolean annotations at each state of S. The annotations serve as
a characterization of all services that properly interact with V.

For this paper, we assume that “proper interaction” between services N and
N’ means deadlock freedom of the system composed of N and N’ and limited
communication, that is, k-boundedness of all message buffers, for some given k.
We are well aware that there are other possibilities for defining “proper interac-
tion”. Nevertheless, deadlock freedom and limited communication will certainly
be part of any such definition, so this paper can be seen as a step towards a
more sophisticated setting.

The rest of the paper is organized as follows. In Sect. 2l we introduce open
workflow nets, service automata, and their relation. Sections [3] to [l are devoted
to the construction of an operating guideline and its use. These sections build
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entirely upon the concept of service automata. We start by defining, in Sect. 3] a
concept that we call situations. This concept is fundamental to our approach. It
describes the interaction of a given service automaton Prov with a partner Req
from the point of view of Req only. With the help of situations, we are able to
characterize deadlock freedom of the interaction in a way that is suitable for sub-
sequent considerations. The characterization is translated into Boolean formulas
which are used as annotations in the operating guideline later on. The calcula-
tion and justification of the canonical partner S mentioned above is subject of
Sect. @ In Sect. [l finally, we formalize the concept of an operating guideline
and show how it can be used for identifying other partners that communicate
deadlock-freely with Prov. Section [f] discusses issues of an implementation and
presents experimental results. Finally, we summarize the results of the paper
and sketch our plans for further work.

2 Models for Services

2.1 Open Workflow Nets (cWFN)

The introduction of open workflow nets [2] was inspired by the view of a service
as a workflow plus an interface. Consequently, oWFN extend workflow nets [7]
with an interface for asynchronous message passing. oWFN further drop some
syntactic restrictions present in workflow nets, for instance the unique start
and end places. These restrictions would complicate service composition without
sufficient justification by improved analysis possibilities.

Definition 1 (Open workflow net). An open workflow net consists of:

— an ordinary place/transition net [P, T, F,mo|; together with

— two disjoint sets P;, P, C P, called input and output places, such that F'N
(P, xT)=0 and FN (T x P;) =0. We assume mo(p) =0 forp € P,UP,;

— a set §2 of markings, called final markings. For my € {2 and p € P;UP,, we
assume my(p) = 0. We further require that a marking in my does not enable
a transition.

P; represents channels for incoming messages, P, channels for outgoing messages.
The required restrictions for arcs guarantee that sent messages cannot be “un-
sent” and received messages cannot be “unreceived”. Our set of final markings
replaces the single final place of workflow nets. Any marking may be final as long
as it does not enable a transition. That is, a service does not perform actions in
a final marking. A service may, however, be designed such that it resumes work
when it receives a message while residing in a final marking.

A major intention behind services is their composition to larger units. Corre-
spondingly, there is a concept of composition for oWFN. oWFN are composed
by merging interface places. This can, in general, be done for arbitrarily many
oWEFN. For the purpose of this paper, it is sufficient to understand the compo-
sition of just two oWFN.
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(a) A vending machine oWFN Ny-. (b) A partner o WFN of Ny-.

Fig. 1. The oWFN Ny (a) models a vending machine. In every iteration, it first expects
a coin to be inserted (message e), and a choice for a coffee or a tea to be made (c or t).
It returns either the coin (E), modeling a failed check for validity, or the corresponding
beverage (C or T). The machine can be shut down by sending q. The oWFN (b) models
a potential partner (user) of the vending machine.

Definition 2 (Partner oWFN). Two oWFN N and N' are partners if P, =
P! and P, = P!. All other ingredients of N and N’ are assumed to be disjoint.
If two oWFN are partners, they can be composed. Composition consists mainly
of merging the interface places.

Definition 3 (Composition of oWFN). Let N and N’ be partner oWFN.
The composition m @& m' : P U P’ — IN of two markings m of N and m’' of N’
is defined by (m @ m’)(p) = m(p), if p € P and (m®m/)(p) =m/(p), if p€ P'.
The composition of N and N’ is the oWFN N & N’ defined as follows:

- Pyon' = PUP’, TnenN :TUT’, Fnon = FUF/, 0N gn = 100 @mé;
- PiN@N, - PON@N/ - Q);

- Onen ={maom/ |me 2,m e 2'}.

The composition of markings is well-defined for partners, as the common places
of N and N’ do not carry tokens. The composition of partners leads to an oWFN
with an empty interface. As an example, Fig. [l shows two partner oWFN.

Only for oWFN with empty interface it is reasonable to consider their reach-
ability graph (occurrence graph), as an interface suggests some interaction with
a (possibly unknown) environment. We rely on the usual concept of reacha-
bility graph. For studying a service in isolation, we consider the inner of an
(uncomposed) oWFN. The inner of N is an oWFN with empty interface, so its
reachability graph may be considered.
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Definition 4 (Inner). Let N be an oWEN. The inner of N, denoted inner(N),
1s obtained from N by removing all places in P; and P, and their adjacent arcs.
Initial and final markings are adjusted accordingly.

This leads to the following definition of boundedness of arbitrary oWFN.

Definition 5 (Boundedness of oWFN). An oWFN N is bounded if the
reachability graph of inner(N) is finite.

Boundedness, as defined above, concerns the inner of an oWFN. The composi-
tion of two bounded oWFN, however, can still be unbounded since tokens may
be accumulated in the merged interface places. Thus, we have to introduce an
additional concept of boundedness of the interface places.

Definition 6 (Limited communication of oWFN). Two partner oWEN N
and N’ have k-limited communication (for some k € IN) if m(p) < k for all
markings m reachable in N ® N and all places p € P; U P/.

If two bounded oWFN N and N’ are k-limited partners, then N @ N’ is bounded,
too.

2.2 Service Automata

Open workflow net models as introduced so far can be obtained from practical
specifications of services. There is, for instance, a feature complete translation
from WS-BPEL to oWFN [9I10].

In this section we introduce service automata [I], which serve as the basis
of the calculation of operating guidelines. A state of a service automaton is
comparable to a marking of the inner of an oWFN. Communication activities
are modeled as annotations to the transitions of a service automaton.

Service automata differ from standard I/O-automata [I3]. They communicate
asynchronously rather than synchronously, and they do not require explicit mod-
eling of the state of the message channels. This approach leads to smaller and
thus more readable automata. Other versions of automata models for services
were proposed by [14] and [3], for instance. [T4] model communication as occur-
rences of labels with no explicit representation of pending messages, whereas [3]
use bounded and unbounded queues to store such messages.

Unlike an oWFN; a single service automaton has no explicit concept of mes-
sage channels. The channels are taken care of in the definition of composition: a
state of a composed service automaton consists of a state of each participating
service automaton and a state of the message bag of currently pending messages.

We fix a finite set C, the elements of which we call channels. They take the
role of the interface places in oOWFN. We assume 7 ¢ C (the symbol 7 is reserved
for an internal move). With bags(C'), we denote the set of all multisets over C,
that is, all mappings m : C' — IN. A multiset over C' models a state of the
message bag, that is, it represents, for each channel, the number of pending
messages. || denotes the empty multiset ([|(z) = 0 for all z), [z] a singleton
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multiset ([z](xz) = 1, [z](y) = 0 for y # x), m1 + ma denotes the sum of two
multisets ((my +ms)(z) = mq(z) + ma(z) for all z), and m; — my the difference
((my1 — ma)(x) = max(mi(x) — ma(x),0) for all z). bagsk(C) denotes the set
of all those multisets m over C' where m(z) < k for all x. bagsy(C) is used for
modeling the concept of limited communication.

Definition 7 (Service automata). A service automaton A = [Q, I, 0,6, qo, F]
consists of a set QQ of states, a set I C C of input channels, a set O C C,
INO =0 of output channels, a nondeterministic transition relation § C Q x
(TUOU{7}) x @, an initial state gy € Q, and a set of final states F C @ such
that ¢ € F and [q,x,q'] € 6 implies x € I. A is finite if its set of states is finite.

Throughout this paper, we use the following notations for service automata.
With Prov (from service provider), we denote an arbitrary service automaton
for which we are going to calculate its operating guideline. With Reg (from
service requester), we denote an arbitrary service automaton in its role as a
communication partner of Prov. S is used for the particular partner of Prov that
forms the core of the operating guideline for Prov. Service automata without an
assigned role are denoted A. We use indices to distinguish the constituents of
different service automata. In figures, we represent a channel x € I with ?7x and
a channel y € O with ly. Figure 2] shows four examples of service automata.

Fig. 2. Examples of service automata. The service automaton V' models our vending
machine (see Fig.[1(a))). The service automata W, X, and Y model partners of V. Final
states are depicted by double circles.

Definition 8 (Partner automata). Two service automata A and B are part-
ner automata if I4 = Op and Ig = O4.

As in the case of oWFN, partner automata can be composed.

Definition 9 (Composition of service automata). For partner automata
A and B, their composition is defined as the service automaton A & B =
[QaaB, [1eB,0AeB, 0A6B, Qacs, Faes] defined as follows:

QAEBB = QAXQB XbagS<C)7 IAGBB = OA@B = ®; Q0ags = [qOAﬂ q0p > []]7 FAGBB =
Fa x Fp x {[]}. The transition relation agp contains the elements
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llga,qs,m], 7, (¢, a5, m]] iff [qa, T, d4] € 6a (internal move in A),
~ llga, g5, m], 7, [qa, ¢5, m]] iff B, T, 5] € 6B (internal move in B),
HQA7QBamLT7 [q‘/AaQva - [1"]]] Zﬁ [QA7I7q‘{4] S 6A7 HAS IA7 and m(x) >0
(receive by A),
- HQA7QBamLT7 [qAaqlem - [.I‘H] Zﬁ [QB7$7Q§3] S 637 MRS IB7 and m(l‘) >0
(receive by B),
HQAquam}vTv [qu}quvm + [‘T]]] zﬁc [qAaxanA] € 6A and x € OA (Send by A);

- Hquun mL’D [un qlem + [1’]]] Zﬁ [(Jvaﬂljg] S 6B and x € OB (Send by B)7
and no other elements.

Figure Bl depicts the composition V' @ W of the services V and W of Fig.

([vo,wz,[ce]D_T><[v1,w2,[C]D_T><[vz,wz,[]D_T)([vo,wz,[c]D
N . / \ \

T

(o0 >0t el Ao w2.letl) (o2, ED)—>{ o)
T

T T /

o

([vl,wl,[]] >—T><[v1,wz,[c]D—T)([v3,w2,[]]>—7><[vo,w2,[T]D

T

T

Fig. 3. The composed system V @& W of the service automata V and W of Fig.[2l Only
states reachable from the initial state are depicted. Note that V @& W has no (reachable)
final states. Nevertheless, V & W is deadlock-free, which is central in this paper.

Definition 10 (Wait state, deadlock). For an automaton A, a state q is
called a wait state iff [q,x,q'] € 6 implies x € I, that is, g cannot be left without
help from the environment. For a wait state q, let wait(q) = {x € I ]3¢ € Q :
lg,%,q'] € 6}. A wait state q is called deadlock iff ¢ ¢ F and wait(q) = 0.

A wait state cannot be left without an incoming message. wait(q) is the set
of all incoming messages that would help to leave q. A deadlock cannot be
left, independently from incoming messages. The definition of service automata
requires final states to be wait states which is reasonable.

Examples for wait states in Fig. [ are v0 with wait(v0) = {e,q}, w2 with
wait(w2) = {C,E, T}, or x4 with wait(x4) = . An example for a deadlock is the
state [v0,x2, [E]] of the (not depicted) composition of the services V' and X of
Fig. Rl that can be reached from the initial state [v0, x0, []] of V & X by executing
first the transitions send e and send t of service X, followed by the transitions
receive e, receive t, and send E of service V.

For service automata, limited communication can be formalized as follows.

Definition 11 (Limited communication of service automata). Let A and
B be two partner automata and A & B their composition. Then, A is called a
k-limited communication partner of B iff Qags C Qa X Qp X bagsi(C).
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Throughout the paper, we assume k to be given and fixed. The value of k& may
be chosen either by considerations on the physical message channels, by a static
analysis that delivers a “sufficiently high” value, or just randomly. If two finite
service automata Prov and Req are k-limited partners, then Prov @ Req is finite
as well. In Fig. Bl W and X are 1-limited partners of V. Y is no 1-limited
partner since V @Y contains, for instance, the state [v0,y2, [ee]]. Y is, however,
a 2-limited partner of V.

Every k-limited communication partner is a (k + 1)-limited communication
partner as well. For every value of k, there are services which have a deadlock-free
k-limited communication partner but no deadlock-free (k — 1)-limited communi-
cation partner. There are even services which have deadlock-free communication
partners but not a k-limited one for any k. As an example, consider the service
in Fig. 5(a): A communication partner would have a single (initial and final)
state s in which it receives a and loops back to s.

2.3 Translation from oWFN to Service Automata

While there exist direct translations from WS-BPEL to automata and closely re-
lated formalisms [TBITGIT7] we propose to generate service automata from oWFN.
This way, we can directly inherit the already mentioned feature completeness of
the Petri net translations of WS-BPEL [9I10].

Comparing the behavior of oWFN and service automata, the main difference is
the capability of oWFN to send and receive several messages in a single transition
occurrence. In order to keep matters simple, we give a direct translation from
an oWFN N to a service automaton only for the case that every transition of NV
is connected to at most one place in P; U P,. In fact, this assumption holds for
all oWFEFN stemming from WS-BPEL specifications as a BPEL activity accesses
at most one message channel. On the other hand, an arbitrary oWFN can be
transformed in various ways to match the requirement. We sketch one possible
transformation in Fig. @]

Given the restriction that a transition of N accesses at most one interface
place, the translation from oWFN to service automata is straightforward and
formalized through a mapping o WEFNtoService from oWFN to service automata.

Definition 12 (Mapping oWFN to automata). Let N be an oWFN where
every transition accesses at most one interface place. Then o WFNtoService(N)
is the service automaton A with the following constituents:

— Qa4 is the set of reachable markings of inner(N);

~Ix=P;, Oa=PFy;

- [m,a,m'] € 64 iff there is a transition t of N such that [m,t,m’| is a tran-
sition in the reachability graph of inner(N) and either there is an interface
place p connected to t and a = p, ort is not connected to any interface place
and a = T;

~ qo, 18 the initial state of inner(N), Fa is the set of final states of inner(N).

The translation is justified through the following observation that can be easily
verified by induction on the transition relations.
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(a)

Fig. 4. In the oWFN (a), transitions are connected to several interface places. This
can be circumvented by wrapping the interface with an additional internal buffer for
each message channel that has capacity one (annotation to the places), cf. (b). This
way, the essential behavior of the oWFN as well as finiteness of the state space are
preserved.

Proposition 1. For any two oWFN N and N’ where every transition is con-
nected to at most one interface place, the reachability graph of N & N’ is isomor-
phic to the graph defined by the states and transitions of o WFNtoService(N) ®
oWFNtoService(N').

In the remainder of this article, we study service automata Prov and Req where
Prov, Req, and Prov @® Req are all finite. This restriction implements the limited
communication property introduced earlier. We return to oWFN in Sect.[f] where
we discuss our implementation and report experimental results.

3 A Characterization of Deadlocks

In this section, we introduce concepts that help us to understand the coupling
between two service automata Prov and Req from the point of view of Req.
Therefore, we introduce the concept of situations which will allow us to charac-
terize a deadlock in Prov & Req by considering Req only.

Definition 13 (K, Situation). Let Prov and Req be partners. Then, let K :
QReq — 2Qpronxbags(C) pe defined by K(qreq) = {[qProv;m] | [¢Prov, QReq, m] is
reachable from the initial state in Q provereq}- The elements of 2Qprovxbags(C)
are called situations.

A situation comprises all parts of a state of Prov @ Req beyond the state of Reg
itself. It can thus be handled independently of Req. K(qreq) can be interpreted
as the knowledge that Req has about the possible states of Prov and the message
bag, that is, the situations [gpren, m| that can occur with greq in Prov & Reg.

We give some examples for values of K, referring to Fig.[2l We consider W as
a partner of V. Then Fig. Bl tells us that K(w0) = {[v0,[]]}, K(wl) = {[v0, [e]],
v, [1]} K(w2) = {[vO, [ce]], [vO, [et]], [v1,[c]], [vL, [d]], [v2,[]], [v3,[]], [vO,[C]],
[vO, [E]], [vO, [T]]}, K'(w3) =0, and K (w4) = {[v0, []]}.
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Within a set M of situations, we distinguish transient and stable situations.
A situation is transient in M if a move of Prov in that situation leads to another
situation also contained in M. Otherwise it is stable.

Definition 14 (Transient, stable situation). Let M be a set of situations.
[9Prov, m] is transient in M iff there is an [qprov, T, (proy] € OProv Such that:
-z =1 and [¢p,y,.m] € M, or
— & € Iproy, m(x) >0, and [qp,,,, m — [z]] € M, or
— & € Oproy and [qp,y,,m+ [z]] € M.
Otherwise, [qproy, m| is stable in M.

A service cannot leave a stable situation without interaction with the environ-
ment. For example, the situation [v0,[e]] is transient in the set of situations
K(w1) (cf. Fig. B). In contrast, the situation [v1,[]] is stable in K (wl).

A deadlock in the composed system Prov @ Req—seen from the point of view
of Req only —now reads as follows.

Lemma 1. [gprov, GReq, M| is a deadlock of Prov @ Req if and only if all of the
following conditions hold:

~ 4Prov ¢ FProv; OT qReq ¢ FReq; orm 7& H;

~ QReq 15 @ wait state of Req;

— [gpProv, m] is stable in K(qreq) and m(z) =0 for all x € wait(qreq)-

Proof. (—) Let [¢prov; Qreq,m] be a deadlock. Then the first item is true by
definition of deadlocks. The second item must be true since otherwise Req has
a move. [qproy, m] must be stable since otherwise Prov has a move. For z €
wait(qreq), we can conclude m(x) = 0 since otherwise Req has a move.

(<) Assume, the three conditions hold. By the first item, the considered state
is not a final state of Prov @ Req. Prov does not have a move since [qproy, m| is
stable. Req does not have a move since internal and send moves are excluded by
the second item, and receive moves are excluded by the last item. a

Consider again the example deadlock [v0,x2,[E]] in V' & X of the services of
Fig. @ and the three criteria of Lemma [I Firstly, [E] # []. Secondly, x2 is a
wait state of X with wait(x2) = {T}. Thirdly, K (x2) = {[v0, [et]], [v1, [t]], [v3,[]]
[vO, [E]], [vO, [T]]} and [vO, [E]] is stable in K (x2) and [E](T) = 0. Hence, all criteria
hold and we can conclude that [v0,x2, [E]] is indeed a deadlock.

For a state [¢prov, ¢req, ], the three requirements of Lemma [I] can be easily
compiled into Boolean formulas ¢1(qpron, m), ¢2, and ¢3(m) which express the
absence of deadlocks of the shape [, ¢req, | in Prov @ Req. The formulas use
the set of propositions C' U {7, final} (with final ¢ C'). Propositions in C' U
{7} represent labels of transitions that leave qg.,, whereas proposition final
represents the fact whether qreq € FReg:

Definition 15 (Annotation, Reg-assignment). Let Prov and Req be part-
ners. Then, for each qreq € QReq, define the annotation ¢(qreq) of qreq as the
Boolean formula over the propositions C U {r, final} as follows.

d)(QReq) = /\[ )(¢1 (QProm m) Vg2 V ¢3(m))

qProv, m] stable in K(qpeq
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where
- ¢1 (C]P m) = ﬁnal’ Zf qProv € Fprop, and m = []’
OV 3 false, otherwise,

_ ¢2 =TV \/IEORW xZ,
- 03(m) = Verp, m@)>0 -

The Reg-assignment assreq(qreq) : CU{T, final} — {true, false} assigns true to
a proposition x € C' U {7} iff there is a qkeq such that [qRreq, ©, qj.%eq] € OReq and
true to the proposition final iff qreq € FReq-

Since the formula ¢(greq) exactly reflects Lemma [l we obtain:

Corollary 1. Prov © Req is deadlock-free if and only if, for all qreq € @ Reqs
the value of ¢(qreq) with the Req-assignment ass peq(qreq) s true.

In Fig. 2 the annotation of state wl of W would be 7 VeV cVtVgqg, due
to the single stable situation [v1,[]] € K(wl). This formula is satisfied by the
W-assignment that assigns true to both ¢ and t, and false to 7, e, and q in
state wl. The annotation of the state w2 is 7VeVcVtVqV (CAEAT) since
K (w2) contains the three stable situations [v0, [C]], [vO, [E]], and [vO, [T]]. Since
the W-assignment assigns true to all of C, E, and T in state w2, it satisfies the
annotation. For state x2 of X, the annotation is 7VeVcVtVvqV (T AE). Since the
only transition leaving x2 is T, the X -assignment assigns false to all propositions
except T in state x2, and the annotation yields false. This corresponds to the
deadlock [v0,x2, [E]] in V & X.

4 A Canonical Partner

We are now ready to compute a canonical service automaton, called S, which
interacts properly with a given service Prov.

For any finite k-limited communication partner of a given (finite) service au-
tomaton Prov, all reachable situations are actually in 2@Frv*ba95:(C) which is a
finite domain. For sets of situations, define the following operations.

Definition 16 (Closure). For a set M of situations, let the closure of M,
denoted cl(M), be inductively defined as follows.
Base: M C cl(M);
Step: If [qprov, m] € cl(M) and [qrrov, T, @'proy] € OProv, then
n [Q%rmﬂm] € CZ(M), fo =T,
- [q;’rov7m+ [.ﬁ” € CZ(M)7 fo € OProv,
~ [dprow,m — [2]] € cl(M), if x € Iproy and m(z) > 0.

It can be easily seen that cl(M) comprises those situations that can be reached
from a situation in M without interference from a partner. In Fig. 2 for example,

we obtain cl({[v0, [ce]]}) = {[v0, [ce]], [v1, [c]], [v2, []], [v0, [C]}, [vO, [E]}}-
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Definition 17 (Send-event, receive-event, internal-event)

Let M C Qprov X bags(C). If € Opypoy, then the send-event x, send(M,x),
is defined as send(M,x) = {[g,m + [z]] | [¢,m] € M}. If © € Ipyoy,, then
the receive-event x, receive(M,x), is defined as receive(M,z) = {[q,m — [z]] |
l[¢g,m] € M,m(x) > 0}. The internal-event 7, internal(M,T), is defined as
internal(M,7) = M. As the shape of an event is clear from Ipo, and Oproy,
we define the event x, event(M,x), as receive(M,x) if © € Ipyoy, send(M,x) if
2 € Opyroy, and internal(M,x) if v = 7.

A send-event models the effect that a message sent by Req has on a set of
situations M. A receive-event models the effect that a message received by Reg
has on a set of situations M. Considering the service V' of Fig. 2l we get, for
example, receive({[v0, [ce]], [v1, [c]], [v2, []], [vO, [C]], [vO, [E]]}, €) = {[vO,[]]} and
send ({[v0, [e]], [v1, []]}, ) = {[v0, [ce]], [v1,c]]}.

Now, the construction of S (Def. [[8) bases on the following considerations.
A state of S is a set of situations. States and transitions are organized such
that, for all states ¢q of S, K(q) = ¢, that is, every state of S is equal to the set
of situations it can occur with in the composition with Prov. The transitions
of S can be determined using the operations event and cl. The construction is
restricted to sets in 2@rrv*0agsk(C) With this restriction, we already implement
the property of k-limited communication. Given the desired property K(q) = ¢
and the definition of K, the composed system cannot enter a state violating k-
limited communication. The other way round, any reachable state ¢ where K(q)
is outside 2Qrrrxbagsk(C) would cause a violation of that property.

Starting with a service automaton Sy which contains all such states and transi-
tions, unfortunately, Sy @ Prov may contain deadlocks. However, these deadlocks
can be identified by annotating Sy and evaluating the annotations according to
Def. Removing all states where the annotation evaluates to false yields a
new structure Sy. Since it is possible that the initial state is among the removed
ones, Sp is not necessarily a service automaton, that is, it is not well-defined.
In that case, however, we are able to prove that Prov does not have correctly
interacting partners at all. By removing states, assignments of remaining states
can change their values. Thus, the removal procedure is iterated until either the
initial state is removed, or all annotations eventually evaluate to true. In the
latter case, the remaining service automaton is called S and, by construction of
the annotations, constitutes a partner that interacts properly with Prov.

Definition 18 (Canonical partner S). Let Prov be a service automaton and
assume a number k to be given. Define inductively a sequence of (not necessarily
well-defined) service automata S; = [Qy, I;, O;, 6i, qoi, Fi] as follows.

Let Qg = 2Qrrovxbagsk(C) [t for all i, I; = Oproy, O; = Iprow, Goi =
d({[qOvav []]})7 [%xaq/] € 0; Zﬁ qu/ € Qi and q/ = CI(event<Q7 x))) and F; =
{q € Qi | q is wait state of S;}. Let, for all i, Q;v1 = {q| ¢ € Qi,d(q) evaluates
to true with assignment assg,(q)}.

Let S be equal to S; for the smallest © satisfying S; = Si+1.
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As the sequence {S;}i=0,1,... is monotonously decreasing, all objects of this defi-
nition are uniquely defined. The resulting S is a well-defined service automaton
if and only if ¢y € QQs. In that case, S is in fact a k-limited deadlock-freely
interacting partner of Prov.

As an example, the partner service Sy for the service V' of Fig. 2] initially
consists of 21 (from gog, reachable) states from which 9 states are removed
during the computation of the canonical partner S for V. The resulting service
automaton S can be found as the underlying graph of Fig. [ in Sect.

With the next few results, we further justify the construction.

Lemma 2. If cl([qoprovs[]]) € QpProv X bagsi(C), then Prov does not have k-
limited communication partners for the number k used in the construction.

Proof. As cl([goprov,[]]) is the set of situations that can be reached from the
initial state without interference of any partner Req, k-limited communication
is immediately violated. a

Lemma [2 states that Sy is well-defined for all well-designed Prov, that is, for
all Prov such that there exists at least one partner Req with Prov & Req is
deadlock-free.

The next lemma shows that we actually achieved one of the major goals of
the construction.

Lemma 3. Forall S; and all ¢ € Q;: if q is b;-reachable from qo,, then K(q) = q.

Proof. By structural induction on é. By definition of ¢l, ¢l([goprov[]]) is the set
of situations that can be reached from the initial state without interference from
S;. It K(q) = q, then cl(event(q,x)) is by definition of event and ¢l exactly the
set of situations that can be reached from situations in g by the event x. Thus,
[q,2,q'] € 6; implies K(q') = ¢ . O

From that lemma we can directly conclude that the service S constitutes a
properly interacting partner of Prov.

Corollary 2. If S is well-defined, that is, gos € Qg, then Prov® S is deadlock-
free.

Proof. Follows with Lemma [I and Def. from the fact that all states of S
satisfy their annotations. O

As an example of an ill-designed service, the service Z in Fig. Bl(a) would yield
an infinite ¢l([z0, []]) for any partner. Accordingly, there is no well-defined Sp.
During the construction of S for service U in Fig. Bl(b), the initial state is even-
tually removed. The initial state {[u0,[]], [ul,[]], [u2,[]]} of Sy for U has two
successors. The a-successor {[u0, [a]], [ul, [a]], [u2, [a]], [u3,[]]} must be removed
since it contains the deadlock [u2, [a]], the b-successor must be removed since it
contains the deadlock [ul, [b]]. In the next iteration, the initial state itself must
be removed since, without the two successors, it violates its annotation (aAb) V.

For further studying the constructed partner S, we establish a matching re-
lation between states of services and apply this relation to relate states of an
arbitrary partner Req of Prov to states of the canonical partner S.
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Fig.5. The service Z has no k-limited communication partner (for any number k).
The service U cannot communicate deadlock-freely with any partner.

Definition 19 (Matching). Let A and B be service automata and define the
relation La g € QaxQp, the matching between A and B, inductively as follows.
Let [QOAaQOB} S LA,B- If [QA7QB] S LA,B; [QAaxaQZA] € 64 and [QBJU’CI;B] € 637
then [y, 4] € Las.

The matching between two services A and B is a strong simulation relation
where in particular one 7-step of A is related to exactly one 7-step of B.

Examples for matchings are shown in Fig.[6l For example, the state w2 of the
service W in Fig. [Bla) is matched with the states 4 and 6 of the service S in
Fig.[d

Fig. 6. Matching of the three services W, X, and Y of Fig. Plwith the service S depicted
in Fig. [l A number n attached to a state x represents a pair [z,n] € L.

Lemma 4. Let Sy be the starting point of the construction in Def. and Req
be a partner of Prov with k-limited communication (for the value of k used in the

construction above). For all qreq € QRreqs K(qreq) = U[qgeq,qso]eLReq,so K(gs,)-

Proof (Sketch). The inclusion K (qreq) 2 U[‘Zerqv‘ZSo]eLerq‘So
definition of qos,, ds,, and the concepts ¢l and event. For the reverse inclusion,
let [gprov, m] € Kgp,,, that is, [qpProv, reqs ™m] € Prov @ Req. Thus, there is a
transition sequence in Prov & Req from the initial state [goprovs qoreq []] to that
state. This sequence can be replayed in Prov & Sy by replacing actions of Req
with actions of Sp, leading to a state gs, with [¢proy, m] € K(gs,) = qs,- O

gs, follows from the
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Corollary 3. For each state qreq of Req, its annotation ¢(qreq) can be described
as O(qreq) = /\qsoi[qmq,qso]ELmq,so ¢(gso)-

Proof. Since an annotation ¢(gs,) is a conjunction built for every situation in
qs, = K(gs,), the annotation of the union of K-values is the conjunction of the
individual formulas. O

For example, the annotation of state w2 of the service in Fig.@Qis (CAEAT) V
cVeVtVr which is equivalent to the conjunction of the annotations (CAE) V7
and (EAT)VecVeVtVr of the states 4 and 6 of the service in Fig. [

The next result is the actual justification of the removal process described in
Def.

Lemma 5. If Req is a k-limited communication partner of Prov (for the value
of k used in the construction of Sy) such that Prov @& Req is deadlock-free, then
gs € S fO’/‘ all [qReqa qS} S LReq,So-

Proof. (By contradiction) Let i be the smallest number such that there exist
qReq S QReq and qs € QSi \QSi+1 hOldll’lg [QRE(D qS} € L. That iSa qs iS, among
the states of Sy appearing in Lpeq,s,, the one that is removed first during the
process described in Def.

By the construction of Def. [I8] ¢(¢s) evaluates to false with the assignment
asss,(qs). Thus, there is a [gproy, m| € K(qs) such that [gpre, gs, m] is a dead-
lock in Prov & S;. As a deadlock, it is also a wait state in S;, so g € Fg,.

In Sy, there is, for every 2z € CU{7}, a transition leaving ¢g. If such a transition
is not present from ¢g in S;, this means that the corresponding successor state
has been removed in an earlier iteration of the process described in Def.
Such a transition cannot leave qre, in Req since otherwise a successor of Req
were matched with a state ¢ that has been removed in an earlier iteration than
qs which contradicts the choice of i and gg. Consequently, for every = with an
z-transition leaving qreq in Regq, there is an z-transition leaving gg in S;. This
means that, for all x € CU{T, final}, asss,(qs)(z) > ass req(qreq) (). Since ¢(gs)
is monotonous (only built using V and A), and @req is a conjunction containing
@(qs) (by. Cor. ), ¢(qreq) evaluates to false with the assignment assreq(qreq)-
Consequently, by Cor. [l Prov & Req has a deadlock. O

Corollary 4. Prov has a k-limited communication partner Req (for the value
of k used in the construction of So) such that Prov ® Req is deadlock-free if and
only if qos € Qs (i. e. the service-automaton S is well-defined).

Proof. 1f S is well-defined then, by Cor. 2 at least S is a partner of Prov such
that Prov @ S is deadlock-free. If Prov has a partner Req such that Prov @ Req
is deadlock-free, Lemma [[] asserts that Lpgeq s, contains only states of S. In
particular, since in any case [qogeq, 90S,] € L Req,s,, this implies gos, = qos € Qs-

O
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If Prov does not have partners Req such that Prov ® Req is deadlock-free, then
Prov is fundamentally ill-designed. Otherwise, the particular partner S studied
above is well-defined. It is the basis for the concept of an operating guideline for
Prov which is introduced in the next section.

5 Operating Guidelines

If the matching of a service Req with Sy involves states of Qg, \ @s, Lemma
asserts that Prov & Req has deadlocks. In the case that the matching involves
only states of QQg, Prov & Req may or may not have deadlocks. However, by
Cor. [[ the existence of deadlocks in Prov & Req can be decided by evaluating
the annotations ¢(qgreq) for the states qreq € Q req- By Cor.[3 these formulas can
be retrieved from the annotations to the states of S. Attaching these formulas
explicitly to the states of S, the whole process of matching and constructing the
?(qReq) can be executed without knowing the actual contents of the states of .S,
that is, without knowing the situations — the topology of S is sufficient. This
observation leads us to the concept of an operating guideline for Prov.

Definition 20 (Operating guideline). Let Prov be a service automaton
which has at least one properly interacting partner and S be the canonical service
automaton of Def. Then any automaton S* that is isomorphic to S under
isomorphism h, together with an annotation @ with ®(qs-) = ¢(h(gs~)) for all
qs~, 1s called operating guideline for Prov.

With the step from S to an isomorphic S*, we just want to emphasize that
only the topology of S is relevant in the operating guideline while the internal
structure of the states of S, that is, the set of situations, is irrelevant.

Figure[7 shows the operating guideline, that is, the annotated service automa-
ton S, for the service V' of Fig.

Ignoring the annotations, the operating guideline is (isomorphic to) the part-
ner S for Prov that can be executed directly thus satisfying the second require-
ment stated in the introduction. The annotation at a state ¢ gives additional
instructions about whether or not transitions leaving ¢ may be skipped. There-
fore, the operating guideline can be used to decide, for an arbitrary service Req,
whether or not Prov ® Req is deadlock-free, as the next result shows.

Theorem 1 (Main theorem of this article). Let Prov be a finite state ser-
vice and S* its operating guideline. Req is a k-limited communication partner of
Prov (for the value of k used in the construction of S*) such that Prov ® Req is
deadlock-free if and only if the following requirements hold for every [qreq,qs+] €
LReq,S* N

(topology) For every x € C U{T}, if there is an x-transition leaving qreq in
Req, then there is an x-transition leaving qg~ in S™.
(annotation) The assignment assreq(qreq) satisfies P(qs+).
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Fig. 7. The operating guideline for the service V in Fig. It is isomorphic to the
canonical partner S for V' (Def. [[8)) with the annotations @ depicted inside the nodes.
Multiple labels to an edge mean multiple edges. Edges pointing to a number mean
edges to the node with the corresponding number.

Note that this theorem matches Req with S* (isomorphic to S) while the results
in the previous section match Req with Sp. Requirement (topology) actually
states that Lgeq s+ is a simulation relation.

Proof. If Prov & Req is deadlock-free, then Lemma [{] asserts that the matching
of Req with S (or S*) coincides with the matching of Req with Sp. Thus, re-
quirement (topology) holds. Furthermore, Cor. Bl guarantees that requirement
(annotation) is satisfied.

Assume that both requirements hold. By requirement (topology), the match-
ing of Req with S (or S*) coincides with the matching of Req with Sp, since
the matching with Sy can lead to states outside S only if there is an x such
that an z-transition is present in a state gre, but not in the corresponding state
gs € S. Given that both matchings coincide, Cor. [3 states that ¢(greq) is the
conjunction of the ¢(qg), for the matching states ¢s. Then, we can deduce from
Cor. [l and requirement (annotation) that Prov & Req is deadlock-free. O

Consider the service V' of Fig. [ and its partners. In Fig. [0l we can see that
W and X satisfy the requirement (topology) while Y does not (Y is not a 1-
limited communication partner of V). X violates in state x2 the annotation to
the matched state 6, since the Reg-assignment in state x2 assigns false to E and
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7. V@ X contains the deadlock [v0,x2, [E]]. For service W, all annotations are
satisfied. V @ W is deadlock-free (see Fig. ).

At this stage, it would be natural to ask for an operating guideline that has
the shape of an oWFN rather than an automaton. While the partner S can be
transformed to an oWFN using existing approaches called region theory [I§],
we have no concept of transforming the annotations of the states of S into
corresponding annotations of the resulting oWFN. That is why our concept of
operating guidelines is presented on the level of service automata.

6 Implementation

All concepts used in this article have been defined constructively. For an actual
implementation, it is, however, useful to add some ideas that increase efficiency.
First, it is easy to see that, for constructing S, it is not necessary to start
with the whole Sy. For the matching, only states that are reachable from the
initial state need to be considered. Furthermore, annotations can be generated
as soon as a state is calculated. They can be evaluated as soon as the immediate
successors have been encountered. If the annotation evaluates to false, further
exploration can be stopped [19]. In consequence, the process of generating Sy
can be interleaved with the process of removing states that finally leads to S.
This way, memory consumption can be kept within reasonable bounds.

The number of situations in a state ¢ of S can be reduced using, for instance,
partial order reduction techniques. In ongoing research, we explore that possi-
bility. We are further exploring opportunities for a compact representation of
an operating guideline. For this purpose, we already developed a binary decision
diagram (BDD, [20]) representation of an operating guideline for acyclic services
that can be efficiently used for matching [21]. Most likely, these concepts can be
adapted to arbitrary finite-state services.

We prototypically implemented our approach within the tool Fiona [I0].
Among other features, Fiona can read an open workflow net and generate the
operating guideline. The following example Petri nets stem from example WS-
BPEL specifications of services. The WS-BPEL processes have been translated
automatically into oWFN, based on the Petri net semantics for WS-BPEL [9]
and the tool BPEL20WFN [I0].

The “Purchase Order” and “Loan Approval” processes are realistic services
taken from the WS-BPEL specification [§]. “Olive Oil Ordering” [22], “Help
Desk Service Request” (from the Oracle BPEL Process Manager) and “Travel
Service” [§] are other web services that use WS-BPEL features like fault and
event handling. The “Database Service” shows that it may be necessary to cal-
culate a number of situations which is a multiple of the number of states of the
considered service automaton. “Identity Card Issue” and “Registration Office”
are models of administrative workflows provided by Gedilan, a German consult-
ing company. Finally, we modeled parts of the Simple Mail Transfer Protocol
(SMTP) [23]. Since it is a communication protocol, it yields the biggest operating
guideline.
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Table 1. Experimental results running Fiona. All experiments were taken on a Intel
Pentium M processor with 1.6 GHz and 1 GB RAM running Windows XP.

open workflow net inner operating guideline time
service Prov places input output trans. states situations states edges (sec)
Purchase Order 38 4 6 23 90 464 168 548 0
Loan Approval 48 3 3 35 50 199 7 8 0
Olive Oil Ordering 21 3 3 15 15 5101 14 20 0
Help Desk Service 33 4 4 28 25 7765 8 10 2
Travel Service 517 6 7 534 1879 5696 320 1120 7
Database Service 871 2 5 851 5232 337040 54 147 7583
Identity Card Issue 149 2 9 114 111842 707396 280 1028 216
Registration Office 187 3 3 148 7265 9049 7 8 0
SMTP 206 8 4 215 7111 304284 362 1161 200

Table [l provides the size of the open workflow net and the number of states
of the corresponding service automaton (i.e., the inner of the oWFN), the size
(number of situations, states, and edges) of the calculated operating guideline,
and the time for its calculation from the given Petri net.

The examples show that operating guidelines for realistic services have rea-
sonable size. Considering the still unexplored capabilities of reduction techniques
and symbolic representations, we may conclude that the operating guideline ap-
proach is in fact feasible for tasks like service discovery (where it needs to be
complemented with mechanisms for matching semantic issues).

7 Conclusion

With the concept of an operating guideline for a service Prov, we proposed
an artifact that can be directly executed. The operating guideline is expressed
in terms of the interface of Prov, and gives complete information about cor-
rect communication with Prov. It can be manipulated in accordance with the
annotations. This way, other partners can be crafted which, by construction,
communicate correctly with Prov, too. These partners can be translated into
other formalisms, most notably, oWFN.

Deciding correct interaction using an operating guideline amounts to checking
the simulation relation between the partner service and the operating guideline
and evaluating the annotations. It has about the same complexity as model
checking deadlock freedom in the composed system itself. Due to its complete-
ness, and due to its explicit operational structure, it can be a valuable tool in
service-oriented architectures.

Experimental results have shown that the calculation of an operating guideline
is feasible in practical applications.

In future work, we want to adapt the operation guideline concept to infinite-
state services. However, we have strong evidence that, given an infinite-state
service, the problem to construct a deadlock-freely interacting partner service
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is undecidable in this scenario. Besides, we want to study whether it is possible
to construct operating guidelines for services without k-limited communication
partners. Finally, we also want to characterize livelock-free interactions. As first
examples show, it is not trivial to cover livelock-freedom by Boolean annotations.
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Abstract. In this paper we develop a theory for the region-based synthesis of
system models given as place/transition-nets with weighted inhibitor arcs (pti-
nets) from sets of scenarios describing the non-sequential behaviour. Scenarios
are modelled through labelled stratified order structures (LSOs) considering “ear-
lier than” and “'not later than” relations between events in such a way that
concurrency is truly represented.

The presented approach generalizes the theory of regions we developed in
[10] for the synthesis of place/transition-nets from sets of labelled partial orders
(LPOs) (which only model an “earlier than” relation between events). Thereupon
concrete synthesis algorithms can be developed.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has been a successful line of re-
search since the 1990ies. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [3], in control of
manufacturing systems [I5] and recently also in workflow design [13114].

The synthesis problem is the problem to construct, for a given behavioural speci-
fication, a Petri net of a considered Petri net class such that the behaviour of this net
coincides with the specified behaviour (if such a net exists). There exist theories for
the synthesis of place/transition-nets (p/t-nets) from behavioural models describing se-
quential semantics [1]], step semantics [[1]] and partial order semantics [10]. There are
also sequential, respectively step semantics, based approaches for the synthesis of ele-
mentary nets [4/5]] and extensions to elementary nets with inhibitor arcs [2ITTI12]].

In this paper we generalize the synthesis theory for partial order semantics from [10]]
to p/t-nets with weighted inhibitor arcs (pti-nets). In [10] the behavioural specification
is given by a set of labelled partial orders (LPOs) — a so called partial language — in-
terpreted as a scenario-based description of the non-sequential behaviour of p/t-nets.
The aim in [[10] is the characterization and synthesis of a p/t-net whose behaviour co-
incides with a given partial language. That means, the LPOs of the partial language
should exactly be the partially ordered executions of the searched p/t-net. Note hereby
that partial languages regard the most general concurrency relationships between events
(in contrast to sequential semantics considering no concurrency relations and step se-
mantics considering only restricted transitive concurrency relations).

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 342-361] 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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The synthesis of the p/t-net is based on the notion of regions: The p/t-net synthesized
from a partial language inherits its transitions from the event labels of the LPOs which
in turn describe the respective occurring actions. Through places causal dependencies
between transitions are added restricting the set of executions. The idea is to add all
places which do not restrict the set of executions too much in the sense that they do
not prohibit the executability of any LPO specified in the partial language. These places
are called feasible (w.r.t. the given partial language). Adding all feasible places yields
a p/t-net — the so called saturated feasible p/t-net — which has a minimal set of partially
ordered executions including the specified partial language (among all p/t-nets). Con-
sequently the saturated feasible p/t-net solves the synthesis problem or there exits no
solution of the problem. The general approach of a theory of regions is to determine
feasible places by so called regions of the behavioural model[] As the main result in
[10] we proposed a notion of regions for partial languages and showed that the set of
regions exactly defines the set of feasible places. In this paper we lift this approach to
the level of pti-nets. That means we generalize the notion of regions to a scenario-based
behavioural model of pti-nets and show that these regions exactly define feasible places.

In the following we introduce the scenario-based behavioural model of pti-nets con-
sidered in this paper. We will examine the so called a-priori semantics of pti-nets [§]]
in which synchronicity of events is explicitly regaxdedﬁ Thus, as the model of non-
sequential behaviour we consider a generalization of LPOs — so called labelled strati-
fied order structures (labelled so-structures or LSOs) E That means, given a pti-net,
scenarios are specified by LSOs with transition names as event labels, and a specified
scenario may be or may not be an execution of the net.

In an LPO ordered events are interpreted as causally dependent in the sense of an
“earlier than” relation. Unordered events are considered as causally independent respec-
tively concurrent. That means two events are concurrent, if they can occur in arbitrary
order as well as synchronously. Thus, synchronicity cannot be distinguished from con-
currency in the case of LPOs. A situation (1.) in which two events a and b can only
occur synchronously or (2.) can occur synchronously and in the order a — b, but not in
the order b — a, cannot be modelled with LPOs (obviously in both situations (1.) and
(2.) the events are not concurrent, but synchronous occurrence is possible). For these
situations LSOs include a ”not later than” relation between events: a “not later than” b
exactly describes (2.) and a symmetric “not later than” relation between events (a ~’not
later than” b and b “not later than” a) models (1.). Thus, an LSO is based on an LPO
(the “earlier than” relation is depicted with solid arcs in illustrations), to which a "not
later than” relation (dashed arcs) between events is consistently added.

In [6] it was explained in detail that the “earlier than” relation of LPOs is not enough
to describe executions of some Petri net classes such as inhibitor nets under the a-priori
semantics and that LSOs form the adequate behavioural model for these net classes. In
Figure[Tl this phenomenon is illustrated: A pti-net and four LSOs describing executions

! For sequential or step semantics this theory lead to polynomial synthesis algorithms [T].

% There are also alternative semantics of inhibitor nets. The a-posteriori semantics (which is less
general than the a-priori semantics from a causal point of view) is discussed in the conclusion.

3 Note that just like LPOs in the case of p/t-nets, LSOs can model arbitrary dependency relations
between transition occurrences of pti-nets, i.e. concurrency can be truly represented.
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Fig. 1. A pti-net together with some executions

of the net are depicted. The pti-net has the only inhibitor arc (p, ¢) with inhibitor weight
two. This arc restricts the behaviour of the net in such a way that the transition c is only
enabled if additionally to the usual enabledness conditions of p/t-nets the place p con-
tains at most two tokens. That means, through weighted inhibitor arcs it is tested if the
number of tokens in a place does not exceed the inhibitor weight (as an enabledness con-
dition). In the a-priori semantics the respective testing precedes the actual occurrence
of the transition. That means the first LSO (from left) can be interpreted as an execution
of the pti-net in the following sense: In the initial marking c and two instances of a are
concurrently enabled (accordingly there exist no arcs modelling a causal dependency
between the respective nodes), because the double occurrence of a produces (at most)
two tokens in p. Therefore the occurrence of ¢ is not prohibited (because the inhibitor
¢ (p, ¢) has the weight two). Moreover, after any occurrence of a the transition b is
once enabled leading to the two solid earlier than” arcs between each a and b. The two
events labelled by b are concurrent. It is now important that after the double occurrence
of a and one occurrence of b the place p contains three tokens. Thereby c is disabled
by the inhibitor arc (p, ¢), i.e. b and ¢ cannot occur in the order b — ¢ (and therefore b
and c are also not concurrent). However, the two transitions can occur synchronously,
because in this situation the testing procedure (through the inhibitor arc (p, ¢)) precedes
the occurrence procedure according to the a-priori rule. Thus, it precedes the enhance-
ment of the number of tokens in p from two to three tokens through b. Furthermore,
the occurrence in order ¢ — b is obviously possible. Altogether, this behaviour of the
b-labelled events and c can be described as follows: ¢ cannot occur later than b or ab-
breviated ¢ "not later than” b leading to dashed arcs between ¢ and b in each case. Thus,
an execution of a pti-net is an LSO, whose events are labelled with transition names,
such that all transitions can occur in the given ordering and concurrency relations.
Technically executions will be defined as enabled LSOs. We propose a definition of
enabledness for LSOs generalizing consistently the notion of enabled LPOs. Then every
pti-net has assigned a set of executions (enabled LSOs). These describe the complete
non-sequential behaviour of the pti-net, i.e. all possible causality and concurrency re-
lationships between transition occurrences. Analogously to the notion of a partial lan-
guage as a set of (non-isomorphic) LPOs we denote a set of (non-isomorphic) LSOs
as a stratified language. Therefore, the non-sequential behaviour of a pti-net repre-
sented through the set of all executions of the net is a stratified language. The respective
(scenario-based) synthesis problem can be formulated as follows:

Given: A stratified language £ over a finite set of labels.
Searched: A pti-net whose set of executions coincides with the given language L, if
such a net exists.
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As mentioned, for the less general problem with a partial language as the given be-
havioural model and a p/t-net as the searched system model the problem was solved in
[10] applying the so called theory of regions. A region of a partial language defines a
place by determining the initial marking of that place and the weights on each flow arc
leading to and coming from a transition. A region of a stratified language additionally
has to determine the weights of each inhibitor arc leading to a transition. It turns out
that the notion of regions of stratified languages can be based on the notion of regions
of partial languages. More precisely, omitting the “’not later than” relation of all LSOs
of a stratified language yields a set of LPOs forming the partial language underlying
the given stratified language. To define regions of stratified languages we start with re-
gions of the underlying partial language ignoring inhibitor arcs and complement these
by “’possible inhibitor arcs” as they are called in [2]. In this aspect the approach is sim-
ilar as in (where the authors started with classical regions of (step) transition
systems and complemented these by “’possible inhibitor arcs”). Roughly speaking, we
add a "possible inhibitor arc” if in each possible intermediate marking state when exe-
cuting a specified LSO subsequent events are not prohibited by this inhibitor arc. The
identification of such inhibitor arcs is more complicated than for elementary nets and
(step) transition systems (considered in [2IT1/12]). On the one hand we have to regard
weighted inhibitor arcs. On the other hand the marking states critical for the inhibitor
tests are not directly modelled in LSOs (in contrast to transition systems). Having solved
this problem, as the main theorem of this paper we show that the regions of a stratified
language exactly define all feasible pti-net places (w.r.t. this stratified language). Thus,
the regions of a stratified language define the saturated feasible pti-net. This net has a
minimal set of executions including the given stratified language (among all pti-nets)
and therefore solves the synthesis problem or is the best approximation if no solution
exists. This solves the synthesis problem satisfactory from the theoretical point of view
(for the considered setting). Practical algorithmic considerations are a topic of further
research (see also the conclusion for a brief discussion).

The paper is structured as follows: First the basic notions of pti-nets and enabled
LSOs are introduced (section ). Then in section [3] the general fundamentals of the
region based synthesis are developed and in sectiondlthe theory of regions is concretely
evolved for the formulated synthesis problem.

2 Pti-nets

In this section we recall the basic definitions of pti-nets and introduce enabled stratified
order structures as executions of pti-nets (leading to a formal model of scenario-based
non-sequential semantics of pti-nets).

By N we denote the non-negative integers and by N* the non-negative integers ex-
cluding 0. We additionally denote w an infinite integer, i.e. n < w for n € N. Given
a finite set A, the identity relation on A is denoted by id 4 and the set of all multi-sets
over A is denoted by N4 (for m € N4 we write a € m if m(a) > 0).

A netis atriple (P, T, F'), where P is a set of places, T is a finite set of transitions,
satisfying PNT = (,and F C (PUT) x (T'U P) is a flow relation. Let (P, T, F) be
anetand x € PUT be an element. The preset ez is the set {y € PUT | (y,z) € F},
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and the post-set ze is the set {y € PUT | (x,y) € F}. Givenaset X C P U T, this
notation is extended by e X = J,_y ez and Xe = J . we.

A place/transition net (shortly p/t-ner) is a quadruple (P, T, F, W), where (P, T, F)
isanetand W : F — NT is a weight function. We extend the weight function W to
pairs of net elements (z,y) € (P x T)U (T x P) with (z,y) € F by W(z,y) =0.

Definition 1 (Pti-net). A pti-net N is a five-tuple (P, T, F, W, I), where (P,T,F,W)
isap/t-netand I : P x T — NU {w} is the weighted inhibitor relation. If I (p,t) # w,
then (p,t) € P x T is called (weighted) inhibitor arc and p is an inhibitor place of t.

A marking of a pti-net N = (P, T, F,W, ) is a function m : P — N (a multi-set over
P) assigning a number of tokens to each place. A transition ¢ can only be executed if (in
addition to the well-known p/t-net occurrence rule) each p € P contains at most I (p, t)
tokens. In particular, if I(p, t) = 0 then p must be empty. I (p,t) = w means that ¢ can
never be prevented from occurring by the presence of tokens in p. In diagrams, inhibitor
arcs have small circles as arrowheads. Just as normal arcs, inhibitor arcs are annotated
with their weights. Now however, the weight 0 is not shown. A marked pti-net is a pair
(N, my), where N is a pti-net and my is a marking of N called initial marking. Figure
[T shows a marked pti-net.

According to the a-priori semantics of pti-nets, the inhibitor test for enabledness of
a transition precedes the consumption and production of tokens in places. A multi-set
(a step) of transitions is (synchronously) enabled in a marking if in this marking each
transition in the step obeys the inhibitor constraints before the step is executed.

Definition 2 (Occurrence rule, a-priori semantics). Ler N = (P,T, F,W,I) be a
pti-net. A multi-set of transitions T (a step) is (synchronously) enabled to occur in a
marking m (w.r.t. the a-priori semantics) if m(p) > >, 7(t)W(p,t) and m(p) <
I(p,t) for each transition t € T (for every place p € P).

The occurrence of a step (of transitions) 7 leads to the new marking m’ defined by
m/(p) =m(p)—>,c, T(t)(W(p,t) =W (t, p)) (forevery p € P). We write m —— m’
to denote that 7 is enabled to occur in m and that its occurrence leads to m/. A finite
sequence of steps 0 = 71 ...7,, n € Nis called a step occurrence sequence enabled
in a marking m and leading to m,,, denoted by m -2 m,, if there exists a sequence
of markings myq, ..., m, such that m om0 o, A step occurrence
sequence can be understood as a possible single observation of the behaviour of a pti-
net, where the occurrences of transitions in one step are observed at the same time or
synchronously. We use the notions for (marked) pti-nets also for (marked) p/t-nets (a
p/t-net can be understood as a pti-net with an inhibitor relation which equals w).

We now introduce stratified order structures (so-structures) to model executions of
pti-nets as sketched in the introduction. We start with some basic notions preparative to
the definition of so-structures. A directed graph is a pair (V, —), where V' is a finite set
of nodes and —C V x V is a binary relation over V called the set of arcs. As usual,
given a binary relation —, we write a — b to denote (a,b) €—. Twonodes a,b € V are
called independent w.r.t. the binary relation — if a 4 band b 4 a. We denote the set of
all pairs of nodes independent w.r.t. — by co_, C V' x V. A partial order is a directed
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graph po = (V, <), where < is an irreflexive and transitive binary relation on V. If
co « = idy then (V, <) is called rotal. Given two partial orders po; = (V, <) and
po, = (V, <3), we say that po, is a sequentialization (or extension) of po if <;C<s.

So-structures are, loosely speaking, combinations of two binary relations on a set of
nodes (interpreted as events), where one is a partial order representing an “earlier than”
relation and the other represents a “’not later than” relation. Thus so-structures describe
finer causalities than partial orders. Formally, so-structures are relational-structures
(rel-structures) satisfying certain properties. A rel-structure is a triple S = (V, <, C),
where V is a finite set (of events),and < C V x V and — C V x V are binary relations
on V. A rel-structure &’ = (V, </, ') is said to be an extension (or sequentialization)
of another rel-structure S = (V, <, C), written S C &', if <C<"and CC".

Definition 3 (Stratified order structure [6]). A rel-structure S = (V, <, C) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u,v,w e V:

(CHu i/ u. CHuCvCwAu#w=— ul w.
(CAQu<v=uCv. (CHhuCv<wVu<vLCw=— u—<w.

In figures < is graphically expressed by solid arcs and [ by dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] that (V, <) is a partial
order. Therefore so-structures are a generalization of partial orders which turned out
to be adequate to model the causal relations between events of pti-nets under the a-
priori semantics. In this context < represents the ordinary “earlier than” relation (as for
p/t-nets) while C models a "not later than” relation (see Figure[Tlfor an example).

For our purposes we have to consider labelled so-structures (LSOs) where the nodes
of an so-structure represent transition occurrences of a pti-net (nodes are labelled by
transition names as in Figure [I). Formally these are so-structures S = (V, <,C) to-
gether with a set of labels T and a labelling function ] : V' — T'. The labelling function
[ is lifted to a subset Y of V in the following way: [(Y") is the multi-set over T" given
by [(Y)(t) = [I71(t) N Y| for every t € T. We will use the notations for so-structures
also for LSOs as well as for LPOs (since an LPO can be understood as an LSO with
<=C). We will consider LSOs only up to isomorphism. Two LSOs (V, <, ,[) and
(V. </, /') are called isomorphic, if there is a bijective mapping ¢ : V' — V' such
that [(v) = I'(¢(v)) forv e Vv < w < ¢(v) < Y(w) andv C w < ¢P(v) T’ P(w)
for v, w € V. By [S] we will denote the set of all LSOs isomorphic to S. The LSO S is
said to represent the isomorphism class [S].

As explained, for the modelling of system behaviour the two relations of an LSO
are interpreted as “earlier than” resp. "not later than” relation between transition occur-
rences. If two transition occurrences are in “not later than” relation, that means they
can be observed (are allowed to be executed) synchronously or sequentially in one spe-
cific order. If two transitions are neither in “earlier than” relation nor in “’not later than”
relation, they are concurrent and can be observed (are allowed to be executed) syn-
chronously or sequentially in any order. In this sense one LSO “allows” many observa-
tions (step sequences). If all these observations are enabled step occurrence sequences,
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this LSO is called enabled. Formally the observations “allowed” by an LSO are defined
through so called total linear extensions of the LSO:

Definition 4 (Total linear so-structures). Let S = (V, <, ) be an so-structure, then
S is called total linear if co x = (C \ <) Uidy. The set of all total linear extensions
(or linearizations) of an so-structure S is denoted by lin(S).

Total linear so-structures are maximally sequentialized in the sense that no further <-
or - relations can be added maintaining the requirements of so-structures according to
Definition[3](adding a <- or C- relation leads to causal relations of the formu C v < u).
Therefore the linearizations lin(S) of an so-structure S are its maximal extensions.

With this definition the set of step sequences (observations) “allowed” by an LSO
is defined as the set of step sequences extending the LSO (that means emerging from
adding causality to the LSO). A step sequence can be easily interpreted as a total linear
LSO: Each step corresponds to a set of events labelled by transitions (transition occur-
rences) which are in ”not later than” relation with each other representing synchronous
transition occurrences. Transition occurrences in different steps are ordered in appro-
priate “earlier than” relation. Formally, for a sequence of transition steps 0 = 77 ... 7,
define the total linear LSO S, = (V, <,C,1) underlying o by: V. = |J;_, V; and
1:V = Twith [(V;)(t) = (L), <= UKj Vix Vyand C= ((J; Vi x V;))U <) \ idy.
(S, is total linear because co 5 = U:-L:I Vi x V;). Altogether a step sequence o is
”allowed” by an LSO S if S, € lin(S). For example the step sequences respectively
observations “allowed” by the third LSO in Figure [Tl can be characterized as follows:
To each of the step sequences cabb, (¢ 4+ a)bb, acbb and a(b + ¢)b an a has to be added
either to one of the steps or representing a one-element step ordered in any position of
the sequence. Any such possibility has to be regarded leading to 29 different "allowed”
step sequences, e.g. including cabab, (¢ + 2a)bb, 2acbb or a(b + ¢)(a + b).

Note that for each total linear LSO S = (V, <, [, [) there is a step sequence ¢ such
that S and S,; are isomorphic. That means total linear LSOs can be interpreted as step
sequences and the “allowed” observations of an LSO & in this sense are exactly the step
sequences given by lin(S).

Now we define enabled LSOs w.r.t. a marked pti-net as LSOs whose “allowed” ob-
servations are also “allowed” in the marked pti-net. More technically this means that
any step sequence extending the LSO is enabled in the marked pti-net. Such an enabled
LSO is called an execution of the marked pti-net.

Definition 5 (Enabled LSO). Let (N, mg), N = (P, T, F, W, I), be a marked pti-net.
An LSO S = (V,<,C,l) withl : V — T is called enabled (to occur) w.r.t. (N, mg)
(in the a-priori semantics) if the following statement holds: Each finite step sequence
0 =T1...Tp With Sy € lin(S) is an enabled step occurrence sequence of (N, my).

In other words an LSO is enabled if and only if it is consistent with the step semantics.
This reflects the general idea for the modelling of non-sequential system behaviour that
scenarios which are consistent with the non-sequential occurrence rule represent exe-
cutionsH The presented definition is a proper generalization of the notion of enabled

* Another possibility for the definition of enabled LSOs is to consider sequences of concurrent
steps of synchronous steps instead of sequences of synchronous steps. But both notions are
equivalent, as discussed in [[7].
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LPOs: An LPO lpo = (V, <,l) with [ : V' — T is enabled to occur in a marking m
of a marked p/t-net (P, T, F, W, mg) if each step sequence which extends (sequential-
izes) lpo is a step occurrence sequence enabled in m. Since in LPOs concurrent and
synchronous transition occurrences are not distinguished, here a step is considered as a
set of events labelled by transitions (transition occurrences) which are concurrent.

Now it is possible to formally check that the LSOs from Figure[Ilare indeed enabled
LSOs w.r.t. the shown pti-net. For example in the case of the third LSO one would have
to verify that the 29 step sequences “allowed” by this LSO (these are characterized
above) are enabled step sequences of the marked pti-net.

Having defined single executions of marked pti-nets the behavioural model in our
setting is defined as follows:

Definition 6 (Stratified language). Let T be a finite set. A subset L C {[S] | S is an
LSO with set of labels T} is called stratified language over T (in the special case of
LPOs it is called partial language). The stratified language of executions L(N, my) of
a marked pti-net (N, my) is defined as the stratified language consisting of all (isomor-
phism classes of) executions of (N, my).

In the following we only consider stratified languages over sets 7" such thatevery t € T’
occurs as a label of some node of the stratified language (without explicitly mentioning
this). Moreover, since we regard LSOs only up to isomorphism, we assume for the rest
of the paper that a stratified language £ over a finite set of labels is given by a set L of
LSOs representing £ in the sense that [S] € £ <= 3§’ € L : [S] = [§']. Note that
the stratified language of executions of a marked pti-net (N, my) is sequentialization
closed. That means given an execution S € L(N,mg) of (N,mg), any sequentializa-
tion of S is also an execution of (N, my). This is a simple observation using Definition
since sequentializations have a smaller set of linearizations. Moreover, as in the LPO-
case, the stratified language of executions of (NN, my) is prefix closed, where prefixes
of so-structures are defined as subsets of nodes which are downward closed w.r.t. the
C-relation:

Definition 7 (Prefix). Ler S = (V, <, C) be an so-structure and let V' C V be such
thatv' e V', uC v = uw e V' . ThenS = (V', < |v:xv,C |v/xv) is called prefix
of 8. We say that the prefix S’ is defined by V. If additionally (u < v = u € V') for
somev € V\ V', then §' is called prefix of v (w.r.t. S).

3 The Synthesis Problem

The behaviour of a pti-net is described by its stratified language of executions. There-
fore, for a stratified language L the question whether it represents the non-sequential
behaviour of a marked pti-net can be formulated. The answer to this question together
with a concrete characterization of such a net in the positive case are the central issues
of this paper. Technically this synthesis problem can be fixed as follows:

Given: A stratified language L over a finite set of labels.
Searched: A marked pti-net (N, mg) with L(N,mg) = L if such (IV, my) exists.
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In the following we outline the synthesis principles of the so called theory of regions.
The concrete regions-based synthesis approach for the synthesis problem of pti-nets
from stratified languages is developed in the next section.

The transition set 7' of the searched marked pti-net (N, mg) is obviously given
through the finite set of labels of the stratified language L (equally labelled nodes
of LSOs in L represent occurrences of the same transition). Considering the pti-net
N = (0, 7,0,0,0) with this transition set and an empty set of places, obviously any
LSO in L is an execution of (N, (). This is clear because in N there are no causal
dependencies between the transitions. Therefore, every LSO with labels in 7" is en-
abled. On the other hand, there are also a lot of executions of (NN, ) not specified in
L,ie. L(N,D) 2 L. Since we are interested in L(NN, mg) = L, we have to restrict the
behaviour of (IN,mg) by introducing causal dependencies between transition occur-
rences. Such dependencies between transitions can (only) be realized by adding places
to (N, mg). Any place (with an initial marking) prohibits a certain set of LSOs from
being enabled. The central idea is to add all places to (N, my ) that do not prohibit LSOs
specified in L from being enabled. These places are called feasible places and lead to
the so called saturated feasible pti-net (N, mg). For this net of course L(N,mg) still
includes L, i.e. the specified LSOs in L are enabled w.r.t. (N, mq) constructed in this
way, while it is still not clear if L(N, mg) = L. But now the marked pti-net (IV, my) has
minimal (w.r.t. set inclusion) non-sequential behaviour L(N, mg) including L, since all
places not prohibiting L are regarded. That means that (N, my) is the appropriate can-
didate for the solution of the synthesis problem. If (IV, m) does not solve the problem
there exists no net solving the problem. This is ensured by construction because any
other net solving the synthesis problem in this case would contradict the minimality
property of (N, mg) (since it would have a smaller set of executions including L).

The construction of the saturated feasible pti-net involves the introduction of places.
Any place consists of an initial marking, a flow and an inhibitor relation to each transi-
tion and a flow relation from each transition. Consequently any place p can be defined
by the value of its initial marking mq(p) together with the flow and inhibitor weights
W (p,t), W (t,p) and I(p,t) for any transition ¢ € T as depicted on the left of Figure2l
(a flow weight of 0 respectively an inhibitor weight of w means that no such arc exists,
compare section2). Any place p restricts the behaviour of a marked pti-net by prohibit-
ing a certain set of LSOs from being enabled. This set of LSOs prohibited by p does
only depend on this place p. That means it does not matter if we consider the one-place
net having p as its only place or a marked pti-net with a lot of places including p. More
precisely, an LSO is enabled w.r.t. a marked pti-net (N, mg), N = (P, T, F,W,I), if
and only if it is enabled w.r.t. every respective one-place net (for every p € P). Regard-
ing a given stratified language L the behavioural restriction of such a place p can be
feasible or non-feasible, i.e. too restrictive, in the following sense (F', W, I and m are
determined by the definition of p — an example of a feasible and a non-feasible place is
illustrated in Figure [2):

— Non-feasible places p w.r.t. L: There exists an LSO § € L, which is not enabled
w.r.t. the one-place pti-net (N, mg), N = ({p}, T, F,W,I),i.e. L £ L(N,my).

— Feasible places p w.r.t. L: Every LSO § € L is enabled w.r.t. the one-place pti-net
(N,mg), N = {p},T,F,W,I),ie. L C L(N,my).
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(i) possible place (ii) feasible place (i) not feasible place

Fig. 2. (i) The general structure of a place. (ii) A feasible place w.r.t. the stratified language from
Figure [T (it coincides with the place p in Figure[T)). (iii) A non-feasible place w.r.t. the stratified
language from Figure [[l The inhibitor arc to the transition ¢ (in contrast to (ii) with inhibitor
weight 1 instead of 2) is causally too restrictive. To verify this recall the considerations in the
context of Figure[]in the Introduction.

Every net solving (positively) the synthesis problem necessarily does not contain a
non-feasible place. Therefore the crucial idea is to consider the marked pti-net (N, my),
N = (P, T,F,W,I), containing exactly all feasible places w.r.t. L. Considering the
above explanations this so called saturated feasible pti-net (N, mg) guarantees that any
LSO S € L is enabled w.r.t. (N, myg) (called property (A) of the saturated feasible pti-
net in the following). Moreover, the saturated feasible pti-net (I, m() can have more
executions than specified by L, but there is no marked pti-net with a smaller set of
executions including L (called property (B) of the saturated feasible pti-net in the fol-
lowing). This is true because any other net (N', my(,) whose set of executions L(N', m()
includes L mandatory has less places than (N, mg) since it may only contain feasible
places (it holds L(N’,m{) 2 L(N,my) if (N, m{) has less places than (N, my)).

Definition 8 (Saturated feasible pti-net). Let L be a stratified language over the set
of labels T, then the marked pti-net (N, mg), N = (P, T, F,W,I), such that P is the
set of all places feasible w.r.t. L is called saturated feasible pti-net (w.r.t. L).

The saturated feasible pti-net (N, mg) w.r.t. L in general has infinitely many (feasible)
places. It fulfills (A) L C L(N,myg) and (B) L(N,mg) C L(N', my) for each marked
pti-net (N',m(), N' = (P, T, F', W', I'), fulfilling L C L(N’, m{) (thus fulfilling
(A)). For the solution of the synthesis problem it is enough to consider only the satu-
rated feasible pti-net, because either this net solves the synthesis problem or there is no
solution for the problem:

Theorem 1. Ler L be a stratified language and (N, mq), N = (P, T, F,W,I), be the
saturated feasible pti-net w.r.t. L, then L(N,mqo) # L implies L(N', m{) # L for
every marked pti-net (N',my,), N' = (P, T,F', W', T").

Property (B) even tells us more than this theorem: In the case L(N, mg) # L, L(N,my)
is the best upper approximation to L. That means the saturated feasible pti-net is the best
approximation to a system model with non-sequential behaviour given by L among all
marked pti-nets allowing the behaviour specified by L.

Altogether, in order to solve the synthesis problem in our setting, we want to cal-
culate the saturated feasible pti-net. Therefore we are interested in a characterization
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of feasible places based on L that leads to an effective calculation method for feasible
places. In the p/t-net case such a characterization was developed for behavioural mod-
els w.r.t. sequential semantics and step semantics with the notion of regions of the
behavioural model. These approaches were generalized in to partial languages. In
the latter case it was shown that every region of a partial language L defines a place
such that

(1) Each place defined by a region of L is feasible w.r.t. L.
(2) Each place feasible w.r.t. L can be defined by a region of L.

In we used a slightly different terminology as in this paper. In particular, we
did not use the notion of feasible places there but their characterization by the so called
token flow property. To prove the mentioned results we assumed that the set L of LPOs
representing the given partial language satisfies certain technical requirements. More
precisely, L was assumed to be prefix and sequentialization closed, since such par-
tial languages are the only candidates as models of the non-sequential b