

Lecture Notes in Computer Science 4546
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jetty Kleijn Alex Yakovlev (Eds.)

Petri Nets
and Other Models
of Concurrency –
ICATPN 2007

28th International Conference on Applications and Theory
of Petri Nets and Other Models of Concurrency, ICATPN 2007
Siedlce, Poland, June 25-29, 2007
Proceedings

13

Volume Editors

Jetty Kleijn
Leiden University
Leiden Institute of Advanced Computer Science (LIACS)
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: kleijn@liacs.nl

Alex Yakovlev
Newcastle University
School of Electrical, Electronic and Computer Engineering
Newcastle upon Tyne, NE1 7RU, UK
E-mail: Alex.Yakovlev@ncl.ac.uk

Library of Congress Control Number: 2007928856

CR Subject Classification (1998): F.1-3, C.1-2, G.2.2, D.2, D.4, J.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73093-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73093-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12077830 06/3180 5 4 3 2 1 0

Preface

This volume consists of the proceedings of the 28th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency
(ICATPN 2007). The Petri Net conferences serve as annual meeting places
to discuss the progress in the field of Petri nets and related models of con-
currency. They provide a forum for researchers to present and discuss both
applications and theoretical developments in this area. Novel tools and sub-
stantial enhancements to existing tools can also be presented. In addition, the
conferences always welcome a range of invited talks that survey related do-
mains, as well as satellite events such as tutorials and workshops. The 2007 con-
ference had five invited speakers, two advanced tutorials, and five workshops.
Detailed information about ICATPN 2007 and the related events can be found
at http://atpn2007.ap.siedlce.pl/.

The ICATPN 2007 conference was organized by the Institute of Computer
Science at the University of Podlasie and the Institute of Computer Science of the
Polish Academy of Sciences. It took place in Siedlce, Poland, during June 25–29,
2007. We would like to express our deep thanks to the Organizing Committee,
chaired by Wojciech Penczek, for the time and effort invested in the conference,
and to Andrzej Barczak, for all his help with local organization. We are also
grateful to the Offices of the Siedlce County Governor and Siedlce City Mayor
for their suppport of the local organization.

This year we received 70 submissions from authors from 29 different coun-
tries. We thank all the authors who submitted papers. Each paper was reviewed
by at least four referees. The Program Committee meeting took place in Lei-
den, The Netherlands, and was attended by 20 Program Committee members.
At the meeting, 25 papers were selected, classified as: theory papers (17 ac-
cepted), application papers (5 accepted), and tool papers (3 accepted). We
wish to thank the Program Committee members and other reviewers for their
careful and timely evaluation of the submissions before the meeting. Special
thanks are due to Martin Karusseit, University of Dortmund, for his friendly
attitude and technical support with the Online Conference Service. Finally, we
wish to express our gratitude to the five invited speakers, Samson Abramsky,
Sadatoshi Kumagai, Antoni Mazurkiewicz, Andrzej Tarlecki, and Karsten Wolf,
for their contribution to this volume. As usual, the Springer LNCS team provided
high-quality support in the preparation of this volume.

April 2007 Jetty Kleijn
Alex Yakovlev

Organization

Steering Committee

Wil van der Aalst, The Netherlands Sadatoshi Kumagai, Japan
Jonathan Billington, Australia Tadao Murata, USA
Jörg Desel, Germany Carl Adam Petri (Honorary Member)
Susanna Donatelli, Italy Lucia Pomello, Italy
Serge Haddad, France Wolfgang Reisig, Germany
Kurt Jensen, Denmark (Chair) Grzegorz Rozenberg, The Netherlands
Jetty Kleijn, The Netherlands Manuel Silva, Spain
Maciej Koutny, UK Alex Yakovlev, UK

Organizing Committee

Wojciech Penczek (Chair) Artur Niewiadomski
Andrzej Barczak Wojciech Nabia�lek
Stefan Skulimowski

Tool Demonstration

Wojciech Nabia�lek (Chair)

Program Committee

Jonathan Billington, Australia Jetty Kleijn,
The Netherlands (Co-chair)

Didier Buchs, Switzerland Lars Kristensen, Denmark
José-Manuel Colom, Spain Johan Lilius, Finland
Raymond Devillers, Belgium Chuang Lin, China
Susanna Donatelli, Italy Robert Lorenz, Germany
Jorge de Figueiredo, Brazil Patrice Moreaux, France
Giuliana Franceschinis, Italy Wojciech Penczek, Poland
Luis Gomes, Portugal Laure Petrucci, France
Boudewijn Haverkort, The Netherlands Michele Pinna, Italy
Xudong He, USA Lucia Pomello, Italy
Kees van Hee, The Netherlands Laura Recalde, Spain
Monika Heiner, Germany Toshimitsu Ushio, Japan
Kunihiko Hiraishi, Japan Rudiger Valk, Germany
Claude Jard, France François Vernadat, France
Gabriel Juhás, Slovak Republic Karsten Wolf, Germany
Peter Kemper, USA Alex Yakovlev, UK (Co-chair)
Victor Khomenko, UK

VIII Organization

Referees

Samy Abbes
Gonzalo Argote
Unai Arronategui
Eric Badouel
João Paulo Barros
Marco Beccuti
Marek A. Bednarczyk
Eric Benoit
Robin Bergenthum
Giuseppe Berio
Luca Bernardinello
Henrik Bohnenkamp
Andrzej Borzyszkowski
Anne Bouillard
Roberto Bruni
Nadia Busi
Lawrence Cabac
Javier Campos
Thomas Chatain
Ang Chen
Gianfranco Ciardo
Robert Clarisó
Lucia Cloth
Philippe Darondeau
Massimiliano De Pierro
Jörg Desel
Zhijiang Dong
Boudewijn van Dongen
Till Dörges
Michael Duvigneau
Dirk Fahland
Jean Fanchon
Carlo Ferigato
João M. Fernandes
Mamoun Filali
Paul Fleischer
Jana Flochova
Yujian Fu
Guy Gallasch
Pierre Ganty
Fernando Garcia-Vallés
Gilles Geeraerts

Attilio Giordana
Daniele Gunetti
Serge Haddad
Keijo Heljanko
Jarle Hulaas
David Hurzeler
Agata Janowska
Pawel Janowski
Jens Jørgensen
Michael Köhler
Kathrin Kaschner
Kii Katsu
Kais Klai
Nicolas Knaak
Maciej Koutny
Marta Koutny
Matthias Kuntz
Juan Pablo López-Grao
Linas Laibinis
Charles Lakos
Kai Lampka
Kristian Lassen
Fedor Lehocki
Nimrod Lilith
Niels Lohmann
Levi Lucio
Ricardo Machado
Kolja Markwardt
Peter Massuthe
Sebastian Mauser
Agathe Merceron
Toshiyuki Miyamoto
Daniel Moldt
Salmi Nabila
Apostolos Niaouris
Artur Niewiadomski
Olivia Oanea
Edward Ochmanski
Atsushi Ohta
Ribeiro Oscar
Chun Ouyang
Wieslaw Paw�lowski

Luis Pedro
Florent Peres
Denis Poitrenaud
Agata Pó�lrola
Heiko Rölke
Sylvain Rampacek
Jean-François Raskin
Ronny Richter
Matteo Risoldi
Nabila Salmi
Mark Schaefer
Carla Seatzu
Alexander Serebrenik
Dalton Serey
Frederic Servais
Natalia Sidorova
Markus Siegle
Christian Stahl
Martin Schwarick
Maciej Szreter
Shigemasa Takai
Satoshi Taoka
Yann Thierry-Mieg
Simon Tjell
Kohkichi Tsuji
Antti Valmari
Lionel Valet
Robert Valette
Laurent Van Begin
Somsak Vanit-Anunchai
Eric Verbeek
Valeria Vittorini
Daniela Weinberg
Lisa Wells
Matthias

Wester-Ebbinghaus
Michael Westergaard
Dianxiang Xu
Shingo Yamaguchi
Satoshi Yamane
Huiqun Yu
Cong Yuan

Table of Contents

Invited Papers

Petri Nets, Discrete Physics, and Distributed Quantum Computation . . . 1
Samson Abramsky

Autonomous Distributed System and Its Realization by Multi Agent
Nets . 3

Sadatoshi Kumagai and Toshiyuki Miyamoto

Petri Nets Without Tokens . 20
Antoni Mazurkiewicz

Toward Specifications for Reconfigurable Component Systems 24
Andrzej Tarlecki

Generating Petri Net State Spaces . 29
Karsten Wolf

Full Papers

Markov Decision Petri Net and Markov Decision Well-Formed Net
Formalisms . 43

M. Beccuti, G. Franceschinis, and S. Haddad

Comparison of the Expressiveness of Arc, Place and Transition Time
Petri Nets . 63

M. Boyer and O.H. Roux

Improving Static Variable Orders Via Invariants . 83
Gianfranco Ciardo, Gerald Lüttgen, and Andy Jinqing Yu

Independence of Net Transformations and Token Firing in
Reconfigurable Place/Transition Systems . 104

Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg,
Ulrike Prange, and Claudia Ermel

From Many Places to Few: Automatic Abstraction Refinement for Petri
Nets . 124

Pierre Ganty, Jean-François Raskin, and Laurent Van Begin

A Compositional Method for the Synthesis of Asynchronous
Communication Mechanisms . 144

Kyller Gorgônio, Jordi Cortadella, and Fei Xia

X Table of Contents

History-Dependent Petri Nets . 164
Kees van Hee, Alexander Serebrenik, Natalia Sidorova, and
Wil van der Aalst

Complete Process Semantics for Inhibitor Nets . 184
Gabriel Juhás, Robert Lorenz, and Sebastian Mauser

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 204
Victor Khomenko

Combining Decomposition and Unfolding for STG Synthesis 223
Victor Khomenko and Mark Schaefer

Object Nets for Mobility . 244
Michael Köhler and Berndt Farwer

Web Service Orchestration with Super-Dual Object Nets 263
Michael Köhler and Heiko Rölke

Synthesis of Elementary Net Systems with Context Arcs and
Localities . 281

Maciej Koutny and Marta Pietkiewicz-Koutny

Nets with Tokens Which Carry Data . 301
Ranko Lazić, Tom Newcomb, Joël Ouaknine, A.W. Roscoe, and
James Worrell

Operating Guidelines for Finite-State Services . 321
Niels Lohmann, Peter Massuthe, and Karsten Wolf

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios . . . 342
Robert Lorenz, Sebastian Mauser, and Robin Bergenthum

Utilizing Fuzzy Petri Net for Choreography Based Semantic Web
Services Discovery . 362

Peng Men, Zhenhua Duan, and Bin Yu

Formal Models for Multicast Traffic in Network on Chip Architectures
with Compositional High-Level Petri Nets . 381

Elisabeth Pelz and Dietmar Tutsch

Name Creation vs. Replication in Petri Net Systems 402
Fernando Rosa-Velardo and David de Frutos-Escrig

Modelling the Datagram Congestion Control Protocol’s Connection
Management and Synchronization Procedures . 423

Somsak Vanit-Anunchai and Jonathan Billington

Table of Contents XI

The ComBack Method – Extending Hash Compaction with
Backtracking . 445

Michael Westergaard, Lars Michael Kristensen,
Gerth Stølting Brodal, and Lars Arge

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 465
Hsu-Chun Yen and Chien-Liang Chen

Tool Papers

ProM 4.0: Comprehensive Support for Real Process Analysis 484
W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther,
R.S. Mans, A.K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song,
H.M.W. Verbeek, and A.J.M.M. Weijters

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN 495
Alexandre Hamez, Fabrice Kordon, Yann Thierry-Mieg, and
Fabrice Legond-Aubry

Workcraft: A Static Data Flow Structure Editing, Visualisation and
Analysis Tool . 505

Ivan Poliakov, Danil Sokolov, and Andrey Mokhov

Author Index . 515

Petri Nets, Discrete Physics, and Distributed

Quantum Computation

Samson Abramsky

Oxford University Computing Laboratory

Abstract. The genius, the success, and the limitation of process calculi
is their linguistic character. This provides an ingenious way of studying
processes, information flow, etc. without quite knowing, independently
of the particular linguistic setting, what any of these notions are. One
could try to say that they are implicitly defined by the calculus. But
then the fact that there are so many calculi, potential and actual, does
not leave us on very firm ground.

An important quality of Petri’s conception of concurrency is that it
does seek to determine fundamental concepts: causality, concurrency,
process, etc. in a syntax-independent fashion. Another important point,
which may originally have seemed merely eccentric, but now looks rather
ahead of its time, is the extent to which Petri’s thinking was explicitly
influenced by physics (see e.g. [7]. As one example, note that K-density
comes from one of Carnap’s axiomatizations of relativity). To a large
extent, and by design, Net Theory can be seen as a kind of discrete
physics: lines are time-like causal flows, cuts are space-like regions, pro-
cess unfoldings of a marked net are like the solution trajectories of
a differential equation.

This acquires new significance today, when the consequences of the
idea that “Information is physical” are being explored in the rapidly de-
veloping field of quantum informatics. (One feature conspicuously lacking
in Petri Net theory is an account of the non-local information flows aris-
ing from entangled states, which play a key role in quantum informatics.
Locality is so plausible to us — and yet, at a fundamental physical level,
apparently so wrong!). Meanwhile, there are now some matching devel-
opments on the physics side, and a greatly increased interest in discrete
models. As one example, the causal sets approach to discrete spacetime
of Sorkin et al. [8] is very close in spirit to event structures.

My own recent work with Bob Coecke on a categorical axiomatics for
Quantum Mechanics [4,5], adequate for modelling and reasoning about
quantum information and computation, is strikingly close in the formal
structures used to my earlier work on Interaction Categories [6] — which
represented an attempt to find a more intrinsic, syntax-free formulation
of concurrency theory; and on Geometry of Interaction [1], which can be
seen as capturing a notion of interactive behaviour, in a mathematically
rather robust form, which can be used to model the dynamics of logical
proof theory and functional computation.

The categorical formulation of Quantum Mechanics admits a striking
(and very useful) diagrammatic presentation, which suggests a link to

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 S. Abramsky

geometry — and indeed there are solid connections with some of the
central ideas relating geometry and physics which have been so prominent
in the mathematics of the past 20 years [3].

References

1. Abramsky, S.: Retracing some paths in process algebra. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t
know! In: Proceedings of the Workshop Essays on Algebraic Process Calculi (APC
25). Electronic Notes in Theoretical Computer Science, vol. 162, pp. 37–41 (2006)

3. Abramsky, S.: Temperley-Lieb algebra: from knot theory to logic and computation
via quantum mechanics. To appear in Mathematics of Quantum Computation and
Quantum Technology. Chen, G., Kauffman, L., Lomonaco, S. (eds.) Taylor and
Francis, pp. 523–566 (2007)

4. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp.
415–425 (2004) arXiv:quant-ph/0402130.

5. Abramsky, S., Coecke, B.: Abstract physical traces. Theory and Applications of
Categories 14, 111–124 (2005)

6. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and foundations of
typed concurrent programming. In: Deductive Program Design: Proceedings of the
1994 Marktoberdorf International Summer School. NATO ASI Series F, pp. 35–113.
Springer, Heidelberg (1995)

7. Petri, C.-A.: State-Transition Structures in Physics and in Computation. Interna-
tional Journal of Theoretical Physics 21(12), 979–993 (1982)

8. Sorkin, R.: First Steps in Causal Sets. Available at http://physics.syr.edu/~
sorkin/some.papers/

http://physics.syr.edu/~sorkin/some.papers/
http://physics.syr.edu/~sorkin/some.papers/

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 3–19, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Autonomous Distributed System and Its Realization by
Multi Agent Nets

Sadatoshi Kumagai and Toshiyuki Miyamoto

Department of Electrical, Electronic and Information Technologies
Osaka University

Suita, Osaka 565-0871, Japan
kumagai@eei.eng.osaka-u.ac.jp

Abstract. Autonomous Distributed Systems (ADS) concept plays a central role
for designing, operating, and maintaining complex systems in these ubiquitously
networked society. Design objectives such as optimality, reliability, and
efficiency are renovated according to this system paradigm. Petri nets and its
related models provide one of the most concrete basis for realizing ADS to cope
with their nondeterministic, concurrent, and asynchronous behavioral features.
On the other hand, autonomous decisions by distributed units based on their own
interests should be coordinated with total system objectives. Multi Agent Nets
are Object-Oriented Colored Petri Nets for implementing autonomous intelligent
units and collaborating actions among distributed units. Here in this paper, the
realization of ADS by Multi Agent Nets are described through several industrial
applications and prototyping that shows paramount versatility of the approach to
hardware-software distributed systems encountered in wide variety of
engineering problems.

1 Introduction

The history of human beings can be seen as a struggle how to organize the society
where individuals tend to enjoy freedom as much as possible. The innovation of
systems for organizing such human society has been rather trial and error and there
could not find any unilateral evolution in the process. It has been observed that the
modern society had based its strength and efficiency on centralized governmental
systems. However, from the beginning of 70’s since the invention of micro processors,
we can realize that all aspects of the society have been changed drastically such as
globalization on one hand and diversity of individuals the other. The characteristics of
post modern industrial society changed accordingly where agility, flexibility, and
robustness are key of core competence. We can say these era as the third industrial
revolution as Alvin Toffler correctly cited in his book, “The Third Wave”, in 1980. The
most significant impact of this innovation, especially on the industrial society, is the
enforcement of individual operating units equipped with sufficient information
acquisition and processing abilities. On the other hand, the organization extends its
scale and complexity without bounds through information and communication

4 S. Kumagai and T. Miyamoto

technologies (ICT) and rigid centralized control of the total system has been more and
more difficult or even obstacle. In Japan, reflecting these tendencies, the intensive
research project, called “Autonomous Distribution”, funded by Ministry of Education
began in late 80’s. The author was one of the participants and took a role in prototyping
the communication architecture and formal analysis of Autonomous Distributed
Systems (ADS). Theoretical results such as structural characterization and reachability
for live and bounded free-choice nets obtained in [1,2] are by-products of this project.
Consecutively to this project, the international research project, called “Intelligent
Manufacturing Systems”, funded by Ministry of Trade and Commerce of Japan, has
begun in 1992. In this project, we advocated Autonomous Distributed Manufacturing
Systems (ADMS). ADMS are composed of variety of autonomous production units and
these units can collaborate with each other through communication links to fulfill
overall system tasks without any centralized control mechanism. The key features of
ADS such as agility, flexibility, and robustness are emphasized in ADMS in addition to
its scalable maintainability to cope with product variations of short life cycle in smaller
quantities. As a modeling framework, we proposed Multi Agent Nets (MAN) which are
implemented among a distributed environment for various applications. MAN is a
nested Colored Petri Nets embedded in a Object-Oriented programming similar to other
0bject-0riented nets such as in [3,4]. Comparison of these modeling approach were
made in [5]. Formal approach for nested Petri nets was originated by Valk and Moldt
[6]. Here in this paper, the key concepts of ADS is summarized in Section 2. In Section
3, main features of MAN is explained. In Section 4, the software environment for MAN
to be executed in distributed computers is described. In Section 5, we introduce several
industrial applications of MAN to show the versatility of the approach to ADS
realization. Section 6 is the conclusion.

2 Autonomous Distributed System Paradigm

ADS is a system composed of distributed autonomous agents (units) where each agent
is provided with at least following six capabilities required in the sequence of decision
and action process.

1. recognition of whole or partial state,
2. intent proposal based on self interest,
3. total evaluation of the expected results of the intention considering the proposals

by other agents,
4. action based on the final decision,
5. timely communication with other agents,
6. learning for improving decision and collaboration strategies.

According to target applications, above functions are specified more precisely, but
the fundamental feature of ADS is an iteration of step (2) and step (3) to reach the final
consensus and decision that leads to the real action taken by individual agent in step (4)
at each time point. Comparing with a centralized system, a drawback of ADS exists in
this iteration process, and the efficiency of ADS depends on how quickly the consensus
can be obtained among the participated agents.

 Autonomous Distributed System and Its Realization by Multi Agent Nets 5

In the evaluation step (3), each agent must take into account the total optimality and
not just an individual interest. In some cases, the decision must be made against own
interest. In this sense, we can call the ability in step (3) as a collaboration capability. In
many applications, one or two iteration is enough to reach the final decision at each
time point because of the simplicity of the negotiation mechanism. In other words, we
only need collaborative agents with the common “world view or value” for the
objectives of the problem. The learning functions in step (6) speed up the decision
process avoiding negotiating iteration steps. Notwithstanding the above drawback,
ADS has the obvious advantages such as (1) Flexibility, (2) Agility, and (3)
Robustness. Flexibility includes the maintainability and scalability both in design and
operation of the system. Frequent changes of the specifications or requirements of the
system do not affect the basic architecture of ADS but only require the modification of
the function, or simply the number of agent. We do not need to redesign the total system
but just need to redesign the function of agent, or just to increase or decrease the
number of agents according to the scale change. Behavior of ADS is inherently
asynchronous and concurrent. Each agent can act based on its own decision, so agility
is a key feature of ADS whereas the time controlling centralized systems cannot realize
such autonomous behavior. Like as the scalability of ADS, plug-in and plug-out of
agents are flexible so that a damage of a part of agents does not necessarily result in the
total system down. The performability is maintained more easily by the remaining
agents’ efforts. It implies the Robustness of ADS whereas the centralized counterpart is
usually quite vulnerable.

3 Multi Agent Nets

A multi agent net model was shown as a description model for ADS’s in [7]. The
objective of the model is to design a system, to simulate on the model, to analyze
properties of the system, e.g., performance or dead-lock freeness, on the model, and to
control the system by the nets. The model can be used from a design phase through the
real time control with application oriented modifications. In ADS’s, each system
module has its own controller to decide own behavior. In the multi agent net model, a
system is realized by a set of agent nets, and each agent net represents one component
of the system. We call the component an agent, and its net representation as an agent
net. Behavior of each agent is represented by the net structure of an agent net. Each
agent net is an extended colored Petri net (CPN). Figure 1 is an example of the multi
agent net. The figure shows a simple communication protocol. A sender sends a
message and a receiver replies an acknowledge. When there are one sender and one
receiver, the system is represented by a multi agent net with three agent nets. The agent
net with CLASS protocol on their left shoulder is the system, and manage the number
of senders and receivers and their interactions.

In the multi agent net, interaction between agents is activated by a communication
among agent nets, i.e., a rendezvous of agent nets. The agent net with CLASS sender
and receiver describe the behavior of sender and receiver, respectively. Agent nets

6 S. Kumagai and T. Miyamoto

|

Fig. 1. A Multi Agent Net

belonging to the same agent class have the same net structure, and an agent net is called
an instance of the agent class. Each instance has its own net and state, and instances are
differentiated by their own ID number.

In a multi agent system, it is undesirable that a change in an agent needs changes in
other agents to keep consistency among agents. In order to avoid the propagation, the
multi agent net should be based on the object-oriented methodology like [3,4]. Thus,
each agent net has two parts: an interface part and an implementation part, and other
agent nets are allowed to access only the interface part [7]. This access restriction
technique is well known as encapsulation. In the interface part, methods and their input
places and output ports are specified on the agent net. Such a place is called an input
port (of the method). The implementation part is a net structure without any methods
and arcs to methods. A method represented by a bold bar is a fictitious node only
expressing an action provided for the requirement of other agent nets. To execute the
action, the agent must get tokens in the input places of the method. In Figure 1, a
method is represented by a black-filled box, and arcs from input places are drown by
dashed arrows. For example, the net “sender” provides a method ack, and the net
“receiver” send an acknowledge message via this method. Note that the
implementation part is encapsulated from outside. That is, designers of other agent nets
can only see that sender provides a method ack and its input place is p4. By using this
encapsulation technique, any side effects of changing agent net structure can be
reduced or neglected. Note that ordering relations with respect to method call should

 Autonomous Distributed System and Its Realization by Multi Agent Nets 7

carefully be examined, since disregards of ordering of method call may cause the
deadlock of the system when an agent net has plural methods. In the multi agent net
model, each agent class has its own color, and it is allowed that an agent net resides in a
place of another agent net as a token [7]. This extension allows us a hierarchical
structures in Petri nets. We call it a recursive structure. In Figure 1, the agent net
“sender” has its color “sender”, and the color specified to place p1 in the agent net
“protocol” is also “sender” specified by C(p1)=sender. That is the token in the place p1
in the net “protocol” is the net “sender”. Actually, the token has a reference to the net.
In this case, the net “protocol” is called an upper-level net, and “sender” is called a
lower-level net. Note that there exists an agent net for each token, where the map need
not be a bijection. Thus we can consider that the net structure of the lower-level net is
one of attributes of the upper-level net, and its marking is the value of the attribute. One
of the advantages of this extension is that treating a net as a token enables us to change
the number of agents easily. That is, by changing the number of tokens in the agent net
“protocol”, we can change the number of senders and receivers arbitrarily. A multi
agent net can provide reuses of design resources by inheritances and aggregations of
classes [7]. When class B inherits class A, class A is called a super-class of class B, and
class B is a sub-class of class A. An inheritance of a class implies the inheritance of its
color, namely we can say that class B is class A. Therefore, when the classes have
colors A and B respectively, a token is specified in a place p1 with C(p1)=A, whether
the token implies a net in class A or class B. The reverse, however, is not true. That is,
when C(p2)=B, a token that implies a net in class B can exist in p2, but a token that
implies a net in class A can not exist. An inheritance and an aggregation of a class are
done by copying nets of the super-class. Designers can change a part of the net when
the part is copied from the super-class, so long as methods and ordering relations with
respect to method calls are kept unchanged. Besides of these extensions including
object-oriented methodology, we need to provide intelligence on agent nets by putting a
program code on a place or a transition in addition to guards or arc expressions. Such a
program code is called an action on a place or a transition. An action on a place is
executed when a token is put into the place, and an action on a transition is executed
when the transition fires. In order to make program more flexible, agent nets can hold
attribute variables. For example the ID number of each agent net, which we mentioned
in the previous paragraph, is one of such variables. We can use these variables
anywhere in an arc expression, a guard on a transition or in an action. Intelligent
decision of each agent can be expressed in these program codes. For the use of real time
applications, two kinds of notions of time are introduced into the multi agent net model:
a transition invalid time and a token invalid time. Each value is given by an integer
number. The transition invalid time inhibits transition firing. A transition with this
invalid time cannot fire during that period, once it fires. The token invalid time inhibits
use of tokens. A transition can put this invalid time to its output token when it fires. The
token cannot be used during that period. We assume that there is unique clock in the
system, each transition fires according to the clock. When any invalid time is not given,
a transition can fire with zero delay and it can fire again in the same clock if it is
enabled, and the succeeding transition can fire with the token in the same clock.

8 S. Kumagai and T. Miyamoto

4 Software Environment for the Multi Agent Nets

A software environment for the multi agent nets is shown in Fig. 2 [8]. It consists of
three tools and class libraries as follows:

Net Editor: GUI for editing agent nets
Analyzer: It analyzes consistency between agent nets.
Composer: It composes a simulation system of agent nets. Its output is initial state
of agent nets.
Class Libraries: Java class libraries for simulation

Java class libraries are improved considering following points:

− actions,
− invalid times, and
− distributed simulation.

The multi agent net must run on distributed computers which are connected on a
network. Fig. 3 shows structure of the Class Libraries. In the figure, the dark box is Java
class libraries. They are given by vendors. The gray boxes are libraries for the multi
agent nets. The lower library is called Multi Agent Environment (MAE) library. It
provides a multi agents platform and communication ability of agent nets on distributed
computers. In this level, creating and destroying agents, distributing agents to hosts,
naming service of agents and communications between agents are supported. The MAE
consists of three major components: Agent, AgentBase, and Base-Master. Agent
provides a form of agents. The Timer in Fig. 3 is an extension of Agent, and it counts
clocks and distributes clocks to agents. Agent-Base provides server service for
managing agents. There must be a unique base on each host. When an agent is created,
it must be registered in the base on the same host. Base-Master provides server service
for naming service of agents and managing bases. There must be a unique master on
each simulation. It provides the same service of CORBA name server.

Currently communication between computers is realized by using Java RMI
(Remote Method Invocation) on Agent-Base and Agent-Master levels. The higher
library is called Multi Agent Net library. It provides component libraries for agent nets,
e.g., transitions, places, arcs, tokens, and so on. Agents on the MAE can be agent nets
by using these libraries. When some special work on transitions, places or arcs are
required, we can put programs to them as “guards”, “actions” or “arc expressions”. The
guard and the arc expression must be a boolean function. The action is executed when
the transition fires or a token was putted into the place. In the program, we can
use attributes of the net and attributes of the relating token. No other attributes can be
used, and the program is written in Java. By calling native method in the action by JNI
(Java Native Interface), we can control a real system. There may be a case where we
want to use general agents in the multi agent system for which a net structure is not
necessary to be defined. For example, if an agent only calculates a complex function,
no agent nets need to correspond to the agent. These agents may be regular Java agents

 Autonomous Distributed System and Its Realization by Multi Agent Nets 9

Fig. 2. Software Environment

Java Language

Multi Agent Nets

Multi Agent Environment

Agent Nets

Multi Agent Net LibraryT
im

e
r

A
g

e
n

t

J
a

v
a

 A
g

e
n

t

Agent Agent Base Base Master

Fig. 3. Class Libraries

or agents on MAE. The Timer is a kind of these agents. To simulate a system, we must
prepare Java files for initial states. According to the initial states, agent nets are bound.
By starting clock, the simulation starts. Both MAE and MAN libraries have monitoring
functions. Thus while the simulation, we can see instantaneous change of status in the
system.

10 S. Kumagai and T. Miyamoto

5 Realization of ADS by Multi Agent Nets

Once the framework of ADS mechanism is determined and modeled by MAN, we can
realize and implement wide varieties of intelligent distributed systems by modifying
and specifying according to applications’ requirements. Among those applications, we
show typical examples in different fields in this section.

5.1 Next Generation Manufacturing [9]

Flexible Manufacturing Systems (FMS) based on ADS concept are designed by multi
agent nets. Suppose the FMS consists of machine cells, automated guided vehicles
(AGV), information blackboard, and an warehouse. A cell can get an work in constant
delay, after it sends a request for AGV to send the work. Each cell can get the following
information from the blackboard at any time:

− state of buffers on the warehouse and cells,
− current and previous work on cells,
− state of waiting work,
and
− functional ability of cells.

Taking these information into account, each cell decide the following alternatives
autonomously:

− how many and what work to take from the warehouse or from other cells,
− what work to process after the current process is finished,
and
− whether to put works in its own buffer or not.

The warehouse only answer to requests from cells, and decide distribution of works.
In order to simplify the problem, we assume that there are enough AGV and routes so
that collaboration between AGV is not considered. For designing such system, we need
at least three kind of agent nets: the cell, the warehouse and the system. The black board
is realized by an Java object in this simulation. Before we design the cell net and the
warehouse net concurrently, consensus on communications and cooperation must be
established as follows.

− The color of tokens which are passed from a cell to a cell, from a cell to the
warehouse, or from the warehouse to a cell is unified.

− Method names in agent nets are also unified.
− Procedure to change stage of the blackboard is unified.
− Delay of transporting a work is set to a constant number.
− The blackboard is an attribute of cells and warehouse. This means the blackboard is

a common object of agent nets, and each agent net can refer it at any time. Fig. 4
shows an implementation of a cell. The agent nets consists of six parts:

 Autonomous Distributed System and Its Realization by Multi Agent Nets 11

Fig. 4. An Agent Net of a Cell

− Buffers. This part holds works, and consists of four places, BufferBefore, BufferYet,
BufferFinish, and BufferNumber.

− Taking jobs part. This part decide jobs to take from other cells or the warehouse (at
the transition CalcTakeJob), and send a request. If the request is denied
(RequestDenied), the process starts or wait for taking a new work. If the request is
accepted (RequestAccepted), the process put new works into the buffer. We put a
invalid period to each token in the place Moving, and after the period the token can
move to BufferBefore.

12 S. Kumagai and T. Miyamoto

M_RequestWarehouse

M_RequestCell

Moving

Buffer
Input

Output R_Answer

Judge

Pool
Cell

Warehouse

RequestCell AnswerCell

RequestWH AnswerWH RequestOut

(a) Upper level (b) Warehouse

Fig. 5. Agent Nets

Fig. 6. Simulation Screen

 Autonomous Distributed System and Its Realization by Multi Agent Nets 13

− Deciding a next job part. This part decides the next processing work from works in
its own buffer (CalcNextJob). The action code with CalcNextJob refers works in
BufferBefore, gets information about the works and decide next job by it’s own
policy.

− Processing the job part. This part process the work which was decided in the
deciding a next job part (StartProcess), and put a product into the a buffer. Similar to
tokens in the place Moving, tokens in the place Processing have a invalid period.
This period means processing time of the work. This time is variable, and we
calculate it in the action code of the transition StartProcess.

− Giving jobs part. This part deals with requests from other cells. Transitions
JudgeGive or JudgeGive2 judges whether the cell gives the work or not, and answers
are sent from RAnswer.

− Sending complete jobs part. This part request the warehouse to take a product from
its buffer. Intelligence of the cell agent can be added to the agent net by using
programming codes to transitions, places, or arcs, for example, in the action of
CalcNextJob. In Fig. 5(a) and Fig. 5(b), agent nets of the upper level and warehouse
is shown. Tokens in the upper level net represents agent nets of lower level, e.g.,
cells and the warehouse. In this case, we have three cell nets in the system. Fig. 6 is
the screen dump of the simulation.

5.2 Secret Sharing Distributed Storage System[10]

Figure 7 shows an image of an autonomous distributed storage system. This system is a
multi agent system consisting of server agents that reside on storage nodes scattered
throughout the network and client agents that receive requests from users. Our
objective is to implement a system having a high degree of secrecy, reliability, and
robustness according to collaboration between server agents and collaboration between
client agents and server agents. Client agents receive user requests, transfer them to
server agents, and return the results to users. Client agents can communicate with
arbitrary server agents and can switch server agents according to server agent load
conditions or the network state. They provide a nonstop service to clients. A data is
encrypted by secret sharing method into n numbers of fragments, called as shares, and
each share is stored in distributed servers. All server agents have functions for
encrypting and decrypting data and for storing and acquiring shares. For decrypting the

server
agentclient

agent

server
agent server

agent

server
agent

client
agent

client
agent

Fig. 7. Distributed Storage System

14 S. Kumagai and T. Miyamoto

file

Client Server

send store
request

wait for

send
ack.
receive

end

start receive

received received

request

request share

send
send
share

receive
share(info.)

encrypt

info.

send

store ack.

receive
store ack.

store

ack.

ack.

Fig. 8. MAN model for a store process

data, we need k shares out of n shares of the data. If there is a store request from a client,
a server agent encrypts the file and sends shares to other server agents based on a
storage policy. A server agent that receives a store request saves received shares on a
local disk to prepare for future requests. If there is a file fetch request from a client, a
server agent collects total k of shares to decrypt the file.

Figure 8 shows an agent net model for a store process. A store task starts by a token
being passed from the “send store request” place of the client to the “receive request”
place of the server. Encryption is performed due to the firing of an “encrypt”
transaction, and the shares and data information are sent from the “send share” and
“send info.” places to other servers. The other servers receive the shares or data
information via the “receive share (info.)” place, and after storing the information in the
“file” place, send back an acknowledgement from “send store ack.” After the server
receives a reception certification of the shares from all servers, it sends back a reception
certification to the client, and the store task is completed. Other basic functions of a
storage system can also be modeled by MAN for implementing the secret sharing
mechanism. The proposed storage system has obvious advantages such as robustness to
unexpected disasters and high reliability against data loss or stealing.

5.3 Distributed Energy Management Systems for CO2 Reduction [11]

We consider a problem to minimize both of energy costs and CO2 emissions in an area
where there exist several independent entities (agents) who consume and/or produce
electric or thermal energy. We adopt a cooperative energy trading decision method
instead of total optimization for which usually competitive entities would not like to
accept. By this method, we want to reduce energy consumption and the amount of the
CO2 emissions at the same time in the entire group without undermining economic

 Autonomous Distributed System and Its Realization by Multi Agent Nets 15

electricity

market
heat market

customer

agent

supplier

agent1
supplier

agent2

1 : initial bidding condition

2 : update trading price and exhibit bidding price

3 : bid

1 1

22

2 2
2 2

33

3 3
3 3

Fig. 9. Energy Trading System

ReceiveRequest

ReceivePrice

P2 P3

ElecParameter HeatParameter

P1

Participation NotParticipation

Request

InitializeMarket

DecideParticipation

Price

MATLABAvailableSign

Bids

Customer'sBid

ChoiceAToken

T1

T2

M1

P4

P5 P6

M2

P7

P9

P8

P10

MakeBids

T3

T4

Start

Fig. 10. Customer Agent MAN model

16 S. Kumagai and T. Miyamoto

ReceiveRequest
ReceivePrice

Participation NotParticipation

Request

DecideParticipation

Price

MATLABAvailableSign

SupBids

Supplier'sBid

ChoiceSupToken

T1

M1

P1

P2 P3

M2

P4

P5

P6

P7

MakeBids

T2

T3

Fig. 11. Supplier Agent MAN model

benefit for each agent. A group consists of agents connected by electrical grids and heat
pipelines. Each agent can buy electricity and gas from the electric power company and
the gas company outside of the group. Electricity and heat can also be bought and sold
between agents in the group. We show an example of a group energy trading system in
Fig. 9. The group shown in Fig. 9 has Factory1 and 2 as producer agents and Building as
a consumer agent. Each agent has demands for electricity and heat with predicted
demand patterns. The producer agents can buy gas and electricity from the outside of the
group, can produce electricity and heat to fill their own demands, and can sell energy in
the group. The consumer agents can buy energy in the group and from the outside of the
group, and can produce energy to fill their own energy demands. Each agent decides its
energy purchase plan and running plan of equipments that maximizes its own economic
profit that will be subject to energy demands and CO2 emissions. Fig. 10 and Fig. 11 are
MAN models for customer agent and supplier agent, respectively. In our energy trading
system, not only unit price of energy but CO2 emission basic unit is taken into account.
A market-oriented programming (MOP) is a method for constructing a virtual perfect
competitive market on computers, making the state of equilibrium which appears as a
result of the interaction between agents involved in the market, and deriving the Pareto
optimum distribution of goods finally. A market economy considered in the MOP is
composed of goods and agents. For formulation of MOP, it is necessary to define (1)
goods, (2) agents, and (3) agent’s bidding strategies. In Fig. 12, we show an example of
a MAN model of markets in the group shown in Fig. 9.

 Autonomous Distributed System and Its Realization by Multi Agent Nets 17

ReceiveSupplier'sBid

UpdateCondition

MakeMessage

Supplier'sBid

TotalSupplier'sBid

T11

P18

P11

T5

AddSupplier'sBid

ToSupplier

MATLABAvailableSign

ReceiveCustomer'sBid

Participation NotParticipation

ReadyForTrade

ToCustomer MessageToSupplier

ChoiceAToken

Update

SetParameter

Parameter

ReceiveParameter

Request

Customer'sBid

Equilibrium

ContinueTrade

ReceiveAnswer

Answer

FinishTrade

Finish

Exit

WaitAnswer

GetEquilibrium GetNotEquilibrium CurrentCondition

ReceiveSign

ReceiveParticipation ReceiveNotParticipation

MakeInitialCondition

M1

P1

T1

P2

P3 P4

P5

P6

P7

P8

P9

P10P12

P13

P14

P15

P16

P17

T2
GetParticipant

T3

T4

T6
T7

T8

T9

T10

M2 M3

M4

M5M6

M7

ReceiveAnotherEquilibrium

AnotherEquilibrium Answer
MakeAnswer

M8

P18

T12
P19

Fig. 12. Market MAN model

18 S. Kumagai and T. Miyamoto

6 Conclusion

This paper surveys the works and works-in -progress by the authors and their group on
realization of Autonomous Distributed Systems (ADS) by Multi Agent Nets (MAN).
ADS is a universal system concept which plays a central role in this ubiquitously
networked society and the realization technologies are so vital for safe, robust, and
flexible management and operation of such systems. We proposed MAN as one of the
basic modeling and prototyping tools and several applications revealed its versatility
for wide range of engineering and business problems. On a theoretical or formal
verification analysis on MAN, there remains serious works yet to be done. An attempt
to generate an abstract state space for MAN and a verification by ACTL on the abstract
space is a few example of the formal treatment for nested Petri nets like MAN [12].
The use of MAN as an executable verification model for high level modeling language
such as UML is also promising and the construction of simulator for UML based
Service Oriented Architecture of business process is undergoing by this group.

Acknowledgement

Taking an advantage of being an invited paper, the authors made a survey of their own
ideas and the references are subjective and not complete. The authors would like to
express their sincere thanks to numbers of graduate students, especially to Mr.
Y.Morihiro, who made a joint research project described throughout in this paper. He
also thanks to Program Committee chairs, Drs. Jetty Kleijn and Alex Yakovlev for
giving us the opportunity to prepare this paper.

References

1. Lee, D.I., Kumagai, S., Kodama, S.: Complete Structural Characterization of State Machine
Allocatable Nets. IEICE Trans. E74(10), 3115–3123 (1991)

2. Lee, D.I., Kumagai, S., Kodama, S.: Handles and Reachability Analysis of Free Choice
Nets. In: DeMichelis, G., Díaz, M. (eds.) Application and Theory of Petri Nets 1995. LNCS,
vol. 935, pp. 298–315. Springer, Heidelberg (1995)

3. Blanc, C.S.: Cooperative Nets. In: Proc. of Object-Oriented Programming and Models of
Concurrency (1995)

4. Bastide, R.: Approaches in Unifying Petri Nets and the Object-Oriented Approach. In: Proc.
of Object-Oriented Programming and Models of Concurrency (1995)

5. Miyamoto, T., Kumagai, S.: A Survey of Object-Oriented Petri Nets and Analysis Method,
Invited Paper. IEICE Trans. E88-A (11), 2964–2971 (2005)

6. Moldt, D., Valk, R.: Business Process Management. LNCS, vol. 1806, pp. 254–273.
Springer, Heidelberg (2000)

7. Miyamoto, T., Kumagai, S.: A Multi Agent Net Model of Autonomous Distributed Systems.
In: Proc. of CESA’96, Symposium on Discrete Event and Manufacturing Systems, pp.
619–623 (1996)

8. Miyamoto, T., Kumagai, S.: A Multi Agent Net Model and the realization of Software
Environment. In: Workshop Proc. of Application of Petri Nets to Intelligent System
Development, 20th ICATPN, pp. 83–92 (1999)

 Autonomous Distributed System and Its Realization by Multi Agent Nets 19

9. Miyamoto, T., Ichimura, D., Kumagai, S.: A Multi Agent Based Manufacturing Resource
Planning and Task Allocation Systems. IEICE Trans. E86-A (4), 806–812 (2003)

10. Miyamoto, T., Doi, S., Nogawa, H., Kumagai, S.: Autonomous Distributed Secret Sharing
Storage Systems. Syst. and Comp. in Jpn 37(6), 55–63 (2006) (Wiley Periodicals, Selected
English Translation from IEICE Trans. J87-D-I(10), 899–906, 2004)

11. Yakire, K., Miyamoto, T., Kumagai, S., Mori, K., Kitamura, S., Yamamoto, T.: An Energy
Distribution Decision Method in Distributed Energy Management Systems by the
Market-Oriented Programming. In: Proc. of SICE-ICCAS International Joint Conference
2006, Busan, Korea (2006)

12. Miyamoto, T., Kumagai, S.: On the reachability Analysis of Multi Agent Nets. In: Proc. of
SICE Annual Conference of Systems and Information, pp. 247–250, (November 2006)

Petri Nets Without Tokens

(Invited talk)

Antoni Mazurkiewicz

Institute of Computer Science of PAS
Ordona 21, 01-237 Warsaw, Poland

Antoni.Mazurkiewicz@ipipan.waw.pl

For more than 40 years Petri nets [1] serve as an efficient formal model of con-
current behavior of complex discrete systems. There exists a rich bibliography
of books and works devoted to these methods and many applications of nets
have been already created. The model is extremely simple: it uses three basic
concepts, of places, of transitions, and of a flow relation. The behavior of a net
is represented by changing distribution of tokens situated in the net places, ac-
cording to some simple rules (so-called firing rules). Non-negative integers play
essential role in the description of tokens distribution, indicating the number
of tokens contained in nets places and . Transitions determine way of changing
the distribution, taking off a number of tokens from entry places and putting a
number of tokens in exit places of an active transition. Formally, to any tran-
sition some operations on numbers stored in places are assigned and therefore
the behavior of nets is described by means of a simple arithmetic with adding
or subtracting operations on non-negative integers.

Nets became attractive for several reasons, namely because:

- simplicity of description they offer,
- demonstrativeness, mainly due to their graphic representation
- a deep insight into concurrency phenomena,
- facility of applications to basic concurrent systems

However, some of positive features of nets create also their weakness. Namely,
simplicity of the model makes difficult the complex situations description; the for-
malism being well suited to describe basic phenomena may turn out to be difficult
for some real applications. Integers may turn out to be too primitive structures for
dealing with more subtle objects; enlarging the net structure to the real word situ-
ations description could be troublesome. Finally, the intuition appealing graphical
representation may be dangerous for rigorous formal reasoning. For these reasons,
a constantly growing number of different extensions of original nets to the so-called
higher level ones has been invented. In this talk a very modest modification of the
original net concept is discussed, consisting in:

- replacing integers by arbitrary objects for storing in places;
- accepting arbitrary relations as transition activities;
- resigning from a fixed flow direction in the net structure.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 20–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Petri Nets Without Tokens 21

Token-free nets. A token-free net (FT-net, for short) is defined by its structure
and specification; the structure is defined by triple (P, T, γ), where P, T are finite,
non-empty disjoint sets, of places and transitions respectively, and γ ⊆ P× T is
a relation called the neighborhood relation. Set

γ(t) = {p | (p, t) ∈ γ}, γ(p) = {t | (p, t) ∈ γ}.

Say that transitions t′, t′′ are independent and write (t′, t′′) ∈ I, if γ(t′)∩γ(t′′) =
∅. The specification of net with structure (P, T, γ) is any triple (S, F, σ0), where S
is a mapping which to each place p ∈ P assigns set Sp (of values of place p), F is
a mapping which to each p ∈ P and each t ∈ γ(p) assigns binary relation Fp(t) ⊆
Sp×Sp (the transition relation), and σ0 is a mapping which to each p ∈ P assigns
value σ0(p) ∈ Sp (the initial valuation of places). Below, in the left-hand picture,
a TF-net with structure ({p, q, r, s}, {a, b, c, d}, {(p, a), (q, a), (q, c), (q, d), (r, b),
(r, c), (s, c), (s, d)}) is presented in a graphical form. In the right-hand picture this
structure is filled up with a specification, giving some initial values x, y, z, u as-
signed to places and transition relations φ, χ, ψ assigned to corresponding edges,
e.g. Fp(a) = χ, Fq(c) = ψ, Fq(d) = χ.

�

� �

�

a b

c

d

p

q r

s

�

� �

�

a b

c

d

x

y z

u

φ

χ

ψ

ψ

ψ

φ

φ

χ

Let (S, F, σ0) be a specification of net N with structure (P, T, γ). Any mapping
σ assigning to place p ∈ P its value σ(p) ∈ Sp is called a valuation. Transition t
is enabled at valuation σ, if σ(p) is in the domain of Fp(t) for any neighbor place
p of t. The behavior of N is defined as follows. Let σ′, σ′′ ∈ P −→ S be two
valuations of places of N , t ∈ T be a transition of N ; say that t transforms in
N valuation σ′ into σ′′ (or that t can fire at valuation σ′) and write σ′ t→N σ′′,
if the following equivalence holds:

σ′ t→N σ′′ ⇔ (σ′(p), σ′′(p)) ∈ Fp(t), ∀p ∈ Pt,

σ′′(p) = σ′(p), ∀p 	∈ Pt.

From this definition it follows that σ′ t→N σ′′ implies t to be enabled at σ′(p).
Extend relation t→N to w→N for w ∈ T ∗ in the standard way:

σ′ w→N σ′′ ⇔ σ′ = σ′′, if w = ε,

∃σ : s′σ′ u→N σ
t→N σ′′, if w = ut, u ∈ T ∗, t ∈ T.

The set Seq(N) = {w | ∃σ : σ0 w→N σ} is called the (sequential) behavior of N ,
and its elements, traditionally, firing sequences of N .

22 A. Mazurkiewicz

Classical place/transition nets are particular cases of TF-net, in which values
of all places are non-negative integers, and relations are either defined by Fp(t) =
{n, n + k) | n + k ≤ c} (the pair (p, t) is then represented by an arrow leading
from t to p labeled with k, the multiplicity of that arrow, and with place p labeled
with c, the capacity of p), or by Fp(t) = {n, n − k) | k ≤ n} (then the arrow,
similarly labeled with k, leads from p to t). The behavior of such nets agrees
with the definition given above.

As another example of a TF-net can serve ‘string nets’, with strings over
alphabet Σ are individual values, and relations are either defined by Fp(t) =
{(w, wa) | w ∈ Σ∗} or by Fp(t) = {(wa, w) | w ∈ Σ∗}, for some a ∈ Σ, or by
Fp(t) = {(w, w) | ε 	= w ∈ Σ∗}. Observe also that values assigned to different
places may have different types, e.g. values of some places can be strings, while
those of other ones can be integers.

Composition properties. TF-nets enjoy a composition property similar to
that holding by classical Petri nets [2]. Let N = (P, T, γ; S,F , σ0) be a TF-
net. To each place p ∈ P assign finite automaton Ap defined by equality Ap =
(S, Tp, Fp, s

0
p), called the local automaton for p in N , where Tp = γ(p), Fp(t) ⊆

S × S, and s0
p = σ0(p). Conversely, given a finite family of local automata

Ai = (Si, Ti, Fi, s
0
i), i ∈ I, with Fi(t) ⊆ Si× Si for each t ∈ Ti and s0

i ∈ Si,
their composition &i∈IAi can be defined as TF-net (I, T, γ; S, F, σ0), where
T =

⋃
i∈I Ti, γ = {(i, t) | i ∈ I, t ∈ Ti}, S(i) = Si for i ∈ I, and σ0(i) = s0

i .
Extend Fp(t) to F ∗

p (w) for all w ∈ T ∗:

(s′, s′′) ∈ F ∗
p (ε) ⇔ s′ = s′′,

(s′, s′′) ∈ F ∗
p (wt) ⇔ ∃s : (s′, s) ∈ F ∗

p (w) ∧ (s, s′′) ∈ Fp(t).

for all s′, s′′ ∈ S, w ∈ T ∗, t ∈ T . The language accepted by Ap is the set L(Ap) =
{w | ∃s : (s0

p, s) ∈ F ∗(w)}. We have the following composition property:

seq(&i∈IAi) = ker(&i∈IL(Ai)),

where w ∈ &i∈IL(Ai) ⇔ ∀i ∈ I : π(w, Ti) ∈ L(Ai), π(w, Ti) is the projection of
w onto Ti, and ker(L) is the greatest prefix closed subset of language L. A set of
strings is directed, if any two elements of this set are prefixes of another element
of this set. Any maximum prefix-closed directed subset of seq(N) is a full run
of N ; the set of all full runs of N is denoted by Seq(N). Cardinality of a full
sequential run (possibly infinite) is called its length.

Net restrictions. Flexibility of choosing arbitrary transition relations as spec-
ification of nets with a common structure offers a possibility of comparison such
specifications. Let N ′, N ′′ be nets with the same structure, say (P, T, γ), and with
specifications (S′, F ′, σ0

1), (S
′′, F ′′, σ0

2), respectively. Say that net N ′ is a restric-
tion of net N ′′, if for each p ∈ P there exists mapping δp : S′

p −→ S′′
p such that

s0
2(p) = δp(s0

1(p)), (s′, s′′) ∈ F ′
p(t) ⇒ (δp(s′), δp(s′′)) ∈ F ′′

p (t).

Petri Nets Without Tokens 23

and then write N ′ ≤ N ′′. From the definition of nets behavior it follows easily

N ′ ≤ N ′′ ⇒ seq(N ′) ⊆ seq(N ′′).

The case when δp is the identity mapping for each p ∈ P is a particular case of
restriction; then the restriction condition reduces to the inclusion F ′

p(t) ⊆ F ′′
p (t)

for all p ∈ P, t ∈ T , i.e. simply to F ′ ⊆ F ′′. Clearly, the restriction relation
is a partial order in the family of all nets with a common structure; the net
with Fp(t) = ∅ (over-specified net, where none of transitions are enabled at
any valuation) is its minimum element. In a net with ∅ 	= Fp(t) = Sp × Sp

any transition at any valuation is enabled (under-specified net), is maximum
element in the above ordering. The question arises if it is possible to adjust the
specification of a net to get a priori chosen behavior of it. A partial answer to
this question is formulated below.

Restricted nets behavior. Let N = (P, T, γ; S, F, σ0) be an arbitrary but
fixed TF-net. Let ≡ be the least equivalence relation in T ∗ s.t. (t′, t′′) ∈ I ⇒
t′t′′ ≡ t′′t′ and w′ ≡ w′′, u′ ≡ u′′ ⇒ w′u′ ≡ w′′u′′; then it follows easily that w′ ∈
SeqN ∧ w′ ≡ w′′ ⇒ w′′ ∈ SeqN . It is also not difficult to show that two strings
w′, w′′ ∈ seq(N) are equivalent if and only if ∀p ∈ P : π(w′, γ(p)) = π(w′′, γ(p))
(their projections on local alphabets are pairwise equal). Extend equivalence
relation ≡ to sets of strings by the equivalence:

W ′ ≡ W ′′ ⇔ ∀p ∈ P : {π(w, γ(p)) | w ∈ W ′} = {π(w, γ(p)) | w ∈ W”}.

This description method origins from basic results of Shields [3]. Possible effects
of restrictions are demonstrated by the following fact. Let W0 ∈ Seq(N). Then
there exists a restriction N ′ of N such that any run W ′ ∈ Seq(N ′) is equivalent
to W :

∀ W0 ∈ Seq(N) : ∃ N ′ ≤ N : ∀ W ∈ Seq(N ′) : W ≡ W0.

This result is a partial answer to the more general question about defining pos-
sibilities of specification restrictions.

References

[1] Petri, C.A.: Concepts of Net Theory. In: Proc. of MFCS’73, High Tatras,
Math.Institut of Slovak Academy of Sciences, pp. 137–146 (1973)

[2] Mazurkiewicz, A.: Semantics of Concurrent Systems: A Modular Fixed Point Trace
Approach, Instituut voor Toegepaste Wiskunde en Informatica, Rijksuniversiteit
Leiden, TR-84-19 (1984)

[3] Shields, M.W.: Non-sequential behaviour, part I. Int. Report CSR-120-82, Dept. of
Computer Science, University of Edinburgh (1979)

Toward Specifications for Reconfigurable

Component Systems�

(Preliminary Abstract)

Andrzej Tarlecki

Institute of Informatics, Warsaw University
and Institute of Computer Science PAS, Warsaw, Poland

Serious developments concerning formal aspects of software specification, verifi-
cation and development initially addressed programming-in-the-small: descrip-
tion, analysis and verification of relatively simple (iterative) programs. This
phase was marked with achievements like Hoare’s logic [Hoa69], formalising the
earlier proposals concerning proofs of correctness of iterative programs. Early
work of Parnas [Par72b, Par72a] advanced programming-in-the-large, undertak-
ing the issues of modularity and abstraction. Data abstraction together with the
related issue of step-wise program development, was addressed in another sem-
inal paper by Hoare [Hoa72].1 Work on algebraic specifications (e.g. [GTW78])
initially addressed the problem of specifying (abstract) data types, but soon
grew to a general methodology for specification and systematic development of
software system with an extensive body of work and publications [BKL+91]. Our
relatively recent account of one line of work grown on algebraic specifications
given in [ST97, Tar03] presents foundations for a comprehensive methodology
for software specification and development, and rightly claims generality of the
approach gained by parameterising on an arbitrary logical system formalised as
an institution [GB92]. Nevertheless, the approach presented there works most
clearly for relatively simple systems built by statically combining well-specified,
hierarchical modules. This is perhaps best visible in particular specification for-
malisms that fit this approach, with Casl [BM04, CoF04] developed recently
by the CoFI group as a prime example. Oversimplifying grossly: we know best
how to specify and put together purely functional Standard ML modules and
their relatively minor variants (even if the Extended ML experiment [KST97]
with embedding specifications into arbitrary Standard ML programs was only
partly successful, it certainly does work for specifications of such systems).

In the meantime, the standard practise of building complex software system
changed considerably, for better or worse encompassing many complex program-
ming features with often far from satisfactory semantic and logical tools for their
description and analysis, in spite of considerable amount of work and a whole

� This work was funded in part by the European IST FET programme under the
IST-2005-015905 MOBIUS and IST-2005-016004 SENSORIA projects.

1 I make no pretence of any completeness or even full accuracy of such historical
references here — instead, let me advertise excellent essay [Jon03] on the history of
approaches to, and methods for verification of (sequential imperative) programs.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 24–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Toward Specifications for Reconfigurable Component Systems 25

spectrum of approaches proposed. For instance, we have object-oriented technol-
ogy [Boo94], with local states of objects, inheritance and dynamic communication
between objects, to mention just a few features not treated directly by specification
formalisms like Casl. Of course, this does not mean that in principle the object-
oriented paradigm cannot be dealt with using the general methodology referred
to above. In particular, many aspects of object-oriented paradigm are covered by
behavioural interpretation of specifications [Rei86, GM00, BH06, BST06], where
internal features of a specification (including for instance hidden data to model
the state) are regarded only in so far as they influence the visible behaviour of the
specified system. Still, the practise of object-oriented design and development is
dominated by approaches like UML [BRJ98], in spite of its deficiencies and (at
least initially) lack of formal foundations. One aspect of UML which we want
to stress here is that via dozens of kinds of UML diagrams, it offers a consider-
able heterogeneous spectrum of methods to capture various facets of the specified
systems.

The methodology advocated in [ST97] and [BM04] naturally leads to the de-
velopment of systems that are statically composed of a number of mutually
independent, well-specified modules. This is quite orthogonal to the current de-
velopments in the area of, for instance, service-oriented computing, where sys-
tems are configured dynamically out of a collection of available components to
provide a given service (and often decomposed once the desired goal has been
achieved). This dynamic aspect is to some extent present for instance in agent-
oriented technologies (e.g. [Woo01]). It seems though that the stress there is on
the search for the right services offered, not so much on the right specification
of the modules that provide the services and on the systematic design of the
overall architectures of such systems.

What I would like to pursue is an approach to specification, design and sys-
tematic development of hierarchical systems that consist of a collection of com-
ponents designed to be combined in a number of possible ways to potentially
fulfil various tasks. It should be possible to reconfigure the resulting systems
dynamically using the components provided. The framework should enable sub-
sequent specification of individual components, their alternative configurations,
the overall system capabilities and properties ensured by particular configura-
tions, as well as the possible system reconfiguration process itself. Moreover, the
framework aimed at should be hierarchical in the sense that overall system spec-
ification should have the same format as specifications of individual components,
so that the components can also be built as such reconfigurable (sub-)component
systems.

This is, so far, a long term goal with not much specific proposals on how
to reach it in any formal and mathematically well-founded way. I would like,
however, to present at least some directions of work and ideas which in my view
are useful prerequisites to achieve such a goal.

Specifications in an Arbitrary Institution. Since the early work on Clear [BG80],
the formalisation of logical systems as institutions [GB84, GB92] proved to be not
only a powerful conceptual basis for a very abstract version of model theory, but

26 A. Tarlecki

first of all, a pragmatically useful technical tool in the design of specification for-
malisms and in the work on foundations of software specification and systematic
development. This started with mechanisms to structure specifications built in
any logical system presented as an institution [ST88a], and then covered a whole
spectrum of standard concepts and ideas in the area [ST97, Tar03].

Systematic Development and Architectural Specifications. Starting with [ST88b],
the work on fundamentals of specification theory in the framework of an arbitrary
institution included a general foundational view of the systematic development
of correct modular systems from their requirements specifications. This led to
formalisation of the design steps in software development process as architec-
tural specifications [BST02], whereby a modular structure of the system being
developed is designed by listing the units the system is to be built of, providing
their precise specifications, and defining the way in which they are supposed to
be composed to build the overall system.

Heterogeneous Logical Environments. The theory of institutions also offers solid
foundations to deal with heterogeneous specifications [Tar96, Tar00, Mos02],
where specifications of various modules of a given system, or various facets of
some modules may be conveniently built in various logical systems, most appro-
priate for the particular task at hand. One related idea is that of heterogeneous
development, where the process of the system development may migrate from
one logical system to another, most appropriate at the given stage. Of course,
to make this meaningful, the logical systems in use, or rather the institutions
that capture them, must be linked with each other by a map of one kind or an-
other [GR02], thus forming a heterogeneous logical environment, which in turn
may be formalised simply as a diagram in a category of institutions.

Architectural Design and Connectors. Architectural specifications mentioned
above provide a tool for designing a static modular structure of the software
system under development. This is not quite the same as the overall system ar-
chitecture, as discussed for instance in [AG97], which deals more with the actual
interconnection between system components in the dynamic process of computa-
tions carried out by the system. One crucial idea there is that in the architectural
design the system components need not be linked directly with each other, but
rather via architectural connectors [FLW03] that are specialised units playing no
other role than to coordinate activity of the components they link.

Systems of Potentially Interconnected Components. What emerges from the
above is a view of systems as collections of components linked with each other by
architectural connectors. One observation in [Zaw06] is that the resulting collec-
tion of interconnected components as a whole may be of a very limuited use, or
may even be inconsistent due to potentially contradictory properties of actions
offered by various components, while its various sub-configurations may amount
to perfectly useful systems. As a consequence we can meaningfully consider sys-
tems of components with their potential interconnections from which only some
are “active” at a given moment. Various techniques, for instance those based

Toward Specifications for Reconfigurable Component Systems 27

on graph grammars, may now be used to reconfigure the actual “active” sys-
tem within the possibilities offered by the graph of potential connection between
system components.

The above list indicates the ideas, concepts and results that can be put to-
gether and further developed aiming at foundations for an overall methodology
of specification and development of hierarchical component systems that allow
for system reconfiguration. Preliminary combination of the above ideas and ini-
tial results will be presented at the conference, with a hope to generate a critical
discussion and suggestions of the techniques developed within the field of Petri
nets that may be useful in this context. Undoubtedly though, achieving the
overall goal requires considerable further work.

References

[AG97] Allen, R., Garlan, D.: A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology 6(3), 213–249
(1997)

[BG80] Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification lan-
guage. In: Bjorner, D. (ed.) Abstract Software Specifications, 1979 Copen-
hagen Winter School, LNCS, vol. 86, pp. 292–332. Springer, Heidelberg
(1980)

[BH06] Bidoit, M., Hennicker, R.: Constructor-based observational logic. Journal
of Logic and Algebraic Programming 67(1-2), 3–51 (2006)

[BKL+91] Bidoit, M., Kreowski, H.-J., Lescanne, P., Orejas, F., Sannella, D.
(eds.): Algebraic System Specification and Development. LNCS, vol. 501.
Springer, Heidelberg (1991)

[BM04] Chapters by Mossakowski, T., Sannella, D., Tarlecki, A. In: Bidoit, M.,
Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900 Springer,
Heidelberg (2004)

[Boo94] Booch, G.: Object-Oriented Analysis and Design with Applications, 2nd
edn. Addison-Wesley, London (1994)

[BRJ98] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language
User Guide. Addison-Wesley, London (1998)

[BST02] Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in Casl.
Formal Aspects of Computing 13, 252–273 (2002)

[BST06] Bidoit, M., Sannella, D., Tarlecki, A.: Observational interpretation of Casl

specifications. Research Report LSV-06-16, Laboratoire Spécification et
Vérification, ENS Cachan (Submitted for publication 2006)

[CoF04] CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS
2960 (IFIP Series). Springer (2004)

[FLW03] Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for
architectural connectors. In: Backhouse, R., Gibbons, J. (eds.) Generic
Programming. LNCS, vol. 2793, pp. 178–221. Springer, Heidelberg (2003)

[GB84] Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E.,
Kozen, D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 221–256.
Springer, Heidelberg (1984)

[GB92] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for spec-
ification and programming. Journal of the ACM 39(1), 95–146 (1992)

28 A. Tarlecki

[GM00] Goguen, J.A., Malcolm, G.: A hidden agenda. Theoretical Computer Sci-
ence 245(1), 55–101 (2000)

[GR02] Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Com-
pututing 13(3-5), 274–307 (2002)

[GTW78] Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach
to the specification, correctness, and implementation of abstract data
types. In: Yeh, R. (ed.) Current Trends in Programming Methodology,
IV, pp. 80–149. Prentice-Hall, Englewood Cliffs (1978)

[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Communi-
cations of the ACM 12(10), 576–583 (1969)

[Hoa72] Hoare, C.A.R.: Proof of correctness of data representations. Acta Infor-
matica 1(4), 271–281 (1972)

[Jon03] Jones, C.B.: The early search for tractable ways of reasoning about pro-
grams. IEEE Annals of the History of Computing 25(2), 26–49 (2003)

[KST97] Kahrs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: A
gentle introduction. Theoretical Computer Science 173, 445–484 (1997)

[Mos02] Mossakowski, T.: Heterogeneous development graphs and heterogeneous
borrowing. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS
2002. LNCS, vol. 2303, pp. 326–341. Springer, Heidelberg (2002)

[Par72a] Parnas, D.L.: On the criteria to be used in decomposing systems into mod-
ules. Communications of the ACM 15(12), 1053–1058 (1972)

[Par72b] Parnas, D.L.: A technique for software module specification with examples.
Communications of the ACM 15(5), 330–336 (1972)

[Rei86] Reichel, H.: Behavioral program specification. In: Poigné, A., Pitt, D.H.,
Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer
Programming. LNCS, vol. 240, pp. 390–411. Springer, Heidelberg (1986)

[ST88a] Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Infor-
mation and Computation 76, 165–210 (1988)

[ST88b] Sannella, D., Tarlecki, A.: Toward formal development of programs from
algebraic specifications: Implementations revisited. Acta Informatica 25,
233–281 (1988)

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specification
and program development. Formal Aspects of Computing, 9:229–269, 1997.

[Tar96] Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl,
O.-J., Owe, O. (eds.) Recent Trends in Data Type Specification, ADT’95.
LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

[Tar00] Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Ri-
jke, M. (ed.) Frontiers of Combining Systems 2, Studies in Logic and Com-
putation, pp. 337–360. Research Studies Press (2000)

[Tar03] Tarlecki, A.: Abstract specification theory: An overview. In: Broy, M.,
Pizka, M. (eds.) Models, Algebras, and Logics of Engineering Software.
NATO Science Series — Computer and System Sciences, vol. 191, pp. 43–
79. IOS Press, Amsterdam (2003)

[Woo01] Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, Chich-
ester (2001)

[Zaw06] Zaw�locki, A.: Diagram models of interacting components. Technical report,
Institute of Informatics, Warsaw University (2006)

Generating Petri Net State Spaces

Karsten Wolf

Universität Rostock, Institut für Informatik,
18051 Rostock, Germany

karsten.wolf@informatik.uni-rostock.de

Abstract. Most specific characteristics of (Place/Transition) Petri nets
can be traced back to a few basic features including the monotonicity of
the enabling condition, the linearity of the firing rule, and the locality of
both. These features enable “Petri net” analysis techniques such as the
invariant calculus, the coverability graph technique, approaches based on
unfolding, or structural (such as siphon/trap based) analysis. In addition,
most verification techniques developed outside the realm of Petri nets can
be applied to Petri nets as well.

In this paper, we want to demonstrate that the basic features of Petri
nets do not only lead to additional analysis techniques, but as well to
improved implementations of formalism-independent techniques. As an
example, we discuss the explicit generation of a state space. We underline
our arguments with some experience from the implementation and use
of the Petri net based state space tool LoLA.

1 Introduction

Most formalisms for dynamic systems let the system state evolve through read-
ing and writing variables. In contrast, a Petri net marking evolves through the
consumption and production of resources (tokens). This fundamental difference
has two immediate consequences. First, it leads to a monotonous enabling con-
dition. This means that a transition enabled in some state is as well enabled in a
state that carries additional tokens. Second, it leads to the linearity of the firing
rule. This means that the effect of a transition can be described as the addition
of an integer vector to a marking vector.

The Petri net formalism has another fundamental property that it shares with
only some other formalisms: locality. This means that every transition depends
on and changes only few components of a state. In Petri nets, these components
(places) are explicitly visible through the arc (flow) relation.

Many specific Petri net analysis techniques can be directly traced back to
some of these characteristic features of Petri nets. For instance, the coverability
graph generation [KM69,Fin90] is closely related to monotonicity and linearity.
The invariant calculus [LS74,GL83,Jen81] clearly exploits linearity of the firing
rule. For structural analysis such as Commoner’s Theorem [Com72] or other
methods based on siphons and traps, monotonicity and locality may be held
responsible. Petri net reduction [Ber86] is based on the locality principle. Analysis

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 29–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 K. Wolf

based on unfoldings [McM92,Esp92] (or partial ordered runs) involves the locality
principle as well. This list could be continued.

On the other hand, there are several verification techniques that do not depend
on a particular modeling language. An example for this class of techniques is state
space based analysis, and—build on top of it—model checking [CE81,QS81]. The
availability of specific techniques like the ones mentioned above has long been
observed as a particular advantage of Petri nets as a modeling language. Be-
yond this insight, we want to discuss the implementation of a Petri net based
state space generator (LoLA [Sch00c]) in order to show that the basic features
of Petri nets mentioned in the beginning of this section can be used for an effi-
cient implementation of—otherwise formalism-independent—explicit state space
generation.

We start with a short introduction to the tool LoLA and give, in Sec. 3 a brief
overview on some case studies conducted with this tool. In Sec. 4, we consider
the implementation of fundamental ingredients of a state space generator such
as firing a transition or checking for enabledness. Finally, in Sec. 5, we informally
discuss a few Petri net specific issues of state space reduction techniques.

2 The State Space Generation Tool LoLA

The LoLA project started in 1998. Its original purpose was to demonstrate the
performance of state space reduction techniques developed by the author. Most
initial design decisions were driven by prior experience with the state space
component of the tool INA [RS98].

LoLA can read place/transition nets as well as high-level nets. High-level nets
are immediately unfolded into place/transition nets So, LoLA is indeed a place-
transition net tool while the high-level input can be seen as a shorthand notation
for place/transition nets.

LoLA generates a state space always for the purpose of verifying a particular
property. It implements the in-the-fly principle, that is, it stops state space
generation as soon as the property being verified is determined. The properties
that can be verified include

– Reachability of a given state or a state that satisfies a given state predicate;
– Boundedness of the net or a given place;
– Quasiliveness of a given transition;
– Existence of deadlocks;
– Reversibility of the net;
– Existence of home state;
– Liveness of a state predicate;
– Validity of a CTL formula;
– Validity of the LTL formulas Fφ, GFφ, and FGφ, for a given state predicate

φ.

LoLA can build a state space in depth-first or breadth-first order, or it can
just generate random firing sequences for an incomplete investigation of the state

Generating Petri Net State Spaces 31

space. While depth-first search is available for the verification of all properties
listed above, the other search methods are restricted to reachability, deadlocks
and quasiliveness.

The following reduction techniques are available in LoLA:

– Partial order reduction (the stubborn set method);
– The symmetry reduction;
– The coverability graph generation;
– The sweep-line method;
– Methods involving the Petri net invariant calculus;
– a simplified version of bit hashing

The techniques are employed only if, and in a version that, preserves the
property under investigation. If applicable, reduction techniques can be applied
in combination.

Using LoLA amounts to executing the following steps.

1. Edit a particular file userconfig.H in the source code distribution for se-
lecting the class of property to be verified (e.g., “boundedness of a place” or
“model check a CTL formula”) and the reduction techniques to be applied.

2. Translate the source code into an executable file lola.
3. Call lola with a file containing the net under investigation, and a file spec-

ifying the particular instance of the property (e.g., the name of the place to
be checked for boundedness, or the particular CTL formula to be verified).

4. LoLA can return a witness state or path, an ASCII description of the gen-
erated state space, and some other useful information.

Instead of a stand alone use of LoLA, it is also possible to rely on one of the
tools that have integrated LoLA, e.g.,

– CPN-AMI [KPA99],
– The Model Checking Kit [SSE03]
– The Petri net Kernel [KW01]

3 Some Applications of LoLA

As LoLA can be downloaded freely, we do not have a complete overview on
its applications. In this section, we report on a few case studies conducted by
ourselves, and studies we happen to know about.

Validating a Petri Net Semantics for BPEL [HSS05]
WS-BPEL (also called BPEL or BPEL4WS, [Cur+03]) is an XML-based lan-
guage for the specification of web services. Due to an industrial standardization
process involving several big companies, the language contains a lot of non-
orthogonal features. It was thus adequate to give a formal semantics to BPEL

32 K. Wolf

in order to reason about consistency and unambiguity of the textual specification.
Several formal semantics have been proposed in various formalisms, among them
two which are based on Petri nets. One of the Petri net semantics has been
reported in [HSS05]. It translates every language construct of BPEL into a Petri
net fragment. The fragments are glued together along the syntactical structure
of a BPEL specification. As the fragments interact in a nontrivial way, it was
necessary to validate the semantics. The validation was done by translating
several BPEL specifications into Petri nets and letting LoLA verify a number of
crucial properties concerning the resulting nets.

The most successful setting in the application of LoLA was the combination of
partial order reduction (stubborn sets) with the sweep-line method. Partial order
reduction performed well as BPEL activities can be executed concurrently (avail-
ability of a significant number of concurrent activities is essential for the partial
order reduction). Furthermore, the control flow of a BPEL specification follows a
pattern of progress towards a fixed terminal configuration. Such progress can be
exploited using the sweep-line method. LoLA detects the direction of progress
automatically (this issue is further discussed in Sec. 5).

It turned out that LoLA was able to solve verification tasks for services with
up to 40 BPEL activities while it ran out of memory for a service with little
more than 100 activities. The nets that could be successfully verified consisted
of about 100 to 400 places and 250 to 1.000 transitions. Reduced state spaces
had up to 500.000 states. With the capability of handling BPEL specifications
with 40 or 50 activities, LoLA is well in the region of practical relevance. So,
LoLA has become part of a tool chain for web services that is developed within
the Tools4BPEL project [T4B07]. There, ideas exist to tackle larger processes
through further tuning the translation from BPEL to Petri nets, and through
abstraction techniques to be applied prior to state space verification.

The main lesson learned of this application was that partial order reduction in
combination with the sweep-line method is a powerful combination of reduction
techniques in the area of services.

Detecting Hazards in a GALS Circuit [SRK05]
GALS stands for globally asynchronous, locally synchronous circuits. A GALS
design consists of a number of components. Each component has its own clock
signal and works like a synchronous circuit. Communication between compo-
nents is organized in an asynchronous fashion. This way, designers try to save
the advantages of a synchronous design (tool support, clearly understood set-
ting) while they tackle the major drawbacks (speed limitation and high energy
consumption due to long distance clock signal paths, energy consumption in idle
parts of the circuit).

In collaboration with the Institute of Semiconductor Physics in Frankfurt/-
Oder, we investigated a GALS circuit for coding and decoding data of the 802.11
wireless LAN protocol. In particular, we translated a so-called GALS wrapper
gate by gate into a place/transition net. A GALS wrapper is the part of a GALS
design that encapsulates a component, manages incoming data, and pauses the

Generating Petri Net State Spaces 33

clock of the component during periods where no data are pending. Consequently,
a wrapper as such is an asynchronous circuit. It consists of five components: an
input port maintaining incoming data, an output port managing outgoing data,
a timeout generator, a pausable clock, and a clock control. All in all, there are 28
gates (logical gates, flip-flops, muller-C-elements, counters, and mutex elements).

We were interested in the detection of hazards in the wrapper. A hazard is a
situation where, due to concurrently arriving input signals, it is not clear whether
the corresponding output signal is able to fully change its value (after arrival of
the first signal) before switching back to the original value. Such an incomplete
signal switch may cause undefined signal values which are then potentially prop-
agated through the whole circuit. The Petri net model was built such that the
occurrence of a hazard in a particular gate corresponds to a particular reachable
marking in the Petri net model of the gate.

LoLA was applied for solving the various reachability queries. Again, a com-
bination of partial order reduction with the sweep-line method turned out to be
most successful. Nevertheless, LoLA was not able to solve all of the reachability
queries on the original model (having 286 places and 466 transitions). In a sec-
ond approach, the model was replaced by a series of models each modeling one
of the parts of the wrapper in detail while containing abstract versions of the
others. The abstraction was based on the assumption that no hazards occur in
the abstracted part. LoLA was then able to solve all reachability queries. The
largest state space had little more than 10.000 nodes.

We detected eight hazards and reported them to the people in Frankfurt. For
each hazard, we could derive a scenario for its occurrence from the witness paths
available in LoLA. Six of the scenarios could be ruled out through knowledge
about timing constraints. The remaining two hazards were considered as really
dangerous situations. Using LoLA again, a re-design of the wrapper was verified
as being hazard-free.

The approach of modeling one part of the investigated system in detail while
abstracting the others was the main lesson learned out of this application

Garavel’s Challenge
Back in 2003, Hubert Garavel posted a challenge to the Petri Net Mailing List.
The mail contained a place/transition net with 485 places and 776 transitions
that allegedly stemmed from a LOTOS specification. Garavel was interested in
quasi-liveness of all transitions of the net.

Apart from LoLA, the two symbolic state space tools SMART (by G. Chiardo
and R. Siminiceanu) and Versify (by O. Roig), and the tool TINA (by B.
Berthomieu and F. Vernadat) which used the covering step graph technique
responded to the challenge. The symbolic tools were able to calculate the exact
number of reachable states of the system which was in the area of 1022.

The LoLA approach to the challenge was to generate not just one (reduced)
state space but 776 of them, one for the verification of quasi-liveness of a partic-
ular transition. This way, partial order reduction could be applied very success-
fully. 774 of the queries could be solved this way while two queries ran out of

34 K. Wolf

memory. For these transitions, we applied then the LoLA feature of generating
random firing sequences. In fact, the sequences are not totally random. Instead,
the probability of selecting a transition for firing is weighted according to a
heuristics which is closely related to the stubborn set method. This heuristics
is quite successful in attracting a firing sequence towards a state satisfying the
investigated property. At least, it worked for the two problematic transitions in
the challenge and we were able to report, for each transition, a path witnessing
its quasi-liveness.

This challenge showed that LoLA can be competitive even to symbolic state
space tools. A major reason for success was the division of the original verification
problem into a large number of simpler verification tasks.

Exploring Biochemical Networks [Tal07]
In a biochemical network, a place represents a substance, tokens in a place repre-
sent presence of the substance. A transition models a known chemical reaction.
A transition sequence that finally marks a place represents a chain of possible
reactions that potentially generates the corresponding substance.

People at SRI use LoLA for exploring reaction paths. According to [Tal07],
they “use LoLA because it is very fast in finding paths”.

The examples show that LoLA can be applied in various areas. It is able to
cope with models of practically relevant systems. The performance of LoLA is
due to at least four reasons:

– LoLA features a broad range of state-of-the-art state space reduction tech-
niques most of which can be applied in combination;

– LoLA offers specialized reduction techniques for every property listed in the
previous section;

– LoLA uses the formalism of place/transition nets which can be handled much
easier than a high-level net formalism;

– The core procedures in LoLA exploit the basic characteristics of Petri nets
as mentioned in the introduction.

4 Core Procedures in a State Space Generator

In this section, we demonstrate how the basic characteristics of Petri nets can
be taken care of in the implementation of a state space generator. A state space
generator is basically an implementation of a search through the state graph,
typically a depth-first search. The elementary steps of a depth-first search include
the following steps, each discussed in a dedicated subsection. When discussing
complexity, we assume the investigated system to be distributed. Formally, we
assume that there is a fixed value k such that every transition has, indepen-
dently of the size of the net, at most k pre- and post-places. Several realistic
distributed systems satisfy such a requirement for a reasonably small k, for even
more systems there are only few transitions violating the assumption.

Generating Petri Net State Spaces 35

Firing a Transition
By firing a transition, we proceed from one state to a successor state. In a Petri net,
the occurrence of a transition t changes the marking of at most card(•t)+card(t•)
places. According to the assumption made above, this number is smaller than 2k.
By maintaining, for each transition, an array of pre- and post-places, it is indeed
possible to implement the occurrence of a transition in time O(1). The ability to
easily implement the firing process in constant time can be contributed to local-
ity. In fact, other formalisms exhibiting locality have the same opportunity (like
the model checking tool SPIN [Hol91] using the guarded command style language
PROMELA. In contrast, the input language of the model checker SMV [McM02]
does not support explicitly a notation of locality, and it would require a lot of ex-
pensive analysis for an explicit model checker to retrieve information on locality
from SMV input. Note that SMV is not an explicit model checker, so this consid-
eration does not concern SMV as such.

Checking Enabledness
The enabling status of a transition can change only due to the occurrence of a
transition t. So, except, for an initial enabledness check on the initial marking,
the check for enabledness can be reduced to the transitions in •t ∪ t•. This
approach is again feasible for all formalisms exhibiting locality. For Petri nets,
however, the check for enabledness can be further refined due to the monotonicity
of the enabling condition. If t′ is enabled before having fired t, and t is only
adding tokens to places in •t′, it is clear that t′ is still enabled after having
fired t. Likewise, a previously disabled t′ remains disabled if t only removes
tokens from •t′. This way, the number of enabledness checks after a transition
occurrence can be significantly reduced. In LoLA, we maintain two separate
lists of transitions for each t: those that can potentially be enabled by t (must
be checked if they have been disabled before), and those that can be potentially
disabled by t (must be checked if they have been enabled before). Through an
additional treatment of all enabled transitions as a doubly linked list (with the
opportunity to delete and insert an element at any position), it is possible to
retrieve a list of enabled transitions in a time linear to the number of enabled
transitions (which is typically an order of magnitude smaller than the overall
number of transitions).

Returning to a Previously Seen Marking
In depth-first search, we typically have a stack of visited but not fully explored
markings. This stack actually forms a path in the state space, that is, the im-
mediate successor of marking m on the stack is reachable from m through firing
a single transition. After having fully explored marking m on top of the stack,
we proceed with its immediate predecessor m′ on this stack. As Petri nets enjoy
the linearity of the firing rule, there is a strikingly simple solution to this task:
just fire the transition backwards that transformed m′ to m. This way, it takes
constant effort to get back to m′.

36 K. Wolf

For assessing the value of this implementation, let us discuss potential al-
ternatives. Of course, it would be possible to maintain a stack that holds full
markings. Then returning to a previous marking amounts to redirecting a single
pointer. But in depth-first exploration, the search stack typically holds a sub-
stantial number of visited states, so this approach would pay space for time.
In state space verification, space is, however, the by far more limited resource.
Another solution suggests to maintain, for each stack element, a pointer into the
repository of visited markings. This data structure is, in principle, maintained
in any explicit state space verification, so this solution would not waste memory
at the first glance. For saving memory, it is, however, highly recommendable
to deposit visited markings in a compressed form [WL93]. Thus, calculations
on a marking in this compressed form require nontrivial run time. Finally, this
solution prohibits approaches of storing only some reachable markings in the
repository (see Sec. 5 for a discussion on such a method).

Maintaining the Visited Markings
According to the proposal to organize backtracking in the search by through
firing transitions backwards, there are only two operations which need to be
performed for on the set of visited markings. One operation is to search whether
a newly encountered marking has been seen before, the other is to insert that
marking if it has not. All other operations, including the evaluation of state
predicates, computing the enabled transitions, computing successor and prede-
cessor markings etc. can be performed on a single uncompressed variable, call
it CurrentMarking (in the case of LoLA: an array of integers). For searching
CurrentMarking and inserting it in the depository, we can look up and insert
its compressed version.

In consequence, it is at no stage of the search necessary to uncompress a
marking! This fact can be exploited for compressions where the uncompression
is hard to realize. In LoLA, we have implemented such a technique [Sch03] that
is based on place invariants (thus, a benefit from the linearity of the firing rule).
Using a place invariant I, we can express the number of tokens of one place
p in supp(I) in terms of the others. We can thus exempt the value of p from
being stored in any marking. Given n linearly independent place invariants, the
number of values to be stored can be reduced by n. The number n typically
ranges between 20% and 60% of the overall number of places, so the reduction
is substantial. It does not only safe space but time as well. This is due to the
fact that a look up in the depository is now performed on a smaller vector.

Compressing a marking according to this technique is rather easy: we just
need to throw away places marked a “dependent” in a preprocessing stage. Un-
compressing would require an evaluation of the justifying place invariant. In
particular, it would be necessary to keep the invariant permanently in storage!
In LoLA, we do not need to keep them. Concerning space, the additional costs of
the approach, beyond preprocessing, amount to one bit (“dependent”) for each
place. Even in preprocessing, it is not necessary to fully compute the invari-
ants. As explained in [Sch03], the information about mutual dependency can be

Generating Petri Net State Spaces 37

deduced from an upper triangle form of the net incidence matrix, an interme-
diate stage of the calculation. This, way, invariant based preprocessing requires
less than a second of run time even for a net with 5.000 places and 4.000 transi-
tions. In that particular system, we would have 2.000 linearly independent place
invariants (each being a vector of length 5.000!).

Breadth-First Search
While depth-first search is the dominating technique for state space exploration,
breadth-first search can be used for some purposes as well, for instance for the
calculation of a shortest path to some state. In breadth-first search, subsequently
considered states are not connected by a transition occurrence. Nevertheless,
it is possible to preserve some of the advantages of the backtracking through
firing transitions. In LoLA, we mimic breadth-first search by a depth-first search
with an incrementally increased depth restriction. That is, we proceed to the
next marking to be considered by stepping back a few markings (through firing
some transitions backwards) and then firing some other transitions forward. The
average number of transitions to be fired is reasonably small as the number of
states tends to grow exponentially with increased depth. This is true even for
reduced state spaces, as some of the most powerful reduction techniques require
the use of depth-first search.

5 Reduction Techniques

In this section, we discuss a few state space reduction techniques and show that
the basic characteristics of Petri nets lead to specific solutions.

Partial Order Reduction
Roughly spoken, the purpose of partial order reduction is to suppress as many
as possible interleaved firings of concurrently enabled transitions. This goal is
achieved by considering, in each marking, only a subset of the enabled transi-
tions. This subset is computed such that a given property or class of properties
is preserved in the reduced state space.

It is well-known that locality is the major pre-requisite of the stubborn set
method [Val88] and other methods of partial order reduction [Pel93, GW91,
GKPP95]. Furthermore, linearity of the firing rule turns out to be quite benefi-
cial. The reason is that partial order reduction is, among others, concerned with
permutations of firing sequences. It is typically desired that a firing sequence
reaches the same marking as the permuted sequence. Due to the linearity of
the firing rule, this property comes free for Petri nets. For other formalisms, it
needs to be enforced, as can be seen in [Val91]. This way, other formalisms have
additional limitations in the application of partial order reduction.

For partial order reduction, there is another source of efficiency that is worth
being mentioned. It is not related to the formalism of Petri nets itself, but with

38 K. Wolf

the tradition of Petri net research. In the area of Petri nets, people have studied
a broad range of singular properties such as boundedness, liveness, reversibility,
reachability, deadlock freedom, etc. Following this tradition, it was apparent
to support each of these properties with a dedicated version of partial order
reduction [Sch99,Sch00d,KV00,KSV06]. In contrast, it is the tradition of model
checking to support a rich language or two (such as the temporal logics CTL
[Eme90] or LTL [MP92]). According this line of research, people came up with
reduction techniques that support the whole language [Pel93, GKPP95]. It is
evident, that a dedicated reduction technique for property X can lead to a
better reduction than a generic technique for a specification language can can
express X . We believe that this observation is crucial for the competitivity of
LoLA in various areas.

The Symmetry Method
Symmetrically structured systems exhibit a symmetric behavior. Exploiting sym-
metry means to suppress consideration of a state if a symmetric state has been
considered before.

Most approaches search for symmetric structures in data types of the spec-
ification. The most popular data type in this respect is the so-called scaler
set [DDHC92] where variables can be compared for equality, used as indices in
arrays and order-independent loops, while there are no constants of that type.
In [CDFH90], a rather sophisticated detection of symmetric structure in data
types is described.

Due to the locality of Petri nets, place/transition nets have a rather fine
grained graphical representation. This feature enables another approach to find-
ing symmetries in the structure: we can compute the graph automorphisms of
the Petri net graph [Sta91, Sch00a, Sch00b, Jun04]. There is a polynomial size
generating set of the automorphism group of a graph, and it can be computed
in reasonable time (though not always in polynomial time). The generating set
is sufficient for an approximated calculation of a canonical representative of a
marking [Sch00b], a method for detecting previously seen symmetric states dur-
ing state space calculation. The graph automorphism based approach to sym-
metry is a unique feature of LoLA and INA [RS98] (both implemented by the
author of this article).

The main advantage of the graph automorphism approach is that it can rec-
ognize arbitrary symmetry groups while the data type approach is restricted to
a couple of standard symmetries.

The Sweep-Line Method
The sweep-line method assumes that there is a notion of progress in the system
evolution. That is, assigning a progress value to each state, successor markings
tend to have larger progress values than their predecessors. This observation
can be exploited by traversing the search space in order of increasing progress
values, and to remove visited markings from the depository which have smaller

Generating Petri Net State Spaces 39

progress value than the currently considered markings. For reason of correctness,
markings which are reached through a transition that decreases the progress
value, are stored permanently, and their successors are encountered.

The original method [Mai03,CKM01,KM02] assumes that the progress mea-
sure is given manually. However, exploiting the linearity of the Petri net firing
rule, it is possible to compute a progress measure automatically. The measure
being calculated assigns some arbitrary progress value, say 0, to the initial state.
Then, each transition t gets an offset o(t) such that, if t fired in m leads to m′, the
progress value of m′ is just the progress value of m plus o(t). For correctness, it
is important that different firing sequences from the initial marking to a marking
m all yield the same progress value for m. This can, however, been taken care of
by studying linear dependencies between transition vectors. In LoLA, we com-
pute the measure by assigning an arbitrary offset, say 1, to each transition in a
maximum size linearly independent set U of transitions. For the remaining tran-
sitions (which are linear combinations of U) the offset is then determined by the
correctness requirement stated above. All applications of the sweep-line method
reported in this article have been conducted with an automatically computed
progress measure.

Cycle Coverage
The depository of visited markings is the crucial date structure in a state space
verification. In explicit methods, the size of the depository grows with the number
of visited states. The number of states to be stored can, however, be reduced in a
trade that sells time for space. By simply exempting states from being stored, we
obviously safe space but lose time as, in a revisit to a forgotten state, its successors
are computed once again. For an implementation of this idea, it is, as for instance
observed in [LLPY97], important to store at least one marking of each cycle in the
state graph. This condition actually ensure termination of the approach.

Thanks to linearity in the Petri net firing rule, it is fairly easy to characterize
a set of states such that every cycle in the state graph is covered. We know
that every firing sequence that reproduces the start marking forms a transition
invariant. Thus, choosing a set of transitions U such that the support of every
transition invariant contains an element from U , it is evident that every cycle in
the state graph contains at least one marking where a transition in U is enabled.
This approach has been described in [Sch03].

Combination of Reduction Techniques
Most techniques mentioned above can be applied in combination. The combined
application typically leads to additional reduction like in the case of joint applica-
tion of partial order reduction with the symmetry method. For some reduction
techniques, we experienced that their joint application with another technique
is actually a pre-requisite for a substantial reduction as such. For instance, the
sweep-line method only leads to marginal reduction for Petri nets with a lot of
cycles [Sch04]. Also, the cycle coverage reduction does not perform well on such
systems [Sch03]. Both methods can, however, lead to substantial (additional!) re-
duction when they are applied to a stubborn set reduced state space. This is due to

40 K. Wolf

a particular effect of partial order reduction. If a system consists of several, mostly
concurrently evolving, cyclic components, then the almost arbitrary interleaving
of transitions in these components closes a cycle in almost every reachable state.
This causes a tremendous number of regress transitions in the sweep-line method
(and thus a huge number of states to be stored permanently) and a huge number
of states to be stored with the cycle coverage reduction. Partial order reduction
decouples the arbitrary interleaving of concurrent components. A partial order re-
duced state space contains only a fraction of the cycles of the original state space,
and the remaining cycles tend to be significantly larger.

6 Conclusion

Petri nets as a formalism for modeling systems enjoy specific properties including
locality, linearity and monotonicity. These properties lead to specific verification
techniques such as the coverability graph, the invariant calculus, siphon/trapbased
analyses, or the unfolding approach. In this article we demonstrated, that the spe-
cific properties of Petri nets are as well beneficial for the implementation of tech-
niques which are otherwise applicable in other formalisms as well. Our discussion
covered explicit state space verification as such, but also a number of state space
reduction techniques all of which can be applied to several modeling languages.

All mentioned methods have been implemented in the tool LoLA. LoLA is
able to solve problems that have practical relevance. We hold three reasons
responsible for the performance of LoLA:

– A consistent exploitation of the basis characteristics of Petri nets,
– A broad variety of reduction techniques which can be applied in many com-

binations, and
– The availability of dedicated reduction techniques for frequently used singu-

lar properties.

In this light, it is fair to say that LoLA is a Petri net state space tool.

References

[Ber86] Berthelot, G.: Checking properties of nets using transformations. Advances
in Petri Nets, pp. 19–40 (1986)

[CDFH90] Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well–formed
colored nets and their symbolic reachability graph. In: Proc. ICATPN, pp.
378–410 (1990)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronisation
skeletons using brnaching tim temporal logic. In: Logics of Programs.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

[CKM01] Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for
state space exploration. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and
TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)

[Com72] Commoner, F.: Deadlocks in Petri nets. Technical report, Applied Data
Research Inc. Wakefield, Massachussetts (1972)

Generating Petri Net State Spaces 41

[Cur+03] Curbera, F., et al.: Business process execution language for web services,
version 1.1. Technical report, BEA, IBM, Microsoft (2003)

[DDHC92] Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a
hardware design aid. In: Proc. IEEE Int. Conf. Computer Design: VLSI
in Computers and Processors, pp. 522–525 (1992)

[Eme90] Emerson, E.A.: Handbook of Theoretical Computer Science. Chapter 16.
Elsevier, Amsterdam (1990)

[Esp92] Esparza, J.: Model checking using net unfoldings. Technical Report 14/92,
Universität Hildesheim (1992)

[Fin90] Finkel, A.: A minimal coverability graph for Petri nets. In: Proc. ICATPN,
pp. 1–21 (1990)

[GKPP95] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach
to branching time logic model checking. In: Symp. on the Theory of Com-
puting and Systems, IEEE, pp. 130–140 (1995)

[GL83] Genrich, H., Lautenbach, K.: S–invariance in Pr/T–nets. Informatik–
Fachberichte 66, 98–111 (1983)

[GW91] Godefroid, P., Wolper, P.: A partial approach to model checking. In: IEEE
Symp. on Logic in Computer Science, pp. 406–415 (1991)

[Hol91] Holzmann, G.: Design an Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs (1991)

[HSS05] Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In:
Proc. BPM, LNCS 3649, pp. 220–235 (2005)

[Jen81] Jensen, K.: Coloured Petri nets and the invariant method. Theoretical
Computer Science 14, 317–336 (1981)

[Jun04] Junttila, T.: New canonical representative marking algorithms for
place/transition nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 258–277. Springer, Heidelberg (2004)

[KM69] Karp, R.M., Miller, R.E.: Parallel programm schemata. Journ. Computer
and System Sciences 4, 147–195 (1969)

[KM02] Kristensen, L.M., Mailund, T.: A generalized sweep-line method for safety
properties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 549–567. Springer, Heidelberg (2002)

[KPA99] Kordon, F., Paviot-Adet, E.: Using CPN-AMI to validate a sfae channel
protocol. Tool presentation at ICATPN (1999)

[KSV06] Kristensen, L., Schmidt, K., Valmari, A.: Question-guided stubborn set
methods for state properties. Formal Methods in System Design 29(3),
215–251 (2006)

[KV00] Krisensen, L.M., Valmari, A.: Improved question-guided stubborn set
methods for state properties. In: Proc. ICATPN, pp. 282–302 (2000)

[KW01] Kindler, E., Weber, M.: The Petri net kernel - an infrastructure for building
petri net tools. STTT 3 (4), 486–497 (2001)

[LLPY97] Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of
real-time systems: compact data structure and state-space reduction. In:
Proc. IEEE Real-Time Systems Symp., pp. 14–24 (1997)

[LS74] Lautenbach, K., Schmidt, H.A.: Use of Petri nets for proving correctness
of concurrent process systems. IFIP Congress, pp. 187-191 (1974)

[McM02] McMillan, K.: The SMV homepage.
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/

[Mai03] Mailund, T.: Sweeping the State Space - a sweep-line state space explo-
ration method. PhD thesis, University of Aarhus (2003)

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

42 K. Wolf

[MP92] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems, vol. 1: Specification. Springer, Heidelberg (1992)

[McM92] McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
verification of asynchronious circuits. In: Probst, D.K., von Bochmann, G.
(eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

[Pel93] Peled, D.: All from one, one for all: on model–checking using representi-
tives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423.
Springer, Heidelberg (1993)

[QS81] Quielle, J.P., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: International Symposium on Programming. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1981)

[RS98] Roch, S., Starke, P.: INA Integrierter Netz Analysator Version 2.1. Tech-
nical Report 102, Humboldt–Universität zu Berlin (1998)

[Sch99] Schmidt, K.: Stubborn set for standard properties. In: Donatelli, S., Kleijn,
J.H.C.M. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Hei-
delberg (1999)

[Sch00a] Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informat-
ica 36, 545–590 (2000)

[Sch00b] Schmidt, K.: Integrating low level symmetries into reachability analysis.
In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000.
LNCS, vol. 1785, pp. 315–331. Springer, Heidelberg (2000)

[Sch00c] Schmidt, K.: LoLA – a low level analyzer. In: Nielsen, M., Simpson, D.
(eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg
(2000)

[Sch00d] Schmidt, K.: Stubborn set for modelchecking the EF/AG fragment of CTL.
Fundamenta Informaticae 43 (1-4), 331–341 (2000)

[Sch03] Schmidt, K.: Using Petri net invariants in state space construction. In:
Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS,
vol. 2619, pp. 473–488. Springer, Heidelberg (2003)

[Sch04] Schmidt, K.: Automated generation of a progress measure for the sweep-
line method. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 192–204. Springer, Heidelberg (2004)

[SSE03] Schröter, C., Schwoon, S., Esparza, J.: The Model-Checking Kit. In: van
der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
463–472. Springer, Heidelberg (2003)

[SRK05] Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper:
A case study. In: Proc. ACSD, pp. 234–243 (2005)

[Sta91] Starke, P.: Reachability analysis of Petri nets using symmetries. J. Syst.
Anal. Model. Simul. 8, 294–303 (1991)

[Tal07] Talcott, C.: Personal communication. Dagstuhl Seminar (February 2007)
[T4B07] Reisig, W., et al.: The homepage of the project Tools4BPEL http://www2.

informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/
[Val88] Valmari, A.: Error detection by reduced reachability graph generation. In:

ICATPN (1988)
[Val91] Valmari, A.: Stubborn sets for reduced state space generation. In: Ad-

vances in Petri Nets 1990. LNCS, vol. 483, pp. 491–511. Springer, Heidel-
berg (1991)

[WL93] Wolper, P., Leroy, D.: Reliable hashing without collision detection. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer,
Heidelberg (1993)

http://www2.informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/
http://www2.informatik.hu-berlin.de/top/forschung/projekte/tools4bpel/

Markov Decision Petri Net and Markov Decision

Well-Formed Net Formalisms

M. Beccuti, G. Franceschinis1,�, and S. Haddad2,��

1 Univ. del Piemonte Orientale
giuliana.franceschinis@mfn.unipmn.it

2 LAMSADE CNRS, Univ. Paris Dauphine
haddad@lamsade.dauphine.fr

Abstract. In this work, we propose two high-level formalisms, Markov
Decision Petri Nets (MDPNs) and Markov Decision Well-formed Nets
(MDWNs), useful for the modeling and analysis of distributed systems
with probabilistic and non deterministic features: these formalisms allow a
high level representation of Markov Decision Processes. The main advan-
tages of both formalisms are: a macroscopic point of view of the alternation
between the probabilistic and the non deterministic behaviour of the sys-
tem and a syntactical way to define the switch between the two behaviours.
Furthermore, MDWNs enable the modeller to specify in a concise way
similar components. We have also adapted the technique of the symbolic
reachability graph, originally designed for Well-formed Nets, producing a
reduced Markov decision process w.r.t. the original one, on which the anal-
ysis may be performed more efficiently. Our new formalisms and analysis
methods are already implemented and partially integrated in the Great-
SPN tool, so we also describe some experimental results.

1 Introduction

Markov Decision Processes (MDP). Since their introduction in the 50’s, Markov
Decision process models have gained recognition in numerous fields including
computer science and telecommunications [13]. Their interest relies on two com-
plementary features. On the one hand, they provide to the modeler a simple
mathematical model in order to express optimization problems in random en-
vironments. On the other hand, a rich theory has been developed leading to
efficient algorithms for most of the practical problems.

Distributed Systems and MDPs. The analysis of distributed systems mainly
consists in (1) a modeling phase with some high-level formalism like Petri nets
(PN) or process algebra, (2) the verification of properties expressed in some logic
(like LTL or CTL) and (3) the computation of performance indices by enlarging
the model with stochastic features and applying either (exact or approximate)
� The work of these authors was supported in part with the Italian MUR “local”

research funds.
�� The work of this author was supported in part by ANR Setin project CheckBound.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 43–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

44 M. Beccuti, G. Franceschinis, and S. Haddad

analysis methods or simulations. In this framework, a MDP may be viewed as a
model of a distributed system where it is possible to perform a non deterministic
choice among the enabled actions (e.g., the scheduling of tasks) while the effect of
the selected action is probabilistic (e.g., the random duration of a task). Then,
with appropriate techniques, one computes the probability that a property is
satisfied w.r.t. the “worst” or the “best” behavior [3,7]. The time model that
will be considered in this paper is discrete: each non deterministic choice is
taken in a given decision epoch, after the probabilistic consequence of the choice
has been performed, a new decision epoch starts.

Here the way we model distributed systems by MDPs is rather different. Dur-
ing a phase, the system evolves in a probabilistic manner until periodically a (hu-
man or automatic) supervisor takes the control in order to configure, adapt or
repair the system depending on its current state before the next phase. In other
words, usual approaches consider that the alternation between non determinis-
tic and probabilistic behavior occurs at a microscopic view (i.e., at the transition
level) whereas our approach adopts a macroscopic view of this alternation (i.e., at
a phase level). It should be emphasized that, depending on the applications, one
or the other point of view should be preferred and that the user should have an ap-
propriate formalism and associated tools for both cases. For instance PRISM [11],
one of the most used tools in this context, works at the microscopic level whereas
the formalism of stochastic transition systems is based on a macroscopic view [8].
The latter formalism is a slight semantical variation of generalized stochastic Petri
nets [12] where the choice among the enabled immediate transitions is performed
non deterministically rather than probabilistically. Despite its simplicity, this for-
malism has a serious drawback for the design process since the modeler has no
mean to syntactically define the switches between the probabilistic behavior and
the non deterministic one. Furthermore, the difference between the distributed fea-
ture of the probabilistic behavior and the centralized one of the non deterministic
behavior is not taken into account.

Our contribution. In this work, we propose a high-level formalism in order to
model distributed systems with non deterministic and probabilistic features.
Our formalism is based on Well-formed Petri Nets (WN) [4]. First, we introduce
Markov Decision Petri nets (MDPN): an MDPN is defined by three parts, a
set of active components (e.g., processes or machines), a probabilistic net and a
non deterministic net. Every transition of the probabilistic net is triggered by a
subset of components. When every component has achieved the activities related
to the current probabilistic phase, the supervisor triggers the non deterministic
transitions in order to take some decisions, either relative to a component or
global. Every transition has an attribute (run/stop) which enables the modeler to
define when the switches between the nets happen. The semantics of this model
is designed in two steps: a single Petri net can be derived from the specification
and its reachability graph can be transformed with some additional information,
also specified at the MDPN level, into an MDP.

Distributed systems often present symmetries i.e, in our framework, many
components may have a similar behavior. Thus, both from a modeling and an

MDPN and Markov Decision Well-Formed Net Formalisms 45

analysis point of view, it is interesting to look for a formalism expressing and ex-
ploiting behavioral symmetries. So we also define Markov Decision Well-formed
nets (MDWN) similarly as we do for MDPNs. The semantics of a model is then
easily obtained by translating a MDWN into a MDPN. Furthermore, we develop
an alternative approach: we transform the MDWN into a WN, then we build the
symbolic reachability graph of this net [5] and finally we transform this graph
into a reduced MDP w.r.t. the original one. We argue that we can compute
on this reduced MDP, the results that we are looking for in the original MDP.
The different relations between the formalisms are shown in the figure depicted
below. Finally we have implemented our analysis method within the GreatSPN
tool [6] and performed some experiments.

Organization of the paper. In section 2, we recall basic notions relative to MDPs,
then we define and illustrate MDPNs. In section 3, we introduce MDWNs and
develop the corresponding theoretical results. In section 4, we present some ex-
perimental results. In section 5, we discuss related work. Finally we conclude
and give some perspectives in section 6.

2 Markov Decision Petri Net

2.1 Markov Decision Process

A (discrete time and finite) MDP is a dynamic system where the transition
between states (i.e., items of S a finite set) are obtained as follows. First, given
s the current state, one non deterministically selects an action among the subset
of actions currently enabled (i.e., As). Then one samples the new state w.r.t. to
a probability distribution depending on s and a ∈ As (i.e., p(·|s, a)). An MDP
includes rewards associated with state transitions; here, we choose a slightly
restricted version of the rewards that do not depend on the destination state (i.e.,
r(s, a)). Starting from such elementary rewards, different kinds of global rewards
may be associated with a finite or infinite execution thus raising the problem to
find an optimal strategy w.r.t. a global reward. For sake of simplicity, we restrict
the global rewards to be either the expected total reward or the average reward.
The next definitions formalize these concepts.

Definition 1 (MDP). An MDP M is a tuple M = 〈S, A, p, r〉 where:

– S is a finite set of states,
– A is a finite set of actions defined as

⋃
s∈S As where As is the set of enabled

actions in state s,

46 M. Beccuti, G. Franceschinis, and S. Haddad

– ∀s ∈ S, ∀a ∈ As, p(·|s, a) is a (transition) probability distribution over S such
that p(s′|s, a) is the probability to reach s′ from s by triggering action a,

– ∀s ∈ S, ∀a ∈ As, r(s, a) ∈ R is the reward associated with state s and action a.

A finite (resp. infinite) execution of an MDP is a finite (resp. infinite) se-
quence σ = s0a0 . . . sn (resp. σ = s0a0 . . .) of alternating states and actions, s.t.
∀i, si ∈ S ∧ ai ∈ Asi and p(si+1|si, ai) > 0.

The total reward of such an execution is defined by trw(σ) =
∑n−1

i=0 r(si, ai)
(resp. trw(σ) = limn→∞

∑n−1
i=0 r(si, ai) provided the limit exists) and its average

reward is arw(σ) = 1
n

∑n−1
i=0 r(si, ai) (resp. arw(σ) = limn→∞ 1

n

∑n−1
i=0 r(si, ai)

provided the limit exists).

We denote SEQ∗(M) (resp. SEQ∞(M)) the set of finite (resp. infinite) se-
quences. A strategy st is a mapping from SEQ∗(M) to A such that st(s0a0 . . . sn)
belongs to Asn . Since a strategy discards non determinism, the behavior of M
w.r.t. st is a stochastic process Mst defined as follows. Assume that the current
execution is some s0a0 . . . sn then an = st(s0a0 . . . sn) and the next state sn+1
is randomly chosen w.r.t. distribution p(·|sn, an). Consequently, the reward of
a random sequence of Mst is a random variable and the main problem in the
MDP framework is to maximize or minimize the mean of this random variable
and to compute the associated strategy when it exists. In finite MDPs, efficient
solution techniques have been developed to this purpose [13].

Here we want to model systems composed by multiple active components
whose behavior during a period is described in a probabilistic way and a cen-
tralized decision maker taking some decisions between execution periods (e.g.,
assigning available resources to components). Let us illustrate this kind of sys-
tems by a toy example. Imagine an information system based on two redundant
computers: this system is available as long as one computer is in service. A com-
puter may fail during a period. At the end of a period, the decision maker can
choose to send a single repairman to repair a faulty computer when he is not
yet busy. There is a fixed probability that the repairing ends inside the period.
In this framework, the rewards denote costs (for unavailability and repairs) and
the analysis aims at minimizing them. The MDP corresponding to this system is
shown in Fig. 1, where the states description does not maintain the distinction
between the components; this is only possible when the computers are identical.

The design of this MDP is rather easy. However when the system has more
computers and repairmen with different behaviors, then modeling it at the MDP
level becomes unfeasible.

2.2 Markov Decision Petri Net

A Markov Decision Petri Net MN is composed by two different parts (i.e. two
extended Petri nets): the probabilistic one Npr and the non deterministic one
Nnd called the decision maker ; it is thus possible to clearly distinguish and
design the probabilistic behavior of the system and the non deterministic one.
The probabilistic part models the probabilistic behavior of the system and can

MDPN and Markov Decision Well-Formed Net Formalisms 47

Fig. 1. Symbolic representation of the MDP modeling in this section

be seen as composition of a set of n components (Comppr) that can interact;
instead the non deterministic part models the non deterministic behavior of the
system where the decisions must be taken (we shall call this part the decision
maker). Hence the global system behavior can be described as an alternating
sequence of probabilistic and non deterministic phases.

The probabilistic behavior of a component is characterized by two different
types of transitions Trunpr and Tstoppr. The Trunpr transitions represent in-
termediate steps in a probabilistic behavior phase and can involve several com-
ponents (synchronized through that transition), while the Tstoppr ones always
represent the final step of the probabilistic phase of at least one component.

In the non deterministic part, the decisions can be defined at the system
level (transitions of T nd

g) or at the component level (transitions of T nd
l). The

sets T nd
g and T nd

l are again partitioned in Trunnd
g and Tstopnd

g , and Trunnd
l

and Tstopnd
l with the same meaning. The decision maker does not necessarily

control every component and may not take global decisions. Thus the set of
controllable “components” Compnd is a subset of Comppr � {ids} where ids

denotes the whole system.
The probabilistic net is enlarged with a mapping weight associating a weight

with every transition in order to compute the probabilistic choice between tran-
sitions enabled in a marking. Furthermore it includes a mapping act which asso-
ciates to every transition the subset of components that (synchronously) trigger
the transition. The non deterministic net is enlarged with a mapping obj which
associates with every transition the component which is involved by the transi-
tion. The following definition summarizes and formalizes this presentation.

Definition 2 (Markov Decision Petri Net (MDPN)). A Markov Decision
Petri Net (MDPN) is a tuple MN = 〈Comppr, Compnd, Npr, Nnd〉 where:

– Comppr is a finite non empty set of components;
– Compnd ⊆ Comppr � {ids} is the non empty set of controllable components;
– Npr is defined by a PN with priorities [12] 〈P, T pr, Ipr, Opr, Hpr, priopr, m0〉,

a mapping weight: T pr → R and a mapping act: T pr → 2Comppr

. Moreover
T pr = Trunpr � Tstoppr

– Nnd is defined by a PN with priorities 〈P, T nd, Ind, Ond, Hnd, priond, m0〉
and a mapping obj: T nd → Compnd. Moreover T nd = Trunnd � Tstopnd.

48 M. Beccuti, G. Franceschinis, and S. Haddad

Furthermore, the following constraints must be fulfilled:

– T pr ∩ T nd = ∅. A transition cannot be non deterministic and probabilistic.
– ∀id ∈ Comppr, ∃C ⊆ Comppr, s.t. id ∈ C and act−1({C}) ∩ Tstoppr = ∅.

Every component must trigger at least one final probabilistic transition.
– ∀id ∈ Compnd, obj−1({id}) ∩ Tstopnd = ∅. Every controllable component

must be the object of at least one final non deterministic transition.

Note that the probabilistic part and the decision maker share the same set of
places and the same initial marking. Let us now introduce the rewards associated
with the MDPN net. As will be developed later, an action of the decision maker
corresponds to a sequence of transition firings starting from some marking. We
choose to specify a reward by first associating with every marking m a reward
rs(m), with every transition t a reward rt(t) and then by combining them with
an additional function rg (whose first parameter is a state reward and the second
one is a reward associated with a sequence of transition firings). The requirement
on its behavior given in the next definition will be explained when presenting
the semantics of a MDPN.

Definition 3 (MDPN reward functions). Let MN be a MDPN. Then its
reward specification is given by:

– rs : N
P → R which defines for every marking its reward value.

– rt : T nd → R which defines for every transition its reward value.
– rg : R × R → R, not decreasing w.r.t its second parameter.

An example of (a portion of) probabilistic and non deterministic subnets is shown
in Fig. 3: in the framework of the MDPN formalism, the annotations on arcs and
next to the places and transitions should be ignored. The decision maker imple-
ments the possible ways of assigning resources (e.g. for component repair) to those
components that need them (e.g. failed components): for each component need-
ing a resource two possibilities are included, namely assign or not assign resource.
The probabilistic part shows 3 system components: two of them are controllable
(let’s call them Proc and Mem), one is not controllable (let’s call it ResCtr). The
Proc and Mem components can work fine or fail, the third one supervises the re-
pair process (when the resource is available) and the Proc and/or Mem resume
phase. Tstop transitions are e.g. WorkFineProc, WaitRepProc, ResumeProc, Re-
sumeMemProc, the first two involving only Proc, the third involving Proc and
ResCtr, the last one involving all three components; the firing of these tran-
sitions mean that the involved components have reached a stable state in the
current decision epoch. Trun transitions are e.g. FailProc, FailMem involving re-
spectively Proc and Mem, and EndRep involving only ResCtr. These transitions
represent intermediate steps in the components evolution (e.g. a failure can be
followed by a wait for repair resource or a resume final step).

MDPN Semantics. The MDPN semantics is given in three steps. First, one
composes the probabilistic part and the decision maker in order to derive a
unique PN. Then one generates the (finite) reachability graph (RG) of the PN.
At last, one produces an MDP from it.

MDPN and Markov Decision Well-Formed Net Formalisms 49

Fig. 2. Arcs connecting the places Stoppr
i , Runnd

i and the transition PrtoNd; arcs
connecting the places Stopnd

i , Runnd
i and the transition NdtoPr

From MDPN to PN. First we explain the semantics of additional places Stoppr
i ,

Runpr
i , Stopnd

i , Runnd
i , Stopnd

0 and Runnd
0 and additional non deterministic

transitions PrtoNd and NdtoPr. Places Stoppr
i , Runpr

i , Stopnd
i , Runnd

i , Stopnd
0

and Runnd
0 regulate the interaction among the components, the global system and

the decision maker. There are places Runpr
i , Stoppr

i for every component i, while
we insert the places Runnd

0 and Stopnd
0 if the decision maker takes same global de-

cision and the pair of places Runnd
i and Stopnd

i for every controllable component
i ∈ Compnd. Non deterministic transitions PrtoNd and NdtoPr ensure that the
decision maker takes a decision for every component in every time unit: the for-
mer triggers a non deterministic phase when all the components have finished their
probabilistic phase whereas the latter triggers a probabilistic phase when the de-
cision maker has taken final decisions for every controllable component.

The scheme describing how these additional items are connected together
and with the nets of the MDPN is shown in Fig. 2. The whole PN N comp =
〈P comp, T comp, Icomp, Ocomp, Hcomp, priocomp, mcomp

0 〉 related to a MDPN MN
is defined below.

– P comp = P �i∈Comppr {Runpr
i , Stoppr

i } �i∈Compnd
{Runnd

i , Stopnd
i }

– T comp = T pr � T nd � {PrtoNd, NdtoPr}
– The incidence matrices of N comp are defined by:

• ∀p ∈ P, t ∈ T nd,
Icomp(p, t) = Ind(p, t), Ocomp(p, t) = Ond(p, t), Hcomp(p, t) = Hnd(p, t)

• ∀p ∈ P, t ∈ T pr,
Icomp(p, t) = Ipr(p, t), Ocomp(p, t) = Opr(p, t), Hcomp(p, t) = Hpr(p, t)

• ∀t ∈ Tstoppr s.t. i ∈ act(t) : Icomp(Runpr
i , t) = Ocomp(Stoppr

i , t) = 1
• ∀t ∈ Trunpr s.t. i ∈ act(t) : Icomp(Runpr

i , t) = Ocomp(Runpr
i , t) = 1

• ∀t ∈ Tstopnd s.t. i ∈ act(t) : Icomp(Runnd
i , t) = Ocomp(Stopnd

i , t) = 1
• ∀t ∈ Trunnd s.t. i ∈ act(t) : Icomp(Runnd

i , t) = Ocomp(Runnd
i , t) = 1

50 M. Beccuti, G. Franceschinis, and S. Haddad

• ∀i ∈ Comppr : Icomp(Stoppr
i , P rtoNd) = Ocomp(Runpr

i , NdtoPr) = 1
• ∀i ∈ Compnd : Icomp(Stopnd

i , NdtoPr,) = Ocomp(Runnd
i , P rtoNd) = 1

• for all I(p, t), O(p, t), H(p, t) not previously defined,
Icomp(p, t) = Ocomp(p, t) = 0, Hcomp(p, t) = ∞;

– ∀t ∈ T nd, prio(t) = priond(t), ∀t ∈ T pr, prio(t) = priopr(t),
prio(PrtoNd) = prio(NdtoPr) = 1, (actually these values are irrelevant)

– ∀p ∈ P, mComp
0 (p) = m0(p), mComp

0 (Runnd
i) = 1,

mComp
0 (Stopnd

i) = mComp
0 (Runpr

i) = mComp
0 (Stoppr

i) = 0.

RG semantics and transitions sequence reward. Considering the RG obtained
from the PN we observe that the reachability set (RS) can be partitioned into
two subsets: the non deterministic states (RSnd), in which only non determin-
istic transitions are enabled, and the probabilistic states (RSpr), in which only
probabilistic transitions are enabled. By construction, the PN obtained from a
MDPN can never reach a state enabling both nondeterministic and probabilistic
transitions. A probabilistic transition can be enabled only if there is at least one
place Runpr

i with m(Runpr
i) > 0, while a non deterministic transition can be

enabled only if there is at least one place Runnd
i with m(Runnd

i) > 0. Initially
only Runnd

i places are marked. Then only when all the tokens in the Runnd
i

places have moved to the Stopnd
i places (through the firing of some transition in

Tstopnd), the transition NdtoPr can fire, removing all tokens from the Stopnd
i

places and putting one token in every Runpr
i place. Similarly, transition PrtoNd

is enabled only when all tokens have moved from the Runpr
i to the Stoppr

i places;
the firing of PrtoNd brings the tokens back in each Runnd

i place. Thus places
Runpr

i and places Runnd
i cannot be simultaneously marked.

Observe that any path in the RG can be partitioned into (maximal) sub-
paths leaving only states of the same type, so that each path can be described as
an alternating sequence of non deterministic and probabilistic sub-paths. Each
probabilistic sub-path can be substituted by a single “complex” probabilistic
step and assigned a probability based on the weights of the transitions firing
along the path. The non deterministic sub-paths can be interpreted according to
different semantics (see [2] for a detailed discussion). Here we select the following
semantics: a path through non deterministic states is considered as a single
complex action and the only state where time is spent is the first one in the
sequence (that is the state that triggers the “complex” decision multi-step). So
only the first state in each path will appear as a state in the MDP (the other
states in the path are vanishing, borrowing the terminology from the literature
on generalized stochastic Petri nets).

Let us now define the reward function for a sequence of non deterministic
transitions, σ ∈ (T nd)∗; abusing notation we use the same name rt() for the
reward function for single transitions and for transition sequences. The following
definition rt(σ) assumes that the firing order in such a sequence is irrelevant
w.r.t. the reward which is consistent with an additive interpretation when several
decisions are taken in one step.

MDPN and Markov Decision Well-Formed Net Formalisms 51

Definition 4 (Transition sequence reward rt(σ)). The reward for a non
deterministic transition sequence is defined as follows:

rt(σ) =
∑

t∈T nd rt(t)|σ|t
where |σ|t is the number of occurrences of non deterministic transition t in σ.

Generation of an MDP given a RG of a MDPN and the reward structure. The
MDP can be obtained from the RG of the PN model in two steps: (1) build
from the RG the RGnd such that given any non deterministic state nd and any
probabilistic state pr all maximal non deterministic sub-paths from nd to pr
are reduced to a single non deterministic step; (2) build the RGMDP (i.e., a
MDP) from the RGnd such that given any non deterministic state nd and any
probabilistic state pr, all maximal probabilistic sub-paths from pr to nd are
substituted by a single probabilistic step. Finally derive the MDP reword from
rs,rt and rg functions.

Let nd be a non deterministic state reached by a probabilistic transition (such
states will be the non deterministic states of RGnd). We focus on the subgraph
“rooted” in nd and obtained by the maximal non deterministic paths starting
from nd. Note that the probabilistic states occurring in this subgraph are ter-
minal states. If there is no finite maximal non deterministic sub-paths starting
from nd then no probabilistic phase can follow. So the construction is aborted.
Otherwise, given every probabilistic state pr of the subgraph, one wants to ob-
tain the optimal path σnd,pr from nd to pr w.r.t. the reward. Once for every
such pr, this path is computed, in RGnd an arc is added from nd to pr labeled
by σnd,pr. The arcs starting from probabilistic states are unchanged in RGnd.

Thus the building of RGnd depends on whether the optimization problem is a
maximization or a minimization of the reward. We only explain the minimization
case (the other case is similarly handled). We compute such a sequence using
the Bellman and Ford (BF) algorithm for a single-source shortest paths in a
weighted digraph where the transition reward is the cost function associated with
the arcs. This algorithm is sound due to our (cumulative) definition for rewards
of transition sequences. Note that if the BF algorithm finds a negative loop
(i.e., where the reward function decreases), the translation is aborted. Indeed
the optimal value is then −∞ and there is no optimal sequence: this problem
must be solved at the design level.

We now explain how to transform RGnd into the MDP RGMDP . Given a
probabilistic state pr and a non deterministic state nd we want to compute the
probability to reach nd along probabilistic sub-paths. Furthermore, the sum of
these transition probabilities over non deterministic states must be 1. So if in
RGnd, there is a terminal strongly connected component composed by only prob-
abilistic states, we abort the construction. The checked condition is necessary
and sufficient according to Markov chain theory. Otherwise, we obtain the transi-
tion probabilities using two auxiliary matrices. P(pr,pr), a square matrix indexed
by the probabilistic states, denotes the one-step probability transitions between
these states and P(pr,nd), a matrix whose rows are indexed by the probabilistic
states and columns are indexed by non deterministic states, denotes the one-step
probability transitions from probabilistic states to non deterministic ones. Let us

52 M. Beccuti, G. Franceschinis, and S. Haddad

describe how these transition probabilities are obtained. These probabilities are
obtained by normalizing the weights of the transitions enabled in pr. Now again,
according to Markov chain theory, matrix P = (Id−P(pr,pr))−1 ◦P(pr,nd), where
Id is the identity matrix represents the searched probabilities. A similar trans-
formation is performed in the framework of stochastic Petri nets with immediate
transitions (see [12] for the details).

Finally in the MDP, the probability distribution p(·|nd, σ) associated with
state nd and (complex) action σ, assuming nd

σ−→ pr, is given by the row vector
P[pr, ·] and the reward function for every pair of state and action is defined by the
following formula: r(nd, σ) = rg(rs(nd), rt(σ)). Since rg is not decreasing w.r.t.
its second parameter, the optimal path w.r.t. rt found applying the Bellman and
Ford algorithm is also optimal w.r.t. rg(rs(nd), rt(·)).

Discussion The MDPN is a high-level formalism for specifying MDPs. However
this formalism suffers a drawback: by definition, the components are identified
and always distinguished in the state representation, even if they have similar
behavior (i.e., even if one component is an exact copy of another component).
This can have an impact both at the level of the model description (which could
become difficult to read when several components are present), and at the level
of the state space size. In the next section, we cope with these problems by
introducing a higher-level formalism.

3 Markov Decision Well-Formed Net

3.1 WN Informal Introduction

WNs are an high-level Petri net formalism whose syntax has been the start-
ing point of numerous efficient analysis methods. Below, we describe the main
features of WNs. The reader can refer to [4] for a formal definition.

In a WN (and more generally in high-level nets) a color domain is associated
with places and transitions. The colors of a place label the tokens contained in
this place, whereas the colors of a transition define different ways of firing it.
In order to specify these firings, a color function is attached to every arc which,
given a color of the transition connected to the arc, determines the number of
colored tokens that will be added to or removed from the corresponding place.
The initial marking is defined by a multi-set of colored tokens in each place.

A color domain is a Cartesian product of color classes which may be viewed as
primitive domains. Classes can have an associated (circular) order expressed by
means of a successor function. The Cartesian product defining a color domain is
possibly empty (e.g., for a place which contains neutral tokens) and may include
repetitions (e.g., a transition which synchronizes two colors inside a class). A
class can be divided into static subclasses. The colors of a class have the same
nature (processes, resources, etc.), whereas the colors inside a static subclass
have the same potential behavior (batch processes, interactive processes, etc.).

A color function is built by standard operations (linear combination, com-
position, etc.) on basic functions. There are three basic functions: a projection

MDPN and Markov Decision Well-Formed Net Formalisms 53

which selects an item of a tuple and is denoted by a typed variable (e.g., p, q); a
synchronization/diffusion that is a constant function which returns the multiset
composed by all the colors of a class or a subclass and is denoted SCi (SCi,k

)
where Ci (Ci,k) is the corresponding (sub)class; and a successor function which
applies on an ordered class and returns the color following a given color.

Transitions and color functions can be guarded by expressions. An expres-
sion is a boolean combination of atomic predicates. An atomic predicate either
identifies two variables [p = q] or restricts the domain of a variable to a static
subclass.

Examples of arc functions, transition guards, color domains can be seen in
the model portions of Fig. 3 and Fig. 4. The details about the WN notation can
be found in [4].

The constraints on the syntax of WN allow the automatic exploitation of
the behavioral symmetries of the model and the performance of the state-space
based analysis on a more compact RG: the symbolic reachability graph (SRG).
The SRG construction lies on the symbolic marking concept, namely a compact
representation for a set of equivalent ordinary markings. A symbolic marking is a
symbolic representation, where the actual identity of tokens is forgotten and only
their distributions among places are stored. Tokens with the same distribution
and belonging to the same static subclass are grouped into a so-called dynamic
subclass. Starting from an initial symbolic marking, the SRG can be constructed
automatically using a symbolic firing rule [4].

Various behavioral properties may be directly checked on the SRG. Further-
more, this construction leads also to efficient quantitative analysis, e.g. the per-
formance evaluation of Stochastic WNs (SWNs) [4] (a SWN is obtained from
a WN by associating an exponentially distributed delay with every transition,
which may depend only on the static subclasses to which the firing colors belong).

3.2 Markov Decision Well-Formed Net Definition

A Markov Decision Well-formed Net, like an MDPN, is composed by two dis-
tinct parts: the probabilistic one and the non deterministic one, and also in
this case the set of transitions in each part is partitioned into Trun and Tstop.
Each part of a MDWN is a WN model: the two parts share the same set of
color classes. A MDWN comprises a special color class, say C0, representing
the system components: its cardinality |C0| gives the total number of compo-
nents in the system. This class can be partitioned into several static subclasses
C0 = (

⊎m
k=1 C0,k) � (

⊎n0
k=m+1 C0,k) such that colors belonging to different static

subclasses represent components with different behavior and the first m static
subclasses represent the controllable components while the others represent the
non-controllable components. Observe that the model is parametric in the num-
ber of components of each.

Let us describe the specification of transition triggering by components in an
MDWN. First, remember that the firing of a transition t involves the selection a
color c = (ci,j)i∈0..n,j∈1..ei ∈ cd(t) =

⊗
i∈0..n Cei

i . Thus the subset of components
{c0,j}j∈1..e0 defines which components trigger the firing of t(c).

54 M. Beccuti, G. Franceschinis, and S. Haddad

– When the type (synctype(t)) of t is Some then the subset of components that
trigger this firing is Comp(t, c) = {c0,j}j∈dyn(t), where dyn(t) ⊆ {1, . . . , e0}.
Note that when t is a probabilistic transition, this requires that dyn(t) = ∅
whereas when t is a non deterministic one, this requires that |dyn(t)| ≤ 1
(with the convention that dyn(t) = ∅ means that t is a decision relative to
the system). Furthermore in the latter case, we assume that the guard of t
entails that when dyn(t) = {c0,j}, c0,j ∈

⊎m
k=1 C0,k, i.e. c0,j is a controllable

component.
– When the type of t is Allbut then the subset of components that trigger

this firing is Comp(t, c) =
⊎

k∈static(t) C0,k \ {c0,j}j∈dyn(t) where static(t) ⊆
{1, . . . , n0}. Note that this type requires that t is a probabilistic transition.
Additional conditions in the following definition ensure that this set of com-
ponents is not empty.

Definition 5 (Markov Decision Well-formed Net (MDWN)). A Markov
Decision Well-formed is a tuple MDWN = 〈Npr, Nnd, synctype, dyn, static〉
where:

– Npr is defined by a WN 〈P, T pr, C, cdpr, Ipr, Opr , Hpr, φpr , priopr, m0〉, a
mapping weights for each transition t, from cdpr(t) to R

– Nnd is defined by a WN 〈P, T nd, C, cdnd, Ind, Ond, Hnd, φ, prio, m0〉;
– synctype : T pr ∪ T nd → {Some, Allbut} is a function which associates with

every transition a label, s.t. ∀t ∈ T nd ⇒ synctype(t) = Some.
– dyn(t), where t ∈ T pr ∪ T nd and cd(t) =

⊗
i∈{0,...,n} Cei

i , is a subset of
{1, . . . , e0} (cd is either cdpr or cdnd);

– static(t), defined when synctype(t) = Allbut, is a subset of {1, . . . , n0} where
n0 represents the number of static subclasses in C0.

Furthermore, the following constraints must be fulfilled:

– T pr ∩ T nd = ∅;
– T pr = Trunpr � Tstoppr ∧ T nd = Trunnd � Tstopnd;
– ∀t ∈ T pr ∧ synctype(t) = Some ⇒ dyn(t) = ∅;
– ∀t s.t. synctype(t) = Allbut,

∑
j∈static(t) |C0,j | > |dyn(t)| (see discussion

above);
– ∀t ∈ T nd ⇒ 0 ≤ |dyn(t)| ≤ 1; moreover the transition guard φ(t) should

enforce that when t(c) is fireable with c = (ci,k)i∈0..n,k∈1..ei ∈ cd(t) and
j ∈ dyn(t) then c0,j ∈

⊎m
k=1 C0,k;

– ∀c0 ∈ C0, ∃t ∈ Tstoppr, ∃c ∈ cd(t), s.t. φ(t)(c) ∧ c0 ∈ Comp(t, c) and ∀c0 ∈⊎m
k=1 C0,k, ∃t ∈ Tstopnd, ∃c ∈ cd(t), s.t. φ(t)(c) ∧ c0 ∈ Comp(t, c). These

conditions can be ensured by appropriate syntactical sufficient conditions.
– ∀{j, j′} ⊆ dyn(t) ∧ j = j′, ∀c = (ci,k)i∈0..n,k∈1..ei ∈ cd(t) s.t. t(c) is possibly

fireable one must have c0,j = c0,j′ . This should be enforced by the transition
guard.

Now we introduce the rewards associated to the MDWN. Two types of reward
functions are possible: the place reward and the transition reward. Before intro-
ducing the place reward we must define the set C̃.

MDPN and Markov Decision Well-Formed Net Formalisms 55

Definition 6 (C̃). Let i ∈ {1, . . . , n}, C̃i is the set {1, . . . , ni} where ni is the
number of static subclasses in Ci. C̃ is the set of sets {C̃i}i∈I with I = {0, . . . , n}.

We can always map the color class C on the set C̃ such that the definition of the
c̃d function immediately follows.

Definition 7 (c̃d). The function c̃d(p) is defined as follows:

c̃d
def
= ˜(

⊗
i∈I Cei

i) =
⊗

i∈I C̃ei

i

For instance if C0 = C0,1 ∪ C0,1 ∪ C0,3 where C0,1 = {comp1, comp2}, C0,2 =
{comp3}, C0,3 = {comp4}, hence C̃0 = {C0,1, C0,1, C0,3}, and p ∈ P with cd(p) =
C0 × C0 × C0 then c̃d(p) = C̃0 × C̃0 × C̃0, c = 〈comp1, comp2, comp3〉 ∈ cd(p)
and c̃ = 〈1, 1, 2〉 ∈ c̃d(p).

It is important to observe that a unique c̃ corresponds to every c.

Definition 8 (MDWN reward functions).

– rs :
⊗

p∈P N
c̃d(p) → R is a function which returns for every colored marking

a reward value.
– ∀t ∈ T nd, rt[t] : cd(t) → R is a vector which associates with every transition

a function defining the reward value of its instances; two instances may be
assigned a different reward value only if there exists a standard predicate
capable to distinguish the two.

– rg : R × R → R is defined as in MDPN.

An example of MDWN is shown in Fig. 3, the same already used to illustrate
MDPNs, but this time color annotations on arcs, transitions and places are
relevant. In this model we are assuming that there are several instances of Proc,
Mem and ResCtr components (grouped in banks, each with one instance of
each component): rather than replicating the same subnet several times, we use
colored tokens to represent several instances on the same net structure (there is
also another controllable component not shown in the probabilistic subnet, but
visible in the decision maker). Class C0 comprises four static subclasses, one for
each component type. The cardinality of the Proc, Mem and ResCtr subclasses
corresponds to the number of banks in the system. Arcs in Fig. 3 are annotated
with very functions (tuples of projections) and all the variables appearing in the
functions in this example are component parameters. The guards on the arcs
include a term in the form d(x) = CompType to force parameter x to range
within static subclass CompType. The additional terms φxyz, φxz , φyz are not
detailed here, but are used to associate components in the same bank: in fact
the probabilistic part of the model must correctly synchronize components of
type Proc, Mem and ResCtr belonging to the same bank (the model represents
a situation where only one resource is assigned to each bank at a time, and it
can be used to resume all failed components in the bank).

56 M. Beccuti, G. Franceschinis, and S. Haddad

Trunpr = {FailProc, FailMem, EndRep} all other transitions belong to Tstoppr ; all variables are
component parameters. All transitions in the decision maker are in Tstopnd. Transition priorities
are denoted π = prio(t) in the figure. C0,1, C0,2 and C0,3 are the Proc, Mem and ResCtr subclasses
respectively. Here we have represented the probabilistic transitions with different simbols (double
rectangle, gray rectangle and double gray rectangle) depending on the involved components

Fig. 3. MDWN example. On the left: a portion of probabilistic part, on the right: the
decision maker.

3.3 MDWN Semantics

In this section we are going to describe how it is possible to obtain from an
MDWN model the corresponding MDP model. The two possible methods are
shown in the figure of the introduction.

The first method requires the unfolding of the MDWN in order to obtain an
equivalent MDPN and to derive from this an MDP, but this is not very efficient
in fact it will multiply the number of places, transitions and arcs, moreover if the
number of components is high the cost for computing the results will be high.
In [2] it is possible to find the details of this method.

Instead the second method derives directly from an MDWN model an MDP.
This second method can be decomposed in two steps: the first step defines how
to compose the probabilistic part and the decision maker and to derive from such
composition a unique WN. The second step consists in generating the (finite)
RG of the WN obtained in the first step and then in deriving an MDP from it.
In this way there is no need to produce the intermediate MDPN.

Before describing the second method we must explain the use of the places
Stoppr

l , Runpr
l , Stopnd

l , Runnd
l , Stopnd

g , Runnd
g and the non deterministic tran-

sitions PrtoNd and NdtoPr, that are introduced during the composition phase.
The places Stoppr, Runpr, Stopnd

l , Runnd
l , Stopnd

g and Runnd
g are used in

order to regulate the interaction among the components, the global system and
the decision maker like the similar places in the semantics for MDPN. The color
domain of the places Stoppr, Runpr, Stopnd

l is C0, that is they will contain
colored tokens representing the components; while Runnd

g , Stopnd
g are neutral.

MDPN and Markov Decision Well-Formed Net Formalisms 57

Fig. 4. arcs connecting places Stoppr, Runnd
l , Runnd

g , and transition PrtoNd and
their functions; arcs connecting places Stopnd

l , Stopnd
g , Runnd

l and transition NdtoPr
and their function; example of connection of the decision maker to places Runnd and
Stopnd: component parameters are highlighted in boldface in the arc functions.

The non deterministic transitions PrtoNd and NdtoPr are used to assure that
the decision maker takes a decision for every component in every time unit.

The schema describing how the places Stoppr, Runpr, Stopnd
l , Runnd

l , Stopnd
g

and Runnd
g and the transitions PrtoNd and NdtoPr are connected, is shown in

Fig.4. Observe that the basic schema is the same already defined for MDPN but
now the arcs are annotated with function < S > meaning that all components
must synchronize at that point.

Let us describe how to derive a unique WN composing the probabilistic part
with the non deterministic part. Places Runpr and Stoppr, introduced above, are
connected with its run/stop transitions of Npr in the same way as for MDPNs,
similarly places Runnd

l and Stopnd
l Runnd

g and Stopnd
g introduced above are

connected to the run/stop transitions of Nnd as for MDPNs, but now the arcs
must be annotated with the following functions.

– ∀t ∈ T pr ∪ T nd
l , if synctype(t) = Some then the function is 〈

∑
i∈dyn(t) x0,i〉,

where variable x0,i denotes the i-th component of type C0 in the color do-
main of t. This function selects the colors of the component that trigger the
transition, thus checking that all of them are still active.

– ∀t ∈ Trunpr, if synctype(t) = Allbut then the function is 〈
∑

j∈static(t) S0,j −
∑

i∈dyn(t) x0,i〉 with the same interpretation.

Observe that the arcs connecting transitions T nd
g and places Runnd

g , Stopnd
g are

not annotated with any function because these places have neutral color (i.e.
they contain plain black tokens) since they are related to the decision w.r.t. the
whole system.

Once the composed WN is built, its RG can be constructed and transformed
into a MDP following the same two steps already explained for MDPN. Here,
since we start from a high-level net, the resulting reachability graph may be
huge. So the following subsection describe how the properties of WN can be

58 M. Beccuti, G. Franceschinis, and S. Haddad

extended to MDWN so that a smaller MDP can be directly derived from the
Symbolic Reachability Graph (SRG) of the corresponding WN.

3.4 Theoretical Results on Symmetry Exploitation

In this section, we informally describe how we exploit the symbolic reachability
graph in order to obtain a reduced MDP on which the solution to the original
problem can be computed (see [2] for a complete theoretical development).

First, let us pick a symbolic reachable marking which only enables non deter-
ministic transitions and an ordinary marking belonging to this symbolic marking.
Now let us pick two ordinary firings from this marking corresponding to the same
symbolic firing. Suppose that, at some instant of an execution, a strategy selects
one of these firings. Then, after selecting the other firing, one mimics the original
strategy by applying one of the permutations which lead from the former firing
to the latter one to any subsequent (probabilistic or non deterministic) firing and
let invariant the ordinary marking. Due to our assumptions about the rewards,
the two executions yield the same (total or average) reward. It means that the
choice of the second firing is at least as good as the selection of the first firing.
Since the argument is symmetric, one concludes that the selection of any non
deterministic firing inside a symbolic arc is irrelevant.

Then the reduced MDP obtained from the SRG by considering that a symbolic
firing of a non deterministic transition corresponds to a single decision and that
the weight of probabilistic symbolic firing is the weight of any ordinary firing
inside it (any choice leads to the same weight due to our assumptions) multiplied
by the number of such firings provides an MDP equivalent to the original one
w.r.t. the considered optimization problem. Indeed the rewards do not depend
on the choice of an ordinary marking inside a symbolic marking and the choice
of an ordinary firing inside a symbolic firing. We will call SRGnd the SRG
where all the transition instances passing only through non deterministic states
are reduced to one non deterministic step and SRGMDP the SRGnd where all
probabilistic paths are substituted by single probabilistic arcs.

4 Experiments Discussion

In this section we will present an example modeling a multiprocessor system
where each processor has a local memory, but with also a global shared memory
that can be used by any processor when its local memory fails. Each processor,
local memory and global shared memory can fail independently; however we
consider recoverable failures, that can be solved by restarting/reconfiguring the
failed component. The system includes an automatic failure detection system
that is able to detect and perform a reconfiguration of the failed component
(e.g. by resetting it). The failure detection and recovery system can handle a
limited number k of failures in parallel.

Notice that if a local memory Mi and the global shared memory Mg are
both failed at the same time, the processor Pi cannot perform any useful work,

MDPN and Markov Decision Well-Formed Net Formalisms 59

Table 1. Results for the example modeling a multiprocessor system. The RG for
Proc=4 and Mem=4 is not computed because it requires a lot of time; its size is
computed indirectly by the SRG.

Proc=2,Mem=2,Res=2 Proc=3,Mem=3,Res=2 Proc=4,Mem=4,Res=2
Prob. Non det. Time Prob. Non det. Time Prob. Non det. Time

RG 19057 21031 13s 755506 863886 1363s 26845912 31895848 >13h
RGnd 19057 441 9s 755506 4078 2833s
RGMDP 0 441 2s 0 4078 250s
SRG 9651 10665 9s 132349 150779 284s 1256220 1478606 5032s
SRGnd 9651 219 3s 132349 831 222s 1256220 2368 12795s
SRGMDP 0 219 1s 0 831 28s 0 2360 518s
RG prio 19057 5235 9s 755506 103172 983s 26845912 1863024 >13h
RGnd prio 19057 411 4s 755506 4078 1830s
RGMDP prio 0 411 2s 0 4078 246s
SRG prio 9651 2697 6s 132349 18904 187s 1256220 96044 3270s
SRGnd prio 9651 219 2s 132349 831 75s 1256220 2368 1560s
SRGMDP prio 0 219 1s 0 831 26s 0 2360 234s

even if it is not failed and that if the processor Pi and its local memory Mi

are simultaneously failed, they are reset together (this is considered as a single
reset operation). The components in this system are: n processors, n local mem-
ories and one global shared memory. A portion of MDWN representation of this
system is depicted in Fig. 3

The decision maker corresponds to the automatic failure detection and recov-
ery system. Several different recovery strategies can be conceived, and we are
interested in evaluating the most promising ones with respect to some metrics.

An MDPN (or MDWN) model of this system is composed of a submodel
representing all the components of the system (which in turn can be seen as a
combination of several submodels of the single components), and a submodel
representing the failure detection and recovery system, which in this context
corresponds to the decision maker.

The decision maker model may represent any possible recovery strategy, in
this case it should be modeled in such a way that any association of up to k
recovery resources to any subset of failed components at a given time can be
realized by the model.The system must pay a penalty depending of the number
of running processors when the number of running processors is less than a given
threshold and a repair cost for every recovery. More details about this example
are shown in [2]. The table 1 shows the number of states and the computation
time respectively of the RG, RGnd, RGMDP , SRG, SRGnd and SRGMDP for
different numbers of processors and memories performed with an AMD Athlon
64 2.4Ghz of 4Gb memory capacity. In particular the first, the second and the
third line report the number of states and computation time of the RG, the RGnd

and the RGmdp, while the following three lines show the number of states and
the computation time obtained using the SRG technique. It is easy to observe
how the SRG technique wins in terms of memory and time gain with respect to
the RG technique.

60 M. Beccuti, G. Franceschinis, and S. Haddad

A further reduction of the number of states for this model can be achieved as-
sociating different priorities to the system transitions such that the interleavings
between the non deterministic/probabilistic actions are reduced. For instance
the last six lines in table 1 show the reduction in terms of non deterministic
states and time computation obtained imposing an order on the decision maker
choices. (First the decision maker must take all the decisions for the processors
then for the memories and in the end for the global memory).

It is not always possible to use this trick since the actions must be independent;
the priorities in practice must not reduce the set of possible strategies. Our tool
solves the MDPs using the library graphMDP developed at the Ecole Nationale
Suprieure de l’Aronautique et de l’Espace Toulouse. The optimal strategy is
expressed as a set of optimal actions, such that for every system state an optimal
action is given.

For example if we consider a model with two processors, two memories and two
recovery resources, and with reasonable fault probability, and repair and penalty
costs then we observe that if a fault happens and there is a free recovery resource
then the recovery of this fault starts immediately and the global memory recovery
is preferred with respect the processor recovery and the memory recovery.This
is not always true, e.g. if global memory recovery cost is more than four times
of the memory repair cost.

After having obtained the optimal strategy we would like to synthesize a
new model without non determinism implementing it (this could be achieved by
substituting the decision maker part with a new probabilistic part implementing
the decisions of the optimal strategy): classical Markov chain analysis techniques
could be applied to this model, moreover the new net would constitute a higher
level (hopefully easier to interpret) description for the optimal strategy. Unfor-
tunately this is not always easy (especially when the number of states is large),
but this is an interesting direction of future research.

5 Related Work

In this section we are going to compare our formalism with two other high level
formalisms for MDP: the PRISM language and the Stochastic Transition System
(STS) proposed in [8].

The PRISM language [11] is a state-based language based on the Reactive
Modules formalism of Alur and Henzinger [1]. A system is modeled by PRISM
language as composition of modules(components) which can interact with each
other. Every model contains a number of local variables used to define it state in
every time unit, and the local state of all modules determines the global state.
The behavior of each module is described by a set of commands; such that a
command is composed by a guard and a transition. The guard is a predicate
over all the (local/nonlocal) variables while a transition describes how the local
variable will be update if the its guard is true.

MDPN and Markov Decision Well-Formed Net Formalisms 61

The composition of the modules is defined by a process-algebraic expression:
parallel composition of modules, action hiding and action renaming.

Comparing the MDPN formalism with the PRISM language we can observe
that they have the same expressive power: we can define local or global non-
deterministic actions and the reward function on the states and/or on the actions
in both formalisms; such that it is possible to translate MDPN model directly
in a PRISM model. The main difference is that by using the MDPN formalism
one can define complex probabilistic behaviors and complex non-deterministic
actions as a composition of simpler behaviors or actions.

If we compare the PRISM language with the MDWN then we can see that the
MDWN has two other advantages: a parametric description of the model and an
efficient analysis technique making it possible to automatically take advantage
of intrinsic symmetries of the system. In fact the PRISM language has a limited
possibility for parametrization. In order to cope with this problem in [9] it was
presented a syntactic pre-processor called eXtended Reactive Modules (XRM)
which can generate RM models giving to the users the possibility of describing
the system using for instance: for loops, if statements.

Instead several techniques proposed in order to reduce the states explosion
problem in PRISM i.e. in [10] were based on the minimization of the RG with
respect to bisimulation; but this requires the building of all the state space and
then to reduce it; hence our method gives the possibility of managing models
with a bigger number of states. It generates directly the Lumped MDP without
building all the state space.

A direct comparison between our formalisms and the STS is not possible,
because the STSs are an high level formalism for modeling the continuous time
MDPs. It extends the Generalized Stochastic Petri Net by introducing transitions
with an unspecified delay distributions and by the introducing the possibility of
non-deterministic choice among enabled immediate transitions. In every way we
can observe that the STS has the same problems of GSPN formalism; that make
its utilization less advantageous with respect to the WN. It is also important to
observe that there are no tools supporting this formalism.

6 Conclusion

We have introduced MDPNs, based on Petri nets, and MDWNs, based on Well-
formed nets, in order to model and analyze distributed systems with probabilis-
tic and non deterministic features. From a modeling point of view, these models
support a macroscopic point of view of alternation between the non probabilis-
tic behavior and the non deterministic one of the system and a syntactical way to
define the switch between the two behaviors. Furthermore, MDWNs enable the
modeler to specify in a concise way similar components. From an analysis point of
view, we have adapted the technique of the symbolic reachability graph producing
a reduced Markov decision process w.r.t. the original one, on which the analysis
may be performed. Our methods are already implemented and integrated in the
GreatSPN tool and we have described some experimental results.

62 M. Beccuti, G. Franceschinis, and S. Haddad

References

1. Alur, R., Henzinger, T.: Reactive modules. Formal Methods in System De-
sign 15(1), 7–48 (1999)

2. Beccuti, M., Franceschinis, G., Haddad, S.: Markov Decision Petri Net and
Markov Decision Well-formed Net formalisms. Technical Report TR-INF-2007-
02-01, Dipartimento di Informatica, Università del Piemonte Orientale (2007)
http://www.di.unipmn.it/Tecnical-R

3. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg
(1995)

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Com-
puters 42(11), 1343–1360 (November 1993)

5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability
graph for coloured Petri nets. Theoretical Computer Science 176(1–2), 39–65 (1997)

6. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical
editor and analyzer for timed and stochastic petri nets. Performance Evaluation,
special issue on Performance Modeling Tools 24(1-2), 47–68 (November 1995)

7. de Alfaro, L.: Temporal logics for the specification of performance and reliability.
In: Reischuk, R., Morvan, M. (eds.) STACS 97. LNCS, vol. 1200, pp. 165–176.
Springer, Heidelberg (1997)

8. de Alfaro, L.: Stochastic transition systems. In: Sangiorgi, D., de Simone, R. (eds.)
CONCUR 1998. LNCS, vol. 1466, pp. 423–438. Springer, Heidelberg (1998)

9. Demaille, K., Peyronnet, S., Sigoure, B.: Modeling of sensor networks using XRM.
In: 2nd International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, Paphos, Cyprus (2006)

10. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using CADP. In: FME 2002. LNCS, vol. 2391, pp. 10–429. Springer,
Heidelberg (2000)

11. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg
(2006)

12. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.
John Wiley and Sons, New york (1995) http://www.di.unito.it/∼greatspn

13. Puterman, M.L.: Markov Decision Processes. In: Discrete Stochastic Dynamic Pro-
gramming, Wiley, Chichester (2005)

http://www.di.unipmn.it/Tecnical-R
http://www.di.unito.it/~greatspn

Comparison of the Expressiveness of Arc, Place

and Transition Time Petri Nets

M. Boyer1 and O.H. Roux2

1 IRIT Toulouse France
IRIT/ENSEEIHT, 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7

marc.boyer@enseeiht.fr
2 IRCCyN, Nantes, France

1 rue de la Noë 44321 Nantes Cedex 3 France
olivier-h.roux@irccyn.ec-nantes.fr

Abstract. In this paper, we consider bounded Time Petri Nets where
time intervals (strict and large) are associated with places (P-TPN), arcs
(A-TPN) or transitions (T-TPN). We give the formal strong and weak
semantics of these models in terms of Timed Transition Systems. We
compare the expressiveness of the six models w.r.t. (weak) timed bisimi-
larity (behavioral semantics). The main results of the paper are : (i) with
strong semantics, A-TPN is strictly more expressive than P-TPN and
T-TPN ; (ii) with strong semantics P-TPN and T-TPN are incompara-
ble ; (iii) T-TPN with strong semantics and T-TPN with weak semantics
are incomparable. Moreover, we give a classification by a set of 9 relations
explained in Fig. 14 (p. 80).

1 Introduction

The two main extensions of Petri Nets with time are Time Petri Nets (TPNs) [18]
and Timed Petri Nets [20]. For TPNs a transition can fire within a time interval
whereas for Timed Petri Nets it has a duration and fires as soon as possible or
with respect to a scheduling policy, depending on the authors. Among Timed
Petri Nets, time can be considered relative to places (P-Timed Petri Nets),
arcs (A-Timed Petri Nets) or transitions (T-Timed Petri Nets) [21,19]. The
same classes are defined for TPNs i.e.T-TPN [18,5], A-TPN [14,1,13] and P-
TPN [16,17]. It is known that P-Timed Petri Nets and T-Timed Petri Nets are
expressively equivalent [21,19] and these two classes of Timed Petri Nets are
included in the two corresponding classes T-TPN and P-TPN [19]

Depending on the authors, two semantics are considered for {T,A,P}-TPN :
a weak one, where no transition is never forced to be fired, and a strong one,
where each transition must be fired when the upper bound of its time condition
is reached. Moreover there are a single-server and several multi-server semantics
[8,4]. The number of clocks to be considered is finite with single-server semantics
(one clock per transition, one per place or one per arc) whereas it is not with
multi-server semantics.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 63–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 M. Boyer and O.H. Roux

A-TPN have mainly been studied with weak (lazy) multi-server semantics
[14,1,13] : this means that the number of clocks is not finite but the firing of
transitions may be delayed, even if this implies that some transitions are dis-
abled because their input tokens become too old. The reachability problem is
undecidable for this class of A-TPN but thanks to this weak semantics, it enjoys
monotonic properties and falls into a class of models for which coverability and
boundedness problems are decidable.

Conversely T-TPN [18,5] and P-TPN [16,17] have been studied with strong
single-server semantics. They do not have monotonic features of weak semantics
although the number of clocks is finite. The marking reachability problem is known
undecidable [15] but marking coverability, k-boundedness, state reachability and
liveness are decidable for bounded T-TPN and P-TPN with strong semantics.

Related work : Expressiveness of models extended with time.

Time Petri Nets versus Timed Automata. Some works compare the expressive-
ness of Time Petri Nets and Timed Automata. In [22], the author exposes mutual
isomorphic translations between 1-safe Time-Arc Petri nets (A-TPN) and net-
works of Timed Automata.

In [3,10] it was proved that bounded T-TPN with strong semantics form a
strict subclass of the class of timed automata wrt timed bisimilarity. Authors
give in [10] a characterisation of the subclass of timed automata which admit a
weakly timed bisimilar T-TPN . Moreover it was proved in [3] that bounded T-
TPN and timed automata are equally expressive wrt timed language acceptance.
Arc, Place and Transition Time Petri Nets. The comparison of the expressiveness
between A-TPN, P-TPN and T-TPN models with strong and weak semantics
wrt timed language acceptance and timed bisimulation have been very little
studied1.

In [12] authors compared these models w.r.t. language acceptance. With strong
semantics, they established P-TPN ⊆L T-TPN ⊆L A-TPN 2 and with weak se-
mantics the result is P-TPN =L T-TPN =L A-TPN.

In [6] authors study only the strong semantics and obtain the following results:
T-TPN ⊂L A-TPN and P-TPN �⊂L T-TPN.

These results of [12] and [6] are inconsistent.
Concerning bisimulation, in [6] (with strong semantics) we have T-TPN ⊂≈

A-TPN, P-TPN ⊆≈ A-TPN and P-TPN �⊆≈ T-TPN. But the counter-example
given in this paper to show P-TPN �⊆≈ T-TPN uses the fact that the T-TPN ‘à
la Merlin’ cannot model strict timed constraint3. This counter example fails if
we extend these models to strict constraints.

In [17] P-TPN and T-TPN are declared incomparable but no proof is given.
Much problems remain open concerning the relations between these models.

1 Moreover, all studies consider only closed interval constraints, and from results in
[6], offering strict constraints makes a difference on expressiveness.

2 we note ∼L and ∼≈ with ∼∈ {⊂, ⊆, =} respectively for the expressiveness relation
w.r.t. timed language acceptance and timed bisimilarity.

3 The intervals are of the form [a, b] and they can not handle a behavior like “if x < 1”.

Comparison of the Expressiveness of Arc, Place and Transition TPNs 65

Our Contribution. In this paper, we consider bounded Arc, Place and Transition
Time Petri Nets with strict and large timed constraints and with single-server
semantics. We give the formal strong and weak semantics of these models in
terms of Timed Transition Systems. We compare each model with the two others
in the weak and the strong semantics, and also the relations between the weak on
strong semantics for each model (see Fig. 14, p. 80). The comparison criterion is
the weak timed bisimulation. In this set of 9 relations, 7 are completely covered,
and for the 2 others, half of the relation is still an open problem.

The paper is organised as follow: Section 2 gives some “framework” definitions.
Section 3 presents the three timed Petri nets models, with strong and weak
semantics. Section 4 is the core of our contribution: it lists all the new results
we propose. Section 5 concludes.

By lack of space, the details of some proofs and the relations with conflicting
results are not presented here, but can be found in [9].

2 Framework Definition

We denote AX the set of mappings from X to A. If X is finite and |X | = n,
an element of AX is also a vector in An. The usual operators +, −, < and =
are used on vectors of An with A = N, Q, R and are the point-wise extensions
of their counterparts in A. For a valuation ν ∈ AX , d ∈ A, ν + d denotes the
vector (ν + d)(x) = ν(x) + d . The set of boolean is denoted by B. The set
of non negative intervals in Q is denoted by I(Q≥0). An element of I(Q≥0) is
a constraint ϕ of the form α ≺1 x ≺2 β with α ∈ Q≥0, β ∈ Q≥0 ∪ {∞} and
≺1, ≺2∈ {<, ≤ }, such that I =[[ϕ]]. We let I↓ =[[0 ≤ x ≺2 β]] be the downward
closure of I and I↑ =[[α ≺1 x]] be the upward closure of I.

Let Σ be a fixed finite alphabet s.t. ε �∈ Σ and Σε = Σ ∪ {ε}, with ε the
neutral element of sequence (∀a ∈ Σε : εa = aε = a).

Definition 1 (Timed Transition Systems). A timed transition system(TTS)
over the set of actions Σ is a tuple S = (Q, Q0, Σ, −→) where Q is a set of states,
Q0 ⊆ Q is the set of initial states, Σ is a finite set of actions disjoint from R≥0,
−→⊆ Q × (Σ ∪ R≥0)× Q is a set of edges. If (q, e, q′) ∈−→, we also write q

e−→ q′.
Moreover, it should verify some time-related conditions: time determinism (td),
time-additivity (ta), nul delay (nd) and time continuity (tc).

td ≡ s
d−→ s′ ∧ s

d−→ s′′ ⇒ s′ = s′′ ta ≡ s
d−→ s′ ∧ s′ d′

−−→ s′′ ⇒ s
d+d′

−−−→ s′′

nd ≡ ∀s : s
0−→ s tc ≡ s

d−→ s′ ⇒ ∀d′ ≤ d, ∃sd′ , s
d′

−−→ sd′

In the case of q
d−−→ q′ with d ∈ R≥0, d denotes a delay and not an absolute

time. A run ρ of length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence of
alternating time and discrete transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n · · ·

66 M. Boyer and O.H. Roux

A trace of ρ is the timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · that consists
of the sequence of letters of Σ.

We write Untimed(ρ) = Untimed(w) = a0a1 · · · an · · · for the untimed part of
w, and Duration(ρ) = Duration(w) =

∑
dk for the duration of the timed word

w and then of the run ρ.

Definition 2 (Strong Timed Bisimilarity). Let S1 = (Q1, Q
1
0, Σ, −→1) and

S2 = (Q2, Q
2
0, Σ, −→2) be two TTS4 and ≈S be a binary relation over Q1 × Q2.

We write s ≈S s′ for (s, s′) ∈≈S . ≈S is a timed bisimulation relation between
S1 and S2 if:

– s1 ≈S s2, for all (s1, s2) ∈ Q1
0 × Q2

0;
– if s1

t−→1 s′1 with t ∈ R≥0 and s1 ≈S s2 then s2
t−→2 s′2 for some s′2, and

s′1 ≈S s′2; conversely if s2
t−→2 s′2 and s1 ≈S s2 then s1

t−→1 s′1 for some s′1
and s′1 ≈S s′2;

– if s1
a−→1 s′1 with a ∈ Σ and s1 ≈S s2 then s2

a−→2 s′2 and s′1 ≈S s′2;
conversely if s2

a−→2 s′2 and s1 ≈S s2 then s1
a−→1 s′1 and s′1 ≈S s′2.

Two TTS S1 and S2 are timed bisimilar if there exists a timed bisimulation
relation between S1 and S2. We write S1 ≈S S2 in this case.

Let S =(Q, Q0, Σε, −→) be a TTS. We define the ε-abstract TTS Sε = (Q, Qε
0, Σ,

−→ε) (with no ε-transitions) by:

– q
d−→ε q′ with d ∈ R≥0 iff there is a run ρ = q

∗−→ q′ with Untimed(ρ) = ε
and Duration(ρ) = d,

– q
a−→ε q′ with a ∈ Σ iff there is a run ρ = q

∗−→ q′ with Untimed(ρ) = a and
Duration(ρ) = 0,

– Qε
0 = {q | ∃q′ ∈ Q0 | q′ ∗−→ q and Duration(ρ) = 0 ∧ Untimed(ρ) = ε}.

Definition 3 (Weak Timed Bisimilarity). Let S1 = (Q1, Q
1
0, Σε, −→1) and

S2 = (Q2, Q
2
0, Σε, −→2) be two TTS and ≈W be a binary relation over Q1 × Q2.

≈W is a weak (timed) bisimulation relation between S1 and S2 if it is a strong
timed bisimulation relation between Sε

1 and Sε
2.

Note that if S1 ≈S S2 then S1 ≈W S2 and if S1 ≈W S2 then S1 and S2 have the
same timed language.

In this paper, we consider weak timed bisimilarity and we note ≈ for ≈W .

Definition 4 (Expressiveness w.r.t. (Weak) Timed Bisimilarity). The
class C is more expressive than C′ w.r.t. timed bisimilarity if for all B′ ∈ C′

there is a B ∈ C s.t. B ≈ B′. We write C′ ⊆≈ Cin this case. If moreover there
is a B ∈ C s.t. there is no B′ ∈ C′ with B ≈ B′, then C′ ⊂≈ C. If both C′ ⊂≈ C
and C ⊂≈ C′ then C and C′ are equally expressive w.r.t. timed bisimilarity, and
we write C =≈ C′.

4 Note that they contain no ε-transitions.

Comparison of the Expressiveness of Arc, Place and Transition TPNs 67

3 {T,A,P}-TPN : Definitions and Semantics

The classical definition of TPN is based on a single server semantics (see [8,4]
for other semantics). With this semantics, bounded-TPN and safe-TPN (ie one-
bounded) are equally expressive wrt timed-bisimilarity and then wrt timed lan-
guage acceptance. We give a proof of this result for {T,A,P}-TPN in [9]. Thus,
in the sequel, we will consider safe TPN. We now give definitions and semantics
of safe {T,A,P}-TPN .

3.1 Common Definitions

We assume the reader is aware of Petri net theory, and only recall a few defini-
tions.

Definition 5 (Petri Net). A Petri Net N is a tuple (P, T, •(.), (.)•, M0, Λ)
where: P = {p1, p2, · · · , pm} is a finite set of places and T = {t1, t2, · · · , tn} is
a finite set of transitions; •(.) ∈ ({0, 1}P)T is the backward incidence mapping;
(.)• ∈ ({0, 1}P)T is the forward incidence mapping; M0 ∈ {0, 1}P is the initial
marking, Λ : T → Σ ∪ {ε} is the labeling function.

Notations for all Petri nets
We use the following common shorthands: p ∈ M

def= M(p) ≥ 1, M ≥ •t def= ∀p :
M(p) ≥ •(t, p), •t def= {p •(t, p)≥1}, t• def= {p (t, p)•≥1}, •p def= {t (t, p)•≥1},
p• def= {t •(t, p)≥1}.

A marking M is an element M ∈ {0, 1}P . M(p) is the number of tokens in
place p. A transition t is said to be enabled by marking M iff M ≥ •t, denoted
t ∈ enabled(M). The firing of t leads to a marking M ′ = M − •t + t•, denoted
by M

t−→ M ′.
Often, the alphabet is the set of transitions and the labeling function the

identity (Σ = T, Λ(t) = t). In these cases, the label of the transition will not be
put in figures.

Notations for all timed Petri nets
In timed extensions of Petri nets, a transition can be fired only if the enabling

condition and some time related condition are satisfied. In the following, the
expressions enabled and enabling refer only to the marking condition, and firable
is the conjunction of enabling and the model-specific timed condition.

Then, t ∈ firable(S) denotes that t is firable in timed state S, and t ∈
enabled(M) that t is enabled by marking M .

Weak vs. strong semantics
The basic strong semantics paradigm is expressed in different ways depending on
the authors: one expression could be “time elapsing can not disable the firable
property of a transition”, or “whenever the upper bound of a firing interval is
reached, the transition must be fired”. Depending on the models and the authors,

68 M. Boyer and O.H. Roux

this principle is described by different equations. In this paper, the one we are
going to use is: a delay d is admissible from state S (5) iff

t /∈ firable(S + d) ⇒ ∀d′ ∈ [0, d] : t /∈ firable(S + d′) (1)

which means that from S, if a transition is not firable after a delay d, it never was
between S and S + d, which is equivalent to say that, if a transition is enabled
now or in the future (without discrete transition firing), it remains firable with
time elapsing.

3.2 Transition Time Petri Nets (T-TPN)

The model. Time Petri Nets were introduced in [18] and extend Petri Nets
with timing constraints on the firings of transitions.

Definition 6 (Transition Time Petri Net). A Time Petri Net N is a tuple
(P, T, •(.), (.)•, M0, Λ, I) where: (P, T, •(.), (.)•, M0, Λ) is a Petri net and I : T →
I(Q≥0) associates with each transition a firing interval.

Semantics of Transition Time Petri Nets
The state of T-TPN is a pair (M, ν), where M is a marking and ν ∈ R

T
≥0 is

a valuation such that each value ν(ti) is the elapsed time since the last time
transition ti was enabled. 0 is the initial valuation with ∀i ∈ [1..n],0(ti) = 0.

For Transition Time Petri Net, notations enabled and firable are defined as
follows :

t ∈ enabled(M) iff M ≥ •t t ∈ firable(M, ν) iff

{
t ∈ enabled(M)
ν(t) ∈ I(t)

The newly enabled function ↑enabled(tk, M, ti) ∈ B is true if tk is enabled by
the firing of transition ti from marking M , and false otherwise. This definition of
enabledness is based on [5,2] which is the most common one. In this framework, a
transition tk is newly enabled after firing ti from marking M if “it is not enabled
by M − •ti and is enabled by M ′ = M − •ti + t•i ” [5].

Formally this gives:

↑enabled(tk, M, ti) =
(
M − •ti + t•i ≥ •tk

)
∧

(
(M − •ti < •tk) ∨ (tk = ti)

)
(2)

Definition 7 (Strong Semantics of T-TPN). The semantics of a T-TPN
N is a timed transition system SN = (Q, q0, →) where: Q = {0, 1}P × (R≥0)

n,
q0 = (M0,0), −→∈ Q × (Σε ∪ R≥0) × Q consists of the discrete and continuous
transition relations:

– the discrete transition relation is defined ∀t ∈ T :

(M, ν)
Λ(t)−−−→ (M ′, ν′) iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t ∈ firable(M, ν)
M ′ = M − •t + t•

∀t′ ∈ T : ν′(t′) =

{
0 if ↑enabled(t′, M, t),
ν(t′) otherwise.

5 The encoding of the state depends on the model.

Comparison of the Expressiveness of Arc, Place and Transition TPNs 69

– the continuous transition relation is defined ∀d ∈ R≥0:

(M, ν) d−→ (M, ν′) iff

⎧
⎪⎨

⎪⎩

ν′ = ν + d

∀t ∈ T : t /∈ firable(M, v + d) ⇒
(∀d′ ∈ [0, d] : t /∈ firable(M, v + d′))

(3)

Definition 8 (Weak Semantics of T-TPN). For safe T-TPN, the only dif-
ference of the weak semantics is on the continuous transition relation defined
∀d ∈ R≥0:

(M, ν) d−→ (M, ν′) iff ν′ = ν + d

Some examples illustrating the synchronization rule and the difference between
weak and strong semantics can be found in [9].

3.3 Place Time Petri Nets (P-TPN)

The model. Place Time Petri Nets were introduced in [16], adding interval on
places and considering a strong semantics.

Putting interval on places implies that clocks are handled by tokens: a token
can be use to fire a transition iff its age in the place is in the interval of the
place. A particularity of this model is the notion of dead token: a token whose
age is greater than the upper bound of its place can never leave this place: it is
a dead token.

Let dead be a mapping in {0, 1}P . dead(p) is the number of dead tokens in
place p (∀p ∈ P : dead(p) ≤ M(p)). We use the following shorthands : M\dead
for M − dead and thus p ∈ M\dead for M(p) − dead(p) ≥ 1.

Definition 9 (Place Time Petri Net). A Place Time Petri Net N is a tuple
(P, T, •(.), (.)•, M0, Λ, I) where: (P, T, •(.), (.)•, M0, Λ) is a Petri net and I : P →
I(Q≥0) associates with each place a residence time interval.

Semantics of Place Time Petri Nets
The state of P-TPN is a tuple (M, dead, ν) where M is a marking, dead is the
dead token mapping and ν ∈ R

M
≥0 the age of tokens in places. A transition can

be fired iff all tokens involved in the firing respect the residence interval in their
places. Tokens are dropped with age 0. In strong semantics, if a token reaches
its upper bound, and if there exists one firable transition that can consume this
tokens, it must be fired.

For Place Time Petri Net, notations enabled and firable are defined as follows:

t ∈ enabled(M\dead) iff M − dead ≥ •t

t ∈ firable(M, dead, ν) iff

{
t ∈ enabled(M\dead)
∀p ∈ •t, ν(p) ∈ I(p)

70 M. Boyer and O.H. Roux

Definition 10 (Strong Semantics of P-TPN). The semantics of a P-TPN
N is a timed transition system SN = (Q, q0, →) where: Q = {0, 1}P × {0, 1}P ×
(R≥0)

P , q0 = (M0,0,0), −→∈ Q × (Σε ∪ R≥0) × Q consists of the discrete and
continuous transition relations:
The discrete transition relation is defined ∀t ∈ T :

(M, dead, ν)
Λ(t)−−−→ (M ′, dead, ν′) iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t ∈ firable(M, dead, ν)
M ′ = M − •t + t•

ν′(p)=

{
0 if (dead(p)=0) ∧ (p ∈ t•)
ν(p) otherwise.

The continuous transition relation is defined ∀d ∈ R≥0:

(M, dead, ν) d−→ (M, dead′, ν′) iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν′ = ν + d

∀t ∈ T : t /∈ firable(M, dead, v + d) ⇒ (∀d′∈ [0, d] : t /∈ firable(M, dead, v + d′))

dead′(p)=

{
1 if (p ∈ M\dead) ∧ (v′(p) /∈ I(p)↓)
dead(p) otherwise

Definition 11 (Weak Semantics of P-TPN). The weak semantics is exactly
the same as the strong one without the condition ∀t ∈ T : t /∈ firable(M, dead, v+
d) ⇒ (∀d′ ∈ [0, d] : t /∈ firable(M, dead, v + d′)) in the continuous transition
relation.

3.4 Arc Time Petri Nets (A-TPN)

The model. Arc Time Petri Nets were introduced in [23], adding interval on
arcs and considering a weak semantics.

Like in P-TPN , an age is associated to each token. A transition t can be fired
iff the tokens in the input places p satisfy the constraint on the arc from the
place to the transition.

As for P-TPN , there could exist dead tokens, that is to say, tokens whose age
is greater than the upper bound of all output arcs.

Definition 12 (Arc Time Petri Net). An Arc Time Petri Net N is a tuple
(P, T, •(.), (.)•, M0, I) where: (P, T, •(.), (.)•, M0) is a Petri net and I : P ×T →
I(Q≥0) associates with each arc from place to transition a time interval.

For Arc Time Petri Net, notations enabled and firable are defined as follows:

t ∈ enabled(M\dead) iff M − dead ≥ •t

t ∈ firable(M, dead, ν) iff

{
t ∈ enabled(M\dead)
∀p ∈ •t, ν(p) ∈ I(p, t)

Comparison of the Expressiveness of Arc, Place and Transition TPNs 71

Semantics of Arc Time Petri Nets. Like for P-TPN , the state of A-TPN
is a tuple (M, dead, ν) where M is a marking, dead is the dead token mapping
and ν ∈ R

M
≥0 the age of tokens in places. A transition t can be fired iff all

tokens involved in the firing respect the constraint on arc from their place to
the transition. Tokens are dropped with age 0. In strong semantics, if a token
reaches one of its upper bound, and if there exists one transition that consumes
this tokens, it must be fired.

Definition 13 (Strong Semantics of A-TPN). The semantics of a P-TPN
N is a timed transition system SN = (Q, q0, →) where: Q = {0, 1}P × {0, 1}P ×
(R≥0)

P , q0 = (M0,0), −→∈ Q × (Σε ∪ R≥0) × Q consists of the discrete and
continuous transition relations: The discrete transition relation has the same
definition that the one of A-TPN (with its specific definition of firable). The
continuous transition relation is defined ∀d ∈ R≥0:

(M, dead, ν) d
−→ (M, dead′, ν′) iff

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν′ = ν + d

∀t ∈ T : t /∈ firable(M, dead, v + d) ⇒ (∀d′ ∈ [0, d] : t /∈ firable(M, dead, v + d′))

dead′(p) =

⎧
⎪⎨

⎪⎩

1 if

{
p ∈ M\dead

∀t ∈ p•, ν′(p) �∈ I(p, t)↓

dead(p) otherwise (4)

The definition of semantics of A-TPN and P-TPN are very similar: the only
difference is that, in the definition of A-TPN, the timing condition for firable is
∀p ∈ •t : ν(p) ∈ I(p, t) as in P-TPN, it’s ∀p ∈ •t : ν(p) ∈ I(p), and the same for
the condition associated to dead.

Definition 14 (Weak Semantics of A-TPN). The weak semantics is exactly
the same as the strong one without the condition ∀t ∈ T : t /∈ firable(M, dead, v+
d) ⇒ (∀d′ ∈ [0, d] : t /∈ firable(M, dead, v + d′)) in the continuous transition
relation.

4 Comparison of the Expressiveness Wrt Bisimulation

In the sequel we will compare various classes of safe TPN w.r.t. bisimulation.
We note T-TPN and T-TPN, for the classes of safe Transition Time Petri nets
respectively with strong and weak semantics. We note A-TPN and A-TPN, for
the classes of safe Arc Time Petri nets respectively with strong and weak seman-
tics. We note P-TPN and P-TPN, for the classes of safe Place Time Petri nets
respectively with strong and weak semantics.

A run of a time Petri net N is a (finite or infinite) path in SN starting in

q0. As a shorthand we write s
(t,d)−−−→ s′ (where a state s is equal to (M, ν) or

(M, dead, ν)) for a sequence of time elapsing and discrete steps like s
d−→ s′′ t−→ s′.

Moreover we write N for SN (i.e. we will use the shorthand : a run ρ of N or a
state s of N).

72 M. Boyer and O.H. Roux

4.1 X-TPN �⊆≈ X-TPN with X ∈ {T, A, P}

tp

[0,0]

Fig. 1. A “non-delay”
T-TPN

tp

[0,0]

Fig. 2. A “non-delay”
P-TPN

tp

[0,0]

Fig. 3. A “non-delay”
A-TPN

Theorem 1 (Weak semantics can not emulate strong semantics)

P-TPN �⊆≈ P-TPN T-TPN �⊆≈ T-TPN A-TPN �⊆≈ A-TPN

Proof. By contradiction: assume it exist a T-TPN weakly timely bisimular to the
T-TPN of Figure 1. From its initial state, a delay of duration d > 0 is possible
(in weak semantics, a delay is always possible). By bisimulation hypothesis, it
should also be possible from the initial state of the strong T-TPN of Figure 1.
This contradicts our assumption.

The same applies for P-TPN and A-TPN. ��

4.2 P-TPN ⊂≈ P-TPN

Let N ∈ P-TPN. We construct a TPN N ∈ P-TPN as follow :

– we start from N = N and M0 = M0,
– for each place p of N ,

• we add in N , the net in the gray box of the figure 4 with a token in place
pt
2.

• for each transition t such that p ∈ •t, we add an arc from pt
2 to t and an

arc from t to pt
2.

Note that in the gray box, there is always a token either in place pt
1 or in the

place pt
2.

p

pt
1 pt

2

[0, ∞[[0, ∞[I(p)

ε

ε
t

• •

Fig. 4. The translation from P-TPN into P-TPN

Lemma 1 (Translating a P-TPN into a P-TPN). Let N ∈ P-TPN and
N ∈ P-TPN its translation into P-TPN as defined previously, N and N are
timed bisimilar.

Comparison of the Expressiveness of Arc, Place and Transition TPNs 73

Proof. N = (P, T, •(.), (.)•, M0, I) and N = (P , T , •(.), (.)•, M0, I). Note that
P ⊂ P and T ⊂ T .

Let (M, dead, ν) be a state of N and (M, dead, ν) be a state of N . We define
the relation ≈ ⊆ (({0, 1} × R≥0)P × ({0, 1} × R≥0)P by:

(M, dead, ν) ≈ (M, dead, ν) ⇐⇒ ∀p ∈ P

⎧
⎪⎨

⎪⎩

(1)M(p) = M(p)
(2) dead(p) = dead(p)
(3) ν(p) = ν(p)

(5)

Now we can prove that ≈ is a weak timed bisimulation relation between N and N .
Proof : First we have (M0, dead0, ν0) ≈ (M0, dead0, ν0).
Let us consider a state s = (M, dead, ν) ∈ N and a state s = (M, dead, ν)

∈ N such that (M, dead, ν) ≈ (M, dead, ν).

– Discrete transitions Let t be a firable transition from s = (M, dead, ν) in N .
There is a run ρ1 = (M, dead, ν) t−→ (M1, dead1, ν1) (with dead = dead1).
It means that ∀p ∈ •(t) ν(p) ∈ I(p)↓. Moreover, M1 = M − •t + t• and
∀p ∈ M1\dead1, ν1(p) = 0 if p ∈ t•.
In N , as (M, dead, ν) ≈ (M, dead, ν) we have ∀p ∈ •(t) ν(p) ∈ I(p)↓. More-
over ν(pt

2) ∈ I(pt
2)

↓(with upper bound : ∞) and there is a token either in pt
1

or in pt
2. Thus, there is a run ρ1 = (M, dead, ν) ε∗−−→ (M ε1 , deadε1 , νε1)

t−→
(M1, dead1, ν1) with (M ε1 , deadε1 , νε1) ≈ (M, dead, ν) and Mε1(pt

2) = 1. We
have M1 = M − •t + t• that is to say M1(pt

2) = 1, M1(pt
1) = 0 and ∀p ∈ P ,

M1(p) = M1(p). Moreover dead = dead1 and ∀p ∈ M1\dead1, ν1(p) = 0 if p ∈
t• and then ∀p ∈ P , ν1(p) = ν1(p). Thus (M1, dead1, ν1) ≈ (M1, dead1, ν1).

– Continuous transitions In N , from s = (M, dead, ν), there is a run ρ2 =
(M, dead, ν) d−→ (M2, dead2, ν2) such that ∀p ∈ M(p), ν2(p) = ν(p) + d
and M = M2. Moreover, ∀p ∈ M\dead, M2(p) = 1 and dead2(p) = 0 if
ν2(p) ∈ I(p)↓ and M2(p) = dead2(p) = 1 if ν2(p) �∈ I(p)↓.

• if there is no firable transition t such that ∃pt ∈ •(t) with ν(pt) ∈
I(pt)↓ and ν2(pt) �∈ I(pt)↓. As (M, dead, ν) ≈ (M, dead, ν), we have
∀p ∈ P, M(p) = M(p), dead(p) = dead(p) and ν(p) = ν(p) and then
in N , there is a run ρ2 = (M, dead, ν) d−→ (M2, dead2, ν2) such that
dead2 = dead and ∀p ∈ P , M2(p) = M2(p) and ν2(p) = ν2(p) + d =
ν2(p). Thus (M2, dead2, ν2) ≈ (M2, dead2, ν2)

• if there is a firable transition t such that ∃pt ∈ •(t) with ν(pt) ∈ I(pt)↓

and ν2(pt) �∈ I(pt)↓ (and then dead(pt) = 0 and dead2(pt) = 1). As
(M, dead, ν) ≈ (M, dead, ν), we have ∀p ∈ P, M(p) = M(p), dead(p) =
dead(p) and ν(p) = ν(p). In N , there is a run ρ2 = (M, dead, ν) ε∗−−→
(M ε2 , deadε2 , νε2) such that (M ε2 , deadε2 , νε2) ≈ (M, dead, ν) and
M ε2(pt

2) = 0. Thus, there is a run (Mε2 , deadε2 , νε2)
d−→ (M2, dead2, ν2)

such that M2(pt) = dead2(pt) = 1 and ∀p ∈ P , ν2(p) = ν(p) + d = ν2(p)
and then (M2, dead2, ν2) ≈ (M2, dead2, ν2).

The converse is straightforward following the same steps as the previous ones.
��

74 M. Boyer and O.H. Roux

Theorem 2. P-TPN ⊂≈ P-TPN

Proof. As P-TPN �⊆≈ P-TPN and thanks to Lemma 1. ��

4.3 A-TPN ⊂≈ A-TPN

Theorem 3. A-TPN ⊂≈ A-TPN

Proof. As for Theorem 2 ��

4.4 T-TPN �⊆≈ T-TPN

We first recall the following theorem :

Theorem 4 ([3]). There is no TPN ∈ T-TPN weakly timed bisimilar to A0 ∈
T A (Fig. 5).

Theorem 5. T-TPN �⊆≈ T-TPN

Proof. We first prove that the TPN NT0 ∈ T-TPN of Fig. 6 is weakly timed
bisimilar to A0 ∈ T A (Fig. 5).
Let (�, v) be a state of A0 ∈ T A where � ∈ {�0, �1} and v(x) ∈ R≥0 is the
valuation of the clock x. We define the relation ≈ ⊆ ({�0, �1} ×R≥0)× ({0, 1}×
R≥0) by:

(�, v) ≈ (M, ν) ⇐⇒

⎧
⎪⎨

⎪⎩

(1) � = �0 ⇐⇒ M(P1) = 1
� = �1 ⇐⇒ M(P1) = 0

(2) v(x) = ν(a)
(6)

≈ is a weak timed bisimulation (The proof is straightforward).
From Theorem 4, there is no TPN ∈ T-TPN weakly timed bisimilar to A0 ∈ T A
(Fig. 5) and the TPN NT0 ∈ T-TPN of Fig. 6 is weakly timed bisimilar to A0.

��

4.5 P-TPN �⊆≈ T-TPN

Lemma 2. The TPN NP0 ∈ P-TPN (Fig.7) is weakly timed bisimilar to A0 ∈
T A (Fig. 5).

Proof. From Lemma 1, NP0 ≈ NP1. Obviously, NP1 ≈ NT0. And, from proof of
Theorem 5, NT0 ≈ A0. By transitivity, NP0 ≈ A0.

(NP0, NP1, NT0 and A0 are respectivly presented in Figures 7, 8, 6, 5). ��

Theorem 6
P-TPN �⊆≈ T-TPN

Proof. From Theorem 4, there is no TPN ∈ T-TPN weakly timed bisimilar to
A0 ∈ T A (Fig. 5) and the TPN NP0 ∈ P-TPN is weakly timed bisimilar to
A0. ��

Comparison of the Expressiveness of Arc, Place and Transition TPNs 75

l0 l1
a ; x < 1

Fig. 5. The Timed Automaton A0

P1

a, [0, 1[

•

Fig. 6. The TPN NT0 ∈ T-TPN
bisimilar to A0

pa
1 pa

2 P3

[0, ∞[[0, ∞[[0, 1[

ε

ε
a

• •

Fig. 7. The TPN NP0 ∈ P-TPN
bisimilar to A0

P1, [0, 1[

a

•

Fig. 8. A TPN NP1 ∈ P-TPN
bisimilar to NP0

4.6 T-TPN �⊆≈ P-TPN and T-TPN �⊆≈ P-TPN

Definition 15 (Relevant clock of a P-TPN). Let N = (P, T, •(.), (.)•,
M0, Λ, I) be a P-TPN (P-TPN or P-TPN), and s = (M, dead, ν) be a state
of N . In s, a clock x associated to a place p ∈ P is said to be relevant iff
M(p) = 1.

We first give a lemma stating that “in P-TPN (P-TPN or P-TPN) a relevant
clock (associated to a token in a marked place p) can become irrelevant or can
be reset only in its firing interval (ν(p) ∈ I(p)) ”.

Lemma 3 (Reset of relevant clock in P-TPN). In P-TPN, a relevant clock
can become irrelevant or can be reset only in its firing interval. Let N , be a
P-TPN (P-TPN or P-TPN). Let (M, dead, ν) be a state of N such that M(p) > 0
and ν(p) > 0. If (M, dead, ν) −→ (M ′, dead′, ν′) (where −→ is a discrete or a
continuous transition) and ν′(p) = 0 or M ′(p) = 0 then ν(p) ∈ I(p)

Proof. From the semantics of P-TPN (P-TPN or P-TPN), a relevant clock as-
sociated to a place p (M(p) = 1) can become irrelevant or can be reset only
by a discrete transition (M, dead, ν) t−→ (M ′, dead, ν′) such that p ∈ •t (if
p ∈ t• the relevant clock is reset, otherwise it become irrelevant). Then, as
t ∈ firable(M, dead, ν), we have ν(p) ∈ I(p). ��

P1
u, [2, 2]v, [0, ∞[•

Fig. 9. The TPN NT1 ∈ T-TPN

76 M. Boyer and O.H. Roux

Theorem 7. There is no TPN ∈ P-TPN weakly timed bisimilar to NT1 ∈
T-TPN (Fig. 9).

Proof. The idea of the proof is that in the T-TPN NT1 the clock associated to
the transition u can be reset at any time (in particular before 2 time units). In the
P-TPN , time measure is performed by a finite number of clock. We are going
to do this reset more times than this number, outside of their firing interval,
leading to contradiction of Lemma 3.

Assume there is a P-TPN N ′ = (P ′, T ′, •(.)′, (.)′•, M ′
0, Λ

′, I ′) that is weakly
timed bisimilar to NT1. Let us define P> ⊆ P ′, the finite set of n places p
of N ′ such that the lower bound α′(p) (see section 2 for notations α and β)
of interval I ′(p) is non nul. Let us define δα = min {α′(p) p ∈ P>}, δβ =
min {β′(p) �= 0 p ∈ P ′}, and δ = min δα, δβ.

Let s0 = (M0, ν0) be the initial state of NT1 and s′0 = (M ′
0, dead′0, ν

′
0) the

initial state of N ′.
The proof is decomposed into three steps:

1. P> is non empty:

Proof. Let ρ be a run of NT1, ρ = s0
2−→ s2

u−→ su.

In N ′, ∃ρ′ = s′0
(ε∗,2)−−−−→ s′2

(ε∗,u)−−−−→ s′u, such that s0, s2 and su are respec-
tively bisimilar to s′0, s′2 and s′u.

If P> is empty, the sequence s′0
(ε∗,0)−−−−→ (ε∗,u)−−−−→ exists, and then, u is fired

at date 0, which is a contradiction. ��
This means that P> is non empty, δ exists and a subset of P> is used to
measure the 2 time units elapsing from initial state up to s2.

2. Let us consider ρτ = s0
τ−→ sτ

2−τ−−−→ s2
u−→ s3 in NT1 and ρ′τ = s′0

(ε∗,τ)−−−−→
s′τ

(ε∗,2−τ)−−−−−−→ s′2
u−→ s′3 its equivalent in N ′.

We will now prove that, for all τ < δ, it exists p ∈ P ′ such that, in s′τ ,
M ′(p) = 1 and ν′(p) = τ .

Proof. First, notice that all marked places are consistent ones, because τ <
δβ .

Assume that there is no consistent clock with value τ in s′τ .
Each consistent clock whose value is τ ′ < τ in s′τ has been enabled at

time τ − τ ′. Since τ − τ ′ < δ, the same run from s′0 to sτ−τ ′ can be done
in 0 time. Consequently, the state s′τ can be reached by a run of duration
τ ′ < τ , which contradict the bisimilation relation between sτ and s′τ .

Then for all τ < δ, it exists p ∈ P ′ such that, in s′τ , M ′(p) = 1 and
ν′(p) = τ . Moreover, thanks to item 1, p ∈ P>. ��

3. In NT1, from sτ , the firing of v leads to a state bisimilar to s0 and then in
N ′, from s′τ , the firing of v leads to a state s1

0 bisimilar to s0.
Let us consider the run s0

τ1−−→ sτ1

v−→ s0
τ2−−→ sτ2

v−→ s0 · · · τk−−→ sτk

v−→ s0

in NT1 with all τi > 0 and ρ′′ = s′0
(ε∗,τ1)−−−−−→ s′τ1

v−→ s1
0

(ε∗,τ2)−−−−−→ s′τ2

v−→
s2
0 · · · (ε∗,τk)−−−−−→ s′τk

v−→ sk
0 its equivalent in N ′ .

Comparison of the Expressiveness of Arc, Place and Transition TPNs 77

Each state si
0 is bisimilar to s0 and then, for each si

0 there is a relevant
clock associated to a place p ∈ P> whose value is equal to zero (application
of previous item with τ = 0). Now, assume k > n (n is the size of P>) and∑

1≤i≤n τi < δ, at least one relevant clock (associated to a place p ∈ P>)
has to become irrelevant or has to reset in the run ρ′′ whereas ντ (p) �∈ I(p)
contradicting the Lemma 3. ��

Corollary 1
T-TPN �⊆≈ P-TPN

Proof. Direct from Theorem 7. ��

Moreover, the Theorem 7 remains valid in weak semantics. Indeed, we can con-
sider the net of the Fig. 9 with a weak semantic and the proof of Theorem 7
remains identical. We have then the following corollary.

Corollary 2
T-TPN �⊆≈ P-TPN

4.7 T-TPN ⊂≈ A-TPN and T-TPN ⊆≈ A-TPN

The proof of this strict inclusion is done in two steps: Lemma 4 (in Section 4.7)
shows that T-TPN ⊆≈ A-TPN (by construction: for each T-TPN, a weak-
bisimilar A-TPN is built), and Lemma 5 shows that it exists a A-TPN bisimilar
to A0 ∈ T A (Fig. 5) already used in Theorem 4. With these two lemmas, the
strict inclusion is straightforward (Section 4.7).

Weak Inclusion: : T-TPN ⊆≈ A-TPN and T-TPN ⊆≈ A-TPN

Lemma 4 (From T-TPN to A-TPN)

T-TPN ⊆≈ A-TPN T-TPN ⊆≈ A-TPN

The proof is done by construction: for each T-TPNN , a weak-bisimilar A-TPN N ′

is built. The main issue is to emulate the T-TPN “start clock when all input places
aremarked” rule with theA-TPN rule “start clock as soon as the token is in place”.

The main idea is, for each transition t in a T-TPN N , a chain of places
◦t0, . . . , ◦tn (with n = |•t|) is built in the translated A-TPN N ′, such that∑

p∈•t MN (p) = i ⇐⇒ MN ′(◦ti) = 1 (with i ∈ [1, n]). Therefor, the time
interval IN (t) is set to arc from ◦t|

•t| to t. Then, the rule “start clock in I(t) when
all input places of t are marked” is emulated by the rule “start clock constraint
in I(◦t|

•t|, t) when ◦t|
•t| is marked” which is equivalent because IN ′(◦t|

•t|, t) =
IN (t) and

∑
p∈•t MN (p) = n ⇐⇒ MN ′(◦tn) = 1.

Of course, the transitions that modify •t in N should have a matching tran-
sition in N that modifies ◦ti.

78 M. Boyer and O.H. Roux

Example. The T-TPN of Figure 10 is translated into the A-TPN of Figure 11.
Then, the firing condition associated to t is activated only when there is one
token in place ◦t|

•t| (◦t2 in the example), that is to say, when there are enough
tokens in the emulated places •t.

With this chain structure, the firing of the transition u (resp. v) must increase
the marking of •t, i.e. put a token in ◦t1 or ◦t2 (depending on the previous mark-
ing). To achieve this goal, since bisimulation is based on the timed transition
system where only labels of transitions are visible, the transition u can be re-
placed by two transitions, one putting a token in ◦t1 and the other in ◦t2, as
long as they have the same label. In Figure 11, these two transitions are called
u(t:0,1) and u(t:1,2) and Λ(u(t:0,1)) = Λ(u(t:1,2)) = Λ(u) (6).

Once this done, a little stuff has to be added to handle conflict and reversible
nets7. It should be noticed that the exactly the same translation applies for weak
and strong semantics.

t

[0,2]

[1,1]

v

u

[0,2]

Fig. 10. A T-
TPN

[1,1]

[0, 2]
[0, 2]

[0, 2][0, 2]

t

◦t0

◦t1

◦t2

u(t:0,1)

u(t:1,2)

v(t:0,1)

v(t:1,2)

Fig. 11. A translation of the T-TPN of Figure 10 into A-TPN

By lack of space, the details of the translation and the proof are not presented
here and can be found in [9].

A Specific A-TPN

Lemma 5. The TPN NA0 ∈ A-TPN of Fig.13 is weakly timed bisimilar to
A0 ∈ T A (Fig. 5).

The bisimulation relation and the proof are identical to those of Lemma 2.

Strict Inclusion in Strong Semantics

Theorem 8
T-TPN ⊂≈ A-TPN

6 Notation u(t:1,2) is used to denotes that this firing of u makes the marking of •t going
form 1 to 2.

7 This translation pattern have been used in [7] to translate T-TPN into P-TPN, but
it was a mistake. The translation only apply in some specific cases: when transitions
are conflict-free or when the lower bound of time intervals is 0 for example (see[9]).

Comparison of the Expressiveness of Arc, Place and Transition TPNs 79

Proof. Thanks to Lemma 4 we have T-TPN ⊆≈ A-TPN. Moreover from Theo-
rem 4, there is no TPN ∈ T-TPN weakly timed bisimilar to A0 ∈ T A (Fig. 5)
and from Lemma 5, the TPN NA0 ∈ A-TPN is weakly timed bisimilar to A0. ��

4.8 P-TPN ⊂≈ A-TPN and P-TPN ⊂≈ A-TPN

Lemma 6 (P-TPN included in A-TPN (strong and weak semantics))

P-TPN ⊆≈ A-TPN P-TPN ⊆≈ A-TPN

Proof. The translation is obvious: for a given P-TPN N , a A-TPN N ′ is built,
with the same untimed Petri net, and such that, ∀p, ∀t ∈ p• : I ′(p, t) = I(p).
Then, considering their respective definitions for enabled, firable and the dis-
crete and continuous translation, the only difference is that, when the P-TPN
condition is ν(p) ∈ I(p) or ν(p) ∈ I(p)↓, the A-TPN condition is ∀t ∈ p• : ν(p) ∈
I(p, t) or ν(p) ∈ I(p, t)↓. And in our translation, I ′(p, t) = I(p).

Then, all evolution rules are the same and both are strongly bisimilar. ��

Lemma 7 (No P-TPN is bisimilar to a A-TPN). It exists NA1 ∈ A-TPN
such that there is no N ∈ P-TPN weakly timed bisimilar to NA1.

P1

T1, u

T2, v

[2, 2]

[0, ∞[[0, ∞[

•

Fig. 12. The TPN NA1 ∈ A-TPN

pa
1

pa
2 P3

ε

ε
a

[0, ∞[

[0, ∞[

[0, ∞[

[0, 1[

• •

Fig. 13. The TPN NA0 ∈ A-TPN
bisimilar to A0

Proof. The proof is based on Theorem 7. The A-TPN NA1 (cf. Fig. 12) is
the same net than the T-TPN NT1 (cf. Fig. 9)). Obviously, NA1 and NT1 are
(strongly) bisimilar. Then, from Theorem 7 that states that there is no P-TPN
weakly bisimilar to NT1, there neither is any P-TPN weakly bisimilar to NA1.

��

Lemma 8 (No P-TPN is bisimilar to a A-TPN). It exists NA1 ∈ A-TPN
such that there is no N ∈ P-TPN weakly timed bisimilar to NA1.

The proof is the same as for Lemma 7.

Theorem 9 (A-TPN are strictly more expressive than P-TPN).

P-TPN ⊂≈ A-TPN P-TPN ⊂≈ A-TPN

Proof. Obvious from Lemma 6, 7 and 8.

80 M. Boyer and O.H. Roux

T-TPN

P-TPN

A-TPN

T-TPN

P-TPN

A-TPN�⊆≈ (9)�≈

⊂≈ (7)

⊂≈ (8)

(3) �⊆
≈

⊂≈ (1)

⊆≈ (2)�⊆≈ (5)

�≈

(6) ⊂≈

⊃≈

(4)

Fig. 14. The classification explained

4.9 Sum Up

We are now going to sum-up all results in a single location, Figure 14.

(1) and (7) A P-TPN can always be translated into a A-TPN and there exist
some A-TPN that can not be simulated by any P-TPN (Theo-
rem 9).

(2) A T-TPN can be translated into a A-TPN (Lemma 4). Then, A-TPN
are more expressive than T-TPN. Is this relation strict or not is still
an open problem.

(3) Corrolary 2 states that T-TPN �⊆≈ P-TPN But we do not know
more: does it mean that P-TPN are more expressive than T-TPN,
or are both models incomparable is still another open problem.

(4) The strong semantics of A-TPN strictly generalise the weak one
(Theorem 3).

(5) Strong and weak T-TPN are incomparable: the weak semantics
can not emulate the strong one (Theorem 1) but there also exist
T-TPN with weak semantics that can not been emulated by any
strong T-TPN (Theorem 4).

(6) Theorem 2 states that P-TPN ⊂≈ P-TPN: in P-TPN, the strong
semantics can emulate the weak one (Lemma 1), but weak semantic
can not do the opposite (Theorem 1).

(8) A T-TPN can be translated into a A-TPN (Lemma 4) and there
exists a A-TPN (Lemma 5) that can not be emulated by any T-TPN.
Then strict inclusion follows (Theorem 8).

(9) T-TPN and P-TPN with strong semantics are incomparable: The-
orem 6 states that there is a P-TPN that can be simulated by no
T-TPN and Corollary 1 states the symmetric.

Comparison of the Expressiveness of Arc, Place and Transition TPNs 81

5 Conclusion

Several timed Petri nets models have been defined for years and different pur-
poses. They have been individually studied, some analysis tools exist for some,
and the users know that a given problem can be modelled with one or the other
with more or less difficulty, but a clear map of their relationships was missing.
This paper draws most of this map (cf. Fig. 14).

Behind the details of the results, a global view of the main results is following:

– P-TPN and A-TPN are really close models, since their firing rule is the
conjunction of some local clocks, whereas the T-TPN has another point of
view, its firing rule taking into account only the last clock;

– the A-TPN model generalises all the other models, but emulating the T-
TPN firing rule with A-TPN ones is not possible in practice for human
modeller;

– the strong semantics generalise the weak one for P-TPN and A-TPN , but
not for T-TPN .

There are still two open problems related to the weak semantics of T-TPN :
“is the inclusion of T-TPN into A-TPN strict?” and “does T-TPN generalise
P-TPN or are they incomparable?”.

The next step will be to study the language-based relationships.

References

1. Abdulla, P.A., Nylén, A.: Timed petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

2. Aura, T., Lilius, J.: A causal semantics for time petri nets. Theoretical Computer
Science 243(2), 409–447 (2000)

3. Berard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W.
(eds.) FORMATS 2005. LNCS, vol. 3829, Springer, Heidelberg (2005)

4. Berthomieu, B.: La méthode des classes d’états pour l’analyse des réseaux tem-
porels. mise en œuvre, extension à la multi-sensibilisation. In: Modélisation des
Systémes Réactifs (MSR’01), Toulouse (Fr), pp. 275–290, (17–19 Octobre 2001)

5. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time petri nets. IEEE transactions on software engineering 17(3), 259–273
(March 1991)

6. Boyer, M., Vernadat, F.: Language and bisimulation relations between subclasses
of timed petri nets with strong timing semantic. Technical report, LAAS (2000)

7. Boyer, M.: Translation from timed Petri nets with interval on transitions to interval
on places (with urgency). In: Workshop on Theory and Practice of Timed Systems,
vol. 65 of ENTCS, Grenoble, France, April 2002. Elsevier Science (2002)

8. Boyer, M., Diaz, M.: Multiple enabledness of transitions in time Petri nets. In: Proc.
of the 9th IEEE International Workshop on Petri Nets and Performance Models,
Aachen, Germany, September 11–14, 2001, IEEE Computer Society, Washington
(2001)

82 M. Boyer and O.H. Roux

9. Boyer, M., Roux, O. H.: Comparison of the expressiveness w.r.t. timed bisim-
ilarity of k-bounded arc, place and transition time Petri nets with weak
and strong single server semantics. Technical Report RI, -15, IRCCyN (2006)
http://www.irccyn.ec-nantes.fr/hebergement/Publications/2006/3437.pdf

10. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: When are timed au-
tomata weakly timed bisimilar to time Petri nets? In: Ramanujam, R., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, Springer, Heidelberg (2005)

11. Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed
Automata – Model-Checking Time Petri Nets via Timed Automata. The journal
of Systems and Software 79(10), 1456–1468 (2006)

12. Cerone, A., Maggiolo-Schettini, A.: Timed based expressivity of time petri nets for
system specification. Theoretical Computer Science 216, 1–53 (1999)

13. de Frutos Escrig, D., Ruiz, V.V., Alonso, O.M.: Decidability of properties of timed-
arc Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825,
pp. 187–206. Springer, Heidelberg (2000)

14. Hanisch, H.M.: Analysis of place/transition nets with timed-arcs and its application
to batch process control. In: Ajmone Marsan, M. (ed.) Application and Theory of
Petri Nets 1993. LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)

15. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri
nets. Theoretical Computer Science 4, 277–299 (1977)

16. Khansa, W., Denat, J.-P., Collart-Dutilleul, S.: P-time Petri nets for manufactur-
ing systems. In: International Workshop on Discrete Event Systems, WODES’96,
Edinburgh (U.K.), pp. 94–102 (August 1996)

17. Khanza, W.: Réseau de Petri P-Temporels. Contribution á l’étude des systémes á
événements discrets. PhD thesis, Université de Savoie (1992)

18. Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis, Dep.
of Information and Computer Science, University of California, Irvine, CA (1974)

19. Pezzè, M.: Time Petri Nets: A Primer Introduction. Tutorial presented at the
Multi-Workshop on Formal Methods in Performance Evaluation and Applications,
Zaragoza, Spain (September 1999)

20. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, Project
MAC Report MAC-TR-120 (1974)

21. Sifakis, J.: Performance Evaluation of Systems using Nets. In: Brauer, W. (ed.)
Net Theory and Applications: Proc. of the advanced course on general net theory,
processes and systems, LNCS, vol. 84, Springer, Heidelberg (1980)

22. Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer, Hei-
delberg (2005)

23. Walter, B.: Timed net for modeling and analysing protocols with time. In: Pro-
ceedings of the IFIP Conference on Protocol Specification Testing and Verification,
North Holland (1983)

http://www.irccyn.ec-nantes.fr/hebergement/Publications/2006/3437.pdf

Improving Static Variable Orders Via Invariants�

Gianfranco Ciardo1, Gerald Lüttgen2, and Andy Jinqing Yu1

1 Dept. of Computer Science and Engineering, UC Riverside, CA 92521, USA
{ciardo,jqyu}@cs.ucr.edu

2 Dept. of Computer Science, University of York, York YO10 5DD, U.K.
luettgen@cs.york.ac.uk

Abstract. Choosing a good variable order is crucial for making sym-
bolic state-space generation algorithms truly efficient. One such algo-
rithm is the MDD-based Saturation algorithm for Petri nets implemented
in SmArT, whose efficiency relies on exploiting event locality.

This paper presents a novel, static ordering heuristic that considers
place invariants of Petri nets. In contrast to related work, we use the
functional dependencies encoded by invariants to merge decision-diagram
variables, rather than to eliminate them. We prove that merging vari-
ables always yields smaller MDDs and improves event locality, while
eliminating variables may increase MDD sizes and break locality. Com-
bining this idea of merging with heuristics for maximizing event locality,
we obtain an algorithm for static variable order which outperforms com-
peting approaches regarding both time-efficiency and memory-efficiency,
as we demonstrate by extensive benchmarking.

1 Introduction

Petri nets [26] are a popular formalism for specifying concurrent and distributed
systems, and much research [32] has been conducted in the automated anal-
ysis of a Petri net’s state space. Many analysis techniques rely on generating
and exploring a net’s reachable markings, using algorithms based on decision
diagrams [10,29] or place invariants [17,31,34,35].

While decision diagrams have allowed researchers to investigate real-world
nets with thousands of places and transitions, their performance crucially de-
pends on the underlying variable order [1,23]. Unfortunately, finding a good
variable order is known to be an NP-complete problem [2]. Thus, many heuris-
tics for either the static or the dynamic ordering of variables have been proposed,
which have shown varying degree of success; see [18] for a survey.

In the state-space exploration of Petri nets, place invariants find use in ap-
proximating state spaces [28], since every reachable state must by definition sat-
isfy each invariant, and in compactly storing markings by exploiting functional
dependencies [6,19,27]. This latter use of invariants is also considered when en-
coding places with decision-diagram variables, as it eliminates some variables,
offering hope for smaller decision diagrams during state-space exploration [17].
� Work supported in part by the National Science Foundation under grants CNS-

0501747 and CNS-0501748 and by the EPSRC under grant GR/S86211/01.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 83–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

84 G. Ciardo, G. Lüttgen, and A.J. Yu

The contributions of this paper are twofold. First, we show that eliminat-
ing variables based on invariance information may actually increase the sizes
of decision diagrams, whence the above ‘hope’ is misplaced. Instead, we show
that merging variables is guaranteed to lead to smaller decision diagrams. While
our merging technique is obviously not applicable for Binary Decision Diagrams
(BDDs), it is compatible with techniques using Multi-way Decision Diagrams
(MDDs), such as SmArT’s Saturation algorithm for computing reachable mark-
ings [10]. In addition, merging variables improves event locality, i.e., it decreases
the span of events over MDD levels, rather than worsening it as is the case with
variable elimination. This is important since algorithms like Saturation become
more efficient as event locality is increased.

Second, we propose a new heuristic for static variable ordering which is suit-
able for Saturation. This heuristic combines previous ideas, which only took the
height and span of events into account [39], with variable merging based on lin-
ear place invariants. We implement our heuristic into SmArT [9], generating the
invariants with GreatSPN [7], and show via extensive benchmarking that this
heuristic outperforms approaches that ignore place invariants, with respect to
both time-efficiency and memory-efficiency. Indeed, the benefits of our heuris-
tic are greatest for practical nets, including large instances of the slotted-ring
network [30] and the kanban system [40], which have been tractable only using
ad-hoc variable orderings and mergings found through our intuition and exten-
sive experimentation. This shows that exploiting invariants is key for optimizing
the performance of symbolic state-exploration techniques, provided one uses in-
variance information for merging variables and not for eliminating them.

Organization. The next section provides a short introduction to reachability and
invariant analysis in Petri nets, and to decision diagrams and symbolic state-
space generation. Sec. 3 recalls previous work on static variable ordering for
Saturation, formally analyzes the concepts of variable elimination and merging,
and develops our novel heuristic for static variable ordering. Sec. 4 experimen-
tally evaluates our ideas on a suite of models. Finally, related work is discussed
in Sec. 5, while Sec. 6 presents our conclusions and directions for future research.

2 Preliminaries

In this section we briefly cover the class of Petri nets considered, self-modifying
nets, and their two main analysis approaches, reachability and invariant analysis.
Then, we discuss decisions diagrams and how they can encode sets of markings
and the transformations that transitions perform on markings. Finally, we survey
a range of symbolic state-space generation algorithms, from the simple breadth-
first iteration to our own Saturation algorithm.

2.1 Petri Nets and Self-modifying Nets

We consider self-modifying nets with inhibitor arcs, described by a tuple of the
form (P , T ,F−,F+,F◦,minit), where

Improving Static Variable Orders Via Invariants 85

– P and T are sets of places and transitions satisfying P∩T = ∅ and P∪T �= ∅.
A marking m ∈ N

P assigns a number of tokens mp to each place p ∈ P .
– F−:P×T ×N

P →N, F+:P×T ×N
P →N, and F◦:P×T ×N

P →N∪{∞} are
|P|×|T | incidence matrices; F−

p,t, F+
p,t, and F◦

p,t are the marking-dependent
[8,41] cardinalities of the input, output, and inhibitor arcs between p and t.

– minit is the initial marking.

The evolution of the net from a marking m is governed by the following rules,
keeping in mind that the cardinality of any arc is evaluated in the current mark-
ing, i.e., prior to the firing of any transition:

Enabling: Transition t is enabled in marking m if, for each place p, the input
arc is satisfied, mp ≥ F−

p,t(m), and the inhibitor arc is not, mp < F◦
p,t(m).

Firing: Firing enabled transition t in marking m leads to marking n, where,
for each place p, np = mp − F−

p,t(m) + F+
p,t(m). We write Nt(m) = {n}, to

stress that, for general discrete-state formalisms, the next-state function Nt

for event t, applied to a single state m, returns a set of states. Then, we can
write Nt(m) = ∅ to indicate that t is not enabled in marking m.

2.2 Reachability Analysis and Invariant Analysis

The two main techniques for Petri net analysis are reachability analysis and
invariant analysis. The former builds and analyzes the state space of the net
(or reachability set), defined as M = {m : ∃d,m ∈ N d(minit)} = N ∗(minit),
where we extend the next-state function to arbitrary sets of markings X ⊆
N

P , Nt(X) =
⋃

m∈X Nt(m), write N for the union of all next-state functions,
N (X) =

⋃
t∈T Nt(X), and define multiple applications of the next-state function

as usual, N 0(X) = X , N d(X) = N (N d−1(X)), and N ∗(X) =
⋃

d∈N
N d(X).

Invariant analysis is instead concerned with deriving a priori relationships
guaranteed to be satisfied by any reachable marking, based exclusively on the
net structure. In nets where the arcs have a constant cardinality independent
of the marking, i.e., ordinary Petri nets with or without inhibitor arcs [26],
much work has focused on the computation of p-semiflows [14,15], i.e., non-
zero solutions w ∈ N

P to the linear set of “flow” equations w · F = 0, where
F = F+ − F−. Since any linear combination of such solutions is also a solution,
it suffices to consider a set of minimal p-semiflows from which all others can be
derived through non-negative linear combinations. A semiflow w specifies the
constraint

∑
p∈P wp · mp = C on any reachable marking m, where the constant

C =
∑

p∈P wp · minit
p is determined by the initial marking. When marking-

dependent arc multiplicities are present, linear p-semiflows [8], or even more
general relationships [41], may still exist. However, invariant analysis provides
necessary, not sufficient, conditions on reachability; a marking m might satisfy
all known invariants and still be unreachable.

In this paper, we use invariants to improve (symbolic) state-space generation.
We assume to be given a self-modifying net with inhibitor arcs (or a similar
discrete-state model whose next-state function is decomposed according to a

86 G. Ciardo, G. Lüttgen, and A.J. Yu

set of asynchronous events), and a set W of linear invariants, each of the form∑
p∈P Wv,p · mp = Cv, guaranteed to hold in any reachable marking m. Then,

– Support(v) = {p ∈ P : Wv,p > 0} is the support of the vth invariant.
– W ∈ N

|W|×|P| describes the set of invariants. In addition, observe that the
case |Support(v)| = 1 is degenerate, as it implies that the marking of the
place p in the support is fixed. We then assume that p is removed from
the net after modifying it appropriately, i.e., substituting the constant minit

p

for mp in the marking-dependent expression of any arc and removing any
transition t with F−

p,t > minit
p or F◦

p,t ≤ minit
p . Thus, each row of W contains

at least two positive entries.
– The marking of any one place p ∈ Support(v) can be expressed as a function

of the places in Support(v) \ p through inversion, i.e., in every reachable
marking m, the relation mp = (Cv −

∑
q∈P\{p} Wv,q · mq)/Wv,p holds.

We say that a set of non-negative integer variables V ′ is functionally dependent
on a set of non-negative integer variables V ′′ if, when the value of the variables
in V ′′ is known, the value of the variables in V ′ is uniquely determined. In our
linear Petri-net invariant setting, V ′ and V ′′ correspond to the markings of two
sets of places P ′ and P ′′, and functional dependence implies that the submatrix
WW′,P′ of W, obtained by retaining only columns corresponding to places in
P ′ and rows corresponding to invariants having support in P ′ ∪ P ′′, i.e., W ′ =
{v ∈ W : Support(v) ⊆ P ′ ∪ P ′′}, has rank |P ′|. This fundamental concept of
functional dependence is at the heart of our treatment, and could be generalized
to the case of nonlinear invariants where not every place in Support(v) can
be expressed as a function of the remaining places in the support. To keep
presentation and notation simple, we do not discuss such invariants.

2.3 Decision Diagrams

The state-space generation algorithms we consider use quasi-reduced ordered
multi-way decision diagrams (MDDs) [22] to store structured sets, i.e., subsets
of a potential set Ŝ = SK × · · · × S1, where each local set Sl, for K ≥ l ≥ 1,
is of the form {0, 1, ..., nl − 1}. Formally, an MDD over Ŝ is a directed acyclic
edge-labeled multi-graph such that:

– Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.
– There is a single root node r� at level K or 0.
– Level 0 can contain only the terminal nodes 0 and 1.
– A node p at level l > 0 has nl outgoing edges, labeled from 0 to nl − 1. The

edge labeled by i ∈ Sl points to node q at level l − 1 or 0; we write p[i] = q.
– Given nodes p and q at level l, if p[i] = q[i] for all i ∈ Sl, then p = q.
– The edges of a node at level l > 0 cannot all point to 0 or all point to 1.

An MDD node p at level l encodes, with respect to level m ≥ l, the set of tuples
B(m, p) = Sm × · · · × Sl+1 ×

(⋃
i∈Sl

{i} × B(l − 1, p[i])
)
, letting X × B(0,0) = ∅

and X × B(0,1) = X . If m = l, we write B(p) instead of B(l, p). Fig. 1 contains

Improving Static Variable Orders Via Invariants 87

�� � ��� �� �� ��

�� � ��� �� ��

�� � ��� ��

�� � ��� �� ��

0 1 2 3

0 1 2

0 1 0 1

0 1 2

0 1 2

� � ������ ����� �����
����� ����� �����

����� ����� �����

����� ����� �����

����� ����� �����

����� ����� �����

5

4

2

9

7

8

(a) (b) (c)
0 1

1 2 3

0 1 2

0 1 1

0 1 20

0 1 2

0 1

(d)

3

6

5

4

2

9

7

8

Fig. 1. An example of an MDD and the set of 4-tuples it encodes

an example where K = 4, showing the composition of the sets Sl (a), the MDD
(b), and the set of tuples encoded by it (c). Here, as in [11], we employ a dynamic
MDD variant where the sets Sl are not fixed but are grown as needed, so that
the MDD can be used to encode arbitrary (but finite) subsets of N

K . The only
overhead in such a data structure is that, since a set Sl may grow and change the
meaning of an edge spanning level l and pointing to node 1, only edges pointing
to node 0 are allowed to span multiple levels, while node 1 can be pointed only
by edges from nodes at level 1. Fig. 1(d) shows how this requires the insertions
of nodes 3 and 6 along edge 2 from 8; we employ a simplified representation
style where terminal nodes and edges to 0 are omitted.

For our class of nets, it might be difficult (and it is generally impossible) to
compute an upper bound on the marking of a place. To store a set of reachable
markings during symbolic state-space generation, we could then use dynamic
MDDs over N

|P|, so that a marking m is simply a tuple encoded in the MDD.
However, this simplistic approach has several drawbacks:

– Even if the (current) bound Bp on the marking of a place p is tight, i.e.,
there is a reachable marking m with mp = Bp, the local set Sp might have
“holes”, i.e., no reachable marking n might have np = c, for some 0≤c<Bp.
This may waste memory or computation during MDD manipulation.

– If many different markings for p are possible, Sp and thus the nodes at level
p, might be too large, again decreasing the efficiency of MDD manipulations.
It might then be better to split a place over multiple MDD levels. This is
actually necessary if the implementation uses BDDs [3], which are essentially
our MDDs restricted to the case where each Sl is just {0, 1}.

– On the other hand, our symbolic algorithms can greatly benefit from “event
locality” which we discuss later. To enhance such locality, we might instead
want to merge certain places into a single MDD level.

– If some invariants are known, we can avoid storing some of the |P| compo-
nents of the marking, since they can be recovered from the remaining ones.

For simplicity, and since we employ MDDs, we ignore the issue of splitting
a place over multiple levels, but assume the use of K ≤ |P| indexing functions
that map submarkings into natural numbers. Given a net, we partition its places
into K subsets PK , ..., P1, so that a marking m is written as the collection
of the K submarkings (mK , ...,m1). Then, m can be mapped to the tuple of

88 G. Ciardo, G. Lüttgen, and A.J. Yu

the corresponding K submarking indices (iK , ..., i1), where il = ψl(ml) and
ψl : N

|Pl| → N ∪ {null} is a partial function. In practice, each ψl only needs to
map the set Ml of submarkings for Pl known to be reachable so far to the range
{0, ..., |Ml| − 1} of natural numbers. We can then define ψl dynamically:

– Initially, set Ml = {minit
l } and ψl(minit

l) = 0, i.e., map the only known
submarking for Pl, the initial submarking, to the first natural number.

– For any other ml ∈ N
|Pl| \ Ml, i.e., any submarking not yet discovered, set

ψl(ml) to the default value null.
– When a new submarking ml for Pl is discovered, add it to Ml and set

ψl(ml) = |Ml| − 1.

This mapping can be efficiently stored in a search tree and offers great flexibility
in choosing the MDD variables (xK , ...,x1) corresponding to the possible values
of the indices at each level. We can have as little as a single variable (when K =1,
S1 = S and we perform an explicit reachability set generation), or as many as
|P| variables, so that each place corresponds to a different level of the MDD.

2.4 Symbolic Algorithms to Generate the State Space of a Net

We now focus on building the state space of a net using MDDs, i.e., on computing
S ⊆ Ŝ corresponding to M. Since the functions ψl, K ≥ l ≥ 1, provide a bijection
between markings and K-tuples, knowledge of S implies knowledge of M. As
they manipulate sets of tuples, not individual tuples, all symbolic state-space
generation algorithms are some variation of the following:

“Build the MDD encoding S, defined as the smallest solution to the
fixpoint equation S = S ∪ N (S) subject to S ⊇ Sinit”,

where the next-state function N is now applied to tuples instead of markings.
Of course, N is also encoded using either MDDs or related formalisms. The

most common choice is a 2K-level MDD with interleaved levels for the cur-
rent variables x and the next variables x′, i.e., if i′ ∈ N (i), there is a path
(iK , i′K , ..., i1, i

′
1) from the root of the MDD encoding N to node 1. In our asyn-

chronous context, a disjunctive partition [4] can be used, where each transition
t ∈ T is encoded as a separate 2K-level MDD. This is the case in the standard
breadth-first algorithm Bfs shown in Fig. 2. Function Union returns the root of
the MDD encoding the union of the sets encoded by the arguments (all encoded
as K-level MDDs), while function Image returns the root of the MDD encoding
the set of states reachable in one application of the second argument (a 2K-level
MDD) from any state encoded by the first argument (a K-level MDD); both
functions are easily expressed in recursive form. In the figure, we identify sets
and relations with the MDDs encoding them; thus, for example, Nt[i][i′] means
the node in the MDD encoding Nt which is reached by following the edge labeled
i from the root and then the edge labeled i′ from the resulting node.

To improve over breadth-first iterations, we have proposed algorithms [12,13]
that exploit chaining [33] and event locality. Chaining is based on the observation

Improving Static Variable Orders Via Invariants 89

mdd Bfs(mdd Sinit)
1 S ← Sinit;
2 repeat
3 X ← ∅;
4 foreach t ∈ T do
5 X ← Union(X , Image(S ,Nt));
6 S ← Union(S ,X);
7 until S does not change;
8 return S ;

mdd BfsChaining(mdd Sinit)
1 S ← Sinit;
2 repeat
3 foreach t ∈ T do
4 S ← Union(S , Image(S ,Nt));
5 until S does not change;
6 return S ;

void Saturation(mdd Sinit)
1 for l = 1 to K do
2 foreach node p at level l on a path from Sinit to 1 do
3 Saturate(p); • update p in place

void Saturate(mdd p)
1 l ← p.lvl;
2 repeat
3 choose t s.t. Top(t) = l, i ∈ Sl, i

′ ∈ Sl s.t. p[i] �= 0 and Nt[i][i
′] �= 0;

4 p[i′] ← Union(p[i′], ImageSat(p[i], Nt[i][i
′]));

5 until p does not change;

mdd ImageSat(mdd q, mdd2 f)
1 if q = 0 or f = 0 then return 0;
2 k ← q.lvl; • f.lvl = k as well
3 s ← new level-k node with edges set to 0;
4 foreach i ∈ Sk, i′ ∈ Sk s.t. q[i] �= 0 and f [i][i′] �= 0 do
5 s[i′] ← Union(s[i′], ImageSat(q[i], f [i][i′]));
6 Saturate(s);
7 return s.

Fig. 2. Breadth-first, chaining, and Saturation state-space generation

that the number of symbolic iterations might be reduced if the application of
asynchronous events (transitions) is compounded sequentially, see BfsChaining
in Fig. 2. While the search order is not strictly breadth-first anymore, the set of
known states at the dth iteration of the repeat-until loop is guaranteed to be at
least as large with chaining as without.

However, the efficiency of symbolic state-space generation is determined not
just by the number of iterations but also by their cost, i.e., by the size of the
MDDs involved. In practice, chaining has been shown to be quite effective in
many asynchronous models, but its effectiveness can be greatly affected by the
order in which transitions are applied. Event locality can then be used to define
a good ordering heuristic [12], as we explain next.

Given a transition t, we define VM (t) = {xl : ∃i, i′∈Ŝ, i′∈Nt(i) ∧ il �= i′l} and
VD(t) = {xl : ∃i, j∈Ŝ, ∀k �= l, ik = jk ∧ Nt(i) �= ∅ ∧ Nt(j) = ∅}, i.e., the variables
that can be modified by t, or that can disable, t, respectively. Moreover, we let
Top(t) = max{l : xl ∈ VM (t)∪VD(t)} and Bot(t) = min{l : xl ∈ VM (t)∪VD(t)}.

We showed experimentally in [12] that applying the transitions t ∈ T in an
order consistent with their value of Top, from 1 to K, results in effective chaining.

90 G. Ciardo, G. Lüttgen, and A.J. Yu

Locality is easily determined for our nets since the enabling and firing effect of
a transition t depend only on its input, output, and inhibitor places, plus any
place appearing in the cardinality expression of the corresponding arcs.

Recognizing locality, however, offers great potential beyond suggesting a good
chaining order. If Top(t) = l and Bot(t) = k, any variable xm outside this range,
i.e., above l or below k, is not changed by the firing of transition t. When com-
puting the image in line 4 of BfsChaining , we can then access only MDD nodes at
level l or below and update in-place only MDD nodes at level l, without having
to access the MDD from the root. While Kronecker [25] and matrix diagram [24]
encodings have been used to exploit these identity transformations in Nt, the
most general and efficient data structure appears to be a decision diagram with
special reduction rules [13]. In this paper, we assume that Nt is encoded with
an MDD over just the current and next variables between Top(t) and Bot(t)
included, instead of a 2K-level MDD. If there are no marking-dependent arc
cardinalities, the structure of this MDD is quite simple, as we simply need to en-
code the effect of every input, inhibitor, and output arc connected to t; the result
is an MDD with just one node per ‘unprimed’ level. For general self-modifying
nets, a “localized” explicit enumeration approach may be used [13], although a
completely symbolic approach might be preferable.

We can now introduce our most advanced algorithm, Saturation, also shown
in Fig. 2. An MDD node p at level l is saturated [10] if

∀t ∈ T , Top(t) ≤ l ⇒ B(K, p) ⊇ Nt(B(K, p)).

To saturate node p once its descendants are saturated, we compute the effect of
firing t on p for each transition t such that Top(t) = l, recursively saturating
any node at lower levels created in the process, and add the result to B(p) using
in-place updates. Thus Saturation proceeds saturating the nodes in the MDD
encoding the initial set of states bottom-up, starting at level 1 and stopping
when the root at level K is saturated.

Only saturated nodes appear in the operation cache (needed to retrieve the
result of an ImageSat or Union call, if it has already been issued before with the
same parameters) and the unique table (needed to enforce MDD canonicity by
recognizing duplicate nodes). Since nodes in the MDD encoding the final S are
saturated by definition, this unique property, not shared by any other approach,
is key to a much greater efficiency. Indeed, we have experimentally found that
both memory and run-time requirements for our Saturation approach are usually
several orders of magnitude smaller than for the traditional symbolic breadth-
first exploration, when modeling asynchronous systems.

3 Structural Invariants to Improve Symbolic Algorithms

Structural invariants have been proposed for variable elimination. For example,
[17] suggests an algorithm that starts with an empty set of boolean variables
(places of a safe Petri net) and examines each place in some arbitrary order,

Improving Static Variable Orders Via Invariants 91

adding it as new (lower) level of the BDD only if it is not functionally dependent
on the current set of variables. This greedy elimination algorithm reduces the
number of levels of the BDD, with the goal of making symbolic state-space gen-
eration more efficient. However, we argue that this invariant-based elimination
severely hurts locality and is generally a bad idea, not only for Saturation, but
even for the simpler BFS iterations (if properly implemented to exploit locality).
To see why this is the case, consider a transition t with an input or inhibitor
arc from a place p, i.e., p ∈ VD(t). If p is in the support of invariant v and is
eliminated because all other places in Support(v) already correspond to BDD
levels, the marking of p can indeed be determined from the marking of each
place q ∈ Support(v) \ {p}. However, this not only removes p from VD(t) but
also adds Support(v) \ {p} to it. In most cases, the span of transition t, i.e., the
value of Top(t)−Bot(t)+1, can greatly increase, resulting in a more costly image
computation for Nt.

The solution we present in Sec. 3.1, enabled by our use of MDDs instead of
BDDs, is to perform instead variable merging. This achieves the same goal of
reducing the number of levels (actually resulting in more levels being eliminated,
since it considers groups of variables at a time, not just individual ones as in [17]),
without negatively affecting locality and actually improving it for a meaningful
class of nets. Then, having at our disposal the invariants, we turn to the problem
of variable ordering, and show in Sec. 3.2 how our previous idea of minimizing
the sum of the top levels affected by each transition [39] can be extended to take
into account invariants as well, treating an invariant analogously to a transition
and its support as if it were the set of places “affected” by the invariant.

3.1 Using Structural Invariants to Merge State Variables

As one of our main contributions, we first present and prove a general theorem
stating that merging two MDD variables based on functional dependence guar-
antees to reduce the size of an MDD. In contrast, we show that placing variables
in the support of an invariant close to each other without merging them, as
suggested by many static and dynamic variable reordering techniques [21,19],
may actually increase the size of the MDD. We then adopt our merging theorem
to improve Petri-net state-space encodings with place invariants, and present a
greedy algorithm to iteratively merge MDD variables given a set of place invari-
ants obtained from a structural analysis of a net. Thus, our goal is to determine
both a merging of the MDD variables and an ordering of these merged variables.

Variable merging based on functional dependence. To discuss what hap-
pens to the size of an MDD when merging variables based on functional depen-
dence, one must take into account both the number of nodes and their sizes. To
be precise, and to follow what is done in an efficient “sparse node” implemen-
tation, the size of an MDD node is given by the number of its non-zero edges,
i.e., the number of outgoing edges that do not point to node 0. Thus, since a
node has always at least one non-zero edge, the size of a node for variable xl can
range from one to |Sl|. First, we recall a theorem on the number of MDD nodes
required to encode a boolean function f .

92 G. Ciardo, G. Lüttgen, and A.J. Yu

Theorem 1. [38] Using the variable order (xK , ..., x1), the number of MDD
nodes for variable xl ∈ Sl, for K ≥ l ≥ 1, in the MDD encoding of a boolean
function f(xK , ..., x1) equals the number of different subfunctions obtained by
fixing the values of xK , ..., xl+1 to all the possible values iK ∈ SK , ..., il+1 ∈ Sl+1.

In the following, we denote by f [xk1
ik1

, ..., xkn
ikn

] the subfunction obtained from f by
fixing the value of xk1 , ..., xkn to ik1 , ..., ikn , and we use the same symbol for a
boolean function and its MDD encoding, once the variable order is given.

Theorem 2. Consider an MDD f encoding a set X ⊆ SK × · · · × S1 with
variable order π = (xK , ..., x1). If xm is functionally dependent on {xK , ..., xk},
with k > m, then define a new variable xk,m ≡ xknm + xm, where nm = |Sm|,
having domain Sk,m = {0, ..., |Sk × Sm| − 1}. Let the MDD g encode Λ(X)
with variable order π = (xK , ..., xk+1, xk,m, xk−1, ..., xm+1, xm−1, ..., x1), where
Λ(xK , ..., x1) = (xK , ..., xk+1, xk,m, xk−1,, xm+1, xm−1, ..., x1).

Then, (1) f [xk
ik , xm

im] ≡ g[xk,m
iknm + im]; and (2) g requires strictly fewer MDD nodes

and non-zero edges than f .

Proof. Property (1) follows directly from the definition of xk,m, Λ, and g.
Let νl and νl be the number of nodes corresponding to variable xl in g and f ,
respectively. Analogously, let εl and εl be the number of non-zero edges leaving
these nodes. To establish Property (2), we prove that νk,m = νk and εk,m = εk,
νl = νl and εl = εl for xl ∈ {xK , ..., xk+1, xm−1, ..., x1}, and νl ≤ νl and εl ≤ εl

for xl ∈ {xk−1, ..., xm+1}. These relations, in addition to the fact that f contains
additional νm > 0 nodes corresponding to xm (each of them having exactly one
non-zero edge, because of the functional dependence), show that g is encoded
with at least νm = εm fewer nodes and edges than f . We now prove these
relations by considering the different possible positions of variable xl in π.
Case 1: xl ∈ {xm−1, ..., x1}. Since f [xk

ik
, xm

im] ≡ g[xk,m
iknm + im], we let f1 and g1 be

f1 = f [xk
ik

, xm
im][xK

iK , ..., xk+1
ik+1 , xk−1

ik−1 , ..., xm+1
im+1 ,

xm−1
im−1 , ..., xl+1

il+1]
g1 = g[xk,m

iknm + im][xK
iK , ..., xk+1

ik+1 , xk−1
ik−1 , ..., xm+1

im+1 ,
xm−1
im−1 , ..., xl+1

il+1]

and conclude that f1 ≡ g1. Recall that the number of nodes of variable xl in f
is the number of different subfunctions f [xK

iK , ..., xl+1
il+1], for all possible iK , ..., il+1.

Since f and g have the same set of such subfunctions, we must have νl = νl. To
see that εl = εl as well, simply observe that each pair of corresponding MDD
nodes, e.g., f1 and g1, must have the same number of non-zero edges, since
f1 ≡ g1 implies f1[

xl
il
] ≡ g1[

xl
ii] for any il ∈ Xl, and the edge il is non-zero if and

only if f1[
xl
il] �≡ 0.

Case 2: xl ∈ {xk−1, ..., xm+1}. Consider two different nodes of xl in g, encoding
two different subfunctions g1 and g2, which obviously satisfy g1 �≡ 0 and g2 �≡ 0:

g1 ≡ g[xK
iK ,...,xk+1

ik+1 , xk,m
iknm + im,xk−1

ik−1 ,...,xl+1
il+1] g2 ≡ g[xK

jK ,...,xk+1
jk+1 ,

xk,m
jknm + jm,xk−1

jk−1 ,...,
xl+1
jl+1].

Then, define f1 and f2 as follows, obviously satisfying f1 �≡ 0 and f2 �≡ 0, too:

f1 ≡ f [xK
iK , ..., xk+1

ik+1 , xk
ik , xk−1

ik−1 , ..., xl+1
il+1] f2 ≡ f [xK

jK , ..., xk+1
jk+1 ,

xk
jk , xk−1

jk−1 , ...,
xl+1
il+1].

Improving Static Variable Orders Via Invariants 93

We prove by contradiction that f1 and f2 must be different and therefore encoded
by two different nodes of variable xl in f . Since xm is functionally dependent
on {xK , ..., xk} and the value of (xK , ..., xk) is fixed to (iK , ..., ik) for f1 and to
(jK , .., j1) for f2, there must exist unique values im and jm such that f1[

xm
im] �≡ 0

and f2[
xm
jm] �≡ 0. If f1 and f2 were the same function, we would have im = jm and

f1[
xm
im] ≡ f2[

xm
jm]. From Property (1), we then obtain g1 ≡ f1[

xm
im] ≡ f2[

xm
jm] ≡ g2,

a contradiction. Thus, distinct nodes of g must correspond to distinct nodes of
f , i.e., νl ≤ νl. Again, to see that εl ≤ εl, observe that the MDD nodes encoding
f1 and g1 must have the same number of non-zero edges because, for all il ∈ Sl,
g1[

xl
ii] ≡ f1[

xm
im][xl

il]. Furthermore, if multiple nodes in f correspond to the same
node of g, i.e., if νl < νl, we also have εl < εl.
Case 3: xl ∈ {xK , ..., xk+1, xk,m}. Observe that g ≡ Λ(f) and g[xK

iK , ..., xl+1
il+1] ≡

Λl(f [xK
iK , ..., xl+1

il+1]), where Λl is defined analogously to Λ, i.e., Λl(xl, ..., x1) =
(xl, xk+1, xk+m, xk−1, ..., xm+1, ..., xm−1, ..., x1), As for Case 1, we can prove that
νl = νl and εl = εl by observing that g and f must have the same subfunctions
and the MDD nodes encoding these subfunctions must have the same number
of non-zero edges. �
Intuitively, merging variable xm with xk is not that different from moving it
just below xk in the variable order, the commonly suggested approach for BDDs
to help reduce the number of nodes [19,21]. However, the example in Fig. 3
illustrates that the latter can instead increase the BDD size. Fig. 3(a) shows an
example of MDDs that encodes a boolean function with initial variable order
(d, c, b, a), satisfying the invariant a + c + d = 2. Fig. 3(b) shows the result of
reordering the MDD to put variables a, c, and d close to each other, by swapping
variables b and a. Note that the number of nodes in the second MDD increases
from six to seven, and the number of non-zero edges from seven to eight. Fig. 3(c)
shows instead the result of merging variables a and c, where the number of nodes
decreases from six to five and the number of non-zero edges from seven to six,
as predicted by Thm. 2. The meaning of the elements of Sl in terms of the value
of the variables assigned to level l is shown to the right of each MDD. We stress
that this reduction in the number of nodes can only be achieved if the MDDs
are implemented natively, not as the interface to BDDs implemented in [22,36];
this is apparent since Fig. 3(b) is exactly the BDD that would be built if the
MDD of Fig. 3(c) were implemented using BDDs.

Focusing now on Petri nets, we restate Thm. 2 in their terminology and use
place invariants to determine functional dependence.

Theorem 3. Consider a Petri net with an ordered partition π of P into the
sets (PK , ..., P1) and mappings ψPl

: N
Pl → N ∪ {null}, for K ≥ l ≥ 1. Let the

ordered partition π be the one obtained by merging Pk and Pm into P{k,m}, with
k > m, resulting in the order (PK , ..., P{k,m}, Pk−1, ..., Pm+1, Pm−1, ..., P1) and
the same mappings as before, except for the new ψ{Pk,Pm} : N

P{k,m} → N∪{null}
to replace ψk and ψm, which must satisfy ψ{Pk,Pm}(mPk

,mPm) = null if and only
if ψk(mPk

) = null or ψm(mPm) = null. Then, if Pm is functionally dependent
on

⋃
K≥l≥k Pl, the MDD encoding of any nonempty set of markings X requires

strictly fewer nodes and edges with π than with π.

94 G. Ciardo, G. Lüttgen, and A.J. Yu

0 1d

a

b

1

c 0 1

1

0 1

0 1c

a

1

b 0 1

1 1

0 1d

1 3c,a

1

b 0 1

0 1d

(a) original MDD (b) reordered MDD (c) merged MDD

0:(c=0,a=0), 1:(c=0,a=1),
2:(c=1,a=0), 3:(c=1,a=1)

0:d=0, 1:d=1

0:c=0, 1:c=1

0:b=0, 1:b=1

0:a=0, 1:a=1

0:d=0, 1:d=1

0:c=0, 1:c=1

0:b=0, 1:b=1

0:a=0, 1:a=1

0:d=0, 1:d=1

0:b=0, 1:b=1

Fig. 3. An example where moving support variables closer increases the MDD size

Partition InvariantBasedMerging (Invariants WW,P)
1 K ← |P|;
2 π ← ({pK}, ..., {p1}); • Initialize the partition with one place per class
3 repeat
4 for m = K−1 to 1 do
5 k = LevelToMerge(K, m, π,WW,P);
6 if k > m then
7 π ← (πK , ..., πk+1, πk ∪ πm, πk−1, ..., πm+1, πm−1, ..., π1);
8 K ← K − 1; • The partition is now one class smaller
9 until π does not change;

10 return π;

int LevelToMerge (int L, int m, Partition (QL, ..., Q1), Invariants WW,P)
1 foreach k = L downto m + 1 do
2 W ′ ← {v ∈ W | Support(v) ⊆ Qm ∪

⋃L
l=k Ql};

3 if |Qm| = Rank(WW′,Qm) then
4 return k;
5 return m;

Fig. 4. A greedy algorithm to iteratively merge MDD variables using Thm. 3

Proof. The proof is a specialization of the one of Thm. 2, noting that, there,
we used the mapping xk,m = xknm + xm for simplicity. In reality, any mapping
where xk,m can uniquely encode any reachable combination of xk and xm may
be used. This is necessary in practice when using dynamic MDDs, where the sets
Sl, i.e., the bounds on the net places, are not known a priori. �

Greedy algorithm to merge MDD variables. Based on Thm. 3, Fig. 4
illustrates a greedy algorithm to merge as many MDD variables as possible,
given a set of place invariants, while guaranteeing that the number of nodes and
non-zero edges can only decrease.

For a Petri net, procedure InvariantBasedMerging in Fig. 4 takes a set of
linearly independent place invariants, in the form of a matrix WW,P , as input
and assumes one place per variable in the initial MDD variable order (line 2).
The procedure then traverses each level m of the MDD, from top to bottom ac-
cording to the given partition π, and calls procedure LevelToMerge to compute
the highest level k such that the mth partition class πm functionally depends on

Improving Static Variable Orders Via Invariants 95

P ′ =
⋃

K≥l≥k πl. It does so by determining the set W ′ of invariants whose sup-
port is a subset of πm∪P ′, and by performing Gaussian elimination on submatrix
WW′,πm to check whether it has full column rank (line 3 of LevelToMerge). If
such level k exists, then πm is merged with πk, otherwise the partition remains
unchanged. Procedure InvariantBasedMerging repeats this merging process until
no more merging is possible, then it returns the final partition π.

The procedure has polynomial complexity, since it computes O(|P|3) matrix
ranks, in the worst case. In practice, due to the sparsity of matrix W, the
performance is excellent, as discussed in Sec. 4 We postpone to future work a
discussion of whether it achieves the smallest possible number of MDD levels
without increasing the number or size of the nodes according to Thm. 3.

3.2 Using Structural Invariants to Order State Variables

It is well-known that the variable order can greatly affect the efficiency of decision
diagram algorithms, and that computing an optimal order is an NP-complete [2].
Thus, practical symbolic model-checking tools must rely on heuristics aimed at
finding either a good order statically, i.e., prior to starting any symbolic manipu-
lation, or at improving the order dynamically, i.e., during symbolic manipulation.

Focusing on static approaches, our locality-based encoding suggests that vari-
able orders with small span Top(t)−Bot(t)+1 for each transition t are preferable,
both memory-wise when encoding Nt, and time-wise when applying Nt to com-
pute an image. Furthermore, since Saturation works on the nodes in a bottom-up
fashion, it prefers orders where most spans are situated in lower levels. In the
past, we have then considered the following static heuristics [39]:

• SOS: Minimize the sum of the transition spans,
∑

t∈T (Top(t) − Bot(t) + 1).
• SOT: Minimize the sum of the transition tops,

∑
t∈T Top(t).

• Combined SOS/SOT: Minimize
∑

t∈T Top(t)α · (Top(t) − Bot(t) + 1).

The combined heuristic encompasses SOS and SOT, since the parameter α con-
trols the relative importance of the size of the span vs. its location. When α = 0,
the heuristic becomes SOS, as it ignores the location of the span, while for α � 1,
it approaches SOT. For the test suite in [39], α = 1 works generally well, con-
firming our intuition about the behavior of Saturation, namely that Saturation
tends to perform better when both the size and the location of the spans is small.

We now propose to integrate the idea of an ordering heuristic based on tran-
sition locality with the equally intuitive idea that an order where variables in
the support of an invariant are “close to each other,” is preferable [29]. How-
ever, given the lesson of the previous section, we also wish to apply our greedy
merging heuristic. There are four ways to approach this:

– For each possible permutation of the places, apply our merging heuristic.
Then, evaluate the score of the chosen objective function (among the three
above), and select the permutation that results in the minimum score. Of
course, this results in the optimal order with respect to the chosen objective
function, but the approach is not feasible except for very small nets.

96 G. Ciardo, G. Lüttgen, and A.J. Yu

– Choose one of the objective functions and, assuming one place per level,
compute an order that produces a low score. Note that this is not necessarily
the minimum score, as this is itself an NP-complete problem. Then, apply
either our greedy merging heuristic, or a modified version of it that ensures
that the achieved score is not worsened.

– Given an initial ordering of the places, use our greedy merging heuristic.
Then, compute an order that produces a low, not necessarily minimal, score
for the chosen objective function, subject to the constraints of Thm. 3, to
keep the node size linear. For example, if ma+mb+mc =N in every marking
m, if places a and b are not covered by any other invariant, if a and b have
been merged together, and if they are at a level below that of c, then we
cannot move them above c. If we did, a node encoding ma and mb could
have O(N2) nonzero edges, since ma+mb is not fixed until we know mc.

– Consider an invariant just like a transition, i.e., modify the chosen objective
function to sum over both transitions and invariants, where the support of
an invariant is treated just like the dependence list of a transition. Once the
order is obtained, apply our greedy merging heuristic.

We adopt the last approach in conjunction with the SOT objective function,
for several reasons. First, it is very similar in spirit to our original ordering
approach, yet it adds novel information about invariants to guide the heuristic.
Second, we have reasonably fast heuristics to solve SOT (indeed we even have
a log n approximation algorithm for it), while the heuristics for SOS are not
as fast, and those for the combined SOS/SOT problem are even slower. More
importantly, when applying our greedy merging algorithm after the variable
ordering heuristic, the span of an event is changed in unpredictable ways that
do not preserve the optimality of the achieved score.

A fundamental observation is that, if place p is in the support of invariant v,
any transition t that modifies p must also modify at least one other place q in the
support of v. Thus, if p and p′ are the lowest and highest places of the support of
v according to the current MDD order, merging p with the second lowest place
r in the support will not change the fact that p′ is still the highest place in the
support of v. Analogously, the highest place p′′ determining Top(t) is at least
as high as q, which is at least as high as r, thus, again, p′′ will still determine
the value of Top(t). Of course, the levels of p′ and p′′ are decreased by one,
simply because the level of p, below them, is removed. Unfortunately, the same
does not hold when p only controls the enabling or firing of a transition t, i.e.,
if there is an inhibitor arc from p to t or if p appears in the marking-dependent
cardinality expression of arcs attached to t. In that case, merging p to a higher
level k might increase the value of Top(t) to k. Thus, for standard Petri nets
with no inhibitor arcs and for the restricted self-modifying nets considered in
[8], merging is guaranteed to improve the score of SOT, although it does not
necessarily preserve optimality.

One danger or treating invariants like transitions in the scoring heuristic is
that the number of invariants can be exponentially large, even when limiting
ourselves to minimal ones (i.e., those whose support is not a superset of any other

Improving Static Variable Orders Via Invariants 97

support). In such cases, the invariants would overwhelm the transitions and the
resulting order would de facto be based almost exclusively on the invariants. To
avoid this problem, we compute a set of linearly independent invariants and feed
only those to our heuristic for SOT; clearly, this set will contain at most |P|
elements, whence it is of the same order as |T | in practical models.

4 Experimental Results

We have implemented our static variable ordering merging ideas based on place
invariants in the verification tool SmArT[9], which supports Petri nets as front-
end and reads an invariant matrix generated by the Petri-net tool GreatSPN [7].
This section reports our experimental results on a suite of asynchronous Petri
net benchmarks for symbolic state-space generation.

We ran our experiments on a 3GHz Pentium workstation with 1GB RAM.
Benchmarks mmgt, dac, sentest, speed, dp, q, elevator, and key are safe Petri
nets taken from Corbett [16]. Benchmarks knights (board game model), fms
and kanban [40] (manufacturing models), and slot [30], courier [42], and ralep
[20] (protocol models) are Petri nets (without marking-dependent arcs, since
GreatSPN does not accept this extension) from the SmArT distribution.

Results. The first five columns of Table 1 show the model name and parame-
ters, and the number of places (#P), events (#T) and place invariants computed
by GreatSPN (#I). The remaining columns are grouped according to whether
the static variable order, computed via a fairly efficient logarithmic approxima-
tion for SOT, uses just the place-event matrix (Event) or the combined place-
event+invariant matrix (Event+Inv). The approximation uses a randomized
procedure, thus different parameters for the same model may result in different
performance trends. For example, with Event, merging reduces the runtime of
courier from 251 to 68sec when the parameter is 40, but has negligible effect
when the parameter is 20.

The time for static variable ordering is stated in column Time Ord. For
each group, we further report results according to whether variable merging is
employed; method No Merge just uses the static order and therefore has one
MDD variable per place of the Petri net, while Merge starts from the static
order and merges variables using the proposed greedy algorithm of Fig. 4.

In addition, we state the run-time, peak, and final memory usage if the state-
space generation with Saturation completes within 30 minutes. For Merge, we
also report the number of MDD variables merged (#M). The run-time spent
for merging variables is not reported separately because it is quite small, always
less than 5% of the total run-time, for any of the models. The time needed by
GreatSPN to compute the invariants is shown in column Time Inv.

Discussion. From Table 1, we see the effectiveness of the new static variable
ordering by comparing the two No Merge columns for Event and Event+Inv.
The latter performs much better than the former on mmgt, fms, slot, courier, and
kanban, slightly worse on elevator and knights, and similarly on the remaining

98 G. Ciardo, G. Lüttgen, and A.J. Yu

T
ab

le
1.

E
x
p
erim

en
ta

l
resu

lts
(T

im
e

in
sec,

M
em

o
ry

in
K

B
;“

>
1
8
0
0
”

m
ea

n
s

th
a
t

ru
n
-tim

e
ex

ceed
s

1
8
0
0

sec
o
r

m
em

o
ry

ex
ceed

s
1
G

B
)

E
v
en

t
E
v
en

t+
In

v
M

o
d
el

N
#

P
#

T
#

I
T

im
e

N
o

M
erge

M
erge

T
im

e
T

im
e

N
o

M
erge

M
erge

O
rd

T
im

e
P
eak

F
in

al
T

im
e

P
eak

F
in

al
#

M
In

v
O

rd
T

im
e

P
eak

F
in

al
T

im
e

P
eak

F
in

al
#

M

m
m

g
t

3
1
2
2

1
7
2

4
7

4
.0

1
.8

5
1
5
7
5

8
3

1
.7

8
1
4
8
5

7
7

1
2

0
.0

2
3
.0

0
.9

6
8
3
8

4
6

0
.9

3
8
2
9

4
3

1
2

m
m

g
t

4
1
5
8

2
3
2

4
8

6
.0

1
8
.0

5
2
0
6
4
5

2
9
5

1
7
.1

0
1
9
2
9
4

2
8
0

1
4

0
.0

2
5
.0

4
.7

1
5
3
8
5

1
4
2

4
.7

8
5
3
7
5

1
3
2

1
4

d
a
c

1
5

1
0
5

7
3

1
8
3

1
.0

0
.2

4
3
0

2
6

0
.2

0
2
1

1
9

2
8

0
.0

2
1
.0

0
.2

4
2
8

2
7

0
.1

8
2
0

1
9

2
8

sen
test

7
5

2
5
2

1
0
2

3
3
1
5

2
.0

0
.5

5
4
9

4
4

0
.2

5
2
0

1
7

1
5
7

1
.0

7
2
.0

0
.5

3
4
9

4
5

0
.2

3
2
0

1
7

1
5
7

sen
test

1
0
0

3
2
7

1
2
7

5
6
6
5

5
.0

0
.7

1
7
0

6
5

0
.3

2
2
7

2
4

2
0
7

3
.4

8
5
.0

0
.9

4
6
4

6
1

0
.3

2
4

2
2

2
0
8

sp
eed

1
2
9

3
1

1
0

0
.0

0
.0

7
4
8

6
0
.0

6
3
2

4
1
0

0
.0

1
0
.0

0
.0

9
4
4

6
0
.0

7
2
9

4
1
0

d
p

1
2

7
2

4
8

4
8

0
.0

0
.1

6
1
9

1
5

0
.0

9
9

7
3
6

0
.0

1
1
.0

0
.1

7
1
8

1
5

0
.0

9
9

7
3
6

q
1

1
6
3

1
9
4

4
9
2

5
.0

0
.8

4
7
1
5

3
4
9

0
.7

2
6
1
9

2
9
4

2
7

0
.0

9
5
.0

0
.7

7
5
2
4

3
3
6

0
.6

5
4
4
2

2
8
0

2
9

elev
a
tor

3
3
2
6

7
8
2

6
9
3

2
8
.0

4
7
.0

6
6
5
7
0

1
6
2
0

4
5
.3

9
6
5
3
2

1
4
1
2

9
1
.8

7
2
1
.0

4
9
.7

3
7
4
0
3

1
6
5
4

4
7
.7

1
7
3
5
9

1
4
4
3

9

k
ey

2
9
4

9
2

7
7
4

0
.0

0
.2

6
8
6

7
2

0
.2

3
9
0

5
8

1
6

0
.4

5
0
.0

0
.2

5
9
1

7
1

0
.2

6
1
0
2

5
8

1
5

k
ey

3
1
2
9

1
3
3

5
4
9
1

3
.0

0
.5

4
2
3
1

1
6
1

0
.5

3
2
1
0

1
4
5

1
8

1
2
7
.1

1
2
.0

0
.5

1
2
1
1

1
4
6

0
.4

6
1
9
6

1
3
6

1
8

k
n
ig

h
ts

5
2
4
3

4
0
1

9
1

2
.0

9
.2

0
3
3
2
1

6
0

7
.0

3
2
1
3
8

3
9

2
5

0
.0

3
2
.0

1
2
.3

7
4
0
8
4

6
0

9
.5

2
5
8
4

3
9

2
5

f
m

s
2
0

3
8

2
0

2
7

0
.0

2
.5

8
1
3
8
8

3
3
4

2
.7

6
1
3
7
1

3
1
7

3
0
.0

1
0
.0

0
.3

9
1
8
9

6
6

0
.5

1
8
0

5
7

3

f
m

s
4
0

3
8

2
0

2
7

0
.0

2
6
.3

4
1
0
4
8
0

1
7
8
6

2
7
.2

0
1
0
4
1
8

1
7
2
4

3
0
.0

1
0
.0

2
.2

8
7
5
5

2
5
0

2
.5

7
7
4
9

2
4
4

3

f
m

s
8
0

3
8

2
0

2
7

0
.0

9
3
.5

9
1
9
1
5
9

9
0
6
8

1
1
0
.2

0
1
8
9
2
3

8
8
3
1

3
0
.0

1
0
.0

3
1
.1

6
9
4
2
0

1
3
8
3

3
2
.7

9
3
0
1

1
2
6
3

3

slot
2
0

1
6
0

1
6
0

4
2

2
.0

>
1
8
0
0

–
–

>
1
8
0
0

–
–

–
0
.0

1
2
.0

1
.5

7
1
6
5
8

1
2
2

1
.3

5
1
2
1
3

9
0

4
1

slot
4
0

3
2
0

3
2
0

8
2

1
2
.0

>
1
8
0
0

–
–

>
1
8
0
0

–
–

–
0
.0

3
8
.0

1
0
.9

6
1
1
8
0
2

4
8
1

8
.5

6
8
5
4
0

3
5
3

8
1

cou
rier

2
0

4
5

3
4

1
3

0
.0

7
.3

5
6
9
8
5

8
7
1

7
.2

0
6
8
1
6

7
7
5

1
3

0
.0

1
1
.0

4
.1

4
2
6
9
3

2
6
7

3
.8

9
2
4
4
1

2
2
9

1
3

cou
rier

4
0

4
5

3
4

1
3

0
.0

2
5
1
.0

6
1
0
8
5
6
2

4
2
6
0

6
8
.2

2
3
9
3
9
7

1
1
2
6

1
3

0
.0

1
1
.0

2
5
.3

8
1
2
2
8
2

1
1
2
7

2
4
.9

9
1
1
4
1
3

9
9
4

1
3

cou
rier

8
0

4
5

3
4

1
3

1
.0

>
1
8
0
0

–
–

>
1
8
0
0

–
–

–
0
.0

1
1
.0

1
9
1
.3

4
5
7
3
8
5

5
9
0
2

1
8
7
.2

8
5
0
5
4
0

5
2
1
2

1
3

k
a
n
ba

n
2
0

1
6

1
6

6
0
.0

3
0
7
.6

6
5
1
5
2
2

3
3
8
6
6

1
9
2
.5

6
4
4
3
4
3

2
6
6
8
7

4
0
.0

1
0
.0

0
.9

3
5
1
3

5
5

1
.2

3
4
4
3

4
5

4

k
a
n
ba

n
4
0

1
6

1
6

6
0
.0

5
3
9
.1

1
1
3
4
7
3
4

4
9
4
7
8

4
0
2
.6

2
1
1
3
2
2
3

4
5
7
5
3

4
0
.0

1
0
.0

7
.6

1
3
0
4
3

2
4
0

8
.9

1
2
7
7
7

2
0
6

4

k
a
n
ba

n
8
0

1
6

1
6

6
0
.0

>
1
8
0
0

–
–

>
1
8
0
0

–
–

–
0
.0

1
0
.0

8
5
.0

2
2
0
4
0
4

1
2
4
9

9
9
.0

7
1
9
3
6
7

1
1
2
4

4

ra
lep

7
9
1

1
4
0

2
1

2
.0

2
2
.7

3
2
5
7
6
7

3
4
2
4

2
0
.6

4
2
1
5
5
2

2
5
2
6

2
1

0
.0

1
3
.0

2
3
.0

0
2
7
7
0
4

3
3
4
9

2
2
.8

2
2
4
2
5
8

2
6
1
3

2
1

ra
lep

8
1
0
4

1
6
8

2
4

2
.0

9
9
.7

9
9
0
4
9
9

9
1
6
6

1
0
6
.0

3
8
0
1
1
7

6
5
7
2

2
4

0
.0

1
6
.0

8
5
.2

0
8
8
4
8
6

7
8
7
2

8
1
.5

6
6
8
9
3

6
0
0
6

2
4

ra
lep

9
1
1
7

1
9
8

2
7

2
.0

3
5
9
.6

8
2
3
8
3
1
3

1
7
5
3
1

4
2
9
.6

2
2
2
3
1
8
6

1
2
6
0
5

2
7

0
.0

1
3
.0

3
6
1
.0

9
2
3
2
5
9
0

1
5
4
6
3

3
8
7
.6

1
1
9
6
2
9
7

1
1
8
9
1

2
7

Improving Static Variable Orders Via Invariants 99

benchmarks. The run-time for variable order computation is normally a small
percentage of the run-times. The same can be said for invariant computation,
with the exception of two models, sentest and key, where GreatSPN computes a
large number of (non-minimal) invariants and requires more run-time than state-
space generation itself (pathologically so for key with parameter 3). However,
it must be stressed that the run-times for state-space generation are the ones
obtained using our heuristic; if we were to use random or even just not as good
orders, the state-space generation run-times would be much larger.

To see the effectiveness of invariants-based variable merging, one can com-
pare the No Merge and Merge columns of Table 1, for either Event and
Event+Inv. Merging almost always substantially improves the peak and final
memory usage and results in comparable or better run-time performance, with
up to a factor of three improvement for memory and time.

Even if merging is guaranteed to reduce the size of a given MDD, applying
this idea is still a heuristic, as it changes the value of Top for the transition
in the net, in such a way that Saturation may apply them in a different order
that results in a larger peak size (in our benchmarks, this happens only for key
with parameter 2). Overall, though, we believe that our ordering and merging
heuristics can pave a way to a fully automated static ordering approach. This
has a very practical impact, as it does not require a modeler to come up with a
good order, and it reduces or eliminates altogether reliance on dynamic variable
reordering, known to be quite expensive in practice.

5 Related Work

Most work on developing heuristics for finding good variable orders has been
carried out in the context of digital-circuit verification and BDDs. Our focus in
this paper is on static ordering, i.e., on finding a good ordering before construct-
ing decision diagrams. In circuit verification, such approaches are typically based
on a circuit’s topological structure and work on the so-called model connectivity
graph, by either searching, evaluating, or decomposing this graph. Grumberg,
Livne, and Markovitch [18] present a good survey of these approaches and pro-
pose a static ordering based on “experience from training models”. Dynamic
grouping of boolean variables into MDD variables is proposed in [36]; however,
invariants are not used to guide such grouping.

Our approach to static variable ordering with respect to Petri nets stands
out as it considers place invariants and proposes variable merging instead of
variable elimination. It must be pointed out that Pastor, Cortadella, and Roig
mention in [29] that they “choose the ordering with some initial support from
the structure of the Petri net (the P-invariants of the net)”; however, no details
are given. More fundamentally, though, our work here shows that ordering using
invariants is simply not as effective as ordering and merging using invariants.

Invariants are one popular approach to analyzing Petri nets [32,34]. With
few exceptions, e.g., work by Schmidt [35] that utilizes transition invariants and
research by Silva and his group [5] on performance throughput bounds, most

100 G. Ciardo, G. Lüttgen, and A.J. Yu

researchers focus on place invariants. On the one hand, place invariants can help
in identifying conservative upper bounds of a Petri net’s reachable markings.
Indeed, place invariants provide necessary, but not sufficient conditions on the
reachability of a given marking. This in turn can benefit state-space generation
algorithms, as is demonstrated, e.g., by Pastor, Cortadella, and Peña in [28].

On the other hand, place invariants can be used to reduce the amount of
memory needed for storing a single marking [6,35], by exploiting the functional
dependencies described by each invariant. When storing sets of markings with
decision diagrams, this eliminates some decision-diagram variables. To determine
which exact places or variables should be dropped, Davies, Knottenbelt, and
Kritzinger present a heuristic in [17]. In that paper they also propose an ad-hoc
heuristic for the static variable ordering within BDDs, based on finding pairs of
similar subnets and interleaving the corresponding places’ bit-vectors.

For the sake of completeness we note that general functional dependencies
have also been studied by Hu and Dill [19]. In contrast to work in Petri nets where
generated invariants are known to be correct, Hu and Dill do not assume the
correctness of given functional dependencies, but prove them correct alongside
verification. Last, but not least, we shall mention the approach to static variable
ordering taken by Semenov and Yakovlev [37], who suggest to find a “close to
optimal ordering” via net unfolding techniques.

6 Conclusions and Future Work

This paper demonstrated the importance of considering place invariants of Petri
nets when statically ordering variables for symbolic state-space generation. Pre-
vious work focused either solely on optimizing event locality [39], or on eliminat-
ing variables based on invariance information [17]. The novel heuristic proposed
in this paper enhances the former work by exploiting place invariants for merging
variables, instead of eliminating them as is done in all related research. While
merging is not an option for BDDs, it is suitable for MDD-based approaches,
including our Saturation algorithm [10]. We proved that merging MDD vari-
ables always reduces MDD sizes, while eliminating variables may actually en-
large MDDs. In addition, for standard Petri nets, merging never breaks event
locality and often improves it, thus benefiting Saturation.

The benchmarking conducted by us within SmArT [9] showed that our heuris-
tic outperforms related static variable-ordering approaches in terms of time-
efficiency and memory-efficiency. Most importantly, this is the case for practical
examples, such as large instances of the slotted-ring network and the kanban
system which had been out of reach of existing state-space exploration technol-
ogy before. Hence, using invariants in variable-ordering heuristics is crucial, but
it must be done correctly. In particular, the widespread practice of eliminating
variables based on invariance information is counter-productive and should be
abandoned in favor of merging variables.

Future work should proceed along two directions. On the one hand, we wish
to explore whether our greedy merging algorithm is optimal, in the sense that

Improving Static Variable Orders Via Invariants 101

it reduces an MDD to the smallest number of MDD variables according to our
merging rule. On the other hand, we intend to investigate whether place invari-
ants are also beneficial in the context of dynamic variable ordering.

References

1. Aziz, A., Taşiran, S., Brayton, R.K.: BDD variable ordering for interacting finite
state machines. In: DAC, pp. 283–288. ACM Press, New York (1994)

2. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. on Computers 45(9), 993–1002 (1996)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp. 35(8), 677–691 (1986)

4. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transition relations. In: Very Large Scale Integration, IFIP Transactions, North-
Holland, pp. 49–58 (1991)

5. Campos, J., Chiola, G., Silva, M.: Ergodicity and throughput bounds of Petri nets
with unique consistent firing count vectors. IEEE Trans. Softw. Eng. 17(2), 117–126
(1991)

6. Chiola, G.: Compiling techniques for the analysis of stochastic Petri nets. In:
Modeling Techniques and Tools for Computer Performance Evaluation, pp. 11–
24. Plenum Press, New York (1989)

7. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphi-
cal editor and analyzer for timed and stochastic Petri nets. Performance Evalua-
tion 24(1,2), 47–68 (1995)

8. Ciardo, G.: Petri nets with marking-dependent arc multiplicity: Properties and
analysis. In: Valette, R. (ed.) Application and Theory of Petri Nets 1994. LNCS,
vol. 815, pp. 179–198. Springer, Heidelberg (1994)

9. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and stochastic mod-
eling with SMART. Performance Evaluation 63, 578–608 (2006)

10. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy
for symbolic state space generation. In: Margaria, T., Yi, W. (eds.) ETAPS 2001
and TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

11. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel,
H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 379–393.
Springer, Heidelberg (2003)

12. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The Saturation algorithm for sym-
bolic state space exploration. STTT 8(1), 4–25 (2006)

13. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005)

14. Colom, J., Silva, M.: Improving the linearly based characterization of P/T nets. In:
Advances in Petri Nets. LNCS, vol. 483, pp. 113–145. Springer, Heidelberg (1991)

15. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets: A comparative
study of algorithms for the computation of minimal p-semiflows. In: ICATPN, pp.
74–95 (1989)

16. Corbett, J.C.: Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng. 22(3), 161–180 (1996)

17. Davies, I., Knottenbelt, W., Kritzinger, P.S.: Symbolic methods for the state space
exploration of GSPN models. In: Field, T., Harrison, P.G., Bradley, J., Harder, U.
(eds.) TOOLS 2002. LNCS, vol. 2324, pp. 188–199. Springer, Heidelberg (2002)

102 G. Ciardo, G. Lüttgen, and A.J. Yu

18. Grumberg, O., Livne, S., Markovitch, S.: Learning to order BDD variables in ver-
ification. J. Art. Int. Res. 18, 83–116 (2003)

19. Hu, A.J., Dill, D.L.: Reducing BDD size by exploiting functional dependencies. In:
DAC, pp. 266–271. ACM Press, New York (1993)

20. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. In: Foundations
of Computer Science, pp. 150–158. IEEE Press, New York (1981)

21. Jeong, S.-W., Plessier, B., Hachtel, G.D., Somenzi, F.: Variable ordering and se-
lection for FSM traversal. In: ICCAD, pp. 476–479. ACM Press, New York (1991)

22. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued decision
diagrams: Theory and applications. Multiple-Valued Logic 4(1–2), 9–62 (1998)

23. McMillan, K.: Symbolic Model Checking: An Approach to the State-Explosion
Problem. PhD thesis, Carnegie-Mellon Univ. (1992)

24. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams.
Performance Evaluation 56(1-4), 145–165 (2004)

25. Miner, A.S., Ciardo, G.: Efficient reachability set generation and storage using
decision diagrams. In: Donatelli, S., Kleijn, J.H.C.M. (eds.) ICATPN 1999. LNCS,
vol. 1639, pp. 6–25. Springer, Heidelberg (1999)

26. Murata, T.: Petri nets: properties, analysis and applications. Proc. of the
IEEE 77(4), 541–579 (1989)

27. Pastor, E., Cortadella, J.: Efficient encoding schemes for symbolic analysis of Petri
nets. In: DATE, pp. 790–795. IEEE Press, New York (1998)

28. Pastor, E., Cortadella, J., Peña, M.: Structural methods to improve the symbolic
analysis of Petri nets. In: Donatelli, S., Kleijn, J.H.C.M. (eds.) ICATPN 1999.
LNCS, vol. 1639, pp. 26–45. Springer, Heidelberg (1999)

29. Pastor, E., Cortadella, J., Roig, O.: Symbolic analysis of bounded Petri nets. IEEE
Trans.Computers 50(5), 432–448 (2001)

30. Pastor, E., Roig, O., Cortadella, J., Badia, R.: Petri net analysis using boolean
manipulation. In: Valette, R. (ed.) Application and Theory of Petri Nets 1994.
LNCS, vol. 815, pp. 416–435. Springer, Heidelberg (1994)

31. Ramachandran, P., Kamath, M.: On place invariant sets and the rank of the inci-
dence matrix of Petri nets. In: Systems, Man, and Cybernetics, pp. 160–165. IEEE
Press, New York (1998)

32. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Springer, Heidelberg (1998)

33. Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-
based model checking of Petri nets. In: DeMichelis, G., Dı́az, M. (eds.) Application
and Theory of Petri Nets 1995. LNCS, vol. 935, pp. 374–391. Springer, Heidelberg
(1995)

34. Sankaranarayanan, S., Sipma, H., Manna, Z.: Petri net analysis using invariant
generation. In: Verification: Theory and Practice. LNCS, vol. 2772, pp. 682–701.
Springer, Heidelberg (2003)

35. Schmidt, K.: Using Petri net invariants in state space construction. In: Garavel, H.,
Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 473–488.
Springer, Heidelberg (2003)

36. Schmiedle, F., Günther, W., Drechsler, R.: Dynamic Re-Encoding During MDD
Minimization. In: ISMVL (2000)

37. Semenov, A., Yakovlev, A.: Combining partial orders and symbolic traversal for
efficient verification of asynchronous circuits. Techn. Rep. CS-TR 501, Newcastle
Univ. (1995)

38. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 3, 3–12 (1993)

Improving Static Variable Orders Via Invariants 103

39. Siminiceanu, R., Ciardo, G.: New metrics for static variable ordering in decision
diagrams. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920, pp. 90–104. Springer, Heidelberg (2006)

40. Tilgner, M., Takahashi, Y., Ciardo, G.: SNS 1.0: Synchronized Network Solver. In:
Manufacturing and Petri Nets, pp. 215–234 (1996)

41. Valk, R.: Generalizations of Petri nets. In: Gruska, J., Chytil, M.P. (eds.) Math-
ematical Foundations of Computer Science 1981. LNCS, vol. 118, pp. 140–155.
Springer, Heidelberg (1981)

42. Woodside, C.M., Li, Y.: Performance Petri net analysis of communications protocol
software by delay-equivalent aggregation. In: PNPM, pp. 64–73 (1991)

Independence of Net Transformations

and Token Firing in Reconfigurable
Place/Transition Systems

Hartmut Ehrig, Kathrin Hoffmann�, Julia Padberg,
Ulrike Prange, and Claudia Ermel

Institute for Software Technology and Theoretical Computer Science
Technical University of Berlin, Germany

Abstract. Reconfigurable place/transition systems are Petri nets with
initial markings and a set of rules which allow the modification of the net
during runtime in order to adapt the net to new requirements of the envi-
ronment. In this paper we use transformation rules for place/transition
systems in the sense of the double pushout approach for graph trans-
formation. The main problem in this context is to analyze under which
conditions net transformations and token firing can be executed in arbi-
trary order. This problem is solved in the main theorems of this paper.
Reconfigurable place/transition systems then are applied in a mobile
network scenario.

Keywords: integration of net theory and graph transformations, parallel
and sequential independence of net transformations and token firing.

1 Introduction

In [23], the concept of reconfigurable place/transition (P/T) systems has been
introduced that is most important to model changes of the net structure while
the system is kept running. In detail, a reconfigurable P/T-system consists of
a P/T-system and a set of rules, so that not only the follower marking can be
computed but also the structure can be changed by rule application to obtain a
new P/T-system that is more appropriate with respect to some requirements of
the environment. Moreover these activities can be interleaved.

For rule-based transformations of P/T-systems we use the framework of net
transformations [17, 18] that is inspired by graph transformation systems [34].
The basic idea behind net transformation is the stepwise development of P/T-
systems by given rules. Think of these rules as replacement systems where the
left-hand side is replaced by the right-hand side while preserving a context. Petri
nets that can be changed, have become a significant topic in the recent years,
as the adaption of a system to a changing environment gets more and more
important. Application areas cover e.g. computer supported cooperative work,
� This work has been partly funded by the research project forMAlNET (see

tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 104–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

tfs.cs.tu-berlin.de/formalnet/

Independence of Net Transformations and Token Firing 105

multi agent systems, dynamic process mining or mobile networks. Moreover,
this approach increases the expressiveness of Petri nets and allows a formal
description of dynamic changes.

In this paper we continue our work by analyzing under which conditions a
firing step is independent of a rule-based transformation step. Independence
conditions for two firing steps of P/T-systems, i.e. being conflict free, are well-
known and closely related to local Church-Rosser properties for graph resp.
net transformations (see [34, 17, 18]) that are valid in the case of parallel and
sequential independence of rule-based transformations. In [17] conditions for
two transformation steps are given in the framework of high-level replacement
systems with applications to net transformations, so that these transformation
steps applied to the same P/T-system can be executed in arbitrary order, leading
to the same result. But up to now it is open under which conditions a net
transformation step and a firing step are independent of each other. In more
detail, we assume that a given P/T-system represents a certain system state.
The next evolution step can be obtained not only by token firing, but also by
the application of one of the rules available. Hence, the question arises, whether
each of these evolution steps can be postponed after the realization of the other,
yielding the same result. Analogously, we ask ourselves if they can be performed
in a different order without changing the result.

In Section 2 we present an interesting application of our concept in the area of
mobile ad-hoc networks. While Section 3 reviews the notions of reconfigurable
nets and net transformations, in Section 4 our main theorems concerning the
parallel and sequential independence of net transformation and token firing are
achieved. In Section 5 we show how these concepts and results can be put into
the more general framework of algebraic higher-order nets. Finally, we outline
related work and some interesting aspects of future work in Section 6.

2 Mobile Network Scenario

In this section we will illustrate the main idea of reconfigurable P/T-systems in
the area of a mobile scenario. This work is part of a collaboration with some
research projects where the main focus is on an adaptive workflow management
system for mobile ad-hoc networks, specifically targeted to emergency scenarios1.
So, as a running example we use a scenario in archaeological disaster/recovery:
after an earthquake, a team (led by a team leader) is equipped with mobile
devices (laptops and PDAs) and sent to the affected area to evaluate the state
of archaeological sites and the state of precarious buildings. The goal is to draw a
situation map in order to schedule restructuring jobs. The team is considered as
an overall mobile ad-hoc network in which the team leader’s device coordinates
the other team member devices by providing suitable information (e.g. maps,
sensible objects, etc.) and assigning activities. A typical cooperative process to
be enacted by a team is shown in Fig. 1 as P/T-system (PN1, M1), where we
1 MOBIDIS - http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS, MAIS -

http://www.mais-project.it, IST FP6 WORKPAD - http://www.workpad-project.eu/

http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS
http://www.mais-project.it
http://www.workpad-project.eu/

106 H. Ehrig et al.

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Matching

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Go to

(P N1, M′
1)(P N1, M1) (P N1, M′′

1)

Building
Select

Destination

Fig. 1. Firing steps Select Building and Go to Destination

assume a team consisting of a team leader as picture store device and two team
members as camera device and bridge device, respectively.

To start the activities of the camera device the follower marking of the P/T-
system (PN1, M1) is computed by firing transition Select Building and we obtain
the new P/T-system (PN1, M

′
1) depicted in the middle of Fig. 1. In a next step

the task Go to Destination can be executed (see right-hand side of Fig. 1).
To predict a situation of disconnection a movement activity of the bridge

device has to be introduced in our system. In more detail, the workflow has
to be extended by a task to follow the camera device. For this reason we pro-
vide the rule prodfollow depicted in the upper row in Fig. 2. In general, a rule

prod = ((L, ML) l← (K, MK) r→ (R, MR)) is given by three P/T-systems called
left-hand side, interface, and right-hand side, respectively, and a span of two (spe-
cific) P/T-morphisms l and r. For the application of the rule prodfollow to the
P/T-system (PN1, M1) (see Fig. 1) we additionally need a match morphism m
that identifies the relevant parts and has to respect the so-called gluing condition

(see Section 3). Then the transformation step (PN1, M1)
prodfollow=⇒ (PN2, M2)

as shown in Fig. 2 is given as follows: first, the transitions Go to Destina-
tion and Send Photos are deleted and we obtain the intermediate P/T-system
(PN0, M0); then the transitions Go to Destination, Send Photos and Follow
Camera Device together with their (new) environments are added. Note that a
positive check of the gluing condition makes sure that the intermediate P/T-
system is well-defined. Analogously, the application of the rule prodfollow to the

Independence of Net Transformations and Token Firing 107

P/T-system (PN1, M
′
1) in the middle of Fig. 1 leads to the transformation step

(PN1, M
′
1)

prodfollow=⇒ (PN2, M
′
2) in Fig. 3.

Note that in general token game and rule applications cannot be interleaved,
e.g. if the transformation rule deletes the transition or a part of the marking
used for the token firing. Thus we are looking for conditions such that firing
steps and transformation steps can be performed in any order leading to the
same P/T-system. In Section 4 we define in more detail conditions to ensure the
independence of these activities.

Summarizing, our reconfigurable P/T-system ((PN1, M1), {prodfollow}) con-
sists of the P/T-system (PN1, M1) and the set of rules {prodfollow} with one rule
only. We can consider further rules, e.g. those given in [9,31], leading to a more com-
plex reconfigurableP/T-system.But in this paper we use the simple reconfigurable
P/T-system as an example to help the reader understand the main concepts.

3 Reconfigurable P/T-Systems

In this section we formalize reconfigurable P/T-systems. As net formalism we use
P/T-systems following the notation of “Petri nets are Monoids” in [28]. In this
notation a P/T-net is given by PN = (P, T, pre, post) with pre- and post domain
functions pre, post : T → P⊕ and a P/T-system is given by (PN, M) with mark-
ing M ∈ P⊕, where P⊕ is the free commutative monoid over the set P of places
with binary operation ⊕, e.g. the monoid notation M = 2p1 ⊕ 3p2 means that
we have two tokens on place p1 and three tokens on p2. Note that M can also
be considered as function M : P → N where only for a finite set P ′ ⊆ P we
have M(p) ≥ 1 with p ∈ P ′. We can switch between these notations by defining∑

p∈P M(p) · p = M ∈ P⊕. Moreover, for M1, M2 ∈ P⊕ we have M1 ≤ M2 if
M1(p) ≤ M2(p) for all p ∈ P . A transition t ∈ T is M -enabled for a marking
M ∈ P⊕ if we have pre(t) ≤ M , and in this case the follower marking M ′ is given
by M ′ = M
 pre(t) ⊕ post(t) and (PN, M) t−→ (PN, M ′) is called firing step.
Note that the inverse
 of ⊕ is only defined in M1
 M2 if we have M2 ≤ M1.

In order to define rules and transformations of P/T-systems we introduce P/T-
morphisms which preserve firing steps by Condition (1) below. Additionally they
require that the initial marking at corresponding places is increasing (Condition
(2)) or even stronger (Condition (3)).

Definition 1 (P/T-Morphisms)
Given P/T-systems PNi = (PNi, Mi) with PNi = (Pi, Ti, prei, posti) for i =
1, 2, a P/T-morphism f : (PN1, M1) → (PN2, M2) is given by f = (fP , fT) with
functions fP : P1 → P2 and fT : T1 → T2 satisfying

(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT and
(2) M1(p) ≤ M2(fP (p)) for all p ∈ P1.

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by

f⊕
P (

∑n
i=1 ki ·pi) =

∑n
i=1 ki ·fP (pi). (1) means that f is compatible with pre- and

108 H. Ehrig et al.

Follow Camera

Go to Destination

Send Photos

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device

Device
Follow Camera

(P N1, M1) (P N0, M0) (P N2, M2)

(R, MR)(K, MK)(L, ML)

l

nm

r

Fig. 2. Transformation step (PN1, M1)
prodfollow

=⇒ (PN2, M2)

post domain, and (2) that the initial marking of PN1 at place p is smaller or
equal to that of PN2 at fP (p).

Moreover the P/T-morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

The category defined by P/T-systems and P/T-morphisms is denoted by PTSys
where the composition of P/T-morphisms is defined componentwise for places
and transitions.

Remark 1. For our morphisms we do not always have f⊕
P (M1) ≤ M2. E.g. M1 =

p1 ⊕ p2, M2 = p and fP (p1) = fP (p2) = p implies f⊕
P (M1) = 2p > p = M2, but

M1(p1) = M1(p2) = 1 = M2(p).

Independence of Net Transformations and Token Firing 109

Go to Destination

Send Photos

Go to Destination

Select Building

Go to Destination

Select Building

Go to Destination

Select Building

Send Photos

Device
Follow Cameral

(P N1, M′
1) (P N0, M′

0) (P N2, M′
2)

(R, MR)(K, MK)(L, ML)

m′ n′

r

Fig. 3. Transformation step (PN1, M
′
1)

prodfollow
=⇒ (PN2, M

′
2)

As discussed in our paper [23] we are able to define the gluing of P/T-systems via
P/T-morphisms by pushouts in the category PTSys. Informally, a pushout in
a category CAT is a gluing construction of two objects over a specific interface.
Especially we are interested in pushouts of the form where l is a strict and c is a
general morphism. So, we can apply rules. Vice versa, given the left-hand side of
a rule (K, MK) l−→ (L, ML) (see Def. 3) and a match m: (L, ML) → (PN1, M1)
we have to construct a P/T-system (PN0, M0)
such that (1) becomes a pushout. This con-
struction requires the following gluing condi-
tion which has to be satisfied in order to apply
a rule at a given match. The characterization

(K, MK) l ��

c

��
(1)

(L, ML)

m

��
(PN0, M0) �� (PN1, M1)

of specific points is a sufficient condition for the existence and uniqueness of
the so called pushout complement (PN0, M0), because it allows checking for the
applicability of a rule to a given match.

Definition 2 (Gluing Condition for P/T-Systems)

Let (L, ML) m→ (PN1, M1) be a P/T-morphism and (K, MK) l→ (L, ML) a strict
morphism , then the gluing points GP , dangling points DP and the identification
points IP of L are defined by

GP = l(PK ∪ TK)
DP = {p ∈ PL|∃t ∈ (T1 \ mT (TL)) : mP (p) ∈ pre1(t) ⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p �= p′ ∧ mP (p) = mP (p′)}

∪{t ∈ TL|∃t′ ∈ TL : t �= t′ ∧ mT (t) = mT (t′)}

110 H. Ehrig et al.

A P/T-morphism (L, ML) m→ (PN1, M1) and a strict morphism (K, MK) l→
(L, ML) satisfy the gluing condition, if all dangling and identification points are
gluing points, i.e DP ∪ IP ⊆ GP , and m is strict on places to be deleted, i.e.

∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Example 1. In Section 2 examples of P/T-morphisms are given in Fig. 2 by
(K, MK) l→ (L, ML) and (L, ML) m→ (PN1, M1). For the dangling points we
have DP = PL while the set of identification points IP is empty. So, these P/T-
morphisms satisfy the gluing condition because the gluing points GP are also
equal to the set of places PL and all places are preserved.

Next we present rule-based transformations of P/T-systems following the double-
pushout (DPO) approach of graph transformations in the sense of [34,17], which
is restrictive concerning the treatment of unmatched transitions at places which
should be deleted. Here the gluing condition forbids the application of rules in
this case. Furthermore, items which are identified by a non injective match are
both deleted or preserved by rule applications.

Definition 3 (P/T-System Rule)

A rule prod = ((L, ML) l← (K, MK) r→ (R, MR)) of P/T-systems consists of
P/T-systems (L, ML), (K, MK), and (R, MR), called left-hand side (LHS), in-
terface, and right-hand side (RHS) of prod respectively, and two strict P/T-
morphisms (K, MK) l→ (L, ML) and (K, MK) r→ (R, MR).

Note that we have not yet considered the firing of the rule nets (L, ML), (K, MK)
and (R, MR) as up to now no relevant use could be found. Nevertheless, from a
theoretical point of view simultaneous firing of the nets (L, ML), (K, MK) and
(R, MR) is easy as the morphisms are marking strict. The firing of only one of
these nets would require interesting extensions of the gluing condition.

Definition 4 (Applicability of Rules)
A rule prod = ((L, ML) l← (K, MK) r→ (R, MR)) is called applicable at the
match (L, ML) m→ (PN1, M1) if the gluing condition is satisfied for l and m. In
this case we obtain a P/T-system (PN0, M0) leading to a net transformation

step (PN1, M1)
prod,m
=⇒ (PN2, M2) consisting of the following pushout diagrams

(1) and (2). The P/T-morphism n : (R, MR) → (PN2, M2) is called comatch of
the transformation step.

(L, ML)

m

��
(1)

(K, MK)l�� r ��

c

��
(2)

(R, MR)

n

��
(PN1, M1) (PN0, M0)

l∗
��

r∗
�� (PN2, M2)

Now we are able to define reconfigurable P/T-systems, which allow modifying
the net structure using rules and net transformations of P/T-systems.

Independence of Net Transformations and Token Firing 111

Definition 5 (Reconfigurable P/T-Systems)
Given a P/T-system (PN, M) and a set of rules RULES, a reconfigurable P/T-
system is defined by ((PN, M), RULES).

Examples of rule applications and of a reconfigurable P/T-system can be found
in Section 2.

4 Independence of Net Transformations and Token Firing

In this section we analyze under which conditions net transformations and to-
ken firing of a reconfigurable P/T-system as introduced in Section 3 can be
executed in arbitrary order. These conditions are called (co-)parallel and se-
quential independence. Note that independence conditions for two firing steps
of P/T-systems are well-known and independence of two transformation steps is
analyzed already for high-level replacement systems with applications to Petri
net transformations in [17]. We start with the situation where a transformation
step and a firing step are applied to the same P/T-system. This leads to the
notion of parallel independence.

Definition 6 (Parallel Independence)

A transformation step (PN1, M1)
prod,m
=⇒ (PN2, M2) of P/T-systems and a firing

step (PN1, M1)
t1−→ (PN1, M

′
1) for t1 ∈ T1 are called parallel independent if

(1) t1 is not deleted by the transformation step and
(2) ML(p) ≤ M ′

1(m(p)) for all p ∈ PL with (L, ML) = LHS(prod).

Parallel independence allows the execution of the transformation step and the
firing step in arbitrary order leading to the same P/T-system.

Theorem 1 (Parallel Independence). Given parallel independent steps

(PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M1)

t1−→ (PN1, M
′
1) with t1 ∈ T1 then

there is a corresponding t2 ∈ T2 with firing step (PN2, M2)
t2−→ (PN2, M

′
2) and

a transformation step (PN1, M
′
1)

prod,m′

=⇒ (PN2, M
′
2) with the same marking M ′

2.

(PN1, M1)
prod,m

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

prod,m′
�� ����������

����������

(PN2, M
′
2)

Remark 2. Cond. (1) in Def. 6 is needed to fire t2 in (PN2, M2), and Cond. (2) in
Def. 6 is needed to have a valid match m′ in (PN1, M

′
1). Note that m′(x) = m(x)

for all x ∈ PL ∪ TL.

112 H. Ehrig et al.

Proof. Parallel independence implies that t1 ∈ T1 is preserved by the transfor-
mation step (PN1, M1)

prod,m
=⇒ (PN2, M2). Hence there is a unique t0 ∈ T0 with

l∗(t0) = t1. Let t2 = r∗(t0) ∈ T2 in the following pushouts (1) and (2), where l∗

and r∗ are strict.

(L, ML)

m

��
(1)

(K, MK)l�� r ��

��
(2)

(R, MR)

n

��
(PN1, M1) (PN0, M0)

l∗
��

r∗
�� (PN2, M2)

Now t1 being enabled under M1 in PN1 implies pre1(t1) ≤ M1. Moreover,
l∗ and r∗ strict implies pre0(t0) ≤ M0 and pre2(t2) ≤ M2. Hence t2 is enabled
under M2 in PN2 and we define M ′

2 = M2
 pre2(t2) ⊕ post2(t2).
Now we consider the second transformation step, with m′ defined by m′(x) =

m(x) for x ∈ PL ∪ TL.

(L, ML)

m′

��
(1′)

(K, MK)l�� r ��

��
(2′)

(R, MR)

��
n′

��
(PN1, M

′
1) (PN0, M

′
0)

l∗′
��

r∗′
�� (PN2, M

′′
2)

m′ is a P/T-morphism if for all p ∈ PL we have

(a) ML(p) ≤ M ′
1(m

′(p)),

and the match m′ is applicable at M ′
1, if

(b) IP ∪ DP ⊆ GP and for all p ∈ PL \ l(PK) we have ML(p) = M ′
1(m(p)) (see

gluing condition in Def. 2).

Cond. (a) is given by Cond. (2) in Def. 6, because we assume that (PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M1)

t1−→ (PN1, M
′
1) with t1 ∈ T1 are parallel inde-

pendent. Moreover, the match m being applicable at M1 implies IP ∪DP ⊆ GP
and for all p ∈ PL \ l(PK) we have ML(p) = M1(m(p)) = M ′

1(m(p)) by Lemma
1 below using the fact that there is a firing step (PN1, M1)

t1−→ (PN1, M
′
1).

The application of prod along m′ leads to the P/T-system (PN2, M
′′
2), where

l∗′(x) = l∗(x), r∗′(x) = r∗(x) for all x ∈ P0 ∪ T0, and n∗′(x) = n∗(x) for all
x ∈ PR ∪ TR.

Finally, it remains to show that M ′
2 = M ′′

2 . By construction of the transfor-

mation steps (PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M

′
1)

prod,m′

=⇒ (PN2, M
′′
2) we

have

(1) for all p0 ∈ P0: M2(r∗(p0)) = M0(p0) = M1(l∗(p0)),
(2) for all p ∈ PR \ r(PK): M2(n(p)) = MR(p),
(3) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
0(p0) = M ′

1(l
∗(p0)) and

(4) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = MR(p).

Independence of Net Transformations and Token Firing 113

By construction of the firing steps (PN1, M1)
t1−→ (PN1, M

′
1) and (PN2, M2)

t2−→ (PN2, M
′
2) we have

(5) for all p1 ∈ P1: M ′
1(p1) = M1(p1)
 pre1(t1)(p1) ⊕ post1(t1)(p1) and

(6) for all p2 ∈ P2: M ′
2(p2) = M2(p2)
 pre2(t2)(p2) ⊕ post2(t2)(p2).

Moreover, l∗ and r∗ strict implies the injectivity of l∗ and r∗ and we have

(7) for all p0 ∈ P0: pre0(t0)(p0) = pre1(t1)(l∗(p0)) = pre2(t2)(r∗(p0)) and
post0(t0)(p0) = post1(t1)(l∗(p0)) = post2(t2)(r∗(p0)).

To show that this implies

(8) M ′
2 = M ′′

2 ,

it is sufficient to show

(8a) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = M ′

2(n(p)) and
(8b) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
2(r∗(p0)).

First we show that condition (8a) is satisfied. For all p ∈ PR \ r(PK) we have

M ′′
2 (n′(p))

(4)
= MR(p)

(2)
= M2(n(p))

(6)
= M ′

2(n(p))

because n(p) is neither in the pre domain nor in the post domain of t2, which
are in r∗(P0) because t2 is not created by the rule (see Lemma 1, applied to the
inverse rule prod−1).

Next we show that condition (8b) is satisfied. For all p0 ∈ P0 we have

M ′′
2 (r∗(p0))

(3)
= M ′

0(p0)
(3)
= M ′

1(l∗(p0))
(5)
= M1(l∗(p0))
 pre1(t1)(l∗(p0)) ⊕ post1(t1)(l∗(p0))

(1) and (7)
= M2(r∗(p0))
 pre2(t2)(r∗(p0)) ⊕ post2(t2)(r∗(p0))
(6)
= M ′

2(r∗(p0))

It remains to show Lemma 1 which is used in the proof of Theorem 1.

Lemma 1. For all p ∈ PL \ l(PK) we have m(p) �∈ dom(t1), where dom(t1) is
union of pre- and post domain of t1, and t1 is not deleted.

Proof. Assume m(p) ∈ dom(t1).

Case 1 (t1 = m(t) for t ∈ TL): t1 not being deleted implies t ∈ l(TK). Hence
there exists p′ ∈ dom(t) ⊆ l(PK), such that m(p′) = m(p); but this is a
contradiction to p ∈ PL \ l(PK) and the fact that m cannot identify elements
of l(PK) and PL \ l(PK).

114 H. Ehrig et al.

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

(P N2, M′′
2) (P N2, M′′′

2)

Fig. 4. P/T-systems (PN2, M
′′
2) and (PN2, M

′′′
2)

Case 2 (t1 �∈ m(TL)): m(p) ∈ dom(t1) implies by the gluing condition in Def.
2, that p ∈ l(PK), but this is a contradiction to p ∈ PL \ l(PK).

Example 2. The firing step (PN1, M1)
Select Building−→ (PN1, M

′
1) (see Fig. 1) and

the transformation step (PN1, M1)
prodfollow=⇒ (PN2, M2) (see Fig. 2) are par-

allel independent because the transition Select Building is not deleted by the
transformation step and the marking ML is empty. Thus, the firing step can be
postponed after the transformation step or, vice versa, the rule prodfollow can
be applied after token firing yielding the same result (PN2, M

′
2) in Fig. 5.

In contrast the firing step (PN1, M
′
1)

Go to Destination−→ (PN1, M
′′
1) (see Fig. 1)

and the transformation step (PN1, M
′
1)

prodfollow=⇒ (PN2, M
′
2) (see Fig. 3) are not

parallel independent because the transition Go to Destination is deleted and
afterwards reconstructed by the transformation step (it is not included in the
interface K). In fact, the new transition Go to Destination in (PN2, M

′
2) could

be fired leading to (PN2, M
′′
2) (see Fig. 4) and vice versa we could fire Go to

Destination in (PN1, M
′
1) and then apply prodfollow leading to (PN2, M

′′′
2) (see

Fig. 4), but we would have M ′′
2 �= M ′′′

2 .

In the first diagram in Theorem 1 we have required that the upper pair of steps
is parallel independent leading to the lower pair of steps. Now we consider the
situations that the left, right or lower pair of steps are given - with a suitable
notion of independence - such that the right, left and upper part of steps can be
constructed, respectively.

Independence of Net Transformations and Token Firing 115

Definition 7 (Sequential and Coparallel Independence). In the following
diagram with LHS(prod) = (L, ML), RHS(prod) = (R, MR), m and m′ are
matches and n and n′ are comatches of the transformation steps with m(x) =
m′(x) for x ∈ PL ∪ TL and n(x) = n′(x) for x ∈ PR ∪ TR, we say that

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

1. the left pair of steps, short ((prod, m, n), t2), is sequentially independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤ M ′

2(n(p)) for all p ∈ PR

2. the right pair of steps, short (t1, (prod, m′, n′)), is sequentially independent
if
(a) t1 is not deleted by the transformation step
(b) ML(p) ≤ M1(m′(p)) for all p ∈ PL

3. the lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤ M2(n′(p)) for all p ∈ PR

Example 3. The pair of steps (Select Building, (prodfollow , m′, n′)) depicted in
Fig. 5 is sequentially independent because the transition Select Building is not
deleted by the transformation step and the marking ML is empty. Analogously,
the pair of steps ((prodfollow , m, n), Select Building) depicted in Fig. 6 is sequen-
tially independent because the transition Select Building is not created by the
transformation step and the marking MR is empty. For the same reason the pair
(Select Building,(prodfollow , m′, n′)) is coparallel independent.

Remark 3. Note that for prod = ((L, ML) l← (K, MK) r→ (R, MR)) we have
prod−1 = ((R, MR) r← (K, MK) l→ (L, ML)) and each direct transformation

(PN1, M1)
prod
=⇒ (PN2, M2) with match m, comatch n and pushout diagrams (1)

and (2) as given in Def. 4 leads to a direct transformation (PN2, M2)
prod−1

=⇒
(PN1, M1) with match n and comatch m by interchanging pushout diagrams
(1) and (2).

Given a firing step (PN1, M1)
t1−→ (PN1, M

′
1) with M ′

1 = M1
 pre1(t1) ⊕

post1(t1) we can formally define an inverse firing step (PN1, M
′
1)

t−1
1−→ (PN1, M1)

with M1 = M ′
1
 post1(t1) ⊕ pre1(t1) if post1(t1) ≤ M ′

1, such that firing and
inverse firing are inverse to each other.

116 H. Ehrig et al.

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Matching

prodfollow

(P N1, M′
1) (P N2, M′

2)(P N1, M1)

Building
Select

Fig. 5. Pair of steps (Select Building, (prodfollow, m′, n′))

Formally all the notions of independence in Def. 7 can be traced back to
parallel independence using inverse transformation steps based on (prod−1, n, m)
and (prod−1, n′, m′) and inverse firing steps t−1

1 and t−1
2 in the following diagram.

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)
(prod−1,n,m)

������������

����������

t2

������������� (PN1, M
′
1)

(prod,m′,n′)

�� ����������

����������

t−1
1

�������������

(PN2, M
′
2)

(prod−1,n′,m′)

������������

����������t−1
2

�������������

1. ((prod, m, n), t2) is sequentially independent iff ((prod−1, n, m), t2) is parallel
independent.

2. (t1, (prod, m′, n′)) is sequentially independent iff ((prod, m′, n′), t−1
1) is par-

allel independent.
3. (t2, (prod, m′, n′)) is coparallel independent iff ((prod−1, n′, m′), t−1

2) is par-
allel independent.

Now we are able to extend Theorem 1 on parallel independence showing that
resulting steps in the first diagram of Theorem 1 are sequentially and coparallel
independent.

Theorem 2 (Parallel and Sequential Independence). In Theorem 1, where
we start with parallel independence of the upper steps in the following diagram with

Independence of Net Transformations and Token Firing 117

match m and comatch n, we have in addition the following sequential and coparallel
independence in the following diagram:

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

1. The left pair of steps, short ((prod, m, n), t2), is sequentially independent.
2. The right pair of steps, short (t1, (prod, m′, n′)), is sequentially independent.
3. The lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent.

Proof. We use the proof of Theorem 1.

1. (a) t2 is not created because it corresponds to t1 ∈ T1 which is not deleted.
(b) We have MR(p) ≤ M ′

2(n(p)) for all p ∈ PR by construction of the
pushout (2′) with M ′′

2 = M ′
2.

2. (a) t1 is not deleted by the assumption of parallel independence.
(b) ML(p) ≤ M1(m(p)) for all p ∈ PL by pushout (1).

3. (a) t2 is not created as shown in the proof of 1. (a).
(b) MR(p) ≤ M2(n(p)) for all p ∈ PR by pushout (2).

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

prodfollow Building
Select

(P N1, M1) (P N2, M′
2)(P N2, M2)

Fig. 6. Pair of steps ((prodfollow, m, n), Select Building)

118 H. Ehrig et al.

In Theorem 2 we have shown that parallel independence implies sequential and
coparallel independence. Now we show vice versa that sequential (coparallel) inde-
pendence implies parallel and coparallel (parallel and sequential) independence.

Theorem 3 (Sequential and (Co-)Parallel Independence)

1. Given the left sequentially independent steps in diagram (1) then also the
right steps exist, s.t. the upper (right, lower) pair is parallel (sequentially,
coparallel) independent.

2. Given the right sequentially independent steps in diagram (1) then also the
left steps exist, s.t. the upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in diagram (1) then also the
upper steps exist, s.t. the upper (left,right) pair is parallel (sequentially, se-
quentially) independent.

(PN1, M1)
(prod,m,n)

�� ����������

����������
t1

�������������

(1)(PN2, M2)

t2 �������������
(PN1, M

′
1)

(prod,m′,n′)�� ����������

����������

(PN2, M
′
2)

Proof 1. Using Remark 3, left sequential independence in (1) corresponds to
parallel independence in (2). Applying Theorem 1 and Theorem 2 to the left
pair in (2) we obtain the right pair such that the upper and lower pairs are
sequentially and the right pair coparallel independent. This implies by Remark 3
that the upper (right, lower) pairs in (1) are parallel (sequentially, coparallel)
independent.

(PN1, M1)
t1

�������������

(2)(PN2, M2)

(prod−1,n,m)
������������

����������

t2 �������������
(PN1, M

′
1)

(PN2, M
′
2)

(prod−1,n′,m′)

������������

����������

The proofs of items 2. and 3. are analogous to the proof of 1.

5 General Framework of Net Transformations

In [23], we have introduced the paradigm ”nets and rules as tokens” using a
high-level model with suitable data type part. This model called algebraic higher-
order (AHO) system (instead of high-level net and replacement system as in [23])

Independence of Net Transformations and Token Firing 119

exploits some form of control not only on rule application but also on token firing.
In general an AHO-system is defined by an algebraic high-level net with system
places and rule places as for example shown in Fig. 7, where the marking is given
by a suitable P/T-system resp. rule on these places. For a detailed description of
the data type part, i.e. the AHO-System-signature and corresponding algebra
A, we refer to [23].

In the following we review the behavior of AHO-systems according to [23].
With the symbol V ar(t) we indicate the set of variables of a transition t, i.e.,
the set of all variables occurring in pre- and post domain and in the firing-
condition of t. The marking M determines the distribution of P/T-systems and
rules in an AHO-system, which are elements of a given higher-order algebra A.
Intuitively, P/T-systems and rules can be moved along AHO-system arcs and can
be modified during the firing of transitions. The follower marking is computed
by the evaluation of net inscriptions in a variable assignment v : V ar(t) → A.
The transition t is enabled in a marking M , if and only if (t, v) is consistent, that
is if the evaluation of the firing condition is fulfilled. Then the follower marking
after firing of transition t is defined by removing tokens corresponding to the net
inscription in the pre domain of t and adding tokens corresponding to the net
inscription in the post domain of t.

(PN1, M1)

n transformation

m :Mor
cod m = n
applicable(r, m) = tt

n

fire(n, t)

token game

enabled(n, t) =tt
t :Transitions

(AHO-System-SIG,A)

p1 : System

r

p2 : Rules

transform(r, m)
prodfollow

Fig. 7. Algebraic higher-order system

The transitions in the AHO-system in Fig. 7 realize on the one hand firing
steps and on the other hand transformation steps as indicated by the net in-
scriptions fire(n, t) and transform(r, m), respectively. The initial marking is
the reconfigurable P/T-system given in Section 2, i.e. the P/T-system (PN1, M1)
given in Fig. 1 is on the place p1, while the marking of the place p2 is given by
the rule prodfollow given in Fig. 2. To compute the follower marking of the P/T-
system we use the transition token game of the AHO-system. First the variable
n is assigned to the P/T-system (PN1, M1) and the variable t to the transition
Select Building. Because this transition is enabled in the P/T-system, the firing
condition is fulfilled. Finally, due to the evaluation of the term fire(n, t) we
obtain the new P/T-system (PN1, M

′
1) (see Fig. 1).

For changing the structure of P/T-systems the transition transformation is
provided in Fig. 7. Again, we have to give an assignment v for the variables
of the transition, i.e. variables n, m and r, where v(n) = (PN1, M1), v(m)
is a suitable match morphism and v(r) = prodfollow . The firing condition cod
m = n ensures that the codomain of the match morphism is equal to (PN1, M1),

120 H. Ehrig et al.

while the second condition applicable(r, m) checks the gluing condition, i.e. if
the rule prodfollow is applicable with match m. Afterwards, the transformation
step depicted in Fig. 2 is computed by the evaluation of the net inscription
transform(r, m) and the effect of firing the transition transformation is the
removal of the P/T-system (PN1, M1) from place p1 in Fig. 7 and adding the
P/T-system (PN2, M2) to it. The pair (or sequence) of firing and transformation
steps discussed in the last sections is reflected by firing of the transitions one
after the other in our AHO-system. Thus, the results presented in this paper are
most important for the analysis of AHO-systems.

6 Conclusion

This paper continues our work on ”nets and rules as tokens” [23] by transferring
the results of local Church-Rosser, which are well known for term rewriting and
graph transformations, to the consecutive evolution of a P/T-system by token
firing and rule applications. We have presented conditions for (co-)parallel and
sequential independence and we have shown that provided that these conditions
are satisfied, firing and transformation steps can be performed in any order,
yielding the same result. Moreover, we have correlated these conditions, i.e. that
parallel independence implies sequential independence and vice versa, sequential
(coparallel) independence implies parallel and coparallel (parallel and sequential)
independence. The advantage of the presented conditions is that they can be
checked syntactically and locally instead of semantically and globally. Thus,
they are also applicable in the case of complex reconfigurable P/T-systems.

Transformations of nets can be considered in various ways. Transformations
of Petri nets to another Petri net class (e.g. in [7, 10, 35]), to another modeling
technique or vice versa (e.g in [2, 5, 15, 26, 33, 14]) are well examined and have
yielded many important results. Transformation of one net into another without
changing the net class is often used for purposes of forming a hierarchy, in terms
of reductions or abstraction (e.g. in [22,16,20,12,8]) or transformations are used
to detect specific properties of nets (e.g. in [3,4,6,29]). Net transformations that
aim directly at changing the net in arbitrary ways as known from graph trans-
formations were developed as a special case of high-level replacement systems
e.g. in [17]. The general approach can be restricted to transformations that pre-
serve specific properties as safety or liveness (see [30, 32]). Closely related are
those approaches that propose changing nets in specific ways in order to pre-
serve specific semantic properties, as equivalent (I/O-) behavior (e.g in [1, 11]),
invariants (e.g. in [13]) or liveness (e.g. in [19, 37]). Related are also those ap-
proaches that follow the ”nets as tokens”-paradigm, based on elementary object
nets introduced in [36]. Mobile object net systems [24, 21] are an algebraic for-
malization of the elementary object nets that are closely related to our approach.
In both cases the data types, respectively the colors represent the nets that are
the token nets. Our approach goes beyond those approaches as we additionally
have rules as tokens, and transformations of nets as operations. In [24] con-
currency aspects between token nets have been investigated, but naturally not

Independence of Net Transformations and Token Firing 121

concerning net transformations. In [27] rewriting of Petri nets in terms of graph
grammars are used for the reconfiguration of nets as well, but this approach
lacks the ”nets as tokens”-paradigm.

In this paper we present main results of a line of research2 concerning for-
mal modeling and analysis of workflows in mobile ad-hoc networks. So, there
is a large amount of most interesting and relevant open questions directly re-
lated to the work presented here. While a firing step and a transformation step
that are parallel independent can be applied in any order, an aspect of future
work is under which conditions they can be applied in parallel leading to the
notions of parallel steps. Vice versa a parallel step should be splitted into the
corresponding firing and transformation steps. This problem is closely related
to the Parallelism Theorem for high-level replacement systems [17] which is the
basis of a shift construction for transformation sequences. Moreover, it is most
interesting to transfer further results which are already valid for high-level re-
placement systems, e.g. confluence, termination and critical pairs [17]. We plan
to develop a tool for our approach using the graph transformation engine AGG3

as a tool for the analysis of transformation properties like independence and ter-
mination, meanwhile the token net properties could be analyzed using the Petri
Net Kernel [25], a tool infrastructure for Petri nets different net classes.

References

1. Balbo, G., Bruell, S., Sereno, M.: Product Form Solution for Generalized Stochastic
Petri Nets. IEEE Transactions on Software Engineering 28(10), 915–932 (2002)

2. Belli, F., Dreyer, J.: Systems Modelling and Simulation by Means of Predi-
cate/Transition Nets and Logic Programming. In: Proc. Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems (IEA/AIE), pp. 465–474
(1994)

3. Berthelot, G.: Checking properties of nets using transformation. In: Proc. Appli-
cations and Theory in Petri Nets. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg
(1985)

4. Berthelot, G.: Transformations and Decompositions of Nets. In: Petri Nets: Central
Models and Their Properties, Part I, Advances in Petri Nets. LNCS, vol. 254, pp.
359–376. Springer, Heidelberg (1987)

5. Bessey, T., Becker, M.: Comparison of the modeling power of fluid stochastic Petri
nets (FSPN) and hybrid Petri nets (HPN). In: Proc.Systems, Man and Cybernetics
(SMC), vol. 2, pp. 354–358. IEEE Computer Society Press, Los Alamitos (2002)

6. Best, E., Thielke, T.: Orthogonal Transformations for Coloured Petri Nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 447–466. Springer,
Heidelberg (1997)

7. Billington, J.: Extensions to Coloured Petri Nets. In: Proc. Petri Nets and Perfor-
mance Models (PNPM), pp. 61–70. IEEE Computer Society Press, Los Alamitos
(1989)

2 The research project Formal Modeling and Analysis of Flexible Processes in Mobile
Ad-hoc Networks (forMAlNET) of the German Research Council.

3 tfs.cs.tu-berlin.de/agg

tfs.cs.tu-berlin.de/agg

122 H. Ehrig et al.

8. Bonhomme, P., Aygalinc, P., Berthelot, G., Calvez, S.: Hierarchical control of time
Petri nets by means of transformations. In: Proc. Systems, Man and Cybernetics
(SMC), vol. 4, p. 6. IEEE Computer Society Press, Los Alamitos (2002)

9. Bottoni, P., De Rosa, F., Hoffmann, K., Mecella, M.: Applying Algebraic Ap-
proaches for Modeling Workflows and their Transformations in Mobile Networks.
Journal of Mobile Information Systems 2(1), 51–76 (2006)

10. Campos, J., Sánchez, B., Silva, M.: Throughput Lower Bounds for Markovian Petri
Nets: Transformation Techniques. In: Proc. Petri Nets and Performance Models
(PNPM), pp. 322–331. IEEE Computer Society Press, Los Alamitos (1991)

11. Carmona, J., Cortadella, J.: Input/Output Compatibility of Reactive Systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377.
Springer, Heidelberg (2002)

12. Chehaibar, G.: Replacement of Open Interface Subnets and Stable State Trans-
formation Equivalence. In: Proc. Applications and Theory of Petri Nets (ATPN).
LNCS, vol. 674, pp. 1–25. Springer, Heidelberg (1991)

13. Cheung, T., Lu, Y.: Five Classes of Invariant-Preserving Transformations on Col-
ored Petri Nets. In: Donatelli, S., Kleijn, J.H.C.M. (eds.) ICATPN 1999. LNCS,
vol. 1639, pp. 384–403. Springer, Heidelberg (1999)

14. Cortés, L., Eles, P., Peng, Z.: Modeling and formal verification of embedded systems
based on a Petri net representation. Journal of Systems Architecture 49(12-15),
571–598 (2003)

15. de Lara, J., Vangheluwe, H.: Computer Aided Multi-Paradigm Modelling to Pro-
cess Petri-Nets and Statecharts. In: Corradini, A., Ehrig, H., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 239–253. Springer, Hei-
delberg (2002)

16. Desel, J.: On Abstraction of Nets. In: Proc. Applications and Theory of Petri Nets
(ATPN). LNCS, vol. 524, pp. 78–92. Springer, Heidelberg (1990)

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. In: EATCS Monographs in Theoretical Computer Science,
Springer, Heidelberg (2006)

18. Ehrig, H., Hoffmann, K., Prange, U., Padberg, J.: Formal Foundation for the Re-
configuaration of Nets. Technical report, TU Berlin, Fak. IV (2007)

19. Esparza, J.: Model Checking Using Net Unfoldings. Science of Computer Program-
ming 23(2-3), 151–195 (1994)

20. Esparza, J., Silva, M.: On the analysis and synthesis of free choice systems. In:
Proc. Applications and Theory of Petri Nets (ATPN). LNCS, vol. 483, pp. 243–
286. Springer, Heidelberg (1989)

21. Farwer, B., Köhler, M.: Mobile Object-Net Systems and their Processes. Funda-
menta Informaticae 60(1–4), 113–129 (2004)

22. Haddad, S.: A Reduction Theory for Coloured Nets. In Proc. Applications and
Theory in Petri Nets (ATPN). In: Proc. Applications and Theory in Petri Nets
(ATPN). LNCS, vol. 424, pp. 209–235. Springer, Heidelberg (1988)

23. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-Level Nets with Nets and Rules
as Tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 268–288. Springer, Heidelberg (2005)

24. Köhler, M., Rölke, H.: Concurrency for mobile object net systems. Fundamenta
Informaticae 54(2-3), 221–235 (2003)

25. Kindler, E., Weber, M.: The Petri Net Kernel - An Infrastructure for Building
Petri Net Tools. Software Tools for Technology Transfer 3(4), 486–497 (2001)

Independence of Net Transformations and Token Firing 123

26. Kluge, O.: Modelling a Railway Crossing with Message Sequence Charts and Petri
Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technol-
ogy for Communication-Based Systems. LNCS, vol. 2472, pp. 197–218. Springer,
Heidelberg (2003)

27. Llorens, M., Oliver, J.: Structural and Dynamic Changes in Concurrent Systems:
Reconfigurable Petri Nets. IEEE Transactions on Computers 53(9), 1147–1158
(2004)

28. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computa-
tion 88(2), 105–155 (1990)

29. Murata, T.: Petri nets: Properties, analysis and applications. In: Proc. IEEE, vol.
77, pp. 541 – 580. IEEE (1989)

30. Padberg, J., Gajewsky, M., Ermel, C.: Rule-based refinement of high-level nets pre-
serving safety properties. Science of Computer Programming 40(1), 97–118 (2001)

31. Padberg, J., Hoffmann, K., Ehrig, H., Modica, T., Biermann, E., Ermel, C.: Main-
taining Consistency in Layered Architectures of Mobile Ad-hoc Networks. In:
Dwyer, M.B., Lopes, A. (eds.) FASE 2007, LNCS, vol. 4422, pp. 383–397, Springer,
Heidelberg (2007)

32. Padberg, J., Urbášek, M.: Rule-Based Refinement of Petri Nets: A Survey. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 161–196. Springer, Heidel-
berg (2003)

33. Parisi-Presicce, F.: A Formal Framework for Petri Net Class Transformations. In:
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 409–430. Springer, Heidel-
berg (2003)

34. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, Singapore (1997)

35. Urbášek, M.: Categorical Net Transformations for Petri Net Technology. PhD the-
sis, Technische Universität Berlin (2003)

36. Valk, R.: Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

37. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

From Many Places to Few: Automatic Abstraction
Refinement for Petri Nets�

Pierre Ganty��, Jean-François Raskin, and Laurent Van Begin���

Département d’Informatique, Université Libre de Bruxelles (U.L.B.)
{pganty,jraskin,lvbegin}@ulb.ac.be

Abstract. Current algorithms for the automatic verification of Petri nets suffer
from the explosion caused by the high dimensionality of the state spaces of prac-
tical examples. In this paper, we develop an abstract interpretation based analysis
that reduces the dimensionality of state spaces that are explored during verifica-
tion. In our approach, the dimensionality is reduced by trying to gather places
that may not be important for the property to establish. If the abstraction that is
obtained is too coarse, an automatic refinement is performed and a more precise
abstraction is obtained. The refinement is computed by taking into account infor-
mation about the inconclusive analysis. The process is iterated until the property
is proved to be true or false.

1 Introduction

Petri nets (and their monotonic extensions) are well-adapted tools for modeling con-
current and infinite state systems like, for instance, parameterized systems [1]. Even
though their state space is infinite, several interesting problems are decidable on Petri
nets. The seminal work of Karp and Miller [2] shows that, for Petri nets, an effective
representation of the downward closure of the set of reachable markings, the so-called
coverability set, is constructible. This coverability set is the main tool needed to decide
several interesting problems and in particular the coverability problem. The coverability
problem asks: “given a Petri net N , an initial marking m0 and a marking m, is there a
marking m′ reachable from m0 which is greater or equal to m”. The coverability prob-
lem was shown decidable in the nineties for the larger class of well-structured transition
systems [3, 4]. That class of transition systems includes a large number of interesting
infinite state models including Petri nets and their monotonic extensions.

A large number of works have been devoted to the study of efficient techniques for
the automatic verification of coverability properties of infinite state Petri nets, see for
example [5, 6, 7, 8]. Forward and backward algorithms are now available and have
been implemented to show their practical relevance. All those methods manipulate,
somehow or other, infinite sets of markings. Sets of markings are subsets of INk where

� This research was supported the Belgian FNRS grant 2.4530.02 of the FRFC project “Centre
Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles
Programme of the Belgian Federal Government.

�� Pierre Ganty is supported by the FNRS under a FRIA grant.
��� Laurent Van Begin is “Chargé de recherche” at FNRS, Belgium.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 124–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 125

IN is the set of positive integers and k is the number of places in the Petri net. We call
k its dimension. When k becomes large the above mentioned methods suffer from the
dimensionality problem: the sets that have to be handled have large representations that
make them hard to manipulate efficiently.

In this paper, we develop an automatic abstraction technique that attacks the dimen-
sionality problem. To illustrate our method, let us consider the Petri net of Fig. 1(a). This
Petri net describes abstractly a system that spawns an arbitrary number of processes
running in parallel. There are two independent critical sections in the system that corre-
spond to places p4, p5 and to places p8, p9. One may be interested in proving that mutual
exclusion is ensured between p4 and p5. That mutual exclusion property is local to a
small part of the net, and it is intuitively clear that the places p6, p7, p8, p9, p10, p11, p12
are irrelevant to prove mutual exclusion between p4 and p5. Hence, the property can
be proved with an abstraction of the Petri net as shown in Fig. 1(b) where the places
{p1, p6, p7, p8, p9, p10, p11, p12} are not distinguished and merged into a single place
p′1. However, the current methods for solving coverability, when given the Petri net of
Fig. 1(a) will consider the entire net and manipulate subsets of IN12. Our method will
automatically consider sets of lower dimensionality: in this case subsets of IN5.

p′
1

p8

p9

p7
p6

(cs3)

(cs4)
t6

t7

t5

t8

t2

t1

p2

(cs2)
p5

p4
(cs1)p3

t4

t3

(wait)
p1

t9
t11

p10 p11 p12

t1
p4

(cs1)

(cs2)
p5

p3

t4

t3

t2

p2

(init)

t10

{t9, t10}

{t6, t8}

{t5, t7, t11}

(a) (b)

2

2

Fig. 1. A Petri net with two distinct mutual exclusion properties (a) and its abstraction (b)

Our algorithm is based on two main ingredients: abstract interpretation and auto-
matic refinement. Abstract interpretation [11] is a well-established technique to define,
in a systematic way, abstractions of semantics. In our case, we will use the notion of
Galois insertion to relate formally subsets in INk with their abstract representation in
INk′

with k′ < k. This Galois insertion allows us to systematically design an abstract
semantics that leads to efficient semi-algorithms to solve the coverability problem by
manipulating lower dimensional sets. We will actually show that the original cover-
ability problem reduces to a coverability problem of lower dimensionality and so our
algorithm can reuse efficient implementations for the forward and backward analysis
of those abstractions. When the abstract interpretation is inconclusive, because it is not
precise enough, our algorithm automatically refines the abstract domain. This refine-
ment ensures that the next analysis will be more precise and that the abstract analysis
will eventually be precise enough to decide the problem. The abstraction technique that
we consider here uses all the information that has been computed by previous steps

126 P. Ganty, J.-F. Raskin, and L.Van Begin

and is quite different from the technique known as counterexample guided abstraction
refinement [9].

We have implemented our automatic abstraction technique and we have evaluated
our new algorithm on several interesting examples of infinite state Petri nets taken from
the literature. It turns out that our technique finds low dimensional systems that are
sufficiently precise abstractions to establish the correctness of complex systems. We
also have run our algorithm on finite state models of well-known mutual exclusion
protocols. On those, the reduction in dimension is less spectacular but our algorithm
still finds simplifications that would be very hard to find by hand.

To the best of our knowledge, this work is the first that tries to automatically abstract
Petri nets by lowering their dimensionality and which provide an automatic refinement
when the analysis is not conclusive. In [10], the authors provide syntactical criterion to
simplify Petri nets while our technique is based on semantics. Our technique provides
automatically much coarser abstractions than the one we could obtain by applying rules
in [10].

Due to the lack of space the omitted proofs can be found in a technical report avail-
able at http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries and Outline

We start this section by recalling Petri nets, their semantics and the coverability prob-
lem. Then, we recall the main properties of existing algorithms to solve this coverability
problem. We end the section by giving an outline of our new algorithm.

Petri Nets and Their (Concrete) Semantics. In the rest of the paper our model of
computation is given by the Petri net formalism. Given a set S we denote by |S| its
cardinality.

Definition 1 (Petri nets). A Petri net N is given by a tuple (P, T, F, m0) where:

– P and T are finite disjoint sets of places and transitions respectively,
– F = (I, O) are two mappings: I, O : P × T �→ IN describing the relationship

between places and transitions. Once a linear order has been fixed on P and on
T , I and O can be seen as (|P |, |T |)-matrices over IN (IN|P |×|T | for short). Let
t ∈ T , I(t) denote the t-column vector in IN|P | of I.

– m0 is the initial marking. A marking m ∈ IN|P | is a column vector giving a number
m(p) of tokens for each place p ∈ P .

Throughout the paper we will use the letter k to denote |P |, i.e. the dimensionality of
the net. We introduce the partial order �⊆ INk × INk such that for all m, m′ ∈ INk :
m � m′ iff m(i) ≤ m′(i) for all i ∈ [1..k] (where [1..k] denotes the set {1, . . . , k}).
It turns out that � is a well-quasi order (wqo for short) on INk meaning that for any
infinite sequence of markings m1, m2, . . . , mi, . . . there exists indices i < j such that
mi � mj .

http://www.ulb.ac.be/di/ssd/cfv/publications.html

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 127

Definition 2 (Firing Rules of Petri net). Given a Petri net N = (P, T, F, m0) and
a marking m ∈ INk we say that the transition t is enabled at m, written m(t〉, iff
I(t) � m. If t is enabled at m then the firing of t at m leads to a marking m′, written
m(t〉m′, such that m′ = m − I(t) + O(t).

Given a Petri net we are interested in the set of markings it can reach. To formalize the
set of reachable markings and variants of the reachability problem, we use the following
lattice and the following operations on sets of markings.

Definition 3. Let k ∈ IN, the powerset lattice associated to INk is the complete lattice
(℘(INk), ⊆, ∪, ∩, ∅, INk) having the powerset of INk as a carrier, union and intersection
as least upper bound and greatest lower bound operations, respectively and the empty
set and INk as the ⊆-minimal and ⊆-maximal elements, respectively.

We use Church’s lambda notation (so that F is λX. F (X)) and use the composition
operator ◦ on functions given by (f ◦ g)(x) = f(g(x)). Also we define f i+1 = f i ◦ f
and f0 = λx. x. Sometimes we also use logical formulas. Given a logical formula ψ
we write �ψ� for the set of its satisfying valuations.

Definition 4 (The predicate transformers pre , p̃re, and post). Let N a Petri net
given by (P, T, F, m0) and let t ∈ T , we define preN [t], p̃reN [t], postN [t] : ℘(INk) �→
℘(INk) as follows,

preN [t] def= λX. {m ∈ INk | ∃m′ : m′ ∈ X ∧ m(t〉m′}

p̃reN [t] def= λX. {m ∈ INk | I(t) � m ∨ m ∈ preN [t](X)}

postN [t] def= λX. {m′ ∈ INk | ∃m : m ∈ X ∧ m(t〉m′} .

The extension to the set T of transitions is given by,

fN =

{
λX.

⋃
t∈T fN [t](X) if fN is preN or postN

λX.
⋂

t∈T fN [t](X) for fN = p̃reN .s

In the sequel when the Petri net N is clear from the context we omit to mention N as
a subscript. Finally we recall a well-known result which is proved for instance in [12]:
for any X, Y ⊆ INk we have

post(X) ⊆ Y ⇔ X ⊆ p̃re(Y) . (Gc)

All those predicate transformers are monotone functions over the complete lattice
(℘(INk), ⊆, ∪, ∩, ∅, INk) so they can be used as building blocks to define fixpoints
expressions.

In ℘(INk), upward-closed and downward-closed sets are particularly interesting and
are defined as follows. We define the operator ↓ (resp. ↑) as λX. {x′ ∈ INk | ∃x : x ∈
X ∧ x′ � x} (resp. λX. {x′ ∈ INk | ∃x : x ∈ X ∧ x � x′}). A set S is �-downward
closed (�-dc-set for short), respectively �-upward closed (�-uc-set for short),

128 P. Ganty, J.-F. Raskin, and L.Van Begin

iff ↓S = S, respectively ↑S = S. We define DCS(INk) (UCS(INk)) to be the set of
all �-dc-sets (�-uc-sets). Those closed sets have natural effective representations that
are based on the fact that � is a wqo. A set M ⊆ INk is said to be canonical if for any
distinct x, y ∈ INk we have x � y. We say that M is a minor set of S ⊆ INk, if M ⊆ S
and ∀s ∈ S ∃m ∈ M : m � s.

Lemma 1 ([13]). Given S ⊆ INk, S has exactly one finite canonical minor set.

So, any �-uc-set can be represented by its finite set of minimal elements. Since any
�-dc-set is the complement of a �-upward-closed, it has an effective representation.
Sets of omega-markings is an equivalent alternative representation [2].

We now formally state the coverability problem for Petri nets which corresponds to
a fixpoint checking problem. Our formulation follows [12].

Problem 1. Given a Petri net N and a �-dc-set S, we want to check if the inclusion
holds:

lfpλX. {m0} ∪ post(X) ⊆ S (1)

which, by [12, Thm. 4], is equivalent to

{m0} ⊆ gfpλX. S ∩ p̃re(X) . (2)

We write post∗(m0) and p̃re∗(S) to be the fixpoints of relations (1) and (2), respec-
tively. They are called the forward semantics and the backward semantics of the net.
Note also that since S is a �-dc-set, post∗(m0) ⊆ S if and only if

⏐
�(post∗(m0)) ⊆ S.

Existing Algorithms. The solutions to problem 1 found in the literature (see [14, 15])
iteratively compute finer overapproximations of

⏐
�(post∗(m0)) . They end up with an

overapproximation R satisfying the following properties:

post∗N (m0) ⊆ R (A1)

R ∈ DCS(INk) (A2)

postN (R) ⊆ R (A3)

post∗N (m0) ⊆ S → R ⊆ S (A4)

The solutions of [14, 15] actually solve problem 1 for the entire class of well-structured
transition systems (WSTS for short) which includes Petri nets and many other interest-
ing infinite state models. In [2] the authors show that

⏐
�(post∗(m0)) is computable for

Petri nets and thus the approximation scheme presented above also encompasses this
solution. All these solutions have in input an effective representation for (1) the initial
marking m0, (2) the predicate transformer postN associated to the Petri net N and (3)
the �-dc-set S.

In the literature, see for example [4], there are also solutions which compute the set
p̃re∗(S) by evaluating its associated fixpoint (see (2)). Since [4], this fixpoint is known
to be computable for WSTS and thus also for Petri net.1

1 The fixpoint expression considered in [4] is actually different from (2) but coincides with its
complement.

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 129

All these algorithms for Petri nets suffer from the explosion caused by the high dimen-
sionality of the state spaces of practical examples. In this paper, we develop an analysis
that reduces the dimensionality of state spaces that are explored during verification.

Overview of Our Approach. In order to mitigate the dimensionality problem, we
adopt the following strategy. First, we define a parametric abstract domain where sub-
sets of INk are abstracted by subsets of INk′

where k′ < k (k′ being a parameter). More
precisely, when each dimension in the concrete domain records the number of tokens
contained in each place of the Petri net, in the abstract domain, each dimension records
the sum of the number of tokens contained into a set of places. Using this abstract do-
main, we define abstract forward and abstract backward semantics, and define efficient
algorithms to compute them. In those semantics, sets of markings are represented by
subsets of INk′

. If the abstract semantics is not conclusive, it is refined automatically
using a refinement procedure that is guided by the inconclusive abstract semantics.
During the refinement steps, we identify important concrete sets and refine the current
abstract domain to allow the exact representation of those sets.

The rest of our paper formalizes those ideas and is organized as follows. In Sect. 3,
we define our parametric abstract domain and we specify the abstract semantics. We
also show how the precision of different domains of the family can be related. In Sect. 4,
we define an efficient way to overapproximate the abstract semantics defined in Sect. 3.
In Section 5 shows how to refine automatically abstract domains. We define there an
algorithm that given a concrete set M computes the coarsest abstract domain that is
able to represent M exactly. In Sect. 6, we put all those results together to obtain our
algorithm that decides coverability by successive approximations and refinements. In
Sect. 7, we report on experiments that show the practical interest of our new algorithm.

3 Abstraction of Sets of Markings

Partitions. At the basis of our abstraction technique are the partitions (of the set of
places).

Definition 5. Let A be a partition of the set [1..k] into k′ classes {Ci}i∈[1..k′]. We
define the order � over partitions as follows: A � A′ iff ∀C ∈ A∃C′ ∈ A′ : C ⊆ C′.
It is well known, see [16], that the set of partitions of [1..k] together with � form a
complete lattice where {{1}, . . . , {k}} is the �-minimal partition, {{1, . . . , k}} is the
�-maximal partition and the greatest lower bound of two partitions A1 and A2, noted
A1 � A2 is the partition given by {C | ∃C1 ∈ A1 ∃C2 ∈ A2 : C = C1 ∩ C2 ∧ C �= ∅}.
The least upper bound of two partitions A1 and A2, noted A1�A2 is the finest partition
such that given C ∈ A1 ∪ A2 and {a1, a2} ⊆ C we have ∃C′ ∈ A1 � A2 : {a1, a2} ⊆
C′.

Partitions will be used to abstract sets of markings by lowering their dimensionality.
Given a marking m (viz. a k-uple) and a partition A of [1..k] into k′ classes we abstract
m into a k′-uple m′ by taking the sum of all the coordinates of each class. A sim-
ple way to apply the abstraction on a marking m is done by computing the product of a

130 P. Ganty, J.-F. Raskin, and L.Van Begin

matrix A with the vector of m (noted A· m). So we introduce a matrix based definition
for partitions.

Definition 6. Let A be a partition of [1..k] given by {Ci}i∈[1..k′]. We associate to this
partition a matrix A := (aij)k′×k such that aij = 1 if j ∈ Ci, aij = 0 otherwise.
So, A ∈ {0, 1}k′×k. We write Ak′×k to denote the set of matrices associated to the
partitions of [1..k] into k′ classes.

We sometimes call such a A an abstraction.

Abstract Semantics. We are now equipped to define an abstraction technique for sets
of markings. Then we focus on the abstraction of the predicate transformers involved
in the fixpoints of (1) and (2).

Definition 7. Let A ∈ Ak′×k, we define the abstraction function αA : ℘(INk) �→
℘(INk′

) and the concretization function γA : ℘(INk′
) �→ ℘(INk) respectively as follows

αA
def= λX. {A· x | x ∈ X} γA

def= λX. {x | A· x ∈ X} .

In the following, if A is clear from the context, we will write α (resp. γ) instead of
αA (resp. γA). Given the posets 〈L, �〉 and 〈M, �〉 and the maps α ∈ L �→ M , γ ∈
M �→ L, we write 〈L, �〉 −−→−→←−−−

α

γ
〈M, �〉 if they form a Galois insertion [11], that is

∀x ∈ L, ∀y ∈ M : α(x) � y ⇔ x � γ(y) and α ◦ γ = λx. x.

Proposition 1. Let A ∈ Ak′×k, we have (℘(INk), ⊆) −−→−→←−−−
α

γ
(℘(INk′

), ⊆).

Proof. From Def. 7 it is clear that α and γ are monotone functions.
Let X ⊆ INk and Y ⊆ INk′

,

α(X) ⊆ Y

⇔ {A· x | x ∈ X} ⊆ Y def. 7

⇔ ∀x : x ∈ X → A· x ∈ Y

⇔ X ⊆ {x | A.x ∈ Y }
⇔ X ⊆ γ(Y) def. 7

We now prove that α ◦ γ(Y) = Y . First, note that for all y ∈ Y there exists x ∈ γ(y). In
particular, given y ∈ Y we define x ∈ INk such that for any i ∈ [1..k′] all components
of class Ci equals to 0 but one component which equals to y(i). It is routine to check
that A · x = y, i.e. x ∈ γ(y).

α ◦ γ(Y) = α({x | A· x ∈ Y })
= {A· x | A· x ∈ Y } def. 7

= Y by above ��

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 131

Given a Galois insertion, the theory of abstract interpretation [11] provides us with a
theoretical framework to systematically derive approximate semantics. The concrete
forward semantics of a Petri net N is given by post∗N (m0). Since we have a Galois
insertion, post∗N (m0) has a unique best approximation in the abstract domain. This
value is α(post∗N (m0)).

Unfortunately, there is no general method to compute this approximation without
computing post∗N (m0) first. So instead of trying to compute this abstract value, we
compute an overapproximation. Let F be an overapproximation of α(post∗N (m0)) and
let B be an overapproximationα(p̃re∗

N (S)). The following lemma shows the usefulness
of such approximations.

Lemma 2. Given a Petri net N and a �-dc-set S we have

γ(F) ⊆ S → post∗N (m0) ⊆ S

{m0} � γ(B) → post∗N (m0) � S

Abstract interpretation [11] tells us that to compute an overapproximation of fixpoints
of a concrete function, we must first approximate this function by an abstract function
and compute the fixpoint of this abstract function in the abstract domain. Among the
abstractions of a function f is the most precise one. In [11] the authors show that, in the
context of a Galois insertion, themost precise approximation of f is unique and given by
α ◦ f ◦ γ. So to approximate α(post∗N (m0)) and α(p̃re∗

N (S)) we obtain the following
fixpoint expression in the abstract domain:

lfpλX. α({m0} ∪ post(γ(X))) and gfpλX. α(S ∩ p̃re(γ(X))) , (3)

respectively. This definition naturally suggests to concretize the argument, then apply
f and finally to abstract its result. In practice applying this methodology leads to in-
efficient algorithms. Indeed the explicit computation of γ is in general costly. In our
settings it happens that given an effective representation of M the effective representa-
tion of the set γ(M) could be exponentially larger. In fact, let A be a partition of [1..k]
given by {Ci}i∈[1..k′] and let m̂ ∈ INk′

, we have |γ(m̂)| =
∏

i∈[1..k′]

(m̂(i)+|Ci|−1
|Ci|−1

)
.

Section 4 is devoted to the definition of the most precise approximation without explic-
itly evaluating γ.

Refinement. As mentioned in Sect. 2, our algorithm is based on the abstraction re-
finement paradigm. In that context, if the current abstraction Ai is inconclusive we
refine it into an abstraction Ai+1 which overapproximates sets of markings and predi-
cate transformers more precisely than Ai. Here follows a result relating the precision of
abstractions with their underlying partitions.

Lemma 3. Let A, A′ be two partitions of [1..k] such that A � A′ and M ⊆ INk,

γA ◦ αA(M) ⊆ γA′ ◦ αA′(M) .

So by refining partitions, we refine abstractions. We will see in Sect. 5 how to use this
result systematically in our algorithm and how to take into account previous computa-
tions when a refinement is done. The following result tells us that if two partitions are

132 P. Ganty, J.-F. Raskin, and L.Van Begin

able to represent exactly a set then their lub is also able to represent that set. So, for any
set M there is a coarsest partition which is able to represent it.

Lemma 4. Let A, A1, A2 be three partitions of [1..k] such that A = A1 � A2 and
M ⊆ INk, we have

if

{
γA1

◦ αA1(M) ⊆ M
γA2

◦ αA2(M) ⊆ M

}

then γA ◦ αA(M) ⊆ M . (4)

Proof. First given an abstraction A, we define μA = γA ◦ αA. Let m ∈ M and
m′ ∈ μA({m}). We will show that there exists a finite sequence μAi1

, μAi2
, . . . , μAin

such that m′ ∈ μAi1
◦ μAi2

◦ . . . ◦ μAin
({m}) and ∀j ∈ [1..n] : ij ∈ [1..2]. Then we

will conclude that m′ ∈ M by left hand side of (4).
It is well known that given a set S, the set of partitions of S coincides with the set of

equivalence classes in S. So we denote by ≡A the equivalence relation defined by the
partition A.

We thus get m′ ∈ μA({m}) iff m′ is obtained from m by moving tokens inside the
equivalence classes of ≡A. More precisely, let v ∈ IN, and a, b two distinct elements of
[1..k] such that 〈a, b〉 ∈≡A and two markings m1, m2 ∈ INk such that

m2(q) =

⎧
⎪⎨

⎪⎩

m1(q) + v if q = a

m1(q) − v if q = b

m1(q) otherwise.

Intuitively the marking m2 is obtained from m1 by moving v tokens from b into a. So,
since on one hand b and a belong to the same equivalence class and, on the other hand
m2 and m1 contain an equal number of tokens we find that m2 ∈ μA({m1}).

Now we use the result of [16, Thm. 4.6] over the equivalence classes of a set. The
theorem states that 〈a, b〉 ∈≡A iff there is a sequence of elements c1, . . . , cn′ of [1..k]
such that

〈ci, ci+1〉 ∈≡A1 or 〈ci, ci+1〉 ∈≡A2 (5)

for i ∈ [1..n′ − 1] and a = c1, b = cn′ . From c1, . . . , cn′ we define a sequence of n′

moves whose global effect is to move v tokens from b into a. So given m1, the marking
obtained by applying this sequence of n′ moves is m2. Moreover, by eq. (5) we have
that each move of the sequence is defined inside an equivalence class of ≡A1 or ≡A2 .
Hence each move of the sequence can be done using operator μA1 or μA2 .

Repeated application of the above reasoning shows that m′ is obtained by moving
tokens of m where moves are given by operators μA1 and μA2 . Formally this finite
sequence of moves μAi1

, μAi2
, . . . , μAin

is such that

∀j ∈ [1..n] : ij ∈ [1..2] and m′ ∈ μAi1
◦ μAi2

◦ . . . ◦ μAin
({m}) .

Finally, left hand side of (4) and monotonicity of μA1 , μA2 shows that m′ ∈ M . ��

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 133

4 Efficient Abstract Semantics

In this section, we show how to compute a precise overapproximation of the abstract
semantics efficiently without evaluating the concretization function γ. For that, we show
that to any Petri net N of dimensionality k and any abstraction A ∈ Ak′×k, we can
associate a Petri net N̂ of dimensionality k′ whose concrete forward and backward
semantics gives precise overapproximations of the abstraction by A of the semantics of
N given by (3).

Abstract Net. In order to efficiently evaluate the best approximation of postN [t] and
p̃reN [t] for each t ∈ T , without explicitly evaluating γ, we associate for each N and A
a Petri net N̂ .

Definition 8. Let N be a Petri net given by (P, T, F, m0) and let A ∈ Ak′×k. We define
the tuple (P̂ , T, F̂ , m̂0) where

– P̂ is a set of k′ places (one for each class of the partition A),

– F̂ = (Î, Ô) is such that Î def= A· I and Ô def= A· O,
– m̂0 is given by A· m0.

The tuple is a Petri net since m̂0 ∈ IN|P̂ |, and Î, Ô ∈ IN(|P̂ |,|T |). We denote by N̂ this
Petri net.

To establish properties of the semantics of this abstract net (given in Prop. 2 and Prop. 3
below), we need the technical results:

Lemma 5. Let A ∈ Ak′×k and X ⊆ INk,

γ ◦
⏐
�(X) = ↓ ◦ γ(X) and α ◦

⏐
�(X) = ↓ ◦ α(X) .

In the sequel we use the property that the abstraction function α is additive (i.e. α(A ∪
B) = α(A) ∪ α(B)) and that γ is co-additive (i.e. γ(A ∩ B) = γ(A) ∩ γ(B)).

Forward Overapproximation. The next proposition states that the most precise ap-
proximation of the predicate transformer postN is given by the predicate transformer
post N̂ of the abstract net.

Proposition 2. Given a Petri net N = (P, T, F, m0), A ∈ Ak′×k and N̂ the Petri net
given by def. 8, we have

λX. α ◦ postN ◦ γ(X) = λX. post N̂ (X) .

Proof. Definition 4 states that postN = λX.
⋃

t∈T postN [t](X). Thus, for t ∈ T , we
show that α ◦ postN [t] ◦ γ(m̂) = post N̂ [t](m̂). Then the additivity of α shows the
desired result.

134 P. Ganty, J.-F. Raskin, and L.Van Begin

For each t ∈ T , for each m̂ ∈ INk′
,

α ◦ postN [t] ◦ γ(m̂)
= α ◦ postN [t]({m | m ∈ γ(m̂)})
= α({m − I(t) + O(t) | m ∈ γ(m̂) ∧ I(t) � m}) def. 2

= {A· (m − I(t) + O(t)) | m ∈ γ(m̂) ∧ I(t) � m} def. 7

= {A· m − A· I(t) + A· O(t) | m ∈ γ(m̂) ∧ I(t) � m}
= {α(m) − A· I(t) + A· O(t) | m ∈ γ(m̂) ∧ I(t) � m} def of α

= {m̂ − A· I(t) + A· O(t) | m ∈ γ(m̂) ∧ I(t) � m} −−→−→←−−−
α

γ

= {m̂ − Î(t) + Ô(t) | m ∈ γ(m̂) ∧ I(t) � m} def. 8

= {m̂ − Î(t) + Ô(t) | {I(t)} ⊆ ↓ ◦ γ(m̂)} def of ↓
= {m̂ − Î(t) + Ô(t) | {I(t)} ⊆ γ ◦

⏐
�(m̂)} Lem. 5

= {m̂ − Î(t) + Ô(t) | α({I(t)}) ⊆
⏐
�(m̂)} −−→−→←−−−

α

γ

= {m̂ − Î(t) + Ô(t) | Î(t) � m̂} def. 8

= post N̂ [t](m̂) def. 2 ��

The consequences of Prop 2 are twofold. First, it gives a way to compute α ◦ postN ◦ γ

without computing explicitly γ and second since post N̂ = α ◦ postN ◦ γ and N̂ is a
Petri net we can use any state of the art tool to check whether post∗

N̂
(m̂0) ⊆ α(S) and

conclude, provided γ ◦ α(S) = S, that γ(post∗
N̂

(m̂0)) ⊆ S, hence that post∗N (m0) ⊆
S by Lem. 2.

Backward Overapproximation. The backward semantics of each transition of the
abstract net is the best approximation of the backward semantics of each transitions
of the concrete net. However, the best abstraction of the predicate transformer p̃reN

does not coincide with p̃reN̂ as we will see later. To obtain those results, we need some
intermediary lemmas (i.e. Lem. 6, 7 and 8).

Lemma 6. Given a Petri net N = (P, T, F, m0) and A ∈ Ak′×k we have

λX. α ◦ preN ◦ γ(X) = λX. preN̂ (X) .

Proof. The proof is similar to the proof of Prop. 2 with O (resp. Ô) replaced by I (resp.
Î) and vice versa. ��

Lemma 7. Given a Petri net N = (P, T, F, m0) and a partition A = {Cj}j∈[1..k′] of

[1..k], if ∃i ∈ [1..k] : I(i, t) > 0 and {i} �∈ A then α({m ∈ INk | I(t) � m}) = INk′
.

Proof. Besides the hypothesis assume i ∈ Cj and consider l ∈ [1..k] such that l ∈ Cj

and l �= i. The set {m ∈ INk | I(t) � m} is a �-dc-set given by the following formula:
∨

p∈[1..k]
I(p,t)>0

xp < I(p, t).

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 135

We conclude from i ∈ [1..k] and I(i, t) > 0 that �xi < I(i, t)�={〈v1,. . ., vi, . . . , vk〉 |
vi < I(i, t)}, hence that α(�xi < I(i, t)�) = INk′

by {i, l} ⊆ Cj ∈ A, and finally
that α(�xi < I(i, t)�) ⊆ α(�

∨
p∈[1..k]
I(p,t)>0

xp < I(p, t)�) by additivity of α. It follows that

α({m ∈ INk | I(t) � m}) = α(�
∨

p∈[1..k]
I(p,t)>0

xp < I(p, t)�) = INk′
. ��

Lemma 8. Given a Petri net N = (P, T, F, m0), a partition A = {Cj}j∈[1..k′] of [1..k]
and N̂ the Petri net given by def. 8, if for any i ∈ [1..k] : I(i, t) > 0 implies {i} ∈ A,
then α({m ∈ INk | I(t) � m}) = {m ∈ INk′

| Î(t) � m)}.

Proof

α({m ∈ INk | I(t) � m})

= {A · m | m ∈ INk ∧ I(t) � m}) def. of α

= {A · m | m ∈ INk ∧ A · I(t) � A · m} hyp.

= {A · m | m ∈ INk ∧ Î(t) � A · m} def. of Î
= {m̂ ∈ INk′

| ∃m ∈ INk : m̂ = A · m ∧ Î(t) � m̂}
= {m̂ ∈ INk′

| Î(t) � m̂} tautology ��

We are now ready to state and prove that p̃reN̂ [t] is the best approximation of p̃reN [t].

Proposition 3. Given a Petri net N = (P, T, F, m0), a partition A = {Cj}j∈[1..k′]

of [1..k] and N̂ the Petri net given by def. 8, we have

λX. α ◦ p̃reN [t] ◦ γ(X) =

{
INk′

if ∃i ∈ [1..k′] : |Ci| > 1 ∧ Î(i, t)>0
λX. p̃reN̂ [t](X) otherwise.

Proof

α ◦ p̃reN [t] ◦ γ(S)

= α ◦ p̃reN [t]({m ∈ INk | m ∈ γ(S)})
= α({m | (I(t) � m) ∨ (I(t) � m ∧ m − I(t) + O(t) ∈ γ(S))}) def. of p̃reN [t]

= α({m | I(t) � m}) ∪ α({m | I(t) � m ∧ m − I(t) + O(t) ∈ γ(S))}) additivity of α

= α({m | I(t) � m}) ∪ α ◦ preN [t] ◦ γ(S) def of preN [t]

= α({m | I(t) � m}) ∪ preN̂ [t](S) by Lem. 6

We now consider two cases:

– ∃i ∈ [1..k] : I(i, t) > 0 and {i} �∈ A. From Lemma 7, we conclude that α ◦
p̃reN [t] ◦ γ(S) = INk′

;
– ∀i ∈ [1..k] : I(i, t) > 0 implies {i} ∈ A. In this case we have

α ◦ p̃reN [t] ◦ γ(S) = {m ∈ INk′
| Î(t) � m} ∪ preN̂ [t](S) by Lem. 8

= p̃reN̂ [t](S) def of p̃reN̂ [t]
��

136 P. Ganty, J.-F. Raskin, and L.Van Begin

Now, let us see how to approximate p̃reN . We can do that by distributing α over ∩ as
shown below at the cost of an overapproximation:

gfp(λX. α(S ∩ p̃reN ◦ γ(X))) (3)

= gfp(λX. α(S ∩
⋂

t∈T

p̃reN [t] ◦ γ(X))) def of p̃reN

⊆ gfp(λX. α(S) ∩
⋂

t∈T

α ◦ p̃reN [t] ◦ γ(X)) α(A ∩ B) ⊆ α(A) ∩ α(B)

Thus, this weaker result for the backward semantics stems from the definition of
p̃reN given by

⋂
t∈T p̃reN [t] and the fact that α is not co-additive (i.e. α(A ∩ B) �=

α(A) ∩ α(B)).

5 Abstraction Refinement

In the abstraction refinement paradigm, if the current abstraction Ai is inconclusive it
is refined. A refinement step will then produce an abstraction Ai+1 which overapproxi-
mates sets of markings and predicate transformers more precisely than Ai.

We showed in Lem. 3 that if partition A refines A′ (i.e. A ≺ A′) then A represents
sets of markings (and hence function over sets of markings) more precisely than A′.
Note also that the partition A where each class is a singleton (i.e. the �-minimal parti-
tion) we have γA ◦ αA(S) = S for any set of markings S. Thus the loss of precision
stems from the classes of the partition which are not singleton.

With these intuitions in mind we will refine an abstraction Ai into Ai+1 by splitting
classes of Ai which are not singleton. A first idea to refine abstraction Ai is to split
a randomly chosen non singleton class of Ai. This approach is complete since it will
eventually end up with the �-minimal partition which yields to a conclusive analysis
with certainty. However, we adopt a different strategy which consists in computing for
Ai+1 the coarsest partition refining Ai and which is able to represent precisely a given
set of markings.

Now we present the algorithm refinement that given a set of markings M com-
putes the coarsest partition A which is able to represent M precisely. The algorithm
starts from the �-minimal partition then the algorithm chooses non-deterministically
two candidate classes and merge them in a unique class. If this new partition still rep-
resents M precisely, we iterate the procedure. Otherwise the algorithm tries choosing
different candidates. The algorithm is presented in Alg. 1.

Let A = {Ci}i∈[1..k′] be a partition of [1..k], we define ACi = {Ci} ∪ {{s} | s ∈
[1..k] ∧ s /∈ Ci}. We first prove the following lemma.

Lemma 9. Let A = {Ci}i∈[1..k′] be a partition of [1..k], M ⊆ INk, we have:

γA ◦ αA(M) ⊆ M ⇔
∧

Ci∈A

γACi
◦ αACi

(M) ⊆ M .

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 137

Algorithm 1. refinement

Input: M ⊆ INk

Output: a partition A of [1..k] such that γA ◦ αA(M) ⊆ M
Let A be {{1}, {2}, . . . , {k}} ;
while ∃Ci, Cj ∈ A : Ci �= Cj and γACi∪Cj

◦ αACi∪Cj
(M) ⊆ M do

Let Ci, Cj ∈ A such that Ci �= Cj and γACi∪Cj
◦ αACi∪Cj

(M) ⊆ M ;1

A ← (A \ {Ci, Cj}) ∪ {Ci ∪ Cj} ;2

The following two lemmas and the corollary state the correctness and the optimality of
Alg. 1.

Lemma 10. Given M ⊆ INk, the partition A returned by refinement(M) is such that
γA ◦ αA(M) = M .

Proof. Initially A = {{1}, . . . , {k}} so γA ◦ αA(M) = M and so γA ◦ αA(M) ⊆ M
which is an invariant maintained by the iteration following Lem. 9. ��

Lemma 11. Given M ⊆ INk and A be the partition returned by refinement(M). There
is no partition A′ with A � A′ and A �= A′ such that γA′ ◦ αA′(M) = M .

Proof. Suppose that such a partition A′ exists. Since A � A′, ∃Ci, Cj ∈ A∃C′ ∈
A′ : (Ci �= Cj) ∧ Ci ∪ Cj ⊆ C′. We conclude from Lem. 9 and γA′ ◦ αA′(M) ⊆ M .

By monotonicity we have that γACi∪Cj
◦ αACi∪Cj

(M) ⊆ γAC′ ◦ αAA′ (M) ⊆ M .
Since M ⊆ γACi∪Cj

◦ αACi∪Cj
(M) by Galois insertion, we conclude that γACi∪Cj

◦
αACi∪Cj

(M) = M .
Hence, the condition of the while loop of the refinement algorithm is verified by A,

hence the algorithm should execute at least once the loop before termination and return
a partition A′′ such that A � A′′ and A �= A′′. ��

Putting together Lem. 4 and 11 we get:

Corollary 1. Given M ⊆ INk, the partition A returned by refinement(M) is the coars-
est partition such that γA ◦ αA(M) = M .

6 The Algorithm

The algorithm we propose is given in Alg. 2. Given a Petri net N and a �-dc-set S, the
Algorithm builds abstract nets N̂ with smaller dimensionality than N (line 4), analyses
them (lines 5-13), and refines them (line 15) until it concludes. To analyse an abstrac-
tion N̂ , the algorithm first uses a model-checker that answers the coverability problem
for N̂ and the �-dc-set αi(S) using any algorithm proposed in [2, 15, 14]. Besides
an answer those algorithms return an overapproximation of the fixpoint post∗

N̂
(m̂0)

that satisfies A1–4. If the model-checker returns a positive answer then, following the
abstract interpretation theory, Algorithm 2 concludes that post∗N (m0) ⊆ S (line 6).

138 P. Ganty, J.-F. Raskin, and L.Van Begin

Otherwise, Algorithm 2 tries to decide if {m0} � p̃re∗
N (S) checking the inclusion

given by (2) (line 9-13). The fixpoint of (2) is computable ([4]) but practically difficult
to build for the net N and S. Hence, our algorithm only builds an overapproximation by
evaluating the fixpoint on the abstract net N̂ instead of N , i.e. we evaluate the fixpoint
gfpλX. αi(S)∩

⋂
t∈T αi ◦ p̃reN [t] ◦ γi(X) whose concretization is an overapproxima-

tion of gfpλX. S ∩ p̃reN (X). Since the abstractions N̂ have a smaller dimensionality
than N , the greatest fixpoint can be evaluated more efficiently on N̂ . Moreover, at the
ith iteration of the algorithm (i) we restrict the fixpoint to the overapproximation Ri

of post∗
N̂

(αi(m0)) computed at line 5, and (ii) we consider αi(Zi) instead of αi(S).
Point (i) allows the algorithm to use the information given by the forward analysis
of the model-checker to obtain a smaller fixpoint, and point (ii) is motivated by the
fact that at each step i we have gfpλX. αi(S) ∩ Ri ∩

⋂
t∈T αi ◦ p̃reN [t] ◦ γi(X) ⊆

αi(Zi) ⊆ αi(S). That allows us consider αi(Zi) instead of αi(S) without changing the
fixpoint, leading to a more efficient computation of it (see [4] for more details). Those
optimisations are safe in the sense that the fixpoint we evaluate at line 9 does not contain
αi(m0) implies that post∗N (m0) �⊆ S, hence its usefulness to detect negative instances
(line 10).

If the algorithm cannot conclude, it refines the abstraction. The main property of
the refinement is that the sequences of Z ′

is computed at line 9 is strictly decreas-
ing and converge in a finite number of steps to p̃re∗

N (S) ∩ R where R is an in-
ductive overapproximation of post∗N (m0). Suppose that at step i, we have Zi+1 =
p̃re∗

N (S)∩R. Hence, γi+1 ◦ αi+1(p̃re
∗
N (S)∩R) = p̃re∗

N (S)∩R. If post∗N (m0) ⊆ S
then post∗N (m0) ⊆ p̃re∗

N (S) ∩ R and the abstract interpretation theory guarantees
that post∗

N̂
(αi+1(m0)) ⊆ αi+1(p̃re

∗
N (S) ∩ R) ⊆ αi+1(S), hence the model-checker

will return the answer OK at iteration i + 1. Moreover, if post∗N (m0) �⊆ S then
{m0} �⊆ p̃re∗

N (S), hence {m0} �⊆ p̃re∗
N (S) ∩ R, and the algorithm will return KO

at step i + 1 because we have Zi+1 = p̃re∗
N (S) ∩ R, hence {m̂0} �⊆ αi+1(Zi+1) by

monotonicity of αi+1 and Zi+1 does not include {m̂0}. Again, we do not evaluate the
greatest fixpoint p̃re∗

N (S) because the dimensionality of N is too high and the evalua-
tion is in general too costly in practice. Hence, we prefer to build overapproximations
that can be computed more efficiently.

We now formally prove that our algorithm is sound, complete and terminates.

Lemma 12. In Algorithm 2, for any value of i we have post∗N (m0) ⊆ γi(Ri).

Proof. We conclude from condition A1 that post∗
N̂

(m̂0) ⊆ Ri, hence that
αi(post∗N (m0)) ⊆ Ri by abstract interpretation and finally that post∗N(m0) ⊆ γi(Ri)
by −−−→−→←−−−−

αi

γi

. ��

Proposition 4 (Soundness). If Algorithm 2 says “OK” then we have post∗(m0) ⊆ S.

Proof. If Algorithm says “OK” then

Ri ⊆ αi(S)
⇒ γi(Ri) ⊆ γi ◦ αi(S) γi is monotonic

⇒ γi(Ri) ⊆ S Line 2,15 and Lem. 10

⇒ post∗N (m0) ⊆ S Lem. 12 ��

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 139

Algorithm 2. Algorithm for the coverability problem, assume {m0} ⊆ S

Data: A Petri net N = (P, T, F, m0), a �-dc-set S
Z0 = S1

A0 = refinement(Z0)2

for i = 0, 1, 2, 3, . . . do3

Abstract: Given Ai, compute N̂ given by def. 8.4

Verify: (answer , Ri) = Checker(m̂0, post N̂ , αi(S))5

if answer == OK then6

return OK7

else8

Let Si = gfpλX. αi(Zi) ∩ Ri ∩
⋂

t∈T αi ◦ p̃reN [t] ◦ γi(X)9

if m̂0 �⊆ Si then10

return KO11

end12

end13

Let Zi+1 = Zi ∩ γi(Ri) ∩ p̃reN (γi(Si))14

Refine: Let Ai+1 = Ai � refinement(Zi+1)15

end16

We need intermediary results (Prop. 5 and Lem. 13) to establish the completeness of
Algorithm 2. The following result is about greatest fixpoints.

Proposition 5. Let S, R, R̂ ⊆ INk such that R̂ ⊆ R, post(R) ⊆ R and post(R̂) ⊆ R̂.

gfpλX. (S ∩ R̂ ∩ p̃re(X)) = R̂ ∩ gfpλX. (S ∩ R ∩ p̃re(X)) .

Lemma 13. In Alg. 2 if post∗N (m0) ⊆ S then for any i we have post∗N (m0) ⊆ Zi.

Proof. The proof is by induction on i.
base case. Trivial since line 1 defines Z0 to be S.
inductive case. Line 9 shows that γi(Si) overapproximates gfpλX. Zi ∩ γi(Ri) ∩
p̃reN (X), hence that Zi+1 ⊇ gfpλX. Zi ∩ γi(Ri) ∩ p̃reN(X) by line 14.

post∗
N (m0) ⊆ Zi hyp

⇒ post∗
N(m0) ⊆ gfpλX. Zi ∩ p̃reN (X) def of post∗

N (m0), (Gc) p. 127

⇒ post∗
N(m0) ⊆ γi(Ri) ∩ gfpλX. Zi ∩ p̃reN(X) Lem. 12

⇔ post∗
N(m0) ⊆ gfpλX. Zi ∩ γi(Ri) ∩ p̃reN(X) Prop. 5, postN (γi(Ri)) ⊆ γi(Ri)

⇒ post∗
N(m0) ⊆ Zi+1 by above

��

Proposition 6 (Completeness). If Alg. 2 says “KO” then we have post∗N (m0) ⊆ S.

140 P. Ganty, J.-F. Raskin, and L.Van Begin

Proof. If Algorithm says “KO” then

m̂0 � Si

⇔ α(m0) � Si def of m̂0

⇔ m0 � γi(Si) −−−→−→←−−−−
αi

γi

⇔ m0 � γi(gfpλX. αi(Zi) ∩ Ri ∩
⋂

t∈T

αi ◦ p̃reN [t] ◦ γi(X)) def of Si

⇒ m0 � γi(gfpλX. αi(Zi) ∩ αi ◦ γi(Ri) ∩
⋂

t∈T

αi ◦ p̃reN [t] ◦ γi(X)) −−−→−→←−−−−
αi

γi

⇒ m0 � γi(gfpλX. αi(Zi ∩ γi(Ri) ∩ p̃reN (γi(X)))) α(∩·) ⊆ ∩α(·)

⇒ m0 � gfpλX. Zi ∩ γi(Ri) ∩ p̃reN (X) −−−→−→←−−−−
αi

γi

⇔ lfpλX. m0 ∪ post(X) � Zi ∩ γi(Ri) (1) ≡ (2)

⇒ lfpλX. m0 ∪ post(X) � Zi Lem. 12

⇒ lfpλX. m0 ∪ post(X) � S Lem. 13
��

Proposition 7 (Termination). Algorithm 2 terminates.

Proof. It is clear by line 14 that we have

Z0 ⊇ Z1 ⊇ · · · ⊇ Zi ⊇ Zi+1 ⊇ · · ·
Consider the sequence of Zi’s and assume that from index i we have Zi+1 = Zi.

Zi+1 = Zi ∩ γi(Ri) ∩ p̃reN (γi(Si)) def of Zi+1

⇒ Zi+1 ⊆ S ∩ γi(Ri) ∩ p̃reN (γi(Si)) Zi ⊆ Z0 = S

⇒ Zi+1 ⊆ S ∩ γi(Ri) ∩ p̃reN (Zi) p̃reN is monotonic,γi(Si) ⊆ Zi

⇔ Zi+1 ⊆ S ∩ γi(Ri) ∩ p̃reN (Zi+1) Zi+1 = Zi

⇔ Zj ⊆ S ∩ γj−1(Rj−1) ∩ p̃reN (Zj) let j = i + 1
⇒ Zj ⊆ S ∧ Zj ⊆ p̃reN (Zj) glb

⇔ Zj ⊆ S ∧ postN (Zj) ⊆ Zj (Gc)

⇒ αj(Zj) ⊆ αj(S) ∧ αj ◦ postN (Zj) ⊆ αj(Zj) αj is monotonic

⇒ αj(Zj) ⊆ αj(S) ∧ αj ◦ postN (γj ◦ αj(Zj)) ⊆ αj(Zj) line 15, Lem. 10

⇒ αj(Zj) ⊆ αj(S) ∧ postN̂ (αj(Zj)) ⊆ αj(Zj) Prop. 2

Then, either m̂0 ⊆ αj(Zj) and so [12, Thm. 4] shows that

lfpλX. m̂0 ∪ post N̂ (X) ⊆ αj(S)
⇒ γj(lfpλX. m̂0 ∪ post N̂ (X)) ⊆ γj ◦ αj(S)
⇒ γj(lfpλX. m̂0 ∪ post N̂ (X)) ⊆ S by line 2,15 and Lem. 3

and line 6 shows that the algorithm terminates. Or we have,

m̂0 � αj(Zj)
⇒ m̂0 � Sj Sj ⊆ αj(Zj) by line 9

and line 10 shows that the algorithm terminates.

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 141

Table 1. Var: number of places of the Petri net; Cvar: number of places of the abstraction that al-
low to conclude; Ref: number of refinements before conclusion; time: execution time in seconds
on Intel Xeon 3Ghz

Unbounded PN

Example Var Cvar Ref time

ME 5 4 3 0.02
multiME 12 5 3 2.69
FMS 22 4 3 8.30
CSM 14 9 4 11.78
mesh2x2 32 9 4 340
mesh3x2 52 9 4 3357

Bounded PN

Example Var Cvar Ref time

lamport 11 9 4 8.50
dekker 16 15 4 60.2
peterson 14 12 5 21.5

Now we assume that the sequence of Zi’s strictly decreases, i.e. Zi+1 ⊂ Zi. First
recall that the ordered set 〈⊆,DCS (INk)〉 is a wqo. We conclude from A2, Lem. 5, �-
dc-set are closed to p̃re and ∩ that for any value of i in Alg. 2 we have Zi ∈ DCS (INk).
However � defines a wqo and following [14, Lem. 2] there is no infinite strictly decreas-
ing sequence of 〈⊆,DCS(INk)〉, hence a contradiction. ��

7 Experimental Results

We implemented Alg. 2 in C using the symbolic data structure of [17] to represent and
manipulate sets of markings. We used, for the model-checker referenced at line 5, the
algorithm of [15].

We tested our method against a large set of examples. The properties we consider
are mutual exclusions and the results we obtained are shown in Table 1. We distinguish
two kind of examples. Parameterized systems describe systems where we have a pa-
rameterized number of resources: ME [5, Fig. 1], MultiME (Fig. 1 of Sect. 2), CSM
[18, Fig. 76, page 154], FMS [19], the mesh 2x2 of [18, Fig. 130, page 256] and its
extension to the 3x2 case. For all those infinite state Petri nets, the mutual exclusion
properties depend only on a small part of the nets.

The mesh 2x2 (resp. 3x2) examples corresponds to 4 (resp. 6) processors running in
parallel with a load balancing mechanism that allow tasks to move from one processor
to another. The mutual exclusion property says that one processor never processes two
tasks at the same time. That property is local to one processor and our algorithm builds
an abstraction where the behaviour of the processor we consider is exactly described
and the other places are totally abstracted into one place. In that case, we manipulate
subsets of IN9 instead of subsets of IN32 for mesh 2x2 or IN52 for mesh 3x2.

For the other examples, we have a similar phenomenon: only a small part of the Petri
nets is relevant to prove the mutual exclusion property. The rest of the net describes

142 P. Ganty, J.-F. Raskin, and L.Van Begin

other aspects of the parameterized system and is abstracted by our algorithm. Hence, all
the parameterized systems are analysed building an abstract Petri net with few places.

The bounded Petri Net examples are classical algorithms to ensure mutual exclusion
of critical sections for two processes. In those cases, our method concludes building
very precise abstractions, i.e. only few places are merged. The reasons are twofold: (i)
the algorithms are completely dedicated to mutual exclusion, and (ii) the nets have been
designed by hand in a “optimal” manner. However and quite surprisingly, we noticed
that our algorithm found for those examples places that can be merged. In our opinion,
this shows that our algorithm found reductions that are (too) difficult to find by hand.

Execution Times and Future Improvements. For all the examples we considered, the
execuion times of the checker [15] on the abstract Petri nets that allows Algorithm 2 to
conclude are smaller than the execution times of the checker on the concrete Petri nets,
showing the interest of reducing the dimentionality of Petri nets before verification. For
instance, the execution time of the checker on the concrete Petri nets of the mesh2x2 is
1190 seconds, and the mesh3x2 is greater than 5 hours (on Intel Xeon 3Ghz). Hence,
for those examples Algorithm 2 is much more efficient than directly check the concrete
Petri net. We also noticed that our prototype spends most of its time in the refinement
step. We currently use a naive implementation of Algorithm 1 that can be greatly im-
proved. As a consequence, some research effort are needed to define efficient techniques
leading to reasonable cost for refinement of Petri nets.

References

1. German, S.M., Sistla, A.P.: Reasoning about Systems with Many Processes. Journal of
ACM 39(3), 675–735 [1] (1992) [124]

2. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Comput. Syst. Sci. 3(2),
147–195 [1, 5, 15] (1969) [124, 128, 137]

3. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theoretical
Computer Science 256(1-2), 63–92 [1] (2001) [124]

4. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: Proc. of the 11th Annual IEEE Symp. on Logic in Computer Science
(LICS), pp. 313–321. IEEE Computer Society Press, Washington [1, 6, 15] (1996) [124,
128, 138]

5. Delzanno, G., Raskin, J.F., Van Begin, L.: Attacking Symbolic State Explosion. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310. Springer, Heidelberg
[1, 18] (2001) [124, 141]

6. Van Begin, L.: Efficient Verification of Counting Abstractions for Parametric systems. PhD
thesis, Université Libre de Bruxelles, Belgium [1] (2003) [124]

7. Abdulla, P.A., Iyer, S.P., Nylén, A.: Unfoldings of unbounded petri nets. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 495–507. Springer, Heidelberg [1] (2000)
[124]

8. Grahlmann, B.: The PEP Tool. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp.
440–443. Springer, Heidelberg [1] (1997) [124]

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 [3] (2003) [126]

From Many Places to Few: Automatic Abstraction Refinement for Petri Nets 143

10. Berthelot, G., Roucairol, G., Valk, R.: Reductions of nets and parallel prgrams. In: Advanced
Cource: Net Theory and Applications. LNCS, vol. 84, pp. 277–290. Springer, Heidelberg [3]
(1975) [126]

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: POPL 77: Proc. 4th ACM
SIGACT-SIGPLAN Symp. on Principles of Programming Languages, pp. 238–252. ACM
Press, New york [2, 7, 8] (1977) [125, 130, 131]

12. Cousot, P.: Partial completeness of abstract fixpoint checking, invited paper. In: Choueiry,
B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1–25. Springer, Heidelberg
[4, 5, 18] (2000) [127, 128, 140]

13. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. J. Math. 35, 413–422 [5] (1913) [128]

14. Ganty, P., Raskin, J.F., Van Begin, L.: A complete abstract interpretation framework for cov-
erability properties of WSTS. In: VMCAI 2006. LNCS, vol. 3855, pp. 49–64. Springer, Hei-
delberg [128, 138, 141] (2006) [128, 137, 141]

15. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, enlarge and check: new algorithms for the
coverability problem of WSTS. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 287–298. Springer, Heidelberg [5, 15, 18, 19] (2004) [128, 137, 141, 142]

16. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York [6, 9]
(1981) [129, 132]

17. Ganty, P., Meuter, C., Delzanno, G., Kalyon, G., Raskin, J.F., Van Begin, L.: Symbolic data
structure for sets of k-uples. Technical report [18] (2007) [141]

18. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Gen-
eralized Stochastic Petri Nets. Series in Parallel Computing [18] (1995) [141]

19. Ciardo, G., Miner, A.: Storage Alternatives for Large Structured State Space. In: Marie,
R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) Computer Performance Evaluation
Modelling Techniques and Tools. LNCS, vol. 1245, pp. 44–57. Springer, Heidelberg [18]
(1997) [141]

A Compositional Method for the Synthesis of

Asynchronous Communication Mechanisms

Kyller Gorgônio1, Jordi Cortadella2, and Fei Xia3

1 Embedded Systems and Pervasive Computing Laboratory
Federal University of Campina Grande, Brazil

2 Department of Software
Universitat Politècnica de Catalunya, Spain

3 School of Electrical, Electronic and Computer Engineering
University of Newcastle upon Tyne, UK

Abstract. Asynchronous data communication mechanisms (ACMs)
have been extensively studied as data connectors between independently
timed concurrent processes. In previous work, an automatic ACM syn-
thesis method based on the generation of the reachability graph and the
theory of regions was proposed. In this paper, we propose a new synthe-
sis method based on the composition of Petri net modules, avoiding the
exploration of the reachability graph. The behavior of ACMs is formally
defined and correctness properties are specified in CTL. Model checking
is used to verify the correctness of the Petri net models. The algorithms
to generate the Petri net models are presented. Finally, a method to
automatically generate C++ source code from the Petri net model is
described.

Keywords: Asynchronous communication mechanisms, Petri nets, con-
current systems, synthesis, model checking, protocols.

1 Introduction

One of the most important issues when designing communication schemes be-
tween asynchronous processes is to ensure that such schemes allow as much
asynchrony as possible after satisfying design requirements on data. When the
size of computation networks becomes large, and the traffic between the process-
ing elements increases, this task becomes more difficult.

An Asynchronous Communication Mechanism (ACM) is a scheme which man-
ages the transfer of data between two processes, a producer (writer) and a con-
sumer (reader), not necessarily synchronized for the purpose of data transfer.
The general scheme of an ACM is shown in Figure 1. It includes a shared mem-
ory to hold the transferred data and control variables. In this work it is assumed
that the data being transferred consists of a stream of items of the same type,
and the writer and reader processes are single-threaded loops. At each iteration
a single data item is transferred to or from the ACM.

Classical semaphores can be configured to preserve the coherence of write and
read operations. However, this approach is not satisfactory when data items are
large and a minimum locking between the writer and the reader is expected [4].

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 144–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Compositional Method for the Synthesis of ACM 145

Shared
memory

Control
variables

ACM

Writer Reader

datadata

Fig. 1. ACM with shared memory and control variables

By using single-bit unidirectional variables, the synchronization control can
be reduced to the reading and writing of these variables by extremely simple
atomic actions [6]. Variables are said to be unidirectional when they can only
be modified by one of the processes. This provides the safest solution for a
maximum asynchrony between the writer and the reader. In particular, if the
setting, resetting and referencing of control variables can be regarded as atomic
events, the correctness of ACMs becomes easy to prove.

ACMs are classified according to their overwriting and re-reading policies [8,6].
Overwriting occurs when the ACM is full of data that has not been read before. In
this case the producer can overwrite some of the existing data items in the buffer.
Re-reading occurs when all data in the ACM has been read by the consumer. In
this case the consumer is allowed to re-read an existing item. Table 1 shows such a
classification. BB stands for a bounded buffer that does not allow neither overwrit-
ing nor re-reading. RRBB stands for an ACM is that only allows re-reading. On the
other hand, the OWBB scheme allows only overwriting. Finally, the OWRRBB scheme
allows both re-reading and overwriting.

Table 1. Classification of ACMs

No re-reading Re-reading
No overwriting BB RRBB
Overwriting OWBB OWRRBB

The choice of using a particular class of ACM for a particular job is generally
based on data requirements and system timing restrictions [4,6]. For the re-reading
ACM class, it is more convenient to re-read the item from the previous cycle rather
than an item from several cycles before. For overwriting, the typical cases consist
of overwriting either the newest or the oldest item in the buffer [6,9,2]. Overwrit-
ing the newest item in the buffer [9] attempts to provide the reader with the best
continuity of data items for its next read. Continuity is one of the primary reasons
for having a buffer of significant size. Overwriting the oldest item is based on the
assumption that newer data is always more relevant than older.

1.1 ACM Example

Now consider an RRBB ACM with three data cells. The single-bit (boolean)
control variables ri and wi, with i ∈ {1, 2, 3}, are used to indicate which cell

146 K. Gorgônio, J. Cortadella, and F. Xia

each process must access. Initially the reader is pointing at cell 0, r0 = 1 and
r1 = r2 = 0, and the writer to cell 1, w1 = 1 and w0 = w2 = 0. The shared
memory is initialized with some data. This scheme is shown in Figure 2.

cell 1
(empty)(new data)

cell 0 cell 2
(empty)

reader

writer

{r0=1
r1=0
r2=0

{w0=0
w1=1
w2=0

Fig. 2. Execution of RRBB ACM with 3 cells

The writer always stores some data into the ACM and then attempts to
advance to the next cell releasing the new data. In this way, a possible trace for
the writer is 〈wr1wr2wr0wr1〉, where wri denotes “write data on cell i”. A similar
behavior applies to the reader. A possible trace for the reader is 〈rd0rd1rd1rd2〉.

In an RRBB ACM, no overwriting and allowing re-reading imply the following
behavior:

– The writer first accesses the shared memory and then advances to the next
cell, but only if the reader is not pointing at it.

– The reader first advances to the next cell if the writer is not there and then
performs the data transfer, otherwise it re-reads the current cell.

In general, and depending on how the read and write traces interleave, coher-
ence and freshness properties must be satisfied.

Coherence is related to mutual exclusion between the writer and the reader.
For example, a possible trace for this system is 〈wr1wr2rd0 · · · 〉. After the writer
executing twice, the next possible action for both processes is to access cell 0.
This introduces the problem of data coherence when the reader and the writer
are retrieving and storing data on the same memory locations.

Freshness is related to the fact that the last data record produced by the
writer must be available for the reader. On the ACMs studied in this work, the
reader always attempts to retrieve the oldest data stored in the shared memory
that has not been read before. This means that the freshness property imposes
a specific sequencing of data, i.e. the data is read in the same order that it is
written. Depending on the ACM class, some data may be read more than once
or may be missed. However, the sequence should be preserved. For the example
above, one possible trace is 〈wr1rd0wr2rd1rd1 · · · 〉. Note that at the moment
the reader executes the first rd1 action, the writer has already executed a wr2.
This means that there is some new data on cell 2. But the reader is engaged to
execute rd1 again, which violates freshness.

A Compositional Method for the Synthesis of ACM 147

With a correct interleaving both processes will avoid accessing the same data
cell at the same time, the writer will not be allowed to overwrite unread data,
and the reader will have the possibility of re-reading the most recent data only
when there is no unread data in the ACM. For the example above, a correct
trace is 〈wr1rd0rd1wr2rd1wr0rd2wr1〉. Observe that the sub-trace rd1wr2rd1
does not contradict the fact that the reader only re-reads any data if there is no
new one available. This is because after the first rd1 there is no new data, then
the reader prepares to re-read and from this point it will engage on a re-reading
regardless the actions of the writer.

Algorithm 1. RRBB ACM with 3 cells

Require: Boolean w0, w1, w2

Require: External Boolean r0, r1, r2

1: process writer()
2: w1 := 1; w0 := w2 := 0;
3: loop
4: if w0 = 1 ∧ r1 = 0 then
5: write cell 1;
6: w0 := 0; w1 := 1;
7: else if w1 = 1 ∧ r2 = 0 then
8: write cell 2;
9: w1 := 0; w2 := 1;

10: else if w2 = 1 ∧ r0 = 0 then
11: write cell 0;
12: w2 := 0; w0 := 1;
13: else
14: wait until some ri is modified;
15: end if
16: end loop
17: end process

Require: Boolean r0, r1, r2

Require: External Boolean w0, w1, w2

1: process reader()
2: r0 := 1; r1 := r2 := 0;
3: loop
4: if r0 = 1 ∧ w1 = 0 then
5: r0 := 0; r1 := 1;
6: read cell 1;
7: else if r0 = 1 ∧ w1 = 1 then
8: read cell 0;
9: else if r1 = 1 ∧ w2 = 0 then

10: r1 := 0; r2 := 1;
11: read cell 2;
12: else if r0 = 1 ∧ w1 = 1 then
13: read cell 1;
14: else if r2 = 1 ∧ w0 = 0 then
15: r2 := 0; r0 := 1;
16: read cell 0;
17: else if r2 = 1 ∧ w0 = 1 then
18: read cell 2;
19: end if
20: end loop
21: end process

A possible implementation of the example above is described in Algorithm 1.
The writer is shown on the left side and the reader on the right. Each process
consists of an infinite loop. This is just a simple abstraction of the real behavior
of a process, in which the ACM operations are combined with the data processing
actions. At each ACM operation:

– The writer first writes to the shared memory and then tries to advance to
the next cell by modifying its control variable w, if this is contradictory to
the current values of the reader’s control variable r, the writer waits. Note
that when the writer is waiting, the data item just written into the ACM is

148 K. Gorgônio, J. Cortadella, and F. Xia

not available for the reader to read because the writer has not yet completed
its move to the next cell.

– The reader first tries to advance to the next cell by modifying its control
variable r, if this is contradictory to the current values of the writer’s control
variable w, no modification to r occurs, in either case (with or without
successfully advancing) the reader then reads (or rereads) from cell r. Note
that cell r cannot be accessed by the writer, even if its content has already
been read by the reader.

In other words, at any time, each of the writer and reader processes “owns” a
cell, and for data coherence purposes any cell can only “belong to” one of these
processes at any time. Furthermore, since only binary control variables are used,
the size of this description grows with the size of the ACM. This means that
more variables are needed, and for overwriting ACM classes it is more difficult
to correctly deal with all of them.

In the rest of this paper, a Petri net based method for the automatic synthesis
of ACMs is presented. The method receives as input a functional specification
consisting of the ACM class that should be implemented by the ACM and the
number of cells it should have. As output, it produces the source code imple-
menting the operations with the ACM. The implementation can be either in
software (e.g. C++ or Java) or hardware (e.g. Verilog or VHDL).

In this paper, we will provide C++ implementations. For instance, the C++
code for the 3-cell RRBB ACM described above is shown in Figures 6 and 7.

In the next sections, the methodology presented in the paper will be described.
The behavior of the RRBB ACM class will be formally defined and the method
to generate its implementation will be detailed. Due to the limited space, the
OWBB and OWRRBB classes will not be discussed in detail. However, the prin-
ciple used to generate the RRBB implementations also applies to the overwriting
ACM classes.

2 Overview of the Approach

In previous work [1,8,10], a step-by-step method based on the theory of regions
for the synthesis of ACMs was presented. The method required the generation
of the complete state space of the ACM by exploring all possible interleavings
between the reader and the writer actions. The state space of the ACM was
generated from its functional specification. Next, a Petri net model was obtained
using the concept of ACM regions, a refined version of the conventional regions.

This work proposes the generation of the Petri net model using a modular
approach that does not require the explicit enumeration of the state space. The
Petri net model is build by abutting a set of Petri net modules. The correctness
of the model can then be formally verified using model checking. The relevant
properties of the ACM, coherence and freshness, can be specified using CTL
formulae. This paper also extends previous work by introducing an approach
to automatically generate the implementation of the ACM from the Petri net
model. Figure 3 shows the design flow for the automatic generation of ACMs.

A Compositional Method for the Synthesis of ACM 149

module test;
initial $display(¨Hello, World!¨);
endmodule

#include <iostream>
int main() {
 std::cout << ¨Hello, World!¨;
 return 0;
}

generation
Model

Code
generation

Verification

specification
Functional

Abstract model

Implementation model

C++ code

Verilog code

Fig. 3. The design flow

Compared to the previous work, the new approach has the advantage of not
dealing with the entire state space of the ACM when generating the Petri net
model. It is obtained in linear time. On the other hand, it requires to verify
the model generated to provide enough evidence of its correctness. Observe that
it is possible to obtain the ACM implementation without doing verification. In
practice, the new approach allows to obtain the Petri net model when the size
of the ACM grows.

2.1 Models for Verification and Implementation

The two basic paradigms on the approach presented in this paper are automation
and correctness. For that reason, from the functional specification of an ACM,
two formal models are generated:

– An abstract model, that describes the possible traces of the system and that is
suitable for model checking of the main properties of the ACM: coherence and
freshness. These properties can be modeled using temporal logic formulae.

– An implementation model, that is suitable for generating a hardware or soft-
ware implementation of the ACM. This model is generated by the composi-
tion of basic Petri net modules and contains more details about the system.
This model is required to narrow the distance between the behavior and the
implementation.

For a complete verification of the system, a bridge is required to check that the
implementation model is a refinement of the abstract model. For such purpose,
the Cadence SMV Model Checker [5] has been used.

The Cadence SMV extends the CMU SMV model checker by providing a
more expressive description language and by supporting a variety of techniques
for compositional verification. In particular, it supports refinement verification
by allowing the designer to specify many abstract definitions for the same signal.
It can then check if the signal in a more abstract level is correctly implemented
by another abstraction of lower level.

Thus, the correctness of the generated ACMs is verified as follows:

1. The abstract and implementation models of the ACM are generated.
2. The properties of the ACM are specified in CTL and model checked on the

abstract model.

150 K. Gorgônio, J. Cortadella, and F. Xia

3. The implementation model is verified to be a refinement of the abstract
model.

In the forthcoming section, the abstract and implementation models for the
class of RRBB ACMs are presented.

3 The Abstract Model for RRBB ACMs

The abstract model for an RRBB ACM is specified as a transition system. The
state of the ACM is defined by the data items available for reading. For each
state, σ defines the queue of data stored in the ACM. More specifically, σ is a
sequence: σ = a0a1 · · · aj−1aj , with j < n, where n is size of the ACM. aj is the
last written data, and a0 is the next data to be retrieved by the reader. The size
of the ACM is given by its number of cells, i.e. the maximum number of data
items the ACM can store at a certain time.

σ must also express if the processes are accessing the ACM or not. This is done
by adding flags to the a0 and aj items. aw

j indicates that the writer is producing
data aj, and this data is not yet available for reading. Similarly, ar

0 is used to
indicate that the reader is consuming data a0.

Observe that σ can be interpreted as a stream of data that is passed from
the writer (on the left) to the reader (on the right). There are four events that
change the state of the ACM:

– rdb(a): reading data item a begins.
– rde(a): reading data item a ends.
– wrb(a): writing data item a begins.
– wre(a): writing data item a ends.

The notation 〈σi〉 e−→ 〈σj〉 denotes the occurrence of event e from state 〈σi〉 to
state 〈σj〉, whereas 〈σ〉 e−→ ⊥ is used to denote that e is not enabled in 〈σ〉.

In RRBB ACMs, the reader is required not to wait when starting an access to
the ACM. In the case there is no new data in the ACM, the reader will re-read
some data that was read before.

The writer can add data in the ACM until it is full. In such case, the writer
is required to wait until the reader retrieves some data from the ACM. The
reader always tries to retrieve the oldest non-read data and, if all data in the
ACM has been read before, then it attempts to re-read the last retrieved data
item.

Definition 1 formally captures the behavior of RRBB ACMs. Rules 1-3 model
the behavior of the writer. Rules 4-7 model the behavior of the reader.

Definition 1 (RRBB transition rules). The behavior of an RRBB ACM is
defined by the following set of transitions (n is the number of cells of the ACM
and the cells are numbered from 0 to n − 1):

A Compositional Method for the Synthesis of ACM 151

1. 〈σ〉 wrb(a)−−−−→ 〈σaw〉 if |σ| < n

2. 〈σ〉 wrb(a)−−−−→ ⊥ if |σ| = n

3. 〈σaw〉 wre(a)−−−−→ 〈σa〉

4. 〈aσ〉 rdb(a)−−−−→ 〈arσ〉
5. 〈arσ〉 rde(a)−−−−→ 〈σ〉 if |σ| > 0 ∧ σ �= bw

6. 〈ar〉 rde(a)−−−−→ 〈a〉
7. 〈arbw〉 rde(a)−−−−→ 〈abw〉

Rule 1 models the start of a write action for a new data item a and signaling that
it is not available for reading (aw). Rule 3 models the completion of the write
action and making the new data available for reading. Finally, rule 2 represents
the blocking of the writer when the ACM is full (|σ| = n).

Rule 4 models the beginning of a read action retrieving data item a and
indicating that it is being read (ar). Rule 5 models the completion of the read
operation. In this rule, a is removed from the buffer when other data is available.
On the other hand, rules 6 and 7 model the completion of the read action when
no more data is available for reading. In this case, the data is not removed from
the buffer and is available for re-reading. This is necessary due to the fact that
the reader is required not to be blocked even if there is no new data in the ACM.

It is important to observe that in the state 〈arbw〉 the next element to be
retrieved by the reader will depend on the order that events wre(b) and rde(a)
occur. If the writer delivers b before the reader finishes retrieving a, then b will
be the next data to be read. Otherwise, the reader will prepare to re-read a.

Definition 1 was modeled using the Cadence SMV model checker and fresh-
ness and coherence properties were verified. Each process was modeled as an
SMV module. In the SMV language, a module is a set of definitions, such as
type declarations and assignments, that can be reused. Specifically, each process
consists of a case statement in which each condition corresponds to a rule in
Definition 1. The SMV model obtained from Definition 1 will be used in Sec-
tion 4 to verify a lower level specification of the ACM. Next, the specification of
the coherence and freshness properties is discussed.

3.1 Coherence

To verify the coherence property it is necessary to prove that there is no reachable
state in the system in which both processes are addressing the same segment of
the shared memory.

In the ACM model described by Definition 1, the reader always addresses the
data stored in the first position of the ACM, represented by σ. On the other
hand, the writer always addresses the tail of the ACM. To prove coherence in
this model it is only necessary to prove that every time the reader is accessing
the ACM, then:

– it is addressing the first data item, and
– if the writer is also accessing the ACM, then it is not writing in the first

location.

152 K. Gorgônio, J. Cortadella, and F. Xia

In other words, if at a certain time the shared memory contains a sequence of
data σ = a0a1 · · · aj−1aj , with j < n, where n is the size of the ACM. Then:

AG (ar ∈ σ → (ar = a0 ∧ (aw ∈ σ → aw = aj ∧ j > 0)))

The formula above specifies that for any reachable state of the system (AG),
if the reader is accessing the ACM, then:

1. It is reading a data from the beginning of the buffer (ar = a0);
2. If the writer is also accessing the ACM, then it is not pointing at the begin-

ning of the queue ((aw ∈ σ → aw = aj ∧ j > 0)).

3.2 Freshness

As discussed before, freshness is related to sequencing of data. Now, let us as-
sume that at a certain time the shared memory contains a sequence of data
σ = a0a1 · · · aj−1aj, with j < n, aj is the last written data, and a0 is the next
data to be retrieved by the reader. Then, at the next cycle the ACM will contain
a sequence of data σ′ such that one of the following is true:

1. σ′ = σ: in this case neither the reader has removed any data item from the
head of σ nor the writer has stored a new item in its tail;

2. σ′ = a0a1 · · · aj−1ajaj+1: in this case the reader has not removed any item
from the head of σ, but the writer has added a new item to the tail;

3. σ′ = a1 · · · aj−1aj : and, finally, in this case the reader has removed a data
item from the head of σ.

The above can be specified by the following CTL formula:

AG(|σ| = x → AX((|σ′| >= x ∧ σ′ = σ+) ∨ (|σ′| = x − 1 ∧ σ′ = σ−)))

where σ+ is used to denote a0a1 · · ·aj−1aj or a0a1 · · ·aj−1ajaj+1 and σ− is used
to denote a1 · · ·aj−1aj . Observe that 1 and 2 are captured by the same same
CTL sub-formula, which is given by the left side of the ∨ inside the AX operator.

The guidelines introduced above can be used to generate an SMV model for
any RRBB ACM with three or more data cells. After that, the model can be
verified against the CTL formulas for coherence and freshness. Observe that the
number of CTL formulas needed to specify freshness grows linearly with the
size of the ACM. This is because, for each possible size of σ, it is necessary to
generate another CTL formula.

4 The Implementation Model and Its Verification

The modular approach for the generation of ACMs is now introduced by means
of an example, including the generation of a Petri net implementation model
and its verification.

A Compositional Method for the Synthesis of ACM 153

4.1 Generation of the Implementation Model

A Petri net model for a 3-cell RRBB ACM will be generated and mapped into a
C++ implementation. As stated before, this new modular approach is based on
the definition of a set of elementary building blocks that can be easily assembled
to construct the entire system.

The repetitive behavior of the writer consists of writing data into the ith cell,
checking if the reader process is addressing the next cell and, in the negative
case advancing to it, otherwise waiting until the reader advances. In a similar
way, the reader is expected to retrieve data from the ith cell, check if the writer
is accessing the next cell and, in the negative case advancing to it, otherwise
preparing to re-read the contents of the ith cell.

Two modules to control the access of each process to the ith cell are defined.
One corresponds to the behavior of the writer and the other to the behavior of
the reader. The modules are shown in Figure 4.

λ

w != jw = j

r != j

w != iw = i

w

w

wr

i

pw
i

j

i

ij

(a) writer module

r

i

i

r

pr
r != i

w = j

w != j

r != j

μ

μ

r = j

r = i

rd

i

j

ii

ij

(b) reader module

Fig. 4. Basic modules for the writer and the reader

In Figure 4(a), a token in place wi enables transition wri, that represents the
action of the writer accessing the ith cell. The places with label 〈w = i〉, 〈w = j〉,
〈w �= i〉 and 〈w �= j〉 indicate if the writer is pointing at the ith or at the jth

cell. 〈r �= j〉 indicates when the reader is pointing at the jth cell. If transition λij

is enabled, then the reader is not pointing at cell j, the writer has just finished
accessing the ith cell and it can advance to the next one. The places 〈w = i〉,
〈w = j〉, 〈w �= i〉 and 〈w �= j〉 model the writer’s control variables, and they
are also used by the reader to control its own behavior. Note that j = (i + 1)
mod n.

The same reasoning used to describe the writer’s module also applies to the
reader’s. The difference is that the reader should decide to advance to the next
cell or to re-read the current cell. This is captured by the two transitions in
conflict, μii and μij . Here the decision is based on the current status of the
writer, i.e. if the writer is on the jth cell or not, captured by a token on places
〈w = j〉 or 〈w �= j〉 respectively. It is easy to realize that there is a place invariant

154 K. Gorgônio, J. Cortadella, and F. Xia

involving those places, since the sum of tokens is always equal to one, and only
one of the transitions in conflict can be enabled at a time.

In order to create a process, it is only necessary to instantiate a number
of modules, one for each cell, and connect them. Instantiating modules only
requires replacing the i and j string by the correct cell numbers. For example,
to instantiate the writer’s module to control the access to the 0th cell, the string
i is replaced by 0 and j by 1. Connecting the modules requires to merge all the
places with the same label. Figure 5 depicts the resulting Petri net models for
the writer and reader of a 3-cell RRBB ACM.

w0

wr0
pw

λ

w 1
wr1
pw

λ

w 2
wr2
pw

λ

0

1

2 w!=2

w!=1

w!=0w=0

w=1

w=2

r!=0

r!=j

r!=1
01

12

20

(a) writer process

rd0

μ w=1

r0

pr0 r!=0r=0

μ

rd1

μ w=2

pr1r=1

r1

r2

μ

rd
μ

pr2r=2

2

μ
w!=0

w=0

w!=2

w!=1

r!=2

r!=1

01

00

12

11

20

22

(b) reader process

Fig. 5. The write and read processes for a 3-cell RRBB ACM

After creating the processes, they can be connected by also merging places
with same label on both sides. In this case, the shadowed places in each module
will be connected to some place on the other module.

Definition 2 formally introduces the concept of a module. In this definition,
it is possible to see that a module is an ordinary Petri net model that has some
“special” places called ports. A port is a place that models a control variable.
The local ports model the control variables that are updated by the process to
which it belongs, while the external ports model the control variables updated by
the other process. Ports are used to identify control variables when synthesizing
the source code for an ACM.

A Compositional Method for the Synthesis of ACM 155

Definition 2 (Petri net module). A Petri net module is a tuple MODULE =
(PN, LOC, EXT, Ta, Tc) such that:

1. PN is a Petri net structure (P, T, F) with:
(a) P being finite set of places.
(b) T being finite set of transitions.
(c) F ⊆ (P × T)

⋃
(T × P) being a set of arcs (flow relation).

2. LOC ⊂ P is a finite set of local ports.
3. EXT ⊂ P is a finite set of external ports such that p ∈ EXT ⇐⇒ p• = •p.

Places in EXT are said to be read-only.
4. Ta ⊂ T is a finite set of transitions such that t ∈ Ta ⇐⇒ t models a media

access action.
5. Tc ⊂ T is a finite set of transitions such that t ∈ Tc ⇐⇒ t models a control

action.
6. Ta

⋃
Tc = T and Ta

⋂
Tc = ∅.

7. Ma ⊂ (Ta × N) is a relation that maps each access transition t ∈ Ta into an
integer that is the number of the cell addressed by t.

8. Mc ⊂ (Tc × N × N) is a relation that maps each control transition t ∈ Tc

into a pair of integers modeling the current and the next cells pointed by the
module.

Definitions 3 and 4 formally introduce the writer and reader basic modules,
respectively.

Definition 3 (RRBB writer module). The RRBB writer module is a tuple
WRITER = (PNw, LOCw, EXTw) where:

1. PNw is as defined by Figure 4(a)
2. LOCw = {〈w = i〉, 〈w = j〉, 〈w �= i〉, 〈w �= j〉}
3. EXTw = {〈r �= j〉}
4. Ta = {wri}
5. Tc = {λij}
6. Ma = {(wri, i)}
7. Mc = {(λij , i, j)}

Definition 4 (RRBB reader module). The RRBB reader module is a tuple
READER = (PNr, LOCr, EXTr) where:

1. PNr is as defined by Figure 4(b)
2. LOCr = {〈r = i〉, 〈r = j〉, 〈r �= i〉, 〈r �= j〉}
3. EXTr = {〈w = j〉, 〈w �= j〉}
4. Ta = {rdi}
5. Tc = {μii, μij}
6. Ma = {(rdi, i)}
7. Mc = {(μii, i, i), (μij , i, j)}

The connection of two modules, MOD1 and MOD2, is defined as another Petri
net module that is constructed by the union of them. Definition 5 captures this.

156 K. Gorgônio, J. Cortadella, and F. Xia

Definition 5 (Connection for Petri net modules). Given two Petri net
modules MOD1 and MOD2, where:

– MOD1 = (PN1, LOC1, EXT1, Ta1 , Tc1, Ma1 , Mc1) and
– MOD2 = (PN2, LOC2, EXT2, Ta2 , Tc2, Ma2 , Mc2).

The union of them is a Petri net module m = (PN, LOC, EXT, Ta, Tc, Ma, Mc)
such that:

1. PN = PN1
⋃

PN2 where P = P1
⋃

P2, If two places have the same label
them they are the same, T = T1

⋃
T2 and F = F1

⋃
F2.

2. LOC = LOC1
⋃

LOC2.
3. EXT = EXT1

⋃
EXT2.

4. Ta = Ta1

⋃
Ta2 .

5. Tc = Tc1

⋃
Tc2.

6. Ma = Ma1

⋃
Ma2 .

7. Mc = Mc1

⋃
Mc2.

The complete ACM model can also be generated by the union of the Petri net
models of each resulting process. The procedure is as introduced by Definition 5
except that rules 2 and 3 do not apply.

The last required step is to set an appropriated initial marking for the Petri
net model. This can be done using Definition 6.

Definition 6 (Initial marking for RRBB ACMs). For any Petri net model
of an RRBB ACM, its initial marking is defined as follows. All the places are
unmarked, except in these cases:

1. M0(wi) = 1, if i = 1.
2. M0(〈w = i〉) = 1, if i = 1.
3. M0(〈w �= i〉) = 1, if i �= 1.
4. M0(ri) = 1, if i = 0.
5. M0(〈r = i〉) = 1, if i = 0.
6. M0(〈r �= i〉) = 1, if i �= 0.

Observe that according to Definition 6, the writer is pointing at the 1st cell of
the ACM and reader is pointing to the 0th cell. By this, it can be deduced that
the ACM is assumed to be initialized with some data on its 0th cell.

4.2 Verification of the Implementation Model

The Petri net model generated using the procedure discussed above will be
used to synthesize source code (C++, Java, Verilog, etc.) that implements the
behavior specified by the model. So, it is necessary to guarantee that such a

A Compositional Method for the Synthesis of ACM 157

model is correct with respect to the behavior given by Definition 1 in Section 3.
In this work, it is done by applying refinement verification. In other words it is
necessary to verify if the low-level specification, given by the Petri net model ob-
tained as described above, implements correctly the abstract specification given
by Definition 1.

Since Definition 1 was specified with the SMV language, it was necessary to
translate the Petri net ACM model into SMV. The PEP tool [3] provides a
way for translating a Petri net model into SMV and was used in our synthesis
framework for such purpose.

The Petri net model specifies the mechanisms to control access to the ACM,
but it does not model the data transfers. Since the goal is to check if the im-
plementation model refines the abstract model, it is necessary to model data
transfers in the implementation model. For that reason, a data array with the
size of the ACM was added to the implementation model. For each event mod-
eling a data access action, it was necessary to add the actions simulating the
storage and retrieval of data in the array.

The following steps summarize what should be done to add the glue between
the implementation and the abstract models.

1. Add a data array, with the same size as the ACM, to the SMV code of the
Petri net model.

2. Identify in the SMV code generated by PEP the piece of code modeling the
occurrence of each transition t of the Petri net model.

3. If t is a reader’s action and t ∈ Ta, then the data stored in the ith, where
(t, i) ∈ Ma, position of the data array created in step 1 should be read.

4. If t is a writer’s action and t ∈ Ta, then a new data item should be stored
in the ith, where (t, i) ∈ Ma, position of the data array created in step 1.

Note that the only control actions included in the model are required to
avoid the non-determinism in the extra control variables. For instance, it is not
desirable to allow non-deterministic changes in the values stored in the data
array. By doing the above modifications in the SMV code of the generated Petri
net model, it is possible to verify if the implementation model is a refinement
of the abstract model with respect to the data read from the data array. It
is important to note that the CTL formulae are defined in terms of the data
array. Thus, if both models always read the same data from the array, and if the
abstract model satisfies coherence and freshness, then the implementation model
will also satisfy those properties and it can be used to synthesize the source code
for the ACM.

Following the procedure described above a tool to automatically generate
ACMs was designed and implemented1. A number of RRBBs with different sizes
(starting from 3) where generated and proved to be correct for all cases.

1 See http://acmgen.sourceforge.net/ for details.

158 K. Gorgônio, J. Cortadella, and F. Xia

5 Synthesizing the Source Code

The implementation is generated from the Petri net model of each process. And
the resulting source code is based on the simulation of the net model. So, the
synthesis method consists of:

1. Create the shared memory as an array of the size of the desired ACM.
2. For each place p of the model, declare a Boolean variable vp named with the

label of p and initialize it with the value of its initial marking. Note that if
p ∈ EXT then it will in practice be initialized by the other process, since in
this case vp is seen as an external variable that belongs to another process.

3. For each transition t of the model, map into an if statement that is evaluated
to true when all input variables of t are true. The body of the statement
consists of switching the value of the input places of t to false and output
places to true. If t models an access action, also add to the body of the if
actions to write (or read) a new data item to (or from) the shared memory.

In order to perform the steps above, templates are used to define a basis
for the source code of the ACM, then some gaps are fulfilled. More precisely,
such gaps consist of: the declaration of the shared memory of a given size, the
declarations of the control variable and the synthesis of the code that controls
the access to the ACM.

Observe that the generation of the source code is performed from the Petri
net model of each process and not from the model of the composed system.
Algorithm 2 defines the basic procedure for the declaration and initialization of
the control variables.

Algorithm 2. Control variables declaration and initialization
1: for all p ∈ P do
2: if p ∈ LOC then
3: Declare p as a local Boolean variable
4: Initialize variable p with M0(p)
5: Make variable p a shared one
6: else if p ∈ EXT then
7: Create a reference to a Boolean variable p that has been shared by the other

process
8: else
9: Declare p as a local Boolean variable

10: Initialize variable p with M0(p)
11: end if
12: end for

In the first case, p is declared as a local Boolean variable that can be shared
with the other processes and initialized with the initial marking of p. In the
second case p is a shared Boolean variable that was declared in the other process
and in that case it cannot be initialized since it is a read-only control variable,

A Compositional Method for the Synthesis of ACM 159

from the point of view of the process being synthesized. Finally, in the third
case, p is declared as a private Boolean variable and is initialized with the initial
marking of p. In other words, each place will be implemented as a single bit
unidirectional control variable. And each variable can be read by both processes
but updated only by one of them.

Up to now the control part has not been synthesized, and there is no indication
on how the data is passed from one side to the other. The shared memory can
be declared statically as a shared memory segment and the only action needed
to create it is to set the amount of memory that should be allocated to it.

Finally, the synthesis of the control for the reader and writer processes are
introduced by Algorithms 3 and 4 respectively.

Algorithm 3. Synthesis of control for the reader
1: for all t ∈ T do
2: if t ∈ Ta with (t, i) ∈ Ma then
3: Create new if statement
4: ∀p ∈ •t add to the if condition p = true
5: ∀p ∈ •t add to the if body p = false
6: ∀p ∈ t• add to the if body p = true
7: Add to the if body an instruction to read data from the ith ACM cell
8: else if t ∈ Tc with (t, i, j) ∈ Mc then
9: Create new if statement

10: ∀p ∈ •t add to the if condition p = true
11: ∀p ∈ •t add to the if body p = false
12: ∀p ∈ t• add to the if body p = true
13: end if
14: end for

In Algorithm 3, the first case captures the synthesis of control to a data read
transition addressing the ith cell. The condition to the control is given by the
pre-set of t and if it is satisfied then its pre-set it switched to false and its post-
set to true. And some data is read from the ith cell. The second captures the
synthesis of control to a control transition. As in the previous the condition is
given by the pre-set of t and then its pre-set it switched to false and its post-set
to true.

Algorithm 4 is similar to Algorithm 3. The difference is that instead of reading
some data from the ith cell, the process will write some data into it.

The approach described here was used in the generation of C++ implementa-
tions for ACMs. In Figures 6 and 7 the methods that perform the shared memory
accesses and control actions to the 3-cell RRBB ACM introduced in Section 4
are shown.

In Figure 6(a) it is possible to see the method that actually writes some data
into the ACM. Line 3 captures the transition wr0 in the Petri net model enabled.
In this case: the variables implementing its pre-set are turned to false, line 4;
the variables implementing its post-set are turned to true, line 5; and some

160 K. Gorgônio, J. Cortadella, and F. Xia

Algorithm 4. Synthesis of control for the writer
1: for all t ∈ T do
2: if t ∈ Ta with (t, i) ∈ Ma then
3: Create new if statement
4: ∀p ∈ •t add to the if condition p = true
5: ∀p ∈ •t add to the if body p = false
6: ∀p ∈ t• add to the if body p = true
7: Add to the if body a instruction to write new data on the ith ACM cell
8: else if t ∈ Tc with (t, i, j) ∈ Mc then
9: Create new if statement

10: ∀p ∈ •t add to the if condition p = true
11: ∀p ∈ •t add to the if body p = false
12: ∀p ∈ t• add to the if body p = true
13: end if
14: end for

data is written into the 0th cell of the ACM, line 6. Note that the val is the new
data to be sent and shm data implements the shared memory. Note that each if
statement refers to some transition in the Petri net model.

2.

4. w0 = false;

6. *(shm_data + 0) = val;

8. w1 = false;

10. *(shm_data + 1) = val;

12. w2 = false;

14. *(shm_data + 2) = val;
15. }
16. }

1. void Writer::Send(acm_t val) {

5. pw0 = true;

9. pw1 = true;

13. pw2 = true;

3. if (w0 == true) { //wr0

7. } else if (w1 == true) { //wr1

11. } else if (w2 == true) { //wr2

(a) Writer::Send()

2.
3. acm_t val;
4.
5. if (r0 == true) {
6. r0 = false;

8. val = *(shm_data + 0);
9. } else if (r1 == true) {
10. r1 = false;

12. val = *(shm_data + 1);
13. } else if (r2 == true) {
14. r2 = false;

16. val = *(shm_data + 2);
17. }
18.
19. return(val);
20. }

1. acm_t Reader::Receive(void) {

7. pr0 = true;

11. pr1 = true;

15. pr2 = true;

(b) Reader::Receive()

Fig. 6. Access actions implementation

The same reasoning applies to the reader access method shown in Figure 6(b).
The only difference is that instead of writing into the ACM, it reads from there.

The methods implementing the control actions are somewhat more complex,
but follow the same principle. The implementation of the writer’s control actions
are given by the method in Figure 7(a). As before, the same idea is used, im-
plementing each control transition as an if statement whose condition is given
by the variables of the pre-set and the body consists of switching the pre-set to
false and the post-set to true. For example, the code implementing the firing

A Compositional Method for the Synthesis of ACM 161

of transition λ01 is given by lines 3 to 14 of Figure 7(a). Observe that we0 and
wne0 stands for w = 0 and w �= 0 respectively.

The writer’s control actions are inside an infinite loop whose last instruction
is a call to a pause()2 function. This is done because if there is no λ transition
enabled, with the writer pointing at the ith cell, it means that the reader is
pointing at the (i+1)th cell. And in this case the writer should wait for the reader
to execute. By using the pause() function in line 17, busy waiting algorithms
are avoided. Also, note that the exit from the loop is done by a break statement,
as in line 13.

2. while (true) {
3. if (*we0 == true &&
4. *wne1 == true &&

7. *we0 = false;
8. *wne1 = false;
9. w0p = false;
10. w1 = true;
11. *wne0 = true;
12. *we1 = true;
13. break;
14. }
15. if (...) {...} // l1_2
16. if (...) {...} // l2_0
17. pause();
18. }
19. }

1. void Writer::Lambda(void) {

5. w0p == true &&
6. *rne1 == true) { // l0_1

(a) Writer::Lambda()

2. if (r0p == true &&
3. *we1 == true) { // m0_0
4. r0p = false;
5. r0 = true;
6. kill(pair_pid, SIGCONT);
7. } else if (*re0 == true &&

12. *rne1 = false;
13. r0p = false;
14. r1 = true;
15. *rne0 = true;
16. *re1 = true;
17. kill(pair_pid, SIGCONT);
18. } else if (...) {... // m1_1
19. } else if (...) {... // m1_2
20. } else if (...) {... // m2_2
21. } else if (...) {...} // m2_0
22. }

1. void Reader::Mu(void) {

11. *re0 = false;
10. *wne1 == true) { // m0_1
9. r0p == true &&
8. *rne1 == true &&

(b) Reader::Mu()

Fig. 7. Control actions implementation

The control actions of the reader process are implemented by the method
in Figure 7(b). Again, each transition is implemented as an if statement. For
instance, μ00 is implement by the code from line 2 to 6 and μ01 is implemented
in lines 7 to 17. It is important to observe that every time the reader executes a
control actions, it sends the signal SIGCONT to the writer, as in lines 6 and 17.
This is to wake up the writer in the case it is sleeping due to a pause().

Finally, the methods generated above need to be integrated into the commu-
nicating processes. As explained before and shown in Figure 8, the writer first
calls the Send() and then the Lambda() methods. On the other hand, the reader
first calls the Mu() and then the Receive() methods. In the code generated these
operations are encapsulated into two public methods: Write() and Read(), avail-
able for the writer and reader respectively. With this, the correct use of the
communication scheme is ensured.

2 The pause() library function causes the invoking process (or thread) to sleep until
a signal is received that either terminates it or causes it to call a signal-catching
function.

162 K. Gorgônio, J. Cortadella, and F. Xia

write data

is next cell
empty?

advance to
next cell

wait until next
cell is empty

more data?

Finish writer
process

Generate
data

Start writer
process

noyes

yes

Lambda()

Send()

no

(a) Writer flow

is next cell
empty?

next cell
advance to

read data

Consume
data

more data?

Start reader
process

yes

no
Receive()

Mu()

process
Finish reader

yes

no

(b) Reader flow

Fig. 8. Flowchart for communicating processes

In this Section an automatic approach to generate source code from Petri
net models was discussed. The algorithms introduced here only gives conceptual
ideas on what needs to be done for the synthesis of the code. When executing the
procedure, many details related to the target programming language has to be
taken into account. The algorithms above were implemented to generate C++
code to be executed on a Linux system. The reader should consult [7] for more
details on creating shared memory segments on UNIX systems.

6 Conclusions and Future Work

This work introduces a novel approach to the automatic synthesis of ACMs. The
method presented here is based on the use of modules to the generation of Petri
net models that can be verified against a more abstract specification.

Firstly, the behavior of RRBB ACMs was formally defined and the proper-
ties it should satisfy were described by CTL formulas. Then the procedure of
generating the Petri net models was presented, including the definition of the
basic modules and the algorithms required to instantiate and connect them. It
was argued how the the resulting model is translated to an SMV model in order
to be verified against the more abstract model defined in the beginning of the
process. Finally, a C++ implementation is generated from the Petri net model.

Compared to the previous work [1], the method of generating Petri net models
introduced here has the disadvantage of requiring model checking to guarantee
its correctness. In the previous approach based on ACM regions, it was guaran-
teed by construction. However, the cost of executing the ACM regions algorithms
is too high. And when it becomes limited by the state-space explosion problem,
no implementation Petri net model could be generated and synthesis fails. In the
approach proposed here, state-space explosion is limited to the verification of the

A Compositional Method for the Synthesis of ACM 163

Petri net implementation model. This step is off the design flow (see Figure 3).
Thus we could generate C++ codes from the implementation model whether it can
be verified or not. An unverified implementation nonetheless has practical engi-
neering significances because the Petri net model is highly regular and its behavior
can be inferred from that of similar ACMs of smaller and verifiable size.

The next step into the direction of the automatic generation of ACMs is to
provide a formal proof that the procedure of generating the net models is correct
by design. With this, it will be possible to skip the verification step. And the
time required to synthesize devices that can be trusted will drastically reduce.
Also it is necessary to introduce formally the mechanisms used in the overwriting
ACM classes. Finally, it is a primary goal to be able to generate the ACMs in
the form of a Verilog code that can be used to synthesize a piece of hardware.

Acknowledgments. This work has been supported by CICYT TIN2004-07925, a
Distinction for Research from the Generalitat de Catalunya and by the EPSRC
(grant EP/C512812/1) at the University of Newcastle upon Tyne.

References

1. Cortadella, J., Gorgônio, K., Xia, F., Yakovlev, A.: Automating synthesis of asyn-
chronous communication mechanisms. In: Proceedings of the Fifth International
Conference on Application of Concurrency to System Design (ACSD’05), St. Malo,
France, June 2005, pp. 166–175. IEEE Computer Society, Washington (2005)

2. Fassino, J-P.: THINK: vers une architecture de systèmes flexibles. PhD thesis,
École Nationale Supérieure des Télécommunications (December 2001)

3. Grahlmann, B.: The pep tool. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 440–443. Springer, Heidelberg (1997)

4. Lamport, L.: On interprocess communication — parts I and II. Distributed Com-
puting 1(2), 77–101 (1986)

5. McMillan, K.L.: The SMV System: for SMV version 2.5.4 (November 2000) Avail-
able from http://www-2.cs.cmu.edu/~modelcheck/smv/smvmanual.ps.gz

6. Simpson, H.R.: Protocols for process interaction. IEE Proceedings on Computers
and Digital Techniques 150(3), 157–182 (May 2003)

7. Richard Stevens, W.: Advanced programming in the UNIX environment. Addison
Wesley Longman Publishing Co., Inc, Redwood City, CA, USA (1992)

8. Xia, F., Hao, F., Clark, I., Yakovlev, A., Chester, G.: Buffered asynchronous com-
munication mechanisms. In: Proceedings of the Fourth International Conference
on Application of Concurrency to System Design (ACSD’04), pp. 36–44. IEEE
Computer Society, Washington (2004)

9. Yakovlev, A., Kinniment, D. J., Xia, F., Koelmans, A. M.: A fifo buffer with non-
blocking interface. TCVLSI Technical Bulletin, pp. 11–14, Fall (1998)

10. Yakovlev, A., Xia, F.: Towards synthesis of asynchronous communication algo-
rithms. In: Caillaud, B., Darondean, P., Lavagno, L., Xie, X. (eds.) Synthesis and
Control of Discrete Event Systems. Part I: Decentralized Systems and Control, pp.
53–75. Kluwer Academic Publishers, Boston (January 2002)

http://www-2.cs.cmu.edu/~modelcheck/smv/smvmanual.ps.gz

History-Dependent Petri Nets

Kees van Hee, Alexander Serebrenik, Natalia Sidorova, and Wil van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee,a.serebrenik,n.sidorova,w.m.p.v.d.aalst}@tue.nl

Abstract. Most information systems that are driven by process models
(e.g., workflow management systems) record events in event logs, also
known as transaction logs or audit trails. We consider processes that
not only keep track of their history in a log, but also make decisions
based on this log. To model such processes we extend the basic Petri
net framework with the notion of history and add guards to transitions
evaluated on the process history. We show that some classes of history-
dependent nets can be automatically converted to classical Petri nets
for analysis purposes. These classes are characterized by the form of
the guards (e.g., LTL guards) and sometimes the additional requirement
that the underlying classical Petri net is either bounded or has finite
synchronization distances.

1 Introduction

Numerous state-of-the-art enterprise information systems contain a workflow
engine, which keeps track of all events as a part of its basic functionality. In
this paper we consider processes that not only record the events but also make
choices based on the previous events, i.e. based on their history. The ability of
a system to change its behavior depending on its observed behavior is known
as adaptivity and in this sense this paper is about a special class of adaptive
systems.

In classical Petri nets the enabling of a transition depends only on the avail-
ability of tokens in the input places of the transition. We extend the model by
recording the history of the process and introducing transition guards evaluated
on the history. To illustrate the use of history, we consider a simple example of
two traffic lights on crossing roads.

Example 1. Figure 1 (left) presents two traffic lights, each modelled by a cycle
of three places and three transitions. The places model the states of each traffic
light (red, green and yellow), and the transitions change the lights from one color
to the next color. We assume that in the initial state both lights are red.

We want the system to be safe and fair, i.e., the traffic lights are never green
at the same time, the right traffic light can become green at most R times more
than the left traffic light, and similarly, the left traffic light can become green
at most L times more than the right traffic light. Usually one takes R = 1 and

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 164–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

History-Dependent Petri Nets 165

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

a

b

c f

d

e

RedL

RedR

GreenL

YellowL

GreenR

p

q

YellowR

Fig. 1. Traffic lights: without restrictions (left) and alternating (right)

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

p

q

a

b

c f

d

e

RedL RedR

GreenL

YellowL

GreenR

YellowR

#{d}=#{e} and #{b}<#{e}+L

#{a}=#{b} and #{e}<#{b}+R

Fig. 2. A history-dependent Petri net with parameters R and L (left) and the history
guards replaced according to Theorem 23 for R = 1 and L = 2 (right)

L = 0, or R = 0 and L = 1, implying alternating behavior of the traffic lights.
In order to obtain the alternating behavior one traditionally adds control places
p and q as in the right-hand side of Figure 1. This figure models the situation
with R = 0 and L = 1. Note that it is not easy to generalize this construction
for arbitrary R and L.

Our approach consists in making the guards explicit as shown in left-hand
side of Figure 2. To ensure safety, we require that b can fire only if the right
traffic light is red, i.e., transitions d and e have fired the same number of times.
The guard of b is written then as #{d} = #{e}. Similarly, e obtains the guard
#{a} = #{b}. In order to guarantee fairness, we require that in any history, b
fires at most L times more than e, i.e. #{b} ≤ #{e} + L, and e fires at most R
times more than b, i.e., #{e} ≤ #{b} + R. To ensure this we add the additional
requirement #{b} < #{e} + L to the guard of b and the additional requirement
#{e} < #{b} + R to the guard of e. This results in the history-dependent Petri
net shown in Figure 2 (left).

Using history we can separate the modeling of the standard process informa-
tion (switching the traffic light to the following color) from additional require-
ments ensuring the desired behavior. Hence, we believe that introducing

166 K. van Hee et al.

history-dependent guards amounts to enhanced modeling comfort. Observe also
that global access to the history allows to ease modeling of synchronous choices.
Assume that at a certain point a choice has to be made between transitions a
and b. Assume further that the only impact of this choice is somewhere later in
the process: a′ has to be chosen if a has been chosen and b′ has to be chosen if b
has been chosen. A classical solution of this problem involves creating two places
pa and pb with the only incoming arc coming from a (b) and the only outgoing
arc leading to a′ (b′). Rather than cluttering our model with additional places,
we set the guard of a′ (b′) to demand that a (b) has been chosen before.

In this paper we consider two approaches to introduce history into the Petri
net model: (1) token history, where each individual token carries its own history,
i.e., history can be seen as special kind of color, and (2) global history, where there
is a single centralized history and every transition guard is evaluated on it (like
in our traffic lights example). Token history can be used in distributed settings
where different components do not have information about the actions of other
components. Global history is in fact a special case of token history for transparent
systems where all components are aware of the actions of other components.

By introducing history-dependent guards, we increase the expressive power.
On the traffic lights example, we can easily see that we can check the emptiness
of a place using history: RedR is empty if and only if #{e} − #{d} = 1. Hence,
we can model inhibitor arcs and consequently our formalism is Turing complete.
Since, we are interested not only in modeling but also in verification, we iden-
tify a number of important classes of global history nets (e.g. nets with LTL
guards) that can be transformed to bisimilar classical Petri nets and provide
corresponding transformations. For instance, the history-dependent net on the
left-hand side of Figure 2 can be automatically transformed to the classical net
on the right-hand side (we took R = 1 and L = 2).

Due to the Turing completeness, not every history-dependent net can be repre-
sented by a classical Petri net. We are still interested in simulation and validation
of history-dependent nets. Simulation and validation are however complicated
by the fact that the representation of the current state of the system requires in
general an unbounded amount of memory, due to the growth of the history. We
solve this problem for a Turing complete subclass of global history nets (in which
we use event counting, but not event precedence in the guards) by defining a
transformation to bisimilar inhibitor nets. Inhibitor nets, though being Turing
complete, have a state representation of a fixed length (a marking), which makes
the simulation and validation feasible.

The remainder of the paper is organized as follows. After some preliminary
remarks in Section 2, we introduce the notion of event history together with a
history logic in Section 3. Section 4 introduces token history nets and Section 5
introduces global history nets. In Section 6 we show how to map several subclasses
of global history nets with counting formulae as guards to classical Petri nets
or inhibitor Petri nets, and in Section 7 we describe a transformation of global
history nets with LTL guards to classical Petri nets. Finally, we review the related
work and conclude the paper.

History-Dependent Petri Nets 167

2 Preliminaries

N denotes the set of natural numbers and Z the set of integers.
Let P be a set. A bag (multiset) m over P is a mapping m : P → N. We

identify a bag with all elements occurring only once with the set containing the
elements of the bag. The set of all bags over P is denoted by N

P . We use +
and − for the sum and the difference of two bags and =, <, >, ≤ and ≥ for the
comparison of bags, which are defined in a standard way. We overload the set
notation, writing ∅ for the empty bag and ∈ for the element inclusion. We write
e.g. m = 2[p] + [q] for a bag m with m(p) = 2, m(q) = 1, and m(x) = 0 for all
x �∈ {p, q}. As usual, |m| and |S| stand for the number of elements in bag m and
in set S, respectively.

For (finite) sequences of elements over a set P we use the following notation:
The empty sequence is denoted with ε; a non-empty sequence can be given by
listing its elements.

A transition system is a tuple E = 〈S,Act , T 〉 where S is a set of states, Act is
a finite set of action names and T ⊆ S ×Act ×S is a transition relation. We say
that E is finite if S is finite. A process is a pair (E, s0) where E is a transition
system and s0 ∈ S an initial state. We denote (s1, a, s2) ∈ T as s1

a−→E s2,
and we say that a leads from s1 to s2 in E. We omit E and write s

a−→ s′

whenever no ambiguity can arise. For a sequence of action names σ = a1 . . . an

we write s1
σ−→ s2 when s1 = s0 a1−→ s1 a2−→ . . .

an−→ sn = s2. Next, s1
∗−→ s2

means that there exists a sequence σ ∈ T ∗ such that s1
σ−→ s2. We say that s2

is reachable from s1 if and only if s1
∗−→ s2. Finally, the language of a process

(E, s0), denoted L(E, s0), is defined as {σ | σ ∈ T ∗, ∃s : s0
σ−→ s}.

Definition 2. Let E1 = 〈S1,Act , T1〉, E2 = 〈S2,Act , T2〉 be transition systems.
A relation R ⊆ S1 ×S2 is a simulation if and only if for all s1, s

′
1 ∈ S1, s2 ∈ S2,

s1
a−→E1 s′1 implies that s2

a−→E2 s′2 and s′1 R s′2 for some s′2 ∈ S2.
E1 and E2 are bisimilar if there exists a relation R ⊆ S1 × S2 such that both

R and R−1 are simulations.

Next we introduce a number of notions related to Petri nets.

Definition 3. A Petri net N over a fixed set of labels Σ is a tuple 〈P, T, F, Λ〉,
where: (1) P and T are two disjoint non-empty finite sets of places and tran-
sitions respectively; we call the elements of the set P ∪ T nodes of N ; (2)
F : (P × T) ∪ (T × P) → N is a flow relation mapping pairs of places and
transitions to the naturals; (3) Λ : T → Σ is a labeling function that maps
transitions of T to action labels from Σ.

An inhibitor net is a tuple 〈P, T, F, Λ, I〉 such that 〈P, T, F, Λ〉 is a Petri net
and I ⊆ P × T is a set of inhibitor arcs.

We present nets with the usual graphical notation. For any pair of nodes x, y
with F (x, y) ≥ 1, we say that (x, y) is an arc with weight F (x, y).

168 K. van Hee et al.

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags
of places where every p ∈ P occurs F (p, t) times in •t and F (t, p) times in t•.
Analogously we write •p, p• for pre- and postsets of places.

A marking m of N is a bag over P ; markings are states (configurations) of a
net. A pair (N, m) is called a marked Petri net. A transition t ∈ T is enabled in
marking m if and only if •t ≤ m and moreover, for inhibitor nets, m(p) = 0 for
any p such that (p, t) ∈ I. An enabled transition t may fire. This results in a new
marking m′ defined by m′ def= m− •t+ t•. We interpret a labeled Petri net N as a
transition system/process 〈NP , Λ(T), −→〉 / (〈NP , Λ(T), −→〉, m0) respectively,
where markings play the role of states and labels of the firing transitions play the
role of action names. The notion of reachability for Petri nets is inherited from
the transition systems. We denote the set of all markings reachable in net N
from marking m as RN (m). We will drop N and write R(m) when no ambiguity
can arise. A marked net (N, m0) is called bounded if its reachability set is finite.

3 Event History and History Logic

In this section we present the general notion of event history. In the coming
sections we investigate two kinds of nets that use event history: token history
nets and global history nets.

One might expect an event history to be a totally ordered series of events.
However, information on the relative order of events registered by different com-
ponents might be missing. Therefore, we define a history as a partial order.

Definition 4. Given a set of action labels Σ, a history is a labeled poset, i.e.,
a triple 〈E, ≺, λ〉, where E is a set of events coming from a fixed universe, ≺
is a partial order on E and λ : E → Σ is a labeling function. If E = ∅ the
corresponding history is called the empty history and denoted by ε.

Two histories 〈E1, ≺1, λ1〉 and 〈E2, ≺2, λ2〉 are consistent if and only if the
transitive closure of ≺1 ∪ ≺2 is a partial order for E1 ∪ E2 and λ1(e) coincides
with λ2(e) for any e ∈ E1 ∩ E2.

We define two operations to create a new history out of existing histories: ex-
tension and union.

Definition 5. The extension 〈E, ≺, λ〉 :: � of a history 〈E, ≺, λ〉 with an event
labeled by � is the history 〈E∪{e}, ≺�, λ�〉, where e is a new event,1 ≺� is defined
as ≺ ∪{(x, e) | x ∈ E} and λ� maps e to � and coincides with λ on E.

The union 〈E1, ≺1, λ1〉∪〈E2, ≺2, λ2〉 of consistent histories is defined as 〈E1∪
E2, ≺, λ1 ∪ λ2〉, where ≺ is the transitive closure of ≺1 ∪ ≺2.

These operations will be used in the next sections on token history and global
history for Petri nets. In global history nets each firing of a transition extends
1 Note that it is essential that e is a “fresh” identifier not present in E but also not

used in any “known” history.

History-Dependent Petri Nets 169

the global history. In token history nets, tokens created by a transition firing
carry the union of histories of the consumed tokens extended with the firing
event.

Next we present a language of history-dependent predicates that will be used
in the guards of history-dependent nets. From here on we assume a countable
set Var of variables to be given.

Definition 6. Given a set Σ of labels and x ∈ Var, we define a formula ϕ, a
term q and a label expression l over Σ as follows:

ϕ ::= false | ϕ ⇒ ϕ | x � x | q < q | l == l
q ::= N | (#Var : ϕ) | (q + q)
l ::= Σ | λ(x)

Sets of formulae, terms and label expressions over Σ are denoted as FΣ, QΣ

and LΣ, respectively.

Using the definition above we can define the following short-hand notations
in the standard way: true, ¬, ∧, ∨, >, ≥, ≤, = (comparisons of terms). We
omit brackets if this does not introduces ambiguities. The counting operator
is powerful enough to express the standard quantifiers: We write ∃x : ϕ for
(#x : ϕ) > 0 and ∀x : ϕ for (#x : ϕ) = (#x : true). For a finite set of labels
S = {s1, . . . , sn}, � ∈ S stands for (� == s1 ∨ . . . ∨ � == sn) and #S stands for
(#x : λ(x) ∈ S). Finally e1 ≺ e2 means that (e1 � e2) ∧ ¬(e2 � e1).

In order to define the semantics we introduce the notion of an assignment
defined as a mapping of variables from Var to events from E. Given a variable x,
an event e and an assignment ν, ν[x → e] denotes the assignment that coincides
with ν for all variables except for x which is mapped to e.

Definition 7. Given a history H = 〈E, ≺, λ〉 and an assignment ν, the eval-
uation eval and the truth value of a formula are defined by mutual structural
induction. The evaluation function eval maps a term q to N as follows:

eval (H, ν, q) =

⎧
⎨

⎩

q if q ∈ N;∣
∣{e ∈ E | 〈H, ν[x → e]〉 |= ϕ}

∣
∣ if q is #x : ϕ;

eval (H, ν, q1) + eval(H, ν, q2) if q is q1 + q2.

Similarly, eval maps a label expression l to Σ:

eval(H, ν, l) =
{

l if l ∈ Σ;
λ(ν(x)) if l is λ(x).

Finally, the truth value of a formula is defined as follows:

– 〈H, ν〉 |= false is always false;
– 〈H, ν〉 |= ϕ1 ⇒ ϕ2 if not 〈H, ν〉 |= ϕ1 or 〈H, ν〉 |= ϕ2;
– 〈H, ν〉 |= x1 � x2 if ν(x1) ≺ ν(x2) or ν(x1) coincides with ν(x2);

170 K. van Hee et al.

– 〈H, ν〉 |= q1 < q2 if eval (H, ν, q1) < eval (H, ν, q2) (< is the standard order
on the naturals);

– 〈H, ν〉 |= l1 == l2 if eval (H, ν, l1) coincides with eval(H, ν, l2).

One can show that for closed terms and formulae, i.e., terms and formulae where
all variables appear in the scope of #, the result of the evaluation does not depend
on ν. Therefore, for a closed term q we also write eval(H, q) and for a closed
formula ϕ we also write H |= ϕ. The set of closed formulae over Σ is denoted
CFΣ .

To illustrate our language, we return to the traffic light example from Figure 2.
The guards of transitions are formulated according to Definition 6.

4 Token History Nets

In this section we introduce token history nets as a special class of colored Petri
nets [11] with history as color. The tokens of an initial marking have an empty
history and every firing of a transition t produces tokens carrying the union of
the histories of the consumed tokens extended with the last event, namely the
firing of transition t labeled by Λ(t).

Definition 8. A token history net N is a tuple 〈P, T, F, Λ, g〉 such that NP =
〈P, T, F, Λ〉 is a labeled Petri net and g : T → CFΛ(T) defines the transition
guards.

The semantics of a token history net is given by the transition system defined
as follows:

Color is the set of possible histories 〈E, ≺, λ〉 over the label set Λ(T). A state
m of a token history net N is a bag of tokens with histories as token colors, i.e.,
a marking m : (P × Color) → N.

The transition relation is specified by: m
a−→ m′ if and only if there exist a

transition t with Λ(t) = a, a history H and two bags cons and prod of tokens
such that:

– H =
⋃

(p,c)∈cons c (H is the unified history),
– cons ≤ m (tokens from cons are present in m),
–

∑
(p,c)∈cons [p] = •t (tokens are consumed from the right places),

– prod =
∑

p∈t• [(p, H :: Λ(t))] (prod is the bag of tokens to be produced),
– m′ = m − cons + prod, and
– H |= g(t) (i.e., the guard evaluates to true given the unified history H).

A token history net is thus defined by attaching a guard to all transitions of a
classical Petri net. A transition guard is evaluated on the union H of histories of
consumed tokens. Recall that the union of two histories is defined for consistent
histories only. We will call a marking consistent if the union of all its token
histories is defined. The following lemma states that consistency of markings is an
invariant property (observe that a transition firing cannot destroy consistency).

History-Dependent Petri Nets 171

b

c

a

p

q

d

#{a}=1

Fig. 3. A token history net

Lemma 9. Let m be a consistent marking and m
∗−→ m′ for some marking m′.

Then m′ is consistent.

Proof. Proof of the lemma relies on the fact that a fresh event is used every time
histories are extended.

To conclude this section we illustrate the semantics of token history nets.

Example 10. Consider the token history net in Figure 3. Firings of transition
d are allowed iff there is only one event labeled by a in the union of the his-
tories of tokens consumed from places p and q, i.e. tokens on p and q origi-
nate from the same initial token. Let the sequence abcabc fire from the initial
marking, which results in the marking m = [(p, H1)] + [(p, H2)] + [(q, H3)] +
[(q, H4)] with H1 = 〈{e1, e2}, {e1 ≺ e2}, {(e1, a), (e2, b)}〉, H2 = 〈{e4, e5}, {e4 ≺
e5}, {(e4, a), (e5, b)}〉, H3 = 〈{e1, e3}, {e1 ≺ e3}, {(e1, a), (e3, c)}〉 and H4 =
〈{e4, e6}, {e4 ≺ e6}, {(e4, a), (e6, c)}〉. The transition labeled d can fire consuming
tokens [(p, H1)] and [(q, H3)] since the tokens share event e1 in their history. The
produced token is [(s, H5)] with H5 = 〈{e1, e2, e3, e7}, {e1 ≺ e2, e1 ≺ e3, e1 ≺
e7, e2 ≺ e7, e3 ≺ e7}, {(e1, a), (e2, b), (e3, c), (e7, d)}〉. This transition cannot fire
on e.g. [(p, H1)] and [(q, H4)] since the union H1∪H4 contains two events (e1 and
e4) labeled by a while the guard specifies that the number of a events should
be one (#{a} = 1). Token history allows thus distinguishing between tokens
originating from different firings of the same transition, i.e., mimicking another
popular color, namely case identifiers.

5 Global History Nets

In this section we introduce global history nets, where history is a separate object
accessible when the guards of transitions are evaluated.

Definition 11. A global history net N is a tuple 〈P, T, F, Λ, g〉 such that NP =
〈P, T, F, Λ〉 is a labeled Petri net and g : T → CFΛ(T) defines the transition
guards.

The semantics of global history nets is defined as follows:
A state of N is a pair (m, H) where m is a marking of NP and H is a history

over Λ(T). The transition relation is specified by: (m, H) a−→ (m′, H ′) if and

172 K. van Hee et al.

only if there exists t ∈ T such that λ(t) = a, •t ≤ m, H |= g(t), m′ = m− •t+ t•

and H ′ is H :: Λ(t).

Given a global history net N we denote by S(N) the set of all states of the
net. Analogously to marked Petri nets we consider marked global history nets
being pairs (N, (m, H)) such that N is a global history net and (m, H) ∈ S(N).
The set of states reachable from (m, H) in N is denoted RN ((m, H)); the set of
states reachable from an initial state (m0, ε) is thus RN ((m0, ε)).

The interleaving semantics results in the following property:

Proposition 12. Let N = 〈P, T, F, Λ, g〉 be a global history net and (m, 〈E, ≺
, λ〉) ∈ RN ((m0, ε)). Then ≺ is a total order on E.

Note that history does not contain information which transitions exactly have
fired, but labels of those transitions only. Therefore, knowing the initial marking
and the history, we cannot reconstruct the current marking in general. However,
it can easily be seen that if Λ is injective the current marking can be derived
from the initial marking an history.

Proposition 13. Let N = 〈P, T, F, Λ, g〉 be a global history net such that Λ is
injective. Then, for a given H: (m1, H), (m2, H) ∈ RN ((m0, ε)) implies m1 =
m2.

This proposition implies that we are able to express conditions on the marking by
using global history nets with injective labeling. To illustrate this, we introduce
#•p as a shorthand for

∑
t∈•p #{Λ(t)} for some place p, i.e., #•p is the number

of tokens produced to the place p. Similarly, #p• denotes
∑

t∈p• #{Λ(t)}, i.e.,
the number of tokens consumed from p according to the history. (Note that
the sum is taken over a bag.) Now, let m0 be the initial marking of a global
history net N where Λ is injective, and assume (m, H) ∈ RN ((m0, ε)). Clearly,
m(p) = m0(p) − #p• + #•p for any p ∈ P . Hence, we can express any condition
on the current state in a transition guard. For example, we can simulate inhibitor
arcs by adding the condition m0(p) − #p• + #•p = 0. Since inhibitor nets are
known to be Turing complete (cf. [17]), global history nets with unique labels
are Turing complete as well.

Corollary 14. Global history nets N = 〈P, T, F, Λ, g〉 are Turing complete.

Next we discuss the implications of Corollary 14 on the expressive power of token
history nets.

Token history vs. global history. Observe that in general it is impossible
to derive the corresponding token histories from the history of a global history
net. Consider the net from Figure 3 as a global history net and suppose that its
global history is aabc. One cannot derive whether the tokens on places p and q
will share the history event labeled by a or not. On the other hand, in general
it is impossible to reconstruct the corresponding global history from a given
marking of a token history net, since no information is available on the order of

History-Dependent Petri Nets 173

truly concurrent firings. So marking m from Example 10 can be obtained as a
result of firing sequences abcabc, aabbcc, abacbc, etc. and have the corresponding
global history. We can however mimic a global history net with a token history
net.

The key idea behind our construction is adding a new place p∗ with one
initial token, connected to all transitions. Since the token in p∗ is updated at
each firing, it will keep a global log. Since all transitions are connected to p∗,
their guards will be evaluated on the same history as in the original global
history net. Formally, given a global history net N = 〈P, T, F, Λ, g〉 with initial
marking m0, we construct a token history net N ′ = 〈P ′, T, F ′, Λ, g〉 with initial
marking m′

0 such that P ′ = P ∪ {p∗} (with p∗ �∈ P being the new place),
F ′(n1, n2) = F (n1, n2) for (n1, n2) ∈ (P × T) ∪ (T × P) and F ′(n1, n2) = 1
for (n1, n2) ∈ ({p∗} × T) ∪ (T × {p∗}), and ∀p ∈ P : m′

0((p, ε)) = m0(p),
m′

0((p
∗, ε)) = 1 and m′

0(x) = 0 in all other cases. N ′ is called the log extension
of N . It is easy to show that both nets are indeed bisimilar.

Lemma 15. (N, m0) and (N ′, m′
0) as above are bisimilar.

Proof. (Idea) Note that in any reachable marking, the token on p∗ contains the
global history of N ′, while the histories in the tokens of N ′ are partial suborders
of the global history. (N, m0) and (N ′, m′

0) are bisimilar by construction.

Corollary 16. Token history nets are Turing complete.

Proof. By Lemma 15 and Corollary 14.

It is easy to map both a token history net and a global history net onto a colored
Petri net with token values being histories. Figure 4 shows a screenshot of CPN
Tools simulating the two traffic lights from Example 1 controlled by history.
Note that we added place global to store the global history.

The remainder of this paper focuses on global history nets.

6 Global History Nets with Counting Formulae Guards

In this section we consider global history nets with guards being counting for-
mulae, i.e., formulae that do not explore the precedence of events ≺. Formally,
a counting formula ϕ is defined as

ϕ ::= false | ϕ ⇒ ϕ | q < q | l == l

where q and l are terms and label expressions as in Definition 6.
Note that global history nets with counting formulae guards are Turing com-

plete since they allow zero testing on the marking of a place. To facilitate sim-
ulation and validation of these nets, we show that every global history net with
counting formulae guards can be transformed into a bisimilar inhibitor net. Fur-
thermore, we identify conditions on the global history net implying that the net
can be translated to a bisimilar classical Petri net.

174 K. van Hee et al.

Fig. 4. The history-dependent Petri net with parameters R en L and using a global
place to record history simulated using CPN Tools

6.1 Nets with Counting Formulae as Guards vs. Inhibitor Nets

We start with the simplest form of counting formulae, namely (#A) ρ (#B + k)
for some A, B ⊆ Σ, ρ ∈ {≥, ≤} and k ∈ N. For the sake of brevity we call these
expressions basic counting formulae (over A and B). Note that taking B equal
to ∅ we obtain (#A) ρ k (since #∅ = 0).

Lemma 17. Let (N, m0) be a marked global history net with N = 〈P, T, F, Λ, g〉
such that for any t ∈ T , g(t) is a basic counting formula. There exists a marked
inhibitor net (N ′, m′

0) bisimilar to (N, m0).

Proof. We apply to the net (N, m0) an iterative process of guard elimination
resulting in (N ′, m′

0). At every iteration step we will replace one of the transi-
tion guards of the current net by true, adding some places and transitions to
preserve the net behavior. The process terminates when all guards are true, i.e.
we obtained a regular inhibitor net.

Let t be a transition whose guard we eliminate at the next step and let g(t)
be #A ρ #B+k for some A, B ⊆ Σ, ρ ∈ {≥, ≤} and k ∈ N. We can assume that
A and B are disjoint, since (#A) ρ (#B + k) if and only if (#(A \ B)) ρ (#(B \
A) + k).

Figure 5 shows the basic idea of the eliminating a transition with guard
g(t). Consider, for example the case ρ equals ≤. Figure 5(a) sketches the rel-
evant features of the initial net and Figure 5(b) shows the net where guard

History-Dependent Petri Nets 175

a

s'

b'

a'

s

b

t

(b) g(t) = #A #B+k removed

A
...

B
...

...

...

A’

B’

t

a

b

A
...

B
...

invariant:
max{0,#B-#A+k+1}

g(t)

invariant:
max{0, #A-#B}

a

s

b'

a'

s’

b

t

A
...

B
...

...

...

A’

B’

invariant:
max{0,#B-#A}

initial:
1

(a) Transition with guard g(t)

k+1

initial:
k+1

invariant:
max{0, #A-#B+1}

(c) g(t) = #A #B+k removed

Fig. 5. Replace the guard by places s and s′, duplicate transitions, and inhibitor arcs

g(t) = (#A ≤ #B + k) is eliminated. Note that A and B refer to the sets of
transitions having a label from A respectively B. For the purpose of illustration,
we show a transition with label a ∈ A and a transition with label b ∈ B (note
that may not be such transitions).

In order to mimic the guard g(t), we add places s and s′, where s will contain
max{0, #B −#A+k+1} tokens while s′ will contain max{0, #A−#B} tokens.
Note that g(t) = (#A ≤ #B + k) evaluates to true if and only if there is at
least one token in s, therefore we add a bidirectional arc between s and t. In the
initial marking m0(s) = k + 1 and m0(s′) = 0.

To support the computations on s and s′, we need to duplicate all transitions
with a label from A ∪ B, i.e., for every v such that Λ(v) ∈ A or Λ(v) ∈ B we
add a transition v′ with •v′ = •v, v′• = v•, and Λ(v′) = Λ(v). The resulting sets
of transitions are referred to as A′ and B′ in Figure 5(b). It is essential to note
that the transitions are mutually exclusive in terms of enabling and that s and
s′ are non-blocking, i.e., if v ∈ T was enabled in the original net, then either v
or v′ is enabled in the net with inhibitors.

The construction for ρ equal to ≥ is similar as shown in Figure 5(c). Note
that the initial marking has been updated and that t now tests for the presence
of k + 1 tokens in s where s always contains max{0, #A − #B + 1} tokens.

The transformation is repeatedly applied until no guarded transition is left. The
bisimilarity of (N, m0) and (N ′, m′

0) can be trivially proven by induction. �

176 K. van Hee et al.

Fig. 6. Bounded and unbounded nets

Our interest in transitions with basic counting formulae as guards is motivated
by the fact that any non-trivial counting formula is equivalent to a disjunction
of conjunctions of basic counting formulae.

Lemma 18. Any counting formula ϕ can be written in disjunctive normal form
where the literals are positive basic counting formula (i.e. without negations), so
ϕ ≡ true or ϕ ≡ false or ϕ ≡

∨
i(

∧
j ψi,j) and each ψi,j is a basic counting

formula.

Theorem 19. Let (N, m) be a marked global history net with N = 〈P, T, F, Λ, g〉
such that for any t ∈ T , g(t) is a counting formula. There exists a marked
inhibitor net (N ′, m′) bisimilar to (N, m).

Proof. (Idea) By Lemma 18 we consider only disjunctions of conjunctions of
basic counting formulae. First we transform our net to a net where all guards are
conjunctions of basic counting formulae by applying the following construction:
Every transition t with a guard ϕ ∨ ψ is replaced by transitions tϕ with the
guard ϕ, and tψ with the guard ψ, where •tϕ = •tψ = •t, t•ϕ = t•ψ = t• and
Λ(tϕ) = Λ(tψ) = Λ(t).

At the next step we eliminate conjuncts from the guards one by one by apply-
ing the construction depicted in Figure 5. The only difference is that we apply
the construction to a transition t with a guard (#A ρ #B + k) ∧ ϕ, and the
guard of t in the resulting net is then ϕ. ��

Boundness and analyzability of global history nets. Although the con-
struction referred to in the proof of Theorem 19 is applicable to any global history
net with counting formulae as guards, the resulting net contains inhibitor arcs
and therefore, cannot be analyzed easily because of Turing completeness. How-
ever, it is well-known that inhibitor arcs can be eliminated in bounded inhibitor
nets. Boundedness of classical or inhibitor Petri nets is in principle finiteness of
its state space. Hence it is interesting to explore “finiteness notions” for global
history nets.

Finiteness of RN ((m0, ε)) for a global history net N = (〈P, T, F, Λ, g〉) does
not imply boundedness of the underlying Petri net (〈P, T, F, Λ〉, m0) and vice
versa. In Figure 6 we see two global history nets. The underlying Petri net

History-Dependent Petri Nets 177

shown in Figure 6(a) is unbounded, while the global history net has a finite
state space due to the transition guard. The underlying Petri net shown in
Figure 6(b) is bounded, while the global history net has an infinite state space
just because it has an unbounded history. Still, the behavior of this net is clearly
analyzable, since it is possible to construct a classical Petri net bisimilar to it.
The latter observation motivates our interest in the existence of a classical Petri
net bisimilar to a global history net.

In the two following subsections we discuss sufficient conditions for the exis-
tence of a bisimilar classical Petri net.

6.2 Guards Depending on the Marking Only

In this subsection we give conditions on the guards that allow a transformation
into an equivalent bounded Petri net. So global history nets satisfying these
conditions will accept regular languages. We consider here guards that depend
only on the marking. As stated by Proposition 13 if transitions have unique
labels, then a marking is uniquely determined by the history.

Definition 20. Given a global history net N = 〈P, T, F, Λ, g〉 with Λ being in-
jective, we say that a formula ϕ is a marking formula if there exists a formula
ψ, ϕ ≡ ψ, such that ψ is a counting formulae and every basic counting formula
in ψ is of the form (#•p) ρ (#p• + k) for p ∈ P or (#•p + k) ρ (#p•), k ∈ N

and ρ ∈ {≤, ≥}.

Theorem 21. Let N = 〈P, T, F, Λ, g〉 be a global history net with injective Λ
such that for any t ∈ T , g(t) is a marking formula. If the underlying Petri
net (〈P, T, F, Λ〉, m0) is bounded, then there exists a bounded marked Petri net
bisimilar to (N, (m0, ε)).

Proof (Idea). We construct a net N ′′ = 〈P ′, T ′, F ′′, Λ〉 and a marking m′′
0 such

that (N ′′, m′′
0) bisimilar to (N, m0). We start by adding a duplicate place p′ for

every place p ∈ P such that •p′ = p• and p′• = •p. Since the underlying Petri
net is bounded, there exists b ∈ N such that for any reachable marking m and
any place p, m(p) ≤ b. We take n greater than the sum of b and the maximum
of all constants in the guards. We define m′

0 for N ′ as follows: ∀p ∈ P : m′
0(p) =

m0(p) ∧ m′
0(p

′) = n − m0(p). Observe that m(p) + m(p′) = n for any reachable
marking m. Moreover, by construction, #•p = #p′• and #p• = #•p′ for any
place p.

Without loss of generality we assume that transition guards are conjunctions
of the form (#•p) ρ (#p• + k) with k ≥ 0 and ρ ∈ {≤, ≥}. Indeed, first, the
proof of Theorem 19 shows how general counting formulae can be reduced to
basic counting formula. Second, if the guard is of the form (#•p + k) ρ #p•, by
the previous observation, we obtain (#p′• + k) ρ #•p′, i.e., (#•p′) ρ′ (#p′• + k)
with ρ′ being the comparison dual to ρ, i.e. ρ′ ∈ {≤, ≥} \ {ρ}. We denote the
resulting net N ′ = 〈P ′, T ′, F ′, Λ〉. Next we are going to add arcs depending on
the guards of N .

178 K. van Hee et al.

We distinguish between two cases. Let g(t) be (#•p) ≤ (#p•+k). Then t may
fire only if the number of tokens consumed from p does not exceed the number
of tokens produced to p by more than k, i.e., the number of tokens produced to
p′ does not exceed the number of tokens consumed from p′ by more than k. In
other words, m′

0(p
′) has at least k tokens. Moreover, if t ∈ •p′ then t may fire

only if p′ contains at least F ′(p, t) tokens. Therefore, we add an arc between p′

and t: F ′′(p′, t) = max{F ′(p′, t), m′
0(p

′) − k}, i.e., max{F (t, p), n − k − m0(p)}.
To complete the transformation, observe that we are not allowed to change the
behavior of the original net. Thus, we need to return tokens to p′. To this end we
add an arc between t and p′: F ′′(t, p′) = F ′(t, p′)+max{0, m′

0(p)−k−F ′(p′, t)},
i.e., F (p, t) + max{0, n − k − m0(p) − F (t, p)}.

Observe that this case also covers the situation when g(t) is (#•p) ≥ (#p•+k)
and k = 0. Therefore, we assume in the second case ((#•p) ≥ (#p• + k))
that k > 0. Similarly to the previous case, we add two arcs between p and t:
F ′′(p, t) = max{F ′(p, t), k+m′

0(p)}, i.e., max{F (p, t), k+m0(p)}, and F ′′(t, p) =
F ′(t, p)+max{0, k+m′

0(p)−F ′(p, t)}, i.e., F (t, p)+max{0, k+m0(p)−F (p, t)}.
In both cases t can fire if and only if the guard holds and the firing does not

change the behavior of the original net. �

6.3 Counting Formulae with Bounded Synchronization Distance

In this subsection we consider a condition on guards that allows to transform
a global history net to a bisimilar Petri net, which is not necessarily bounded.
We use here an important concept in Petri nets introduced by Carl Adam Petri:
synchronization distance [4,7,13]. We use a generalization of this notion, the
so-called y-distance [16].

Definition 22. Let (N, m0) be a Petri net and n be the number of transitions
in N . For a weight vector y ∈ Z

n the y-distance of (N, m0) is defined by

D((N, m0), y) = sup
σ∈Δ

yT · σ,

where yT is the transpose of y, σ is the Parikh vector of σ and Δ the set of all
executable finite firing sequences. The synchronization set is

Sync((N, m0)) = {y ∈ Z
n | D((N, m0), y) < ∞}.

In the net on the right-hand of Figure 6 transitions b and c can fire infinitely
often. If we take the underlying classical Petri net, the transitions are completely
independent of each other and the y-distance is ∞ for any weight vector with at
least one positive component. If we consider the global history net instead, the
number of the firings of c never exceeds the number of the firings of b by more
then 11. Hence the y-distance with y = 〈−1, 1〉 is 11. On the other hand, the
number of firings of b is not restricted by the number of the firings of c, and the
y-distance for y = 〈1, −1〉 is ∞.

For two label sets A and B, the characteristic weight vector for (A,B), denoted
y(A,B), is the weight vector with components equal to 1 for transitions with labels

History-Dependent Petri Nets 179

a

s

b

t

(a) g(t) = #A #B+k removed

A
...

B
...

invariant:
max{0,#B-#A+u}

a

s

b

t

A
...

B
...

invariant:
max{0,#A-#B+u}

u+k

initial: u

(b) g(t) = #A #B+k removed

initial: u

u-k

Fig. 7. Transforming nets with synchronization distance restrictions

in A, −1 for transitions with labels in B and 0 for all other vector components
(recall that we may safely assume that A and B are disjoint). We denote the
y(A,B)-distance by d(A, B) and we call it the characteristic distance (A,B). In
[16], an algorithm is given to decide whether y ∈ Sync((n, m0)) and to determine
the y-distance by examining a finite set of vectors.

Theorem 23. Let N = 〈P, T, F, Λ, g〉 be a global history net with initial marking
m0 such that for any t ∈ T , g(t) is a disjunction of conjunctions of counting
formulae of the form #A ρ #B + k with ρ ∈ {<, ≤, >, ≥}, for each of which
the following property holds: if ρ is ≤ then d(A, B) < ∞ and if ρ is ≥ then
d(B, A) < ∞ in the underlying Petri net (〈P, T, F, Λ〉, m0). Then there exists a
marked Petri net (N ′, m′

0) bisimilar to (N, m0).

Proof. (Idea) The proof is done by construction. Disjunctions and conjunctions
are taken care of as in Theorem 19. Therefore, we restrict our attention to the
following special case: the guard of transition t is a basic counting formula of
the form #A ρ #B + k.

For the first case, where ρ is ≤, we set u = max{k, d(A, B)} + 1. Note that
u ≤ k implies that the guard of t will always be evaluated to true, and thus may
be trivially removed. So we assume that u > k. We apply the construction shown
at the left-hand side of Figure 7. A new place s is added with F (b, s) = 1 for all
b such that Λ(b) ∈ B, F (s, a) = 1 for all a such that Λ(a) ∈ A, and F (s, t) =
F (t, s) = u − k. Furthermore, the initial marking is m′

0(s) = u. Transition t can
fire if and only if s contains at least u − k tokens. Note that u − k > 0 and that
for any reachable state (m, H) we have m′(s) = u+#B−#A ≥ u−d(A, B) > 0.
Therefore t can fire only if #B − #A ≥ −k and the transitions with labels in
A or B are thus not restricted in their firings.

The second case, displayed in the right-hand net of Figure 7, is similar:
u = max{k, d(B, A)} + 1, the arcs are reversed, F (s, t) = F (t, s) = u + k and
m′

0(s) = u. �

180 K. van Hee et al.

lost

({issue} /\ ({lost, cancel}))
pay

issue

cancel

lost
false

pay

lost

pay

true

cancel

cancel

issue

issue

Fig. 8. A net with an LTL-guard

7 Global History Nets with LTL Guards

Now we consider the class of global history nets with LTL guards. We consider
the next-free variant of LTL, since the next time operator (X) should better be
avoided in a distributed context and it is not robust w.r.t. refinements. LTL-
formulae are defined by φ ::= false | φ ⇒ φ | φ Uφ | A, where A ⊆ Σ and U is
the temporal operator until.

Standard LTL works on infinite traces, while our history is always finite. There-
fore, we interpret formulae on a trace we observed so far. Let H = 〈e1 . . . en〉 be
a global history. We define A(ei) as (λ(ei) ∈ A), and (φ Uξ)(ei) as ∃ek : ((ei ≺
ek) ∧ ξ(ek) ∧ ∀em : ((ei � em) ∧ (em ≺ ek)) ⇒ φ(em)). We say that H |= φ
iff H |= φ(e), i.e., ∀e : ((∀ei : e ≺ ei) ⇒ φ(e)) is evaluated to true. Due to the
finiteness of the formula, every LTL formula can be rewritten to a finite formula
in our logic. Note that our interpretation of U coincides with the standard one.

Based on the temporal operator U we introduce additional temporal operators
♦ (“eventually”) and � (“always”) in the standard way: ♦φ := true Uφ, �φ :=
¬(♦¬φ).

We will show now how to translate a global history net with LTL guards to a
(classical) Petri net.

While LTL formulae over infinite traces can be translated to Büchi automata,
LTL formulae over finite traces can be translated to finite automata. [5] presents
a translation algorithm that modifies standard LTL to Büchi automata conver-
sion techniques to generate finite automata that accept finite traces satisfying
LTL formulae. The main aspect of modification there is the selection of accepting
conditions. The automata generated are finite automata on finite words. There-
fore, they can be made deterministic and minimized with standard algorithms
[10].

Let N = 〈P, T, F, Λ, g〉 be a given global history net. At the first step of our
transformation we build a finite deterministic automaton whose edges are labeled
by action names from Λ(T) for every non-trivial (not true or false) transition
guard. Then we transform this automaton into a marked Petri net (which is a
state machine) where a token is placed on the place corresponding to the initial
state of the automaton, and final places obtain auxiliary labels true and non-final
places are labeled by false .

History-Dependent Petri Nets 181

Fig. 8 shows a simplistic example for a credit card company, where a credit
card can be issued, reported lost, used for a payment or cancelled. The pay-
ment transition pay has a guard requiring that the payment is possible only
if the card has not being lost or cancelled after its last issue (♦({issue} ∧
�(¬{lost, cancel})). The net corresponding to the guard is shown on the right
hand side of the figure. Note that this net can perform an arbitrary sequence of
steps, and the place “true” has a token when the guard on the history should
be evaluated to true and “false” when the guard should be evaluated to false.

At the next step we build the net NS which is a synchronous product of
the Petri net NP = 〈P, T, F, Λ〉 with the guard nets Ni, by synchronizing on
transition labels. Namely, the set of places PS of the synchronous product is
the union P ∪ (∪iPi) of places of N and the places of the guard nets; every
combination of transitions t, t1, . . . , tn, where t ∈ T, ti ∈ Ti and Λ(t) = Λi(ti) for
all i, is represented in TS by a transition t′ with •t′ = •t+

∑
i
•ti, t′• = t•+

∑
i ti

•

and Λ(t′) = Λ(t).
The guard nets can perform any arbitrary sequence from Σ∗ and NS has thus

the same behavior as NP . Now we restrict the behavior of NS by taking the
evaluations of guards into account. To achieve it, we add biflow arcs between
every transition t ∈ NS and every true-place corresponding to the guard net of
this transition. The obtained net is bisimilar to the original global history net
by construction.

8 Related Work

Histories and related notions such as event systems [19] and pomsets [8,3] have
been used in the past to provide causality-preserving semantics for Petri nets.
Unlike our approach, these works did not aim at restricting the firings by means
of history-dependent guards. Baldan et al. [2] use two different notions of history.
First of all, they consider semi-weighted nets, i.e., nets where every token can
be uniquely identified by means of tokens used to produce it, transition that
produces it and the name of the place where it resides. This idea is similar in
spirit to our token history. However, the authors do not make this notion of
history explicit nor do they discuss additional operations that can be performed
on histories. Neither this notion, nor history as configuration used by the authors
in study of causality, can be used to restrict firings of transitions by means of
guards as suggested in our approach.

History-dependent automata [12] extend states and transitions of an automa-
ton with sets of local names: each transition can refer to the names associated to
its source state but can also generate new names which can then appear in the
destination state. This notion of history implies that one cannot refer to firings
of other transitions but by means of shared names. We believe that the ability
to express dependencies on previous firings explicitly is the principal advantage
of our approach.

Operations on pomsets similar to our union and intersection appeared under
different names in [6,14,18]. The major distinction is due to unimportance of

182 K. van Hee et al.

the events’ identities in these approaches. Therefore, these operations make use
of disjoint sum to define a union and bijectively rename the events to define
an intersection. Therefore, these operations are defined for any pomsets. Unlike
the existing approaches, we take the identities of the events into account. This
guarantees that common parts of histories appear only once in their union, and
only truly common events appear in the intersection.

y-distance and related notions were studied starting from [4,7,13,16]. Silva and
Murata [15] introduced group-B-fairness, where they extend the synchronization
distance notion from single transitions to the groups of transitions, like we do in
Subsection 6.3. The focus of Silva and Murata’s paper is however on group-B-
fair nets, i.e., nets such that any pair of transition sets from a given transition
covering is in a group-B-fair relation. Unlike their work, Theorem 23 demands
being in a group-B-fair relation only for sets of transitions corresponding to sets
of labels used in the guards.

9 Conclusion

In this paper we emphasize the importance of taking history into account while
modelling processes. Historical information is present in most state-of-the-art en-
terprise information systems. Moreover, it allows to separate process information
from safety constraints, improving the readability and maintainability of models.

We have provided means to model history-dependent processes by extending
the classical Petri nets model and considered two ways of incorporating history:
token history nets and global history nets. To provide analysis, simulation and
validation facilities, we have put a link from global history nets to classical
and inhibitor Petri nets. Namely, we have identified several subclasses of global
history nets that can be automatically transformed to classical Petri nets. For
the class of global history nets with counting formulae as guards we have defined
a transformation to inhibitor nets. Finally, observe that global history nets can
be easily implemented in CPN Tools [1].

Future work. For the future work we plan to adapt our token net framework
for modelling component-based systems. We intend to extend the language of
operations on histories by adding projection in order to allow information hid-
ing and intersection to check disjointness/presence of common parts in token
histories. The guard language will allow to evaluate conditions both on separate
tokens and on their combinations.

We are going to develop a method for transforming broader subclasses of
global history nets to classical and inhibitor Petri nets. For instance, our trans-
formation of global history nets with LTL guards can be easily extended for LTL
with Past. We also consider developing a transformation for global history nets
with LogLogics [9] guards, a three-valued variant of LTL+Past on finite traces.

Acknowledgement. We are grateful to Jan Hidders and Jan Paredaens for a
number of fruitful discussions at the early stages of this research.

History-Dependent Petri Nets 183

References

1. CBN Tools http://wiki.daimi.au.dk/cpntools/cpntools.wiki
2. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure

semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Sci-
ence 323(1-3), 129–189 (2004)

3. Best, E., Devillers, R.R.: Sequential and concurrent behaviour in Petri net theory.
Theoretical Computer Science 55(1), 87–136 (1987)

4. Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general net theory.
In: Proceedings of the Advanced Course on General Net Theory of Processes and
Systems, London, UK, pp. 21–163. Springer, Heidelberg (1980)

5. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, IEEE Computer Society (Full version avail-
able as a technical report) pp. 412–416 (2001)

6. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61,
199–224 (1988)

7. Goltz, U., Reisig, W.: Weighted Synchronic Distances. In: Girault, C., Reisig, W.
(eds.) Selected Papers from the First and the Second European Workshop on Ap-
plication and Theory of Petri Nets. Informatik-Fachberichte, vol. 52, pp. 289–300.
Springer, Heidelberg (1981)

8. Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and
Control 57(2/3), 125–147 (1983)

9. van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: LogLogics:
A logic for history-dependent business processes, vol. 65(1) (2007)

10. Hopcroft, J., Ullman, J.: Introduction to Automata, Theory, Languages, and Com-
putation. Addison-Wesley, London (1979)

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. In: Monographs in Theoretical Computer Science, Springer, Heidelberg (1997)

12. Montanari, U., Pistore, M.: History-dependent automata: An introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

13. Petri, C.A.: Interpretations of net theory. Technical Report ISF-Report 75.07
(1975)

14. Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In:
Parikh, R. (ed.): Logics of Programs. LNCS, vol. 193, pp. 269–283. Springer, Hei-
delberg (1985)

15. Silva, M., Murata, T.: B-fairness and structural b-fairness in Petri net models of
concurrent systems. J. Comput. Syst. Sci. 44(3), 447–477 (1992)

16. Suzuki, I., Kasami, T.: Three measures for synchronic dependence in Petri nets.
Acta Inf. 19, 325–338 (1983)

17. Valk, R.: On the computational power of extended Petri nets. In: Winkowski, J.
(ed.): Mathematical Foundations of Computer Science 1978. LNCS, vol. 64, pp.
526–535. Springer, Heidelberg (1978)

18. Wimmel, H., Priese, L.: Algebraic characterization of Petri net pomset semantics.
In: Mazurkiewicz, A.W, Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 406–420. Springer, Heidelberg (1997)

19. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1986)

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Complete Process Semantics for Inhibitor Nets

Gabriel Juhás2, Robert Lorenz1, and Sebastian Mauser1

1 Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt

{robert.lorenz,sebastian.mauser}@ku-eichstaett.de
2 Faculty of Electrical Engineering and Information Technology

Slovak University of Technology, Bratislava, Slovakia
gabriel.juhas@stuba.sk

Abstract. In this paper we complete the semantical framework proposed in [13]
for process and causality semantics of Petri nets by an additional aim and develop
process and causality semantics of place/transition Petri nets with weighted in-
hibitor arcs (pti-nets) satisfying the semantical framework including this aim.
The aim was firstly mentioned in [8] and states that causality semantics deduced
from process nets should be complete w.r.t. step semantics in the sense that each
causality structure which is consistent with the step semantics corresponds to
some process net. We formulate this aim in terms of enabled causality structures.

While it is well known that process semantics of place/transition Petri nets
(p/t-nets) satisfy the additional aim, we show that the most general process se-
mantics of pti-nets proposed so far [13] does not and develop our process seman-
tics as an appropriate generalization.

1 Introduction

The study of concurrency as a phenomenon of system behavior attracted much attention
in recent years. There is an increasing number of distributed systems, multiprocessor
systems and communication networks, which are concurrent in their nature. An impor-
tant research field is the definition of non-sequential semantics of concurrent system
models to describe concurrency among events in system executions, where events are
considered concurrent if they can occur at the same time and in arbitrary order. Such
non-sequential semantics is usually deduced from the so called step semantics of a con-
current system model.

For the definition of step semantics it is generally stated which events can occur in a
certain state of the system at the same time (synchronously) and how the system state
is changed by their occurrence. Such events form a step (of events). Given an initial
state, from this information all sequences of steps which can occur from the initial
marking can easily be computed. The set of all possible such step sequences defines the
step semantics of a concurrent system model. A step sequence can be interpreted as a
possible observation of the systems behavior, where the event occurrences in one step
are observed at the same time and the event occurrences in different steps are observed
in the order given by the step sequence.

Non-sequential semantics are based on causal structures – we will also call them sce-
narios in the following – which allow to specify arbitrary concurrency relations among

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 184–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Complete Process Semantics for Inhibitor Nets 185

events. Non-sequential semantics for this paper is a set of scenarios. A scenario al-
lows (generates) several different observations, since the occurrence of events which
are concurrent in the scenario can be observed synchronously or also in arbitrary order.
Therefore, a given scenario only represents behavior of the system if it is consistent
with the step semantics in the sense that all of its generated observations belong to
the step semantics of the system. Non-sequential semantics which consists only of sce-
narios satisfying this property we call sound w.r.t. step semantics. On the other hand,
all scenarios which are consistent with the step semantics represent behavior of the sys-
tem. Non-sequential semantics which contains all such scenarios we call complete w.r.t.
the step semantics. In other words, a complete non-sequential semantics includes each
causal structure satisfying that all observations generated by the causal structure are
possible observations of the system. Note here that if we add causality to a causal struc-
ture which is consistent with the step semantics the resulting causal structure is again
consistent with the step semantics (since it generates less observations). Thus, a com-
plete non-sequential semantics can be given by such causal structures consistent with
the step semantics satisfying that removing causality from the causal structure results
in a causal structure not consistent with the step semantics. Such causal structures ex-
press minimal causal dependencies among events. Altogether, complete non-sequential
semantics represent minimal causalities.

Therefore, an important aim of each semantical framework for the definition of a
non-sequential semantics of particular formalisms for concurrent systems is that a non-
sequential semantics is defined sound and complete w.r.t. the step semantics of the for-
malism. In this paper we consider this aim for Petri nets. These are one of the most
prominent formalisms for understanding the concurrency phenomenon on the theoreti-
cal as well as the conceptual level and for modeling of real concurrent systems in many
application areas [7]. The most important and well-known concept of non-sequential
semantics of Petri nets are process semantics based on occurrence nets [4,5]. From the
very beginning of Petri net theory processes were based on partial orders relating events
labeled by transitions (an event represents the occurrence of a transition): Any process
directly defines a respective partial order among events, called the associated run, in
which unordered events are considered to be concurrent. Since adding causality to a
run still leads to possible system behavior, a non-sequential semantics of a Petri net can
also be given as the set of sequentializations of runs (a sequentialization adds causality)
of the net. This set is also called causal semantics of the net, since it describes its causal
behavior. Note that in most cases partial orders are suitable to describe such behavior
but sometimes generalizations of partial orders are needed as appropriate causal struc-
tures. In the case of inhibitor nets under the so-called a-priori semantics [6], so called
stratified order structures (so-structures) represent the causal semantics.

Since the basic developments of Petri nets, more and more different Petri net classes
for various applications have been proposed. It turned out to be not easy to define
process semantics and related causality semantics in the form of runs for such net
classes. Therefore, in [13] (in the context of defining respective semantics for inhibitor
nets) a semantical framework aiming at a systematic presentation of process and causal-
ity semantics of different Petri net models was developed (see Figure 3 in Section 3):
Any process semantics should fulfill the reasonable aims stated by the framework.

186 G. Juhás, R. Lorenz, and S. Mauser

These aims are reduced to several properties that have to be checked in a particular
practical setting. The most important of these aims is the soundness of process seman-
tics and causality semantics w.r.t. step semantics as described above. For Petri nets,
soundness means that each observation generated by a process or a run is a possible
step occurrence sequence of the Petri net. But this general framework – as well as many
other particular process definitions for special Petri net classes – does not regard the
described aim of completeness. In the Petri net context, process and causality seman-
tics are complete w.r.t. step semantics if each causality structure consistent with the step
semantics adds causality to or is equal to some run of the Petri net. Instead another aim
of the framework from [13] requires a kind of weak completeness, saying that each step
occurrence sequence should be generated by some process.

For place/transition nets (p/t-nets) a labeled partial order (LPO) which is consistent
with the step semantics is called enabled [17,18,8]. It was shown in [11] that an LPO is
enabled if and only if it is a sequentialization of a run corresponding to a process (see
also [17,18,8]). Thus, process and causality semantics of p/t-nets are sound and com-
plete w.r.t. step semantics. In particular, from the completeness we deduce that enabled
LPOs with minimal causal dependencies between events (thus maximal concurrency)
– so called minimal enabled LPOs – are generated by processes.1 This is an essen-
tial property of p/t-net processes and justifies their success as non-sequential semantics
describing system behavior.

Therefore, the aim of completeness should also hold for process semantics of other
Petri net classes. To this end, we included it in the semantical framework of [13]. We will
discuss the aim of completeness for process definitions of inhibitor nets. As stated in
[15], ”Petri nets with inhibitor arcs are intuitively the most direct approach to increasing
the modeling power of Petri nets”. Moreover inhibitor nets have been found appropriate
in various application areas [1,3]. Accordingly, for these net classes various authors
proposed process definitions regarding different interpretations of the occurrence rule
of inhibitor nets. In this paper we will focus on the most general class of pti-nets and
its process definition from [13].2 We show that the general a-priori process definition
of [13] does not fulfill the aim of completeness and propose appropriate changes of the
process semantics. Thus we develop an alternative process definition which fulfills the
complete semantical framework of Figure 3 including the aim of completeness.

As mentioned in the context of the a-priori semantics, LPOs are not expressive
enough to describe the causal behavior of a pti-net. Instead, so-structures are used on
the causal level. Thus the aim of completeness can be formulated for this net class in the
following way: For any enabled so-structure there is a process with associated run in
the form of an so-structure such that the enabled so-structure sequentializes the run. As
in the case of LPOs, an so-structure is enabled if it is consistent with the step semantics
of pti-nets in the above described sense.

The paper is structured as follows: First the basic notions of pti-nets, processes of
pti-nets, so-structures (see [13]) and enabled so-structures are introduced (section 2).
Then in section 3 the semantical framework of [13] will be discussed in the context of

1 In case of p/t-nets and their processes (runs), not each enabled LPO is a run and there are also
non-minimal runs, but each minimal enabled LPO is a minimal run.

2 We will briefly consider alternative process definitions for inhibitor nets in the conclusion.

Complete Process Semantics for Inhibitor Nets 187

introducing a new requirement – the aim of completeness. Subsequently in the main
part of the paper (section 4) we will show why the a-priori process semantics for pti-
nets in [13] does not fulfill the aim of completeness. Based on these considerations
we propose an alternative process semantics implementing the complete semantical
framework including the aim of completeness.

2 Preliminaries

In this section we recall the basic definitions of so-structures, pti-nets (equipped with the
a-priori semantics) and process nets of pti-nets, and finally define enabled so-structures.

Given a set X we will denote the set of all subsets of X by 2X and the set of all
multi-sets over X by N

X . A set can always be viewed as a multi-set m with m ≤ 1 and
correspondingly a multi-set m ≤ 1 can always be viewed as a set. We further denote
the identity relation over X by idX , the reflexive, transitive closure of a binary relation
R over X by R∗, the transitive closure of R by R+ and the composition of two binary
relations R, R′ over X by R ◦ R′.

Inhibitor nets are an extension of classical Petri nets enhanced with inhibitor arcs. In
their simplest version inhibitor arcs test whether a place is empty in the current mark-
ing (zero-testing) as an enabling condition for transitions. In the most general version
of pti-nets, inhibitor arcs test if a place contains at most a certain number of tokens
given by weights of the inhibitor arcs (instead of zero-testing). In pictures inhibitor arcs
are depicted by arcs with circles as arrowheads. Figure 1 shows a pti-net, where the
transitions t and v test a place to be empty and transition w tests a place to hold at most
one token. As explained in [6,12,13], ”earlier than” causality expressed by LPOs is not
enough to describe causal semantics of pti-nets w.r.t. the a-priori semantics. In Figure 1
this phenomenon is depicted: In the a-priori semantics the testing for absence of tokens
(through inhibitor arcs) precedes the execution of a transition. Thus t cannot occur later
than u, because after the occurrence of u the place connected with t by an inhibitor
arc (with weight 0 representing zero-testing) is marked. Consequently the occurrence
of t is prohibited by this inhibitor arc. Therefore t and u cannot occur concurrently
or sequentially in order u → t. But they still can occur synchronously or sequentially
in order t → u, because of the occurrence rule ”testing before execution” (details on
the occurrence rule can be found later on in this section). This is exactly the behavior
described by ”t not later than u”. After firing t and u we reach the marking in which
every non-bottom and non-top place of the net NI contains one token. With the same
arguments as above the transitions v and w can occur in this marking synchronously
but not sequentially in any order. The relationship between v and w can consequently
be expressed by a symmetric ”not later than” relation between the respective events -
none may occur later than the other. The described causal behavior of NI is illustrated
through the run κ(AON) on the right side of Figure 1. The solid arcs represent a (com-
mon) ”earlier than” relation. Those events can only occur in the expressed order but not
synchronously or inversely. Dashed arcs depict the ”not later than” relation explained
above. Partial orders can only model the ”earlier than” relation, but it is not possible to
describe relationships as in the example between t and u as well as between v and w,
where synchronous occurrence is possible but concurrency is not existent.

188 G. Juhás, R. Lorenz, and S. Mauser

t u

v w

2
1

t u

v w

t u

v w

NI AON κ(AON)

Fig. 1. A pti-net NI (inhibitor arcs have circles as arrowheads), an a-process AON of NI and
the associated run κ(AON)

Altogether there exist net classes including inhibitor nets where synchronous and
concurrent behavior has to be distinguished.3 In [6] causal semantics based on so-
structures (like the run κ(AON)) consisting of a combination of an ”earlier than” and a
”not later than” relation between events were proposed to cover such cases.

Before giving the definition of stratified order structures (so-structures), we recall
the notion of a directed graph. This is a pair (V, →), where V is a finite set of nodes
and →⊆ V ×V is a binary relation over V called the set of arcs. Given a binary relation
→, we write a → b to denote (a, b) ∈ →. Two nodes a, b ∈ V are called independent
w.r.t. → if a �→ b and b �→ a. We denote the set of all pairs of nodes independent w.r.t.
→ by co→ ⊆ V ×V . A (strict) partial order is a directed graph po = (V, <), where <
is an irreflexive and transitive binary relation on V . If co< = idV then (V, <) is called
total. Given two partial orders po 1 = (V, <1) and po 2 = (V, <2), we say that po 2 is
a sequentialization (or extension) of po 1 if <1⊆<2.

So-structures are, loosely speaking, combinations of two binary relations on a set
of events where one is a partial order representing an ”earlier than” relation and the
other represents a ”not later than” relation. Thus, so-structures describe finer causalities
than partial orders. Formally, so-structures are relational structures satisfying certain
properties. A relational structure (rel-structure) is a triple S = (V, ≺, �), where V is
a set (of events), and ≺ ⊆ V × V and � ⊆ V × V are binary relations on V . A rel-
structure S′ = (V, ≺′, �′) is said to be an extension (or sequentialization) of another
rel-structure S = (V, ≺, �), written S ⊆ S′, if ≺ ⊆ ≺′ and � ⊆ �′.

Definition 1 (Stratified order structure). A rel-structure S = (V, ≺, �) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u, v, w ∈ V :

(C1)u �� u. (C3)u � v � w ∧ u �= w =⇒ u � w.
(C2)u ≺ v =⇒ u � v. (C4)u � v ≺ w ∨ u ≺ v � w =⇒ u ≺ w.

In figures, ≺ is graphically expressed by solid arcs and � by dashed arcs. According to
(C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs which

3 Further examples of such net classes are briefly mentioned in the conclusion.

Complete Process Semantics for Inhibitor Nets 189

can be deduced by (C3) and (C4). It is shown in [6] that (V, ≺) is a partial order (thus
a partial order can always be interpreted as an so-structure with � = ≺). Therefore,
so-structures are a generalization of partial orders. They turned out to be adequate to
model the causal relations between events of complex systems regarding sequential,
concurrent and synchronous behavior. In this context ≺ represents the ordinary ”earlier
than” relation (as in partial order based systems) while � models a ”not later than”
relation (recall the example of Figure 1).

Similar to the notion of the transitive closure of a binary relation the ♦-closure S♦ of
a rel-structure S = (V, ≺, �) is defined by S♦ = (V, ≺S♦ , �S♦) = (V, (≺∪�)∗ ◦≺◦
(≺ ∪ �)∗, (≺ ∪ �)∗ \ idV). A rel-structure S is called ♦-acyclic if ≺S♦ is irreflexive.
The ♦-closure S♦ of a rel-structure S is an so-structure if and only if S is ♦-acyclic
(for this and further results on the ♦-closure see [6]).

For our purposes we will only consider labeled so-structures (LSOs). Nodes of an
LSO represent transition occurrences of a Petri net (constituted by node labels as in
Figure 1). Formally LSOs are so-structures S = (V, ≺, �) together with a set of labels
T and a labeling function l : V → T . A labeling function l is lifted to a subset Y of V
in the following way: l(Y) is the multi-set over T given by l(Y)(t) = |l−1(t) ∩ Y | for
every t ∈ T . We use the notations defined for so-structures also for LSOs.

We introduce an important subclass of so-structures similar to the subclass of total
orders in the case of partial orders.

Definition 2 (Total linear so-structure). An so-structure S = (V, ≺, �) is called total
linear if co≺ = (�\≺) ∪ idV . The set of all total linear extensions (or linearizations)
of an so-structure S′ is denoted by lin(S′).

Total linear so-structures are maximally sequentialized in the sense that no further ≺-
or �- relations can be added maintaining the requirements of so-structures according to
Definition 1. Therefore the linearizations lin(S′) of an so-structure S′ are its maximal
extensions. Note that a total linear so-structure lin = (V, ≺, �) represents a sequence
of (synchronous) steps τ1 . . . τn (we also write lin = τ1 . . . τn). A (synchronous) step
is a set of cyclic �-ordered events (forming a so called �-clique – such events can only
occur synchronously as explained in the context of Figure 1) and the sequential ordering
is caused by ≺-relations between these steps. That means τ1 . . . τn and (V, ≺, �) are
related through V =

⋃n
i=1 τi, ≺ =

⋃
i<j τi × τj and � = ((

⋃n
i=1 τi × τi) \ idV) ∪ ≺.

For example, the linearizations of the run κ(AON) in Figure 1 are the sequences of
(synchronous) steps tu{v, w} and {t, u}{v, w}. By abstracting from the nodes of a
total linear LSO lin = (V, ≺, �, l) representing τ1 . . . τn, every step (set) of events τi

can be interpreted as a step (multi-set) l(τi) of transitions using the labeling function.
This is a general principle. That means we will interpret such a (synchronous) step
sequence τ1 . . . τ of events based on a total linear LSO lin = (V, ≺, �, l) as a sequence
σlin = l(τ1) . . . l(τn) of (synchronous) transition steps in a Petri net. Thus, we often do
not distinguish total linear LSOs and respective sequences of transition steps in a Petri
net. Lastly we need the notion of prefixes of so-structures. These are defined by subsets
of nodes which are downward closed w.r.t. the �-relation:

190 G. Juhás, R. Lorenz, and S. Mauser

Definition 3 (Prefix). Let S = (V, ≺, �) be an so-structure and let V ′ ⊆ V be a set
of events such that u′ ∈ V ′, u � u′ =⇒ u ∈ V ′. Then V ′ is called prefix w.r.t. S. A
prefix V ′ of u ∈ V \ V ′ is a prefix w.r.t. S satisfying (v ≺ u =⇒ v ∈ V ′).

The prefixes w.r.t. κ(AON) in Figure 1 are the event sets {t}, {t, u} and {t, u, v, e}.
The only prefix of w is {t, u}, since v and w may not occur in a prefix of w (w � v)
and u has to occur in a prefix of w (u ≺ w). We have the following relation between
prefixes and linearizations of so-structures:

Lemma 1. Let V ′ be a prefix (of u ∈ V) w.r.t. an so-structure S = (V, ≺, �), then
there exists lin ∈ lin(S) such that V ′ is a prefix (of u) w.r.t. lin.

Proof. lin = τ1 . . . τn can be constructed as follows: τ1 = {v ∈ V ′ | ∀v′ ∈ V ′ :
v′ �≺ v}, τ2 = {v ∈ V ′ \ τ1 | ∀v′ ∈ V ′ \ τ1 : v′ �≺ v} and so on, i.e. we define
τi ⊆ V ′ as the set of nodes {v ∈ V ′ \ (

⋃i−1
j=1 τj) | ∀v′ ∈ V ′ \ (

⋃i−1
j=1 τj) : v′ �≺ v}

which are minimal w.r.t. the restriction of ≺ onto the node set V ′\(
⋃i−1

j=1 τj), as long as

V ′\(
⋃i−1

j=1 τj) �= ∅. Then continue with the same procedure on V \V ′ = V \(
⋃i

j=1 τj),
i.e. τi+1 = {v ∈ V \ (

⋃i
j=1 τj) | ∀v′ ∈ V \ (

⋃i
j=1 τj) : v′ �≺ v} and so on. By

construction V ′ is a prefix (of u) w.r.t. lin. A straightforward computation also yields
lin ∈ lin(S). �

A prefix V ′ w.r.t. a total linear so-structure lin = τ1 . . . τn always represents a primary
part of the respective (synchronous) step sequence, i.e. V ′ =

⋃
j≤i τj for some i ∈

{0, . . . , n}. If V ′ is a prefix of u, then u ∈ τi+1.
Next we present the net class of pti-nets (p/t-nets with weighted inhibitor arcs). As

usual, a p/t-net is a triple N = (P, T, W), where P is a finite set of places, T is a finite
set of transitions and W : (P × T) ∪ (T × P) → N is the weight function representing
the flow relation. The pre- and post-multi-set of a transition t ∈ T are the multi-sets of
places given by •t(p) = W (p, t) and t• (p) = W (t, p) for all p ∈ P . This notation can
be extended to U ∈ N

T by •U(p) =
∑

t∈U U(t) •̇t(p) and U• (p) =
∑

t∈U U(t)ṫ• (p)
for all p ∈ P . Analogously we can define pre- and post-multi-sets of multi-sets of places
as multi-sets of transitions. Each m ∈ N

P is called a marking of N and each U ∈ N
T

is called a step of N . U is enabled to occur in m if and only if m ≥ •U . In this case,
its occurrence leads to the marking m′ = m − •U + U• .

Definition 4 (Pti-net). A marked pti-net is a quadruple NI = (P, T, W, I, m0), where
Und(NI) = (P, T, W) is a p/t-net (the underlying net of NI), m0 the initial marking of
NI and I : P × T → N ∪ {∞} is the inhibitor (weight) function (we assume ∞ > n
for every n ∈ N). For a transition t the negative context −t ∈ (N ∪ {∞})P is given
by −t(p) = I(p, t) for all p ∈ P . For a step of transitions U , −U ∈ (N ∪ {∞})P is
given by −U(p) = min({∞}∪{ −t(p) | t ∈ U}). A place p with −t(p) �= ∞ is called
inhibitor place of t.

A step of transitions U is (synchronously) enabled to occur in a marking m if and
only if it is enabled to occur in the underlying p/t-net Und(NI) and in addition m ≤
−U . The occurrence of U leads to the marking m′ = m − •U + U• . This is denoted

by m
U−→ m′. A finite sequence of steps of transitions σ = U1 . . . Un, n ∈ N, is

Complete Process Semantics for Inhibitor Nets 191

called a step (occurrence) sequence enabled in a marking m and leading to mn, denoted

by m
σ−→ mn, if there exists a sequence of markings m1, . . . , mn such that m

U1−→
m1

U2−→ . . .
Un−→ mn. By EX (NI) we denote the set of all step sequences of a marked

pti-net NI .

Note that I(p, t) = k ∈ N implies that t can only occur if p does not contain more than
k tokens (as explained in the context of the inhibitor arc connected with w in Figure 1);
k = 0 coincides with zero-testing. Accordingly I(p, t) = ∞ means that the occurrence
of t is not restricted through the presence of tokens in p. Thus a p/t-net can always be
interpreted as a pti-net with I ≡ ∞. In graphic illustrations, inhibitor arcs are drawn
with circles as arrowheads and annotated with their weights (see Figure 1). Inhibitor
arcs with weight ∞ are completely omitted and the inhibitor weight 0 is not shown
in diagrams. The definition of enabledness in Definition 4 reflects the considerations
about the a-priori testing explicated above: the inhibitor constraints are obeyed before
the step of transitions is executed. For an example, see Figure 1 and the explanations at
the beginning of this section.

Now we introduce the process semantics for pti-nets as presented in [13]. The prob-
lem is that the absence of tokens in a place – this is tested by inhibitor arcs – cannot
be directly represented in an occurrence net. This is solved by introducing local extra
conditions and read arcs – also called activator arcs – connected to these conditions.
These extra conditions are introduced ”on demand” to directly represent dependencies
of events caused by the presence of an inhibitor arc in the net. The conditions are artifi-
cial conditions without a reference to inhibitor weights or places of the net. They only
focus on the dependencies that result from inhibitor tests. Thus, activator arcs repre-
sent local information regarding the lack of tokens in a place. The process definition of
[13] is based on the usual notion of occurrence nets extended by activator arcs. These
are (labeled) acyclic nets with non-branching places (conditions) (since conflicts be-
tween transitions are resolved). By abstracting from the conditions one obtains an LSO
representing the causal relationships between the events. In the following definition B
represents the finite set of conditions, E the finite set of events, R the flow relation and
Act the set of activator arcs of the occurrence net.

Definition 5 (Activator occurrence net). A labeled activator occurrence net (ao-net)
is a five-tuple AON = (B, E, R, Act, l) satisfying:

– B and E are finite disjoint sets,
– R ⊆ (B × E) ∪ (E × B) and Act ⊆ B × E,
– | •b|, |b• | ≤ 1 for every b ∈ B,
– the relational structure S(AON) = (E, ≺loc, �loc, l|E) = (E, (R◦R)|E×E ∪(R◦

Act), (Act−1 ◦ R) \ idE , l|E) is ♦-acyclic,
– l is a labeling for B ∪ E.

The LSO generated by AON is κ(AON) = (E, ≺AON, �AON, l|E) = S(AON)♦.

The relations ≺loc and �loc represent the local information about causal relationships
between events. Figure 2 shows their construction rule. κ(AON) captures all (not only
local) causal relations between the events (see also Figure 1). Note that Definition 5 is
a conservative extension of common occurrence nets by read arcs.

192 G. Juhás, R. Lorenz, and S. Mauser

Fig. 2. Generation of the orders ≺loc and �loc in ao-nets

The initial marking MINAON of AON consists of all conditions without incoming
flow arcs (the minimal conditions w.r.t. R). The final marking MAXAON of AON con-
sists of all conditions without outgoing flow arcs (the maximal conditions w.r.t. R).
There are two different notions of configurations and slices for ao-nets. A set of events
D ⊆ E is a strong configuration of AON, if e ∈ D and f ≺+

loc e implies f ∈ D. D is
called a weak configuration of AON, if e ∈ D and f(≺loc ∪�loc)+e implies f ∈ D. A
strong slice of AON is a maximal (w.r.t. set inclusion) set of conditions S ⊆ B which
are incomparable w.r.t. the relation R ◦ ≺∗

loc ◦ R, denoted by S ∈ SSL(AON). A weak
slice of AON is a maximal (w.r.t. set inclusion) set of conditions S ⊆ B which are
incomparable w.r.t. the relation R ◦ (≺loc ∪ �loc)∗ ◦ R, denoted by S ∈ WSL(AON).
In the example occurrence net from Figure 1 |WSL| = 4 and |SSL| = 12.

Every weak configuration is also a strong configuration and every weak slice is also
a strong slice. In [13] it is shown that the set of strong slices of AON equals the set of
all sets of conditions which are generated by firing the events of a strong configuration.
An analogous result holds for weak slices and weak configurations. SSL(AON) equals
the set of all sets of conditions reachable from the initial marking MINAON in AON
and WSL(AON) equals the set of all sets of conditions from which the final marking
MAXAON is reachable in AON (using the standard a-priori occurrence rule of elemen-
tary nets with read arcs [13]). By MAR(C) we denote the marking resulting from the
initial marking of a net by firing the multi-set of transitions corresponding to a (weak
or strong) configuration C.

Now we are prepared to define processes of pti-nets as in [13]. The mentioned artifi-
cial conditions are labeled by the special symbol �. They are introduced in situations,
when a transition t ∈ T tests a place in the pre- or post-multi-set of another transition
w ∈ T for absence of tokens, i.e. when I(p, t) �= ∞ and •w(p) + w• (p) �= 0 for
some p ∈ P . Such situations are abbreviated by w � t. If w � t holds, then any
two occurrences f of w and e of t are adjacent to a common �-condition representing
a causal dependency of f and e. That means there exists a condition b ∈ B̃ such that
(b, e) ∈ Act and •f(b) + f• (b) �= 0 (remember that •f, f• ∈ BN are multi-sets over
B) – abbreviated by f �• e (see requirement 6. in Definition 6). Thus the axiomatic
process definition in [13] is as follows:

Definition 6 (Activator process). An activator process (a-process) of NI is an ao-net
AON = (B � B̃, E, R, Act, l) satisfying:

1. l(B) ⊆ P and l(E) ⊆ T .
2. The conditions in B̃ = {b | ∃e ∈ E : (b, e) ∈ Act} are labelled by the special

symbol �.

Complete Process Semantics for Inhibitor Nets 193

3. m0 = l(MINAON ∩ B).
4. For all e ∈ E, •l(e) = l(•e ∩ B) and l(e)• = l(e• ∩ B).
5. For all b ∈ B̃, there are unique g, h ∈ E such that •b + b• = {g}, (b, h) ∈ Act

and l(g) � l(h).
6. For all e, f ∈ E, if l(f) � l(e) then there is exactly one c ∈ B̃ such that f �• e

through c.
7. For all e ∈ E and S ∈ SSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then

l(S ∩ B) ≤ −l(e).

The set of a-processes of NI (given by this axiomatic definition) is denoted by α(NI).
For AON ∈ α(NI) the generated so-structure κ(AON) is called a run (associated to
AON).

The occurrence net AON in Figure 1 is indeed an a-process: All �-labeled conditions
satisfy 5. All �-labeled conditions which are necessary according to 6. are drawn. Con-
dition 7. must be simply verified for the strong slices produced by strong configura-
tions, e.g. MAR(∅), MAR({t}), MAR({u}), MAR({u, t}) and so on. Thus, κ(AON)
is a run.

The requirements 1., 3., 4. in Definition 6 represent common features of processes
well-known from p/t-nets. They ensure that a-processes constitute a conservative gen-
eralization of common p/t-net processes. That means, the set of processes of Und(NI)
coincides with the set of processes resulting from α(NI) by omitting the �-labeled
conditions (omitting the �-conditions from an a-process AON leads to the so called un-
derlying process UAON of AON). If NI has no inhibitor arcs (thus NI = Und(NI))
a-processes coincide with common processes. Thus, Definition 6 can also be used to de-
fine processes of p/t-nets. The properties 2. and 5. together with the rule 6. – describing
when �-conditions have to be inserted – constitute the structure of the �-conditions.
The requirement 7. expresses that in the strong slices of AON the inhibitor constraints
of the pti-net have to be properly reflected. That means, for events enabled in a certain
slice of AON the respective transitions are also enabled in the respective marking in the
pti-net NI .

We finally formally define, when we consider an LSO S to be consistent with the step
semantics EX of a given pti-net (Definition 4). Such LSOs we call enabled (w.r.t. the
given pti-net). Intuitively it is clear what enabledness means: The transitions associated
to the events of an LSO can be executed in the net regarding all given concurrency
and dependency relations. For the formal definition the concurrency and dependency
relations described by S are reduced to the set of step sequences sequentializing S
(given by lin(S)). Such step sequences can be considered as observations of S, where
transition occurrences within a step are observed at the same time (synchronously), and
step occurrences are observed in the order given by the step sequence. If each such
observation of S is an enabled step occurrence sequences of the pti-net, S is consistent
with the step semantics.

Definition 7 (Enabled LSO). An LSO S = (V, ≺, �, l) is enabled w.r.t. a marked pti-
net NI = (P, T, W, I, m0) if and only if every lin ∈ lin(S) represents an enabled
(synchronous) step sequence σlin in EX (NI) (of NI). ELCS(NI) is the set of all
so-structures enabled w.r.t. a given marked pti-net NI .

194 G. Juhás, R. Lorenz, and S. Mauser

With this definition one can easily check that the run κ(AON) in Figure 1 is enabled
w.r.t. NI: The two linearizations of κ(AON) represent the sequences of synchronous
steps tu{v, w} and {t, u}{v, w} which are both executable in NI .

Definition 7 is consistent with and a proper generalization of the notion of enabled
LPOs in the context of p/t-nets: An LPO lpo = (V, ≺, l) with l : V → T is enabled
w.r.t. a marked p/t-net (P, T, W, m0) if each step sequence which extends lpo is a step
occurrence sequence enabled in m0. Since in LPOs concurrent and synchronous tran-
sition occurrences are not distinguished, here a step is considered as a set of events
labeled by transitions (transition occurrences) which are concurrent.

Beside the consistency of Definition 7 with the definition of enabled LPOs, there
are two general semantical arguments justifying this definition: First the set of total lin-
ear LSOs lin(S), which are tested for enabledness in the Petri net, represents S. This is
shown in [6] by the following generalization of Szpilrajns theorem [16] to so-structures:
S = (V,

⋂
(V,≺,�)∈lin(S) ≺,

⋂
(V,≺,�)∈lin(S) �). Second the set lin(S) can express ar-

bitrary concurrency relations between transition occurrences of a pti-net, since con-
currency equals the possibility of sequential occurrence in any order and synchronous
occurrence. Thus, considering more generally sequences of concurrent steps of syn-
chronous steps instead of simply sequences of synchronous steps does not lead to a
higher expressivity of concurrency. These two arguments justify the choice of synchro-
nous step sequences as the operational semantics (of executions) of pti-nets. Thus the
definition of enabled LSOs based on synchronous step sequences and total linear LSOs
constitutes the adequate causal semantics.

3 The Semantical Framework

In [13] a general framework for dealing with process semantics of Petri nets was pro-
posed (see Figure 3, left part). It aims at a support for a systematic development of
process and causality semantics for various Petri net classes using a common scheme.

In Figure 3 the abbreviations mean the following. PN represents a Petri net model
together with an operational occurrence rule. EX are executions such as step sequences
in accordance to the occurrence rule employed by PN . LAN represents the process se-
mantics given by labeled acyclic nets such as occurrence nets. LEX are labeled execu-
tions such as step sequences of nets in LAN . Finally, LCS are labeled causal structures
describing net behavior through causality relations between events. The arrows indicate
functions that define and relate the different semantical views. They represent the con-
sistency requirements for process semantics according to this framework. ω yields the
set of executions (step sequences) providing the operational semantics (Definition 4
for pti-nets). α defines the axiomatic process definition (Definition 6). κ associates so
called runs to the process definition (Definition 6); κ(LAN) ⊆ LCS defines the set
of runs of a net. λ represents the operational semantics of the process definition given
by labeled step sequences (defined through a slight modification of the step occurrence
rule of elementary nets with read arcs under the a-priori semantics [13]). Through φ a
labeled execution can be interpreted as an ordinary execution (defined as trivial mod-
ification omitting labels). ε and ι relate a labeled causal structure with its generated

Complete Process Semantics for Inhibitor Nets 195

PN LAN

LCS

LEXEX

α

ω π

φ

κ

λ

ε

ι

PN LAN

LCS

LEXEX

α

ω π

φ

κ

λ

ε

ι

ELCS

δ
ψ

Fig. 3. Left: The semantical framework of [13]. Right: The left semantical framework extended
by the completeness-requirement that any enabled causal structure has to be a sequentialization
of a run; this is depicted through ELCS and the adjacent arcs labeled by δ and ψ

labeled executions (ε respectively ι are given as linearizations respectively intersections
in the case of LSOs). Finally, π represents the operational process definition starting
from executions.

This framework defines reasonable requirements for process semantics. It provides
a schematic approach to ensure that process and causality semantics developed for a
special Petri net class are consistently defined. In [13] the framework is condensed to
five properties that have to be checked in each particular setting. Two of these properties
state that all mappings in Figure 3 are total and all mappings returning sets do not return
the empty set. Consistency is formulated there as the following separated properties:

Soundness: The process definition LAN should be sound w.r.t. the step semantics EX
in the sense that every run should be consistent with the step semantics.
Weak completeness: LAN should be weak complete w.r.t. EX in the sense that EX
should be reproducible from LAN .
Construction of processes from step sequences: A process in LAN should be con-
structible from each step sequence in EX generated by the process (by π).
Consistency of runs and processes (called Fitting in [13])): Processes and correspond-
ing runs should generate the same step sequences.
Runs are reconstructible from step sequences (called Representation in [13])): Runs
from LCS should be reconstructible from step sequences in EX by ι ◦ ε.

But an important feature of process semantics relating runs and step semantics is not
present in this framework. On the one hand, φ◦ε ensures that each run is consistent with
the step semantics (soundness). On the other hand, there is no requirement guarantee-
ing the converse, that each causal structure which is consistent with the step semantics
is generated by a run through adding causality to it (completeness). For p/t-nets this is
fulfilled (as mentioned in the Introduction), since every enabled LPO is a sequentializa-
tion of a run [11]. Together with the reverse statement that runs are enabled (soundness),
completeness guarantees that there are runs and processes which express all valid causal
behavior of the net regarding as much concurrency as possible. That means, the minimal

196 G. Juhás, R. Lorenz, and S. Mauser

causal dependencies in a net are reflected in the process semantics. To represent such
an aim of completeness, we add new relations to the semantical framework (Figure 3,
right part) by the introduction of enabled causal structures ELCS. The arc labeled by
δ represents the definition of enabled labeled causal structures ELCS from the opera-
tional semantics EX . The arc labeled with ψ relates enabled labeled causal structures
(ELCS) and runs (κ(LAN) ⊆ LCS) in the above sense by assigning a run with less
causality to each enabled labeled causal structure (for which such a run exists). For-
mally, a labeled causal structure is said to have less causality then a second one, if each
labeled execution in EX generated by the second one is also generated by the first one
(where the labeled executions generated by a labeled causal structure are given by ε).
Thus, through ψ ◦ δ we add an additional property to the process framework that we
call the aim of completeness.

Definition 8 (Aim of completeness). The mapping δ assigns a set of step sequences
EX onto the set of causal structures ELCS enabled w.r.t. EX . The mapping ψ assigns
a run LCS with less causality to each enabled causal structure in ELCS for which such
a run exists.

The aim of completeness states that the mapping ψ is total, i.e. that each enabled
causal structure adds causality to some run.

The absence of the aim of completeness in the framework of [13] leads to process defin-
itions that do not have to represent minimal causal behavior. According to [13] a process
definition that equals the operational step semantics (processes are step sequences) is
a valid process semantics. But the set of step sequences is not a reasonable process
semantics and process definitions not producing the minimal causalities are not really
useful. The aim of completeness in our framework solves this problem. It implies that
minimal enabled labeled causal structures coincide with (minimal) runs: On the one
hand a minimal enabled labeled causal structure has to be a sequentializations of a run,
on the other hand runs have to be enabled – so runs cannot have less causalities than
minimal enabled labeled causal structures.

4 Process Semantics of Pti-nets

The definition of a-processes from section 2 meets all requirements of the left semanti-
cal framework in Figure 3 as shown in [13]. In the setting of pti-nets the additional aim
of completeness states that each enabled so-structure extends some run of the pti-net.
We show in this section that a-processes do not fulfill the aim of completeness. More-
over, we develop an alternative process definition preserving all the other requirements
of the semantical framework, such that the aim of completeness is fulfilled.

The basic intuition behind the fact that the a-processes from Definition 6 do not
generate minimal causalities is as follows: The definition uses constraints introduced
through artificial �-labeled conditions. They do not have counterparts on the pti-net
level, but rather represent dynamic causal relationships between events. Therefore, it
is possible that the definition of the �-conditions does not reflect the causalities in the
original pti-net such that too many constraints are introduced in the runs generated by

Complete Process Semantics for Inhibitor Nets 197

tu

z

u

t

z

1

t
1

u

z

NI1

AON1.1 κ(AON1.1)

u

t

z

t
1

u

z

AON1.2 κ(AON1.2)

Fig. 4. A pti-net NI1, an a-process AON1.1 of NI1 and the associated run κ(AON1.1) to-
gether with an ao-net AON1.2 that is a candidate to be a process of NI1, and the associated
run κ(AON1.2). This example from [13] shows that a-processes (mandatory) introduce unneces-
sary causalities.

a-processes. In this section we will step by step illustrate via examples why the aim of
completeness does not hold for a-processes and adapt their definition such that this aim
is finally fulfilled (all the other requirements will be preserved).

In the following we give two examples of LSOs enabled w.r.t. a marked pti-net,
which do not extend a run of the considered net. Each of these examples leads to a spe-
cific modification of Definition 6. We assume that events in these examples are labeled
by the identity mapping, i.e. u, t and z are events representing the occurrence of the
transitions l(u) = u, l(t) = t and l(z) = z. The place connected to z by an inhibitor
arc in each example we denote by p.

The first example gave the authors of [13] themselves. The a-process AON1.1 in
Figure 4 shows that the technique of introducing �-labeled conditions according to De-
finition 6 in general generates too many constraints in the associated run κ(AON1.1):
”One may easily verify that we can safely delete one of the activator arcs (but not both),
which leads to another a-process generating weaker constraints than AON1.1”. Indeed,
deleting for example the �-condition between t and z the resulting ao-net AON1.2 is
a reasonable process. The other �-condition orders u and z in sequence u → z and t
can occur concurrently to this sequence. On the other hand, omitting the �-condition
between t and z contradicts 6. of Definition 6 because there holds t � z. That means
AON1.2 is not an a-process (in particular the quoted statement is not exactly true). Thus,
the LSO κ(AON1.2) is enabled but does not sequentialize a run (since it can only be
generated by an ao-net without a �-condition adjacent to t and z). An analogous ob-
servations holds symmetrically when deleting the �-condition between u and z instead
between t and z. Consequently, the first modification of Definition 6 is to replace re-
quirement 6. by requirement 6.’. According to 6.’, the unique condition c ∈ B̃ is only
possible instead of required. Then the problem discussed above is solved and the ao-net
AON1.2 is actually a process.

6.’ For all e, f ∈ E, if f �• e then there is exactly one c ∈ B̃ such that f �• e through
c.

198 G. Juhás, R. Lorenz, and S. Mauser

u

t

z

tu

z

1

t
1

u

z

NI2
AON2 κ(AON2).

Fig. 5. A pti-net NI2, an ao-net AON2 that is a candidate to be a process of NI2, and the
associated run κ(AON2). The ao-net models executable causalities that cannot be generated
with a-processes.

The net NI2 of Figure 5 shows that the aim of completeness is still not fulfilled: If
u and t occur causally ordered in sequence u → t then z can fire concurrently to this
sequence because the place p never contains more than one token. It is even possible to
fire z concurrently to the synchronous step {u, t}. Consequently κ(AON2), requiring
solely that u occurs ”not later than” t, is enabled (check Definition 7). The only pos-
sibility to introduce such a causal dependency between u and t on the process level is
through a �-condition between u and t. This is illustrated by the ao-net AON2 (compare
Figure 2). But according to 5. of Definition 6, AON2 is not an a-process, since l(u) ��
l(t). Thus, a run which is extended by κ(AON2) has no ordering between u, t and z.
This is not possible because such a run is not enabled (the step sequence t → z → u
cannot be fired). That means κ(AON2) does not sequentialize a run. Altogether, in 5.
an important possibility of generating causal dependencies from inhibitor arcs via �-
conditions is not present. Allowing �-conditions as in AON2 solves this problem lead-
ing to a process having κ(AON2) as its associated run. This �-condition represents the
causal dependency of u and t caused by the inhibitor arc (p, z). It reflects the inhibitor
testing of z and not of u or t. A generalization of 5. allowing �-conditions also in sit-
uations as in this example is a next necessary step towards the aim of completeness.
Loosely speaking, we will allow to insert �-conditions additionally in the following
situation: If a transition, testing some place via an inhibitor arc, occurs concurrently to
transitions consuming and producing tokens in this place, these transition occurrences
must eventually be ordered via a �-condition. This �-conditions is intended to ensure
that tokens are consumed not later than produced in order to restrict the maximal num-
ber of tokens in this place according to the inhibitor weight. To this end, we replaces 5.
by the weaker requirement 5.’. It introduces a more general structural construction rule
of �-conditions using this intuition as follows:

5.’ For all b ∈ B̃, there are unique g, h ∈ E such that •b + b• = {g}, (b, h) ∈ Act
and additionally l(g) � l(h) or •l(h) ∩ l(g)• ∩ −z �= ∅ for a z ∈ T .

But the modifications proposed so far still do not ensure that AON2 is a process,
since AON2 does not fulfill 7. of Definition 6: The conditions resulting from only firing
t in the initial marking establish a strong slice S and z fulfills •z ∪ {b ∈ B̃ | (b, z) ∈
Act} ⊆ S. That means that using the standard occurrence rule of elementary nets with
read arcs under the a-priori semantics [13] S constitutes a reachable marking in the
process net and z is enabled in this marking in the process net. But obviously in the pti-
net z is not enabled in the marking resulting from firing t. This problem can be resolved

Complete Process Semantics for Inhibitor Nets 199

as follows: In AON2 the event t can fire in the initial marking, although the �-condition
generates the ordering ”u not later than t”. Thus, firing t in the initial marking disables
u. This means that we could have omitted u from AON2 which leads to a different
ao-net. Consequently, it is a proper assumption that ao-nets should model only such
behavior in which every event of the ao-net actually occurs. Under this assumption,
firing t in the initial marking is not a valid behavior of the ao-net and therefore the
problematic marking S is not a marking of interest. The markings of interest are the
markings reachable from the minimal conditions (MINAON2) in the ao-net from which
we can reach the maximal conditions (MAXAON2). That means, all events of the ao-net
not fired yet can still be executed starting in the respective marking. These markings are
represented by the weak slices of the ao-net. Therefore, we replace 7. by 7.’, where SSL
(strong slices) are replaced by WSL (weak slices) reflecting the above assumption:

7.’ For all e ∈ E and S ∈ WSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then
l(S ∩ B) ≤ −l(e).

This is a generalization of Definition 6 since WSL ⊆ SSL. From the intuitive point
of view the two alternative formulations 7. and 7.’ focus on different aspects: While the
consideration of SSL completely reflects the occurrence rule of elementary nets with
read arcs, the consideration of WSL additionally postulates that no event of the ao-net
may completely be disabled. This second assumption is also used in [13] for defining
the executions LEX through the mapping λ in the semantical framework of Figure
3: λ represents all step sequences of an a-process in LAN in which every event of
the process occurs. In this sense the change of the occurrence rule of ao-nets explained
above is an adaption to the idea of mandatory regarding all events used in the operational
semantics of ao-nets anyway. Therefore, this slightly altered occurrence rule of ao-nets
(that we will use) is completely consistent to the executions of ao-nets and thus even
fits better into the semantical framework.

Replacing 5., 6. and 7. by 5.’, 6.’ and 7.’ in Definition 6 as described here ensures
that the ao-net AON2 is a process. So the above considerations lead to the following
alternative process definition and thus a change of the mapping α in Figure 3 (denoted
by α′ instead of α in Definition 9):

Definition 9 (Complete activator process). A complete activator process (ca-process)
of NI is an ao-net AON = (B � B̃, E, R, Act, l) satisfying:

1. l(B) ⊆ P and l(E) ⊆ T .
2. The conditions in B̃ = {b | ∃e ∈ E : (b, e) ∈ Act} are labelled by the special

symbol �.
3. m0 = l(MINAON ∩ B).
4. For all e ∈ E, •l(e) = l(•e ∩ B) and l(e)• = l(e• ∩ B).
5.’ For all b ∈ B̃, there are unique g, h ∈ E such that •b + b• = {g}, (b, h) ∈ Act

and additionally l(g) � l(h) or •l(h) ∩ l(g)• ∩ −z �= ∅ for a z ∈ T .
6.’ For all e, f ∈ E, if f �• e then there is exactly one c ∈ B̃ such that f �• e through

c.
7.’ For all e ∈ E and S ∈ WSL(AON), if •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S then

l(S ∩ B) ≤ −l(e).

200 G. Juhás, R. Lorenz, and S. Mauser

The set of ca-processes of NI is denoted by α′(NI). For AON ∈ α′(NI) the generated
so-structure κ(AON) is called a run (associated to AON).

Note that the requirements 1.,3.,4. of Definition 6 are preserved in Definition 9 and thus
also ca-processes constitute a conservative generalization of common p/t-net processes.
Omitting the �-conditions from a ca-process AON leads to the so called underlying
process Und(AON) of AON, which is a process of Und(NI). We will show now as
the main result of this paper that the ca-process definition actually fulfills the aim of
completeness. Due to lack of space, we only give a sketch of the proof (which has three
pages). The complete proof can be found in the technical report [10].

Theorem 1. For every enabled LSO S = (E, ≺, �, l) of a pti-net NI there exists a
ca-process AON ∈ α′(NI) whereas S is an extension of the run κ(AON).

Proof (Sketch). The LPO lpoS = (E, ≺, l) underlying S is enabled w.r.t. Und(NI).
Thus there exists a process UAON = (B, E, R′, l′) of Und(NI) fulfilling that lpoS
sequentializes the run κ(UAON). The basic idea is now to construct an ao-net AON
from UAON by adding all �-conditions to UAON which can be added according to
property 5.’ while not producing causal dependencies contradicting S. Then this ao-net
AON = (B�B̃, E, R, Act, l) is the sought ca-process. It is clear that AON satisfies 1. -
4., 5.’ and 6.’. Thus, it only remains to show that AON meets condition 7.’ of Definition
9, i.e. that given e ∈ E and S ∈ WSL(AON) with •e ∪ {b ∈ B̃ | (b, e) ∈ Act} ⊆ S
it holds that l(S ∩ B) ≤ −l(e). For this, we fix a weak configuration C of AON with
S = MAR(C) and show that l(e) is executable in the pti-net after the occurrence of
the transitions corresponding to events in C. To this end, we define a prefix Cpre of
e in S containing as many events from C as possible. Using that S is enabled, we
can deduce that l(e) is executable in the pti-net after the occurrence of the transitions
corresponding to events in Cpre: By Lemma 1 there is lin ∈ lin(S) such that Cpre is a
prefix of e w.r.t. lin. Because S is enabled the total linear so-structure lin = τ1 . . . τn

represents an enabled synchronous step sequence of NI with Cpre =
⋃i−1

j=1 τj and
e ∈ τi (for i ∈ {1 . . . n}). This implies that e can occur after Cpre. Finally Cpre can
be transformed in several steps into the set C and in each step it can be shown that the
transformation does not disable l(e). �

In the following we briefly explain that the other aims of the semantical framework are
still fulfilled by the new process definition:

Soundness: Using Proposition 5.19 of [13] it is easy to see that every run is enabled, i.e.
if AON ∈ α′(NI), then φ(ε(κ(AON))) ⊆ ω(NI).
Consistency of runs and processes: Processes and runs generate the same step se-
quences, i.e. if AON ∈ α′(NI), then ε(κ(AON)) = λ(AON) (that means the rules for
constructing causal relationships between events from processes as shown in Figure 2
are correct). This follows since in proposition 5.19 of [13] this relation was shown for
arbitrary ao-nets (note here that the construction rules of the involved mappings λ, κ
and ε have not changed in contrast to [13], only the process definition constituting the
starting point of this relation is changed).

Complete Process Semantics for Inhibitor Nets 201

Weak completeness: Any execution of the pti-net (EX) given by ω(NI) is generated
from a ca-process, i.e. for any execution σ ∈ EX there exists an ca-process AON ∈
α′(NI) with σ ∈ φ(λ(AON)) (ω(NI) ⊆

⋃
AON∈α′(NI) φ(λ(AON))). This also holds

for ca-processes, because this is the relation generalized in comparison to a-processes
(the aim of completeness is a generalization of the weak completeness property).
Runs are reconstructible from step sequences: Each run is the intersection of all obser-
vations it generates, i.e. ι ◦ ε reconstructs a run. This relation holds because of the gen-
eralization of Szpilrajns theorem to so-structures described in the preliminaries (note
that in this context nothing is changed in contrast to [13]).
Construction of processes from step sequences: There is no obvious way to generalize
the constructive definition of π from [13] because especially the new requirement 6.’ of
Definition 9 is problematic: Now it is no more mandatory but optional to introduce �-
conditions between certain transitions (the transition candidates can be identified with
5.’) and one has to check whether 7.’ holds (7. holds by construction). There is the fol-
lowing constructive process definition that is based directly on the axiomatic definition:
Given an enabled step sequence σ of NI a ca-processes can be generated as follows:

– Construct a usual p/t-net process of Und(NI) (based on an occurrence net) starting
from σ.

– Introduce arbitrary �-labeled conditions in accordance with 5.’ and 6.’ of Definition
9.

– Check 7.’ of Definition 9: if it is fulfilled the construction is finished, else perform
the next step.

– Introduce further �-labeled conditions in accordance with 5.’ and 6.’ of Definition
9, then go back to the previous step.

All processes constructible with this algorithm produce the set of ca-processes π′(σ)
generated by σ. Moreover, the ca-processes generated from a step sequence σ are the
ca-processes having σ (provided with respective labels) as an execution. This algorithm
always terminates because there are only finite many possible �-labeled conditions in
accordance with 5.’ and 6.’ of Definition 9. Introducing all such possible �-conditions
obviously leads to a ca-process, i.e. 7.’ is then fulfilled in step 3. More precisely, the
number of possible �-conditions is at most quadratic in the number of events which
means that the number of repetitions of the steps 3 and 4 of the algorithm is polynomial.
Thus, only checking 7.’ in step 3 may be not efficient, since there exists an exponential
number of (weak) slices in the number of nodes. But current research results on a similar
topic summarized in [14] show that there exists an algorithm polynomial in time solving
this problem: In [14] we present an algorithm (based on flow theory) that can be used
to calculate step 3 in polynomial time (of degree O(n3)). Therefore, with this construc-
tion the requirements interrelated with the mapping π in the semantical framework of
Figure 3 are also fulfilled.

5 Conclusion

In this paper we have developed a general semantical framework that supports the defin-
ition of process semantics and respective causal semantics for arbitrary Petri net classes.

202 G. Juhás, R. Lorenz, and S. Mauser

The framework is based on the semantical framework from [13] additionally requiring
that process semantics should be complete w.r.t. step semantics: Each causal structure
which is consistent to step semantics – such causal structures we call enabled – should
be generated from a process net. Since for the description of causal net behavior of pti-
nets under the a-priori semantics labeled so-structures are applied, the notion of enabled
so-structures has been introduced. We were able to show that the process definition for
pti-nets from [13] is not complete w.r.t. step semantics and to identify a structural gener-
alization of this process definition which is complete (while still satisfying all the other
requirements of the framework of [13]).

Possible further applications of the results of this paper are on the one hand the
usage of the semantical framework on further Petri net classes in order to check existing
process semantics and to evolve new process semantics. In the context of the paper, this
is in particular interesting for existing inhibitor net semantics [19,6,2,12,13,8]: While
most aims of [13] are checked for those process semantics, the new aim of completeness
is not (probably because this is the most complicated aim). Nevertheless a lot of these
process semantics seem to satisfy the aim of completeness (at least for the process
semantics of elementary nets with inhibitor arcs under the a-priori semantics as well
as the a-posteriori semantics there are formal proofs [9]). On the other hand the ca-
processes of this paper constitute a process definition for pti-nets under the a-priori
semantics expressing minimal causalities and can thus be useful e.g. for model checking
algorithms based on unfoldings.

References

1. Billington, J.: Protocol specification using p-graphs, a technique based on coloured petri nets.
In: Reisig, W., Rozenberg, G. [20] pp. 293–330

2. Busi, N., Pinna, G.M.: Process semantics for place/transition nets with inhibitor and read
arcs. Fundam. Inform. 40(2-3), 165–197 (1999)

3. Donatelli, S., Franceschinis, G.: Modelling and analysis of distributed software using gspns.
In: Reisig, W., Rozenberg, G. [20], pp. 438–476

4. Goltz, U., Reisig, W.: The non-sequential behaviour of petri nets. Information and Con-
trol 57(2/3), 125–147 (1983)

5. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Dı́az, J. (ed.) Automata, Lan-
guages and Programming. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983)

6. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)
7. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. In:

Monographs in Theoretical Computer Science, vol. 1-3, Springer, Heidelberg (1992) (1994)
(1997)

8. Juhas, G.: Are these events independend? it depends! Habilitation (2005)
9. Juhas, G., Lorenz, R., Mauser, S.: Synchronous + concurrent + sequential = earlier than +

not later than. In: Proceedings of ACSD 2006, pp. 261–270 (2006)
10. Juhás, G., Lorenz, R., Mauser, S.: Complete process semantics of inhibitor net (2007) Tech-

nical report http://www.informatik.ku-eichstaett.de/mitarbeiter/lorenz/techreports/complete.
pdf

11. Kiehn, A.: On the interrelation between synchronized and non-synchronized behaviour of
petri nets. Elektronische Informationsverarbeitung und Kybernetik 24(1/2), 3–18 (1988)

http://www.informatik.ku-eichstaett.de/mitarbeiter/lorenz/techreports/complete.pdf
http://www.informatik.ku-eichstaett.de/mitarbeiter/lorenz/techreports/complete.pdf

Complete Process Semantics for Inhibitor Nets 203

12. Kleijn, H.C.M., Koutny, M.: Process semantics of p/t-nets with inhibitor arcs. In: Nielsen,
M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 261–281. Springer, Heidelberg
(2000)

13. Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190(1),
18–69 (2004)

14. Lorenz, R., Bergenthum, R., Mauser, S.: Testing the executability of scenarios in general
inhibitor nets. In: Proceedings ACSD 2007 (2007)

15. Peterson, J.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs
(1981)

16. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16, 386–389
(1930)

17. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625.
Springer, Heidelberg (1992)

18. Vogler, W.: Partial words versus processes: a short comparison. In: Rozenberg, G. (ed.) Ad-
vances in Petri Nets: The DEMON Project. LNCS, vol. 609, pp. 292–303. Springer, Heidel-
berg (1992)

19. Vogler, W.: Partial order semantics and read arcs. In: Privara, I., Ruzicka, P. (eds.): MFCS
1997. LNCS, vol. 1295, pp. 508–517. Springer, Heidelberg (1997)

20. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl, Sep-
tember 1996. LNCS, vol. 1492. Springer, Heidelberg (1998)

Behaviour-Preserving Transition Insertions

in Unfolding Prefixes

Victor Khomenko

School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, U.K.

Victor.Khomenko@ncl.ac.uk

Abstract. Some design methods based on Petri nets modify the original
specification by behaviour-preserving insertion of new transitions. If the
unfolding prefix is used to analyse the net, it has to be re-unfolded after
each modification, which is detrimental for the overall performance.

The approach presented in this paper applies the transformations di-
rectly to the unfolding prefix, thus avoiding re-unfolding. This also helps
in visualisation, since the application of a transformation directly to the
prefix changes it in a way that was ‘intuitively expected’ by the user,
while re-unfolding can dramatically change the shape of the prefix. More-
over, rigourous validity checks for several kinds of transition insertions
are developed. These checks are performed on the original unfolding pre-
fix, so one never has to backtrack due to the choice of a transformation
which does not preserve the behaviour.

Keywords: Petri net unfoldings, transition insertions, transformations,
Petri nets, encoding conflicts, STGs, asynchronous circuits.

1 Introduction

Some design methods based on Petri nets modify the original specification by
behaviour-preserving insertion of new transitions. For example, Signal Transi-
tion Graphs (STGs) are a formalism widely used for describing the behaviour of
asynchronous control circuits. Typically, they are used as a specification language
for the synthesis of such circuits [2,5,18]. STGs are a class of interpreted Petri
nets, in which transitions are labelled with the names of rising and falling edges
of circuit signals. In the discussion below, though we have in mind a particu-
lar application, viz. synthesis of asynchronous circuits from STG specifications,
almost all the developed techniques and algorithms are not specific to this ap-
plication domain and suitable for general Petri nets (e.g., one can envisage the
applications to action refinement).

Circuit synthesis based on STGs involves: (i) checking the necessary and suffi-
cient conditions for the STG’s implementability as a logic circuit; (ii) modifying,
if necessary, the initial STG to make it implementable; and (iii) finding an ap-
propriate Boolean cover for the next-state function of each output and internal
signals, and obtaining them in the form of Boolean equations for the logic gates
of the circuit.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 204–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 205

Step (i) of this process may detect state encoding conflicts, which occur when
semantically different reachable markings (i.e., enabling different sets of output
signals) of the STG have the same binary encoding, i.e., the binary vector con-
taining the value of each signal in the circuit, as illustrated in Figures 1(a,b).
A specification containing such encoding conflicts is not directly implementable:
intuitively, at the implementation level the only information available to the cir-
cuit is the encoding, and so it is unable to distinguish between the conflicting
states.

To proceed with the synthesis, one first has to resolve the encoding conflicts
(step (ii) of the process), which is usually done by adding one or more new
internal signals helping to distinguish between conflicting states, as illustrated
in Figures 1(d,e). Hence, the original STG has to be modified by insertion of
new transitions, in such a way that its ‘external’ behaviour does not change.
Intuitively, insertion of new signals extends the encoding vector, introducing
thus additional ‘memory’ helping the circuit to trace the current state.

One of the commonly used STG-based synthesis tools, Petrify [3,5], per-
forms all of these steps automatically, after first constructing the state graph (in
the form of a BDD [1]) of the initial STG specification. While the state graph
based approach is relatively well-studied, the issue of computational complex-
ity for highly concurrent STGs is quite serious due to the state space explosion
problem [17]; that is, even a relatively small STG can (and often does) yield a
very large state space. This puts practical bounds on the size of control circuits
that can be synthesised using such techniques, which are often restrictive, espe-
cially if the STG models are not constructed manually by a designer but rather
generated automatically from high-level hardware descriptions (e.g., Petrify

often fails to synthesise circuits with more than 20–25 signals).
In order to alleviate this problem, Petri net analysis techniques based on

causal partial order semantics, in the form of Petri net unfoldings [6,8], were
applied to circuit synthesis. Since in practice STGs usually exhibit a lot of con-
currency, but have rather few choice points, their complete unfolding prefixes
are often exponentially smaller than the corresponding state graphs; in fact, in
many of the experiments conducted in [8,12] they are just slightly bigger then the
original STGs themselves. Therefore, unfolding prefixes are well-suited for both
visualisation of an STG’s behaviour and alleviating the state space explosion
problem. The papers [12,13,14] present a complete design flow for complex-gate
logic synthesis based on Petri net unfoldings, which completely avoids generating
the state graph, and hence has significant advantage both in memory consump-
tion and in runtime, without affecting the quality of the solutions. Moreover,
unfoldings are much more visual than state graphs (the latter are hard to under-
stand due to their large sizes and the tendency to obscure causal relationships
and concurrency between the events), which enhances the interaction with the
user.

Arguably, the most difficult task in the complex-gate logic synthesis from
STGs is resolution of encoding conflicts, which is usually done by signal inser-
tion. This is the only part of the design flow presented in [12,13,14] which may

206 V. Khomenko

dtack− dsr+ lds+

d−

lds− ldtack−

ldtack+

dsr− dtack+ d+

(a)

00100
00000

10000

01100
01000

11000 10010

01110
01010 11010

M′′ 11010M′

01111 11111 11011

dtack− dsr+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+
ldtack+

d−

dsr− dtack+
d+

(b)

e1

dsr+

e2

lds+

e3

ldtack+

e4

d+

e5

dtack+

e6

dsr−

e7

d−

e8

dtack−

e9

lds−

e10

dsr+

e11

ldtack−

e12

lds+

cut-off

C′ C′′

(c)

dtack− dsr+ csc+ lds+

d−

lds− ldtack−

ldtack+

csc− dsr− dtack+ d+

(d)

001000
000000 100000

100001

011000
010000 110000

100101

011100
010100 110100

M′′ 110101M′

011110 011111 111111 110111

dtack− dsr+ csc+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+
ldtack+

d−

csc− dsr− dtack+
d+

(e)

inputs: dsr , ldtack ; outputs: dtack , lds, d ; internal: csc

Fig. 1. An STG modelling a simplified VME bus controller (a), its state graph with
an encoding conflict between two states (b), a finite and complete unfolding prefix
with two configurations corresponding to the CSC conflict (c), a modified STG where
the encoding conflict has been resolved by adding a new signal csc (d), and its state
graph (e). The order of signals in the binary encodings is: dsr , ldtack , dtack , lds , d [, csc].

require human intervention. In fact, the techniques presented in [14] are tar-
geted at facilitating the interaction with the user, by developing a method for
visualisation of encoding conflicts.

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 207

p1

t1

t2
p2 t3 p4

u p

(a)

p1

t1

t2

cut-off

p2

p2 t3 p4

(b)

p1

t1

t2

cut-off

p2

p2 t3 p4u p

(c)

p1

t1

cut-off

t2 p2

p2

t3 p4

u p

(d)

Fig. 2. A Petri net with the transformation shown in dashed lines (a), an unfolding
prefix before the transformation (b), the ‘intuitively expected’ unfolding prefix of the
modified net (c), and the result of re-unfolding (d). The unfolding algorithm proposed
in [6,8] was used for (b,d).

The tool described in [14] works as follows. First, the STG is unfolded and the
encoding conflicts are computed and visualised. Then a set of potentially useful
signal insertions is computed and arranged according to a certain cost function.
Then the user selects one of these transformations, the STG is modified and the
process is repeated until all the encoding conflicts are eliminated. It is currently
the responsibility of the user to ensure that the selected transformation is valid
— although some validity checks are performed by the tool, it does not guarantee
the correctness. Moreover, some of these correctness checks are performed after
the STG has been modified and re-unfolded, i.e., the tool has to backtrack if the
chosen transformation happens to be incorrect (e.g., due to the user’s mistake).

The approach presented in this paper improves that in [14] in several ways.
First, it applies the transformation not only to the STG, but also directly to
the unfolding prefix, thus avoiding re-unfolding at each step of the method. This
also helps in visualisation, since the application of the transformation directly
to the prefix changes it in a way that was ‘intuitively expected’ by the designer,
while re-unfolding of the modified STG can dramatically change the shape of the
prefix (due to different events being declared cut-off, as illustrated in Figure 2)
to which the designer got ‘used to’. Moreover, rigourous checks of correctness are
developed. These checks are performed on the original unfolding prefix, so the
algorithm never has to backtrack due to the choice of an incorrect transforma-
tion. These features also make the described approach easier for full automation,
as described in [10].

Also, there are some problem-specific advantages. In general, not all the encod-
ing conflicts are resolved by a single transformation (hence the need for multiple it-
erations in the approach of [14]). If the shape of the prefix has changed only slightly
and in a predictable way, the unresolved encoding conflicts computed for the orig-
inal prefix can be transferred to the modified one, which is not generally possible
with re-unfolding. This considerably improves the efficiency of the method.

208 V. Khomenko

It should be noted that performing the transformations directly on the prefix is
not trivial, since one has to guarantee the completeness of the resulting prefix (in
fact, as shown below, näıve algorithms are incorrect). The main difficulty comes
from the need to look beyond cut-off events of the prefix. Though the idea of
transforming the prefix is not new, to our knowledge, this is the first time it is
done with a rigourous proof of correctness. In fact, since the transformed prefix
can be quite different from that obtained by re-unfolding the modified STG, it
is complete in a different sense, and to justify the proposed approach we employ
rather heavy machinery from the unfolding theory, viz. canonical prefixes [11].
Since the formal presentation requires from the reader familiarity with those
techniques, it is delegated (together with all the proofs) to technical report [9]
(available on-line), and this paper is aimed at an informal presentation of the
results.

2 Basic Notions

In this section, we first present basic definitions concerning Petri nets, and then
recall notions related to unfolding prefixes (see also [6,8,11,15]).

2.1 Petri Nets

A net is a triple N
df= (P, T, F) such that P and T are disjoint sets of respec-

tively places and transitions, and F ⊆ (P × T) ∪ (T × P) is a flow relation.
A marking of N is a multiset M of places, i.e., M : P → N = {0, 1, 2, . . .}.
We adopt the standard rules about drawing nets, viz. places are represented as
circles, transitions as boxes, the flow relation by arcs, and markings are shown
by placing tokens within circles. In addition, the following short-hand notation
is used: a transition can be connected directly to another transition if the place
‘in the middle of the arc’ has exactly one incoming and one outgoing arc (see,
e.g., Figures 1(a,c,d)). As usual, •z df= {y | (y, z) ∈ F} and z• df= {y | (z, y) ∈ F}
denote the pre- and postset of z ∈ P ∪ T , and we define •Z df=

⋃
z∈Z

•z and
Z• df=

⋃
z∈Z z•, for all Z ⊆ P ∪ T . We will assume that •t �= ∅, for every t ∈ T .

N is finite if P ∪ T is finite, and infinite otherwise. A net system or Petri net is
a tuple Σ

df= (PΣ , TΣ, FΣ , MΣ) where (PΣ , TΣ , FΣ) is a finite net and MΣ is an
initial marking. Whenever a new Petri net Σ is introduced, the corresponding
elements PΣ , TΣ , FΣ and MΣ are also (implicitly) introduced.

We assume the reader is familiar with the standard notions of the theory of
Petri nets (see, e.g., [15]), such as enabling and firing of a transition, marking
reachability, deadlock, and net boundedness and safeness. A finite or infinite
sequence σ = t1t2t3 . . . of transitions is an execution from a marking M if t1
can fire from M leading to a marking M ′ and σ′ = t2t3 . . . is an execution
from M ′ (an empty sequence of transitions is an execution from any marking).
Moreover, σ is an execution of Σ if it is an execution from MΣ. For a transition
t ∈ TΣ and a finite execution σ we will denote by #tσ the number of occurrences
of t in σ. A transition is dead if no reachable marking enables it, and live if from

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 209

any reachable marking M there is an execution containing it. (Note that being
live is a stronger property than being non-dead.)

2.2 Unfolding Prefixes

A finite and complete unfolding prefix PrefΣ of a Petri net Σ is a finite acyclic
labelled net which implicitly represents all the reachable states of Σ together
with transitions enabled at those states. Intuitively, it can be obtained through
unfolding Σ, by successive firings of transitions, under the following assumptions:
(a) for each new firing a fresh transition (called an event) is generated; (b) for
each newly produced token a fresh place (called a condition) is generated. The
resulting object UnfΣ is called the unfolding of Σ. We will denote by hΣ the
function mapping the events and conditions of UnfΣ to the corresponding places
and transitions of Σ, and if hΣ(x) = y then we will refer to x as being y-labelled
or as an instance of y. UnfΣ is acyclic, and the precedence relation ≺ on its
nodes will be called the causal order.

A configuration C is a finite set of events of UnfΣ such that (i) for every
e ∈ C, f ≺ e implies f ∈ C (i.e., C is causally closed), and (ii) for all distinct
e, f ∈ C, •e ∩ •f = ∅ (i.e., there are no choices between the events of C).
Intuitively, a configuration is a partial-order execution, i.e., an execution where
the order of firing of some of its events (viz. concurrent ones) is not important.
For a transition t of Σ and a configuration C of UnfΣ we will denote by #tC
the number of t-labelled events in C, and for an event e of UnfΣ , [e]Σ will
denote the local configuration of e, i.e., the minimal (w.r.t. ⊂) configuration
of UnfΣ containing e. Moreover, Mark (C) will denote the final marking of C,
i.e., the marking of Σ reached by the execution hΣ(e1)hΣ(e2) . . . hΣ(ek), where
e1, e2, . . . , ek is any total ordering of the events of C consistent with ≺.

UnfΣ is infinite whenever Σ has an infinite execution; however, if Σ has finitely
many reachable states then the unfolding eventually starts to repeat itself and
can be truncated (by identifying a set of cut-off events beyond which it is not
generated), yielding a finite prefix PrefΣ . Unfolding algorithms declare an event e
cut-off if there is a smaller (w.r.t. some well-founded partial order �, called an
adequate order, see [6,11]) corresponding configuration C in the already built part
of the prefix containing no cut-off events and such that Mark ([e]) = Mark (C).
It turns out that prefixes built in this way are complete, i.e., (i) every reachable
marking M of Σ is represented in such a prefix by means of a configuration C
containing no cut-off events and such that Mark (C) = M ; and (ii) all the firings
are preserved, i.e., if a configuration C of PrefΣ containing no cut-off events
can be extended by an event e of UnfΣ then e is in PrefΣ (it may be a cut-off
event). Hence, the unfolding is truncated without loss of information and can,
in principle, be re-constructed from PrefΣ . For example, a finite and complete
prefix of the STG in Figure 1(a) is shown in part (c) of this figure.

Efficient algorithms exist for building finite and complete prefixes [6,8], which
ensure that the number of non-cut-off events in the resulting prefix never ex-
ceeds the number of reachable states of Σ. In fact, complete prefixes are often
exponentially smaller than the corresponding state graphs, especially for highly

210 V. Khomenko

concurrent Petri nets, because they represent concurrency directly rather than
by multidimensional ‘diamonds’ as it is done in state graphs. For example, if
the original Petri net consists of 100 transitions which can fire once in parallel,
the state graph will be a 100-dimensional hypercube with 2100 vertices, whereas
the complete prefix will coincide with the net itself. The experimental results
in [12] demonstrate that high levels of compression can indeed be achieved in
practice.

3 Transformations

In this paper, we are primarily interested in SB-preserving transformations,
i.e., transformations preserving safeness and behaviour (in the sense that the
original and the transformed Petri nets are weakly bisimilar, provided that the
newly inserted transitions are considered silent) of the Petri net. This section
describes several kinds of transition insertions.

3.1 Sequential Pre-insertion

A sequential pre-insertion is essentially a generalised transition splitting, and is
formally defined as follows.

Definition 1 (Sequential pre-insertion). Given a Petri net Σ, a transition
t ∈ TΣ and a non-empty set of places S ⊆ •t, the sequential pre-insertion S � t
is the transformation yielding the Petri net Σu, where

– PΣu
df= PΣ ∪ {p}, where p /∈ PΣ ∪ TΣ is a new place;

– TΣu
df= TΣ ∪ {u}, where u /∈ PΣ ∪ TΣ ∪ {p} is a new transition;

– FΣu
df= (FΣ \ {(s, t)|s ∈ S}) ∪ {(s, u)|s ∈ S} ∪ {(u, p), (p, t)};

– MΣu(q) df= MΣ(q) for all q ∈ PΣ, and MΣu(p) df= 0.

We will write �t instead of S � t if S = •t, and s � t instead of {s} � t. ♦

The picture below illustrates the sequential pre-insertion {p1, p2} � t.

p1

p2

p3

t

q1

q2

q3

=⇒

p1

p2

p3

u p

t

q1

q2

q3

One can easily show that sequential pre-insertion always preserves safeness
and traces (traces are firing sequences with the silent (i.e., newly inserted) tran-
sitions removed). However, in general, the behaviour is not preserved, and so a
sequential pre-insertion is not guaranteed to be SB-preserving. In fact, it can
introduce deadlocks, as illustrated in the picture below.

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 211

=⇒ u p

Hence, one has to impose additional restrictions on the transformation to
guarantee that it is SB-preserving. One can easily show that it is enough to
require that the newly inserted transition never ‘steals’ tokens from the preset of
any enabled transition, i.e., its firing cannot disable any other transition (see [9,
Proposition 1]). This condition is a simple reachability property which can be
efficiently tested on the original unfolding prefix before the transformation: one
has to check that for each transition t′ ∈ S• \ {t} there is no reachable marking
M covering S ∪ •t′. This test is co-NP-complete in the size of the prefix, but in
practice the set S is small, and it can be efficiently performed using, e.g., the
techniques described in [8]. Moreover, in important special cases, e.g., if |S| =
1 or S = •t, simple polynomial algorithms exist, and in the case S• = {t},
the property is always satisfied and so the reachability analysis can be skipped
altogether.

3.2 Sequential Post-insertion

Similarly to sequential pre-insertion, sequential post-insertion is also a generali-
sation of transition splitting, and is formally defined as follows.

Definition 2 (Sequential post-insertion). Given a Petri net Σ, a transition
t ∈ TΣ and a non-empty set of places S ⊆ t•, the sequential post-insertion t � S
is the transformation yielding the Petri net Σu, where

– PΣu
df= PΣ ∪ {p}, where p /∈ PΣ ∪ TΣ is a new place;

– TΣu
df= TΣ ∪ {u}, where u /∈ PΣ ∪ TΣ ∪ {p} is a new transition;

– FΣu
df= (FΣ \ {(t, s)|s ∈ S}) ∪ {(t, p), (p, u)} ∪ {(u, s)|s ∈ S};

– MΣu(q) df= MΣ(q) for all q ∈ PΣ, and MΣu(p) df= 0.

We will write t� instead of t � S if S = t•, and t � s instead of t � {s}. ♦

The picture below illustrates the sequential post-insertion t � {q1, q2}.

p1

p2

p3

t

q1

q2

q3

=⇒

p1

p2

p3

t

p u

q1

q2

q3

One can easily show that sequential post-insertions always preserve safeness
and behaviour, and hence are always SB-preserving.

212 V. Khomenko

3.3 Concurrent Insertion

Concurrent transition insertion can be advantageous for performance, since the
inserted transition can fire in parallel with the existing ones. It is defined as
follows.

Definition 3 (Concurrent insertion). Given a Petri net Σ, two of its tran-

sitions t′, t′′ ∈ TΣ and an n ∈ N, the concurrent insertion t′
‖n−→ t′′ is the

transformation yielding the Petri net Σu, where

– PΣu
df= PΣ ∪ {p, q}, where p, q /∈ PΣ ∪ TΣ are two new places;

– TΣu
df= TΣ ∪ {u}, where u /∈ PΣ ∪ TΣ ∪ {p, q} is a new transition;

– FΣu
df= FΣ ∪ {(t′, p), (p, u), (u, q), (q, t′′)};

– MΣu(s) df= MΣ(s) for all s ∈ PΣ, MΣu(p) df= n and MΣu(q) df= 0.

We will write t′
‖−→ t′′ instead of t′

‖0−→ t′′ and t′
‖•−→ t′′ instead of t′

‖1−→ t′′. ♦

A concurrent insertion can be viewed as a two-stage transformation. In the
first stage, a new place p with n tokens in it is inserted between t′ and t′′;
this transformation will be denoted t′

©n−→ t′′ (or t′
©−→ t′′ or t′

©•−→ t′′ if n
is 0 or 1, respectively), and the resulting Petri net will be denoted Σp. Then,
the sequential pre-insertion p � t′′ is applied. The picture below illustrates the

concurrent insertion t1
‖•−→ t3 (note that the token in p is needed to prevent a

deadlock).

t1 t2 t3

Σ

⇒ t1 t2 t3

Σp

p

⇒ t1 t2 t3

Σu

p u q

In general, concurrent insertions preserve neither safeness nor behaviour. In
fact, safeness is not preserved even if n = 0 (e.g., when in the original net t′

can fire twice without t′′ firing), and deadlocks can be introduced even if n = 1
(e.g., when in the original net t′′ should fire twice before t′ can become enab-
led). Hence, one has to impose additional restrictions on the transformation to
guarantee that it is SB-preserving.

Since (•u)• = {u}, u cannot ‘steal’ a token from the preset of any other
enabled transition, and thus p � t′′ is always SB-preserving. Hence, instead of

investigating the validity of a concurrent insertion t′
‖n−→ t′′, it is enough to

investigate the validity of the corresponding place insertion t′
©n−→ t′′. One can

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 213

observe that if the place inserted by the transformation t′
©n−→ t′′ is implicit1

then the behaviour is preserved. Hence, checking that a place insertion t′
©n−→ t′′

is SB-preserving amounts to checking that the newly inserted place is safe and
implicit in the resulting Petri net Σp; however, these conditions should be checked
using PrefΣ rather than PrefΣp .

Given a place insertion t′
©n−→ t′′ and a finite execution σ of Σ (respectively, a

configuration C of UnfΣ), we define Tokens(σ) df= n+#t′σ−#t′′σ (respectively,
Tokens(C) df= n + #t′C − #t′′C). Intuitively, Tokens(σ) is the final number
of tokens in the newly inserted place (provided that σ is an execution of the
modified Petri net as well), i.e., this is the marking equation (see [15,16]) for this

place. One can observe (see [9, Proposition 2]) that t′
©n−→ t′′ is SB-preserving

iff for any finite execution σ of Σ, Tokens(σ) ∈ {0, 1}, or, equivalently, for any
configuration C of UnfΣ, Tokens(C) ∈ {0, 1}; i.e., t′ and t′′ should alternate in
any execution σ of Σ, and, if n = 0 then t′ should precede t′′ in σ and if n = 1
then t′′ should precede t′ in σ.2 Any execution of Σ or configuration of UnfΣ
violating this condition will be called bad.

One can show (see [9, Corollary 1]) that if t′
©n−→ t′′ is SB-preserving then

either t′ and t′′ are dead or

n =
{

1 if #t′ [e]Σ = 0 for some t′′-labelled event e in PrefΣ

0 otherwise. (1)

In effect, this means that in an SB-preserving place insertion t′
©n−→ t′′, only t′

and t′′ need to be specified, and n can be calculated using (1). Note that even if
t′ and t′′ are dead, (1) still can be used to calculate n, since the choice of n does
not matter in such a case.

Now we show how the correctness conditions formulated above can be checked
using PrefΣ . The main difficulty is that a bad configuration of UnfΣ can contain
cut-off events, and so a part of it can be not in PrefΣ , i.e., one has to look beyond
cut-off events of the prefix.

The key idea of the algorithm below is to check for each cut-off event e with
a corresponding configuration C (note that Mark ([e]Σ) = Mark (C)) that af-
ter insertion of p the final markings of [e]Σp and C will still be equal, i.e., C
will still be a corresponding configuration of e. This amounts to checking that
Tokens([e]Σ) = Tokens(C). It turns out that if this condition holds and there
is a bad configuration in UnfΣ then one can find a bad configuration already in
PrefΣ [9, Proposition 3].

The following algorithm, given t′ and t′′, checks whether the transformation
t′

©n−→ t′′ is SB-preserving, where n ∈ {0, 1} is computed using formula (1). The
computation is performed using PrefΣ (no need to unfold the modified net).
1 A place p is called implicit if the absence of tokens in it can never be the sole reason

of any transition in p• being disabled, i.e., if for each reachable marking M such that
M(p) = 0 and for each transition t ∈ p•, M(p′) = 0 for some place p′ ∈ •t \ {p},
see [16].

2 This property is closely related to the concept of synchronic distance [15].

214 V. Khomenko

Algorithm 1 (Checking correctness of a place insertion)

Inputs PrefΣ and a place insertion t′
©n−→ t′′ in Σ.

Step 1 If Tokens([e]Σ) /∈ {0, 1} for some instance e of t′ or t′′ in PrefΣ then
reject the transformation and terminate.

Step 2 If Tokens([e]Σ) �= Tokens(C) for some cut-off event e of PrefΣ with a
corresponding configuration C then reject the transformation and terminate.

Step 3 Accept the transformation.

One can show (see [9, Proposition 3]) that Algorithm 1 never accepts a
non-SB-preserving transformation.3 However, sometimes it can reject an SB-
preserving transformation at Step 2. Nevertheless, this is conservative, and [9,
Proposition 5] shows that if t′ or t′′ is live (i.e., in practically important cases)
then Algorithm 1 is exact. Moreover, this algorithm runs in polynomial (in the
size of PrefΣ) time.

4 Insertions in the Prefix

Unfolding algorithms [6,8] compute at each step the set of possible extensions,
i.e., the set of events which can be appended to the currently built part of the
prefix. Since even the simpler problem of checking if this set is non-empty is NP-
complete in the size of the prefix [7, Section 4.4], and the unfolding algorithms
perform many such steps, their runtime can be quite large.

This section explains how to perform a transition insertion directly in the
prefix, avoiding thus a potentially expensive re-unfolding. The main technical
difficulty is that the resulting prefix can be very different from the one obtained
by re-unfolding Σu, as illustrated in Figure 2. Thus it is not trivial to prove
the completeness of the former prefix. For this, we obtain a characterisation of
this prefix using a different adequate order, and apply the theory of canonical
prefixes developed in [11] (the details can be found in the technical report [9]).

First, we establish the relationship between the configurations of UnfΣ and
UnfΣu , assuming that Σu is obtained from Σ by a sequential pre- or post-
insertion of a transition u. Below we denote by ⊕ the operation of extending
a configuration by an event: C ⊕ e

df= C ∪ {e}, provided that C and C ∪ {e}
are configurations and e /∈ C. Let C be a configuration of UnfΣ and Cu be a
configuration of UnfΣu . It turns out that:

1. The set ψ(Cu) df= {e ∈ Cu | hΣu(e) �= u} is a configuration of UnfΣ .
2. There exists a unique configuration ϕ(C) of UnfΣu containing no causally

maximal instances of u and such that ψ(ϕ(C)) = C. Moreover, there are

3 In general, a cut-off event e can have multiple corresponding configurations. However,
in practice only one of them is stored with the cut-off event. Hence one can imagine
a situation when a cut-off event has several corresponding configurations and the
property Tokens([e]Σ) = Tokens(C) holds for some of them but not the others. One
can observe that Algorithm1 rejects a non-SB-preserving transformation no matter
which of these configurations was stored with e.

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 215

p1

t1

t2
p2

p3

t3 p4

u p

(a)

p1

t1

t2

p2

p2

p3

t3 p4

(b)

p1

t1

t2

p2

p2

p3

t3 p4

u p

(c)

p1

t1

t2

p2

p2

p3

t3 p4

u p

u p

(d)

Fig. 3. A Petri net with the transformation shown in dashed lines (a), its unfol-
ding before the transformation (b), the incomplete unfolding prefix obtained by näıve
splitting (c), and a complete unfolding prefix after the transformation (d)

at most two configurations in UnfΣu , ϕ(C) and ϕ(C) ⊕ e (where hΣu(e) =
u), such that ψ(ϕ(C)) = ψ(ϕ(C ⊕ e)) = C. We define by ϕ(C) the latter
configuration if it exists, and ϕ(C) df= ϕ(C) otherwise.

Now, assuming that � is an adequate order on the configurations of UnfΣ ,
we define the relation �u on the configurations of UnfΣu as C′ �u C′′ iff either
ψ(C′)�ψ(C′′) or ψ(C′) = ψ(C′′) and #uC′ < #uC′′. It turns out that �u is an
adequate order on the configurations of UnfΣu [9, Proposition 7], and if one runs
the unfolding algorithm for Σu using �u as the adequate order and with some
other minor changes discussed in [9, Propositions 8, 9] then the resulting prefix
will coincide with that obtained by modifying PrefΣ using one of the algorithms
discussed below.

4.1 Sequential Pre-insertion

Given a sequential pre-insertion S � t, we now show how to build PrefΣu from
PrefΣ . (Note that S � t is not necessarily SB-preserving.) First of all, it should
be noted that the näıve algorithm which simply splits each t-labelled event is,
in general, incorrect: it can result in an incomplete prefix or even in an object
which is not an unfolding prefix, as illustrated in Figures 3 and 4. Below we
describe an algorithm based on a different idea. It inserts an instance of u in
every position in the prefix where it is possible (much like a step of the unfolding
algorithm) and then ‘re-wires’ the instances of t.

216 V. Khomenko

p1

t1

t2

p2 u p

p3

t3 p4

(a)

p1

p2

t1

t2

p3

p3

t3

t3

p4

p4

(b)

p1

p2

t1

t2

p3

p3

t3

t3

p4

p4

u

u

p

p

(c)

p1

p2

t1

t2

p3

p3

t3

t3

p4

p4

u p

(d)

Fig. 4. A Petri net with the transformation shown in dashed lines (a), its unfolding
before the transformation (b), the result of näıve splitting which is not an unfolding
prefix due to the redundancy of nodes (c), and the correct unfolding after the trans-
formation (d)

Algorithm 2 (Sequential pre-insertion in the prefix)

Inputs PrefΣ and a sequential pre-insertion S � t in Σ.
Outputs A complete prefix of Σu.

Step 1 For each co-set4 X containing no post-cut-off conditions and such that
hΣ(X) = S, create an instance of the new transition u, and make X its
preset; create also an instance of the new place p, and make it the postset of
the inserted transition instance.

Step 2 For each t-labelled event e (including cut-off events), let X ⊆ •e be such
that hΣ(X) = S (note that X is a co-set); moreover, let f be the (unique)
u-labelled event with the preset X, and c be the p-labelled condition in f•.
Remove the conditions in X from the preset of e, and add c there instead.

Step 3 For each cut-off event e with a corresponding configuration C, replace
the corresponding configuration of e by ϕ(C).

It is shown in [9, Proposition 8] that Algorithm 2 yields a correct prefix even
if the pre-insertion is not SB-preserving (some additional information about the
form of the resulting prefix is also given there).

4 A set X of conditions of PrefΣ is a co-set if the conditions in X can be simultaneously
marked, i.e., if there is a configuration C of PrefΣ such that X ⊆ (min≺ PrefΣ ∪
C•) \ •C, where min≺ PrefΣ is the set of causally minimal conditions of PrefΣ .

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 217

In the worst case, the performance of this algorithm can be quite poor, since
there can be an exponential in the size of the prefix number of co-sets X such
that hΣ(X) = S, and even a simpler problem of checking if there exists such
a co-set is NP-complete. However, this algorithm still favourably compares to
re-unfolding, since it is very similar to a single step of the unfolding algorithm.
Moreover, in important special cases, e.g., if |S| = 1 or S = •t, this algorithm
can be implemented to run in polynomial time.

4.2 Sequential Post-insertion

Given a sequential post-insertion t � S, we now show how to build PrefΣu from
PrefΣ . (Recall that sequential post-insertions are always SB-preserving, and so
there is no need to check the validity of t � S.) The algorithm presented below
is based on splitting u-labelled events, but special care should be taken when
handling cut-off events (a näıve approach may result in an incomplete prefix,
as illustrated in Figure 5). In particular, if a corresponding configuration C of
a cut-off event e has an instance e′ of t as a maximal event then e is not split
(just its postset is amended), and the corresponding configuration becomes ϕ(C)
(i.e., the instance of u after e′ is not included into it).

Unfortunately, it may be no longer possible to choose the corresponding con-
figurations of some of the cut-off events. In general, it is difficult to guarantee
completeness without re-unfolding parts of the prefix, and the algorithm be-
low can sometimes terminate unsuccessfully. In such a case, one either can re-
unfold the Petri net (and thus the algorithm can be seen as a relatively cheap
test whether a potentially much more expensive re-unfolding can be avoided)
or simply discard the transformation (which makes sense when there are many
alternative transformations to choose from).

Below, a configuration C of PrefΣ is called u-extendible if there is a t-labelled
event g ∈ C such that no instance c ∈ g• of a place from S is in the preset of
any event of C. (Intuitively, if C is u-extendible then the configuration ϕ(C) of
PrefΣu can be extended by an instance of u).

Algorithm 3 (Sequential post-insertion in the prefix)

Inputs PrefΣ and a sequential post-insertion t � S in Σ.
Outputs A complete prefix of Σu.

Step 1 If there is a cut-off event e with a corresponding configuration C such
that [e]Σ is u-extendible and C is not u-extendible then terminate unsuccess-
fully.

Step 2 For each t-labelled event e (including cut-off events): let X ⊆ e• be
the (unique) co-set satisfying hΣ(X) = S. In the postset of e replace the
conditions in X by a new instance c of p. If e is not a cut-off event then
create a new instance of u with the preset {c} and the postset X.

Step 3 For each cut-off event e of PrefΣ with a corresponding configuration C:
replace the corresponding configuration of e by ϕ(C) if [e]Σ is u-extendible
and by ϕ(C) otherwise. (In the latter case the corresponding configuration
may become non-local, even if C was local).

218 V. Khomenko

p1

t2

t1

p2

p3 t3

p u

(a)

p1

t2

cut-off

t1

p2

p3

p2

p3 t3
(b)

p1

t2

t1

p u

cut-off

p2

p3

p2

p3 t3
(c)

p1

t2

t1

p u

cut-off

p2

p3

p2

p3 t3

t3

(d)

Fig. 5. A Petri net with a sequential post-insertion shown by dashed lines (a), its
unfolding before the transformation (b), the incomplete unfolding prefix obtained as
the result of näıve splitting (c), and a complete unfolding prefix after the transforma-
tion (d)

It is shown in [9, Proposition 9] that if Algorithm 3 successfully terminates
then the result is correct (some additional information about the form of the
resulting prefix is also given there). Moreover, it runs in polynomial (in the size
of PrefΣ) time.

4.3 Concurrent Insertion

For clarity of presentation, the concurrent insertion t′
‖n−→ t′′ in the prefix is

performed in two stages: first, a place insertion t′ ©n−→ t′′ is done, followed by
the sequential pre-insertion p � t′′, as explained in Section 3.3. (In practice, these
two stages can easily be combined.) Furthermore, we assume that Algorithm 1

accepts the transformation t′
©n−→ t′′. The following algorithm, given such a

place insertion, builds PrefΣp from PrefΣ. Intuitively, PrefΣp is obtained by
adding a few p-labelled conditions to PrefΣ , and appropriately connecting them
to instances of t′ and t′′.

Algorithm 4 (Place insertion in the prefix)

Inputs PrefΣ and a place insertion t′
©n−→ t′′ in Σ accepted by Algorithm 1.

Outputs A complete prefix of Σp.

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 219

Step 1 If n = 1 then create a new p-labelled (causally minimal) condition.
Step 2 For each t′-labelled event e (including cut-off events), create a new p-

labelled condition c and the arc (e, c).
Step 3 For each t′′-labelled event e (including cut-off events): If #t′ [e]Σ = 0

then create a new arc (c, e), where c is the causally minimal p-labelled con-
dition created in Step 1; else create a new arc (c, e), where c is the (unique)
p-labelled condition in the postset of the (unique) causally maximal t′-labelled
predecessor of e.

It is shown in [9, Proposition 10] that if Algorithm 1 accepts a place inser-

tion t′
©n−→ t′′ then Algorithm 4 is correct (some additional information about

the form of the resulting prefix is also given there). This follows from the fact
that Algorithm 4 introduces no new causal constraints, since the instances of t′′

consume only the conditions produced by their causal predecessors (or the one
created in Step 1 of the algorithm), and so PrefΣp has the same set of configura-
tions as PrefΣ . Thus the adequate order does not change, and there is no need
for the algorithm to amend the corresponding configurations of cut-off events.

Algorithm 4 runs in polynomial (in the size of PrefΣ) time. Moreover, the
algorithm performing a concurrent insertion in the prefix (composed of Algo-
rithm 4 followed by Algorithm 2) is also polynomial, since the pre-insertion p � t′′
is a special case for which Algorithm 2 can be implemented to run in polynomial
time.

5 Optimisation

This section discusses several techniques allowing one to reduce the number of
transformations which have to be considered, as well as to propagate informa-
tion across different iterations of the algorithm for resolving encoding conflicts,
avoiding thus repeating the same validity checks.

5.1 Equivalent Transformations

Sometimes a sequential post-insertion t � S yields essentially the same net as
a sequential pre-insertion S′ � t′, where t ∈ ••t′; in particular, this happens if
S ∪ S′ ⊆ t• ∩ •t′ and |•p| = |p•| = 1 for all p ∈ S ∪ S′. In such a case there is no
reason to distinguish between these two transformations, e.g., one can convert
the post-insertion into an equivalent pre-insertion whenever possible. Moreover,
since post-insertions are always SB-preserving, there is no need to check the
validity of the resulting transformation.

5.2 Commutative Transformations

Two transformations commute if the result of their application does not depend
on the order they are applied. (Note that a transformation can become ill-defined

220 V. Khomenko

after applying another transformation, e.g., t � {p, q} becomes ill-defined after
applying t � p.) One can observe that:

– a concurrent insertion always commutes with any other transition insertion;
– a sequential pre-insertion and a sequential post-insertion always commute;
– two sequential pre-insertions S � t and S′ � t′ commute iff t �= t′ or S ∩S′ = ∅;
– two sequential post-insertions t �S and t′ �S′ commute iff t �= t′ or S ∩S′ = ∅.

It is important to note that an SB-preserving transition insertion remains SB-
preserving if another commuting SB-preserving transition insertion is applied
first. Hence transformations whose validity has been checked can be cached, and
after some transformation has been applied, the non-commuting transformations
are removed from the cache and the new transformations that became possible in
the modified Petri net are computed, checked for validity and added to the cache.
(In particular, in our application domain, there is no need to check the validity
of a particular transformation if it was checked in some preceding iteration of
the algorithm for resolving encoding conflicts.)

A composite transition insertion is a transformation defined as the composi-
tion of a set of pairwise commutative transition insertions. Clearly, if a composite
transition insertion consists of SB-preserving transition insertions then it is SB-
preserving, i.e., one can freely combine SB-preserving transition insertions, as
long as they are pairwise commutative. This property comes useful for our ap-
plication domain [10]: typically, several transitions of a new internal signal have
to be inserted on each iteration of the algorithm for resolving encoding conflicts,
in order to preserve the consistency [2,5] of the STG, i.e., the property that for
every signal s, the following two conditions hold: (i) in all executions of the STG,
the first occurrence of a transition of s has the same sign (either rising of falling);
(ii) the rising and falling transitions of s alternate in every execution. (Consis-
tency is a necessary condition for implementability of an STG as a circuit.) For
example, in Figure 1(d) a composite transformation comprising two commuting
SB-preserving sequential insertions (adding the new transitions csc+ and csc−)
has been applied in order to resolve the encoding conflict while preserving the
consistency of the STG.

6 Conclusions

In this paper, algorithms for checking correctness of several kinds of transition
insertions and for performing them directly in the unfolding prefix are presented.
The main advantage of the proposed approach is that it avoids re-unfolding.
Moreover, it yields a prefix similar to the original one, which is advantageous for
visualisation and allows one to transfer some information (e.g., the yet unresolved
encoding conflicts) from the original prefix to the modified one.

The algorithms described in this paper have been implemented in our tool
MPSat, and successfully applied to resolution of encoding conflicts in STGs [10].
Though some of these algorithms are conservative, in practice good transfor-
mations are rarely rejected. In fact, the experimental results conducted in [10]

Behaviour-Preserving Transition Insertions in Unfolding Prefixes 221

showed that when MPSat was aiming at optimising the area of the circuit, the
resulting circuits were in average 8.8% smaller than those produced by Pet-

rify. This is an indication that in this application domain there are usually
many available transformations, and so rejecting a small number of them is not
detrimental.

In future work, we intend to extend the method to other transformations, in
particular concurrency reduction [4].

Acknowledgements. The author would like to thank Walter Vogler for help-
ful comments. This research was supported by the Royal Academy of Engine-
ering/Epsrc post-doctoral research fellowship EP/C53400X/1 (Davac).

References

1. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35-8, 677–691 (1986)

2. Chu, T.-A.: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifi-
cations. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology (1987)

3. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: PET-
RIFY: a Tool for Manipulating Concurrent Specifications and Synthesis of Asyn-
chronous Controllers. IEICE Transactions on Information and Systems E80-D(3),
315–325 (1997)

4. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Auto-
matic Handshake Expansion and Reshuffling Using Concurrency Reduction. In:
Proc. HWPN’98, pp. 86–110 (1998)

5. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer, Heidelberg (2002)

6. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

7. Heljanko, K.: Deadlock and Reachability Checking with Finite Complete Prefi-
xes. Technical Report A56, Laboratory for Theoretical Computer Science, Helsinki
University of Technology (1999)

8. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, Newcastle University (2003)

9. Khomenko, V.: Behaviour-Preserving Transition Insertions in Unfolding Prefixes.
Technical Report CS-TR-952, School of Computing Science, Newcastle Univer-
sity (2006) URL: http://homepages.cs.ncl.ac.uk/victor.khomenko/papers/
papers.html

10. Khomenko, V.: Efficient Automatic Resolution of Encoding Conflicts Using
STG Unfoldings. Technical Report CS-TR-995, School of Computing Science,
Newcastle University (2007) URL: http://homepages.cs.ncl.ac.uk/victor.
khomenko/papers/papers.html

11. Khomenko, V., Koutny, M., Vogler, V.: Canonical Prefixes of Petri Net Unfoldings.
Acta Informatica 40(2), 95–118 (2003)

12. Khomenko, V., Koutny, M., Yakovlev, A.: Detecting State Coding Conflicts in STG
Unfoldings Using SAT. Fundamenta Informaticae 62(2), 1–21 (2004)

http://homepages.cs.ncl.ac.uk/victor.khomenko/papers/papers.html
http://homepages.cs.ncl.ac.uk/victor.khomenko/papers/papers.html
http://homepages.cs.ncl.ac.uk/victor.khomenko/papers/papers.html
http://homepages.cs.ncl.ac.uk/victor.khomenko/papers/papers.html

222 V. Khomenko

13. Khomenko, V., Koutny, M., Yakovlev, A.: Logic Synthesis for Asynchronous Cir-
cuits Based on Petri Net Unfoldings and Incremental SAT. Fundamenta Informat-
icae 70(1–2), 49–73 (2006)

14. Madalinski, A., Bystrov, A., Khomenko, V., Yakovlev, A.: Visualization and Re-
solution of Coding Conflicts in Asynchronous Circuit Design. IEE Proceedings:
Computers and Digital Techniques 150(5), 285–293 (2003)

15. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proc. of the
IEEE, 7(4):541–580 (1989)

16. Silva, M., Teruel, E., Colom, J.M.: Linear Algebraic and Linear Programming Tech-
niques for the Analysis of Place/Transition Net Systems. In: Reisig, W., Rozenberg,
G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 309–373.
Springer, Heidelberg (1998)

17. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 429–528. Springer,
Heidelberg (1998)

18. Yakovlev, A., Lavagno, L., Sangiovanni-Vincentelli, A.: A Unified Signal Transi-
tion Graph Model for Asynchronous Control Circuit Synthesis. Formal Methods
in System Design 9(3), 139–188 (1996)

Combining Decomposition and Unfolding

for STG Synthesis

Victor Khomenko1 and Mark Schaefer2

1 School of Computing Science, Newcastle University, UK
victor.khomenko@ncl.ac.uk

2 Institute of Computer Science, University of Augsburg, Germany
mark.schaefer@informatik.uni-augsburg.de

Abstract. For synthesising efficient asynchronous circuits one has to
deal with the state space explosion problem. In this paper, we present a
combined approach to alleviate it, based on using Petri net unfoldings
and decomposition.

The experimental results show significant improvement in terms of
runtime compared with other existing methods.

Keywords: Asynchronous circuit, STG, Petri net, decomposition, un-
folding, state space explosion.

1 Introduction

Asynchronous circuits are a promising type of digital circuits. They have lower
power consumption and electro-magnetic emission, no problems with clock skew
and related subtle issues, and are fundamentally more tolerant of voltage, tem-
perature and manufacturing process variations. The International Technology
Roadmap for Semiconductors report on Design [ITR05] predicts that 22% of the
designs will be driven by ‘handshake clocking’ (i.e., asynchronous) in 2013, and
this percentage will raise up to 40% in 2020.

Signal Transition Graphs, or STGs [Chu87, CKK+02], are widely used for
specifying the behaviour of asynchronous control circuits. They are interpreted
Petri nets in which transitions are labelled with the rising and falling edges of
circuit signals. An STG specifies which outputs should be performed at a given
state and, at the same time, it describes assumptions about the environment,
which can send an input only if it is allowed by the STG. We use the speed-
independent model with the following properties:

– Input and outputs edges can occur in an arbitrary order.
– Wires are considered to have no delay, i.e., a signal edge is received simul-

taneously by all listeners.
– The circuit must work properly according to its formal description under

arbitrary delays of each gate.

Synthesis based on STGs involves: (a) checking sufficient conditions for the im-
plementability of the STG by a logic circuit; (b) modifying, if necessary, the

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 223–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 V. Khomenko and M. Schaefer

initial STG to make it implementable; and (c) finding appropriate Boolean next-
state functions for non-input signals.

A commonly used tool, Petrify [CKK+97], performs all these steps auto-
matically, after first constructing the reachability graph of the initial STG spec-
ification. To gain efficiency, it uses symbolic (BDD-based [Bry86]) techniques to
represent the STG’s reachable state space. While this state-space based approach
is relatively simple and well-studied, the issue of computational complexity for
highly concurrent STGs is quite serious due to the state space explosion prob-
lem [Val98]; that is, even a relatively small STG can (and often does) yield a
very large state space. This puts practical bounds on the size of control cir-
cuits that can be synthesised using such techniques, which are often restrictive
(e.g., Petrify often fails to synthesise circuits with more that 25–30 signals),
especially if the STG models are not constructed manually by a designer but
rather generated automatically from high-level hardware descriptions, such as
Balsa [EB02] or Tangram [Ber93].

In order to alleviate this problem, Petri net analysis techniques based on
causal partial order semantics, in the form of Petri net unfoldings, were applied
to circuit synthesis. Since in practice STGs usually exhibit a lot of concurrency,
but have rather few choice points, their complete unfolding prefixes are often
exponentially smaller than the corresponding state graphs; in fact, in many of the
experiments conducted in [Kho03, KKY04] they are just slightly bigger than the
original STGs themselves. Therefore, unfolding prefixes are well-suited for both
visualisation of an STG’s behaviour and alleviating the state space explosion
problem. The papers [KKY04, KKY06, MBKY03] present a complete design
flow for complex-gate logic synthesis based on Petri net unfoldings, which avoids
generating the state graph at all stages, and hence has significant advantage
both in memory consumption and in runtime, without affecting the quality of
the solutions. Moreover, unfoldings are much more visual than state graphs (the
latter are hard to understand due to their large sizes and the tendency to obscure
causal relationships and concurrency between the events), which enhances the
interaction with the user.

The unfolding-based approach can often synthesise specifications which are
by orders of magnitude larger than those which can be synthesised by the state-
space based techniques. However, this is still not enough for practical circuits.
Hence, we combine the unfolding approach with decomposition. Intuitively, a
large STG can be decomposed into several smaller ones, whose joint behaviour
is the same as that of the original STG. Then these smaller components can be
synthesised, one by one, using the unfolding-based approach. STG decomposition
was first presented in [Chu87] for live and safe free-choice nets with injective la-
belling, and then generalised to STGs with arbitrary structure in [VW02, VK05].

This combined framework can cope with quite large specifications. It has been
implemented using a number of tools:

Punf — a tool for building unfolding prefixes of Petri nets [Kho03].
Mpsat — a tool for verification and synthesis of asynchronous circuits; it uses

unfolding prefixes built by Punf, see [KKY04, KKY06].

Combining Decomposition and Unfolding for STG Synthesis 225

DesiJ — a tool for decomposing an STG into smaller components. It
implements also the techniques of combining decomposition and unfolding
presented in this paper and uses Punf and Mpsat for synthesis of final
components and for verification of some properties during decomposition,
see [VW02, VK05, SVWK06].

2 Basic Definitions

In this section, we present basic definitions concerning Petri nets and STGs, and
recall notions related to unfolding prefixes (see also [ERV02, Kho03, Mur89]).

2.1 Petri Nets

A net is a triple N
df= (P, T, W) such that P and T are disjoint sets of respectively

places and transitions, and W : (P ×T)∪(T ×P) → N = {0, 1, 2, . . .} is a weight
function. A marking M of N is a multiset of places, i.e., M : P → N. We adopt
the standard rules about drawing nets, viz. places are represented as circles,
transitions as boxes, the weight function by arcs, and markings are shown by
placing tokens within circles. In addition, the following short-hand notation is
used: a transition can be connected directly to another transition if the place
‘in the middle of the arc’ has exactly one incoming and one outgoing arc (see,
e.g., Figs. 1(a)). As usual, •z df= {y | W (y, z) > 0} and z• df= {y | W (z, y) > 0}
denote the pre- and postset of z ∈ P ∪ T , and we define •Z df=

⋃
z∈Z

•z and
Z• df=

⋃
z∈Z z•, for all Z ⊆ P ∪ T . We will assume that •t �= ∅, for every t ∈ T .

N is finite if P ∪ T is finite, and infinite otherwise. A net system or Petri net
is a tuple Σ

df= (P, T, W, M0) where (P, T, W) is a finite net and M0 is an initial
marking.

A transition t ∈ T is enabled at a marking M , denoted M [t〉, if, for every
p ∈ •t, M(p) ≥ W (p, t). Such a transition can be fired, leading to the marking
M ′ with M ′(p) df= M(p)−W (p, t)+W (t, p). We denote this by M [t〉M ′. A finite
or infinite sequence σ = t1t2t3 . . . of transitions is a firing sequence of a marking
M , denoted M [σ〉, if M [t1〉M ′ and σ′ = t2t3 . . . is a firing sequence of M ′ (an
empty sequence of transitions is a firing sequence of any marking). Moreover, σ
is a firing sequence of Σ if M0[σ〉. If σ is finite, M [σ〉M ′ denotes that σ is a firing
sequence of M reaching the marking M ′. A marking M ′ is reachable from M if
M [σ〉M ′ for some firing sequence σ. M is called reachable if it is reachable from
M0; [M0〉 denotes the set of all reachable markings of Σ. Two distinct transitions
t1 and t2 are in (dynamic) conflict if there is a reachable marking M , such that
M [t1〉, M [t2〉 but for some place p, W (p, t1) + W (p, t2) > M(p). A dynamic
conflict implies a structural conflict, i.e. •t1 ∩ •t2 �= ∅.

A transition is dead if no reachable marking enables it. A transition is live
if any reachable marking M enables a firing sequence containing it. (Note that
being live is a stronger property than being non-dead.) A net system is called
live if every of its transition is live; it is called reversible if the initial marking is
reachable from every reachable marking.

226 V. Khomenko and M. Schaefer

A net system Σ is k-bounded if, for every reachable marking M and every
place p ∈ P , M(p) ≤ k, safe if it is 1-bounded, and bounded if it is k-bounded
for some k ∈ N. The set of reachable markings of Σ is finite iff Σ is bounded.

2.2 Signal Transition Graphs

A Signal Transition Graph (STG) is a triple Γ
df= (Σ, Z, �) such that Σ is a net

system, Z is a finite set of signals, generating the finite alphabet Z± df= Z×{+, −}
of signal transition labels, and � : T → Z±∪{λ} is a labelling function. The signal
transition labels are of the form z+ or z−, and denote a transition of a signal
z ∈ Z from 0 to 1 (rising edge), or from 1 to 0 (falling edge), respectively. We will
use the notation z± to denote a transition of signal z if we are not particularly
interested in its direction. Γ inherits the operational semantics of its underlying
net system Σ, including the notions of transition enabling and firing sequences,
reachable markings and firing sequences.

We lift the notion of enabledness and firing to transition labels: M [�(t)〉〉M ′ if
M [t〉M ′. This is extended to sequences as usual – deleting λ-labels automatically
since λ is the empty word. A sequence ω of elements of Z± is called a trace of a
marking M of Γ if M [ω〉〉, and a trace of Γ if it is a trace of M0. The language of
Γ , denoted by L(Γ), is the set of all traces of Γ . Γ has a (dynamic) auto-conflict
if two transitions t1 and t2 with �(t1) = �(t2) �= λ are in dynamic conflict.

An STG may initially contain transitions labelled with λ called dummy transi-
tions. They are a design simplification and describe no physical reality. Moreover,
during the decomposition, certain transitions are labelled with λ at intermedi-
ate stages; this relabelling of a transition is called lambdarising a transition, and
delambdarising means to change the label back to the initial value. The set of
transitions labelled with a certain signal is frequently identified with the signal
itself, e.g., lambdarising signal z means to change the label of all transitions
labelled with z± to λ.

We associate with the initial marking of Γ a binary vector v0 df=(v0
1 , . . . , v

0
|Z|) ∈

{0, 1}|Z|, where each v0
i corresponds to the signal zi ∈ Z; this vector contains the

initial value of each signal. Moreover, with any finite firing sequence σ of Γ we
associate an integer signal change vector vσ df= (vσ

1 , vσ
2 , . . . , vσ

|Z|) ∈ Z
|Z|, so that

each vσ
i is the difference between the number of the occurrences of z+

i –labelled
and z−i –labelled transitions in σ.

Γ is consistent1 if, for every reachable marking M , all firing sequences σ from
M0 to M have the same encoding vector Code(M) equal to v0 + vσ, and this
vector is binary, i.e., Code(M) ∈ {0, 1}|Z|. Such a property guarantees that, for
every signal z ∈ Z, the STG satisfies the following two conditions: (i) the first
occurrence of z in the labelling of any firing sequence of Γ starting from M0 has
the same sign (either rising of falling); and (ii) the transitions corresponding to
the rising and falling edges of z alternate in any firing sequence of Γ . In this
paper it is assumed that all the STGs considered are consistent. (The consistency
1 This is a somewhat simplified notion of consistency; see [Sem97] for a more elaborated

one, dealing also with certain pathological cases, which are not interesting in practice.

Combining Decomposition and Unfolding for STG Synthesis 227

of an STG can easily be checked during the process of building its finite and
complete prefix [Sem97]; moreover, all the transformations used in this paper
preserve consistency.) We will denote by Codez(M) the component of Code(M)
corresponding to a signal z ∈ Z.

The state graph of Γ is a tuple SGΓ
df= (S, A, M0,Code) such that: S

df= [M0〉
is the set of states ; A

df= {M
�(t)−→ M ′ | M ∈ [M0〉 ∧ M [t〉M ′} is the set of

state transitions ; M0 is the initial state; and Code : S → {0, 1}|Z| is the state
assignment function, as defined above for markings.

The signals in Z are partitioned into input signals, ZI , and output signals,
ZO (the latter may also include internal signals). Input signals are assumed to
be generated by the environment, while output signals are produced by the logic
gates of the circuit. For each signal z ∈ ZO we define

Outz(M) df=
{

1 if M [z±〉〉;
0 otherwise.

Logic synthesis derives for each output signal z ∈ ZO a Boolean next-state
function Nxtz defined for every reachable state M of Γ as follows:

Nxtz(M) df= Codez(M) ⊕ Outz(M) ,

where ⊕ is the ‘exclusive or’ operation.
The value of this function must be determined without ambiguity by the

encoding of each reachable state, i.e., Nxtz(M) should be a function of Code(M)
rather than of M , i.e., Nxtz(M)=Fz(Code(M)) for some function Fz : {0, 1}|Z|→
{0, 1} (Fz will eventually be implemented as a logic gate). To capture this, let
M ′ and M ′′ be two distinct states of SGΓ . M ′ and M ′′ are in Complete State
Coding (CSC) conflict if Code(M ′) = Code(M ′′) and Outz(M ′) �= Outz(M ′′) for
some output signal z ∈ ZO. Intuitively, a CSC conflict arises when semantically
different reachable states of an STG have the same binary encoding. Γ satisfies
the CSC property if no two states of SGΓ are in CSC conflict. (Intuitively, this
means that each output signal is implementable as a logic gate).

An example of an STG for a data read operation in a simple VME bus
controller (a standard STG benchmark, see, e.g., [CKK+02]) is shown in Fig-
ure 1(a). Part (b) of this figure shows a CSC conflict between two different
states, M1 and M2, that have the same encoding, 10110, but Nxtd (M1) = 0 �=
Nxtd(M2) = 1 and Nxt lds(M1) = 0 �= Nxt lds(M2) = 1. This means that the
values of Fd (1, 0, 1, 1, 0) and Flds(1, 0, 1, 1, 0) are ill-defined (they should be 0
according to M1 and 1 according to M2), and thus these signals are not imple-
mentable as logic gates.

2.3 Unfolding Prefixes

A finite and complete unfolding prefix of an STG Γ is a finite acyclic net
which implicitly represents all the reachable states of Γ together with transitions

228 V. Khomenko and M. Schaefer

dtack−
dsr+

lds−

d−ldtack−

ldtack+

lds+ dtack+ dsr−d+

1M

10110 10110

e4

e9

lds+ d+ dtack+ d−dsr+ ldtack+

core

dsr+

lds+C 1

(c)

(b)(a)

dsr−

csc+

csc−

lds−

ldtack−

dtack−

01111
11111

10111

ldtack+

2M

10100

dsr+dtack−

dtack−
1001000010

01000

01010

10000
00000

lds− lds−

ldtack−ldtack−

lds−
dtack−

ldtack−
dsr+

d+
d− dsr− dtack+

lds+

dsr+

0011001110

conflict

e

CSC

1 e2 e5 e6e3

e8 e10

12e

2C

e7

e11

[lds]= csc·(ldtack·dsr+lds)+d
[dtack]= d

[d]= lds·csc·ldtack+d·dsr
[csc]= d+lds·csc

(d)

inputs: dsr , ldtack ; outputs: lds, d , dtack ; internal: csc

Fig. 1. VME bus controller: the STG for the read cycle (a), its state graph showing a
CSC conflict (b), its unfolding prefix with the corresponding conflict core, and a way
to resolve it by adding a new signal csc (c), and a complex-gate implementation (d).
The signal order in binary encodings is: dsr, dtack, lds, ldtack, d.

enabled at those states. Intuitively, it can be obtained through unfolding Γ , by
successive firings of transitions, under the following assumptions: (i) for each
new firing a fresh transition (called an event) is generated; (ii) for each newly
produced token a fresh place (called a condition) is generated.

The unfolding is infinite whenever Γ has an infinite firing sequence; however,
if Γ has finitely many reachable states then the unfolding eventually starts to
repeat itself and can be truncated (by identifying a set of cut-off events) without
loss of information, yielding a finite and complete prefix. Fig. 1(c) shows a finite
and complete unfolding prefix (with the only cut-off event depicted as a double
box) of the STG shown in Fig. 1(a).

Efficient algorithms exist for building such prefixes [ERV02, Kho03], which
ensure that the number of non-cut-off events in a complete prefix can never
exceed the number of reachable states of Γ . However, complete prefixes are
often exponentially smaller than the corresponding state graphs, especially for
highly concurrent Petri nets, because they represent concurrency directly rather
than by multidimensional ‘diamonds’ as it is done in state graphs. For example,
if the original Petri net consists of 100 transitions which can fire once in parallel,
the state graph will be a 100-dimensional hypercube with 2100 vertices, whereas
the complete prefix will coincide with the net itself.

Since practical STGs usually exhibit a lot of concurrency, but have rather
few choice points, their unfolding prefixes are often exponentially smaller than
the corresponding state graphs; in fact, in many of the experiments conducted
in [Kho03, KKY04] they were just slightly bigger than the original STGs them-
selves. Therefore, unfolding prefixes are well-suited for both visualisation of an
STG’s behaviour and alleviating the state space explosion problem.

Combining Decomposition and Unfolding for STG Synthesis 229

3 Unfolding-Based Synthesis

Due to its structural properties (such as acyclicity), the reachable states of an
STG can be represented using configurations of its unfolding. A configuration C
is a downward-closed set of events (being downward-closed means that if e ∈ C
and f is a causal predecessor of e then f ∈ C) without choices (i.e., for all distinct
events e, f ∈ C, there is no condition c in the unfolding such that the arcs (c, e)
and (c, f) are in the unfolding). Intuitively, a configuration is a partially ordered
firing sequence, i.e., a firing sequence where the order of firing of some of its
events (viz. concurrent ones) is not important.

A CSC conflict can be represented in the unfolding prefix as an unordered
conflict pair of configurations 〈C1, C2〉 whose final states are in CSC conflict,
as shown in Fig. 1(c). It was shown in [KKY04] that the problem of checking if
there is such a conflict pair is reducible to SAT, and an efficient technique for
finding all CSC conflict pairs was proposed.

Let 〈C1, C2〉 be a conflict pair of configurations. The corresponding comple-
mentary set CS is defined as the symmetric set difference of C1 and C2. CS is a
core if it cannot be represented as the union of several disjoint complementary
sets. For example, the core corresponding to the conflict pair shown in Fig. 1(c)
is {e4, . . . , e8, e10} (note that if C1 ⊂ C2 then the corresponding complementary
set is simply C2 \ C1).

One can show that every complementary set CS can be partitioned into C1\C2
and C2 \ C1, where 〈C1, C2〉 is a conflict pair corresponding to CS. Moreover,
if C1 ⊂ C2 then one of these parts is empty, while the other is CS itself. An
important property of complementary sets is that for each signal z ∈ Z, the
differences between the numbers of z+– and z−–labelled events are the same in
these two parts (and are 0 if C1 ⊂ C2). This suggests that a complementary set
can be eliminated (resolving thus the corresponding encoding conflicts), e.g., by
introduction of a new internal signal, csc+, and insertion of its transition into
this set, as these would violate the stated property. (Note that the circuit has
to implement this new signal, and so for the purpose of logic synthesis it is
regarded as an output, though it is ignored by the environment.) To preserve the
consistency of the STG, the transition’s counterpart, csc−, must also be inserted
outside the core, in such a way that it is neither concurrent to nor in structural
conflict with csc+. Another restriction is that an inserted signal transitions must
not trigger an input signal transition (the reason is that this would impose
constraints on the environment which were not present in the original STG,
making it ‘wait’ for the newly inserted signal). Intuitively, insertion of signals
introduces additional memory into the circuit, helping to trace the current state.

The core in Fig. 1(c) can be eliminated by inserting a new signal, csc+, some-
where in the core, e.g., concurrently to e5 and e6 between e4 and e7, and by
inserting its complement outside the core, e.g., concurrently to e11 between e9
and e12. (Note that the concurrent insertion of these two transitions avoids an
increase in the latency of the circuit, where each transition is assumed to con-
tribute a unit delay.) After transferring this signal into the STG, it satisfies the
CSC property.

230 V. Khomenko and M. Schaefer

It is often the case that cores overlap. In order to minimise the number of
performed transformations, and thus the area and latency of the circuit, it is
advantageous to perform such a transformation that as many cores as possi-
ble are eliminated by it. That is, a transformation should be performed in the
intersection of several cores whenever possible.

This idea can be implemented by means of a height map showing the quanti-
tative distribution of the cores. Each event in the prefix is assigned an altitude,
i.e., the number of cores it belongs to. (The analogy with a topographical map
showing the altitudes may be helpful here.) ‘Peaks’ with the highest altitude
are good candidates for insertion, since they correspond to the intersection of
maximum number of cores. This unfolding-based method for the resolution of
encoding conflicts was presented in [MBKY03].

Once the CSC conflicts are resolved, one can derive equations for logic gates
of the circuit, as illustrated in Fig. 1(d). An unfolding-based approach to this
problem has been presented in [KKY06]. The main idea of this approach was
to generate the truth table for each such equation as a projection of a set of
reachable encodings to some chosen support, which can be accomplished with
the help of the incremental SAT technique, and then applying the usual Boolean
minimisation to this table.

The results in [KKY04, MBKY03, KKY06] form a complete design flow for
complex-gate synthesis of asynchronous circuits based on STG unfoldings rather
than state graphs, and the experimental results conducted there show that it
has significant advantage both in memory consumption and in runtime, without
affecting the quality of the solutions.

4 STG Decomposition

In this section, the STG decomposition algorithm of [VW02, VK05] is outlined,
in order to understand the new contributions properly.

Synthesis with STG decomposition works roughly as follows. Given a consis-
tent STG Γ , an initial partition (Ini, Outi)i∈I of its signals is chosen, satisfying
the following properties.

– (Outi)i∈I is a partition of the output signals of the original STG (the sets
Ini may overlap with Inj and Outj if i �= j).

– If two output signals x1, x2 are in structural conflict in Γ , then they have to
be in the same Outi.

– If there are t, t′ ∈ T with t′ ∈ (t•)• (t is called syntactical trigger of t′), then
�(t′) ∈ Outi implies �(t) ∈ Ini ∪ Outi.

Then the algorithm decomposes Γ into component STGs, one for each element
in this partition, together implementing Γ . Each component is obtained from
the original STG by lambdarising the signals which are not in the corresponding
element of the partition, and then contracting the corresponding transitions
(some other net reductions are also applied — see below). Then, from each

Combining Decomposition and Unfolding for STG Synthesis 231

component a circuit is synthesised, and these circuits together implement the
original specification.

Of course, the decomposition must preserve the behaviour of the specification
in some sense. In [VW02, VK05, SV05], the correctness was defined as a variation
of bisimulation, tailored to the specific needs of asynchronous circuits, called
STG-bisimulation.

Typically, the computational effort (in terms of memory consumption and
runtime) needed to synthesise a circuit from an STG Γ is exponential in the size
of Γ . Hence, if the components produced by the decomposition algorithm are
smaller than Γ , the decomposition can be seen as successful. (Note that in the
worst case the components can be as large as the original STG, but this rarely
happens in practice).

We now describe the operations which the algorithm applies to an initial
component until no more λ-labelled transitions remain.

Contraction of a λ-labelled transition. Transition contraction can be applied to
a λ-labelled transition t if •t ∩ t• = ∅, and for each place p, W (t, p), W (p, t) ≤ 1;
it is illustrated in Figure 2. Intuitively, t is removed from the net, together with
its surrounding places •t∪ t•, and the new places, corresponding to the elements
of •t × t•, are added to the net. Each new place (p, q) ∈ •t × t• inherits the
connectivity of both p and q (except that t is no longer in the net), and its
initial marking is the total number of tokens which were initially present in p
and q. (The formal definition of transition contraction can be found in [VW02,
VK05, KS06]).

The contraction is called secure if either (•t)• ⊆ {t} (type-1 secure) or •(t•) =
{t} and M0(p) = 0 for some p ∈ t• (type-2 secure). It is shown in [VW02, VK05]
that secure contractions of λ-labelled transitions preserve the language of the
STG.

p1 p2

p3 p4

t1 t2

t3 t

t4 t5

(a)

p1p3

p1p4

p2p3

p2p4

t1 t2

t3 t4 t5

(b)

Fig. 2. Transition contraction: initial net (a), and the one after contraction of t (b)

Deletion of an implicit place. It is often the case that after a transition contrac-
tion implicit places (i.e., ones which can be removed without changing the firing
sequences of the net) are produced. Such places may prevent further transition
contractions, and should be deleted before the algorithm proceeds.

232 V. Khomenko and M. Schaefer

Deletion of a redundant transition. There are two kinds of redundant transitions.
First, if there are two transitions with the same label which are connected to
every place in the same way, one of them can be deleted without changing the
traces of the STG. Second, a λ-labelled transition t with •t = t• can also be
deleted, since its firing does not change the marking and is not visible on the
level of traces; observe, that this is valid for any marking of the adjacent places.

Backtracking. As it was already mentioned, not every λ-labelled transition can
be contracted by the decomposition algorithm. There are three possible reasons
for this:

– The contraction is not defined (e.g., because •t ∩ t• �= ∅).
– The contraction is not secure (then the language of the STG might change).
– The contraction introduces a new auto-conflict (i.e., a new potential source

of non-determinism which was not present in the specification is introduced;
this is interpreted that the component has not enough information (viz. input
signals) to properly produce its outputs).

If none of the described reduction operations are applicable, but the com-
ponent still has some λ-labelled transitions, backtracking is applied, i.e., one
of these λ-labelled transitions is chosen and the corresponding signal is delamb-
darised, i.e., this input is added to the initial partition and the new corresponding
initial component is derived and reduced from the beginning. This cycle of re-
duction and backtracking is repeated until all λ-labelled transitions of the initial
component can be contracted. This means that backtracking is only needed to
detect these additional input signals; if they are known in advance, one can per-
form decomposition completely without backtracking. (In the worst case, all the
lambdarised signals are delambdarised).

The described decomposition algorithm is non-deterministic, i.e., it can apply
the net reductions in any order; the result has been proven to be always correct.
In [SVWK06], different ways to determinise it are described. One of them was
tree decomposition, which greatly improves the overall efficiency of decomposi-
tion process by re-using intermediate results. Since it is the base for CSC-aware
decomposition introduced below, we describe it briefly.

4.1 Tree Decomposition

In our experiments, it turned out that in most cases some initial components
have many lambdarised signals in common. Therefore, the decomposition al-
gorithm can save time by building an intermediate STG C′, from which these
components can be derived: instead of reducing both initial components inde-
pendently, it is sufficient to generate C′ only once and to proceed separately
with each component afterwards, thus saving a lot of work.

Tree decomposition tries to generate a plan which minimises the total amount of
work using the described idea. We introduce it by means of an example in Figure 3.
Let Γ be an STG with the signal set {1, 2, 3, 4, 5}. Furthermore, let there be three
components C1, C2, C3, and let {1, 2, 3}, {2, 3, 4}, {3, 4, 5} be the signals which

Combining Decomposition and Unfolding for STG Synthesis 233

(a) (b) (c)

2, 3, 41, 2, 3 3, 4, 5 3, 4, 5

2, 3

1 (2, 3) (2, 3) 4 1 (2, 3) (2, 3) 4 (3) 4, 5

3

2 (3)

Fig. 3. Building of a simple decomposition tree for three components and five signals.
Leafs from the left: components C1, C2, C3. (a) the initial situation; (b) two components
merged; (c) the final decomposition tree.

are lambdarised initially in these components. We build a tree guiding the decom-
position process, such that its leafs correspond to the final components, and every
node u is labelled with the set of signals s(u) to be contracted.

In (a) the initial situation is depicted. There are three independent leaves
labelled with the signals which should be contracted to get the corresponding
final component. A possible intermediate STG C′ for C1 and C2 would be the
STG in which signals 2 and 3 have been contracted. In (b), C′ is introduced
as an common intermediate result for C1 and C2; the signals 2 and 3 no longer
have to be contracted in C1 and C2 (they appear in brackets) and the leaves are
labelled with {1} and {4}, respectively. In (c), a common intermediate result for
C′ and C3 with the label {3} is added, yielding the final decomposition tree.

From this use of a decomposition tree, it is clear that in an optimal decom-
position tree the sum of all |s(u)| should be minimal. Decomposition trees are
very similar to preset trees in [KK01]; there it is shown that computing an op-
timal preset tree is NP-complete, and a heuristic algorithm is described which
performs reasonably well. We use this algorithm for the automatic calculation
of decomposition trees.

The decomposition algorithm guided by such a decomposition tree traverses it
in the depth-first order. It enters the root node with the initial STG Γ containing
no lambdarised signals. Upon entering a node u with an STG Γu, the algorithm
lambdarises and contracts the signals s(u) in Γu (and performs other possible
reductions) and enters each child node with its own copy of the resulting STG.2

If u is a leaf, the resulting STG is a final component.3

4.2 CSC-Aware Decomposition

On the basis of tree decomposition, we now introduce CSC-aware decomposition.
Our aim is to reduce the number of CSC conflicts in the components generated
2 As an important technical improvement, the intermediate result of a component is

not copied for each child. Instead, throughout the decomposition, a single STG is
held in memory, and an undo stack is used to restore the ‘parent’ STG whenever the
algorithm returns to the parent node. This is much faster and uses far less memory
than keeping multiple (and potentially large) STGs.

3 There are some twists in this setting considering backtracking, which is handled a bit
different in contrast to ‘ordinary’ decomposition; in particular, the decomposition
tree can be modified during the decomposition process, cf. [SVWK06].

234 V. Khomenko and M. Schaefer

by the decomposition algorithm. Ideally, if the original specification is free from
CSC conflicts then this should be the case also for the components.

During its execution the algorithm has to determine if an STG has CSC
conflicts. This is checked externally with Punf and Mpsat [Kho03, KKY04].
It works essentially as tree decomposition, with the following differences, cf.
Figure 4. When a leaf is reached, we check whether the corresponding final
component has CSC conflicts. If no, the component is saved as the final result.
Otherwise, for each detected CSC core a constituting pair of firing sequences
leading to the conflicting states is stored in the parent of the leaf.

When the algorithm returns to this parent node, it checks whether this CSC
conflict is still present in the local intermediate STG. However, using Mpsat

may be expensive at this point, as the corresponding STG is larger than the
final component. Instead, we map the stored firing sequences from the final
component to this STG using the inverse projections introduced below, and
check if they still lead to states which are in a CSC conflict. For every conflict
which is not destroyed, this results in a new pair of firing sequences which is
propagated upwards in the tree, and so on. On the other hand, if the conflict
disappears, these inverse projections are analysed as described below, and signals
which helped to resolve the conflict are determined and delambdarised in the
corresponding child node, and the algorithm tries to process it again. If no CSC
conflicts remain in the final component (due to the delambdarised signals), it is
saved as the final result.

When all pairs of firing sequences corresponding to CSC conflicts are consid-
ered, the algorithm proceeds with the next child of the current node. If there
are no more children left, it goes up to the parent of the current node and deals
with the corresponding firing sequences. Eventually, the algorithm reaches the
root node for the last time and terminates.

1. contract signals

2. go down to child node

3. contract signals

4. go down to child node

5. contract signals

6. check CSC

6a. fulfiled, output component

6b. not fulfiled, save firirng sequences in parent

7. go up and restore intermediate STG

9. go down to next child

10. eventually, go up and restore intermdiate STG

LEAF

NODE

NODE

8. handle firing sequences from children, possibly move them up to parent

other children

other children

Fig. 4. Outline for CSC-aware decomposition. Step 8 is repeated every time a node is
entered from a child, step 9 includes contraction and detection of CSC conflicts.

Combining Decomposition and Unfolding for STG Synthesis 235

This algorithm is complete, i.e., it guarantees for a specification with CSC
that each component has CSC, too. This is due to the fact that a pair of firing
sequences corresponding to a CSC conflict in a component can be moved up
to the root node (via a sequence of inverse projections), where CSC is given
initially. In practice, one can stop moving up a pair of firing sequences after
several iterations and try to resolve CSC conflicts with new internal signals
instead. Therefore, the algorithm is still applicable to specifications which have
CSC conflicts initially.

The inverse projection of a firing sequence is defined as follows. Let Γ and Γ ′

be two STGs such that Γ ′ is obtained from Γ by a secure contraction of some
transition t. If σ′ is a firing sequence of Γ ′, we call a firing sequence σ of Γ an
inverse projection of σ′ if σ′ is the projection of σ on the transitions of Γ ′.

Since the contraction of t was secure, the inverse projection can be calculated
easily: it is enough to fire the transitions of σ′ in Γ , one by one, while possible. If,
at some point, a transition of σ′ cannot be fired then t is fired (it is guaranteed to
be enabled in such a case). This process is continued until all the transitions of σ′

are fired, yielding σ. One can see that a shortest inverse projection is computed
by the described procedure.

If Γ ′ is obtained from Γ by a sequence of secure contractions, its firing se-
quences can still be inversely projected to Γ by computing a sequence of inverse
projections for each individual contraction.

If Γ ′ has a CSC conflict, there is a corresponding pair of firing sequences
(σ′

1, σ
′
2) such that the corresponding signal change vectors vσ′

1 and vσ′
2 coincide.

If the inverse projection (σ1, σ2) of this pair is such that vσ1 �= vσ2 then the
corresponding conflict is likely to be destroyed by delambdarising the signal
corresponding to the contracted transition.

5 Combining Decomposition and Unfolding Techniques

In this section we describe how our unfolding and decomposition tools can be
used to combine their advantages and to compensate for each other’s shortcom-
ings. Punf and Mpsat can perform logic synthesis, but not for very large STGs.
On the other hand, DesiJ can handle very large STGs quite efficiently because
it performs only local structural operations, but it has to make conservative
assumptions frequently to guarantee correctness.

The strategy we adopted is as follows. While the STGs are large, only struc-
tural conservative checks are made, as it may be computationally very expensive
to perform the exact tests. After some reductions have been performed, it be-
comes feasible to check exact reachability-like properties using Punf and Mpsat

(logic synthesis is still not feasible at this stage). Eventually, when the compo-
nents are small enough, logic synthesis is performed.

While DesiJ can handle and produce non-safe nets, Punf and Mpsat need
safe nets. Therefore, we accept only safe nets as specifications (which is no serious
restriction) and perform only safeness-preserving contractions during decompo-
sition. They are discussed in the following subsection.

236 V. Khomenko and M. Schaefer

During the decomposition process the decomposition algorithm checks from
time to time the following reachability-like properties:

– The decomposition algorithm should backtrack if a new dynamic auto-conf-
lict is produced. The corresponding conservative test is the presence of a new
structural auto-conflict.

– It is also helpful to remove implicit places. The corresponding conservative
test looks for redundant places [Ber87]; they are defined by a system of linear
inequalities. Checking this condition with a linear programming solver is also
quite expensive, and therefore DesiJ looks only for a subset called shortcut
places [SVJ05].

– In order to apply Mpsat, the STG must be safe. In general, a transition
contraction can transform a safe STG into an non-safe (2-bounded) one.
The corresponding conservative structural conditions guaranteeing that a
contraction preserves safeness are developed below.

If the STG is not too large, all of the mentioned dynamic properties can
also be checked exactly with a reachability analysis. Since we only consider safe
nets here, reachability-like properties can be expressed as Boolean expressions
over the places of the net. For example, the property p1 ∧ p2 ∧ ¬p3 holds iff
some reachable marking has a token in p1 and p2 and no token in p3. (Such
properties can be checked by Mpsat.) Below we give Boolean expressions and
the corresponding conservative tests for the properties listed above.

Safeness-Preserving Contractions
A transition contraction preserves boundedness, but, in general, it can turn a safe
net into a non-safe one, as well as introduce duplicate (weighted) arcs. However,
since unfolding techniques are not very efficient for non-safe net, we assume
that the initial STG is safe, and perform only safeness-preserving contractions,
i.e., ones which guarantee that if the initial STG was safe then the transformed
one is also safe. (Note that the transitions with duplicate (weighted) arcs must
be dead in a safe Petri net, and so we can assume that the initial and all the
intermediate STGs contain no such arcs).

We now give a sufficient structural condition for a contraction being safeness-
preserving. Then we will show how this can be checked with a reachability anal-
ysis and also how a single unfolding prefix can be used for checking if each
contraction in a sequence of contractions is safeness-preserving. (The proofs of
all the results can be found in the technical report [KS06]).

Theorem 1 (Structural safeness-preservation). A secure contraction of a
transition t in a net Γ is safeness-preserving if
1) |•t| = 1 or
2) |t•| = 1, •(t•) = {t} and

a) Γ is live and reversible
or

b) M0(p) = 0 with t• = {p}

Combining Decomposition and Unfolding for STG Synthesis 237

t

t

2

Fig. 5. Examples of non-safeness-preserving contractions

Figure 5 shows two counterexamples: the leftmost net violates the condition
that either the pre- or postset of t has to contain a single place; one can see that
the contraction of t generates a non-safe net. The net in the middle violates the
condition •(t•) = {t} in the second case in Theorem 1 (i.e., that the place in the
postset of t must not have incoming arcs other than from t); the rightmost net
is obtained by contracting t in the net in the middle.

In practice, the decomposition algorithm checks the condition 2b) which makes
no assumptions about the net which are difficult to verify. This is important since
there exist STGs which are neither live nor reversible, e.g., ones which have some
initialisation part which is executed only once in the beginning.

If the specification is guaranteed to be live and reversible, it is also possible to
use condition 2a); then the following lemma is needed to apply such contractions
repeatedly.

Proposition 2. Secure transition contractions and implicit place deletions pre-
serve liveness and reversibility.

So far, we only considered structural conditions for a contraction to be safeness-
preserving; now we describe the dynamic conditions.

Theorem 3. Let Γ be a safe STG and t ∈ T such that the contraction of t is
secure. The contraction of t is safeness-preserving iff the following property does
not hold:

(
∨

p∈•t

p

)

∧
(

∨

p∈t•

p

)

.

To check these reachability properties with Mpsat one has to generate the un-
folding prefix with Punf first, which can take considerable time. It is therefore
impractical to generate it for checking the safeness-preservation of a single con-
traction. Instead, our algorithm uses a single unfolding prefix to check if a se-
quence of several subsequent contractions is safeness-preserving. (This technique
is described in more detail in the technical report [KS06]).

238 V. Khomenko and M. Schaefer

Implicit Places
As it was already mentioned, the deletion of implicit places is important for
the success of the decomposition. As a conservative condition, DesiJ looks for
shortcut places. On the other hand, unfolding-based reachability analysis makes
it possible to check exactly whether a place is implicit: a place p is implicit iff
the following property does not hold:

¬p ∧

⎛

⎝
∨

t∈p•

∧

q∈•t\{p}
q

⎞

⎠ .

It is possible to detect all implicit place of a net with a single unfolding. Ob-
serve first, that the deletion of an implicit place cannot turn a non-implicit place
into an implicit one. Indeed, suppose p1 is implicit and deleted in Σ, yielding
Σ1, and p2 is implicit and deleted in Σ1, yielding Σ2. Then FS(Σ) = FS(Σ1) =
FS(Σ2) by definition of implicit places, where FS(Σ) denotes the set of all firing
sequences of Σ. Suppose now that p2 is deleted first in Σ, yielding Σ′

1, and p1 is
deleted in Σ′

1, yielding Σ2 again. Then FS(Σ) ⊆ FS(Σ′
1) ⊆ FS(Σ2) = FS(Σ),

since deleting places can only increase the set of firing sequences. Therefore
FS(Σ) = FS(Σ′

1) = FS(Σ2), which shows that p2 is implicit in Σ. It is there-
fore sufficient to iterate once over all places and to delete every implicit one.

Furthermore, the unfolding of a net in which an implicit place was deleted
can be obtained from the original unfolding by deleting all occurrences of this
place. For the above reachability analysis we get the same effect automatically,
because deleted places will not occur in the corresponding property.

Dynamic Auto-conflicts
A conservative test for the presence of an auto-conflict is the presence of two
transitions with the same label (distinct from λ) and overlapping presets. Un-
folding-based reachability analysis makes it possible to check exactly for the
presence of an auto-conflict as follows.

In a safe STG distinct transitions t1 and t2 such that •t1 ∩ •t2 �= ∅ are in
dynamic conflict iff the following property holds:

∧

p∈•t1∪•t2

p .

Using this exact test can reduce the number of times the decomposition al-
gorithm has to backtrack, which ultimately can result in the improved runtime
and smaller final components.

6 Results

We applied the described combined approach to several benchmark examples
with and without CSC conflicts, and compared the results with the stand-alone

Combining Decomposition and Unfolding for STG Synthesis 239

synthesis with Mpsat and Petrify. (The tool for CSC conflict resolution and
decomposition described in [CC06, Car03] was not available from the authors.)
In the tables, all times are given as (minutes:)seconds. The benchmarks were
performed on a Pentium 4 HT with 3GHz and 2GB RAM.

We worked with two types of benchmarks. The first group are pipelines which
have CSC initially. As expected, the new approach produces components without
CSC conflicts, i.e., the signals which are necessary for preventing CSC conflicts
are kept in the components (the original approach of [VW02, VK05, SVWK06]
would have contracted some of them).

Our combined approach decomposes and synthesises these benchmarks (see
Table 1) quite quickly compared with Petrify (aborted after 6 hours). However,
Mpsat alone is much faster for these examples and needs less than a second for
any of them. This is because these benchmarks are relatively small, with up to
257 nodes and up to 43 signals.

Table 1. Results for the pipeline benchmarks

Benchmark DesiJ Petrify

2pp.arb.nch.03.csc 1 1

2pp.arb.nch.06.csc 2 14

2pp.arb.nch.09.csc 4 1:54

2pp.arb.nch.12.csc 10 32:55

2pp-wk.03.csc 1 1

2pp-wk.06.csc 2 9

2pp-wk.09.csc 3 31

2pp-wk.12.csc 18 24:36

3pp.arb.nch.03.csc 1 4

3pp.arb.nch.06.csc 3 2:14

3pp.arb.nch.09.csc 7 84:17

3pp.arb.nch.12.csc 22 ≥ 360:00

3pp-wk.03.csc 1 1

3pp-wk.06.csc 3 31

3pp-wk.09.csc 7 34:08

3pp-wk.12.csc 22 ≥ 360:00

The second group of benchmarks are newly generated; they are STGs de-
rived from Balsa specifications. These kind of benchmarks was used before
by [CC06]. The benchmark SeqParTree(21,10) from there is nearly the same
as SeqParTree-05 here; the difference is that we did not hide the internal
handshake signals. However, this is also possible for our approach and will most
likely lead to further speedups, as discussed in Section 7.

These examples are generated out of two basic Balsa handshake compo-
nents (see [EB02]): the 2-way sequencer, which performs two subsequent hand-
shakes on its two ‘child’ ports when activated on its ‘parent’ port, and the 2-way

240 V. Khomenko and M. Schaefer

||

; ;

||

; ;

;

Fig. 6. SeqParTree-03. Filled dots denote active handshake ports (they can start a
handshake), blank nodes denote passive ones. Each port is implemented by two signals,
an input and an output. If two ports are connected the parallel composition merges
these four signals into two outputs.

Table 2. Results of the handshake benchmarks

Size Signals Combined

Benchmark |P | – |T | |In| – |Out| Deco. Synthesis Σ

SeqParTree-05 382 – 252 33 – 93 2 1 3

SeqParTree-06 798 – 508 65 – 189 4 2 6

SeqParTree-07 1566 – 1020 129 – 381 10 4 14

SeqParTree-08 3230 – 2044 257 – 765 48 10 57

SeqParTree-09 6302 – 4092 513 – 1533 4:55 24 5:19

SeqParTree-10 12958 – 8188 1025 – 3069 68:09 1:39 69:48

paralleliser, which performs two parallel handshakes on its two ‘child’ ports when
activated on its ‘parent’ port; either can be described by a simple STG. The
benchmark examples SeqParTree-N are complete binary trees with alternat-
ing levels of sequencers and parallelisers, as illustrated in Figure 6 (N is the
height of the tree), which are generated by the parallel composition of the el-
ementary STGs corresponding to the individual sequencers and parallelisers in
the tree. We also worked with other benchmarks made of handshake components
(e.g., trees of parallelisers only); the results did not differ much, so we considered
exemplarily only SeqParTree-N.

These benchmarks have CSC conflicts initially, and Mpsat was used in the
end to resolve them in each component separately. The experimental results in
Table 2 show the real power of our method. The corresponding STGs are very
large, and we consider it as a important achievement that the proposed combined
approach could synthesise them so quickly. As one can see, an STG with more
than 4000 signals is synthesised in less than 70 minutes. Petrify and Mpsat

alone need more than 12 hours (aborted) for either of these benchmarks.
In contrast to the decomposition method of [CC03, CC06] we allow components

with more than output. This was utilised here: the initial partition was chosen

Combining Decomposition and Unfolding for STG Synthesis 241

such that each component of the decomposition corresponds to one handshake
component. Other partitions of the outputs might lead to further speedups.

7 Conclusion

The purely structural decomposition approach of [VW02, VK05, SVWK06] can
handle large specifications, but it does not take into account the properties
of STGs related to synthesisability, such as the presence of CSC conflicts. In
contrast, Mpsat can resolve CSC conflicts and perform logic synthesis, but it is
inefficient for large specifications. In this paper, we demonstrated how these two
methods can be combined to synthesise large STGs very efficiently.

One of the main technical contributions was to preserve the safeness of the STGs
throughout the decomposition, because Mpsat can only deal with safe STGs. This
is not just an implementation issue or a compensation for a missing Mpsat fea-
ture, but it is also far more efficient than working with non-safe nets, for which
unfolding techniques seem to be inefficient. We also showed how dynamic proper-
ties like implicitness and auto-conflicts can be checked with unfoldings and how
these checks can be combined with cheaper conservative structural conditions.

Future research is required for the calculation of the decomposition tree, the
size of which is cubic in the number of signals and exceeds the memory usage for
decomposition and synthesis by far. Here, heuristics are needed which explore
the tradeoff between the quality of the decomposition tree and the amount of
memory needed for its calculation.

Furthermore, we consider the handling of handshake based STGs as very
important. Handshake circuits allow to synthesise very large specifications at the
expense of a heavy overencoding of the resulting circuit, i.e., they have a lot of
unnecessary state-holding elements, which increase the circuit area and latency.
Decomposition can help here in the following way: instead of synthesising each
handshake component separately, one can combine several such components,
e.g., as it was done for SeqParTree-N, hide the internal communication signals
and synthesise one circuit implementing the combination of the components
using the proposed combined approach.

Acknowledgements. We would like to thank Dominic Wist for helping us gen-
erating the benchmarks. This research was supported by DFG-projects
’STG-Dekomposition’ Vo615/7-1 and Wo814/1-1, and the Royal Academy of
Engineering/Epsrc grant EP/C53400X/1 (Davac).

References

[Ber87] Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W.,
Reisig, R., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Prop-
erties. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)

[Ber93] Berkel, K.v.: Handshake Circuits: an Asynchronous Architecture for VLSI
Programming. International Series on Parallel Computation, vol. 5 (1993)

242 V. Khomenko and M. Schaefer

[Bry86] Bryant, R.E.: Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers C-35-8, 677–691 (1986)

[Car03] Carmona, J.: Structural Methods for the Synthesis of Well-Formed Con-
current Specifications. PhD thesis, Univ. Politècnica de Catalunya (2003)

[CC03] Carmona, J., Cortadella, J.: ILP models for the synthesis of asynchronous
control circuits. In: Proc. of the IEEE/ACM International Conference on
Computer Aided Design, pp. 818–825 (2003)

[CC06] Carmona, J., Cortadella, J.: State encoding of large asynchronous con-
trollers. In: DAC 2006, pp. 939–944 (2006)

[Chu87] Chu, T.-A.: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT (1987)

[CKK+97] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev,
A.: Petrify: a tool for manipulating concurrent specifications and syn-
thesis of asynchronous controllers. IEICE Trans. Information and Sys-
tems E80-D, 3, 315–325 (1997)

[CKK+02] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev,
A.: Logic Synthesis of Asynchronous Controllers and Interfaces. Springer,
Heidelberg (2002)

[EB02] Edwards, D., Bardsley, A.: BALSA: an Asynchronous Hardware Synthesis
Language. The Computer Journal 45(1), 12–18 (2002)

[ERV02] Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfold-
ing algorithm. Formal Methods in System Design 20(3), 285–310 (2002)

[ITR05] International technology roadmap for semiconductors: Design (2005)
URL: www.itrs.net/Links/2005ITRS/Design2005.pdf

[Kho03] Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings.
PhD thesis, School of Computing Science, Newcastle University (2003)

[KK01] Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding
Petri nets. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, Springer, Heidelberg (2001)

[KKY04] Khomenko, V., Koutny, M., Yakovlev, A.: Detecting state coding con-
flicts in STG unfoldings using SAT. Fundamenta Informaticae 62(2), 1–21
(2004)

[KKY06] Khomenko, V., Koutny, M., Yakovlev, A.: Logic synthesis for asyn-
chronous circuits based on Petri net unfoldings and incremental SAT.
Fundamenta Informaticae 70(1–2), 49–73 (2006)

[KS06] Khomenko, V., Schaefer, M.: Combining decomposition and un-
folding for STG synthesis. Technical Report 2006-01, University
of Augsburg (2006) URL: http://www.Informatik.Uni-Augsburg.DE/
skripts/techreports/

[MBKY03] Madalinski, A., Bystrov, A., Khomenko, V., Yakovlev, A.: Visualization
and Resolution of Coding Conflicts in Asynchronous Circuit Design. IEE
Proceedings: Computers and Digital Techniques 150(5), 285–293 (2003)

[Mur89] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc. of
the IEEE 77(4), 541–580 (1989)

[Sem97] Semenov, A.: Verification and Synthesis of Asynchronous Control Circuits
Using Petri Net Unfolding. PhD thesis, Newcastle University (1997)

[SV05] Schaefer, M., Vogler, W.: Component refinement and CSC solving for STG
decomposition. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp.
348–363. Springer, Heidelberg (2005)

www.itrs.net/Links/2005ITRS/Design2005.pdf
http://www.Informatik.Uni-Augsburg.DE/skripts/techreports/
http://www.Informatik.Uni-Augsburg.DE/skripts/techreports/

Combining Decomposition and Unfolding for STG Synthesis 243

[SVJ05] Schaefer, M., Vogler, W., Jančar, P.: Determinate STG decomposition
of marked graphs. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 365–384. Springer, Heidelberg (2005)

[SVWK06] Schaefer, M., Vogler, W., Wollowski, R., Khomenko, V.: Strategies for
optimised STG decomposition. In: Proc. of ACSD (2006)

[Val98] Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg,
G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp.
429–528. Springer, Heidelberg (1998)

[VK05] Vogler, W., Kangsah, B.: Improved decomposition of signal transition
graphs. In: ACSD 2005, pp. 244–253 (2005)

[VW02] Vogler, W., Wollowski, R.: Decomposition in asynchronous circuit design.
In: Cortadella, J., Yakovlev, A.V., Rozenberg, G. (eds.) Concurrency and
Hardware Design. LNCS, vol. 2549, pp. 152–190. Springer, Heidelberg
(2002)

Object Nets for Mobility

Michael Köhler and Berndt Farwer

University of Hamburg, Department for Informatics
koehler@informatik.uni-hamburg.de

University of Durham, Department of Computer Science
berndt.farwer@durham.ac.uk

Abstract. This paper studies mobile agents that act in a distributed
name space. The difference between belonging to a name space (where
objects can be accessed directly via pointers) and migrating between
name spaces (where objects have to be treated as values, that can be
copied into network messages) is taken account of by introducing Petri
net based formalism, employing the nets-within-nets paradigm.

This formalism, called mobile object nets, generalises the well-
established theory of elementary object nets, which has seen many ap-
plications over the last decade.

While mobile object nets provide a solution to the specific modelling
problem mentioned above, they are much more generic and not restricted
to this domain.

Keywords: Mobile agents, name spaces, nets-within-nets, object nets,
Petri nets.

1 Introduction

Mobility induces new challenges for dynamic systems, which need a new concep-
tional treatment. In this article we formalise mobile agents acting in a mobility
infrastructure like that in Figure 1. In this figure, the infrastructure is com-
posed of the two buildings A and B represented in the system net. Buildings can
be seen as a metaphor, e.g., for different hosts on a distributed network. The
two buildings are connected via the mobility transfer transitions t4 and t6. One
mobile agent is present inside building A as a net token.

Inside the building the agent has access to a workflow describing how the agent
is allowed to use services, i.e. the building’s infrastructure. The agent can decide
to use the building’s infrastructure by synchronising with the access workflow’s
transitions. The transition inscriptions (given in the syntax of the tool Renew

[KWD+04]) generate the set of synchronisations (t2, t20), (t3, t21), (t5, t22), and
(t7, t23).

The initial marking μ0 = (p1, p20) is a nested multiset, which reflects the fact
that we model a hierarchical scenario (an agent located inside a building). In
this scenario the mobile agent’s net is copied to the places p2 and p3 by execution
of transition t1. The agent’s initial marking M0 = p20 disables all events except
for the synchronisation (t2, t20). After the synchronisation the agent’s marking

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 244–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Object Nets for Mobility 245

:a3():a1()

p2

p4

p6 p7

p9

t1

t2

t3

t5

t7

t8

p24
t20 t22t21

p3

p21 p22 p23

t4
t6

p1

p5 p8

p20
t23

Building A

p10

Building B

Mobile Agent

on:a2()

on:a1()

on:a3()

on:a4()

:a2() :a4()

Fig. 1. A mobile agent’s environment

becomes M1 = p21 which enables the synchronisation (t3, t21). The agent can
now travel from building A to B via transition t4. The arrival of the agent at
building B enables (t5, t22). At this point the agent’s marking has evolved to
M2 = p23 and in building A the place p4 is marked. Nevertheless, this is not
sufficient to enable (t7, t23), since we have to take into account that the agent’s
token p23 is still at building B. This token is unavailable until the agent moves
back to building A via t6. When the agent is back inside the building A at place
p8 then (t7, t23) is enabled. After firing t8 the final marking μ = (p10.p24) is
reached.

When modelling this scenario we have to distinguish two kinds of movement:
Movement within a building and movement from one building to another. When
moving whithin a building, the agent has full access to all services (e.g. service
stations, information servers, etc.). On the other hand, when moving to a dif-
ferent building the environment may change dramatically: Services may become
unavailable, they may change their name or their kind of access protocols. This
leads to the usual problem that within the same environment (e.g. the memory
of a personal computer) we can use pointers to access objects (as done for Java
objects), which is obviously impossible for a distributed space like a computer
network: For example when a Java program transfers an object from machine
A to B via remote method invocation (RMI) it does not transfer the object’s
pointers (which are not valid for B); instead Java rather makes a deep copy of
the object (called serialisation) and transfers this value over the network. The
value is used to generate a new object at B which can be accessed by a fresh
pointer.

Among the wealth of research on defining mobile systems, in recent years a
variety of formalisms have been introduced or adopted to cover mobility: The
approaches can be roughly separated into process calculi and Petri net based
approaches. The π-calculus [MPW92], the Ambient-calculus [CGG00] and the
Seal calculus [VC98] are just three of the more popular calculi. Approaches
dealing with mobility and Petri nets can be found in [Val98], [Bus99], [Lom00],
[XD00], [Hir02], [KMR03], [BBPP04], [Lak05], and [KF06].

246 M. Köhler and B. Farwer

Continuing previous work [KMR03, KF06] we study object-based Petri nets,
especially, to model mobile agents. In this paper we generalise the established
formalism of elementary object system (Eos) [Val98] to cover requirements of
mobile systems. The formalism we introduce here is called mobile, elementary
object system (mobile Eos).

Valk introduced two fundamental semantics (i.e. firing rules) for Eos called
reference semantics and value semantics (cf. [Val98]) which correspond to the
two ways of handling objects in Java-like programming languages: Reference
semantics accesses object nets using pointers, while value semantics is a kind of
copy semantics.

The difference between the two is the concept of location for net tokens which
is explicit for value semantics but not for reference semantics, since it is unclear
which reference can be considered as the location of a net token. As shown in
[KMR03] the concept of mobility cannot be expressed adequately by reference
semantics due to the possibility of side-effects. Reference semantics considers all
places as one single name space. In Figure 1, when the agent executes (t5, t22)
at building B, then the effect becomes visible immediately at building A. This
is undesired, since it should become visible only after the agent returns to A.

For value semantics each place is its own name space, so it cannot simulate the
global name space1 as demanded by our scenario for the access inside buildings.
When firing t1 two net tokens with independent marking are created. When firing
(t2, t20) the effect is only visible in the copy moving from p3 to p4, but not for the
net token in p2. Since p2 and p4 are in different name spaces for the normal firing
semantics the effect is not visible at p2 and (t3, t21) never becomes enabled.

Mobile Eos overcome the shortcomings of Eos by introducing modelling con-
structs that allow us to define name spaces that are larger than one place (as
value semantics does) but do not necessarily comprise of the whole net (as ref-
erence semantics does). The fact that mobile Eos subsume value and reference
semantics is reflected by the fact that they are strictly more expressive than
Eos, since they are able to simulate inihibitor nets.

The paper is structured as follows. Section 2 defines elementary object sys-
tems. In Section 3 we extend these to mobile Eos. In Section 4 we prove some
properties of mobile Eos including the simulation of inhibitor nets. Section 5
introduces object nets where the system net is clustered into locations and we
demonstrate how mobile Eos are used to implement name spaces.

2 Object Nets

Object nets generalise place/transition nets. We recall basic notations.

Multisets. The definition of Petri nets relies on the notion of multisets. A multiset
m on the set D is a mapping m : D → N. Multisets are generalisations of sets in
1 The concept of locality makes value semantics richer than reference semantics – for

example the reachability problem becomes undecidable while boundedness remains
decidable (cf. [KR04]). However, reference semantics can be simulated by a (larger)
P/T net, so analysis methods can be applied directly.

Object Nets for Mobility 247

the sense that every subset of D corresponds to a multiset m with m(d) ≤ 1 for
all d ∈ D. The notation is overloaded, being used for sets as well as for multisets.
The meaning will be apparent from its use.

Multiset additionm1,m2 : D → N is defined component-wise: (m1+m2)(d) :=
m1(d)+m2(d). The empty multiset 0 is defined as0(d) = 0 for all d ∈ D. Multiset-
difference m1 − m2 is defined (m1 − m2)(d) := max(m1(d) − m2(d), 0). We use
common notations for the cardinality of a multiset |m| :=

∑
d∈D m(d) and mul-

tiset ordering m1 ≤ m2 where the partial order ≤ is defined by m1 ≤ m2 ⇐⇒
∀d ∈ D : m1(d) ≤ m2(d).

A multiset m is finite if |m| < ∞. The set of all finite multisets over the
set D is denoted MS (D), so we also denote m ∈ MS (D). The set of all finite
multisets MS (D) over D naturally forms a monoid with multiset addition + and
the empty multiset 0. Multisets can be identified with the commutative monoid
structure (MS (D), +, 0).

Multisets are the free commutative monoid over D since every multiset has
the unique representation in the form m =

∑
d∈D m(d) · d where m(d) denotes

the multiplicity of d. Multisets can be represented as a formal sum in the form
m =

∑|m|
i=1 xi where xi ∈ D.

Any mapping f : D → D′ can be extended to a mapping f � : MS (D) →
MS (D′) on multisets in a linear way: f � (

∑n
i=1 xi) =

∑n
i=1 f(xi). This includes

the special case f �(0) = 0. We simply write f to denote the mapping f �. The
definition is in accordance with the set-theoretic notation f(A) = {f(a) | a ∈ A}.

P/T Nets Place/transition nets (P/T nets) are Petri nets with arc weights,
expressed by multisets, and the possibility of multiple tokens on each place.

Definition 1. A P/T net N is a tuple N = (P, T,pre,post), such that:

1. P is a set of places.
2. T is a set of transitions, with P ∩ T = ∅.
3. pre,post : T → MS (P) are the pre- and post-condition functions.

A marking of N is a multiset of places: m ∈ MS (P). A P/T net with initial
marking m is denoted N = (P, T,pre,post,m).

We use the usual notations for nets like •x for the set of predecessors and x• for
the set of successors for a node x ∈ (P ∪ T).

A transition t ∈ T of a P/T net N is enabled in marking m iff ∀p ∈ P :
m(p) ≥ pre(t)(p) holds. The successor marking when firing t is m′(p) = m(p)−
pre(t)(p) + post(t)(p). We denote the enabling of t in marking m by m t−→

N
.

Firing of t is denoted by m t−→
N

m′. The net N is omitted if it is clear from the
context.

2.1 Elementary Object Systems

Object nets are Petri nets which have Petri nets as tokens – an approach called
the nets-within-nets paradigm, proposed by Valk [Val91, Val03] for a two lev-
elled structure and generalised in [KR03, KR04] for arbitrary nesting structures.

248 M. Köhler and B. Farwer

Objects nets are useful to model the mobility of active objects or agents (cf.
[KMR01] and [KMR03]).

Figure 2 shows an example object net. The Petri nets that are used as tokens
are called net tokens. Net tokens are tokens with internal structure and inner
activity. The nets as tokens perspective is different from place refinement, since
tokens are transported while a place refinement is static. Net tokens can be
viewed as a kind of dynamic refinement of states.

t

p1

p2

p6

p7

p8p3

p9p5

p4
b1a1 t1

t1

t1

t2

a1

a1

a2

b2
c2

b1

b1

Fig. 2. An Object Net

An elementary object system (Eos) is composed of a system net, which is a
P/T net N̂ = (P̂ , T̂ ,pre,post) and a finite set of object nets N = {N1, . . . , Nn},
which are P/T nets given as N = (PN , TN ,preN ,postN). Each N ∈ N models
a different mobile agent in the system. In the example in Figure 1 we have the
special case that |N | = 1, i.e. there is only one agent in the system.

Without loss of generalisation we assume that all sets of nodes (places and
transitions) are disjoint. So, P̂ ∪

⋃
N∈N PN is a disjoint union (cf. Definition 7).

The system net places are typed by the mapping d : P̂ → {•} ∪ N with
the meaning that a place p̂ of the system net may contain only black tokens if
d(p̂) = • and only net tokens of the object net type N if d(p̂) = N . The set of
system net places of the type N is d−1(N) ⊆ P̂ .

The typing d is called monotonous iff ∀t ∈ T : ∀N ∈ N : N ∈ d(• t̂) =⇒ N ∈
d(t̂•). We restrict Eos to monotonous mappings to ensure monotonicity of the
firing rule (see Theorem 4 below).

Markings. Each net token in an Eos is an instances of an object net. Usually,
we have several, independent net tokens derived from the same object net. The
net tokens usually have different markings. A marking μ ∈ MN of an Eos OS
is a nested multiset where MN is the set of all possible markings, defined in the
following way:

MN := MS

(
(
d−1(•) × {0}

)
∪

⋃

N∈N

(
d−1(N) × MS (PN)

)
)

(1)

Object Nets for Mobility 249

A marking of an Eos OS is denoted μ =
∑|μ|

k=1(p̂k, Mk) where p̂k is a place
in the system net and Mk is the marking of the net token of type d(p̂k).

Let μ =
∑|μ|

k=1(p̂k, Mk) be a marking of an Eos OS . By using projections on
the first or last component of an Eos marking μ, it is possible to compare object
system markings. The projection Π1(μ) on the first component abstracts from
the substructure of a net token:

Π1
(∑|μ|

k=1
(p̂k, Mk)

)

:=
∑|μ|

k=1
p̂k (2)

The projection Π2
N (μ) on the second component is the abstract marking of

all the net tokens of type N ∈ N without considering their local distribution in
the system net.

Π2
N

(∑|μ|
k=1

(p̂k, Mk)
)

:=
∑|μ|

k=1
πN (p̂k) · Mk (3)

where the indicator function πN : P̂ → {0, 1} is πN (p̂) = 1 iff d(p̂) = N .

Events. The Eos firing rule is defined for three cases: system-autonomous firing,
object-autonomous firing, and synchronised firing. For the sake of uniformity of
the firing rule, for each N ∈ N , we add the idle transitions εN for the object
net where pre(εN) = post(εN) = 0 and the set of idle transitions {ε

�p | p̂ ∈ P̂}
where pre(ε

�p) = post(ε
�p) = p̂ for the system net.

Let C be the set of all mappings C : N →
⋃

N∈N (TN ∪ {εN}) such that each
C ∈ C maps each object net N ∈ N to one of its transitions t ∈ TN or the
idle transition εN , i.e. C(N) ∈ (TN ∪ {εN}). The idle map εC ∈ C is defined
εC(N) = εN for all N ∈ N . For N = {N1, . . . , Nn} we denote C ∈ C as the tuple
(C(N1), . . . , C(Nn)).

An event of the whole system is a pair (τ̂ , C) where τ̂ is a transition of the
system net or ε

�p and C ∈ C:

T =
{
(τ̂ , C)

∣
∣
∣ τ̂ ∈ T̂ ∪ {ε

�p | p̂ ∈ P̂} ∧ C ∈ C
}

\
{

(ε
�p, εC)

∣
∣
∣ p̂ ∈ P̂

}
(4)

An event (τ̂ , C) has the meaning that τ̂ fires synchronously with all the object
net transitions C(N) for N ∈ N . Note, that (ε

�p, εC) is excluded because it has
no effect. By the construction of T each system net transition has exactly one
synchronisation partner in the object net N ∈ N . This partner might be an
idle-transition. System-autonomous events have the form (t̂, εC). For a single
object-autonomous event at the location p̂ we have τ̂ = ε

�p and for all except one
object net N we have C(N) = εN , i.e. |C(N) \ εC | = 1.

A set Θ ⊆ T is called a synchronisation structure. In the graphical represen-
tation of object nets, synchronisation structures are defined by transition labels
of the form : name() which means that a labelled system net transition has to
be synchronised with an object net transition with the same label (where labels
of the form εN and ε

�p are ommitted).

250 M. Köhler and B. Farwer

Definition 2. An Eos is a tuple OS = (N̂ , N , d, Θ, μ0) such that:

1. N̂ is a P/T net, called the system net.
2. N is a finite set of P/T nets, called object nets.
3. d : P̂ → {•} ∪ N is a monotonous typing of the system net places.
4. Θ ⊆ T is a finite synchronisation structure.
5. μ0 ∈ MN is the initial marking.

We name special properties of Eos:

– An Eos is minimal iff it has exactly one type of object nets: |N | = 1.
– An Eos is pure iff it has no places for black tokens: d−1(•) = ∅.
– An Eos is p/t-like iff it has only places for black tokens: d(P̂) = {•}.
– An Eos is unary iff it is pure and minimal.

Example 1. Figure 2 shows an Eos with the system net N̂ and the object
nets N = {N1, N2}. The nets are given as N̂ = (P̂ , T̂ ,pre,post) with P̂ =
{p1, . . . , p9} and T̂ = {t}; N1 = (P1, T1,pre1,post1) with P1 = {a1, b1} and
T1 = {t1}; and N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}.

The typing is d(p1) = d(p2) = d(p6) = N1, d(p3) = d(p7) = d(p8) = N2, and
d(p4) = d(p5) = d(p9) = •. The typing is illustrated in Figure 2 by different
colours for the places. There are only autonomous events:

Θ = {(t, (εN1 , εN2))} ∪ {(ε
�p, (t1, εN2)), (ε�p, (εN1 , t2)) | p̂ ∈ P̂}

The initial marking has black tokens in p4 and p5, two net tokens in p1, and one
net token each in p2 and p3:

μ = (p1,0) + (p1, a1 + b1) + (p2, a1) + (p3, a2 + b2) + (p4,0) + (p5,0)

Note, that for Figure 2 the structure is the same for the three net tokens in p1
and p2 but the net tokens’ markings are different.

We have to consider three different kinds of events: system-autonomous firing,
object-autonomous firing, and synchronised firing. Due to the idle step we have
a uniform structure of events (τ̂ , C) ∈ T and the conditions on λ and ρ for the
different kinds of firing are expressed by the enabling predicate φ:

φ((τ̂ , C), λ, ρ) ⇐⇒ Π1(λ) = pre(τ̂)) ∧ Π1(ρ) = post(τ̂) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (C(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ) − preN (C(N)) + postN (C(N))

1. The first conjunct expresses that the first component of the nested multiset
λ corresponds to the pre-condition of the system net transition τ̂ : Π1(λ) =
pre(τ̂).

2. In turn, a nested multiset ρ ∈ MN is produced, that corresponds with the
post-set of τ̂ in its first component.

Object Nets for Mobility 251

3. An object net transition τN is enabled if the combination of the net tokens
of type N enable it, i.e. Π2

N (λ) ≥ preN (C(N)).
4. The firing of τ̂ must also obey the object marking distribution condition

Π2
N (λ) = Π2

N (ρ) − preN (C(N)) + postN (C(N)) where postN (C(N)) −
preN (C(N)) is the effect of the object net’s transition on the net tokens.

For system-autonomous events (t̂, εC) the enabling predicate φ can be simpli-
fied further. We have preN (εN) = postN (εN) = 0. This ensures that Π2

N (λ) =
Π2

N (ρ), i.e. the sum of markings in the copies of a net token is preserved with
respect to each type N . This condition ensures the existence of linear invariance
properties (cf. [KR04]). Analogously, for an object-autonomous event we have
the idle transition τ̂ = ε

�p for the system net and the first and the second con-
junct in φ is: Π1(λ) = pre(τ̂) = p̂ = post(τ̂) = Π1(ρ). So, there is an addend
λ = (p̂, M) with d(p̂) = N and the marking M enables the object net transition.

The predicate φ does not distinguish between markings that coincide in their
projections. To express this fact we define the equivalence ∼= ⊆ M2

N that relates
nested markings which coincide in their projections:

α ∼= β : ⇐⇒ Π1(α) = Π1(β) ∧ ∀N ∈ N : Π2
N (α) = Π2

N (β) (5)

The relation α ∼= β abstracts from the location, i.e. the concrete net-token, in
which a object net’s place p is marked as long as it is present in α and β. For
example, we have

(p̂, p1 + p2) + (p̂′, p3) ∼= (p̂, p3 + p2) + (p̂′, p1)

which means that ∼= allows the tokens p1 and p3 to change their locations (i.e.
p̂ and p̂′). It is not allowed that the token itself is modified, i.e. the token p1
cannot change into p′1.

Lemma 1. The enabling predicate is insensitive with respect to the relation ∼=:

φ((τ̂ , C), λ, ρ) ⇐⇒ ∀λ′, ρ′ : λ′ ∼= λ ∧ ρ′ ∼= ρ =⇒ φ((τ̂ , C), λ′, ρ′)

Proof. From the definition of φ one can see that the firing mode (λ, ρ) is used
only via the projections Π1,2. Since λ′ ∼= λ, ρ′ ∼= ρ expresses equality modulo
projection φ cannot distinguish between λ′ and λ, resp. ρ′ and ρ.

Firing an event (τ̂ , C) involving the system net transition τ̂ removes net tokens
in the pre-conditions together with their individual internal markings. Since the
markings of Eos are nested multisets, we have to consider those nested multisets
λ ∈ MN that are part of the current marking, i.e. λ ≤ μ.

For the definition of firing we use the projection equivalence to express that
on firing the system net collects all relevant object nets for the particular firing
mode and combines them into one virtual object net that is only present at the
moment of firing. Due to this collection the location of the object nets’ tokens
is irrelevant and can be ignored using projection equivalence.

252 M. Köhler and B. Farwer

Definition 3. Let OS be an EOS and let μ, μ′ ∈ MN be markings. The tran-
sition (τ̂ , C) ∈ T is enabled in mode (λ, ρ) ∈ M2

N if the following holds:

λ ≤ μ ∧ ∃λ′, ρ′ : (λ′ ∼= λ) ∧ (ρ′ ∼= ρ) ∧ φ((τ̂ , C), λ′, ρ′)

The successor marking is defined as μ′ := μ − λ + ρ.

We write μ
(�τ,C)−−−→
OS

μ′ whenever μ
(�τ,C)(λ,ρ)−−−−−−→

OS
μ′ for some mode (λ, ρ).

From Lemma 1 and Def. 3 we conclude that λ
(�τ,C)(λ,ρ)−−−−−−→

OS
ρ iff we have for

all λ′, ρ′ with λ′ ∼= λ and ρ′ ∼= ρ that λ′ (�τ,C)(λ′,ρ′)−−−−−−−→
OS

ρ′. Hence, we see that the

enabling condition given in Definition 3 can be strengthened:

μ
(�τ,C)(λ,ρ)−−−−−−→

OS
μ′ ⇐⇒ (λ ≤ μ ∧ φ((τ̂ , C), λ, ρ)) (6)

t

p1

p2

p6

p7

p8p3

p9p5

p4
b1

a1 b1
a1 t1

t1

a1 c2
b2

a1
b2

c2
t2

t2

Fig. 3. The EOS of Figure 2 after the firing of (�t, (εN1 , εN2))

Example 2. Consider the Eos of Figure 2 again. The event (t̂, (εN1 , εN2)) is en-
abled in mode (λ, ρ) ∈ M2

N with

λ = (p1, a1 + b1) + (p2, a1) + (p3, a2 + b2) + (p4,0) + (p5,0)
ρ = (p6, a1 + a1 + b1) + (p7, a2) + (p8, b2) + (p9,0)

After firing in this mode we obtain the successor marking (cf. Figure 3):

μ′ = (p1,0) + (p6, a1 + a1 + b1) + (p7, a2) + (p8, b2) + (p9,0)

A transition t̂ ∈ T̂ with an an object net N that is present in the postset but
not in the preset (i.e. N �∈ d(• t̂) and N ∈ d(t̂•)) generates net tokens of type N .
The firing rule ensures that these net tokens carry the empty marking since in
this case (τ̂ , C) is enabled in mode (λ, ρ) only if all object nets in ρ of this type
N carry the empty marking.

Object Nets for Mobility 253

The converse case, i.e. N ∈ d(• t̂) and N �∈ d(t̂•), which destroys net tokens of
type N , is forbidden by the monotonous typing, since it yields a contradiction:
In this case (τ̂ , C) is enabled in mode (λ, ρ) only if all object nets in λ of this
type N carry the empty marking: Π2

N (λ) = 0. Hence, not all pairs (λ′, ρ′) with
λ � λ′ are also firing modes, i.e. the firing rule would not be monotonous.

2.2 Name Spaces for EOS

With Eos we can define a system net like that in Figure 1, but the net struc-
tures for the buildings do not have the intended meaning. As discussed in the
introduction, the firing rule for Eos treats each place as a singular name space.

In the following we define a mobility system with more flexible name spaces.
Given an Eos the system net N is decomposed into locations (the name spaces)
and mobility parts. A location is a subnet L = (PL, TL,preL,postL) of the
system net N , i.e. PL ⊆ P , TL ⊆ T , preL = pre|TL,PL , and postL = post|TL,PL .
Location nets are disjoint.

The location nets are connected by transitions Tm ⊆ T that describe the
movement from one location to another.

Definition 4. A locality infrastructure is the tuple LS = (L, Nm) where:

1. L is a finite set of disjoint nets, called locations, given as L = (PL, TL,
preL,postL).

2. Nm = (Pm, Tm,prem,prem) is the mobility infrastructure disjoint from all
L ∈ L where Pm = ∅ and for all tm ∈ Tm exist two location nets L, L′ ∈ L
with L �= L′ that are connected by tm:

{p ∈ P | prem(tm)(p) > 0} ⊆ PL ∧ {p ∈ P | postm(tm)(p) > 0} ⊆ PL′

The net N(LS) := (P, T,pre,post) generated by an infrastructure LS is given
by P =

⋃
L∈L PL, T = Tm ∪

⋃
L∈L TL, pre = prem ∪

⋃
L∈L preL, and post =

postm ∪
⋃

L∈L postL.
A mobility system is the pair (OS ,LS) where OS = (N̂ , N , d, Θ, μ0) is an

Eos and LS = (L, Nm) is a locality infrastructure generating the system net:
N(LS) = N̂ .

Example 3. The Eos in Figure 1 has two locations A and B indicated by the
buildings’ borderlines: PA = {p1, p2, p3, p4, p5, p8, p9, p10}, TA = {t1, t2, t3, t7, t8}
and PB = {p6, p6} TB = {t5}. The mobility transitions are Tm = {t4, t6}.

3 Mobile EOS

A first attempt at a solution to redefine the firing rule was to make it respect the
structure of the mobility system (OS ,LS). Following this approach we changed
the firing rule to allow local and global access. However, the approach turns out
to be unnecessarily specific to the domain of name spaces. Instead we extend

254 M. Köhler and B. Farwer

the formalism in a more general way. (Section 5 describes how these extensions
are actually used to model name spaces).

So far the firing rule was insensitive with respect to the relation ∼= which
ignores the system net location of an object net’s token but requires that the
total number of tokens in different copies of the same object net place adds up to
the number expected when firing the respective transition in a traditional net.
We generalise this notion by using a more general relation.

For Eos each place is its own name space. To define clusters of places be-
longing to the same name space we introduce conversion sets: An equivalence ↔
on the object net’s places P =

⋃
N∈N PN is called a conversion, its equivalence

classes are conversion sets. Let P/↔ denote the set of equivalence classes of
↔ and let g↔ : P → P/↔ be the natural surjection of P/↔, i.e. the func-
tion that maps each place p ∈ P to the conversion set that p belongs to:
g↔(p) = {p′ | p′ ↔ p}. For the identity conversion ↔ = idP we obtain
g↔ as the injection: gidP

(p) = {p}.

Definition 5. A mobile EOS is a pair (OS , ↔) where OS is an Eos and ↔ is
a conversion equivalence on the object nets’ places P =

⋃
N∈N PN .

We extend ↔ to an equivalence on nested multisets. The equivalence ↔ iden-
tifies α, β ∈ MN whenever the sum of tokens in all net tokens of type N (which
is Π2

N (α) and Π2
N (β)) is equal in both nested multisets modulo ↔:

α ↔ β ⇐⇒ Π1(α) = Π1(β) ∧ ∀N ∈ N : g�
↔(Π2

N (α)) = g�
↔(Π2

N (β)) (7)

The relation α ↔ β abstracts from the concrete location p̂ in the system net in
which an object net place p is marked, and additionally allows token conversions
via ↔.

Lemma 2. For all α, β ∈ M and all coversions ↔ we have α ∼= β =⇒ α ↔ β.
In particular, for ↔= idP we have α ∼= β ⇐⇒ α ↔ β.

Proof. Directly from (5) and (7).

We modify the firing rule given in Definition 3 using the equivalence ↔ instead
of ∼=.

Definition 6. Let (OS , ↔) be a mobile EOS and let μ, μ′ ∈ MN be markings.
The transition (τ̂ , C) ∈ T is ↔-enabled in mode (λ, ρ) ∈ M2

N if the following
holds:

λ ≤ μ ∧ ∃λ′, ρ′ : (λ′ ↔ λ) ∧ (ρ′ ↔ ρ) ∧ φ((τ̂ , C), λ′, ρ′)

The successor marking is defined as μ′ := μ − λ + ρ.

4 Relating Mobile EOS to EOS

There is an obvious construction of a P/T net, called the reference net, which is
constructed by taking as the set of places the disjoint union of all places and as
the set of transitions the synchronisations.

Object Nets for Mobility 255

Definition 7. Let OS = (N̂ , N , d, Θ, μ0) be an Eos. The reference net Rn(OS)
is defined as the P/T net:

Rn(OS) =
((

P̂ ∪
⋃

N∈N PN

)
, Θ,preRn,postRn,Rn(μ0)

)

where preRn (and analogously postRn) is defined by:

preRn((τ̂ , C)) = pre(τ̂) +
∑

N∈N preN (C(N))

and for markings we define:

Rn

(∑|μ|
k=1

(p̂k, Mk)
)

=
∑|μ|

k=1
p̂k + Mk

The net is called reference net because it behaves as if each object net was
accessed via pointers and not like a value. We have the following property [KR04,
Proposition 1]:

Theorem 1. Let OS be an Eos. Every transition (τ̂ , C) ∈ T that is activated
in OS for (λ, ρ) is so in Rn(OS):

μ
(�τ,C)−−−→
OS

μ′ =⇒ Rn(μ)
(�τ,C)−−−−−→

Rn(OS)
Rn(μ′)

If we use Rn(OS) as the only object net (i.e. N = {Rn(OS)}) and a system net
that has one single place only, then this Eos simulates the reference semantics.
So, we have shown that for EOS the reference semantics is a special case of
the (value) semantics. As another property we obtain, that the definition of
↔-enabling is a canonical extension of the value semantics given in [KR04]:

Theorem 2. The mobile EOS (OS , idP) has the same behaviour as the Eos

OS: The transition (τ̂ , C) ∈ T is enabled in mode (λ, ρ) for OS iff it is idP -
enabled in mode (λ, ρ) for (OS , ↔).

Proof. From Lemma 2 we have α ∼= β ⇐⇒ α ↔ β whenever ↔ = idP . So,
Definition 6 simplifies to Definition 3 and each transition (τ̂ , C) ∈ T is enabled
in mode (λ, ρ) for value semantics iff it is idP -enabled in the mobile EOS.

The special case of ↔ = idP expresses the fact that on firing, the system net
collects all relevant object nets for the particular firing mode and combines them
into one virtual object net that is only present at the moment of firing. Due to
this collection, the location of the object net’s tokens is irrelevant and is ignored.

For Eos reachability is undecidable [Köh06, Theorem 2].

Theorem 3. Reachability is undecidable for non-minimal, pure Eos and for
minimal, non-pure Eos.

For Eos boundedness remains decidable [Köh06, Theorem 7].

256 M. Köhler and B. Farwer

Theorem 4. Boundedness is decidable for Eos.

The following theorem shows that mobile Eos are more powerful than Eos,
because neither reachability nor boundedness nor coverability are decidable for
inhibitor nets while boundedness is decidable for Eos.

Theorem 5. Mobile Eos can simulate Petri nets with inhibitor arcs.

We recall the definition of inhibitor nets:

Definition 8. An inhibitor net is a tuple (N, A) where N is a P/T net and
A ⊆ (P × T) is a set of inhibitor arcs.

A transition t ∈ T is enabled in marking m (denoted m t−−−−→
(N,A)

) iff m t−→
N

and m(p) = 0 for all p ∈ (At). The successor marking is m′(p) = m(p) −
pre(t)(p) + post(t)(p) for all p ∈ P .

A place p ∈ (At) is called an inhibitor place of t. For an inhibitor net a transition
t is disabled whenever an inhibitor place is marked. If A = ∅ then an inhibitor
net (N, A) behaves as the P/T net N itself.

In the following we define for an arbitrary inhibitor net a mobile Eos that
simulates it. This is sufficient to prove Theorem 5.

�p

�
t

��p′

�
a

� �

�p

�
t

��p′

�
a

�(p, ∅)

�(p′, ∅)

�
(a, ∅)

�(p, {t})

�(p′, {t})

(a) Inhibitor net (N, A) (b) Net N (c) Net N∅ (d) Net N{t}

Fig. 4. The inhibitor net (N, A) and its subnets

Given an inhibitor net (N, A) we define Z := {∅} ∪ {{t} | t ∈ inh(T)} where
inh(T) is the subset of transitions with inhibitor arcs: inh(T) := (PA). For the
inhibitor net N in Figure 4 (a) we have Z = {∅, {t}}.

For each Z ∈ Z we define the P/T net

NZ := ((P \ (AZ)) × {Z}, ∅, ∅, ∅)

which is obtained by dropping all transitions and the places that are tested for
emptiness by the transition in Z. To make all the nets NZ disjoint we use Z
as the second component for the places. The nets N∅ and N{t} are shown in
Figures 4 (c) and (d).

Next we construct a mobile Eos Inh(N, A) for the inhibitor net (N, A). We use
N = {NZ | Z ∈ Z} as the set of object nets. The system net contains the place
p̂0 that carries net tokens of type N , i.e. d(p̂0) = N , and one place p̂Z for each
Z ∈ Z with d(p̂Z) = NZ . For each transition t ∈ T we add the transitions t̂′ and

Object Nets for Mobility 257

The net token on �p0�

�

�

�

�� p

�
t 〈t〉

�
�p′

�
a

�
�

�
�

��

�
�

�
�

��

The system net �N�

�

�

�

�t′′

	
�p0

�t′

〈t〉

	
�p{t}

�

�

� �

�

�

��

Fig. 5. The simulating net Inh(N, A)

t̂′′ and one place p̂{t} in the system net with the arcs p̂0 → t̂′ → p̂{t} → t̂′′ → p̂0.
Θ synchronises each system net transition t̂′ with the transition t in the object
net N . The conversion ↔ is defined to allow the transfer of tokens between p
and all (p, Z). The construction is illustrated in Figure 5 for the inhibitor net
depicted in Figure 4 (a).

Definition 9. Given the inhibitor net (N, A) define the mobile Eos

Inh(N, A) = ((N̂ , N , d, Θ, μ0), ↔)

1. The system net N̂ is given by P̂ = {p̂0}∪{p̂{t} | t ∈ T }, T̂ = {t̂′, t̂′′ | t ∈ T },
and pre(t̂′)(p̂0) = pre(t̂′′)(p̂{t}) = post(t̂′)(p̂{t}) = post(t̂′′)(p̂0) = 1 for all
t ∈ T (and 0 everywhere else).

2. The set of object nets is N = {N} ∪ {NZ | Z ∈ Z}.
3. The typing is defined d(p̂0) = N and d(p̂Z) = NZ for all Z ∈ Z.
4. Θ =

{
(t̂′, C) | t ∈ T ∧ C = {t} ∪ {εNZ | ∅ �= Z ∈ Z}

}
∪ {(t̂′′, εN) | t ∈ T }.

5. The initial marking is μ0 = (p̂0, M0).
6. The conversion ↔ is defined by the family C = {Cp | p ∈ P} of conversion

sets Cp := {p} ∪ {(p, Z) | Z ∈ Z}.

Mobile Eos simulate inhibitor nets directly by Inh(N, A), which also proves
Theorem 5.

Theorem 6. Let (N, A) be an inhibitor net. Then we have:

M
t−→
N

M ′ ⇐⇒ (p̂0, M)
(�t′,C)−−−−−−→

Inh(N,A)

(
p̂{t}, M ′ × {{t}}

)
(�t′′,εN)−−−−−−→

Inh(N,A)
(p̂0, M

′)

Proof. We show that transition t is enabled in marking M for the inhibitor net
iff (t̂′, C) where C = {t)} ∪ {εNZ | ∅ �= Z ∈ Z}

}
is enabled in the marking

(p̂0, M) for Inh(N, A).
Assume that t is enabled in marking M in (N, A). Consider the marking

(p̂0, M). In the system net the preset of t̂′ and in the net token the preset of
t is sufficiently marked. By the definition of the conversion ↔ it is possible to

258 M. Köhler and B. Farwer

convert the marking M of the object net N into a marking of the object net
N{t} iff M(p) = 0 for all tested places p ∈ (At). The marking of the net token is
modified from M to M ′ × {Z} due to the internal action of the net token which
corresponds to the firing of t in the inhibitor net,

Conversely, if (t̂′, C) is enabled in the marking (p̂0, M) then M(p) ≥ W (p, t)
for all p ∈ •t. By the conversion we obtain M(p) = 0 for all (p) ∈ (At) since there
is no corresponding place (p, Z) in NZ . Hence, t is enabled in the inhibitor net
for marking M . Since the system net of Inh(N, A) is a state machine when firing
(t̂′, C) the place p̂Z is marked, enabling only t̂′′. It is clear that (t̂′, C)(t̂′′, εN) is
the only firing sequence.

The correct correspondence of the markings M ′ × {{t}} and M ′ follows from
the fact that the conversion relation modifies only the second component of the
marking while the first reflects the marking of the inhibitor net. Since the initial
marking is μ0 = (p̂0, M0) we have a simulation of the inhibitor net.

5 Name Spaces and Mobile EOS

Given a mobility system (OS ,LS) we define a mobile EOS Mob(OS) that allows
global access only within a location. The main idea is similar to the construction
of Rn(OS). As it is shown by Theorem 1, the global access which is defined by
reference semantics is characterised by the P/T net Rn(OS) which is obtained
by fusing the system with all the object nets according to the synchronisation
relation. The resulting net describes one single name spaces.

:a2() :a3() :a4():a1()
t20 t22t21

p22

p2

p4 p9

t1

t2

t3

t7

t8

p3

on:a1()

p8

t4

p10p1

p24

t6

on:a4()

p21p20

p5

p23

on:a2()

Fig. 6. The Mobile Agent in Building A

If we have different name spaces defined by a locality infrastructure, we fuse
only the subnet of the system net that describes a name space: Each location
L ∈ L of the locality infrastructure is fused with the object nets. If we fuse the
name space named Building A of Figure 1 with the agent’s object net then we
obtain the P/T net of Figure 6. (Note, that we kept the graphical layout and
indicated the transition fusion by dotted lines).

Given a locality infrastructure LS = (L, Nm) the new system net N̂ ′ has one
place pL for each location L ∈ L: P̂ ′ = {pL | L ∈ L}. The transitions are the

Object Nets for Mobility 259

mobility transitions: T̂ ′ = Tm. By definition there is exactly one location L for
each tm ∈ Tm such •tm ⊆ PL. Analogously, there is exactly one L′ such that
tm

• ⊆ PL′ . For all mobility transitions tm ∈ Tm that connect L with L′ we add
pL and pL′ as side conditions of tm in the new system net.

For each location net L ∈ L we define the object net NN ,L that is the union
of L with the object nets N ∈ N (where each node is tagged with L to make the
nets NN ,L disjoint). Each system net place pL carries tokens of type N(N , L).
The net N(N , L) models agents within the name space L.

The movement transitions tm ∈ Tm in the system net N̂ ′ are synchronised by
Θ with the corresponding transition (tm, L) of the object net NN ,L.

The initial marking μ0 can be denoted in the form μ0 =
∑

L∈L μL where
μL =

∑|μL|
i=1 (pL,i, ML,i) and pL,i ∈ PL for all L and i. The new Eos marks

each place pL with marking
∑|μL|

i=1 pL,i + (ML,i ×{L}), which is the corresponds
exactly with the marking μL in the object net NN ,L.

The conversion ↔ is defined by the conversion sets EN,p for all N ∈ N . Each
conversion set EN,p := {(p, L) | L ∈ L} contains the new object net places (p, L)
that describe the same place p – only at different locations L.

Definition 10. Let (OS ,LS) be a mobility system with OS = (N̂ , N , d, Θ, μ0)
and LS = (L, Nm). Define the mobile EOS

Mob(OS) := ((N̂ ′, N ′, d′, Θ′, μ′
0), ↔)

where:

1. The system net is N̂ ′ = (P̂ ′, T̂ ′, p̂re′, p̂ost
′
) where P̂ ′ = {pL | L ∈ L},

T̂ ′ = Tm, and pre(tm)(pL) = post(tm)(pL) = 1 if •tm ⊆ PL ∨ tm
• ⊆ PL

and 0 otherwise.
2. The set of object nets is N ′ = {NN ,L | L ∈ L} where NN ,L = (P, T,pre,

post) is defined for each location L = (PL, TL,preL,postL) ∈ L by:

P := PL ∪
⋃

N∈N (PN × {L})
T := {(τ̂ , C, L) | (τ̂ , C) ∈ Θ ∧ τ̂ ∈ TL}

∪ {(tm, L) | tm ∈ Tm ∧ (tm• ⊆ PL ∨ •tm ⊆ PL)}

pre(τ̂ , C, L)) = pre(τ̂) +
∑

τ∈C pre(τ)

pre((tm, L))(p) =
{

preL(tm)(p), if p ∈ PL

0, otherwise

Analogously for post.
3. Each system net place pL carries tokens of type NN ,L, i.e. d(pL) = NN ,L.
4. Θ =

{
(tm, C) | tm ∈ Tm ∧ C = {(tm, L) | (tm• ⊆ PL ∨ •tm ⊆ PL)}

}
∪

{εNN ,L | NN ,L ∈ N ′ ∧ ¬(tm• ⊆ PL ∨ •tm ⊆ PL)}
5. The initial marking is μ′

0 =
∑

L∈L(pL),
∑|μL|

i=1 pL,i + (ML,i × {L})), where
μ0 =

∑
L∈L μL and μL =

∑|μL|
i=1 (pL,i, ML,i), such that pL,i ∈ PL for all L

and 1 ≤ i ≤ |μL|.
6. The conversion ↔ is defined by the family of conversion sets E = {EA,p |

A ∈ A, p ∈ PA} with EA,p := {(p, L) | L ∈ L}.

260 M. Köhler and B. Farwer

t7
p7

:a2() :a4():a1()
t20 t21

:a2() :a3() :a4():a1()
t20 t22t21

p22 p23

p2

p4 p9

t1
t2

t3

t7
t8

p3

on:a1()

p8t6

Building B

t4

Building A

t4
on:a2()

t4 t6

p10p1

p24

t22
:a3()

p5

p6

p24

p23p21

t6

p22

on:a3()

on:a4()

p20

p21p20

Fig. 7. A mobile agent’s environment

The resulting mobile Eos constructed from the Eos in Figure 1 is shown in
Figure 7. Each building is represented by a separate place. These two places are
connected by the mobility transitions t4 and t6. The mobility transitions t4 and
t6 are also present in each agent net allowing the transfer between buildings.
The subnets defined by PA and TA as well as PB and TB describe the buildings.
They are now present as part of the agent net. The agent’s and the buildings’
events are synchronised via channel inscriptions.

The mobile Eos Mob(OS) defines the desired behaviour: Within the same
location L, an object net has global access to all the resources of the name
space, since they are all in the same net: NN ,L. Different locations are isolated
since they are in different net tokens.

6 Conclusion

In this paper we have investigated mobile agents that act in a distributed name
space. There is a fundamental difference between belonging to a name space and
migrating between name spaces. An object belonging to a name space can be
accessed directly via pointers, but when migrating between name spaces, objects
have to be treated as values that can be copied into network messages.

For the modelling of mobile systems it is essential that the formalism used
supports both representations. To accomplish this, we have defined mobile Eos,
a generalisation of the well-established formalism of Eos. The main extension is
the use of conversion equivalences for the firing rule.

We have shown that mobile Eos subsume reference and value semantics. Fur-
thermore we have proved that they are strictly more expressive than Eos: While
boundedness is decidable for Eos it is not for mobile Eos since it is possible
to construct an mobile Eos which simulates a given inhibitor net. We have also
showed in an example that mobile Eos are suitable for expressing the intended
behaviour for distributed name spaces.

Object Nets for Mobility 261

References

[BBPP04] Bednarczyk, M.A., Bernardinello, L., Pawlowski, W., Pomello, L.: Mod-
elling mobility with Petri hypernets. In: Fiadeiro, J.L., Mosses, P.D., Ore-
jas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 28–44. Springer, Heidel-
berg (2004)

[Bus99] Busi, N.: Mobile nets. Formal Methods for Open Object-Based Distrib-
uted Systems, pp. 51–66 (1999)

[CGG00] Cardelli, L., Gordon, A.D., Ghelli, G.: Ambient groups and mobility types.
Technical report, Microsoft Research and University of Pisa (2000)

[Hir02] Hiraishi, K.: PN2: An elementary model for design and analysis of multi-
agent systems. In: Arbab, F., Talcott, C.L. (eds.) COORDINATION 2002.
LNCS, vol. 2315, pp. 220–235. Springer, Heidelberg (2002)

[KF06] Köhler, M., Farwer, B.: Modelling global and local name spaces for mo-
bile agents using object nets. Fundamenta Informaticae 72(1-3), 109–122
(2006)

[KMR01] Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri
net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS,
vol. 2075, pp. 224–241. Springer, Heidelberg (2001)

[KMR03] Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents
using nets within nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN
2003. LNCS, vol. 2679, pp. 121–140. Springer, Heidelberg (2003)

[Köh06] Köhler, M.: The reachability problem for object nets. In: Moldt, D. (ed.)
Proceedings of the Workshop on Modelling, object, components, and
agents (MOCA’06). University of Hamburg, Department for Computer
Science (2006)

[KR03] Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fun-
damenta Informaticae, vol. 54(2-3) (2003)

[KR04] Köhler, M., Rölke, H.: Properties of Object Petri Nets. In: Cortadella, J.,
Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 278–297. Springer,
Heidelberg (2004)

[KWD+04] Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M.,
Moldt, D., Rölke, H., Valk, R.: An extensible editor and simulation engine
for Petri nets: Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 484–493. Springer, Heidelberg (2004)

[Lak05] Lakos, C.: A Petri net view of mobility. In: Wang, F. (ed.) FORTE 2005.
LNCS, vol. 3731, pp. 174–188. Springer, Heidelberg (2005)

[Lom00] Lomazova, I.A.: Nested Petri nets – a formalism for specification of multi-
agent distributed systems. Fundamenta Informaticae 43(1-4), 195–214
(2000)

[MPW92] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts
1-2. Information and computation 100(1), 1–77 (1992)

[Val91] Valk, R.: Modelling concurrency by task/flow EN systems. In: 3rd Work-
shop on Concurrency and Compositionality, number 191 in GMD-Studien,
St. Augustin, Bonn, Gesellschaft für Mathematik und Datenverarbeitung
(1991)

[Val98] Valk, R.: Petri nets as token objects: An introduction to elementary object
nets. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp.
1–25. Springer, Heidelberg (1998)

262 M. Köhler and B. Farwer

[Val03] Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets
2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2003)

[VC98] Vitek, J., Castagna, G.: Seal: A framework for secure mobile computa-
tions. In: ICCL Workshop: Internet Programming Languages, pp. 47–77
(1998)

[XD00] Xu, D., Deng, Y.: Modeling mobile agent systems with high level Petri
nets. In: IEEE International Conference on Systems, Man, and Cybernet-
ics 2000 (2000)

Web Service Orchestration

with Super-Dual Object Nets

Michael Köhler and Heiko Rölke

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, 22527 Hamburg

{koehler,roelke}@informatik.uni-hamburg.de

Abstract. Refinement of Petri nets is well suited for the hierarchical
design of system models. It is used to represent a model at different
levels of abstraction.

Usually, refinement is a static concept. For some inherent dynamic do-
mains as for example the modelling of web services, we need a more flex-
ible form of refinement, e.g. to bind web services at run-time. Run-time
binding allows for a flexible orchestration of services. The requirement of
dynamic refinement at run-time is quite strong. Since we would like to
redefine the system structure by itself, transition refinement cannot be
implemented by a model transformation. Instead, an approach is needed
which allows for dynamic net structures that can evolve as an effect of
transitions firing.

In previous work we introduced nets-within-nets as a formalism for the
dynamic refinement of tokens. Here we consider an extension of nets-
within-nets that uses special net tokens describing the refinement structure
of transitions. Using this formalism it is possible to update refinements, in-
troduce alternative refinements, etc. We present some formal properties of
the extended formalism and introduce an example implementation for the
tool Renew.

Keywords: duality, refinement, nets-within-nets, Petri nets, super-dual
nets.

1 Motivation: Web Service Orchestration

Web services [ACKM03] are a standard means to integrate services distributed
over the Internet using standard web technologies like HTTP, XML, SOAP,
OWL, WSDL, BPEL4WS etc. (cf. [Got00, OAS07]). Conceptually, this approach
is very similar to remote procedure calls in CORBA [COR07]. The main differ-
ence is that web services focus on the semantic level of services using semantic
web techniques (formal ontologies for data and processes). The semantic level
allows for an automated dynamic binding depending on the available services.
This enables the programmer to concentrate on the orchestration of web services.

To give an example, have a look a the Petri net in Figure 1 which defines a
simple web service workflow: The scenario describes the organisation of a journey
from S to D. This task is split into two major sub-tasks that are executed in

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 263–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 M. Köhler and H. Rölke

i o

buy flight rent car

fork join

book hotel

Fig. 1. Web Service Workflow

parallel. The first sub-task organises a flight from S to an airport A that is close
to the final destination D and a car to travel from the airport A to D. The
second task is to book a hotel at D.

i o

buy flight rent car

fork join

enter dates pay per
credit card

book hotel

Fig. 2. Refinement of the Web Service

For each transition of the net in Figure 1 we use a specific web service. We
assume that each web service itself is modelled by a Petri net (cf. [KMO06],
[Mar05], [NM03]). Then the resulting system model is obtained by refinement.
This approach corresponds to the usual top-down design of a software product.
Figure 2 shows the refinement of the transition book hotel where the travel dates
have to be filled in before the hotel is booked.

A Petri net formalism supporting transition refinement has the advantage
over other formalisms that the original abstract net of the early design stages
does not have to be redefined, but is continuously used for the later models and
for the implementation models. An example of such a formalism is the one of
(hierarchical) Coloured Petri Nets [Jen92] used in the Design/CPN tool [Des07].

Unfortunately the proposed transition refinement procedures in [Jen92] only
support static refinements that cannot be changed at runtime. For web services
the refinement is however not static. Usually we have a look-up services which
provides a whole repository of services that can be used alternatively. Usually
the user can decide which service is best for him with respect to costs, timing,
convenience etc. Figure 3 shows a repository with three subnets that can be
used for the refinement of the transition book hotel. The rhombic nodes named
(un)bind web service are used to formalise this dynamic refinement. The intended
meaning is the following: whenever the action bind web service is executed one
subnet is removed from the web service repository and the subnet is used as

Web Service Orchestration with Super-Dual Object Nets 265

i o

buy flight rent car

fork join

book hotel

enter dates on account

book hotel #2

enter dates pay never

book hotel #3

bind web service

unbind web service

enter dates pay per
credit card

book hotel #1

web service repository

Fig. 3. Dynamic Refinement using a Repository

the refinement of the transition book hotel. The action unbind web service is the
reverse operation.

In the formalism developed in this article, the rhombic nodes are used like
places since they connect transitions. We regard the rhombic nodes as places to
avoid introducing additional modellings constructs.
The “only” novelties our new formalism require, are marked transitions and the
firing of places(sic!).1 Also we use nets as tokens. The nets with these properties
are called Super-Dual Object Nets. They are a variant of the nets-within-nets
approach of Valk [Val03], therefor the term Object Nets ; they are called super-
dual because places are also marked and are able to fire.

The remaining sections are structured as follows: In Section 2 we introduce our
approach of marked transitions for Petri nets. We define super-dual nets and their
firing rule. In Section 3 we describe how the concept of super-dual nets can be lifted
to object nets and give an definition of the new formalism of super-dual object nets.
In Section 4 we describe how super-dual object nets can be simulated by object
nets. Section 5 explains a first attempt to integrate dynamic transition refinement
in Renew [Kum01, KWD+04]. The paper ends with a conclusion.

2 Introduction to Super-Dual Petri Nets

This section starts with a short remainder of Petri nets basics. This is to avoid
notational confusions. After that, super-dual nets will be introduced.
1 Note, that the repository is a proper transition with the implementing nets as its

marking.

266 M. Köhler and H. Rölke

2.1 Basic Definitions

The definition of Petri nets relies on the notion of multi-sets. A multi-set on
the set D is a mapping A : D → N. The set of all mapings from D to N is
denoted by N

D. Multi-sets are generalisations of sets in the sense that every
subset of D corresponds to a multi-set A with A(x) ≤ 1 for all x ∈ D. The
empty multi-set 0 is defined as 0(x) = 0 for all x ∈ D. The carrier of a multi-
set A is dom(A) := {x ∈ D | A(x) > 0}. The cardinality of a multi-set is
|A| :=

∑
x∈D A(x). A multi-set A is called finite iff |A| < ∞. The multi-set

sum A + B is defined as (A + B)(x) := A(x) + B(x), the difference A − B by
(A − B)(x) := max(A(x) − B(x), 0). Equality A = B is defined element-wise:
∀x ∈ D : A(x) = B(x). Multi-sets are partially ordered: A ≤ B ⇐⇒ ∀x ∈
D : A(x) ≤ B(x). The strict order A < B holds iff A ≤ B and A 	= B. The
notation is overloaded, being used for sets as well as multi-sets. The meaning
will be apparent from its use.

In the following we assume all multi-sets to be finite. A finite multi-set A
can be considered as the formal sum A =

∑
x∈D A(x) · x =

∑n
i=1 xi. Finite

multi-sets are the freely generated commutative monoid. If the set D is finite,
then a multi-set A ∈ N

D can be represented equivalently as a vector A ∈ N
|D|.

Any mapping f : D → D′ can be generalised to a homomorphism f � : N
D →

N
D′

on multi-sets: f � (
∑n

i=1 ai) =
∑n

i=1 f (ai). This includes the special case
f �(0) = 0. These definitions are in accordance with the set-theoretic notation
f(A) = {f(a) | a ∈ A}. In this paper we simply use f instead of f �.

2.2 Petri Nets

A Petri net is a tuple N = (P, T, F) where P is a set of places, T is a set of
transitions, disjoint from P , i.e. P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) is the
flow relation. Some commonly used notations for Petri nets are •y := (F y) for
the preset and y• := (y F) for the postset of a net element y.

To simplify the definition of duality and conjugation we only consider ordinary
Petri nets, i.e. we do not deal with arc weights. The mappings F−, F+ are defined
by F−(t)(p) := |F ∩ {(p, t)}| and F+(t)(p) := |F ∩ {(t, p)}|.

A marking of a net N is a multi-set of places: m ∈ N
P . Places are depicted

as circles, transitions as rectangles, and the flow relation as arcs between the
nodes. The marking is visualised as m(p) tokens on the place p.

A marked Petri net is a tuple (N,m0) consisting of a Petri net and a start
marking. Throughout this paper, we speak of Petri nets or simply nets instead
of (ordinary) marked Petri nets.

A multi-set of transitions u ∈ N
T of a net N is enabled in marking m iff

∀p ∈ P : m(p) ≥ F−(u)(p) holds. The enablement of u in marking m is denoted
by m u−→. A transition multi-set u enabled in m can fire in the successor marking
m′ where m′(p) = m(p)− F−(u)(p)+ F+(u)(p). Firing is denoted by m u−→ m′.

Using multi-set operators m u−→ is equivalent to m ≥ F−(u), and the successor
marking is m′ = m − F−(u) + F+(u).

Web Service Orchestration with Super-Dual Object Nets 267

2.3 Super-Dual Nets

Super-dual nets have been introduced in [KR06]. A super-dual net contains a
G-flow (short: a glow) G ⊆ (P ×T ∪T ×P) as an additional structure. G connects
places and transitions the same way as the flow F , but with a different semantics
(see below).

Definition 1. A super-dual net is a tuple SD = (P, T, F, G) where

– P is a set of places,
– T is a set of transitions with P ∩ T = ∅,
– F ⊆ (P × T ∪ T × P) is the flow relation, and
– G ⊆ (P × T ∪ T × P) is the glow relation.

The preset w.r.t. the glow G is �y := (Gy) and the postset is y� := (y G).
Analogously to the flow mappings we define the glow mappings G−, G+ : T →
(P → N) by G−(t)(p) := |G ∩ {(p, t)}| and G+(t)(p) := |G ∩ {(t, p)}|.

In super-dual nets, also the transitions may be marked. A marking of a super-
dual net is a multi-set of places and transitions: m ∈ N

(P∪T). The tokens on
transitions are called pokens. A poken is visualised as a little filled square. A
marked super-dual net is denoted as (P, T, F, G,m).

For super-dual nets, the firing rule considers the firing of transitions as well
as the firing of places.

1. A marking m enables a transition t only if its preset •t is marked and t itself
is marked. For a transition multi-set u ∈ N

T we define enabling by:

m(p) ≥ F−(u)(p) for all p ∈ P
m(t) ≥ u(t) for all t ∈ T

This means, that the number of pokens m(t) limits the maximal concurrency
of the transition t. Thus m(t) = 0 describes a disabled transition.

2. Conversely, a marking m enables a place p only if its preset �p is marked
and p itself is marked. For a place multi-set u ∈ N

P we define enablement
by:

m(p) ≥ u(p) for all p ∈ P
m(t) ≥ G−(u)(t) for all t ∈ T

Example 1. Cf. the net in Figure 4. The place p5 is connected by glow arcs
(the dashed ones) with transitions t1 and t2. In the depicted marking, only the
transition t1 is enabled – more exactly: it is enabled twice. Despite the fact, that
the preset of transition t2 is marked, it is not enabled, since t2 itself is unmarked.
Firing of p5 transfers a poken from t1 to t2, and t2 is then enabled.

Both cases – firing of transitions and of places – can occur in a single step.

Definition 2. A multi-set of places and transitions u ∈ N
(P∪T) of a super-dual

net SD is enabled in the marking m ∈ N
(P∪T), denoted by m u−→, iff

m(p) ≥ F−(u|T)(p) + u(p) for all p ∈ P and
m(t) ≥ G−(u|P)(t) + u(t) for all t ∈ T.

268 M. Köhler and H. Rölke

p1

p3

t1

t2

p5

p2

p4

Fig. 4. The super-dual net SD

An enabled multi-set u can fire, denoted by m u−→ m′, resulting in the successor
marking m′ defined by

m′(p) = m(p) − F−(u|T)(p) + F+(u|T)(p)
m′(t) = m(t) − G−(u|P)(t) + G+(u|P)(t).

Define pre(u) := F−(u|T) + G−(u|P) and post(u) := F+(u|T) + G+(u|P).
Using multi-set notations m u−→ is equivalent to m ≥ pre(u) + u. The successor
marking is m′ = m − pre(u) + post(u).

Duality. Given a super-dual net SD = (P, T, F, G,m), the dual net (inter-
changing transitions and places) is defined as SDd := (T, P, F, G,m) and the
conjugated net (interchanging flow and glow) is SDc := (P, T, G, F,m). Note,
that also the dual of a marking can be considered for super-dual nets. We have
the commutativity: SDcd = SDdc. For the super-dual net of Figure 4 these con-
structions are illustrated in Figure 5.

The following property justifies the name “super-dual nets”.

Proposition 1. Let SD be a super-dual net. SD corresponds to SDcd:

m u−−→
SD

m′ ⇐⇒ m u−−−→
SDcd

m′

Proof. Simultanously interchanging P and T as well as F and G in Definition 2
is the identity transformation.

Components. We define the F -component SD |F and the G-component SD |G
of a marked super-dual net SD = (P, T, F, G,m) as:

SD |F := (P, T, F,m|P) (1)
SD |G := (P, T, G,m|T) (2)

Both constructions are illustrated in Figure 6. Note, that the components
SD |F and the dual of the G-component, SD |dG (but not SD |G itself) are Petri
nets.

The following proposition relates the behaviour of a super-dual net to that of
its components.

Web Service Orchestration with Super-Dual Object Nets 269

SD

p1

p3

t1

t2

p5

p2

p4

SDd

t1

t2

p2

p4p3

p1

p5

SDc

p1

p3

t1

t2

p5

p2

p4

SDcd

t1

t2

p2

p4p3

p1

p5

Fig. 5. Duality and Conjugation

SD |F

p1

p3

t1

t2

p5

p2

p4

SD |G

p1

p3

t1

t2

p5

p2

p4

Fig. 6. The F - and the G-component

Proposition 2. Let m ∈ N
(P∪T) be a marking of a super-dual net SD =

(P, T, F, G). Let u ∈ N
(P∪T). Then for the F -component and the dual of the

G-component we have (For the proof see [KR06]):

∀u ∈ N
T : m u−−→

SD
m′ ⇐⇒

(
m|P u−−−→

SD|F
m′|P ∧ m|T = m′|T ≥ u

)

∀u ∈ N
P : m u−−→

SD
m′ ⇐⇒

(
m|T u−−−→

SD|dG
m′|T ∧ m|P = m′|P ≥ u

)

3 From Object Nets to Super-Dual Object Nets

We are interested in a dynamic refinement of transitions, i.e. a refinement that
can be changed at runtime. This change should be made by the net itself. Our
basic approach is to regard sub-nets as special tokens of transitions. As men-
tioned in the introduction this approach proposes two extensions to the Petri

270 M. Köhler and H. Rölke

net formalism: (1) Petri nets can be used as tokens and (2) transitions may be
marked.

The first extension of Petri nets to object nets – also known as the nets-
within-nets approach – has been proposed by Valk [Val91, Val03], and further
developed e.g. in [Far99], [Lom00], and [KR03, KR04]. The Petri nets that are
used as tokens are called net-tokens. Net-tokens are tokens with internal struc-
ture and inner activity. This is different from place refinement, since tokens
are transported while a place refinement is static. Net-tokens are some kind of
dynamic refinement of states.

3.1 Object Nets and Object Net Systems

In the following we give a condensed definition of object net systems. For sim-
plicity reasons we abstract from the syntax of inscriptions of net elements and
synchronisations as it is used for reference nets [Kum01] in the Renew tool (cf.
[KWD+04]).

Object net systems have the set of object nets as their colour set. In [KR03]
we generate the net-tokens via instantiation from a finite set of nets. In this
definition, we assume for simplicity reasons an arbitrary set of object nets:

N = {N0, N1, . . .}

One object net models black tokens: • ∈ N . This net has one initally unmarked
place and no transitions.

In coloured nets, each transition t fires according to a mode b generated from
transition guards, arc expressions and variable assignments. Let B be the set of
firing modes. Each object net is a tuple

N = (PN , TN , F−
N , F+

N)

where F−
N , F+

N : TN → (B → (PN → N
N)). Given a binding b F−

N (t)(b)(p) is a
multiset of object nets.

Let P denote the union of all place components: P :=
⋃

N∈N PN . Assume
analogously defined union sets for transitions T , etc.

A marking μ of an object net system maps each place to a multi-set of object
nets:

μ : P → N
N

Here μ(p)(N) > 0 describes the fact, that the place p is marked with μ(p)(N)
net-tokens of the type N .

Transitions in different nets may be synchronised via channels. In Renew,
channels are also used to exchange parameters. Each transition has at most one
uplink, which is passive, and several downlinks, which are active in the sense
that they choose the synchronisation partner. Due to this structure we obtain
tree-like synchronisations. The formal definition is based on the synchronisation
trees. The set of all synchronisation trees is T =

⋃
n≥0 Tn where

Tn := {(t, b)[θ1 · · · θk] | t ∈ T ∧ b ∈ B ∧ ∀1 ≤ i ≤ k : θi ∈
⋃

l<n Tl}. (3)

Web Service Orchestration with Super-Dual Object Nets 271

The predomain F− (and analogously for F+) is extended to F̂− : Θ → (PN →
N

N) by:

F̂−((t, b)[θ1 · · · θk]) = F−(t)(b) +
∑k

i=1
F̂−(θi) (4)

Definition 3. An Object Net System is a tuple OS = (N , Θ, μ0) where

– N is a set of object nets,
– Θ ⊆ T is the set of system events, and
– μ0 is the initial marking.

As usual we have μ
θ−→ μ′ iff μ ≥ F̂−(θ) and μ′ = μ− F̂−(θ)+ F̂+(θ). This firing

rule describes the reference semantics of object nets – for an in-deep comparison
of alternative firing rules cf. [Val03, KR04].

3.2 Super-Dual Object Nets

Similarly to the extension of Petri nets to super-dual nets in section 2, we extend
the object net formalism by using nets as pokens, called net-pokens. The net-
pokens can be used as a dynamic refinement (similar to a sub routine) of the
transitions they mark. Figure 7 shows a super-dual object net with nets on places
and on transitions.

p1

p

t2

t

N1

N1

N2N2

p2

start end
N2 N2N2 N2

aN1

N2 N2N2

N2

N2

N2N2N2

a

b

start end

N
start end

N2

Fig. 7. A Petri net with nets as tokens for places and transitions

Since these refinements are defined as markings it is possible to move net-
pokens using the token-game of object nets. In Figure 7 the place p “fires” the
net-poken from t2 to t. Transition t is then marked by two net-pokens, which
means that there are two modes of refinement for t. The equivalent net containing
the conflict between the possible refinement is given in Figure 8.

Each object net is a super-dual object net N = (PN , TN , F−
N , F+

N , G−
N , G+

N)
where G±

N : TN → (B → (PN → N
N)) define the inscriptions for glow arcs. One

net models black pokens: � ∈ N . Each net-poken N ∈ N has one transition
startN with empty preset and one transition endN with empty postset. These
transitions are used to start (or end, respectively) the dynamic refinement im-
plemented by the net-poken. From a practical point of view it is reasonable to
require that the net is unmarked when the refinement is started (i.e. when tran-
sition startN fires) and is unmarked again when it is ended by endN . We do not
adopt such a restriction here to allow a general definition.

272 M. Köhler and H. Rölke

start end

N2

p1

p

t2

t

N1

N1

p2start end
N2 N2N2 N2a

N1

N2 N2N2

N2

N2

N2N2N2

a

b

start end

N

N2

N2N2

N2

Fig. 8. Equivalent refinement after firing of place p

A marking μ of a super-dual object net system maps each place and transition
to a multi-set of object nets:

μ : (P ∪ T) → N
N

In analogy to T we define a tree structure of places: P =
⋃

n≥0 Pn where

Pn = {(p, b)[π1 · · · πk] | p ∈ P ∧ b ∈ B ∧ ∀1 ≤ i ≤ k : πi ∈
⋃

l<n Pl}. (5)

The mappings Ĝ− and Ĝ+ are defined analogously to F̂− and F̂+.
The mapping ν : (P ∪ T) → N

(P∪T) constructs a multiset by removing the
nesting structure:

ν(x[ξ1 · · · ξk]) := x +
∑k

i=1
ν(ξi) (6)

Here, ν(θ)(t, b) is the number of occurences of (t, b) in the nested structure θ.
A dynamically refined transition t is enabled in a mode N where N is the

net-poken implementing the refinement. If N is the black poken � , then this
transition is not refined and synchronisation is possible. If N is not the black
poken, it is used as a dynamic refinement of t. This refinement splits t into a
start and an end part: (t, b, N, start) and (t, b, N, end).

R = {(t, b, N, α) | t ∈ T ∧ b ∈ B ∧ � 	= N ∈ N , α ∈ {start , end}} (7)

Definition 4. A Super-Dual Object Net System SDOS = (N , Θ, μ0) consists
of the following components:

– N is a set of object nets,
– Θ ⊆ (T ∪ P ∪ R) is the set of system events, and
– μ0 : (P ∪ T) → N

N is the initial marking.

The set of system events Θ contains elements from T , P , and R. So, we have
different kinds of firing modes:

1. θ ∈ Θ ∩ T : As usual we have μ
θ−→ μ′ iff ∀p ∈ P : μ(p) ≥ F̂−(θ)(p) and

μ(t)(�) ≥
∑

b∈B ν(θ)(t, b). Then μ′ = μ − F̂−(θ) + F̂+(θ).
2. θ ∈ Θ ∩ P : As usual we have μ

π−→ μ′ iff ∀t ∈ T : μ(t) ≥ Ĝ−(π)(t) and
μ(p)(•) ≥

∑
b∈B ν(θ)(p, b). Then μ′ = μ − Ĝ−(π) + Ĝ+(π).

Web Service Orchestration with Super-Dual Object Nets 273

3. θ ∈ Θ ∩ R: A dynamic refinement has two parts.
– The control is carried over from t to a refining net-poken N :

μ
(t,b,N,start)−−−−−−−−→ μ′ ⇐⇒ ∀p ∈ P : μ(p) ≥ F−(t)(b)(p)

∧ μ(t)(N) ≥ 1 ∧ μ(startN)(�) ≥ 1
∧ μ′ = μ − F−(t)(b) + F+(startN)(b)

– The control is given back from N to t:

μ
(t,b,N,end)−−−−−−−→ μ′ ⇐⇒ ∀p ∈ P : μ(p) ≥ F−(endN)(b)(p)

∧ μ(t)(N) ≥ 1 ∧ μ(endN)(�) ≥ 1
∧ μ′ = μ − F−(endN)(b) + F+(t)(b)

Proposition 3. Object nets are a special case of super-dual object nets: Each
object net system is simulated by a super-dual object net system.

Proof. The super-dual object net system is obtained from the object net system
adding no glow arcs marking all transitions with enough black-pokens. To allow
all synchronisations θ ∈ Θ, the transition t is marked with max{ν(θ)(t, b) | b ∈
B, θ ∈ Θ} black-pokens. Then the super-dual object net system behaves the
same way as the object net system since we have no refinements and no events
θ ∈ Θ ∩ P . All the events θ ∈ Θ ∩ T are enabled correspondingly and the effect
is the same as for the object net system.

4 Simulating Super-Dual Object Nets

In our previous work [KR06] we have shown that super-dual nets can simulate
Petri nets and, more interesting, that Petri nets can simulate super-dual nets –
both in respect to the possible firing sequences. The construction uses the dual
of the G-component (i.e. SD |dG), renames all nodes x to x(d) and combines it
with the F -component. The result is the simulating Petri net N(SD) (Figure 9
illustrates the construction for the net SD of Figure 4).

SD |dG

t1

t2

p2

p4p3

p1

p5

N(SD)

p1

p3

t1

t2

p5

p2

p4

t1(d)

p3(d)

p2(d)

p4(d)t2(d)

p5(d)

t1(d)

Fig. 9. The simulating net N(SD)

274 M. Köhler and H. Rölke

t(d)

p(d)

p1(d) p2(d)

t2(d)

p1

p

N2N2

p2

N1

N1

N2 N2

N1

start end
N2 N2N2 N2a

N1

N2 N2N2

N2

N2

N2N2N2

a

b

end

start

N

start

end
N2

t2

N

t

x

Fig. 10. Adding the dual component to the net of Figure 7

We will now lift our results to object nets and super-dual object nets to
come back to the goal of this work, dynamic refinement of transitions. The
construction for super-dual object nets is similar to the construction of N(SD)
for super-dual nets. We illustrate the construction of the simulating object net
OS(SDOS) at the example net from Figure 7. The construction involves two
steps: In the first step the dual of the G-component (the unfilled nodes) is added
to the F -component (the filled nodes) as side conditions for each object net. The
refining net-pokens become net-tokens. The resulting net is given in Figure 10.
Note, that the side transitions named p

(d)
1 and p

(d)
2 have no effect. The same

holds for the side condition named p. These nodes might be omitted. In the
second step we split each transition t of the F -component into two parts: tstart
and tend , similarly to the construction suggested in the introduction. Transition
tstart synchronises with the input transition startN , i.e. it starts the refining
subnet N . Similarly, tend synchronises with the output transition. The resulting
net – omitting synchronisation inscriptions – is given in Figure 11.

We formalise this dualisation construction in the following. The element in
the dual component corresponding to n ∈ P ∪ T is denoted n(d). The mapping
fP maps each transition t to its dual, i.e. the place t(d) and each place p to its

t(d)

p(d)

p1(d) p2(d)

t2(d)

p1

p

N2N2

p2

N1

N1

N2 N2

t_start t_end

t2_start t2_end

N

N1

N

N1

start end
N2 N2N2 N2a

N1

N2 N2N2

N2

N2

N2N2N2

a

b

end

start

N

start

end
N2

x

Fig. 11. Adding the start/end structure

Web Service Orchestration with Super-Dual Object Nets 275

dual, i.e. the place p(d): fX(n) = n if n ∈ X and fX(n) = n(d) if n 	∈ X . The
notation extends to pairs: fX((a, b)) = (fX(a), fX(b)) and to sets: fX(A) =
{fX(a) | a ∈ A}. This definition also extends to the nested structures P and T
the usual way: fX(x[ξ1 . . . ξk]) := fX(x)[fX(ξ1) . . . fX(ξk)].

For each marking μ in the super-dual object net the marking in the simulating
net μ̃ is defined by μ̃(p) = μ(p) and μ̃(t) = μ(t(d)) or shorter for n ∈ P ∪ T :

μ̃(n) = μ(fP (n)) (8)

The simulating event θ̃ is defined according to the three kinds of firing: a
synchronisation of transitions θ ∈ Θ ∩ T is simulated by θ. A synchronisation
of places θ ∈ Θ ∩ P is simulated by θ(d). Both cases are subsumed by the
definition θ̃ := fT (θ). The start event (t, b, N, start) ∈ Θ ∩ R is simulated by
the synchronisation of tstart (i.e. the first part of t) with the starting transition
startN of the refining net N :

(tstart , b)[(startN , b)[]]

Similarly for the event (t, b, N, end). This leads to the following definition:

θ̃ :=
{

fT (θ), if θ ∈ Θ ∩ (T ∪ P)
(tα, b)[(αN , b)[]], if θ = (t, b, N, α) ∈ Θ ∩ R, α ∈ {start , end} (9)

The notation extends to sets: Θ̃ = {θ̃ | θ ∈ Θ}.

Definition 5. Given a super-dual object system SDOS = (N , Θ, μ0) we define
the object net system

OS(SDOS) = ({Ñ | N ∈ N}, Θ̃, μ̃0)

where Ñ = (fP (P ∪ T), fT (P ∪ T), F̃−, F̃+) and with the bindings B̃ = B × N
the pre- and post conditions are defined by:

F̃±(t)(b, N)(n) =

⎧
⎨

⎩

F±(t)(b)(p), if n = p ∈ P
N, if n = t(d), t ∈ T (d)

0, otherwise

and

F̃±(p(d))(b, N)(n) =

⎧
⎨

⎩

G±(p)(b)(t), if n = t(d) ∈ T (d)

N, if n = p ∈ P
0, otherwise

Then we have the following simulation property:

Proposition 4. Let SDOS be a super-dual object net. For the object net system
OS(SDOS) we have:

μ
θ−−−−→

SDOS
μ′ ⇐⇒ μ̃

�θ−−−−−−−→
OS(SDOS)

μ̃′

276 M. Köhler and H. Rölke

Proof. It is easy to observe from the construction, that whenever an event θ of
SDOS is enabled in μ then the event θ̃ of is enabled in μ̃ in the simulation object
net system OS (SDOS). This holds for the three cases of firing modes. No other
events are enabled and the successor markings correspond.

This approach of expressing dynamic transition refinement using object nets
is (partially) implemented as a special construct in our tool Renew. In the
following we will illustrate the tool extension for the domain of dynamic
workflows.

5 Transition Refinement: A First Approach in Renew

The concept of dynamic refinement is especially valuable in the context of work-
flow management systems. Dynamic refinements can be used to replace a sub
workflow with a more up-to-date version respecting some preservation rules, like
workflow inheritance (cf. [vdAB02]).

A first attempt to implement dynamic transition refinement in the Petri net
tool Renew was done in the so-called workflow plug-in2 [JKMUN02]. Among
various means for the definition and execution of workflows a so-called task
transition was implemented. The task transition does not exactly meet our
design criteria for dynamic refinement, but comes close enough to take a
look.

The task transition implements two features. The first is irrelevant for the
topic of this paper: the execution of a task transition may be canceled (see
[JKMUN02]). The second feature is close to the desired behaviour of a refined
transition postulated in Section 1.

Statically, a task transition looks like a normal transition with bold lines at
the left and right side of its rectangle figure – see for example transition book
hotel in the net travelWorkflow in the middle of Figure 12. It is inscribed with a
triple consisting of a task (bookHotel), i.e. the net3 that refines the transition,
a set of parameters (hotelData) to pass to this net and the expected result that
should be passed back. It is important to notice, that the task associated to
a task transition need not be statically associated but may be exchanged at
runtime. The task transition therefore puts dynamic transition refinement down
to dynamic place refinement in terms of nets-within-nets.

When firing a task transition, the transition gets marked with the subnet that
refines it. Renew treats this refinement token just as an ordinary token, so that
the usual means for inspection and manipulation are available.

What is missing to fully meet our design criteria is – besides some implemen-
tation details – a better support for the separation of net refinement tokens from
other tokens. This could be done in terms of a net type hierarchy.

2
Renew offers a powerful plug-in concept making it easy to implement new function-
ality in all areas of net design, simulation and analysis.

3 Note, that in the workflow implementation a task is not necessarily a net, but may
also be Java code.

Web Service Orchestration with Super-Dual Object Nets 277

Fig. 12. The workflow modelled with task transitions

6 Related Work

To the best of our knowledge there are no publications describing dynamic tran-
sition refinements for Petri nets. There exists, however, a small amount of publi-
cations on Petri nets that can modify their structure at runtime and, separated
from these, on duality in Petri nets.

278 M. Köhler and H. Rölke

Our approach describes a special kind of Petri nets that can modify their
structure via dynamic refinement of transitions. A first approach to the ability
of structure changing at runtime are self-modifying nets [Val78] which allow for
arc weights that are marking depending. A special case is the empty marking
that temporarily deletes arcs from the net. Another approach to structure mod-
ification in Petri nets is that of mobile nets [Bus99], algebraic nets with graph
rewriting [HEM05], and recursive nets [HP99].

Duality is an important concept in Petri’s general net theory and is discussed
in [GLT80]. Petri only considers unmarked nets, so no “problems” with tokens on
transitions arise. The restriction to unmarked nets is renounced by Lautenbach
[Lau03]. However, his concept of duality differs from the one presented in this
paper. He considers firing in the dual reverse net N rd. In his approach transitions
become marked and places fire the tokens, which are lying on transitions, in the
reversed arc direction. Additionally, contrary to our approach, for his definition
a token on a transition disables its firing.

7 Conclusion

In this presentation we studied the dynamic refinement of transitions. Following
the ideas of extending Petri nets to super-dual nets, we generalised object net
systems to super-dual object systems. Super-dual object net systems are nets-
within-nets allowing nets as tokens both on places and on transitions. Transition
marking nets, called net-pokens, may be moved around from one transition to
another. They refine the transition they are actually marking. This offers the
desired properties of a dynamic, run-time refinement procedure that is controlled
by the net itself.

Super-dual object nets are related to an implementation of a workflow exten-
sion plugin of the Renew tool. This extension has a special notion of dynamically
refinable transitions, called tasks. These task transitions are executed by instan-
tiating a net-token that implements a sub-workflow. In accordance with our
definitions these sub-workflows are the dual of normal workflows, i.e. they have
a unique input transition and a unique output transition. The workflow manage-
ment system can make use of this mechanism when replacing sub-workflows by
updates at runtime. This can be done easily by moving net-tokens around or cre-
ating new ones at runtime, e.g. as a result of a planning process. One can think
of mobile workflows implemented by mobile agents in the style of [KMR03].

References

[ACKM03] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer,
Heidelberg (2003)

[Bus99] Busi, N.: Mobile nets. Formal Methods for Open Object-Based Distrib-
uted Systems, pp. 51–66 (1999)

[COR07] Common object request broker architecture (1993-2007) www.omg.
org/corba

Web Service Orchestration with Super-Dual Object Nets 279

[Des07] The Design CPN homepage http://www.daimi.au.dk/designCPN
(2007)

[Far99] Farwer, B.: A linear logic view of object Petri nets. Fundamenta Infor-
maticae 37(3), 225–246 (1999)

[GLT80] Genrich, H.J., Lautenbach, K., Thiagarajan, P.S.: Elements of general
net theory. In: Brauer, W. (ed.) Net Theory and Applications. LNCS,
vol. 84, pp. 21–163. Springer, Heidelberg (1980)

[Got00] Gottschalk, K.: Web services architecture overview. Whitepaper, IBM
developerWorks (2000)

[HEM05] Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets
and rules as tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 268–288. Springer, Heidelberg (2005)

[HP99] Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets.
In: Donatelli, S., Kleijn, J. (eds.) Application and Theory of Petri Nets
1999. LNCS, vol. 1630, pp. 228–247. Springer, Heidelberg (1999)

[Jen92] Jensen, K.: Coloured Petri nets, Basic Methods, Analysis Methods and
Practical Use. In: EATCS monographs on theoretical computer science,
Springer, Heidelberg (1992)

[JKMUN02] Jacob, T., Kummer, O., Moldt, D., Ultes-Nitsche, U.: Implementation
of workflow systems using reference nets – security and operability as-
pects. In: Jensen, K. (ed.) Fourth Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools. University of Aarhus,
Department of Computer Science (2002)

[KMO06] Köhler, M., Moldt, D., Ortmann, J.: Dynamic service composition: A
petri-net based approach. In: Manolopoulos, Y., Filipe, J., Constan-
topoulos, P., Cordeiro, J. (ed.) Conference on Enterprise Information
Systems: Databases and Information Systems Integration (ICEIS 2006),
pp. 159–165 (2006)

[KMR03] Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents
using nets within nets. In: van der Aalst, W., Best, E. (eds.) ICATPN
2003. LNCS, vol. 2679, pp. 121–140. Springer, Heidelberg (2003)

[KR03] Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fun-
damenta Informaticae, vol. 54(2-3) (2003)

[KR04] Köhler, M., Rölke, H.: Properties of Object Petri Nets. In: Cortadella, J.,
Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 278–297. Springer,
Heidelberg (2004)

[KR06] Köhler, M., Rölke, H.: Properties of super-dual nets. Fundamenta Infor-
maticae 72(1-3), 245–254 (2006)

[Kum01] Kummer, O.: Introduction to Petri nets and reference nets. Sozionik-
aktuell, vol. 1 (2001)

[KWD+04] Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M.,
Moldt, D., Rölke, H., Valk, R.: An extensible editor and simulation en-
gine for Petri nets: Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN
2004. LNCS, vol. 3099, pp. 484–493. Springer, Heidelberg (2004)

[Lau03] Lautenbach, K.: Duality of marked place/transition nets. Technical Re-
port 18, Universität Koblenz-Landau (2003)

[Lom00] Lomazova, I.A.: Nested Petri nets – a formalism for specification of multi-
agent distributed systems. Fundamenta Informaticae 43(1-4), 195–214
(2000)

http://www.daimi.au.dk/designCPN

280 M. Köhler and H. Rölke

[Mar05] Martens, A.: Analyzing web service based business processes. In: Cerioli,
M. (ed.) FASE 2005. Held as Part of the Joint Conferences on Theory
and Practice of Software, ETAPS 2005, LNCS, vol. 3442, pp. 19–33.
Springer, Heidelberg (2005)

[NM03] Narayanan, S., McIlraith, S.: Analysis and simulation of web services.
Computer Networks 42(5), 675–693 (2003)

[OAS07] Organization for the advancement of structured information standards
(1993–2007) www.oasis-open.org

[Val78] Valk, R.: Self-modifying nets, a natural extension of Petri nets. In:
Ausiello, G., Böhm, C. (eds.) Automata, Languages and Programming.
LNCS, vol. 62, pp. 464–476. Springer, Heidelberg (1978)

[Val91] Valk, R.: Modelling concurrency by task/flow EN systems. In: 3rd
Workshop on Concurrency and Compositionality, number 191 in GMD-
Studien, St. Augustin, Bonn, Gesellschaft für Mathematik und Daten-
verarbeitung (1991)

[Val03] Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri
Nets 2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2003)

[vdAB02] van der Aalst, W., Basten, T.: Inheritance of workflows: An approach
to tackling problems related to change. Theoretical Computer Sci-
ence 270(1-2), 125–203 (2002)

www.oasis-open.org

Synthesis of Elementary Net Systems with

Context Arcs and Localities

Maciej Koutny and Marta Pietkiewicz-Koutny

School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom
{maciej.koutny,marta.koutny}@newcastle.ac.uk

Abstract. We investigate the synthesis problem for encl-systems, de-
fined as Elementary Net Systems extended with context (inhibitor and
activator) arcs and explicit event localities. Since co-located events are
meant to be executed synchronously, the behaviour of such systems is
captured by step transition systems, where arcs are labelled by sets of
events rather than by single events. We completely characterise transi-
tion systems generated by encl-systems after extending the standard
notion of a region — defined as a certain set of states — with explicit in-
formation about events which, in particular, are responsible for crossing
its border. As a result, we are able to construct, for each such transition
system, a suitable encl-system generating it.

Keywords: theory of concurrency, Petri nets, elementary net systems,
localities, net synthesis, step sequence semantics, structure and behav-
iour of nets, theory of regions, transition systems, inhibitor arcs, activator
arcs, context arcs.

1 Introduction

We are concerned with a class of concurrent computational systems whose dy-
namic behaviours exhibit a particular mix of asynchronous and synchronous
executions, and are often described as adhering to the ‘globally asynchronous
locally synchronous’ (or gals) paradigm. Intuitively, actions which are ‘close’ to
each other are executed synchronously and as many as possible actions are always
selected for execution. In all other cases, actions are executed asynchronously.
Two important applications of the gals approach can be found in hardware
design, where a vlsi chip may contain multiple clocks responsible for synchro-
nising different subsets of gates [1], and in biologically motivated computing,
where a membrane system models a cell with compartments, inside which reac-
tions are carried out in co-ordinated pulses [2]. In both cases, the activities in
different localities can proceed independently, subject to communication and/or
synchronisation constraints.

To formally model gals systems, [3] introduced Place/Transition-nets with
localities (ptl-nets), defined as pt-nets where transitions are assigned to ex-
plicit localities. Each locality identifies transitions which may only be executed

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 281–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

282 M. Koutny and M. Pietkiewicz-Koutny

synchronously and in a maximally concurrent manner. The idea of adding local-
ities to an existing Petri net model was taken further in [4], where Elementary
Net Systems (en-systems) replaced pt-nets as an underlying system model. In
this paper, we build on the work reported in [4], by considering en-systems ex-
tended with two non-standard kinds of arcs, namely inhibitor arcs and activator
(or read) arcs, collectively referred to as context arcs following the terminology
of [5]. The resulting model will be referred to as Elementary Net Systems with
Context Arcs and Localities (or encl-systems).

It is worth pointing out that both inhibitor arcs (capturing the idea the en-
abling of a transition depends on a place being unmarked) and activator arcs
(capturing the idea the enabling of a transition depends on a place being marked
by more tokens than those consumed when the transition is fired) are presumably
the most prominent extensions of the basic Petri net model considered in the
literature. Such context arcs can be used to test for a specific condition, rather
than producing and consuming resources, and proved to be useful in areas such
as communication protocols [6], performance analysis [7], and concurrent pro-
gramming [8]. More recently, [9] applied context arcs to deal with several salient
behavioural features of membrane systems, such as promoters, inhibitors and
dissolving as well as thickening of membranes.

b2

b1

b4

b3

b6

b5

b

b0

p3

p2 p1

c2

c3

c1 c4

Fig. 1. A producer/consumer system with a business conscious producer

Consider the encl-system in Figure 1 modelling a producer/consumer system
consisting of one producer (who can execute events p1, p2 and p3), and two
consumers (who can execute events c1, c2, c3 and c4). The buffer-like condition
b in the middle holds items produced by the event p1 and consumed by c1. The
activator arc between p1 and b3 (represented by an edge ending with a small
black circle) means that the producer adds a new item to the buffer only if there
is a consumer waiting for it, and the inhibitor arc between p3 and b3 (represented
by an edge ending with a small circle) means that the producer can leave the
production cycle only when no customer is eager to get the produced items. It

Synthesis of Elementary Net Systems with Context Arcs and Localities 283

is assumed that all the events executed by the producer belong to one locality,
while all the events executed by the consumers belong to another locality. To
indicate this in the diagram, we use different shading for the boxes representing
events assigned to different localities.

In terms of possible behaviours, adding localities can have a significant impact
on both the executability of events and reachability of global states. For example,
under the standard net semantics the model in Figure 1 would be able to execute
the step sequence {p1}{c1}, but the execution model of encl-systems rejects
this. The reason is that after {p1}, it is possible to execute the step {c1, c4}
consisting of two co-located events, and so executing c1 alone would violate the
maximal concurrency execution rule within the locality assigned to the events
used by the consumers. A possible way of ‘repairing’ this step sequence would
be to add the ‘missing’ event, resulting in the legal step sequence {p1}{c1, c4}.
Another legal step sequence is {p1}{p2, c1, c4}, where the second step is maxi-
mally concurrent in a global sense, as it cannot be extended any further. Note
also that the event p3 is not enabled at the beginning since b3 contains a token
and there is an inhibitor arc linking p3 and b3, and after {p1}{p2, c1, c4} the
event p1 is not enabled since b3 is now empty and there is an activator arc linking
p1 and b3.

The Petri net problem we are going to investigate in this paper, commonly
referred to as the Synthesis Problem, is in essence concerned with model transfor-
mation, from a class of transition systems (sometimes called reachability graphs)
to a class of Petri nets. The key requirement is that the Petri net obtained from a
given transition system should capture the same behaviour, i.e., its reachability
graph should be isomorphic to the original transition system. This problem was
solved for the class of en-systems in [10], using the notion of a region which links
nodes of transition systems (global states) with conditions in the corresponding
nets (local states). The solution was later extended to the pure bounded pt-
nets [11], general Petri nets [12], safe nets [13] and en-systems with inhibitor
arcs [14,15], by adopting the original definition of a region or using some ex-
tended notion of a generalised region [16].

In a previous paper [4], we have solved the synthesis problem for the class
of Elementary Net Systems with Localities (enl-systems). In doing so, we in-
troduced io-regions, a generalisation of the standard notion of a region of a
transition system, as the latter proved to be insufficient to deal with the class
of enl-systems (and hence also for encl-systems considered in this paper). To
explain the idea behind io-regions, consider the transition system shown in Fig-
ure 2(a), which is isomorphic to the reachability graph of the enl-system shown
in Figure 2(b). (Note that the two events there, e and f, are assumed to be
co-located.) The standard region-based synthesis procedure would attempt to
construct the conditions of the net in Figure 2(b), by identifying each of these
with the set of the nodes of the transition system where it ‘holds’. For example,
the region corresponding to b1 comprises just one state, r = {sinit}. Similarly,
r′ = {s} is a region where b2 holds. (Note that there are two more ‘trivial’ re-
gions, {sinit , s} and ∅, which are ignored by the synthesis procedure.) However,

284 M. Koutny and M. Pietkiewicz-Koutny

(a)

sinit

s

{e, f}

b1

b2

b3

b4

e f

(b)

Fig. 2. A transition system with co-located transitions e and f (a), and a corresponding
enl-system (b)

this is not enough to construct the enl-system in Figure 2(b) since there are
only two non-trivial regions and we need four, one for each of the conditions.

An intuitive reason why the standard construction does not work for the
transition system in Figure 2(a) is that the ‘set-of-states’ notion of region is
not rich enough for the purposes of synthesising enl-systems. The modification
to the original notion proposed in [4] is based on having also explicit input and
output events of a set of states, which point at those events which are ‘responsible’
for entering the region and for leaving it. More precisely, an io-regions is a triple:
r = (in , r, out), where r is a set of states, in is a set of events which are responsible
for entering r, and out is a set of events which are responsible for leaving r. In the
case of the example in Figure 2(a), one can find four non-trivial io-regions: r1 =
(∅, {sinit}, {e}) r2 = ({e}, {s}, ∅}), r3 = (∅, {sinit}, {f}) and r4 = ({f}, {s}, ∅).
Now one has enough regions to construct the conditions of the enl-system in
Figure 2(b), namely each ri corresponds to bi.

In this paper, we will extend the idea of an io-region to also cope with context
arcs. Briefly, we will base our synthesis solution on context regions (or c-regions),
each such region being a tuple (r, in , out , inh, act) where the two additional
components, inh and act , carry information about events which are related with
r due to the presence of a context arc.

The paper is organised as follows. In the next section, we introduce formally
encl-systems. After that we define encl-transition systems and later show that
the reachability graphs of encl-systems are indeed encl-transition systems. We
finally demonstrate how to construct an encl-system corresponding to a given
encl-transition system.

2 ENCL-Systems

Throughout the paper we assume that E is a fixed non-empty set of events.
Each event e is assigned a locality L(e), and it is co-located with another event f
whenever L(e) = L(f).

Definition 1 (net with context arcs). A net with context arcs is a tuple
net

df= (B, E, F, I, A) such that B and E ⊆ E are finite disjoint sets, F ⊆ (B ×
E) ∪ (E × B) and I, A ⊆ B × E.

Synthesis of Elementary Net Systems with Context Arcs and Localities 285

The meaning and graphical representation of B (conditions), E (events) and F
(flow relation) is as in the standard net theory. An inhibitor arc (b, e) ∈ I means
that e can be enabled only if b is not marked (in the diagrams, it is represented
by an edge ending with a small circle), and an activator arc (b, e) ∈ A means
that e can be enabled only if b is marked (in the diagrams, it is represented
by an edge ending with a small black circle). In diagrams, boxes representing
events are shaded, with different shading being used for different localities (see
Figure 1). We denote, for every x ∈ B ∪ E,

•x df= {y | (y, x) ∈ F} x• df= {y | (x, y) ∈ F}
�x

df= {y | (x, y) ∈ I ∪ I−1} �x
df= {y | (x, y) ∈ A ∪ A−1}

and we call the above sets the pre-elements, •x, post-elements, x•, inh-elements,
�x, and act-elements, �x. Moreover, we denote

•x• df= •x ∪ x• •x� df= •x ∪ �x �x• df= x• ∪ �x .

All these notations extend in the usual way (i.e., through the set union) to sets of
conditions and/or events. It is assumed that for every event e ∈ E, e• and •e are
non-empty sets, and •e, e•, �e and �e are mutually disjoint sets. For the encl-
system in Figure 1, we have •b3 = {c2}, b•1 = {p1, p3} and �p3 = �p1 = {b3}.

Definition 2 (ENCL-system). An elementary net system with context arcs
and localities (encl-system) is a tuple encl

df= (B, E, F, I, A, cinit) such that
netencl

df= (B, E, F, I, A) is the underlying net with context arcs, and cinit ⊆ B is
the initial case. In general, any subset of B is a case.

The execution semantics of encl is based on steps of simultaneously executed
events. We first define the set of valid steps :

Uencl
df= {u ⊆ E | u �= ∅ ∧ ∀e, f ∈ u : e �= f ⇒ •e• ∩ •f• = ∅} .

For the encl-system in Figure 1, we have {p1, c2, c3} ∈ Uencl, but {p1, c1, c4} /∈
Uencl since p1• ∩ •c1 �= ∅.

A step u ∈ Uencl is enabled at a case c ⊆ B if •u� ⊆ c and �u• ∩ c = ∅, and
there is no step u
{e} ∈ Uencl satisfying L(e) ∈ L(u), •e� ⊆ c and �e• ∩ c = ∅.

For the encl-system in Figure 1, we have that {p1, c4} is a step enabled
at the initial case, but {p3, c4} is not since b3 belongs to cinit and there is an
inhibitor arc between p3 and b3. We also note that u = {p2, c1} is not enabled
at the case c = {b2, b, b3, b6} because it can be extended by an event e = c4
according to the definition of enabledness.

The above definition of enabledness is based on an a priori condition: the acti-
vator and inhibitor conditions of events occurring in a step obey their respective
constraints before the step is executed. In an a posteriori approach (see [5]), the

286 M. Koutny and M. Pietkiewicz-Koutny

respective properties must also be true after executing the step. Yet another
definition for enabling when activator arcs (or rather read arcs) are involved is
given in [17].

The transition relation of netencl, denoted by →netencl
, is then given as the

set of all triples (c, u, c′) ∈ 2B × Uencl × 2B such that u is enabled at c and
c′ = (c \ •u) ∪ u•.

The state space of encl, denoted by Cencl, is the least subset of 2B containing
cinit such that if c ∈ Cencl and (c, u, c′) ∈ →netencl

then c′ ∈ Cencl. The transition
relation of encl, denoted by →encl, is then defined as →netencl

restricted to Cencl×
Uencl × Cencl. We will use c

u−→encl c′ to denote that (c, u, c′) ∈ →encl. Also,
c

u−→encl if (c, u, c′) ∈ →encl, for some c′. For the encl-system in Figure 1:

cinit
{p1}−→encl {b2, b, b3, b6}

{p2,c1,c4}
−−−−−→encl {b1, b4, b5} .

Proposition 1 ([4]). If c
u−→encl c′ then c \ c′ = •u and c′ \ c = u•.

3 Step Transition Systems and Context Regions

In this section, we first recall the notion of a general step transition system
which, after further restrictions, will be used to provide a behavioural model for
encl-systems, and introduce the notion of a context region.

Definition 3 (transition system, [18,19]). A step transition system is a
triple ts

df= (S, T, sinit) where:

TSys1 S is a non-empty finite set of states.
TSys2 T ⊆ S × (2E \ {∅}) × S is a finite set of transitions.
TSys3 sinit ∈ S is the initial state.

Throughout this section, the step transition system ts will be fixed. We will
denote by Ets the set of all the events appearing in its transitions, i.e.,

Ets
df=

⋃

(s,u,s′)∈T

u .

We will denote s
u−→ s′ whenever (s, u, s′) is a transition in T , and respectively

call s the source and s′ the target of this transition. We will also say that the
step u is enabled at s, and denote this by s

u−→.
For every event e ∈ Ets, we will denote by Te the set of all the transitions

labelled by steps containing e, Te
df= {(s, u, s′) ∈ T | e ∈ u}, and by Ue the set of

all the steps labelling these transitions, Ue
df= {u | (s, u, s′) ∈ Te}.

We now introduce a central notion of this paper which is meant to link the
nodes of a transition system (global states) with the conditions in the hypothet-
ical corresponding net (local states).

Synthesis of Elementary Net Systems with Context Arcs and Localities 287

Definition 4 (context region). A context region (or c-region) is a tuple

r
df= (r, in, out , inh, act) ∈ 2S × 2Ets × 2Ets × 2Ets × 2Ets

such that the following are satisfied, for every transition s
u−→ s′ of ts:

1. s ∈ r and s′ /∈ r imply |u ∩ in | = 0 and |u ∩ out | = 1.
2. s /∈ r and s′ ∈ r imply |u ∩ in| = 1 and |u ∩ out | = 0.
3. u ∩ inh �= ∅ implies s /∈ r.
4. u ∩ act �= ∅ implies s ∈ r.
5. u ∩ out �= ∅ implies s ∈ r and s′ /∈ r.
6. u ∩ in �= ∅ implies s /∈ r and s′ ∈ r.
7. in ∩ inh = ∅ and out ∩ act = ∅.

We denote ||r|| df= r, •r df= in, r• df= out, �r
df= inh and �r

df= act.

The step transition system shown in Figure 2(a) has the following c-regions:

r1 = (∅, ∅, ∅, ∅, ∅) r2 = (∅, ∅, ∅, {e}, ∅)

r3 = (∅, ∅, ∅, {f}, ∅) r4 = (∅, ∅, ∅, {e, f}, ∅)

r5 = ({sinit , s}, ∅, ∅, ∅, ∅) r6 = ({sinit , s}, ∅, ∅, ∅, {e})

r7 = ({sinit , s}, ∅, ∅, ∅, {f}) r8 = ({sinit , s}, ∅, ∅, ∅, {e, f})

r9 = ({sinit}, ∅, {f}, ∅, ∅}) r10 = ({sinit}, ∅, {f}, ∅, {e})

r11 = ({sinit}, ∅, {e}, ∅, ∅}) r12 = ({sinit}, ∅, {e}, ∅, {f})

r13 = ({s}, {f}, ∅, ∅, ∅}) r14 = ({s}, {f}, ∅, {e}, ∅})

r15 = ({s}, {e}, ∅, ∅, ∅}) r16 = ({s}, {e}, ∅, {f}, ∅) .

In the rest of this section, we discuss and prove properties of c-regions which
will subsequently be needed to solve the synthesis problem for encl-systems.

Trivial c-regions. A c-region r is trivial if ||r|| = ∅ or ||r|| = S; otherwise
it is non-trivial. For example, the step transition system shown in Figure 2(a)
has eight trivial c-regions (r1, . . . , r8) and eight non-trivial c-regions (r9, . . . , r16).
Note that only non-trivial c-regions will be used in the synthesis procedure.

Proposition 2. If r is a trivial c-region then •r = r• = ∅.

Proof. Follows from Definition 4(5,6) and TSys2. �

Proposition 3. If r is a c-region then the complement of r, defined as r
df=

(S \ ||r||, r•, •r, �r, �r), is also a c-region.

Proof. Follows directly from Definition 4. �
The set of all non-trivial c-regions will be denoted by Regts and, for every
state s ∈ S, we will denote by Regs the set of all the non-trivial c-regions
containing s, Regs

df= {r ∈ Regts | s ∈ ||r||}. For the example in Figure 2(a), we
have Regsinit = {r9, r10, r11, r12} and r12 = r16.

288 M. Koutny and M. Pietkiewicz-Koutny

Lattices of c-regions. We call two c-regions, r and r′, compatible if it is the
case that ||r|| = ||r′||, •r = •r′ and r• = r′•. We denote this by r ≈ r′. For two
compatible c-regions, r and r′, we define their union and intersection, in the
following way:

r ∪ r′ df= (||r||, •r, r•, �r ∪ �r′, �r ∪ �r′) and r ∩ r′ df= (||r||, •r, r•, �r ∩ �r′, �r ∩ �r′) .

Moreover, we denote r � r′ whenever �r ⊆ �r′ and �r ⊆ �r′. For the example in
Figure 2(a), we have r1 ≈ r2 ≈ r3 ≈ r4, r2 ∪ r3 = r4 and r15 � r16.

Proposition 4. If r is a c-region, and inh ⊆ �r and act ⊆ �r are two sets of
events, then (||r||, •r, r•, inh, act) is also a c-region.

Proof. Follows directly from Definition 4. �

Proposition 5. If r and r′ are compatible c-regions, then r ∪ r′ and r ∩ r′ are
also c-regions.

Proof. The first part follows directly from Definition 4, and the second from
Proposition 4. �

Given a c-region r, the equivalence class of c-regions compatible with r, denoted
by [r]≈, forms a complete lattice w.r.t. the partial order � and the operations
∪ (join) and ∩ (meet). The �-minimal and �-maximal c-regions it contains are
given respectively by:

(||r||, •r, r•, ∅, ∅) and (||r||, •r, r•,
⋃

r′∈[r]≈

�r′,
⋃

r′∈[r]≈

�r′) .

The step transition system in Figure 2(a) has six �-minimal c-regions (r1, r5,
r9, r11, r13 and r15) and six �-maximal c-regions (r4, r8, r10, r12, r14 and r16).

We feel that the algebraic properties enjoyed by sets of compatible c-regions
will be useful in the synthesis procedure aimed at constructing optimal encl-
systems. We will come back to this issue later on.

Relating regions and events. Given an event e ∈ Ets, its sets of pre-c-regions,
◦e, post-c-regions, e◦, inh-c-regions, ♦e, and act-c-regions, �e, are respectively
defined as:

◦e df= {r ∈ Regts | e ∈ r•} e◦ df= {r ∈ Regts | e ∈ •r}
♦e

df= {r ∈ Regts | e ∈ �r} �e
df= {r ∈ Regts | e ∈ �r} .

Moreover, ◦e◦ df= ◦e ∪ e◦, ◦e� df= ◦e ∪ �e and ♦e◦ df= e◦ ∪ ♦e. All these notations
can be applied to sets of events by taking the union of sets of regions defined
for the individual events. For the step transition system in Figure 2(a), we have
◦e = {r11, r12} and ♦f = {r16}.

Synthesis of Elementary Net Systems with Context Arcs and Localities 289

Proposition 6. If s
u−→ s′ is a transition of ts, then:

1. r ∈ ◦u implies s ∈ ||r|| and s′ /∈ ||r||.
2. r ∈ u◦ implies s /∈ ||r|| and s′ ∈ ||r||.
3. r ∈ ♦u implies s /∈ ||r||.
4. r ∈ �u implies s ∈ ||r||.

Proof. Follows directly from the definitions of ◦u, u◦, ♦u and �u as well as
Definition 4(3,4,5,6). �

The sets of pre-c-regions and post-c-regions of events in an executed step are mu-
tually disjoint. Moreover, they can be ‘calculated’ using the c-regions associated
with the source and target states.

Proposition 7. If s
u−→ s′ is a transition of ts, then:

1. ◦e ∩ ◦f = ∅ and e◦ ∩ f◦ = ∅, for all distinct e, f ∈ u.
2. ◦u ∩ u◦ = ∅.
3. ◦u = Regs \ Regs′ and u◦ = Regs′ \ Regs.

Proof. (1) Suppose that r ∈ ◦e ∩ ◦f , i.e., e, f ∈ r•. This means, by Defini-
tion 4(5), that s ∈ ||r|| and s′ /∈ ||r||. Thus, by Definition 4(1), |u ∩ r•| = 1, a
contradiction with e, f ∈ u ∩ r•. The second part can be shown in a similar way.

(2) Suppose that r ∈ ◦u∩u◦. Then, by Proposition 6(1,2), s ∈ ||r|| and s /∈ ||r||,
a contradiction.

(3) We only show that Regs \ Regs′ = ◦u, as the second part can be shown
in a similar way. By Proposition 6, ◦u ⊆ Regs and ◦u ∩ Regs′ = ∅. Hence
◦u ⊆ Regs \ Regs′ . Suppose that r ∈ Regs \ Regs′ , which implies that s ∈ ||r||
and s′ /∈ ||r||. Hence, by Definition 4(1) and s

u−→ s′, u ∩ r• �= ∅. Thus r ∈ ◦u
and so Regs \ Regs′ ⊆ ◦u. Consequently, Regs \ Regs′ = ◦u. �

The next two propositions provide a useful characterisation of inh-c-regions and
act-c-regions of an event in terms of transitions involving this event. For example,
if r is an inh-c-region of event e, then no transition involving e lies completely
within r. In what follows, for an event e and a c-region r, we denote Be

r
df=

{(s, u, s′) ∈ Te | s, s′ ∈ ||r||} to be the set of all transitions involving e which are
buried in r, i.e., their source and target states belong to ||r||.

Proposition 8. If e ∈ Ets and r ∈ ♦e, then one of the following holds:

1. Be
r = ∅, Be

r �= ∅ and r /∈ ◦u, for all u ∈ Ue.
2. Be

r = ∅, e /∈ •r and r ∈ u◦ \ ◦u, for all u ∈ Ue.

Proof. Suppose that (s, u, s′) ∈ Te. From r ∈ ♦e ⊆ ♦u and Proposition 6(3), we
have that s /∈ ||r||. Hence Be

r = ∅ and r /∈ ◦u, for all u ∈ Ue. We will now show
that either Be

r �= ∅, or that e /∈ •r and r ∈ u◦, for all u ∈ Ue.
Suppose that Be

r = ∅. We first observe that e �∈ •r since it follows directly
from e ∈ �r (as r ∈ ♦e) and Definition 4(7). What remains to be shown is that
if (s, u, s′) ∈ Te then r ∈ u◦. We already know that s /∈ ||r||. Moreover, since
Be

r = ∅, we have s′ ∈ ||r||. This means, by Definition 4(2), that |u ∩ •r| = 1.
Hence there is f ∈ u such that f ∈ •r, and so r ∈ f◦ ⊆ u◦. �

290 M. Koutny and M. Pietkiewicz-Koutny

Proposition 9. If e ∈ Ets and r ∈ �e, then one of the following holds:

1. Be
r = ∅, Be

r �= ∅ and r /∈ u◦, for all u ∈ Ue.
2. Be

r = ∅, e /∈ r• and r ∈ ◦u \ u◦, for all u ∈ Ue.

Proof. Similar to that of Proposition 8. �

It is easy to show that a step can be executed at a state only if the inh-c-regions
of the former do not comprise the latter, and the act-c-regions do.

Proposition 10. If s
u−→ s′ is a transition of ts, then ♦u ∩ Regs = ∅ and

�u ⊆ Regs.

Proof. Suppose that r ∈ ♦u∩Regs �= ∅. Then from r ∈ ♦u and Proposition 6(3)
we have that s /∈ ||r|| which contradicts r ∈ Regs. Suppose now that r ∈ �u. From
Proposition 6(4) we have that s ∈ ||r||, and so r ∈ Regs. �

Proposition 11. If e ∈ Ets, then ◦e◦ ∩ (♦e ∪ �e) = ∅.

Proof. Suppose that r ∈ e◦ ∩ ♦e �= ∅. Then e ∈ •r ∩ �r �= ∅, contradicting
Definition 4(7).

Suppose now that r ∈ ◦e ∩ ♦e �= ∅. By Proposition 8, one of the following
two cases holds:

Case 1: There is (s, u, s′) ∈ Te such that s, s′ /∈ ||r||. By r ∈ ◦e, we have that r ∈
◦u, and so from Proposition 6 it follows that s ∈ ||r|| and s′ /∈ ||r||, a contradiction.
Case 2: e /∈ •r and r ∈ u◦ for some u ∈ Ue �= ∅. Then r /∈ e◦ and there is
(s, u, s′) ∈ Te such that s /∈ ||r|| and s′ ∈ ||r||. On the other hand, by r ∈ ◦e ⊆ ◦u
and Proposition 6, we have s ∈ ||r|| and s′ /∈ ||r||, a contradiction.

Hence ◦e◦ ∩ ♦e = ∅, and ◦e◦ ∩ �e = ∅ can be shown in a similar way. �

To characterise transition systems generated by encl-systems, we will need the
set of all potential steps Uts of ts, given by:

Uts
df= {u ⊆ Ets | u �= ∅ ∧ ∀e, f ∈ u : e �= f ⇒ ◦e◦ ∩ ◦f◦ = ∅} .

Proposition 12. If s
u−→ s′ is a transition of ts, then u ∈ Uts.

Proof. Follows from TSys2 and Proposition 7(1,2). �

Thin transition systems. In general, a c-region r cannot be identified only
by its set of states ||r||; in other words, •r, r•, �r and �r may not be recoverable
from ||r||. However, if the transition system is thin, i.e., for every event e ∈ Ets

we have that {e} ∈ Ue, then different c-regions with the same sets inh and act
are based on different sets of states.

Proposition 13 ([4]). If ts is thin and r �= r′ are c-regions such that �r = �r′

and �r = �r′, then ||r|| �= ||r′||.

Synthesis of Elementary Net Systems with Context Arcs and Localities 291

4 Transition Systems of ENCL-Systems

We now can present a complete characterisation of the transition systems gen-
erated by encl-systems.

Definition 5 (ENCL-transition system). A step transition system ts =
(S, T, sinit) is an encl-transition system if it satisfies the following axioms:

Axiom1 For every s ∈ S \{sinit}, there are (s0, u0, s1), . . . , (sn−1, un−1, sn) ∈
T such that s0 = sinit and sn = s.

Axiom2 For every event e ∈ Ets, both ◦e and e◦ are non-empty.
Axiom3 For all states s, s′ ∈ S, if Regs = Regs′ then s = s′.
Axiom4 If s ∈ S and u ∈ Uts are such that

– ◦u� ⊆ Regs and ♦u◦ ∩ Regs = ∅ and
– there is no step u
 {e} ∈ Uts with the event e satisfying L(e) ∈

L(u), ◦e� ⊆ Regs and ♦e◦ ∩ Regs = ∅,
then we have s

u−→.
Axiom5 If s

u−→ then there is no step u
{e} ∈ Uts with the event e satisfying
L(e) ∈ L(u), ◦e� ⊆ Regs and ♦e◦ ∩ Regs = ∅.

In the above, Axiom1 implies that all the states in ts are reachable from the
initial state. Axiom2 will ensure that every event in a synthesised encl-system
will have at least one input condition and at least one output condition. Axiom3

was used for other transition systems as well, and is usually called the state
separation property [16,20], and it guarantees that ts is deterministic. Axiom4

is a variation of the forward closure property [20] or the event/state separation
property [16]. Axiom5 ensures that every step in a transition system is indeed
a maximal step w.r.t. localities of the events it comprises.

Proposition 14. If s
u−→ s′ and s

u−→ s′′, then s′ = s′′.

Proof. Follows from Proposition 7(3) and Axiom3. �

The construction of a step transition system for a given encl-system is
straightforward.

Definition 6 (from net system to transition system). The transition sys-
tem generated by an encl-system encl is tsencl

df= (Cencl, →encl, cinit), where cinit

is the initial case of encl.

Theorem 1. tsencl is an encl-transition system.

Proof. See the Appendix. �

5 Solving the Synthesis Problem

The translation from encl-transition systems to encl-systems is based on the
pre-, post-, inh- and act-c-regions of the events appearing in a transition system.

292 M. Koutny and M. Pietkiewicz-Koutny

Definition 7 (from transition system to net system). The net system
associated with an encl-transition system ts = (S, T, sinit) is:

enclts
df= (Regts, Ets, Fts, Its, Ats,Regsinit) ,

where Fts, Its and Ats are defined thus:

Fts
df= {(r, e) ∈ Regts × Ets | r ∈ ◦e} ∪ {(e, r) ∈ Ets × Regts | r ∈ e◦}

Its
df= {(r, e) ∈ Regts × Ets | r ∈ ♦e}

Ats
df= {(r, e) ∈ Regts × Ets | r ∈ �e} .

⎫
⎪⎪⎬

⎪⎪⎭

(1)

Proposition 15. For every e ∈ Ets, we have ◦e = •e, e◦ = e•, ♦e = �e and
�e = �e.

Proof. Follows directly from the definition of enclts. �

Figure 3 shows the encl-system associated with the step transition system
shown in Figure 2(a). It is, clearly, not the net system shown in Figure 2(b),
as it contains twice as many conditions as well as four context arcs which were
not present there. This is not unusual as the above construction produces nets
which are saturated with conditions as well as context arcs. In fact, the whole
construction would still work if we restricted ourselves to the �-maximal non-
trivial c-regions, similarly as it has been done in [21] for en-systems with in-
hibitor arcs. But the resulting encl-system would still not be as that shown
in Figure 2(b). In fact, the latter would be re-constructed if we took all the �-
minimal non-trivial c-regions of the step transition system shown in Figure 2(a).
However, taking only the �-minimal c-regions would not work in the general case
(the encl-transition system shown in Figure 4(c) provides a suitable counterex-
ample), and that it is possible to use them in this case is due to the maximally
concurrent execution rule which underpins encl-systems. What this example
implies is that in order to synthesise an optimal net (for example, from the
point of view of the number of conditions and/or context arcs), it is a good idea
to look at the whole spectrum of c-regions arranged in the lattices of compatible
c-regions (and, in any case, never use two different c-regions, r and r′, such that
r � r′).

Theorem 2. enclts is an encl-system.

Proof. All one needs to observe is that, for every e ∈ Ets, it is the case that:
•e �= ∅ �= e•, which follows from Axiom2 and Proposition 15; •e ∩ e• = ∅,
which follows from Propositions 7(2) and 15; and •e• ∩ (�e ∪ �e) = ∅, which
follows from Propositions 11 and 15. �

We finally show that the encl-system associated with an encl-transition system
ts generates a transition system which is isomorphic to ts.

Synthesis of Elementary Net Systems with Context Arcs and Localities 293

r11

r15

r9

r13

r12

r16

r10

r14

e f

Fig. 3. encl-system synthesised from the encl-transition system in Figure 2(a)

Proposition 16. Let ts = (S, T, sinit) be an encl-transition system and

encl = enclts = (Regts, Ets, Fts, Its, Ats,Regsinit) = (B, E, F, I, A, cinit)

be the encl-system associated with it.

1. Cencl = {Regs | s ∈ S}.
2. →encl= {(Regs, u,Regs′) | (s, u, s′) ∈ T }.

Proof. Note that from the definition of Cencl, every c ∈ Cencl is reachable from
cinit in encl; and that from Axiom1, every s ∈ S is reachable from sinit in ts.

We first show that if c
u−→encl c′ and c = Regs, for some s ∈ S, then there is

s′ ∈ S such that s
u−→ s′ and c′ = Regs′ . By c

u−→encl c′, u ∈ Uencl is a step such
that •u� ⊆ c and �u• ∩ c = ∅, and there is no step u
 {e} ∈ Uencl satisfying
L(e) ∈ L(u) and •e� ⊆ c and �e• ∩ c = ∅. Moreover, c′ = (c \ •u) ∪ u•.

Hence, by Proposition 15 and Axiom4, u ∈ Uts and s
u−→ s′, for some s′ ∈ S.

Then, by Proposition 7(3), Regs′ = (Regs \ ◦u) ∪ u◦. At the same time, we
have c′ = (c \ •u) ∪ u•. Hence, by Proposition 15 and c = Regs, we have that
c′ = Regs′ .

As a result, we have shown (note that cinit = Regsinit ∈ {Regs | s ∈ S}) that

Cencl ⊆ {Regs | s ∈ S}
→encl ⊆ {(Regs, u,Regs′) | (s, u, s′) ∈ T } .

We now prove the reverse inclusions. By definition, Regsinit ∈ Cencl. It is
enough to show that if s

u−→ s′ and Regs ∈ Cencl, then Regs′ ∈ Cencl and
Regs

u−→encl Regs′ . By Axiom5 and Propositions 7(3), 12, 10 and 15, u is a
valid step in encl which is enabled at the case Regs. So, there is a case c′ such
that Regs

u−→encl c′ and c′ = (Regs \ •u) ∪ u•. From Propositions 7(3) and 15
we have that c′ = Regs′ . Hence we obtain that Regs

u−→encl Regs′ and so also
Regs′ ∈ Cencl. �

Theorem 3. Let ts = (S, T, sinit) be an encl-transition system and encl =
enclts be the encl-system associated with it. Then tsencl is isomorphic to ts.

294 M. Koutny and M. Pietkiewicz-Koutny

Proof. Let ψ : S → Cencl be a mapping given by ψ(s) = Regs, for all s ∈ S
(note that, by Proposition 16(1), ψ is well-defined). We will show that ψ is an
isomorphism for ts and tsencl.

Note that ψ(sinit) = Regsinit . By Proposition 16(1), ψ is onto. Moreover,
by Axiom3, it is injective. Hence ψ is a bijection. We then observe that, by
Proposition 16(2), we have (s, u, s′) ∈ T if and only if (ψ(s), u, ψ(s′)) ∈→encl.
Hence ψ is an isomorphism for ts and tsencl. �

Figure 4 shows two further examples of the synthesis of encl-systems. The first
one, in Figure 4(a,b), illustrates a conflict between two events, and the synthe-
sised encl-system utilises two �-minimal c-regions, r = ({sinit}, ∅, {e, f}, ∅, ∅)
for the upper condition, and its complement r for the lower one. The second ex-
ample, in Figure 4(c,d), exemplifies a situation when a correct solution has been
obtained without using only �-maximal c-regions. However, an attempt to use
only �-minimal c-regions would fail, as the resulting encl-system (shown in
Figure 5(a)) allows one to execute the step sequence {e}{f} which is impossible
in the original transition system. Moreover, Figure 5(b) shows a correct syn-
thesis solution based solely on �-maximal c-regions. When compared with that
in Figure 4(d) it looks less attractive since the latter uses fewer context arcs.
It should already be clear that to synthesise ‘optimal’ encl-systems it will, in
general, be necessary to use a mix of various kinds of c-regions, and the devel-
opment of suitable algorithms is an interesting and important topic for further
research.

(a)

sinit

{e} {f}
e f

(b)

(c)

sinit

{e} {f}
{e, f} e f

(d)

Fig. 4. A transition system with co-located events e and f (a), and a corresponding
encl-system (b); and a transition system with differently located events e and f (c),
and a corresponding encl-system (d)

Synthesis of Elementary Net Systems with Context Arcs and Localities 295

(a)

e f e f

(b)

Fig. 5. encl-system synthesised from the transition system in Figure 4(c) using only
�-minimal non-trivial c-regions (a), and only �-maximal non-trivial c-regions (b)

6 Concluding Remarks

In this paper, we solved the synthesis problem for en-systems with context arcs
and localities, by following the standard approach in which key relationships
between a Petri net and its transition system are established via the notion of a
region. Moreover, in order to obtain a satisfactory solution, we augmented the
standard notion of a region with some additional information, leading to the
notion of a c-region. We then defined, and showed consistency of, two behaviour
preserving translations between encl-systems and their transition systems.

Throughout this paper it has always been assumed that events’ localities are
known in advance. In particular, this information was present in the input to the
synthesis problem. However, one might prefer to work only with step transition
systems, and determine the localities of events during the synthesis procedure
(perhaps choosing an ‘optimal’ option). This could, of course, be done by con-
sidering in turn all possibilities for the locality mapping L. Unfortunately, such
an approach would be hardly satisfactory as there are B|Ets| different candidate
mappings, where Bn is the n-th number in the fast-growing sequence of Bell
numbers. But it is not necessary to follow this ‘brute-force’ approach, and two
simple observations should in practice be of great help. More precisely, consider
a step transition system ts

df= (S, T, sinit). If it is generated by an encl-system
with the locality mapping L, then the following hold, for every state s ∈ S:

– If s
u�w−→ and s

u−→ then L(e) �= L(f), for all e ∈ u and f ∈ w.
– If s

u−→ and there is no w ⊂ u such that s
w−→ then L(e) = L(f), for all

e, f ∈ u.

Thus, for the example transition systems in Figures 2(a) and 4(c), we have
respectively L(e) = L(f) and L(e) �= L(f), and so the choice of localities we made
was actually the only one which would work in these cases. On the other hand,
for the step transition systems in Figures 4(a) and 6(a), the above rules do not
provide any useful information. Indeed, in both cases we may take L(e) = L(f)
or L(e) �= L(f), and in each case synthesise a suitable encl-system, as shown
in Figure 6(b) for the example in Figure 6(a). Note that these rules can be used
for a quick decision that a step transition system is not a valid encl-transition

296 M. Koutny and M. Pietkiewicz-Koutny

(a)

sinit

{e}

{f}

e

f

e

f

(b)

Fig. 6. A step transition system where no assumption about co-locating the events
has been made (a), and two corresponding encl-systems with different locality map-
pings (b)

system; for example, if we have s1
{e,f}−→ and s1

{e}−→ and s2
{e,f}−→ and ¬s2

{e}−→, for
two distinct states, s1 and s2, of the same step transition system.

Previous work which appears to be closest to what has been proposed in
this paper is due to Badouel and Darondeau [16]. It discusses the notion of a
step transition system (generalising that introduced by Mukund [12]), which
provides a much more general framework than the basic en-transition systems;
in particular, by dropping the assumption that a transition system should exhibit
the so-called intermediate state property:

s
α+β−→ s′ =⇒ ∃s′′ : s

α−→ s′′
β−→ s′ .

But the step transition systems of [16] still exhibit a subset property:

s
α+β−→ =⇒ s

α−→ .

Neither of these properties holds for enl-transition systems (and hence also for
encl-transition systems). Instead, transition systems with localities enjoy their
weaker version. More precisely, for enl-transition systems we have:

s
α+β−→ s′ =⇒ (s α−→ s′′ =⇒ s′′

β−→ s′ ∧ s
β−→) ,

and for encl-transition systems, we have:

s
α+β−→ =⇒ (s α−→ =⇒ s

β−→) .

For example, the first of these properties implies that the transition system in
Figure 4(c) cannot be generated by an enl-system, and so the use of some
context arcs is unavoidable as shown, e.g., in Figure 4(d). We feel that both
properties might be useful in finding out whether (or to what extent) the theory
of [16] could be adopted to work for the encl-transition systems as well.

Synthesis of Elementary Net Systems with Context Arcs and Localities 297

Acknowledgment. This research was supported by the Epsrc project Casino,
and Nsfc Grants 60373103 and 60433010.

References

1. Dasgupta, S., Potop-Butucaru, D., Caillaud, B., Yakovlev, A.: Moving from weakly
endochronous systems to delay-insensitive circuits. Electr. Notes Theor. Comput.
Sci. 146(2), 81–103 (2006)

2. Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput.
Sci. 287(1), 73–100 (2002)

3. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for membrane
systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2005)

4. Koutny, M., Pietkiewicz-Koutny, M.: Transition systems of elementary net systems
with localities. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137,
pp. 173–187. Springer, Heidelberg (2006)

5. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)

6. Billington, J.: Protocol specification using p-graphs, a technique based on coloured
petri nets, pp. 293–330 [22] DBLP:conf/ac/1996petri2

7. Donatelli, S., Franceschinis, G.: Modelling and analysis of distributed software
using gspns, pp. 438–476 [22] DBLP:conf/ac/1996petri2

8. Esparza, J., Bruns, G.: Trapping mutual exclusion in the box calculus. Theor.
Comput. Sci. 153(1-2), 95–128 (1996)

9. Kleijn, J., Koutny, M.: Synchrony and asynchrony in membrane systems. In: Work-
shop on Membrane Computing, pp. 20–39 (2006)

10. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part i: Clans, basic sub-
classes, and morphisms. Theor. Comput. Sci. 70(3), 277–303 (1990)

11. Bernardinello, L., Michelis, G.D., Petruni, K., Vigna, S.: On the synchronic struc-
ture of transition systems. In: Desel, J. (ed.) Structures in Concurrency Theory,
pp. 69–84. Springer, Heidelberg (1995)

12. Mukund, M.: Petri nets and step transition systems. Int. J. Found. Comput.
Sci. 3(4), 443–478 (1992)

13. Nielsen, M., Winskel, G.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.): Handbook of Logic in Computer Science, vol. 4, pp. 1–148
(1995)

14. Busi, N., Pinna, G.M.: Synthesis of nets with inhibitor arcs. In: Mazurkiewicz,
A.W., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165.
Springer, Heidelberg (1997)

15. Pietkiewicz-Koutny, M.: The synthesis problem for elementary net systems with
inhibitor arcs. Fundam. Inform. 40(2-3), 251–283 (1999)

16. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
Petri Nets. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1996)

17. Vogler, W.: Partial order semantics and read arcs. In: Privara, I., Ružička, P. (eds.)
MFCS 1997. LNCS, vol. 1295, pp. 508–517. Springer, Heidelberg (1997)

18. Arnold, A.: Finite Transition Systems. Prentice-Hall International, Englewood
Cliffs (1994)

19. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

DBLP:conf/ac/1996petri2
DBLP:conf/ac/1996petri2

298 M. Koutny and M. Pietkiewicz-Koutny

20. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems.
Theor. Comput. Sci. 96(1), 3–33 (1992)

21. Pietkiewicz-Koutny, M.: Synthesising elementary net systems with inhibitor arcs
from step transition systems. Fundam. Inform. 50(2), 175–203 (2002)

22. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets II: Applications. Applica-
tions, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, held in Dagstuhl, September 1996, LNCS, vol. 1492. Springer, Heidel-
berg (1998)

Appendix: Proof of Theorem 1

Clearly, tsencl is a step transition system. We need to prove that it satisfies the
five axioms in Definition 5. Before doing this, we will show that, for every b ∈ B,

rb
df= ({c ∈ Cencl | b ∈ c}, •b, b•, �b, �b)

is a (possibly trivial) c-region of tsencl. Moreover, if ∅ �= ||rb|| �= Cencl then rb is
non-trivial.

To show that Definition 4 holds for rb, we assume that c
u−→encl c′ in tsencl,

and proceed as follows:

Proof of Definition 4(1) for rb. We need to show that c ∈ ||rb|| and c′ /∈ ||rb||
implies |u ∩ •b| = 0 and |u ∩ b•| = 1.

From c ∈ ||rb|| (c′ /∈ ||rb||) it follows that b ∈ c (resp. b /∈ c′). Hence b ∈ c \ c′.
From Proposition 1 we have c \ c′ = •u and c′ \ c = u•. Hence b ∈ •u and, as
a consequence, there exists e ∈ u such that b ∈ •e, and so e ∈ b•. We therefore
have e ∈ u ∩ b•. Hence |u ∩ b•| ≥ 1. Suppose that there is f �= e such that
f ∈ u ∩ b•. Then we have f ∈ u and b ∈ •f which implies b ∈ •f ∩ •e, producing
a contradiction with e, f ∈ u ∈ Uencl. Hence |u ∩ b•| = 1.

From b /∈ c′ and c′ \ c = u•, we have b /∈ u•. Let g ∈ u (u �= ∅ by definition).
Then b /∈ g•, and so g /∈ •b. Hence |u ∩ •b| = 0.

Proof of Definition 4(2) for rb. Can be proved similarly as Definition 4(1).

Proof of Definition 4(3) for rb. We need to show that u∩�b �= ∅ implies c /∈ ||rb||.
From u ∩ �b �= ∅ we have that there is e ∈ u such that e ∈ �b and so b ∈ �e.
Thus, since u is enabled at c in encl, b �∈ c. Hence c /∈ ||rb||.

Proof of Definition 4(4) for rb. Can be proved similarly as Definition 4(3).

Proof of Definition 4(5) for rb. We need to show that u∩b• �= ∅ implies c ∈ ||rb||
and c′ /∈ ||rb||. From Proposition 1 we have c \ c′ = •u and c′ \ c = u•. From
u ∩ b• �= ∅ we have that there is e ∈ u such that e ∈ b•, and so b ∈ •e. Hence
b ∈ •u = c \ c′, and so b ∈ c and b /∈ c′. Hence c ∈ ||rb|| and c′ /∈ ||rb||.

Proof of Definition 4(6) for rb. Can be proved similarly as Definition 4(5).

Synthesis of Elementary Net Systems with Context Arcs and Localities 299

Proof of Definition 4(7) for rb. We need to show that •b ∩ �b = b• ∩ �b = ∅.
This follows directly from the fact that encl is an encl-system, where for every
event e, the sets •e, e•, �e and �e are mutually disjoint.

Clearly, if ∅ �= ||rb|| �= Cencl then rb is a non-trivial c-region.

Proof of Axiom1. Follows directly from the definition of Cencl.

Proof of Axiom2. We observe that if e ∈ Etsencl
then {rb | b ∈ •e} ⊆ ◦e and

{rb | b ∈ e•} ⊆ e◦ (follows from •e �= ∅ �= e•, Proposition 2 and the definitions
of ◦e, e◦ and rb). This and •e �= ∅ �= e• yields ◦e �= ∅ �= e◦.

Proof of Axiom3. Suppose that c �= c′ are two cases in Cencl. Without loss of
generality, we may assume that there is b ∈ c \ c′. Hence c ∈ ||rb|| and c′ /∈ ||rb||.
Thus, by the fact that rb is not trivial (∅ �= ||rb|| �= Cencl) and rb ∈ Regc \Regc′ ,
Axiom3 holds.

Proof of Axiom4. Suppose that c ∈ Cencl and u ∈ Utsencl
are such that ◦u� ⊆

Regc and ♦u◦ ∩ Regc = ∅ and and there is no u
 {e} ∈ Utsencl
satisfying:

L(e) ∈ L(u) and ◦e� ⊆ Regc and ♦e◦ ∩ Regc = ∅. We need to show that
c

u−→encl.
We have already shown that for e ∈ Etsencl

, b ∈ •e implies rb ∈ ◦e, and b ∈ e•

implies rb ∈ e◦. From this and u ∈ Utsencl
we have that u ∈ Uencl.

First we show •u ⊆ c. Let e ∈ u. Consider b ∈ •e. We have already shown that
this implies rb ∈ ◦e. From ◦u ⊆ Regc, we have that rb ∈ Regc, and so c ∈ ||rb||.
Consequently, b ∈ c. Hence, for all e ∈ u we have •e ⊆ c, and so •u ⊆ c.

Now we show that u• ∩ c = ∅. Let e ∈ u. Consider b ∈ e•. We have already
shown that this implies rb ∈ e◦. From u◦ ∩ Regc = ∅, we have that rb /∈ Regc,
and so c /∈ ||rb||. Consequently, b /∈ c. Hence, for all e ∈ u we have e• ∩ c = ∅,
and so u• ∩ c = ∅.

Now we show that �u∩c = ∅. Suppose to the contrary that �u∩c �= ∅. Then
there is e ∈ u such that �e∩c �= ∅, and as a consequence there is b ∈ �e such that
b ∈ c. Hence, c ∈ ||rb|| and so ||rb|| �= ∅. We now prove that ||rb|| �= Cencl. Suppose
||rb|| = {c ∈ Cencl | b ∈ c} = Cencl. Then b is a condition present in every case c of
encl making it impossible for any step containing e to be enabled (b ∈ �e). This,
in turn, contradicts the fact that e ∈ Etsencl

(as an event in u ∈ Utsencl
) and

must appear in some step labelling a transition from tsencl. Hence ||rb|| �= Cencl,
and so rb is a non-trivial c-region. From b ∈ �e we have e ∈ �b = �rb, which
means that rb ∈ ♦e. Consequently, rb ∈ ♦u. From this and ♦u ∩ Regc = ∅ we
have rb /∈ Regc, and so c /∈ ||rb||. Consequently b /∈ c, and so we obtained a
contradiction. Hence �u ∩ c = ∅.

Now we show that �u ⊆ c. Suppose to the contrary that there is b ∈ �u \ c.
From b ∈ �u we have that there is e ∈ u such that b ∈ �e. From b /∈ c we
have that c /∈ ||rb||, and so ||rb|| �= Cencl. We now prove that ||rb|| �= ∅. Assume
that ||rb|| = ∅. This implies that, for all c ∈ Cencl, b /∈ c. But this would make it
impossible to execute any step containing e in encl. This, in turn, contradicts the
fact that e ∈ Etsencl

and so it must appear in some step labelling a transition in

300 M. Koutny and M. Pietkiewicz-Koutny

tsencl. Hence ||rb|| �= ∅, and so the c-region rb is non-trivial. From b ∈ �e we have
that e ∈ �b = �rb. Consequently, we have that rb ∈ �e, and so rb ∈ �u. From this
and �u ⊆ Regc we have that rb ∈ Regc, and so c ∈ ||rb||. Consequently b ∈ c,
and so we obtained a contradiction. Hence �u ⊆ c.

All what remains to be shown is that there is no step u
{e} ∈ Uencl satisfying:
L(e) ∈ L(u), •e� ⊆ c and �e• ∩ c = ∅. Suppose that this is not the case, and
u
 {e1} ∈ Uencl is a step satisfying these conditions. We consider two cases.

Case 1: There is no u
{e1}
{f} ∈ Uencl such that L(f) ∈ L(u
{e1}), •f� ⊆ c

and �f• ∩ c = ∅. This implies c
u�{e1}−→ encl. By Proposition 12, we have that

u
 {e1} ∈ Utsencl
. Moreover, L(e1) ∈ L(u) and, by Propositions 7(3) and 10, we

have ◦(u
 {e1})� ⊆ Regc and ♦(u
 {e1})◦ ∩Regc = ∅. We therefore obtained
a contradiction with our assumptions.
Case 2: We can find u
 {e1}
 {e2} ∈ Uencl such that L(e2) ∈ L(u
 {e1}),
•e2

� ⊆ c and �e2
• ∩ c = ∅. Then we consider Cases 1 and 2 again, taking

u
 {e1}
 {e2} instead of u
 {e1}. Since the number of events in E is finite, we
will eventually end up in Case 1. This means that, eventually, we will obtain a
contradiction.

Proof of Axiom5. We need to show that if c
u−→encl then there is no u
 {e} ∈

Utsencl
satisfying L(e) ∈ L(u), ◦e� ⊆ Regc and ♦e◦ ∩ Regc = ∅.

Suppose to the contrary that there is u
 {e} ∈ Utsencl
as above (†).

We have already shown that for e ∈ Etsencl
, b ∈ •e implies rb ∈ ◦e, and b ∈ e•

implies rb ∈ e◦. From this and u
 {e} ∈ Utsencl
we have u
 {e} ∈ Uencl.

We will show that •e ⊆ c. Consider b ∈ •e. We have that b ∈ •e implies
rb ∈ ◦e. But ◦e ⊆ Regc, and so rb ∈ Regc. This means that c ∈ ||rb||, and
consequently b ∈ c. Hence •e ⊆ c.

We now show that e• ∩ c = ∅. Consider b ∈ e•. We have that b ∈ e• implies
rb ∈ e◦. But e◦ ∩ Regc = ∅, and so rb /∈ Regc. This means that c /∈ ||rb||, and
consequently, b /∈ c. Hence e• ∩ c = ∅.

Now we show that �e ∩ c = ∅. Suppose to the contrary that b ∈ �e ∩ c �= ∅.
We have already shown in the proof of Axiom4 that for e ∈ Etsencl

, b ∈ �e ∩ c
implies rb ∈ ♦e. But ♦e ∩ Regc = ∅, so rb /∈ Regc. This means c /∈ ||rb||, and so
b /∈ c, a contradiction.

Finally, we show that �e ⊆ c. Suppose to the contrary that there is b ∈ �e\ c.
We have already shown in the proof of Axiom4 that for e ∈ Etsencl

, b ∈ �e \ c
implies rb ∈ �e. But �e ⊆ Regc, so rb ∈ Regc. This means that c ∈ ||rb|| and,
consequently b ∈ c, a contradiction.

As a result, assuming that (†) holds leads to a contradiction with c
u−→encl.

Nets with Tokens Which Carry Data

Ranko Lazić1,�, Tom Newcomb2, Joël Ouaknine2,
A.W. Roscoe2, and James Worrell2

1 Department of Computer Science, University of Warwick, UK
2 Computing Laboratory, University of Oxford, UK

Abstract. We study data nets, a generalisation of Petri nets in which
tokens carry data from linearly-ordered infinite domains and in which
whole-place operations such as resets and transfers are possible. Data
nets subsume several known classes of infinite-state systems, including
multiset rewriting systems and polymorphic systems with arrays.

We show that coverability and termination are decidable for arbitrary
data nets, and that boundedness is decidable for data nets in which
whole-place operations are restricted to transfers. By providing an en-
coding of lossy channel systems into data nets without whole-place oper-
ations, we establish that coverability, termination and boundedness for
the latter class have non-primitive recursive complexity. The main result
of the paper is that, even for unordered data domains (i.e., with only the
equality predicate), each of the three verification problems for data nets
without whole-place operations has non-elementary complexity.

1 Introduction

Petri nets (e.g., [1]) are a fundamental model of concurrent systems. Being more
expressive than finite-state machines and less than Turing-powerful, Petri nets
have an established wide range of applications and a variety of analysis tools
(e.g., [2]).

The analysis tools are based on the extensive literature on decidability and
complexity of verification problems ([3] is a comprehensive survey). In this paper,
we focus on three basic decision problems, to which a number of other verification
questions can be reduced:

Coverability: Is a marking reachable which is greater than or equal to a given
marking?

Termination: Are all computations finite?
Boundedness: Is the set of all reachable markings finite?

By the results in [4,5], each of coverability, termination and boundedness is
ExpSpace-complete for Petri nets.

Many extensions of Petri nets preserve decidability of various verification
problems. Notably, affine well-structured nets were formulated in [6] as an el-
egant extension of Petri nets by whole-place operations. The latter are resets,
� Supported by the EPSRC (GR/S52759/01) and the Intel Corporation.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 301–320, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

302 R. Lazić et al.

which empty a place, and transfers, which take all tokens from a place and put
them onto one or more specified places (possibly several times). Hence, two sub-
classes of affine WSNs are reset nets and transfer nets, in which whole-place
operations are restricted to resets and to transfers, respectively. As shown in [6],
coverability and termination for affine WSNs, and boundedness for transfer nets,
are decidable. However, compared with Petri nets, there is a dramatic increase
in complexity: it follows from the results on lossy channel systems in [7] that cov-
erability and termination for reset nets and transfer nets, and boundedness for
transfer nets, are not primitive recursive.1 It was proved in [9] that boundedness
for reset nets is undecidable.

Another important direction of extending Petri nets is by allowing tokens
to carry data from infinite domains. (Data from finite domains do not increase
expressiveness.) For example, in timed Petri nets [10], each token is equipped
with a real-valued clock which represents the age of the token. Multiset rewriting
specifications over constraint systems C [11,12] can be seen as extensions of Petri
nets in which tokens may carry data from the domain of C and transitions can be
constrained using C. In mobile synchronizing Petri nets [13], tokens may carry
identifiers from an infinite domain, and transitions may require that an identifier
be fresh (i.e., not currently carried by any token).

In this paper, we focus on the following two questions:

(1) Is there a general extension of Petri nets in which tokens carry data from
infinite domains, in which whole-place operations are possible, and such that
coverability, termination and boundedness are decidable (either for the whole
class of extended nets or for interesting subclasses)?

(2) If the answer to the previous question is positive, and if we restrict to the
subclass without whole-place operations, do coverability, termination and
boundedness remain ExpSpace-complete (as for Petri nets), or are their
complexities greater? What happens if we restrict further to the simplest
data domains, i.e. those with only the equality predicate?

Data nets. To answer question (1), we define data nets, in which tokens carry
data from linearly-ordered infinite domains. As in Petri nets, transitions consume
and produce tokens. For a transition to be firable, we can require that the data
which are carried by the tokens to be consumed are ordered in a certain way.
In addition to such data, transitions can choose finitely many other data, which
satisfy further ordering constraints and which may or may not be present in the
current marking. In the production phase, tokens which carry either kind of data
can be put into the marking. Data nets also support whole-place operations.

In the next few paragraphs, we introduce data nets in an informal but detailed
manner, for clarity of the subsequent discussion of contributions of the paper and
relations to the literature. As an alternative order of presentation, the reader may
wish to postpone the following and read it in conjunction with Section 2.2, where
data nets are defined formally.
1 Recall the Ritchie-Cobham property [8, page 297]: a decision problem (i.e. a set) is

primitive recursive iff it is solvable in primitive recursive time/space.

Nets with Tokens Which Carry Data 303

Data nets are based on affine WSNs [6]. Markings of an affine WSN are vectors
in INP , where P is the finite set of all places. A transition t of an affine WSN is
given by vectors Ft, Ht ∈ INP and a square matrix Gt ∈ INP×P . Such a transition
is firable from a marking m iff m ≥ Ft, and in that case it produces the marking
(m − Ft)Gt + Ht. Whole-place operations are performed by the multiplication
with Gt.

Since a linear ordering � is the only operation available on data, markings
of data nets are finite sequences of vectors in INP \ {0}. Each index j of such
a marking s corresponds to an implicit datum dj , and we have that j ≤ j′ iff
dj � dj′ . For each p ∈ P , s(j)(p) is the number of tokens which carry dj and
are at place p. We say that such tokens are at index j. Now, each transition t
has an arity αt ∈ IN. For a transition t to be fired from a marking s, we choose
nondeterministically αt mutually distinct data. Some of those data may be fresh
(i.e., not carried by any token in s), so picking the αt data is formalised by
first expanding s to a finite sequence s† by inserting the vector 0 at arbitrary
positions, and then picking an increasing (in particular, injective) mapping

ι : {1, . . . , αt} → {1, . . . , |s†|}

such that each occurrence of 0 is in its range. Now, such a mapping ι partitions
{1, . . . , |s†|} into αt singletons and αt +1 contiguous “regions” as follows, where
the Reg(i,i+1) are region identifiers:

1, . . . , ι(1) − 1
︸ ︷︷ ︸

Reg(0,1)

, ι(1), ι(1) + 1, . . . , ι(2) − 1
︸ ︷︷ ︸

Reg(1,2)

, . . . , ι(αt), ι(αt) + 1, . . . , |s†|
︸ ︷︷ ︸

Reg(αt,αt+1)

The action of t on s with respect to s† and ι is determined by vectors Ft and
Ht, and a square matrix Gt, whose elements are natural numbers, and which are
indexed by

({1, . . . , αt} ∪ {Reg(i,i+1) : 0 ≤ i ≤ αt}) × P

It consists of the following stages, where i, i′ ∈ {1, . . . , αt}, R, R′ ∈ {Reg(i,i+1) :
0 ≤ i ≤ αt} and p, p′ ∈ P .

subtraction: for each i and p, Ft(i, p) tokens at index ι(i) are taken from p;2

multiplication: all tokens are taken simultaneously, and then:
– for each token taken from p at index ι(i), Gt(i, p, i′, p′) tokens are put

onto p′ at index ι(i′), and for each j′ in region R′, Gt(i, p, R′, p′) tokens
are put onto p′ at index j′;

– for each token taken from p at index j in region R, Gt(R, p, i′, p′) tokens
are put onto p′ at index ι(i′), and Gt(R, p, R, p′) tokens are put onto p′

at index j;
addition: for each i and p, Ht(i, p) tokens are put onto p at index ι(i), and for

each j in region R and p, Ht(R, p) tokens are put onto p at index j.
2 In order to have well-structuredness (see Proposition 7) and for simplicity, entries

Ft(R,p) are not used, and neither are entries Gt(R,p, R′, p′) with R �= R′, so they
are assumed to be 0.

304 R. Lazić et al.

Example 1. Consider P = {p1, p2} and a transition t with αt = 1 given by:

Ft Reg(0,1) 1 Reg(1,2)
0 0 1 1 0 0

p1 p2 p1 p2 p1 p2

Ht Reg(0,1) 1 Reg(1,2)
0 0 2 1 6 0

p1 p2 p1 p2 p1 p2

Gt Reg(0,1) 1 Reg(1,2)

Reg(0,1)
0 1
1 0

0 0
0 0

0 0
0 0

p1
p2

1 0 0
0 0

2 0
0 1

3 0
3 0

p1
p2

Reg(1,2)
0 0
0 0

0 0
0 2

1 0
0 1

p1
p2

p1 p2 p1 p2 p1 p2

From a marking s, in terms of data represented by the indices of s, transition
t is fired as follows:

1. a datum d is chosen nondeterministically, such that each of p1 and p2 contain
at least 1 token carrying d (so, d cannot be fresh);

2. for each datum d′ ≺ d, all tokens at p1 carrying d′ are transferred to p2, and
vice-versa;

3. for each token at p1 or p2 carrying d, and each d′ 	 d, 3 tokens carrying d′

are put onto p1;
4. the number of tokens at p1 carrying d is multiplied by 2;
5. for each token at p2 carrying d′ 	 d, 2 tokens carrying d are put onto p2.

Since Ht = FtGt, the addition stage of performing t exactly “undoes” the sub-
traction stage, so t performs only whole-place operations.

In Section 2.2, the above will be formalised so that t is firable from s with respect
to s† and ι iff s† ≥ �Ft�

|s†|
ι , and in that case it produces the marking obtained

from (s† − �Ft�
|s†|
ι)�Gt�

|s†|
ι + �Ht�

|s†|
ι by removing each entry 0, where �Ft�

|s†|
ι ,

�Gt�
|s†|
ι and �Ht�

|s†|
ι are appropriate “expansions” of Ft, Gt and Ht, indexed by

{1, . . . , |s†|} × P .
Since vectors 0 which correspond to fresh data can be inserted at arbitrary

positions to fire a transition, the linear ordering on data is assumed to be dense
and without least and greatest elements. Having a least or greatest element can
easily be simulated, and density is not a restriction when considering only finite
computations (as is the case for the coverability problem).

We show that affine WSNs [6] are equivalent to a class of data nets whose
transitions have arity 1. Data nets also subsume timed Petri nets [10] and timed
networks [14], in the sense that systems obtained after quotienting by time re-
gions can be simulated by data nets, where the data domain is fractional parts
of clock values. Monadic multiset rewriting specifications over order constraints
on rationals or reals [11] and over gap-order constrains on integers [12] can be
translated to data nets, subject to the remarks above about density. Mobile
synchronizing petri nets [13], lossy channel systems [15], and polymorphic sys-
tems with one array of type 〈X,≤〉 → {1, . . . , n} or with two arrays of types
〈X, =〉 → 〈Y,≤〉 and 〈X, =〉 → {1, . . . , n} [16,17], can also be expressed using
data nets.

Nets with Tokens Which Carry Data 305

Decidability. Using the theory of well-structured transition systems [18], we
prove that coverability and termination for arbitrary data nets, and bounded-
ness for data nets in which whole-place operations are restricted to transfers, are
decidable. Thus, question (1) posed above is answered positively. The decidabil-
ity of coverability for data nets subsumes the results in [6,10,14,11,12,13,15,16,17]
that coverability is decidable for the respective classes of infinite-state systems
mentioned above, and in most cases the proof in this paper is more succinct.

Hardness. To question (2) above, we obtain the following answers. We say that
a data net is Petri iff it does not contain whole-place operations, and unordered
iff it makes use only of equality between data (and not of the linear ordering).

– By providing a translation from lossy channel systems to Petri data nets,
we establish that coverability, termination and boundedness for the latter
class are not primitive recursive. The encoding uses the linear ordering on
the data domain, for picking fresh data which are employed in simulating
writes to channels.

– The main result of the paper is that coverability, termination and bound-
edness for unordered Petri data nets are not elementary, i.e., their compu-
tational complexities cannot be bounded by towers of exponentials of fixed
heights. That is a surprising result, since unordered Petri data nets are highly
constrained systems. In particular, they do not provide a mechanism for en-
suring that a datum chosen in a transition is fresh (i.e., not present in the
current marking). The result is proved by simulating a hierarchy of bounded
counters, which is reminiscent of the “rulers” construction of Meyer and
Stockmeyer (e.g., [19]).

By translating Petri data nets and unordered Petri data nets to subclasses of
systems in [11,12,13,16,17], the two hardness results yield the same lower bounds
for corresponding decision problems for such subclasses. In particular, we obtain
non-elementariness of verifying monadic multiset rewriting specifications with
only equality constraints [11] and of verifying polymorphic systems with two
arrays of types 〈X, =〉 → 〈Y, =〉 and 〈X, =〉 → {1, . . . , n} [16].

Paper organisation. Section 2 contains preliminaries, including definitions of
data nets and of several relevant subclasses, some basic results, and an example.
In Section 3, we present the translation from lossy channel systems to Petri
data nets. Sections 4 and 5 contain the decidability and hardness results. Some
remaining open problems are discussed in Section 6.

2 Preliminaries

Sets, quasi-orders and mappings. For n ∈ IN, let [n] = {1, . . . , n}. We write INω

for IN ∪ {ω}. The linear ordering ≤ on IN is extended to INω by having n < ω
for each n ∈ IN.

A set A and a relation � on A form a quasi-order iff � is reflexive and
transitive. We write a1 ≺ a2 iff a1 � a2 and a2 �� a1.

306 R. Lazić et al.

For any A′ ⊆ A, its upward closure is ↑A′ = {a ∈ A : ∃a′ ∈ A′ · a′ � a}. We
say that A′ is upwards-closed iff A′ = ↑A′. A basis of an upwards-closed set A′

is a subset A′′ such that A′ = ↑A′′. Downward closure (written ↓A′), closedness
and bases are defined symmetrically.

A mapping f from a quasi-order 〈A,�〉 to a quasi-order 〈A′,�′〉 is increasing
iff a1 ≺ a2 ⇒ f(a1) ≺′ f(a2).

Vectors and matrices. For sets A and B, let AB denote the set of all B-indexed
vectors of elements of A, i.e., the set of all mappings B → A. For example,
IN[n]×[n′] is the set of all n × n′ matrices of natural numbers. For a ∈ A, let
a ∈ AB denote the vector whose each entry equals a. Let Id ∈ INB×B denote
the identity square matrix.

A quasi-ordering � on A induces the following quasi-ordering on AB : v � v′

iff v(b) � v′(b) for all b ∈ B.

Sequences and bags. For a set A, let Seq(A) denote the set of all finite sequences
of elements of A. For s ∈ Seq(A), let |s| denote the length of s, and s(1), . . . ,
s(|s|) denote its elements.

For s, s′ ∈ Seq(A) and a ∈ A, we say that s′ is an a-expansion of s (equiva-
lently, s is the a-contraction of s′) iff s is obtained by removing each occurrence
of a from s′.

For s, s′ ∈ Seq(A), we write s ∼ s′ iff s′ can be obtained from s by permuting
its entries. We define the set Bag(A) of all finite bags (i.e., multisets) of elements
of A as the set of all equivalence classes of ∼. Let s denote the equivalence class
of s, i.e., the bag with the same elements as s.

Suppose 〈A,�〉 is a quasi-order. The quasi-ordering � induces quasi-orderings
on Seq(A) and Bag(A) as follows. For s, s′ ∈ Seq(A), we write s � s′ iff there
exists an increasing ι : [|s|] → [|s′|] such that s(i) � s′(ι(i)) for all i ∈ [|s|]. For
b, b′ ∈ Bag(A), we write b � b′ iff there exist s ∈ b and s′ ∈ b′ such that s � s′.

Well-quasi-orderings. A quasi-ordering � on a set A is a well-quasi-ordering iff,
for every infinite sequence a1, a2, . . . ∈ A, there exist i < j such that ai � aj .

Proposition 2 ([20]). Whenever � is a well-quasi-ordering on a set A, the
induced orderings on Seq(A) and Bag(A) also are well-quasi-orderings.

2.1 Affine Well-Structured Nets

We recall the notion of affine well-structured net [6].3 Such a net is a tuple
〈P, T, F, G, H〉 such that P is a finite set of places, T is a finite set of transitions,
and for each t ∈ T , Ft and Ht are vectors in INP , and Gt is a matrix in INP×P .

Markings of an affine WSN 〈P, T, F, G, H〉 are vectors in INP . A marking m′

can be obtained from a marking m by firing a transition t ∈ T , written m
t−→ m′,

iff m ≥ Ft and m′ = (m − Ft)Gt + Ht.
3 For technical reasons, the formalisation of affine WSNs in this paper is slightly

different, but equivalent.

Nets with Tokens Which Carry Data 307

As was shown in [6], Petri nets and many of their known extensions are
special cases of affine WSNs. In particular, Petri nets and their extensions by
(generalised) resets and transfers are equivalent to the classes of affine WSNs
〈P, T, F, G, H〉 determined by the following restrictions:

Petri nets: ∀t ∈ T · Gt = Id
reset nets: ∀t ∈ T · Gt ≤ Id
transfer nets: ∀t ∈ T, p ∈ P · ∃p′ ∈ P · Gt(p, p′) > 0

2.2 Data Nets

Given n ∈ IN, let Regs(n) = {Reg(i,i+1) : 0 ≤ i ≤ n}. For each 0 ≤ i ≤ n, m ≥ n
and increasing ι : [n] → [m], let �Reg(i,i+1)�

m
ι = {j ∈ [m] : ι(i) < j < ι(i + 1)},

where by convention ι(0) = 0 and ι(n + 1) = m + 1.
A data net is a tuple 〈P, T, α, F, G, H〉 such that:

– P is a finite set of places;
– T is a finite set of transitions;
– for each t ∈ T , αt ∈ IN specifies the arity of t;
– for each t ∈ T , Ft ∈ IN([αt]∪Regs(αt))×P , and Ft(R, p) = 0 whenever R ∈

Regs(αt) and p ∈ P ;
– for each t ∈ T , Gt ∈ IN(([αt]∪Regs(αt))×P)2 , and Gt(R, p, R′, p′) = 0 whenever

R, R′ ∈ Regs(αt), R �= R′ and p, p′ ∈ P ;
– for each t ∈ T , Ht ∈ IN([αt]∪Regs(αt))×P .

Suppose 〈P, T, α, F, G, H〉 is a data net, and t ∈ T . Any m ≥ αt and increasing
ι : [αt] → [m] determine the following instances of Ft, Gt and Ht:

– �Ft�
m
ι ∈ IN[m]×P is defined by

�Ft�
m
ι (ι(i), p) = Ft(i, p) �Ft�

m
ι (j, p) = Ft(R, p) for j ∈ �R�m

ι

– �Gt�
m
ι ∈ IN([m]×P)2 is defined by

�Gt�
m
ι (ι(i), p, ι(i′), p′) = Gt(i, p, i′, p′)

�Gt�
m
ι (ι(i), p, j′, p′) = Gt(i, p, R, p′) for j′ ∈ �R�m

ι

�Gt�
m
ι (j, p, ι(i′), p′) = Gt(R, p, i′, p′) for j ∈ �R�m

ι

�Gt�
m
ι (j, p, j, p′) = Gt(R, p, R, p′) for j ∈ �R�m

ι

�Gt�
m
ι (j, p, j′, p′) = 0 otherwise

– �Ht�
m
ι ∈ IN[m]×P is defined in the same way as �Ft�

m
ι .

A marking of a data net 〈P, T, α, F, G, H〉 is a finite sequence of vectors in
INP \ {0}. A marking s′ can be obtained from a marking s by firing a transition

308 R. Lazić et al.

t ∈ T , written s
t−→ s′, iff there exist a 0-expansion s† of s and an increasing

ι : [αt] → [|s†|] such that:4

(i) {j : s†(j) = 0} ⊆ Range(ι);
(ii) s† ≥ �Ft�

|s†|
ι ;

(iii) s′ is the 0-contraction of (s† − �Ft�
|s†|
ι)�Gt�

|s†|
ι + �Ht�

|s†|
ι .

We may also write s
t,s†,ι−−−→ s′, or just s → s′.

Proposition 3. For any data net, its transition system 〈Seq(INP \ {0}),→〉 is
finitely branching.

2.3 Decision Problems

We consider the following standard problems:

Coverability: Given a data net, and markings s and s′, to decide whether some
marking s′′ ≥ s′ is reachable from s.

Termination: Given a data net, and a marking s, to decide whether all com-
putations from s are finite.

Boundedness: Given a data net, and a marking s, to decide whether the set
of all markings reachable from s is finite.

Coverability, termination and boundedness for affine WSNs are defined in the
same way.

2.4 Classes of Data Nets

We now define several classes of data nets. Figure 1 shows the inclusions among
classes of data nets and affine well-structured nets in Propositions 5, 6, 8 and 9
below. In addition, the mapping N �→ Ñ and its inverse (see Proposition 6) pro-
vide a correspondence between unary transfer data nets (resp., unary Petri data
nets) and transfer nets (resp., Petri nets). The dashed line represents the fact
that Proposition 9 does not provide a reduction for the boundedness problem.

Unordered data nets. A data net 〈P, T, α, F, G, H〉 is unordered iff:

(i) for each t ∈ T , R, R′ ∈ Regs(αt) and p, p′ ∈ P , we have Gt(R, p, R, p′) =
Gt(R′, p, R′, p′) and Ht(R, p) = Ht(R′, p);

(ii) for each t ∈ T and permutation π of [αt], there exists t′ ∈ T such that Ft′ ,
Gt′ and Ht′ are obtained from Ft, Gt and Ht (respectively) by applying π
to each index in [αt].

Given an unordered data net 〈P, T, α, F, G, H〉, we write t ∼ t′ iff t and t′ have
the property in (ii) above. That defines an equivalence relation on T , and we

4 In (ii) and (iii), s† is treated as a vector in IN[|s†|]×P .

Nets with Tokens Which Carry Data 309

data nets

unordered data nets

unary data nets =
affine WSNs

reset nets transfer nets

Petri nets

transfer data nets

Petri data nets

Fig. 1. Inclusions among classes of data nets

write t for the equivalence class of t. From the following proposition, the same-
bag relation ∼ between markings is a bisimulation on the transition system of
〈P, T, α, F, G, H〉.5

Proposition 4. For any unordered data net, whenever s1
t−→ s2 and s′1 ∼ s1,

we have s′1
t′
−→ s′2 for some t′ ∼ t and s′2 ∼ s2.

Unary data nets. A data net 〈P, T, α, F, G, H〉 is unary iff:

(i) for each t ∈ T , αt = 1;
(ii) for each t ∈ T , there exists p ∈ P such that Ft(1, p) > 0;
(iii) for each t ∈ T , R ∈ Regs(1) and p, p′ ∈ P , we have Gt(1, p, R, p′) = 0,

Gt(R, p, 1, p′) = 0, Gt(R, p, R, p) = 1, Gt(R, p, R, p′) = 0 if p �= p′, and
Ht(R, p) = 0.

Proposition 5. Any unary data net is an unordered data net.

Given a unary data net N = 〈P, T, α, F, G, H〉, let Ñ = 〈P, T, F̃ , G̃, H̃〉 be the
affine WSN such that F̃ , G̃ and H̃ are obtained from Ft, Gt and Ht (respectively)
by removing entries which involve indices from Regs(1). Observe that, conversely,
for each affine WSN N ′ in which no transition is firable from 0, there is a
unique unary data net N such that Ñ = N ′. Both N �→ Ñ and its inverse are
computable in logarithmic space.

5 Conditions (i) and (ii) in the definition of unordered data nets suggest an alternative
formalisation, where only one region is used for indexing F , G and H , and only
one transition from each equivalence class is represented. Such a formalisation is
more succinct (exponentially in transition arities), but that issue is not important
in this paper. In addition, by Proposition 4, markings of unordered data nets can be
regarded as bags.

310 R. Lazić et al.

Proposition 6. (a) For any unary data net N , we have that s
t−→ s′ iff |s′| = |s|

and there exists i ∈ [|s|] with s(i) t−→ s′(i) in Ñ and s′(j) = s(j) for all j �= i.
(b) Coverability of s′ from s in a unary data net N is equivalent to existence of

an increasing ι : [|s′|] → [|s|] such that s′(i) is coverable from s(ι(i)) in Ñ
for each i ∈ [|s′|].
Termination (resp., boundedness) from s in a unary data net N is equivalent
to Ñ being terminating (resp., bounded) from s(i) for each i ∈ [|s|].

(c) Coverability of m′ from m, termination from m and boundedness from m in
an affine well-structured net Ñ are equivalent to coverability of 〈m′〉 from
〈m〉, termination from 〈m〉 and boundedness from 〈m〉 (respectively) in N .

Note that Proposition 6 (c) can be extended to affine WSN with transitions
firable from 0 by adding an auxiliary place in which a single token is kept.

Transfer data nets. A data net 〈P, T, α, F, G, H〉 is transfer iff:

(i) for each t ∈ T , i ∈ [αt] and p ∈ P , we have Gt(i, p, i′, p′) > 0 for some
i′ ∈ [αt] and p′ ∈ P ;

(ii) for each t ∈ T , R ∈ Regs(αt) and p ∈ P , either we have Gt(R, p, i′, p′) > 0
for some i′ ∈ [αt] and p′ ∈ P , or we have Gt(R, p, R, p′) > 0 for some p′ ∈ P .

Observe that (i) and (ii) are satisfied by the transition t in Example 1.

Proposition 7. (a) Whenever s1
t−→ s2 in a data net and s′1 ≥ s1, there exists

s′2 ≥ s2 such that s′1
t−→ s′2.

(b) Whenever s1
t−→ s2 in a transfer data net and s′1 > s1, there exists s′2 > s2

such that s′1
t−→ s′2.

Petri data nets. In Petri data nets, whole-place operations are not allowed, and
transitions can produce tokens carrying only data which were chosen during the
firing. Formally, a data net 〈P, T, α, F, G, H〉 is Petri iff:

– for each t ∈ T , Gt = Id ;
– for each t ∈ T , R ∈ Regs(αt) and p ∈ P , Ht(R, p) = 0.

Proposition 8. Any Petri data net is a transfer data net.

2.5 Example: A File System

As an illustration, we now show how a file system which permits unboundedly
many users, user processes and files can be modelled as a data net. A vari-
ety of other examples of systems expressible using data nets can be found in
[10,14,11,12,13,15,16], including a real-timed mutual exclusion protocol, a dis-
tributed authentication protocol, a communication protocol over unreliable chan-
nels, and a leader election algorithm.

We suppose there are two categories of users: administrators and staff mem-
bers. Let Administrator be a finite set consisting of all possible states which an
administrator process can be in, and let Staff be such a set for staff-member

Nets with Tokens Which Carry Data 311

processes. (We assume that Administrator and Staff are disjoint.) We consider
two file permissions, so let Permissions = {private, public}. We also suppose
Contents is a finite set of all possible file contents. If file contents is unbounded,
the Contents set may consist of finitary abstractions, which include information
such as file names.

The set of places is

P = Administrator∪ Staff∪ (Permissions× Contents)

Tokens represent user processes and files, and data which they carry represents
user identities. More specifically:

– a token at place a ∈ Administrator carrying datum d represents a process
of administrator d and which is in state a;

– a token at place b ∈ Staff carrying datum d represents a process of staff
member d and which is in state b;

– a token at place 〈r, c〉 ∈ Permissions× Contents carrying datum d repre-
sents a file owned by user d, and with permission r and contents c.

To express a write by a staff-member process in state b to a file with contents
c, which changes b to b′ and c to c′, we define a transition write(b, b′, c, c′). It
involves one user, so αwrite(b,b′,c,c′) = 1. Firstly, it takes one token from place b
and one token from place c. They must carry the same datum, which ensures
that the user owns the file.

Fwrite(b,b′,c,c′)(1, b) = 1 Fwrite(b,b′,c,c′)(1, c) = 1

The transition involves no whole-place operations, so Gwrite(b,b′,c,c′) = Id . Fi-
nally, it puts one token onto place b′ and one token onto place c′, which carry
the same datum as the two tokens taken in the first stage.

Hwrite(b,b′,c,c′)(1, b′) = 1 Hwrite(b,b′,c,c′)(1, c′) = 1

The remaining entries of Fwrite(b,b′,c,c′) and Hwrite(b,b′,c,c′) are 0.
As a slightly more complex example, we can express a change of ownership of

a file with permission r and contents c from an administrator to a staff member.
It involves an administrator process which changes state from a to a′, and a staff-
member processes which changes state from b to b′. Since two users are involved,
we have αchange(r,c,a,a′,b,b′) = 2. As in the previous example, Gchange(r,c,a,a′,b,b′) =
Id and we show only entries which are not 0:

Fchange(r,c,a,a′,b,b′)(1, 〈r, c〉) = 1 Hchange(r,c,a,a′,b,b′)(2, 〈r, c〉) = 1
Fchange(r,c,a,a′,b,b′)(1, a) = 1 Hchange(r,c,a,a′,b,b′)(1, a′) = 1
Fchange(r,c,a,a′,b,b′)(2, b) = 1 Hchange(r,c,a,a′,b,b′)(2, b′) = 1

In the change(r, c, a, a′, b, b′) transition, it is assumed that the administrator
identity is smaller than the staff-member identity. To cover the opposite case,
and to have an unordered data net, we define a transition change(r, c, b, b′, a, a′).

312 R. Lazić et al.

The definition is the same as that of change(r, c, a, a′, b, b′), except that indices
1 and 2 are swapped when defining Fchange(r,c,b,b′,a,a′) and Hchange(r,c,b,b′,a,a′).

The data net having the three sets of transitions introduced so far is unordered
and Petri. Implementing the following action makes it no longer Petri, in fact
not even a transfer data net: all processes and files of a staff member who has a
process which is in state b are removed from the system. We have αcrash(b) = 1,
Fcrash(b)(1, b) = 1, the remaining entries of Fcrash(b) and all entries of Hcrash(b)
are 0, and:

Gcrash(s)(1, p, 1, p′) = 0 for p, p′ ∈ P
Gcrash(s)(1, p, R, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P
Gcrash(s)(R, p, 1, p′) = 0 for R ∈ Regs(1) and p, p′ ∈ P
Gcrash(s)(R, p, R, p) = 1 for R ∈ Regs(1) and p ∈ P

Gcrash(s)(R, p, R′, p′) = 0 otherwise

Many interesting properties of the file system can be formalised as coverabil-
ity, termination or boundedness properties. For example, that there is never a
user who is both an administrator and a staff member amounts to none of the
markings sa,b for a ∈ Administrator and b ∈ Staff being coverable, where
|sa,b| = 1, sa,b(1)(a) = sa,b(1)(b) = 1, and sa,b(1)(p) = 0 for all p ∈ P \ {a, b}.

3 Reset Nets and Lossy Channel Systems

In this section, we first show how Petri data nets can express reset nets, which
establishes the dashed inclusion in the diagram in Section 2.4. The translation
preserves coverability and termination properties of reset nets.

Secondly, we show that Petri data nets can also express lossy channel systems
[15]. The translation provides reductions of the location reachability and termi-
nation problems for lossy channel systems to the coverability, termination and
boundedness problems for Petri data nets. Thus, the latter three problems will
be shown non-primitive recursive: see Theorem 14.

Proposition 9. (a) Coverability for reset nets is Turing reducible in polynomial
space to coverability for Petri data nets.

(b) Termination for reset nets is reducible in polynomial space to termination
for Petri data nets, and to boundedness for Petri data nets.

Proof. We define a translation from reset nets N = 〈P, T, F, G, H〉 to Petri data
nets N̂ = 〈P̂ , T̂ , α, F̂ , Ĝ, Ĥ〉. For each t ∈ T , let s0

t be a sequence consisting of
all p ∈ P which are reset by t, i.e., such that G(p, p) = 0 (each occurring once).

The set of places of N̂ is formed by adding a place to P : P̂ = P � {p̂}. In N̂ ,
each place p ∈ P will store a single token, carrying a datum which represents the
place p of N . The place p̂ will store as many tokens carrying the datum which
represents a place p as there are tokens at p in N . More precisely, for markings
m of N and s of N̂ , we write m ≈ s iff for each p ∈ P , there exists jp ∈ [|s|]
such that: s(jp)(p) = 1, s(j′)(p) = 0 for all j′ �= jp, and s(jp)(p̂) = m(p). The
relation ≈ will be a bisimulation between N and N̂ .

Nets with Tokens Which Carry Data 313

The transitions of N̂ are pairs of transitions of N and enumerations of P :
T̂ = {t̂π : t ∈ T ∧ [|P |] π↔ P}. Suppose m ≈ s, and let π be the enumeration of
P such that π−1(p) < π−1(p′) iff jp < jp′ . We shall have that:

(i) only transitions of the form t̂π are firable from s;

(ii) m
t−→ m′ implies s

t̂π−→ s′ for some m′ ≈ s′;

(iii) s
t̂π−→ s′ implies m

t−→ m′ for some m′ ≈ s′.

Consider any t̂π ∈ T̂ . We set αt̂π
= |P | + |s0

t |. Indices i ∈ [|P |] will be used
to pick data which represent the places of N , and indices |P | + i will be used to
pick fresh data (which are greater than all existing data) to simulate the resets of
t. Since Ĝt̂π

= Id is required for N̂ to be a Petri data net, it remains to define F̂t̂π

and Ĥt̂π
so that (i)–(iii) above are satisfied. Each entry not listed below is set to 0:

F̂t̂π
(i, π(i)) = 1 F̂t̂π

(i, p̂) = Ft(π(i)) (i ∈ [|P |])
Ĥt̂π

(i, π(i)) = 1 Ĥt̂π
(i, p̂) = Ht(π(i)) (π(i) �∈ s0

t)
Ĥt̂π

(|P | + i, s0
t (i)) = 1 Ĥt̂π

(|P | + i, p̂) = Ht(s0
t (i)) (i ∈ [|s0

t |])

Since any enumeration π of P is storable in polynomial space, we have that
polynomial space suffices for the translation.

Given a marking m of N , let s be a marking of N̂ such that m ≈ s. For (a),
we have by (i)–(iii) above that a given marking m′ is coverable from m in N iff
some minimal s′ such that m′ ≈ s′ is coverable from s in N̂ . For the first half
of (b), we have by (i)–(iii) above that N terminates from m iff N̂ terminates
from s. For the second half, let N̂ ′ be obtained from N̂ (in logarithmic space)
by adding a place p̂′ and ensuring that each transition increases the number of
tokens at p̂′. Let s′ be an arbitrary extension of s to place p̂′. We have that N
terminates from m iff N̂ ′ is bounded from s′. ��

A lossy channel system is a tuple S = 〈Q, C, Σ, Δ〉, where Q is a finite set
of locations, C is a finite set of channels, Σ is a finite alphabet, and Δ ⊆
Q × C × {!, ?} × Σ × Q is a set of transitions.

A state of S is a pair 〈q, w〉, where q ∈ Q and w : C → Σ∗. For each c ∈ C,
the word w(c) is the contents of channel c at state 〈q, w〉.

To define computation steps, we first define perfect computation steps, which
either write a letter to the end of a channel, or read a letter from the beginning
of a channel. For states 〈q1, w1〉 and 〈q2, w2〉, we write 〈q1, w1〉 →perf 〈q2, w2〉 iff
there exist c ∈ C and a ∈ Σ such that:

– either 〈q1, c, !, a, q2〉 ∈ Δ and w2 = w1[c �→ (w1(c))a],
– or 〈q1, c, ?, a, q2〉 ∈ Δ and w1 = w2[c �→ a(w2(c))].

Let � denote the “subword” well-quasi-ordering on Σ∗, obtained by lifting
the equality relation on Σ (see Proposition 2). For example, we have abba �
abracadabra. For states 〈q, w〉 and 〈q′, w′〉, we write 〈q, w〉 � 〈q′, w′〉 iff q = q′

and w(c) � w′(c) for all c ∈ C, i.e., 〈q′, w′〉 is obtained from 〈q, w〉 by losing zero
or more letters.

314 R. Lazić et al.

A computation step 〈q, w〉 → 〈q′, w′〉 of S consists of zero or more losses,
followed by a perfect computation step, followed by zero or more losses. Thus, the
→ relation is defined by composing the →perf and � relations: → = �→perf �.

The following are two key decision problems for lossy channel systems:

Location reachability: Given a lossy channel system, a state 〈q, w〉 and a
location q′, to decide whether some state 〈q′, w′〉 is reachable from 〈q, w〉.

Termination: Given a lossy channel system, and a state 〈q, w〉, to decide whe-
ther all computations from 〈q, w〉 are finite.

Proposition 10. (a) Location reachability for lossy channel systems is reducible
in logarithmic space to coverability for Petri data nets.

(b) Termination for lossy channel systems is reducible in logarithmic space to
termination for Petri data nets, and to boundedness for Petri data nets.

Proof. Given a lossy channel system S = 〈Q, C, Σ, Δ〉, we define a Petri data
net NS = 〈P, T, α, F, G, H〉 as follows. We shall have that NS is computable in
logarithmic space.

Let P = Q�C � (C ×Σ). States 〈q, w〉 of S will be represented by markings
s ∈ Seq(INP \ {0}) as follows. At places in Q, there will be one token, which is
at q, and which carries a datum d which is minimal in s. For each c ∈ C with
w(c) empty, place c will contain one token which carries d. For each c ∈ C with
w(c) = a1 · · ·ak and k > 0, there will be data d ≺ dc

1 ≺ · · · ≺ dc
k such that:

– place c contains one token which carries dc
k;

– for each a ∈ Σ, place 〈c, a〉 contains one token carrying dc
i for each i ∈ [k]

with ai = a, and possibly some tokens carrying data greater than dc
k.

Formally, we write 〈q, w〉 ≈ s iff:

– s(1)(q) = 1, and s(j)(q′) = 0 whenever either j > 1 or q′ ∈ Q \ {q};
– for each c ∈ C with w(c) = ε, s(1)(c) = 1, and s(j)(c) = 0 for all j > 1;
– for each c ∈ C with w(c) = a1 · · · ak and k > 0, there exist 1 < jc

1 < · · · < jc
k

such that s(jc
k)(c) = 1, s(j′)(c) = 0 for all j′ �= jc

k, and for each 1 ≤ j′ ≤ jc
k

and a′ ∈ Σ, we have

s(j′)(c, a′) =
{

1, if there exists i ∈ [k] with j′ = jc
i and a′ = ai

0, otherwise

For each read transition of S, there will be 1+|Σ| transitions of NS , depending
on whether the channel will become empty after the read, or the last letter of
the new channel contents will be a′:

T = {〈q1, c, !, a, q2〉 : 〈q1, c, !, a, q2〉 ∈ Δ}∪
{〈q1, c, ?, a, q2, ε〉, 〈q1, c, ?, a, q2, a

′〉 : 〈q1, c, ?, a, q2〉 ∈ Δ ∧ a′ ∈ Σ}

When defining αt, Ft and Ht for t ∈ T below, we show only entries which are
distinct from 0. Since NS is a Petri data net, we have Gt = Id for each t ∈ T .

We shall have that, in computations of NS , losses can happen only when
reads are performed, but that will be sufficient for the result we are proving.
Losses will occur when the datum which identifies the end of a channel and

Nets with Tokens Which Carry Data 315

corresponds to the last letter is made smaller than the datum which corresponds
to the second last letter. (Observe that, in data nets, we cannot specify that a
transition be firable from a marking only if the latter contains no data which is
between two particular data. If that were not so, perfect channel systems which
are Turing-powerful would be expressible).

Writes are performed using the minimal datum, which is then decreased:

α〈q1,c,!,a,q2〉 = 2 H〈q1,c,!,a,q2〉(1, q2) = 1
F〈q1,c,!,a,q2〉(2, q1) = 1 H〈q1,c,!,a,q2〉(1, 〈c, a〉) = 1

Reads which make a channel c empty alter the datum carried by the token at
place c to be the minimal datum:

F〈q1,c,?,a,q2,ε〉(1, q1) = 1 α〈q1,c,?,a,q2,ε〉 = 2
F〈q1,c,?,a,q2,ε〉(2, c) = 1 H〈q1,c,?,a,q2,ε〉(1, q2) = 1

F〈q1,c,?,a,q2,ε〉(2, 〈c, a〉) = 1 H〈q1,c,?,a,q2,ε〉(1, c) = 1

The remaining reads from channel c decrease the datum carried by the token at
place c to a value which identifies an occurrence of some a′:

F〈q1,c,?,a,q2,a′〉(1, q1) = 1 α〈q1,c,?,a,q2,a′〉 = 3
F〈q1,c,?,a,q2,a′〉(3, c) = 1 H〈q1,c,?,a,q2,a′〉(1, q2) = 1

F〈q1,c,?,a,q2,a′〉(3, 〈c, a〉) = 1 H〈q1,c,?,a,q2,a′〉(2, c) = 1
F〈q1,c,?,a,q2,a′〉(2, 〈c, a′〉) = 1 H〈q1,c,?,a,q2,a′〉(2, 〈c, a′〉) = 1

Now, the definition of NS ensures that the ≈ relation is an inverse simulation:
whenever 〈q, w〉 ≈ s and s → s′, there exists 〈q′, w′〉 such that 〈q′, w′〉 ≈ s′ and
〈q, w〉 → 〈q′, w′〉.

We write 〈q, w〉�≈ s iff there exists 〈q†, w†〉 such that 〈q, w〉 � 〈q†, w†〉 and
〈q†, w†〉 ≈ s. It is straightforward to check that the �≈ relation is a simu-
lation: whenever 〈q, w〉�≈ s and 〈q, w〉 → 〈q′, w′〉, there exists s′ such that
〈q′, w′〉�≈ s′ and s → s′.

To establish (a), given a state 〈q, w〉 and a location q′ of S, let s be such that
〈q, w〉 ≈ s, and let s′ be such that |s′| = 1, s′(1)(q′) = 1, and s′(1)(p) = 0 for
all p ∈ P \ {q′}. By the properties above, we have that some state 〈q′, w′〉 is
reachable from 〈q, w〉 iff some marking s′′ ≥ s′ is reachable from s.

For the termination part of (b), if s is such that 〈q, w〉 ≈ s, then S has an
infinite computation from 〈q, w〉 iff NS has an infinite computation from s. For
the boundedness part, we modify NS by adding an auxiliary place and ensuring
that each transition increases the number of tokens at that place. ��

4 Decidability

The following two lemmas will be used in the proof of Theorem 13 below. The first
one, due to Valk and Jantzen, provides a sufficient condition for computability of
finite bases of upwards-closed sets of fixed-length tuples of natural numbers. The
second lemma shows that, for computing a pred-basis of the upward closure of a
marking of a data net, it suffices to consider markings up to a certain computable
length.

316 R. Lazić et al.

Lemma 11 ([21]). Suppose B is a finite set. A finite basis of an upwards-
closed set V ⊆ INB is computable iff it is decidable, given any v ∈ INB

ω , whether
V ∩ ↓{v} �= ∅.

For a transition system 〈S,→〉 and S′ ⊆ S, we write Pred(S′) for {s ∈ S :
∃s′ ∈ S′ · s → s′}. If transitions are labelled by t ∈ T , we write Pred t(S′) for
{s ∈ S : ∃s′ ∈ S′ · s t−→ s′}.

Lemma 12. Given a data net N , a transition t of N , and a marking s′ of N ,
a natural number L is computable, such that whenever s ∈ Pred t(↑{s′}) and
|s| > L, there exists s̄ ≤ s with s̄ ∈ Pred t(↑{s′}) and |s̄| ≤ L.

Proof. Suppose N = 〈P, T, α, F, G, H〉, and let

L = αt + |s′| + (αt + 1) × (2|P | − 1) × M

where M = max{s′(i)(p) : i ∈ [|s′|] ∧ p ∈ P}.
Consider s ∈ Pred t(↑{s′}) with |s| > L. For some s†, ι and s′′ ≥ s′, we have

s
t,s†,ι−−−→ s′′. Let s′′† = (s†− �Ft�

|s†|
ι)�Gt�

|s†|
ι + �Ht�

|s†|
ι . Since s′′ is the 0-contraction

of s′′† , there exists an increasing ι′ : [|s′|] → [|s†|] such that s′(i) ≤ s′′† (ι′(i)) for all
i ∈ [|s′|].

For each nonempty P+ ⊆ P , let

s
P+
† = {i ∈ [|s†|] : ∀p ∈ P · s†(i)(p) > 0 ⇔ p ∈ P+}

Since |s†| ≥ |s|, there exist 0 ≤ j ≤ αt and nonempty P+ ⊆ P such that
|IP+

j | > M , where I
P+
j = (�Reg (j,j+1)�

|s†|
ι \ Range(ι′)) ∩ s

P+
† .

Pick an index i1† ∈ I
P+
j of s†, and let i1 ∈ [|s|] be the corresponding index of

s. Let τ† be the increasing mapping [|s†| − 1] → [|s†|] with i1† �∈ Range(τ†), and
τ be the increasing mapping [|s| − 1] → [|s|] with i1 �∈ Range(τ). Then let s1

†
(resp., s1) be obtained from s† (resp., s) by removing the entry i1† (resp., i1),

ι1 = τ−1
† ◦ ι, and s′′†

1 = (s1
† − �Ft�

|s1
†|

ι1)�Gt�
|s1

†|
ι1 + �Ht�

|s1
†|

ι1 . By the definition of I
P+
j

and |IP+
j | > M , we have that s′′†

1(i)(p) ≥ M whenever s′′†
1(i)(p) �= s′′† (τ†(i))(p).

Hence, s′′†
1 ≥ s′, so s1 ∈ Pred t(↑{s′}).

By repeating the above, we obtain s ≥ s1 ≥ s2 ≥ · · · s|s|−L ∈ Pred t(↑{s′})
such that |sk| = |s| − k for all k. Setting s̄ = s|s|−L completes the proof. ��

Theorem 13. (a) Coverability and termination for data nets are decidable.
(b) Boundedness for transfer data nets is decidable.

Proof. Suppose N = 〈P, T, α, F, G, H〉 is a data net. By Propositions 2, 3 and 7,
we have that the transition system of N is finitely-branching and well-structured
with strong compatibility, and also with strict compatibility if N is transfer
(using the terminology of [18]). Moreover, ≤ between markings of N is a decid-
able partial ordering, and Succ(s) = {s′ : s → s′} is computable for markings

Nets with Tokens Which Carry Data 317

s. Hence, termination for data nets and boundedness for transfer data nets are
decidable by [18, Theorems 4.6 and 4.11].

To establish decidability of coverability by [18, Theorem 3.6], it suffices to
show that, given any t ∈ T and a marking s′, a finite basis of Pred t(↑{s′}) is
computable. (By Proposition 7 (a), Pred t(↑{s′}) is upwards-closed).

First, we compute L as in Lemma 12. For any 0 ≤ l ≤ L, increasing η : [l] →
[l†] and increasing ι : [αt] → [l†] such that [l†] = Range(η) ∪Range(ι), let

Pred l
t,η,ι(↑{s′}) = {s : l = |s| ∧ ∃s′′ ≥ s′ · s t,η,ι−−−→ s′′}

where s
t,η,ι−−−→ s′′ means that s

t,s†,ι−−−→ s′′ for some s† such that Range(η) = {j :
s†(j) �= 0} (necessarily, l† = |s†|). From the definition of transition firing, we have

that s
t,s†,ι−−−→ s′′ iff s† ≥ �Ft�

l†
ι and s′′ is the 0-contraction of (s†− �Ft�

l†
ι)�Gt�

l†
ι +

�Ht�
l†
ι . Hence, each Pred l

t,η,ι(↑{s′}) is an upwards-closed subset of INP×[l]. By
Lemma 12, it remains to compute a finite basis of each Pred l

t,η,ι(↑{s′}).
Suppose that l, η and ι are as above. Given any s ∈ INP×[l]

ω , we have as in
[6] that Pred l

t,η,ι(↑{s′}) ∩ ↓{s} �= ∅ iff s† ≥ �Ft�
l†
ι and s′′ ≥ s′, where s† is the

0-expansion of s such that l† = |s†| and Range(η) = {j : s†(j) �= 0}, s′′ is
the 0-contraction of (s†− �Ft�

l†
ι)�Gt�

l†
ι + �Ht�

l†
ι , and the required operations are

extended to ω by taking limits: ω ≥ n, ω + n = n + ω = ω + ω = ω, ω − n = ω,
0 × ω = 0, and n × ω = ω for n > 0. Therefore, by Lemma 11, a finite basis of
Pred l

t,η,ι(↑{s′}) is computable. ��

5 Hardness

Theorem 14. Coverability, termination and boundedness for Petri data nets
are not primitive recursive.

Proof. As shown in [7], location reachability and termination for lossy channel
systems are not primitive recursive. It remains to apply Proposition 10. ��

Theorem 15. Coverability, termination and boundedness for unordered Petri
data nets are not elementary.

Proof. For n ∈ IN, the tetration operation a ⇑ n is defined by a ⇑ 0 = 1 and
a ⇑ (n + 1) = aa⇑n.
The non-elementariness of the three verification problems follows from showing
that, given a deterministic machine M of size n with finite control and two
2 ⇑ n-bounded counters, an unordered Petri data net NM which simulates M
is constructible in logarithmic space. A counter is m-bounded iff it can have
values in {0, . . . , m − 1}, i.e., it cannot be incremented beyond the maximum
value m − 1. The following counter operations may be used in M: increment,
decrement, reset, iszero and ismax.

It will be defined below when a marking of NM represents a configuration
(i.e., state) of M. Let us call such markings “clean”. We write s →√ s′ (resp.,

318 R. Lazić et al.

s →× s′) iff s → s′ and s′ is clean (resp., not clean). Hence, s →∗
×→√ s′ means

that s′ is clean and reachable from s by a nonempty sequence of transitions in
which every intermediate marking is not clean, and s �→ω× means that there does
not exist an infinite sequence of transitions from s in which no intermediate
marking is clean. M will be simulated in the following sense by NM from a
certain initial marking sI , where cI is the initial configuration of M:

– we have sI �→ω
× and:

• there exists sI →∗
×→√ s′ such that cI is represented by s′;

• for all sI →∗×→√ s′, cI is represented by s′;
– whenever c is represented by s, we have s �→ω

× and:
• if c has a successor c′, there exists s →∗×→√ s′ with c′ represented by s′;
• for all s →∗

×→√ s′, c has a successor c′ which is represented by s′.

That M halts (i.e. reaches a halting control state from cI) will therefore be
equivalent to a simple coverability question from sI , and to termination from
sI . After extending NM by a place whose number of tokens increases with each
transition, that M halts becomes equivalent to boundedness from sI .

Each clean marking s of NM will represent a valuation v of 3n counters Ck,
C′

k and C′′
k for k ∈ [n]. Cn and C′

n are the two counters of M, and for each
k ∈ [n], Ck, C′

k and C′′
k are 2 ⇑ k-bounded. (Counter C′′

n will not be used, so
it can be omitted.) NM will have places 0D, 1D, scratchD, lockD, checkedD

and uncheckedD for each D ∈ {Ck, C′
k, C′′

k : k ∈ [n]}, as well as a number
(polynomial in n) of places for encoding the control of M and for control of
NM. A valuation v is represented by s as follows:

– for each k ∈ [n] and D ∈ {Ck, C′
k, C′′

k }, places scratchD, lockD and checkedD

are empty, and uncheckedD contains exactly 2 ⇑ (k − 1) tokens and they
carry mutually distinct data;

– for each k ∈ [n], D ∈ {Ck, C′
k, C′′

k } and i ∈ [2 ⇑ (k − 1)], if the i-th bit
of v(D) is b ∈ {0, 1}, then for some datum d carried by a token at place
uncheckedD, the number of tokens at bD which carry d is i, and the number
of tokens at (1 − b)D which carry d is 0;

– for each k ∈ [n] and D ∈ {Ck, C′
k, C′′

k }, each datum carried by a token at 0D

or 1D is carried by some token at uncheckedD.

Counters C1, C′
1 and C′′

1 are 2-bounded, so operations on them are trivial
to simulate. For each k < n, counter operations on Ck+1, C′

k+1 and C′′
k+1 are

simulated using operations on Ck, C′
k and C′′

k . The following shows how to
implement iszero(D), where D ∈ {Ck+1, C

′
k+1, C

′′
k+1}. The other four counter

operations are implemented similarly.

for Ck := 0 to (2 ⇑ k) − 1 do
{ guess a datum d and move a token carrying d from uncheckedD to lockD;

for C′
k := 0 to Ck do { move a token carrying d from 0D to scratchD };

for C′
k := 0 to Ck do { move a token carrying d from scratchD to 0D };

move the token from lockD to checkedD };
for Ck := 0 to (2 ⇑ k) − 1 do
{ move a token from checkedD to uncheckedD }

Nets with Tokens Which Carry Data 319

Observe that iszero(D) can execute completely iff, for each i ∈ [2 ⇑ k], the datum
d guessed in the i-th iteration of the outer loop represents the i-th bit of v(D)
and that bit is 0. Place lockD is used for keeping the datum d during each such
iteration, and it is implicitly employed within the two inner loops.

It remains to implement routines setup(D) for k ∈ [n] and D ∈ {Ck, C′
k, C′′

k },
which start from empty 0D, 1D, scratchD, lockD, checkedD and uncheckedD, and
set up 0D and uncheckedD to represent D having value 0. Setting up C1, C′

1 and
C′′

1 is trivial. To implement setup(D) for k < n and D ∈ {Ck+1, C
′
k+1, C

′′
k+1},

we use Ck, C′
k and C′′

k which were set up previously. The implementation is
similar to that of iszero(D), except that all three of Ck, C′

k and C′′
k are used,

since whenever a datum d is picked to be the ith datum at uncheckedD for some
i ∈ [2 ⇑ k], two nested loops are employed to ensure that d is distinct from each
of i − 1 data which are carried by tokens already at uncheckedD. ��

6 Concluding Remarks

We have answered questions (1) and (2) posed in Section 1. As far as we are
aware, Section 5 contains the first nontrivial lower bounds on complexity of
decidable problems for extensions of Petri nets by infinite data domains.

The results obtained and their proofs show that data nets are a succinct
unifying formalism which is close to the underlying semantic structures, and
thus a useful platform for theoretical investigations.

The proof of Theorem 13 does not provide precise upper bounds on complexity.
It should be investigated whether upper bounds which match the lower bounds in
the proofs of Theorems 14 and 15 are obtainable. In particular, are coverability,
termination and boundedness for unordered Petri data nets primitive recursive?

Let us say that a data net is l, m-safe iff each place other than some l places never
contains more than m tokens. It is not difficult to tighten the proofs of Theorems 14
and 15 to obtain that coverability, termination and boundedness are not primitive
recursive for 1, 1-safe Petri data nets, and not elementary for 2, 1-safe unordered
Petri data nets. That leaves open whether we have non-elementarity for 1, 1-safe
unordered Petri data nets. That class suffices for expressing polymorphic systems
with one array of type 〈X, =〉 → 〈Y, =〉 without whole-array operations [16,17].

We are grateful to Alain Finkel for a helpful discussion.

References

1. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985)
2. Girault, C., Valk, R. (eds.): Petri Nets for Systems Engineering. Springer, Heidel-

berg (2003)
3. Esparza, J., Nielsen, M.: Decidability issues for Petri nets – a survey. Bull.

EATCS 52, 244–262 (1994)
4. Lipton, R.J.: The reachability problem requires exponential space. Technical Re-

port 62, Yale University (1976)
5. Rackoff, C.: The covering and boundedness problems for vector addition systems.

Theor. Comput. Sci. 6, 223–231 (1978)

320 R. Lazić et al.

6. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Inf. Comput. 195(1–2), 1–29 (2004)

7. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Proc. Lett. 83(5), 251–261 (2002)

8. Odifreddi, P.: Classical Recursion Theory II. Elsevier, Amsterdam (1999)
9. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-

decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

10. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

11. Delzanno, G.: Constraint multiset rewriting. Technical Report DISI-TR-05-08, Uni-
versità di Genova Extends [22–24] (2005)

12. Abdulla, P.A., Delzanno, G.: Constrained multiset rewriting. In: AVIS. ENTCS
2006 (to appear 2006)

13. Rosa Velardo, F., de Frutos Escrig, D., Marroqúın Alonso, O.: On the expressiveness
of mobile synchronizing Petri nets. In: SECCO. ENTCS 2005 (to appear 2005)

14. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1), 241–264 (2003)

15. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

16. Lazić, R., Newcomb, T.C., Roscoe, A.W.: Polymorphic systems with arrays, 2-
counter machines and multiset rewriting. In: Infinity ’04, ENTCS, vol. 138, pp.
61–86 (2005)

17. Lazić, R.: Decidability of reachability for polymorphic systems with arrays: A com-
plete classification. In: Infinity ’04, ENTCS, vol. 138, pp. 3–19 (2005)

18. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

19. Meyer, A.R.: Weak monadic second-order theory of successor is not elementary-
recursive. In: Logic colloquium ’72–73. Lect. Not. Math, vol. 453, pp. 132–154.
Springer, Heidelberg (1975)

20. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. (3) 2(7), 326–336 (1952)

21. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability
problems in Petri nets. Acta Inf. 21, 643–674 (1985)

22. Delzanno, G.: An assertional language for systems parametric in several dimen-
sions. In: VEPAS, ENTCS, vol. 50 (2001)

23. Bozzano, M., Delzanno, G.: Beyond parameterized verification. In: Katoen, J.-P.,
Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 221–235.
Springer, Heidelberg (2002)

24. Bozzano, M., Delzanno, G.: Automatic verification of invalidation-based protocols.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 295–308.
Springer, Heidelberg (2002)

Operating Guidelines for Finite-State Services�

Niels Lohmann1, Peter Massuthe1, and Karsten Wolf2

1 Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{nlohmann,massuthe}@informatik.hu-berlin.de
2 Universität Rostock, Institut für Informatik,

18051 Rostock, Germany
karsten.wolf@informatik.uni-rostock.de

Abstract. We study services modeled as open workflow nets (oWFN)
and describe their behavior as service automata. Based on arbitrary
finite-state service automata, we introduce the concept of an operating
guideline, generalizing the work of [1,2] which was restricted to acyclic
services.

An operating guideline gives complete information about how to prop-
erly interact (in this paper: deadlock-freely and with limited communi-
cation) with an oWFN N . It can be executed, thus forming a properly
interacting partner of N , or it can be used to support service discovery.

An operating guideline for N is a particular service automaton S
that is enriched with Boolean annotations. S interacts properly with
the service automaton Prov , representing the behavior of N , and is able
to simulate every other service that interacts properly with Prov . The
attached annotations give complete information about whether or not a
simulated service interacts properly with Prov , too.

1 Introduction

In real life, we routinely use complicated electronic devices such as digital cam-
eras, alarm clocks, mobile phones, CD players, vending machines, etc. Using such
a device involves complex interaction, where information from the user to the
device flows via pushing buttons or spinning wheels while information is passed
from the device to the user via displays or blinking LEDs.

In some cases, we do not even abstractly know what is going on inside the de-
vice. Nevertheless, we are typically able to participate in the interaction. Besides
ergonomic design, help from experienced friends, or trial-and-error exploration,
it is often the user instructions which help us to figure out what to do at which
stage. The typical features of user instructions (at least good ones) are:

– they are shipped with, or pinned to, the device,
– they are operational, that is, a user can execute them step by step,
– they are complete, that is, they cover the full intended functionality of the

device,
� Partially funded by the BMBF project “Tools4BPEL”.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 321–341, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

322 N. Lohmann, P. Massuthe, and K. Wolf

– they use only terms related to the interface (buttons, displays, etc.) without
trying to explain the internal processes.

In the virtual world, services [3] replace the devices of the real world. Still,
using a service may require involved interaction with the user (which can be
another service, like in service-oriented computing [4]). With the concept of an
operating guideline, we are going to propose an artifact that, in the virtual world,
plays the role of user instructions in the real world. In particular, we will show
that it exhibits the characteristics listed above. Moreover, we show that the
operating guideline for a service can be automatically computed and be used for
automatically checking proper interaction between services.

In contrast, a public view of a service (a condensed version of the service
itself) has been proposed as another artifact for explaining the interaction with
the service [5,6]. Public views, however, do neither match the second nor the
fourth item of the list above.

Our approach is based on the behavior of open workflow nets (oWFN) [2].
oWFN are a class of Petri nets which has been proposed for modeling services.
oWFN generalize and extend the classical workflow nets [7]. The most impor-
tant extension is an interface for asynchronous message passing. This interface
allows us to compose services to larger units. Suitability of oWFN for modeling
services has been proven through an implemented translation from the indus-
trial service description language WS-BPEL [8] into oWFN [9,10]. While there
are many partial formalizations for WS-BPEL, the translation to oWFN is fea-
ture complete. Other feature complete formalizations are based on abstract state
machines [11,12].

We describe the behavior of an oWFN with the help of a service automa-
ton. A service automaton basically records the internal states of an oWFN. The
transitions of the automaton are labeled with information about message pass-
ing through the mentioned interface. Service automata form the basis of the
proposed operating guidelines.

Operating guidelines have so far been introduced for acyclic services [1,2].
In this paper, we extend our previous results and introduce the concept of an
operating guideline for an arbitrary finite-state service N . The operating guide-
line of N is a distinguished service automaton S that properly interacts with N ,
together with Boolean annotations at each state of S. The annotations serve as
a characterization of all services that properly interact with N .

For this paper, we assume that “proper interaction” between services N and
N ′ means deadlock freedom of the system composed of N and N ′ and limited
communication, that is, k-boundedness of all message buffers, for some given k.
We are well aware that there are other possibilities for defining “proper interac-
tion”. Nevertheless, deadlock freedom and limited communication will certainly
be part of any such definition, so this paper can be seen as a step towards a
more sophisticated setting.

The rest of the paper is organized as follows. In Sect. 2, we introduce open
workflow nets, service automata, and their relation. Sections 3 to 5 are devoted
to the construction of an operating guideline and its use. These sections build

Operating Guidelines for Finite-State Services 323

entirely upon the concept of service automata. We start by defining, in Sect. 3, a
concept that we call situations. This concept is fundamental to our approach. It
describes the interaction of a given service automaton Prov with a partner Req
from the point of view of Req only. With the help of situations, we are able to
characterize deadlock freedom of the interaction in a way that is suitable for sub-
sequent considerations. The characterization is translated into Boolean formulas
which are used as annotations in the operating guideline later on. The calcula-
tion and justification of the canonical partner S mentioned above is subject of
Sect. 4. In Sect. 5, finally, we formalize the concept of an operating guideline
and show how it can be used for identifying other partners that communicate
deadlock-freely with Prov . Section 6 discusses issues of an implementation and
presents experimental results. Finally, we summarize the results of the paper
and sketch our plans for further work.

2 Models for Services

2.1 Open Workflow Nets (oWFN)

The introduction of open workflow nets [2] was inspired by the view of a service
as a workflow plus an interface. Consequently, oWFN extend workflow nets [7]
with an interface for asynchronous message passing. oWFN further drop some
syntactic restrictions present in workflow nets, for instance the unique start
and end places. These restrictions would complicate service composition without
sufficient justification by improved analysis possibilities.

Definition 1 (Open workflow net). An open workflow net consists of:

– an ordinary place/transition net [P, T, F, m0]; together with
– two disjoint sets Pi, Po ⊆ P , called input and output places, such that F ∩

(Po × T) = ∅ and F ∩ (T × Pi) = ∅. We assume m0(p) = 0 for p ∈ Pi ∪ Po;
– a set Ω of markings, called final markings. For mf ∈ Ω and p ∈ Pi ∪Po, we

assume mf (p) = 0. We further require that a marking in mf does not enable
a transition.

Pi represents channels for incoming messages, Po channels for outgoing messages.
The required restrictions for arcs guarantee that sent messages cannot be “un-
sent” and received messages cannot be “unreceived”. Our set of final markings
replaces the single final place of workflow nets. Any marking may be final as long
as it does not enable a transition. That is, a service does not perform actions in
a final marking. A service may, however, be designed such that it resumes work
when it receives a message while residing in a final marking.

A major intention behind services is their composition to larger units. Corre-
spondingly, there is a concept of composition for oWFN. oWFN are composed
by merging interface places. This can, in general, be done for arbitrarily many
oWFN. For the purpose of this paper, it is sufficient to understand the compo-
sition of just two oWFN.

324 N. Lohmann, P. Massuthe, and K. Wolf

q

e

C

T

t

c

E

(a) A vending machine oWFN NV .

q

e

C

T

t

c

E

(b) A partner oWFN of NV .

Fig. 1. The oWFN NV (a) models a vending machine. In every iteration, it first expects
a coin to be inserted (message e), and a choice for a coffee or a tea to be made (c or t).
It returns either the coin (E), modeling a failed check for validity, or the corresponding
beverage (C or T). The machine can be shut down by sending q. The oWFN (b) models
a potential partner (user) of the vending machine.

Definition 2 (Partner oWFN). Two oWFN N and N ′ are partners if Pi =
P ′

o and Po = P ′
i . All other ingredients of N and N ′ are assumed to be disjoint.

If two oWFN are partners, they can be composed. Composition consists mainly
of merging the interface places.

Definition 3 (Composition of oWFN). Let N and N ′ be partner oWFN.
The composition m ⊕ m′ : P ∪ P ′ → IN of two markings m of N and m′ of N ′

is defined by (m ⊕ m′)(p) = m(p), if p ∈ P and (m ⊕ m′)(p) = m′(p), if p ∈ P ′.
The composition of N and N ′ is the oWFN N ⊕ N ′ defined as follows:

– PN⊕N ′ = P ∪ P ′, TN⊕N ′ = T ∪ T ′, FN⊕N ′ = F ∪ F ′, m0N⊕N′ = m0 ⊕ m′
0;

– PiN⊕N′ = PoN⊕N′ = ∅;
– ΩN⊕N ′ = {m ⊕ m′ | m ∈ Ω, m′ ∈ Ω′}.

The composition of markings is well-defined for partners, as the common places
of N and N ′ do not carry tokens. The composition of partners leads to an oWFN
with an empty interface. As an example, Fig. 1 shows two partner oWFN.

Only for oWFN with empty interface it is reasonable to consider their reach-
ability graph (occurrence graph), as an interface suggests some interaction with
a (possibly unknown) environment. We rely on the usual concept of reacha-
bility graph. For studying a service in isolation, we consider the inner of an
(uncomposed) oWFN. The inner of N is an oWFN with empty interface, so its
reachability graph may be considered.

Operating Guidelines for Finite-State Services 325

Definition 4 (Inner). Let N be an oWFN. The inner of N , denoted inner(N),
is obtained from N by removing all places in Pi and Po and their adjacent arcs.
Initial and final markings are adjusted accordingly.

This leads to the following definition of boundedness of arbitrary oWFN.

Definition 5 (Boundedness of oWFN). An oWFN N is bounded if the
reachability graph of inner(N) is finite.

Boundedness, as defined above, concerns the inner of an oWFN. The composi-
tion of two bounded oWFN, however, can still be unbounded since tokens may
be accumulated in the merged interface places. Thus, we have to introduce an
additional concept of boundedness of the interface places.

Definition 6 (Limited communication of oWFN). Two partner oWFN N
and N ′ have k-limited communication (for some k ∈ IN) if m(p) ≤ k for all
markings m reachable in N ⊕ N ′ and all places p ∈ Pi ∪ P ′

i .

If two bounded oWFN N and N ′ are k-limited partners, then N⊕N ′ is bounded,
too.

2.2 Service Automata

Open workflow net models as introduced so far can be obtained from practical
specifications of services. There is, for instance, a feature complete translation
from WS-BPEL to oWFN [9,10].

In this section we introduce service automata [1], which serve as the basis
of the calculation of operating guidelines. A state of a service automaton is
comparable to a marking of the inner of an oWFN. Communication activities
are modeled as annotations to the transitions of a service automaton.

Service automata differ from standard I/O-automata [13]. They communicate
asynchronously rather than synchronously, and they do not require explicit mod-
eling of the state of the message channels. This approach leads to smaller and
thus more readable automata. Other versions of automata models for services
were proposed by [14] and [3], for instance. [14] model communication as occur-
rences of labels with no explicit representation of pending messages, whereas [3]
use bounded and unbounded queues to store such messages.

Unlike an oWFN, a single service automaton has no explicit concept of mes-
sage channels. The channels are taken care of in the definition of composition: a
state of a composed service automaton consists of a state of each participating
service automaton and a state of the message bag of currently pending messages.

We fix a finite set C, the elements of which we call channels. They take the
role of the interface places in oWFN. We assume τ /∈ C (the symbol τ is reserved
for an internal move). With bags(C), we denote the set of all multisets over C,
that is, all mappings m : C → IN. A multiset over C models a state of the
message bag, that is, it represents, for each channel, the number of pending
messages. [] denotes the empty multiset ([](x) = 0 for all x), [x] a singleton

326 N. Lohmann, P. Massuthe, and K. Wolf

multiset (x = 1, [x](y) = 0 for y
= x), m1 + m2 denotes the sum of two
multisets ((m1 +m2)(x) = m1(x)+m2(x) for all x), and m1 −m2 the difference
((m1 − m2)(x) = max(m1(x) − m2(x), 0) for all x). bagsk(C) denotes the set
of all those multisets m over C where m(x) ≤ k for all x. bagsk(C) is used for
modeling the concept of limited communication.

Definition 7 (Service automata). A service automaton A = [Q, I, O, δ, q0, F]
consists of a set Q of states, a set I ⊆ C of input channels, a set O ⊆ C,
I ∩ O = ∅ of output channels, a nondeterministic transition relation δ ⊆ Q ×
(I ∪ O ∪ {τ}) × Q, an initial state q0 ∈ Q, and a set of final states F ⊆ Q such
that q ∈ F and [q, x, q′] ∈ δ implies x ∈ I. A is finite if its set of states is finite.

Throughout this paper, we use the following notations for service automata.
With Prov (from service prov ider), we denote an arbitrary service automaton
for which we are going to calculate its operating guideline. With Req (from
service requester), we denote an arbitrary service automaton in its role as a
communication partner of Prov . S is used for the particular partner of Prov that
forms the core of the operating guideline for Prov . Service automata without an
assigned role are denoted A. We use indices to distinguish the constituents of
different service automata. In figures, we represent a channel x ∈ I with ?x and
a channel y ∈ O with !y. Figure 2 shows four examples of service automata.

v0

v1

v2 v3

v4

?e

!C

?c ?t

!T

?q

!E !E

(a) V

w0

w1

w2 w3

w4 w5

!e

!c

!t

?C

?E ?T?C !q

τ

(b) W

x0

x1

x2

x3 x4

!e

!t

?T

!q

(c) X

y7 y6

y5y4

y3 y2

y1y0
!e

!e

?C

?T
?E

?E?C ?T

!c

!t

!q

(d) Y

Fig. 2. Examples of service automata. The service automaton V models our vending
machine (see Fig. 1(a)). The service automata W , X, and Y model partners of V . Final
states are depicted by double circles.

Definition 8 (Partner automata). Two service automata A and B are part-
ner automata if IA = OB and IB = OA.

As in the case of oWFN, partner automata can be composed.

Definition 9 (Composition of service automata). For partner automata
A and B, their composition is defined as the service automaton A ⊕ B =
[QA⊕B, IA⊕B, OA⊕B, δA⊕B, q0A⊕B , FA⊕B] defined as follows:

QA⊕B = QA×QB×bags(C), IA⊕B = OA⊕B = ∅, q0A⊕B = [q0A , q0B , []], FA⊕B =
FA × FB × {[]}. The transition relation δA⊕B contains the elements

Operating Guidelines for Finite-State Services 327

– [[qA, qB, m], τ, [q′A, qB, m]] iff [qA, τ, q′A] ∈ δA (internal move in A),
– [[qA, qB, m], τ, [qA, q′B, m]] iff [qB, τ, q′B] ∈ δB (internal move in B),
– [[qA, qB, m], τ, [q′A, qB, m − [x]]] iff [qA, x, q′A] ∈ δA, x ∈ IA, and m(x) > 0

(receive by A),
– [[qA, qB, m], τ, [qA, q′B, m − [x]]] iff [qB, x, q′B] ∈ δB, x ∈ IB , and m(x) > 0

(receive by B),
– [[qA, qB, m], τ, [q′A, qB, m + [x]]] iff [qA, x, q′A] ∈ δA and x ∈ OA (send by A),
– [[qA, qB, m], τ, [qA, q′B, m + [x]]] iff [qB , x, q′B] ∈ δB and x ∈ OB (send by B),

and no other elements.

Figure 3 depicts the composition V ⊕ W of the services V and W of Fig. 2.

[v0,w0,[]] [v0,w1,[e]]

[v1,w1,[]]

[v0,w2,[et]]

[v1,w2,[t]] [v3,w2,[]]

[v0,w2,[ce]] [v1,w2,[c]] [v2,w2,[]]

[v0,w2,[T]]

[v0,w2,[E])

[v0,w2,[C]]

[v0,w4,[]]
τ

τ

τ
τ

τ
τ

τ

τ τ τ

τ

τ

τ

τ

τ

τ

τ

τ

Fig. 3. The composed system V ⊕W of the service automata V and W of Fig. 2. Only
states reachable from the initial state are depicted. Note that V ⊕W has no (reachable)
final states. Nevertheless, V ⊕ W is deadlock-free, which is central in this paper.

Definition 10 (Wait state, deadlock). For an automaton A, a state q is
called a wait state iff [q, x, q′] ∈ δ implies x ∈ I, that is, q cannot be left without
help from the environment. For a wait state q, let wait(q) = {x ∈ I | ∃q′ ∈ Q :
[q, x, q′] ∈ δ}. A wait state q is called deadlock iff q /∈ F and wait(q) = ∅.

A wait state cannot be left without an incoming message. wait(q) is the set
of all incoming messages that would help to leave q. A deadlock cannot be
left, independently from incoming messages. The definition of service automata
requires final states to be wait states which is reasonable.

Examples for wait states in Fig. 2 are v0 with wait(v0) = {e, q}, w2 with
wait(w2) = {C, E, T}, or x4 with wait(x4) = ∅. An example for a deadlock is the
state [v0, x2, [E]] of the (not depicted) composition of the services V and X of
Fig. 2 that can be reached from the initial state [v0, x0, []] of V ⊕X by executing
first the transitions send e and send t of service X , followed by the transitions
receive e, receive t, and send E of service V .

For service automata, limited communication can be formalized as follows.

Definition 11 (Limited communication of service automata). Let A and
B be two partner automata and A ⊕ B their composition. Then, A is called a
k-limited communication partner of B iff QA⊕B ⊆ QA × QB × bagsk(C).

328 N. Lohmann, P. Massuthe, and K. Wolf

Throughout the paper, we assume k to be given and fixed. The value of k may
be chosen either by considerations on the physical message channels, by a static
analysis that delivers a “sufficiently high” value, or just randomly. If two finite
service automata Prov and Req are k-limited partners, then Prov ⊕ Req is finite
as well. In Fig. 2, W and X are 1-limited partners of V . Y is no 1-limited
partner since V ⊕ Y contains, for instance, the state [v0, y2, [ee]]. Y is, however,
a 2-limited partner of V .

Every k-limited communication partner is a (k + 1)-limited communication
partner as well. For every value of k, there are services which have a deadlock-free
k-limited communication partner but no deadlock-free (k −1)-limited communi-
cation partner. There are even services which have deadlock-free communication
partners but not a k-limited one for any k. As an example, consider the service
in Fig. 5(a): A communication partner would have a single (initial and final)
state s in which it receives a and loops back to s.

2.3 Translation from oWFN to Service Automata

While there exist direct translations from WS-BPEL to automata and closely re-
lated formalisms [15,16,17] we propose to generate service automata from oWFN.
This way, we can directly inherit the already mentioned feature completeness of
the Petri net translations of WS-BPEL [9,10].

Comparing the behavior of oWFN and service automata, the main difference is
the capability of oWFN to send and receive several messages in a single transition
occurrence. In order to keep matters simple, we give a direct translation from
an oWFN N to a service automaton only for the case that every transition of N
is connected to at most one place in Pi ∪ Po. In fact, this assumption holds for
all oWFN stemming from WS-BPEL specifications as a BPEL activity accesses
at most one message channel. On the other hand, an arbitrary oWFN can be
transformed in various ways to match the requirement. We sketch one possible
transformation in Fig. 4.

Given the restriction that a transition of N accesses at most one interface
place, the translation from oWFN to service automata is straightforward and
formalized through a mapping oWFNtoService from oWFN to service automata.

Definition 12 (Mapping oWFN to automata). Let N be an oWFN where
every transition accesses at most one interface place. Then oWFNtoService(N)
is the service automaton A with the following constituents:
– QA is the set of reachable markings of inner(N);
– IA = Pi, OA = Po;
– [m, a, m′] ∈ δA iff there is a transition t of N such that [m, t, m′] is a tran-

sition in the reachability graph of inner(N) and either there is an interface
place p connected to t and a = p, or t is not connected to any interface place
and a = τ ;

– q0A is the initial state of inner(N), FA is the set of final states of inner(N).

The translation is justified through the following observation that can be easily
verified by induction on the transition relations.

Operating Guidelines for Finite-State Services 329

(a)

1

1

1

1

1

(b)

Fig. 4. In the oWFN (a), transitions are connected to several interface places. This
can be circumvented by wrapping the interface with an additional internal buffer for
each message channel that has capacity one (annotation to the places), cf. (b). This
way, the essential behavior of the oWFN as well as finiteness of the state space are
preserved.

Proposition 1. For any two oWFN N and N ′ where every transition is con-
nected to at most one interface place, the reachability graph of N ⊕N ′ is isomor-
phic to the graph defined by the states and transitions of oWFNtoService(N) ⊕
oWFNtoService(N ′).

In the remainder of this article, we study service automata Prov and Req where
Prov , Req, and Prov ⊕Req are all finite. This restriction implements the limited
communication property introduced earlier. We return to oWFN in Sect. 6 where
we discuss our implementation and report experimental results.

3 A Characterization of Deadlocks

In this section, we introduce concepts that help us to understand the coupling
between two service automata Prov and Req from the point of view of Req.
Therefore, we introduce the concept of situations which will allow us to charac-
terize a deadlock in Prov ⊕ Req by considering Req only.

Definition 13 (K, Situation). Let Prov and Req be partners. Then, let K :
QReq → 2QProv×bags(C) be defined by K(qReq) = {[qProv , m] | [qProv , qReq , m] is
reachable from the initial state in QProv⊕Req}. The elements of 2QProv×bags(C)

are called situations.

A situation comprises all parts of a state of Prov ⊕ Req beyond the state of Req
itself. It can thus be handled independently of Req. K(qReq) can be interpreted
as the knowledge that Req has about the possible states of Prov and the message
bag, that is, the situations [qProv , m] that can occur with qReq in Prov ⊕ Req.

We give some examples for values of K, referring to Fig. 2. We consider W as
a partner of V . Then Fig. 3 tells us that K(w0) = {[v0, []]}, K(w1) = {[v0, [e]],
[v1, []]}, K(w2) = {[v0, [ce]], [v0, [et]], [v1, [c]], [v1, [t]], [v2, []], [v3, []], [v0, [C]],
[v0, [E]], [v0, [T]]}, K(w3) = ∅, and K(w4) = {[v0, []]}.

330 N. Lohmann, P. Massuthe, and K. Wolf

Within a set M of situations, we distinguish transient and stable situations.
A situation is transient in M if a move of Prov in that situation leads to another
situation also contained in M . Otherwise it is stable.

Definition 14 (Transient, stable situation). Let M be a set of situations.
[qProv , m] is transient in M iff there is an [qProv , x, q′Prov] ∈ δProv such that:
– x = τ and [q′Prov , m] ∈ M , or
– x ∈ IProv , m(x) > 0, and [q′Prov , m − [x]] ∈ M , or
– x ∈ OProv and [q′Prov , m + [x]] ∈ M .

Otherwise, [qProv , m] is stable in M .

A service cannot leave a stable situation without interaction with the environ-
ment. For example, the situation [v0, [e]] is transient in the set of situations
K(w1) (cf. Fig. 3). In contrast, the situation [v1, []] is stable in K(w1).

A deadlock in the composed system Prov ⊕Req — seen from the point of view
of Req only— now reads as follows.

Lemma 1. [qProv , qReq , m] is a deadlock of Prov ⊕ Req if and only if all of the
following conditions hold:
– qProv /∈ FProv , or qReq /∈ FReq, or m
= [];
– qReq is a wait state of Req;
– [qProv , m] is stable in K(qReq) and m(x) = 0 for all x ∈ wait(qReq).

Proof. (→) Let [qProv , qReq , m] be a deadlock. Then the first item is true by
definition of deadlocks. The second item must be true since otherwise Req has
a move. [qProv , m] must be stable since otherwise Prov has a move. For x ∈
wait(qReq), we can conclude m(x) = 0 since otherwise Req has a move.

(←) Assume, the three conditions hold. By the first item, the considered state
is not a final state of Prov ⊕ Req. Prov does not have a move since [qProv , m] is
stable. Req does not have a move since internal and send moves are excluded by
the second item, and receive moves are excluded by the last item. �

Consider again the example deadlock [v0, x2, [E]] in V ⊕ X of the services of
Fig. 2 and the three criteria of Lemma 1. Firstly, [E]
= []. Secondly, x2 is a
wait state of X with wait(x2) = {T}. Thirdly, K(x2) = {[v0, [et]], [v1, [t]], [v3, []],
[v0, [E]], [v0, [T]]} and [v0, [E]] is stable in K(x2) and [E](T) = 0. Hence, all criteria
hold and we can conclude that [v0, x2, [E]] is indeed a deadlock.

For a state [qProv , qReq , m], the three requirements of Lemma 1 can be easily
compiled into Boolean formulas φ1(qProv , m), φ2, and φ3(m) which express the
absence of deadlocks of the shape [·, qReq , ·] in Prov ⊕ Req. The formulas use
the set of propositions C ∪ {τ,final} (with final /∈ C). Propositions in C ∪
{τ} represent labels of transitions that leave qReq , whereas proposition final
represents the fact whether qReq ∈ FReq :

Definition 15 (Annotation, Req-assignment). Let Prov and Req be part-
ners. Then, for each qReq ∈ QReq, define the annotation φ(qReq) of qReq as the
Boolean formula over the propositions C ∪ {τ,final} as follows.

φ(qReq) =
∧

[qProv , m] stable in K(qReq)
(φ1(qProv , m) ∨ φ2 ∨ φ3(m))

Operating Guidelines for Finite-State Services 331

where

- φ1(qProv , m) =

{
final , if qProv ∈ FProv and m = [],
false, otherwise,

- φ2 = τ ∨
∨

x∈OReq
x,

- φ3(m) =
∨

x∈IReq ,m(x)>0 x.

The Req-assignment assReq(qReq) : C ∪{τ,final} → {true, false} assigns true to
a proposition x ∈ C ∪ {τ} iff there is a q′Req such that [qReq , x, q′Req] ∈ δReq and
true to the proposition final iff qReq ∈ FReq .

Since the formula φ(qReq) exactly reflects Lemma 1, we obtain:

Corollary 1. Prov ⊕ Req is deadlock-free if and only if, for all qReq ∈ QReq,
the value of φ(qReq) with the Req-assignment assReq(qReq) is true.

In Fig. 2, the annotation of state w1 of W would be τ ∨ e ∨ c ∨ t ∨ q, due
to the single stable situation [v1, []] ∈ K(w1). This formula is satisfied by the
W -assignment that assigns true to both c and t, and false to τ , e, and q in
state w1. The annotation of the state w2 is τ ∨ e ∨ c ∨ t ∨ q ∨ (C ∧ E ∧ T) since
K(w2) contains the three stable situations [v0, [C]], [v0, [E]], and [v0, [T]]. Since
the W -assignment assigns true to all of C, E, and T in state w2, it satisfies the
annotation. For state x2 of X , the annotation is τ ∨e∨c∨t∨q∨(T∧E). Since the
only transition leaving x2 is T, the X-assignment assigns false to all propositions
except T in state x2, and the annotation yields false . This corresponds to the
deadlock [v0, x2, [E]] in V ⊕ X .

4 A Canonical Partner

We are now ready to compute a canonical service automaton, called S, which
interacts properly with a given service Prov .

For any finite k-limited communication partner of a given (finite) service au-
tomaton Prov , all reachable situations are actually in 2QProv×bagsk(C) which is a
finite domain. For sets of situations, define the following operations.

Definition 16 (Closure). For a set M of situations, let the closure of M ,
denoted cl(M), be inductively defined as follows.
Base: M ⊆ cl(M);
Step: If [qProv , m] ∈ cl(M) and [qProv , x, q′Prov] ∈ δProv , then
– [q′Prov , m] ∈ cl(M), if x = τ ,
– [q′Prov , m + [x]] ∈ cl(M), if x ∈ OProv ,
– [q′Prov , m − [x]] ∈ cl(M), if x ∈ IProv and m(x) > 0.

It can be easily seen that cl(M) comprises those situations that can be reached
from a situation in M without interference from a partner. In Fig. 2 for example,
we obtain cl({[v0, [ce]]}) = {[v0, [ce]], [v1, [c]], [v2, []], [v0, [C]], [v0, [E]]}.

332 N. Lohmann, P. Massuthe, and K. Wolf

Definition 17 (Send-event, receive-event, internal-event)
Let M ⊆ QProv × bags(C). If x ∈ OProv , then the send-event x, send(M, x),
is defined as send(M, x) = {[q, m + [x]] | [q, m] ∈ M}. If x ∈ IProv , then
the receive-event x, receive(M, x), is defined as receive(M, x) = {[q, m − [x]] |
[q, m] ∈ M, m(x) > 0}. The internal-event τ , internal(M, τ), is defined as
internal(M, τ) = M . As the shape of an event is clear from IProv and OProv ,
we define the event x, event(M, x), as receive(M, x) if x ∈ IProv , send(M, x) if
x ∈ OProv , and internal(M, x) if x = τ .

A send-event models the effect that a message sent by Req has on a set of
situations M . A receive-event models the effect that a message received by Req
has on a set of situations M . Considering the service V of Fig. 2, we get, for
example, receive({[v0, [ce]], [v1, [c]], [v2, []], [v0, [C]], [v0, [E]]}, C) = {[v0, []]} and
send({[v0, [e]], [v1, []]}, c) = {[v0, [ce]], [v1, c]]}.

Now, the construction of S (Def. 18) bases on the following considerations.
A state of S is a set of situations. States and transitions are organized such
that, for all states q of S, K(q) = q, that is, every state of S is equal to the set
of situations it can occur with in the composition with Prov . The transitions
of S can be determined using the operations event and cl . The construction is
restricted to sets in 2QProv×bagsk(C). With this restriction, we already implement
the property of k-limited communication. Given the desired property K(q) = q
and the definition of K, the composed system cannot enter a state violating k-
limited communication. The other way round, any reachable state q where K(q)
is outside 2QProv×bagsk(C) would cause a violation of that property.

Starting with a service automaton S0 which contains all such states and transi-
tions, unfortunately, S0⊕Prov may contain deadlocks. However, these deadlocks
can be identified by annotating S0 and evaluating the annotations according to
Def. 15. Removing all states where the annotation evaluates to false yields a
new structure S1. Since it is possible that the initial state is among the removed
ones, S1 is not necessarily a service automaton, that is, it is not well-defined.
In that case, however, we are able to prove that Prov does not have correctly
interacting partners at all. By removing states, assignments of remaining states
can change their values. Thus, the removal procedure is iterated until either the
initial state is removed, or all annotations eventually evaluate to true. In the
latter case, the remaining service automaton is called S and, by construction of
the annotations, constitutes a partner that interacts properly with Prov .

Definition 18 (Canonical partner S). Let Prov be a service automaton and
assume a number k to be given. Define inductively a sequence of (not necessarily
well-defined) service automata Si = [Qi, Ii, Oi, δi, q0i, Fi] as follows.

Let Q0 = 2QProv×bagsk(C). Let, for all i, Ii = OProv , Oi = IProv , q0i =
cl({[q0Prov , []]}), [q, x, q′] ∈ δi iff q, q′ ∈ Qi and q′ = cl(event(q, x)), and Fi =
{q ∈ Qi | q is wait state of Si}. Let, for all i, Qi+1 = {q | q ∈ Qi, φ(q) evaluates
to true with assignment assSi(q)}.

Let S be equal to Si for the smallest i satisfying Si = Si+1.

Operating Guidelines for Finite-State Services 333

As the sequence {Si}i=0,1,... is monotonously decreasing, all objects of this defi-
nition are uniquely defined. The resulting S is a well-defined service automaton
if and only if q0S ∈ QS . In that case, S is in fact a k-limited deadlock-freely
interacting partner of Prov .

As an example, the partner service S0 for the service V of Fig. 2 initially
consists of 21 (from q0S0

reachable) states from which 9 states are removed
during the computation of the canonical partner S for V . The resulting service
automaton S can be found as the underlying graph of Fig. 7 in Sect. 5.

With the next few results, we further justify the construction.

Lemma 2. If cl([q0Prov , []])
⊆ QProv × bagsk(C), then Prov does not have k-
limited communication partners for the number k used in the construction.

Proof. As cl([q0Prov , []]) is the set of situations that can be reached from the
initial state without interference of any partner Req, k-limited communication
is immediately violated. �
Lemma 2 states that S0 is well-defined for all well-designed Prov , that is, for
all Prov such that there exists at least one partner Req with Prov ⊕ Req is
deadlock-free.

The next lemma shows that we actually achieved one of the major goals of
the construction.

Lemma 3. For all Si and all q ∈ Qi: if q is δi-reachable from q0i , then K(q) = q.

Proof. By structural induction on δ. By definition of cl , cl([q0Prov , []]) is the set
of situations that can be reached from the initial state without interference from
Si. If K(q) = q, then cl(event(q, x)) is by definition of event and cl exactly the
set of situations that can be reached from situations in q by the event x. Thus,
[q, x, q′] ∈ δi implies K(q′) = q′. �
From that lemma we can directly conclude that the service S constitutes a
properly interacting partner of Prov .

Corollary 2. If S is well-defined, that is, q0S ∈ QS, then Prov ⊕S is deadlock-
free.

Proof. Follows with Lemma 1 and Def. 15 from the fact that all states of S
satisfy their annotations. �
As an example of an ill-designed service, the service Z in Fig. 5(a) would yield
an infinite cl([z0, []]) for any partner. Accordingly, there is no well-defined S0.
During the construction of S for service U in Fig. 5(b), the initial state is even-
tually removed. The initial state {[u0, []], [u1, []], [u2, []]} of S0 for U has two
successors. The a-successor {[u0, [a]], [u1, [a]], [u2, [a]], [u3, []]} must be removed
since it contains the deadlock [u2, [a]], the b-successor must be removed since it
contains the deadlock [u1, [b]]. In the next iteration, the initial state itself must
be removed since, without the two successors, it violates its annotation (a∧b)∨τ .

For further studying the constructed partner S, we establish a matching re-
lation between states of services and apply this relation to relate states of an
arbitrary partner Req of Prov to states of the canonical partner S.

334 N. Lohmann, P. Massuthe, and K. Wolf

z0

!a

z1
τ

(a) Z

u0

u1

u2

u3

u4

τ
?a

τ
?b

(b) U

Fig. 5. The service Z has no k-limited communication partner (for any number k).
The service U cannot communicate deadlock-freely with any partner.

Definition 19 (Matching). Let A and B be service automata and define the
relation LA,B ⊆ QA×QB, the matching between A and B, inductively as follows.
Let [q0A , q0B] ∈ LA,B. If [qA, qB] ∈ LA,B, [qA, x, q′A] ∈ δA and [qB , x, q′B] ∈ δB,
then [q′A, q′B] ∈ LA,B.

The matching between two services A and B is a strong simulation relation
where in particular one τ -step of A is related to exactly one τ -step of B.

Examples for matchings are shown in Fig. 6. For example, the state w2 of the
service W in Fig. 6(a) is matched with the states 4 and 6 of the service S in
Fig. 7.

w0

w1

w2 w3

w4 w5

!e

!c

!t

?C

?E ?T?C !q

τ

0,20

2

4,6 20

0,20 20

(a) W

x0

x1

x2

x3 x4

!e

!t

?T

!q

0

2

6

0 10

(b) X

y7 y6

y5y4

y3 y2

y1y0
!e

!e

?C

?T
?E

?E?C ?T

!c

!t

!q

0 2

(c) Y

Fig. 6. Matching of the three services W , X, and Y of Fig. 2 with the service S depicted
in Fig. 7. A number n attached to a state x represents a pair [x, n] ∈ L.

Lemma 4. Let S0 be the starting point of the construction in Def. 18 and Req
be a partner of Prov with k-limited communication (for the value of k used in the
construction above). For all qReq ∈ QReq, K(qReq) =

⋃
[qReq ,qS0]∈LReq,S0

K(qS0).

Proof (Sketch). The inclusion K(qReq) ⊇
⋃

[qReq ,qS0]∈LReq,S0
qS0 follows from the

definition of q0S0 , δS0 , and the concepts cl and event . For the reverse inclusion,
let [qProv , m] ∈ KqReq , that is, [qProv , qReq , m] ∈ Prov ⊕ Req. Thus, there is a
transition sequence in Prov ⊕ Req from the initial state [q0Prov , q0Req , []] to that
state. This sequence can be replayed in Prov ⊕ S0 by replacing actions of Req
with actions of S0, leading to a state qS0 with [qProv , m] ∈ K(qS0) = qS0 . �

Operating Guidelines for Finite-State Services 335

Corollary 3. For each state qReq of Req, its annotation φ(qReq) can be described
as φ(qReq) ≡

∧
qS0 :[qReq ,qS0]∈LReq,S0

φ(qS0).

Proof. Since an annotation φ(qS0) is a conjunction built for every situation in
qS0 = K(qS0), the annotation of the union of K-values is the conjunction of the
individual formulas. �

For example, the annotation of state w2 of the service in Fig. 2 is (C ∧ E ∧ T) ∨
c ∨ e ∨ t ∨ τ which is equivalent to the conjunction of the annotations (C ∧E)∨ τ
and (E ∧ T) ∨ c ∨ e ∨ t ∨ τ of the states 4 and 6 of the service in Fig. 7.

The next result is the actual justification of the removal process described in
Def. 18.

Lemma 5. If Req is a k-limited communication partner of Prov (for the value
of k used in the construction of S0) such that Prov ⊕ Req is deadlock-free, then
qS ∈ S for all [qReq , qS] ∈ LReq,S0 .

Proof. (By contradiction) Let i be the smallest number such that there exist
qReq ∈ QReq and qS ∈ QSi \ QSi+1 holding [qReq , qS] ∈ L. That is, qS is, among
the states of S0 appearing in LReq,S0 , the one that is removed first during the
process described in Def. 18.

By the construction of Def. 18, φ(qS) evaluates to false with the assignment
assSi(qS). Thus, there is a [qProv , m] ∈ K(qS) such that [qProv , qS , m] is a dead-
lock in Prov ⊕ Si. As a deadlock, it is also a wait state in Si, so qS ∈ FSi .

In S0, there is, for every x ∈ C∪{τ}, a transition leaving qS . If such a transition
is not present from qS in Si, this means that the corresponding successor state
has been removed in an earlier iteration of the process described in Def. 18.
Such a transition cannot leave qReq in Req since otherwise a successor of Req
were matched with a state q′S that has been removed in an earlier iteration than
qS which contradicts the choice of i and qS . Consequently, for every x with an
x-transition leaving qReq in Req, there is an x-transition leaving qS in Si. This
means that, for all x ∈ C∪{τ,final}, assSi(qS)(x) ≥ assReq(qReq)(x). Since φ(qS)
is monotonous (only built using ∨ and ∧), and φReq is a conjunction containing
φ(qS) (by. Cor. 3), φ(qReq) evaluates to false with the assignment assReq(qReq).
Consequently, by Cor. 1, Prov ⊕ Req has a deadlock. �

Corollary 4. Prov has a k-limited communication partner Req (for the value
of k used in the construction of S0) such that Prov ⊕ Req is deadlock-free if and
only if q0S ∈ QS (i. e. the service-automaton S is well-defined).

Proof. If S is well-defined then, by Cor. 2, at least S is a partner of Prov such
that Prov ⊕ S is deadlock-free. If Prov has a partner Req such that Prov ⊕ Req
is deadlock-free, Lemma 5 asserts that LReq,S0 contains only states of S. In
particular, since in any case [q0Req , q0S0] ∈ LReq,S0 , this implies q0S0 = q0S ∈ QS .

�

336 N. Lohmann, P. Massuthe, and K. Wolf

If Prov does not have partners Req such that Prov ⊕ Req is deadlock-free, then
Prov is fundamentally ill-designed. Otherwise, the particular partner S studied
above is well-defined. It is the basis for the concept of an operating guideline for
Prov which is introduced in the next section.

5 Operating Guidelines

If the matching of a service Req with S0 involves states of QS0 \ QS , Lemma 5
asserts that Prov ⊕ Req has deadlocks. In the case that the matching involves
only states of QS , Prov ⊕ Req may or may not have deadlocks. However, by
Cor. 1, the existence of deadlocks in Prov ⊕ Req can be decided by evaluating
the annotations φ(qReq) for the states qReq ∈ QReq. By Cor. 3, these formulas can
be retrieved from the annotations to the states of S. Attaching these formulas
explicitly to the states of S, the whole process of matching and constructing the
φ(qReq) can be executed without knowing the actual contents of the states of S,
that is, without knowing the situations — the topology of S is sufficient. This
observation leads us to the concept of an operating guideline for Prov .

Definition 20 (Operating guideline). Let Prov be a service automaton
which has at least one properly interacting partner and S be the canonical service
automaton of Def. 18. Then any automaton S∗ that is isomorphic to S under
isomorphism h, together with an annotation Φ with Φ(qS∗) = φ(h(qS∗)) for all
qS∗ , is called operating guideline for Prov.

With the step from S to an isomorphic S∗, we just want to emphasize that
only the topology of S is relevant in the operating guideline while the internal
structure of the states of S, that is, the set of situations, is irrelevant.

Figure 7 shows the operating guideline, that is, the annotated service automa-
ton S, for the service V of Fig. 2.

Ignoring the annotations, the operating guideline is (isomorphic to) the part-
ner S for Prov that can be executed directly thus satisfying the second require-
ment stated in the introduction. The annotation at a state q gives additional
instructions about whether or not transitions leaving q may be skipped. There-
fore, the operating guideline can be used to decide, for an arbitrary service Req,
whether or not Prov ⊕ Req is deadlock-free, as the next result shows.

Theorem 1 (Main theorem of this article). Let Prov be a finite state ser-
vice and S∗ its operating guideline. Req is a k-limited communication partner of
Prov (for the value of k used in the construction of S∗) such that Prov ⊕ Req is
deadlock-free if and only if the following requirements hold for every [qReq , qS∗] ∈
LReq,S∗ :

(topology) For every x ∈ C ∪ {τ}, if there is an x-transition leaving qReq in
Req, then there is an x-transition leaving qS∗ in S∗.

(annotation) The assignment assReq(qReq) satisfies Φ(qS∗).

Operating Guidelines for Finite-State Services 337

0 : !c∨!e∨!q∨!t

1 : !e∨!t 2 : !c∨!t 3 : !c∨!e

4 : !t ∨ (?C∧?E) 5 : !e 6 : !c ∨ (?E∧?T)

7 : ?C∧?E∧?T

8 : !e9 : ?C∧?E∧?T

10 : final

20 : true

20

20 20 20

0 20 20 0

3 1

0

20
!c

!e
!t

!q

?C, ?E, ?T

!e
!t

?C, ?E, ?T
!c !t

?C, ?E, ?T
!c

!e

?C, ?E, ?T

?C, ?E

!t
?T

!e

?C, ?E, ?T ?E, ?T

!c

?C

?T?C

?E

!e ?C, ?E, ?T

?C, ?E, ?T

?C, ?E, ?T

!e, !q, !t, ?E, ?T

Fig. 7. The operating guideline for the service V in Fig. 2. It is isomorphic to the
canonical partner S for V (Def. 18) with the annotations Φ depicted inside the nodes.
Multiple labels to an edge mean multiple edges. Edges pointing to a number mean
edges to the node with the corresponding number.

Note that this theorem matches Req with S∗ (isomorphic to S) while the results
in the previous section match Req with S0. Requirement (topology) actually
states that LReq,S∗ is a simulation relation.

Proof. If Prov ⊕ Req is deadlock-free, then Lemma 5 asserts that the matching
of Req with S (or S∗) coincides with the matching of Req with S0. Thus, re-
quirement (topology) holds. Furthermore, Cor. 3 guarantees that requirement
(annotation) is satisfied.

Assume that both requirements hold. By requirement (topology), the match-
ing of Req with S (or S∗) coincides with the matching of Req with S0, since
the matching with S0 can lead to states outside S only if there is an x such
that an x-transition is present in a state qReq but not in the corresponding state
qS ∈ S. Given that both matchings coincide, Cor. 3 states that φ(qReq) is the
conjunction of the φ(qS), for the matching states qS . Then, we can deduce from
Cor. 1 and requirement (annotation) that Prov ⊕ Req is deadlock-free. �

Consider the service V of Fig. 2 and its partners. In Fig. 6 we can see that
W and X satisfy the requirement (topology) while Y does not (Y is not a 1-
limited communication partner of V). X violates in state x2 the annotation to
the matched state 6, since the Req-assignment in state x2 assigns false to E and

338 N. Lohmann, P. Massuthe, and K. Wolf

τ . V ⊕ X contains the deadlock [v0, x2, [E]]. For service W , all annotations are
satisfied. V ⊕ W is deadlock-free (see Fig. 3).

At this stage, it would be natural to ask for an operating guideline that has
the shape of an oWFN rather than an automaton. While the partner S can be
transformed to an oWFN using existing approaches called region theory [18],
we have no concept of transforming the annotations of the states of S into
corresponding annotations of the resulting oWFN. That is why our concept of
operating guidelines is presented on the level of service automata.

6 Implementation

All concepts used in this article have been defined constructively. For an actual
implementation, it is, however, useful to add some ideas that increase efficiency.
First, it is easy to see that, for constructing S, it is not necessary to start
with the whole S0. For the matching, only states that are reachable from the
initial state need to be considered. Furthermore, annotations can be generated
as soon as a state is calculated. They can be evaluated as soon as the immediate
successors have been encountered. If the annotation evaluates to false, further
exploration can be stopped [19]. In consequence, the process of generating S0
can be interleaved with the process of removing states that finally leads to S.
This way, memory consumption can be kept within reasonable bounds.

The number of situations in a state q of S can be reduced using, for instance,
partial order reduction techniques. In ongoing research, we explore that possi-
bility. We are further exploring opportunities for a compact representation of
an operating guideline. For this purpose, we already developed a binary decision
diagram (BDD, [20]) representation of an operating guideline for acyclic services
that can be efficiently used for matching [21]. Most likely, these concepts can be
adapted to arbitrary finite-state services.

We prototypically implemented our approach within the tool Fiona [10].
Among other features, Fiona can read an open workflow net and generate the
operating guideline. The following example Petri nets stem from example WS-
BPEL specifications of services. The WS-BPEL processes have been translated
automatically into oWFN, based on the Petri net semantics for WS-BPEL [9]
and the tool BPEL2oWFN [10].

The “Purchase Order” and “Loan Approval” processes are realistic services
taken from the WS-BPEL specification [8]. “Olive Oil Ordering” [22], “Help
Desk Service Request” (from the Oracle BPEL Process Manager) and “Travel
Service” [8] are other web services that use WS-BPEL features like fault and
event handling. The “Database Service” shows that it may be necessary to cal-
culate a number of situations which is a multiple of the number of states of the
considered service automaton. “Identity Card Issue” and “Registration Office”
are models of administrative workflows provided by Gedilan, a German consult-
ing company. Finally, we modeled parts of the Simple Mail Transfer Protocol
(SMTP) [23]. Since it is a communication protocol, it yields the biggest operating
guideline.

Operating Guidelines for Finite-State Services 339

Table 1. Experimental results running Fiona. All experiments were taken on a Intel
Pentium M processor with 1.6 GHz and 1 GB RAM running Windows XP.

open workflow net inner operating guideline time
service Prov places input output trans. states situations states edges (sec)

Purchase Order 38 4 6 23 90 464 168 548 0
Loan Approval 48 3 3 35 50 199 7 8 0

Olive Oil Ordering 21 3 3 15 15 5101 14 20 0
Help Desk Service 33 4 4 28 25 7765 8 10 2
Travel Service 517 6 7 534 1879 5696 320 1120 7
Database Service 871 2 5 851 5232 337040 54 147 7583

Identity Card Issue 149 2 9 114 111842 707396 280 1028 216
Registration Office 187 3 3 148 7265 9049 7 8 0

SMTP 206 8 4 215 7111 304284 362 1161 200

Table 1 provides the size of the open workflow net and the number of states
of the corresponding service automaton (i. e., the inner of the oWFN), the size
(number of situations, states, and edges) of the calculated operating guideline,
and the time for its calculation from the given Petri net.

The examples show that operating guidelines for realistic services have rea-
sonable size. Considering the still unexplored capabilities of reduction techniques
and symbolic representations, we may conclude that the operating guideline ap-
proach is in fact feasible for tasks like service discovery (where it needs to be
complemented with mechanisms for matching semantic issues).

7 Conclusion

With the concept of an operating guideline for a service Prov , we proposed
an artifact that can be directly executed. The operating guideline is expressed
in terms of the interface of Prov , and gives complete information about cor-
rect communication with Prov . It can be manipulated in accordance with the
annotations. This way, other partners can be crafted which, by construction,
communicate correctly with Prov , too. These partners can be translated into
other formalisms, most notably, oWFN.

Deciding correct interaction using an operating guideline amounts to checking
the simulation relation between the partner service and the operating guideline
and evaluating the annotations. It has about the same complexity as model
checking deadlock freedom in the composed system itself. Due to its complete-
ness, and due to its explicit operational structure, it can be a valuable tool in
service-oriented architectures.

Experimental results have shown that the calculation of an operating guideline
is feasible in practical applications.

In future work, we want to adapt the operation guideline concept to infinite-
state services. However, we have strong evidence that, given an infinite-state
service, the problem to construct a deadlock-freely interacting partner service

340 N. Lohmann, P. Massuthe, and K. Wolf

is undecidable in this scenario. Besides, we want to study whether it is possible
to construct operating guidelines for services without k-limited communication
partners. Finally, we also want to characterize livelock-free interactions. As first
examples show, it is not trivial to cover livelock-freedom by Boolean annotations.

References

1. Massuthe, P., Schmidt, K.: Operating guidelines – An automata-theoretic foun-
dation for the service-oriented architecture. In: QSIC 2005, pp. 452–457. IEEE
Computer Society Press, Washington (2005)

2. Massuthe, P., Reisig, W., Schmidt, K.: An Operating guideline approach to the
SOA. Annals of Mathematics, Computing and Teleinformatics 1(3), 35–43 (2005)

3. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: A look behind the
curtain. In: PODS ’03, pp. 1–14. ACM Press, New York (2003)

4. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Communi-
cations of the ACM 44(4), 71–77 (2001)

5. Aalst, W.v.d., Weske, M.: The P2P approach to interorganizational workflows. In:
Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
140–156. Springer, Berlin (2001)

6. Leymann, F., Roller, D., Schmidt, M.: Web services and business process manage-
ment. IBM Systems Journal, vol. 41(2) (2002)

7. Aalst, W.v.d.: The application of petri nets to workflow management. Journal of
Circuits, Systems and Computers 8(1), 21–66 (1998)

8. Alves, A. et al.: Web Services Business Process Execution Language Version 2.0.
Committee Draft, 25 January, 2007, OASIS (2007)

9. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

11. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the
Business Process Execution Language for Web Services. In: Zimmermann, W.,
Thalheim, B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg
(2004)

12. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative Control
Flow. In: Proceedings of the 12th International Workshop on Abstract State Ma-
chines (ASM’05), Paris XII, pp. 131–151 (2005)

13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
14. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic

composition of e-services that export their behavior. In: Orlowska, M.E., Weer-
awarana, S., Papazoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910,
pp. 43–58. Springer, Heidelberg (2003)

15. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS
Business Collaborations. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web
2004. LNCS, vol. 3182, pp. 76–85. Springer, Heidelberg (2004)

16. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In:
WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pp. 621–630. ACM Press, New York (2004)

Operating Guidelines for Finite-State Services 341

17. Ferrara, A.: Web services: a process algebra approach. In: ICSOC, ACM 2004, pp.
242–251, ACM (2004)

18. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 529–586. Springer,
Heidelberg (1998)

19. Weinberg, D.: Reduction Rules for Interaction Graphs. Techn. Report 198,
Humboldt-Universität zu Berlin (2006)

20. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

21. Kaschner, K., Massuthe, P., Wolf, K.: Symbolische Repräsentation von Bedi-
enungsanleitungen für Services. In: AWPN Workshop 2006, Universität Hamburg
(in German) pp. 54–61(2006)

22. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Applying model checking to
BPEL4WS business collaborations. In: Proceedings of the, ACM Symposium on
Applied Computing (SAC), pp. 826–830, ACM (2005)

23. Postel, J.B.: Simple Mail Transfer Protocol. RFC 821, Information Sciences Insti-
tute, University of Southern California, Network Working Group (1982)

Theory of Regions for the Synthesis of Inhibitor Nets
from Scenarios

Robert Lorenz, Sebastian Mauser, and Robin Bergenthum

Department of Applied Computer Science,
Catholic University of Eichstätt-Ingolstadt

firstname.lastname@ku-eichstaett.de

Abstract. In this paper we develop a theory for the region-based synthesis of
system models given as place/transition-nets with weighted inhibitor arcs (pti-
nets) from sets of scenarios describing the non-sequential behaviour. Scenarios
are modelled through labelled stratified order structures (LSOs) considering ”ear-
lier than” and ”not later than” relations between events [6,8] in such a way that
concurrency is truly represented.

The presented approach generalizes the theory of regions we developed in
[10] for the synthesis of place/transition-nets from sets of labelled partial orders
(LPOs) (which only model an ”earlier than” relation between events). Thereupon
concrete synthesis algorithms can be developed.

1 Introduction

Synthesis of Petri nets from behavioural descriptions has been a successful line of re-
search since the 1990ies. There is a rich body of nontrivial theoretical results and there
are important applications in industry, in particular in hardware design [3], in control of
manufacturing systems [15] and recently also in workflow design [13,14].

The synthesis problem is the problem to construct, for a given behavioural speci-
fication, a Petri net of a considered Petri net class such that the behaviour of this net
coincides with the specified behaviour (if such a net exists). There exist theories for
the synthesis of place/transition-nets (p/t-nets) from behavioural models describing se-
quential semantics [1], step semantics [1] and partial order semantics [10]. There are
also sequential, respectively step semantics, based approaches for the synthesis of ele-
mentary nets [4,5] and extensions to elementary nets with inhibitor arcs [2,11,12].

In this paper we generalize the synthesis theory for partial order semantics from [10]
to p/t-nets with weighted inhibitor arcs (pti-nets). In [10] the behavioural specification
is given by a set of labelled partial orders (LPOs) – a so called partial language – in-
terpreted as a scenario-based description of the non-sequential behaviour of p/t-nets.
The aim in [10] is the characterization and synthesis of a p/t-net whose behaviour co-
incides with a given partial language. That means, the LPOs of the partial language
should exactly be the partially ordered executions of the searched p/t-net. Note hereby
that partial languages regard the most general concurrency relationships between events
(in contrast to sequential semantics considering no concurrency relations and step se-
mantics considering only restricted transitive concurrency relations).

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 342–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 343

The synthesis of the p/t-net is based on the notion of regions: The p/t-net synthesized
from a partial language inherits its transitions from the event labels of the LPOs which
in turn describe the respective occurring actions. Through places causal dependencies
between transitions are added restricting the set of executions. The idea is to add all
places which do not restrict the set of executions too much in the sense that they do
not prohibit the executability of any LPO specified in the partial language. These places
are called feasible (w.r.t. the given partial language). Adding all feasible places yields
a p/t-net – the so called saturated feasible p/t-net – which has a minimal set of partially
ordered executions including the specified partial language (among all p/t-nets). Con-
sequently the saturated feasible p/t-net solves the synthesis problem or there exits no
solution of the problem. The general approach of a theory of regions is to determine
feasible places by so called regions of the behavioural model.1 As the main result in
[10] we proposed a notion of regions for partial languages and showed that the set of
regions exactly defines the set of feasible places. In this paper we lift this approach to
the level of pti-nets. That means we generalize the notion of regions to a scenario-based
behavioural model of pti-nets and show that these regions exactly define feasible places.

In the following we introduce the scenario-based behavioural model of pti-nets con-
sidered in this paper. We will examine the so called a-priori semantics of pti-nets [8]
in which synchronicity of events is explicitly regarded.2 Thus, as the model of non-
sequential behaviour we consider a generalization of LPOs – so called labelled strati-
fied order structures (labelled so-structures or LSOs) [6,8].3 That means, given a pti-net,
scenarios are specified by LSOs with transition names as event labels, and a specified
scenario may be or may not be an execution of the net.

In an LPO ordered events are interpreted as causally dependent in the sense of an
”earlier than” relation. Unordered events are considered as causally independent respec-
tively concurrent. That means two events are concurrent, if they can occur in arbitrary
order as well as synchronously. Thus, synchronicity cannot be distinguished from con-
currency in the case of LPOs. A situation (1.) in which two events a and b can only
occur synchronously or (2.) can occur synchronously and in the order a → b, but not in
the order b → a, cannot be modelled with LPOs (obviously in both situations (1.) and
(2.) the events are not concurrent, but synchronous occurrence is possible). For these
situations LSOs include a ”not later than” relation between events: a ”not later than” b
exactly describes (2.) and a symmetric ”not later than” relation between events (a ”not
later than” b and b ”not later than” a) models (1.). Thus, an LSO is based on an LPO
(the ”earlier than” relation is depicted with solid arcs in illustrations), to which a ”not
later than” relation (dashed arcs) between events is consistently added.

In [6] it was explained in detail that the ”earlier than” relation of LPOs is not enough
to describe executions of some Petri net classes such as inhibitor nets under the a-priori
semantics and that LSOs form the adequate behavioural model for these net classes. In
Figure 1 this phenomenon is illustrated: A pti-net and four LSOs describing executions

1 For sequential or step semantics this theory lead to polynomial synthesis algorithms [1].
2 There are also alternative semantics of inhibitor nets. The a-posteriori semantics (which is less

general than the a-priori semantics from a causal point of view) is discussed in the conclusion.
3 Note that just like LPOs in the case of p/t-nets, LSOs can model arbitrary dependency relations

between transition occurrences of pti-nets, i.e. concurrency can be truly represented.

344 R. Lorenz, S. Mauser, and R. Bergenthum

aa

b

c2
2 b

c a

b

a

b

c a

b

a

b

b

c a a

b

b

c a

p

Fig. 1. A pti-net together with some executions

of the net are depicted. The pti-net has the only inhibitor arc (p, c) with inhibitor weight
two. This arc restricts the behaviour of the net in such a way that the transition c is only
enabled if additionally to the usual enabledness conditions of p/t-nets the place p con-
tains at most two tokens. That means, through weighted inhibitor arcs it is tested if the
number of tokens in a place does not exceed the inhibitor weight (as an enabledness con-
dition). In the a-priori semantics the respective testing precedes the actual occurrence
of the transition. That means the first LSO (from left) can be interpreted as an execution
of the pti-net in the following sense: In the initial marking c and two instances of a are
concurrently enabled (accordingly there exist no arcs modelling a causal dependency
between the respective nodes), because the double occurrence of a produces (at most)
two tokens in p. Therefore the occurrence of c is not prohibited (because the inhibitor
arc (p, c) has the weight two). Moreover, after any occurrence of a the transition b is
once enabled leading to the two solid ”earlier than” arcs between each a and b. The two
events labelled by b are concurrent. It is now important that after the double occurrence
of a and one occurrence of b the place p contains three tokens. Thereby c is disabled
by the inhibitor arc (p, c), i.e. b and c cannot occur in the order b → c (and therefore b
and c are also not concurrent). However, the two transitions can occur synchronously,
because in this situation the testing procedure (through the inhibitor arc (p, c)) precedes
the occurrence procedure according to the a-priori rule. Thus, it precedes the enhance-
ment of the number of tokens in p from two to three tokens through b. Furthermore,
the occurrence in order c → b is obviously possible. Altogether, this behaviour of the
b-labelled events and c can be described as follows: c cannot occur later than b or ab-
breviated c ”not later than” b leading to dashed arcs between c and b in each case. Thus,
an execution of a pti-net is an LSO, whose events are labelled with transition names,
such that all transitions can occur in the given ordering and concurrency relations.

Technically executions will be defined as enabled LSOs. We propose a definition of
enabledness for LSOs generalizing consistently the notion of enabled LPOs. Then every
pti-net has assigned a set of executions (enabled LSOs). These describe the complete
non-sequential behaviour of the pti-net, i.e. all possible causality and concurrency re-
lationships between transition occurrences. Analogously to the notion of a partial lan-
guage as a set of (non-isomorphic) LPOs we denote a set of (non-isomorphic) LSOs
as a stratified language. Therefore, the non-sequential behaviour of a pti-net repre-
sented through the set of all executions of the net is a stratified language. The respective
(scenario-based) synthesis problem can be formulated as follows:

Given: A stratified language L over a finite set of labels.
Searched: A pti-net whose set of executions coincides with the given language L, if

such a net exists.

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 345

As mentioned, for the less general problem with a partial language as the given be-
havioural model and a p/t-net as the searched system model the problem was solved in
[10] applying the so called theory of regions. A region of a partial language defines a
place by determining the initial marking of that place and the weights on each flow arc
leading to and coming from a transition. A region of a stratified language additionally
has to determine the weights of each inhibitor arc leading to a transition. It turns out
that the notion of regions of stratified languages can be based on the notion of regions
of partial languages. More precisely, omitting the ”not later than” relation of all LSOs
of a stratified language yields a set of LPOs forming the partial language underlying
the given stratified language. To define regions of stratified languages we start with re-
gions of the underlying partial language ignoring inhibitor arcs and complement these
by ”possible inhibitor arcs” as they are called in [2]. In this aspect the approach is sim-
ilar as in [2,11,12] (where the authors started with classical regions of (step) transition
systems and complemented these by ”possible inhibitor arcs”). Roughly speaking, we
add a ”possible inhibitor arc” if in each possible intermediate marking state when exe-
cuting a specified LSO subsequent events are not prohibited by this inhibitor arc. The
identification of such inhibitor arcs is more complicated than for elementary nets and
(step) transition systems (considered in [2,11,12]). On the one hand we have to regard
weighted inhibitor arcs. On the other hand the marking states critical for the inhibitor
tests are not directly modelled in LSOs (in contrast to transition systems). Having solved
this problem, as the main theorem of this paper we show that the regions of a stratified
language exactly define all feasible pti-net places (w.r.t. this stratified language). Thus,
the regions of a stratified language define the saturated feasible pti-net. This net has a
minimal set of executions including the given stratified language (among all pti-nets)
and therefore solves the synthesis problem or is the best approximation if no solution
exists. This solves the synthesis problem satisfactory from the theoretical point of view
(for the considered setting). Practical algorithmic considerations are a topic of further
research (see also the conclusion for a brief discussion).

The paper is structured as follows: First the basic notions of pti-nets and enabled
LSOs are introduced (section 2). Then in section 3 the general fundamentals of the
region based synthesis are developed and in section 4 the theory of regions is concretely
evolved for the formulated synthesis problem.

2 Pti-nets

In this section we recall the basic definitions of pti-nets and introduce enabled stratified
order structures as executions of pti-nets (leading to a formal model of scenario-based
non-sequential semantics of pti-nets).

By N we denote the non-negative integers and by N
+ the non-negative integers ex-

cluding 0. We additionally denote ω an infinite integer, i.e. n < ω for n ∈ N. Given
a finite set A, the identity relation on A is denoted by idA and the set of all multi-sets
over A is denoted by N

A (for m ∈ N
A we write a ∈ m if m(a) > 0).

A net is a triple (P, T, F), where P is a set of places, T is a finite set of transitions,
satisfying P ∩ T = ∅, and F ⊆ (P ∪ T) × (T ∪ P) is a flow relation. Let (P, T, F) be
a net and x ∈ P ∪ T be an element. The preset •x is the set {y ∈ P ∪ T | (y, x) ∈ F},

346 R. Lorenz, S. Mauser, and R. Bergenthum

and the post-set x• is the set {y ∈ P ∪ T | (x, y) ∈ F}. Given a set X ⊆ P ∪ T , this
notation is extended by •X =

⋃
x∈X •x and X• =

⋃
x∈X x•.

A place/transition net (shortly p/t-net) is a quadruple (P, T, F, W), where (P, T, F)
is a net and W : F → N

+ is a weight function. We extend the weight function W to
pairs of net elements (x, y) ∈ (P × T) ∪ (T × P) with (x, y) �∈ F by W (x, y) = 0.

Definition 1 (Pti-net). A pti-net N is a five-tuple (P, T, F, W, I), where (P, T, F, W)
is a p/t-net and I : P × T → N ∪ {ω} is the weighted inhibitor relation. If I(p, t) �= ω,
then (p, t) ∈ P × T is called (weighted) inhibitor arc and p is an inhibitor place of t.

A marking of a pti-net N = (P, T, F, W, I) is a function m : P → N (a multi-set over
P) assigning a number of tokens to each place. A transition t can only be executed if (in
addition to the well-known p/t-net occurrence rule) each p ∈ P contains at most I(p, t)
tokens. In particular, if I(p, t) = 0 then p must be empty. I(p, t) = ω means that t can
never be prevented from occurring by the presence of tokens in p. In diagrams, inhibitor
arcs have small circles as arrowheads. Just as normal arcs, inhibitor arcs are annotated
with their weights. Now however, the weight 0 is not shown. A marked pti-net is a pair
(N, m0), where N is a pti-net and m0 is a marking of N called initial marking. Figure
1 shows a marked pti-net.

According to the a-priori semantics of pti-nets, the inhibitor test for enabledness of
a transition precedes the consumption and production of tokens in places. A multi-set
(a step) of transitions is (synchronously) enabled in a marking if in this marking each
transition in the step obeys the inhibitor constraints before the step is executed.

Definition 2 (Occurrence rule, a-priori semantics). Let N = (P, T, F, W, I) be a
pti-net. A multi-set of transitions τ (a step) is (synchronously) enabled to occur in a
marking m (w.r.t. the a-priori semantics) if m(p) ≥

∑
t∈τ τ(t)W (p, t) and m(p) ≤

I(p, t) for each transition t ∈ τ (for every place p ∈ P).

The occurrence of a step (of transitions) τ leads to the new marking m′ defined by
m′(p) = m(p)−

∑
t∈τ τ(t)(W (p, t)−W (t, p)) (for every p ∈ P). We write m

τ−→ m′

to denote that τ is enabled to occur in m and that its occurrence leads to m′. A finite
sequence of steps σ = τ1 . . . τn, n ∈ N is called a step occurrence sequence enabled
in a marking m and leading to mn, denoted by m

σ−→ mn, if there exists a sequence
of markings m1, . . . , mn such that m

τ1−→ m1
τ2−→ . . .

τn−→ mn. A step occurrence
sequence can be understood as a possible single observation of the behaviour of a pti-
net, where the occurrences of transitions in one step are observed at the same time or
synchronously. We use the notions for (marked) pti-nets also for (marked) p/t-nets (a
p/t-net can be understood as a pti-net with an inhibitor relation which equals ω).

We now introduce stratified order structures (so-structures) to model executions of
pti-nets as sketched in the introduction. We start with some basic notions preparative to
the definition of so-structures. A directed graph is a pair (V, →), where V is a finite set
of nodes and →⊆ V × V is a binary relation over V called the set of arcs. As usual,
given a binary relation →, we write a → b to denote (a, b) ∈→. Two nodes a, b ∈ V are
called independent w.r.t. the binary relation → if a �→ b and b �→ a. We denote the set of
all pairs of nodes independent w.r.t. → by co→ ⊆ V × V . A partial order is a directed

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 347

graph po = (V, <), where < is an irreflexive and transitive binary relation on V . If
co < = idV then (V, <) is called total. Given two partial orders po1 = (V, <1) and
po2 = (V, <2), we say that po2 is a sequentialization (or extension) of po1 if <1⊆<2.

So-structures are, loosely speaking, combinations of two binary relations on a set of
nodes (interpreted as events), where one is a partial order representing an ”earlier than”
relation and the other represents a ”not later than” relation. Thus so-structures describe
finer causalities than partial orders. Formally, so-structures are relational-structures
(rel-structures) satisfying certain properties. A rel-structure is a triple S = (V, ≺, �),
where V is a finite set (of events), and ≺ ⊆ V × V and � ⊆ V × V are binary relations
on V . A rel-structure S′ = (V, ≺′, �′) is said to be an extension (or sequentialization)
of another rel-structure S = (V, ≺, �), written S ⊆ S′, if ≺⊆≺′ and �⊆�′.

Definition 3 (Stratified order structure [6]). A rel-structure S = (V, ≺, �) is called
stratified order structure (so-structure) if the following conditions are satisfied for all
u, v, w ∈ V :
(C1)u �� u. (C3)u � v � w ∧ u �= w =⇒ u � w.
(C2)u ≺ v =⇒ u � v. (C4)u � v ≺ w ∨ u ≺ v � w =⇒ u ≺ w.

In figures ≺ is graphically expressed by solid arcs and � by dashed arcs. According
to (C2) a dashed arc is omitted if there is already a solid arc. Moreover, we omit arcs
which can be deduced by (C3) and (C4). It is shown in [6] that (V, ≺) is a partial
order. Therefore so-structures are a generalization of partial orders which turned out
to be adequate to model the causal relations between events of pti-nets under the a-
priori semantics. In this context ≺ represents the ordinary ”earlier than” relation (as for
p/t-nets) while � models a ”not later than” relation (see Figure 1 for an example).

For our purposes we have to consider labelled so-structures (LSOs) where the nodes
of an so-structure represent transition occurrences of a pti-net (nodes are labelled by
transition names as in Figure 1). Formally these are so-structures S = (V, ≺, �) to-
gether with a set of labels T and a labelling function l : V → T . The labelling function
l is lifted to a subset Y of V in the following way: l(Y) is the multi-set over T given
by l(Y)(t) = |l−1(t) ∩ Y | for every t ∈ T . We will use the notations for so-structures
also for LSOs as well as for LPOs (since an LPO can be understood as an LSO with
≺=�). We will consider LSOs only up to isomorphism. Two LSOs (V, ≺, �, l) and
(V ′, ≺′, �′, l′) are called isomorphic, if there is a bijective mapping ψ : V → V ′ such
that l(v) = l′(ψ(v)) for v ∈ V , v ≺ w ⇔ ψ(v) ≺′ ψ(w) and v � w ⇔ ψ(v) �′ ψ(w)
for v, w ∈ V . By [S] we will denote the set of all LSOs isomorphic to S. The LSO S is
said to represent the isomorphism class [S].

As explained, for the modelling of system behaviour the two relations of an LSO
are interpreted as ”earlier than” resp. ”not later than” relation between transition occur-
rences. If two transition occurrences are in ”not later than” relation, that means they
can be observed (are allowed to be executed) synchronously or sequentially in one spe-
cific order. If two transitions are neither in ”earlier than” relation nor in ”not later than”
relation, they are concurrent and can be observed (are allowed to be executed) syn-
chronously or sequentially in any order. In this sense one LSO ”allows” many observa-
tions (step sequences). If all these observations are enabled step occurrence sequences,

348 R. Lorenz, S. Mauser, and R. Bergenthum

this LSO is called enabled. Formally the observations ”allowed” by an LSO are defined
through so called total linear extensions of the LSO:

Definition 4 (Total linear so-structures). Let S = (V, ≺, �) be an so-structure, then
S is called total linear if co≺ = (� \ ≺) ∪ idV . The set of all total linear extensions
(or linearizations) of an so-structure S is denoted by lin(S).

Total linear so-structures are maximally sequentialized in the sense that no further ≺-
or �- relations can be added maintaining the requirements of so-structures according to
Definition 3 (adding a ≺- or �- relation leads to causal relations of the form u � v ≺ u).
Therefore the linearizations lin(S) of an so-structure S are its maximal extensions.

With this definition the set of step sequences (observations) ”allowed” by an LSO
is defined as the set of step sequences extending the LSO (that means emerging from
adding causality to the LSO). A step sequence can be easily interpreted as a total linear
LSO: Each step corresponds to a set of events labelled by transitions (transition occur-
rences) which are in ”not later than” relation with each other representing synchronous
transition occurrences. Transition occurrences in different steps are ordered in appro-
priate ”earlier than” relation. Formally, for a sequence of transition steps σ = τ1 . . . τn

define the total linear LSO Sσ = (V, ≺, �, l) underlying σ by: V =
⋃n

i=1 Vi and
l : V → T with l(Vi)(t) = τi(t), ≺=

⋃
i<j Vi × Vj and �= ((

⋃
i Vi × Vi)∪ ≺) \ idV .

(Sσ is total linear because co≺ =
⋃n

i=1 Vi × Vi). Altogether a step sequence σ is
”allowed” by an LSO S if Sσ ∈ lin(S). For example the step sequences respectively
observations ”allowed” by the third LSO in Figure 1 can be characterized as follows:
To each of the step sequences cabb, (c + a)bb, acbb and a(b + c)b an a has to be added
either to one of the steps or representing a one-element step ordered in any position of
the sequence. Any such possibility has to be regarded leading to 29 different ”allowed”
step sequences, e.g. including cabab, (c + 2a)bb, 2acbb or a(b + c)(a + b).

Note that for each total linear LSO S = (V, ≺, �, l) there is a step sequence σ such
that S and Sσ are isomorphic. That means total linear LSOs can be interpreted as step
sequences and the ”allowed” observations of an LSO S in this sense are exactly the step
sequences given by lin(S).

Now we define enabled LSOs w.r.t. a marked pti-net as LSOs whose ”allowed” ob-
servations are also ”allowed” in the marked pti-net. More technically this means that
any step sequence extending the LSO is enabled in the marked pti-net. Such an enabled
LSO is called an execution of the marked pti-net.

Definition 5 (Enabled LSO). Let (N, m0), N = (P, T, F, W, I), be a marked pti-net.
An LSO S = (V, ≺, �, l) with l : V → T is called enabled (to occur) w.r.t. (N, m0)
(in the a-priori semantics) if the following statement holds: Each finite step sequence
σ = τ1 . . . τn with Sσ ∈ lin(S) is an enabled step occurrence sequence of (N, m0).

In other words an LSO is enabled if and only if it is consistent with the step semantics.
This reflects the general idea for the modelling of non-sequential system behaviour that
scenarios which are consistent with the non-sequential occurrence rule represent exe-
cutions.4 The presented definition is a proper generalization of the notion of enabled

4 Another possibility for the definition of enabled LSOs is to consider sequences of concurrent
steps of synchronous steps instead of sequences of synchronous steps. But both notions are
equivalent, as discussed in [7].

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 349

LPOs: An LPO lpo = (V, ≺, l) with l : V → T is enabled to occur in a marking m
of a marked p/t-net (P, T, F, W, m0) if each step sequence which extends (sequential-
izes) lpo is a step occurrence sequence enabled in m0. Since in LPOs concurrent and
synchronous transition occurrences are not distinguished, here a step is considered as a
set of events labelled by transitions (transition occurrences) which are concurrent.

Now it is possible to formally check that the LSOs from Figure 1 are indeed enabled
LSOs w.r.t. the shown pti-net. For example in the case of the third LSO one would have
to verify that the 29 step sequences ”allowed” by this LSO (these are characterized
above) are enabled step sequences of the marked pti-net.

Having defined single executions of marked pti-nets the behavioural model in our
setting is defined as follows:

Definition 6 (Stratified language). Let T be a finite set. A subset L ⊆ {[S] | S is an
LSO with set of labels T } is called stratified language over T (in the special case of
LPOs it is called partial language). The stratified language of executions L(N, m0) of
a marked pti-net (N, m0) is defined as the stratified language consisting of all (isomor-
phism classes of) executions of (N, m0).

In the following we only consider stratified languages over sets T such that every t ∈ T
occurs as a label of some node of the stratified language (without explicitly mentioning
this). Moreover, since we regard LSOs only up to isomorphism, we assume for the rest
of the paper that a stratified language L over a finite set of labels is given by a set L of
LSOs representing L in the sense that [S] ∈ L ⇐⇒ ∃S′ ∈ L : [S] = [S′]. Note that
the stratified language of executions of a marked pti-net (N, m0) is sequentialization
closed. That means given an execution S ∈ L(N, m0) of (N, m0), any sequentializa-
tion of S is also an execution of (N, m0). This is a simple observation using Definition
5, since sequentializations have a smaller set of linearizations. Moreover, as in the LPO-
case, the stratified language of executions of (N, m0) is prefix closed, where prefixes
of so-structures are defined as subsets of nodes which are downward closed w.r.t. the
�-relation:

Definition 7 (Prefix). Let S = (V, ≺, �) be an so-structure and let V ′ ⊆ V be such
that u′ ∈ V ′, u � u′ =⇒ u ∈ V ′. Then S′ = (V ′, ≺ |V ′×V ′ , � |V ′×V ′) is called prefix
of S. We say that the prefix S′ is defined by V ′. If additionally (u ≺ v =⇒ u ∈ V ′) for
some v ∈ V \ V ′, then S′ is called prefix of v (w.r.t. S).

3 The Synthesis Problem

The behaviour of a pti-net is described by its stratified language of executions. There-
fore, for a stratified language L the question whether it represents the non-sequential
behaviour of a marked pti-net can be formulated. The answer to this question together
with a concrete characterization of such a net in the positive case are the central issues
of this paper. Technically this synthesis problem can be fixed as follows:

Given: A stratified language L over a finite set of labels.
Searched: A marked pti-net (N, m0) with L(N, m0) = L if such (N, m0) exists.

350 R. Lorenz, S. Mauser, and R. Bergenthum

In the following we outline the synthesis principles of the so called theory of regions.
The concrete regions-based synthesis approach for the synthesis problem of pti-nets
from stratified languages is developed in the next section.

The transition set T of the searched marked pti-net (N, m0) is obviously given
through the finite set of labels of the stratified language L (equally labelled nodes
of LSOs in L represent occurrences of the same transition). Considering the pti-net
N = (∅, T, ∅, ∅, ∅) with this transition set and an empty set of places, obviously any
LSO in L is an execution of (N, ∅). This is clear because in N there are no causal
dependencies between the transitions. Therefore, every LSO with labels in T is en-
abled. On the other hand, there are also a lot of executions of (N, ∅) not specified in
L, i.e. L(N, ∅) � L. Since we are interested in L(N, m0) = L, we have to restrict the
behaviour of (N, m0) by introducing causal dependencies between transition occur-
rences. Such dependencies between transitions can (only) be realized by adding places
to (N, m0). Any place (with an initial marking) prohibits a certain set of LSOs from
being enabled. The central idea is to add all places to (N, m0) that do not prohibit LSOs
specified in L from being enabled. These places are called feasible places and lead to
the so called saturated feasible pti-net (N, m0). For this net of course L(N, m0) still
includes L, i.e. the specified LSOs in L are enabled w.r.t. (N, m0) constructed in this
way, while it is still not clear if L(N, m0) = L. But now the marked pti-net (N, m0) has
minimal (w.r.t. set inclusion) non-sequential behaviour L(N, m0) including L, since all
places not prohibiting L are regarded. That means that (N, m0) is the appropriate can-
didate for the solution of the synthesis problem. If (N, m0) does not solve the problem
there exists no net solving the problem. This is ensured by construction because any
other net solving the synthesis problem in this case would contradict the minimality
property of (N, m0) (since it would have a smaller set of executions including L).

The construction of the saturated feasible pti-net involves the introduction of places.
Any place consists of an initial marking, a flow and an inhibitor relation to each transi-
tion and a flow relation from each transition. Consequently any place p can be defined
by the value of its initial marking m0(p) together with the flow and inhibitor weights
W (p, t), W (t, p) and I(p, t) for any transition t ∈ T as depicted on the left of Figure 2
(a flow weight of 0 respectively an inhibitor weight of ω means that no such arc exists,
compare section 2). Any place p restricts the behaviour of a marked pti-net by prohibit-
ing a certain set of LSOs from being enabled. This set of LSOs prohibited by p does
only depend on this place p. That means it does not matter if we consider the one-place
net having p as its only place or a marked pti-net with a lot of places including p. More
precisely, an LSO is enabled w.r.t. a marked pti-net (N, m0), N = (P, T, F, W, I), if
and only if it is enabled w.r.t. every respective one-place net (for every p ∈ P). Regard-
ing a given stratified language L the behavioural restriction of such a place p can be
feasible or non-feasible, i.e. too restrictive, in the following sense (F , W , I and m0 are
determined by the definition of p – an example of a feasible and a non-feasible place is
illustrated in Figure 2):

– Non-feasible places p w.r.t. L: There exists an LSO S ∈ L, which is not enabled
w.r.t. the one-place pti-net (N, m0), N = ({p}, T, F, W, I), i.e. L �⊆ L(N, m0).

– Feasible places p w.r.t. L: Every LSO S ∈ L is enabled w.r.t. the one-place pti-net
(N, m0), N = ({p}, T, F, W, I), i.e. L ⊆ L(N, m0).

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 351

a

b

c?

?
?

? ?

?

?

?

?

?

a

b

c2

2
ω

ω 0

0

0

1

1

0

a

b

c1

2

0

0

0

1

1

0

(i) possible place (ii) feasible place (iii) not feasible place

ω

ω

Fig. 2. (i) The general structure of a place. (ii) A feasible place w.r.t. the stratified language from
Figure 1 (it coincides with the place p in Figure 1). (iii) A non-feasible place w.r.t. the stratified
language from Figure 1. The inhibitor arc to the transition c (in contrast to (ii) with inhibitor
weight 1 instead of 2) is causally too restrictive. To verify this recall the considerations in the
context of Figure 1 in the Introduction.

Every net solving (positively) the synthesis problem necessarily does not contain a
non-feasible place. Therefore the crucial idea is to consider the marked pti-net (N, m0),
N = (P, T, F, W, I), containing exactly all feasible places w.r.t. L. Considering the
above explanations this so called saturated feasible pti-net (N, m0) guarantees that any
LSO S ∈ L is enabled w.r.t. (N, m0) (called property (A) of the saturated feasible pti-
net in the following). Moreover, the saturated feasible pti-net (N, m0) can have more
executions than specified by L, but there is no marked pti-net with a smaller set of
executions including L (called property (B) of the saturated feasible pti-net in the fol-
lowing). This is true because any other net (N ′, m′

0) whose set of executions L(N ′, m′
0)

includes L mandatory has less places than (N, m0) since it may only contain feasible
places (it holds L(N ′, m′

0) ⊇ L(N, m0) if (N ′, m′
0) has less places than (N, m0)).

Definition 8 (Saturated feasible pti-net). Let L be a stratified language over the set
of labels T , then the marked pti-net (N, m0), N = (P, T, F, W, I), such that P is the
set of all places feasible w.r.t. L is called saturated feasible pti-net (w.r.t. L).

The saturated feasible pti-net (N, m0) w.r.t. L in general has infinitely many (feasible)
places. It fulfills (A) L ⊆ L(N, m0) and (B) L(N, m0) ⊆ L(N ′, m′

0) for each marked
pti-net (N ′, m′

0), N ′ = (P ′, T, F ′, W ′, I ′), fulfilling L ⊆ L(N ′, m′
0) (thus fulfilling

(A)). For the solution of the synthesis problem it is enough to consider only the satu-
rated feasible pti-net, because either this net solves the synthesis problem or there is no
solution for the problem:

Theorem 1. Let L be a stratified language and (N, m0), N = (P, T, F, W, I), be the
saturated feasible pti-net w.r.t. L, then L(N, m0) �= L implies L(N ′, m′

0) �= L for
every marked pti-net (N ′, m′

0), N ′ = (P ′, T, F ′, W ′, I ′).

Property (B) even tells us more than this theorem: In the case L(N, m0) �= L, L(N, m0)
is the best upper approximation to L. That means the saturated feasible pti-net is the best
approximation to a system model with non-sequential behaviour given by L among all
marked pti-nets allowing the behaviour specified by L.

Altogether, in order to solve the synthesis problem in our setting, we want to cal-
culate the saturated feasible pti-net. Therefore we are interested in a characterization

352 R. Lorenz, S. Mauser, and R. Bergenthum

of feasible places based on L that leads to an effective calculation method for feasible
places. In the p/t-net case such a characterization was developed for behavioural mod-
els w.r.t. sequential semantics and step semantics [1] with the notion of regions of the
behavioural model. These approaches were generalized in [10] to partial languages. In
the latter case it was shown that every region of a partial language L defines a place
such that

(1) Each place defined by a region of L is feasible w.r.t. L.
(2) Each place feasible w.r.t. L can be defined by a region of L.

In [10] we used a slightly different terminology as in this paper. In particular, we
did not use the notion of feasible places there but their characterization by the so called
token flow property. To prove the mentioned results we assumed that the set L of LPOs
representing the given partial language satisfies certain technical requirements. More
precisely, L was assumed to be prefix and sequentialization closed, since such par-
tial languages are the only candidates as models of the non-sequential behaviour of a
marked p/t-net. Moreover, we required that LPOs which are in conflict (describe alter-
native executions) have disjoint node sets (for the exact formal definitions we refer to
[10]). We showed that such representations always exist. Since our approach is based
on the results in [10], we require analogous technical properties for the representation
L of the specified stratified language. As in the p/t-net case it is no restriction for the
synthesis problem to consider only such representations of prefix and sequentialization
closed stratified languages.

In examples we will always give such L by a set of minimal LSOs of L (minimal
LSOs of L are not an extension of some other LSO in L), such that each LSO in L is an
extension of some prefix of one of these minimal LSOs. Thus every set of LSOs which
are not extensions of each other can be interpreted as a representation of a stratified lan-
guage by minimal LSOs. For example the four LSOs in Figure 1 represent the stratified
language that exactly coincides with the stratified language of executions given by the
non-sequential behaviour of the pti-net on the left of Figure 1.

The main aim of this paper is the generalization of the region definition to our setting
such that (1) and (2) hold for stratified languages L w.r.t. pti-nets. With such a notion
of regions based on stratified languages, the saturated feasible pti-net w.r.t. a stratified
language L is directly defined by the set of all regions: Every region of L defines a
place of the saturated feasible pti-net. This is the basis for effective solution algorithms
for the synthesis problem considered in this paper: In the case of [1] as well as [10] (for
the approach of [10] we developed a respective algorithm for finite partial languages in
the recent paper [9]) algorithms for the calculation of finite representations of the set
of regions were deduced. In the conclusion we argue why this is also possible in our
setting. A detailed elaboration of this topic will be the issue of further publications.

4 Regions of Stratified Languages (w.r.t. Pti-nets)

In this section we extend the notion of regions known for partial languages and p/t-nets
to the setting of pti-nets. In [10] it is shown that the regions of a partial language in the
context of p/t-nets exactly correspond to the feasible places w.r.t. the partial language.
Our aim is to show the same for stratified languages and pti-nets.

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 353

Fix a marked pti-net (N, m0), N = (P, T, F, W, I), and an LSO S = (V, ≺, �, l)
with l : V → T . Assume that S is enabled to occur w.r.t. (N, m0). Since the inhibitor
relation I of (N, m0) restricts the behaviour of the underlying p/t-net (P, T, F, W, m0),
S is then also enabled w.r.t. the p/t-net (N ′, m0) = (P, T, F, W, m0) underlying N . In
a p/t-net, transitions which can be executed synchronously can also be executed concur-
rently. Therefore, also the LPO lpoS = (V, ≺, l) (omitting the ”not later than” relation)
underlying S is enabled w.r.t. the p/t-net (N ′, m0). Altogether, for a set of enabled
LSOs w.r.t. (N, m0), the LPOs underlying these LSOs are enabled w.r.t. the underlying
p/t-net (N ′, m0). Considering a one place-net (N, m0) as in the definition of feasible
places, it becomes clear that we have the following necessary condition for a feasible
place p w.r.t. a stratified language L: The place p′ underlying p defined by omitting the
inhibitor relation from p is feasible w.r.t. the underlying partial language consisting of
the LPOs underlying the LSOs from L.

Lemma 1. Let L be a stratified language with transition labels T and let L′ = {(V, ≺
, l) | (V, ≺, �, l) ∈ L} be the partial language underlying L. Then for any place p
feasible w.r.t. L (in the pti-net context) the place p′ underlying p, defined by W (p′, t) =
W (p, t), W (t, p′) = W (t, p), I(p, t) = ω for every t ∈ T and m0(p′) = m0(p), is
feasible w.r.t. L′ (in the pti-net as well as the p/t-net context).

That means, any place p feasible w.r.t. L can be constructed from a place p′ which is fea-
sible w.r.t. the underlying partial language L′ and has inhibitor weights I(p′, t) = ω (for
every transition t ∈ T) by adding appropriate (respectively feasible) inhibitor weights
I(p, t). In particular, every place p feasible w.r.t. L fulfilling I(p, t) = ω for every tran-
sition t ∈ T is feasible w.r.t. L′. On the other hand also the reverse holds: Every place
p′ feasible w.r.t. L′ is feasible w.r.t. L because the enabledness of the underlying LPOs
from L′ w.r.t. the one place net defined by p′ implies the enabledness of the original
LSOs from L w.r.t. this net (since they have more causal ordering). Consequently, the
sets of feasible places p with I(p, t) = ω for every t ∈ T coincide for L and L′. Since
L′ is a partial language and the restriction I(p, t) = ω corresponds to p/t-net places, we
can characterize these places using the theory of regions for partial languages and p/t-
nets from [10]: The p/t-net places feasible w.r.t. the partial language L′ are exactly the
places defined by regions of L′. Thus, we can characterize the set of all feasible places p
w.r.t. L fulfilling I(p, t) = ω for every t ∈ T with the regions theory of [10]. Moreover,
from Lemma 1 we know that any further place feasible w.r.t. L having inhibitor weights
not equal to ω coincides with one of these feasible places p (fulfilling I(p, t) = ω for
every t ∈ T) except of the inhibitor weights.

As a consequence, the regions definition in our setting is based on the regions def-
inition for partial languages and p/t-nets. More precisely, we start with p/t-net regions
of the underlying partial language L′. This leads to the set of feasible places p fulfill-
ing I(p, t) = ω for every t ∈ T as described above. Then we examine for each such
p which other inhibitor weight combinations I(p, t) (preserving the flow relation and
the initial marking) also lead to feasible places. For this we use that incrementing an
inhibitor weight alleviates the behavioural restriction of the respective inhibitor arc. In
particular the set of enabled step sequences and the set of executions increases. Conse-
quently incrementing the inhibitor weight of a feasible place obviously leads again to a

354 R. Lorenz, S. Mauser, and R. Bergenthum

feasible place (since the resulting places are causally less restrictive). That means, con-
sidering a feasible place p as above with I(p, t) = ω for every t ∈ T , there is a minimal
value Imin(p, t) ∈ N∪{ω} for the inhibitor weight to every single transition t such that
the following holds: p is still feasible if we change I(p, t) so that I(p, t) ≥ Imin(p, t)
and no more feasible if we change I(p, t) so that I(p, t) < Imin(p, t) (preserving
I(p, t′) = ω for every t′ ∈ T \ {t}). Now it is important that we can combine these
different minimal values Imin(p, t) (for different t ∈ T) to one global lower bound in
the following sense: Preserving the flow relations and the initial marking, p is feasible
if I(p, t) ≥ Imin(p, t) for every t ∈ T and p is non-feasible if I(p, t) < Imin(p, t) for
one t ∈ T . This combination to one global bound is possible because, given a fixed flow
relation, the inhibitor arcs have no causal interrelation between each other. That means
it is possible to check the enabledness of an LSO by testing the enabledness w.r.t. the
inhibitor arcs one by one. Altogether, the set of feasible places w.r.t. a stratified lan-
guage L can be defined by the set of p/t-net places (places p with I(p, t) = ω for every
t ∈ T) feasible w.r.t. L together with a global lower bound for the inhibitor weights of
each such p/t-net place. Since the feasible p/t-net places p can be characterized by the
regions definition for partial languages and p/t-nets, we first recall the regions defini-
tion of [10]. Based on this regions definition we then identify the lower inhibitor weight
bounds Imin(p, t) for the respective places p which then leads to the set of all feasible
places w.r.t. L. This generalizes the definition of regions from [10].

The idea of defining regions for partial languages in [10] is based on the notion of
token flow functions: If two events v and v′ are ordered in an LPO lpo = (V, <, l) –
that means v < v′ – this specifies that the corresponding transitions l(v) and l(v′) are
causally dependent in the sense of an ”earlier than” relation. In a p/t-net such a causal
dependency arises exactly if the occurrence of the transition l(v) produces tokens in
a place, which are consumed by the occurrence of the other transition l(v′). Such a
place will be defined by a token flow function x: Assign to every edge (v, v′) of lpo
a natural number x(v, v′) representing the number of tokens which are produced by
the occurrence of l(v) and consumed by the occurrence of l(v′) in the place to be
defined. Thus, a token flow function x describes the flow weights of a respective place.
Additionally the initial and final marking of the place have to be regarded. Therefore,
we extend an LPO lpo by an initial and final event, representing transitions producing
the initial marking of the place to be defined and consuming the final marking of the
place to be defined (after the occurrence of lpo). This leads to the �-extension lpo� =
(V �, <�, l�) of lpo defined by V � = (V ∪{v0, vmax}), v0, vmax /∈ V , ≺�=≺ ∪({v0}×
V) ∪ (V × {vmax}) ∪ {(v0, vmax)}, l�(v0), l�(vmax) /∈ l(V), l�(v0) �= l�(vmax) and
l�|V = l (v0 is the initial event of lpo and vmax the final event of lpo). By defining
the token flow function on the edges of lpo� (instead of lpo) also the initial and final
marking can be specified.

The natural numbers assigned to the arcs of lpo� by x represent the consumed and
produced tokens of the involved transitions in the respective place (whereas the tokens
produced by the initial event are interpreted as the initial marking and the tokens con-
sumed by the final event as the final marking). Since the consumed and produced tokens
of a transition in a fixed place is given by the flow weights W, we can define the flow
weights of the place by x. Clearly, a necessary condition for the definition of W is

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 355

that equally (with the same transition) labelled events should produce and consume the
same overall number of tokens w.r.t. x. The number of tokens produced by an event v
of an LPO lpo� = (V �, <�, l�) is called the outtoken flow of v (w.r.t. lpo and x) de-
fined by Outlpo(v, x) =

∑
v<�v′ x(v, v′). The outtoken flow Outlpo(v0, x), which by

construction represents the initial marking of the place to be defined by x, is called the
initial token flow of lpo (w.r.t. x). The number of tokens consumed by an event v of an
LPO lpo� = (V �, <�, l�) is called the intoken flow of v (w.r.t. lpo and x) defined by
Inlpo(v, x) =

∑
v′<�v x(v′, v).

For the definition of the token flow function we not only have to regard one LPO, but
a partial language L′ over T . Thus we have to consider token flow functions on a set of
LPOs. The central property that equally labelled events should produce and consume
the same number of tokens has to be extended spanning all LPOs of the given partial
language in this situation. Furthermore, since the initial marking has to be unique, the
number of tokens produced by the initial event has to coincide for all regarded LPOs.

Formally we consider a �-extension lpo� = (V �, <�, l�) of each lpo ∈ L′ such
that (i) for each two LPOs (V, <, l), (V ′, <′, l) ∈ L′ l�(v0) = (l′)�(v0) and (ii)
l�(vmax) �= (l′)�(vmax) (�∈ T) for each two distinct (V, <, l), (V ′, <′, l′) ∈ L′. Then
the set (L′)� = {lpo� | lpo ∈ L′} is called �-extension of L′. We denote E(L′)� =⋃

(V �,<�,l�)∈(L′)� <� as the set of edges of all �-extensions of LPOs in L′. A token
flow function x of L′ is a function assigning natural numbers to every edge in E(L′)� ,
such that the tokens produced and consumed by equally labelled events coincide.

Definition 9 (Token flow function of a partial language). Let L′ be a partial lan-
guage, then a function x : E(L′)� → N is called token flow function of L′, if for all
lpo = (V, <, l), lpo′ = (V ′, <′, l′) ∈ (L′)� and for all v ∈ V �, v′ ∈ V ′� there holds:
l(v) = l′(v′) =⇒ (Inlpo(v, x) = Inlpo′(v′, x) ∧ Outlpo(v, x) = Outlpo′(v′, x)).

Since we required that the initial events of all LPOs in (L′)� have the same label, De-
finition 9 especially implies that the initial token flows of all LPOs in L′ are equal. As
explained, the coincidence of the intoken and outtoken flow (respectively the consumed
and produced tokens) w.r.t. x of equally labelled events allows to define the corre-
sponding place px to x (in the net with transitions given by the node labels T of L′) by
W (l(v), px) = Outlpo(v, x), W (px, l(v)) = Inlpo(v, x) and m0(px) = Outlpo(v0, x)
for every lpo ∈ L′ and every node v of lpo. That means the flow weights of px are
given by the intoken and outtoken flow of the LPO-events and the initial marking by
the initial token flow of the LPOs. In [10] the regions of a partial language L′ are ex-
actly the token flow functions of L′ as defined here. The respective feasible places are
the corresponding places.

We are now interested in token flow functions of the partial language L′ underlying
the given stratified language L. Thereto we formally define a token flow function of a
stratified language as a token flow function of its underlying partial language:

Definition 10 (Token flow function of stratified languages). Let L be a stratified lan-
guage. Then a token flow function of L is a token flow function of the partial language
L′ = {(V, ≺, l) | (V, ≺, �, l) ∈ L} underlying L.

In illustrations we annotate each ≺-arc of an LSO in L with the value assigned to the
respective arc in L′ by a token flow function x (the value 0 is not shown). The non-

356 R. Lorenz, S. Mauser, and R. Bergenthum

zero values of x assigned to edges starting from v0 respectively ending in vmax are
depicted with small arrows without an initial node respectively without a final node.
We only consider minimal LSOs of L because the values of a token flow function on
the edges of an LSO already constitute the values on edges of prefixes and extensions
(as in the LPO-case). Figure 3 sketches an example token flow function of the stratified
language from Figure 1 and the respective corresponding place p (with I(p, t) = ω for
all t ∈ T). The intoken and outtoken flow of equally labelled nodes coincide (e.g. all
b-labelled nodes have intoken flow 1 and outtoken flow 2 and the initial token flow of
all underlying LPOs is 0).

a a

b

c

1 1

2b

c a

b

a

1 1

2 2

b

c a

b

1

a

b

1

b

c a

1

a

b

1

b

c a

p
1

1

22

2

1

1

2

Fig. 3. A token flow function of the stratified language from Figure 1 and the corresponding
(feasible) place (with inhibitor weights ω)

According to the above explanations, the places p corresponding to token flow func-
tions x of a stratified language L now exactly define all feasible places w.r.t. L with
inhibitor weights ω. In particular, the place p in Figure 3 is feasible w.r.t. the given
stratified language. Now it remains to identify the lower bounds Imin(p, t) (t ∈ T) for
each of these feasible places p (such that I(p, t) ≥ Imin(p, t) for every t ∈ T still leads
to a feasible place p but I(p, t) < Imin(p, t) for some t ∈ T leads to a non-feasible
place p). These minimal possible inhibitor weights Imin(p, t) have to be detected with
the token flow function x of L. The strategy is as follows: Considering a node v of an
LSO S = (V, ≺, �, l) ∈ L we calculate the minimal inhibitor weight Inh(x, v) from
p to l(v) (where p corresponds to x), such that the occurrence of the transition l(v)
according to the causal dependencies given for v in S is possible. That means, the event
v in the context of the scenario given by S must not be prohibited by an inhibitor arc
from p to l(v) in the net if I(p, l(v)) ≥ Inh(x, v), but it is prohibited by such an arc
if I(p, l(v)) < Inh(x, v). Choosing the inhibitor weight I(p, l(v)) too small leads to
an intermediate marking state of the scenario S in which a too large number of tokens
in p prohibits the occurrence of v. Consequently, in order to determine the minimal in-
hibitor weight Inh(x, v) not prohibiting v – called inhibitor value of v (w.r.t. x) in the
following – it is necessary to calculate the numbers of tokens in p for all intermediate
states in which v can occur according to S. Such states are exactly defined by prefixes
of v. The maximum of all these possible numbers of tokens in p in such a prefix-state
then defines the inhibitor value Inh(x, v) of v, because according to the scenario S the
transition l(v) should be enabled in each of these token allocations of p. The number of
tokens in p in one such prefix-state can be calculated by the token flow function x. The
respective number of tokens is given by the number of tokens in p after the execution of

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 357

the prefix in the corresponding one-place net, called the final marking of the prefix w.r.t.
x. By construction, the values of x on ≺�-edges between events of the prefix correspond
to tokens which are produced and consumed in p by events in this prefix. On the other
hand, the values of x on ≺�-edges from events of the prefix to events subsequent to the
prefix correspond to tokens which are produced by events in the prefix and remain in
p after the execution of the prefix. Consequently, the final marking of a prefix can be
determined by adding the values of x on ≺�-edges leaving the prefix.

Definition 11 (Final marking of prefixes). Let L be a stratified language and x be a
token flow function of L. Let S′ = (V ′, ≺′, �′, l′) be a prefix of S = (V, ≺, �, l) ∈ L
and v0 be the initial event of lpo�

S = (V �, ≺�, l�). The final marking of S′ (w.r.t. x) is
denoted and defined by mS′(x) =

∑
u∈V ′, v �∈V ′, u≺v x(u, v) +

∑
v �∈V ′ x(v0, v).

The final marking of a prefix w.r.t. x can equivalently be calculated by firing the tran-
sitions corresponding to the prefix in the one-place net with the place p defined by
x (i.e. it is independent from the concrete token flow distribution x and only depen-
dent on p): mS′(x) =

∑
u∈V ′, v �∈V ′, u≺v x(u, v) +

∑
v �∈V ′ x(v0, v) =

∑
v∈V ′∪{v0}

(
∑

v≺�w x(v, w)−
∑

w≺�v x(w, v)) = Out(v0, x)−
∑

v∈V ′(In(v, x)−Out(v, x)) =
m0(p) −

∑
v∈V ′(W (p, l(v)) − W (l(v), p)) (the first equation follows since the values

on edges within V ′ cancel each other out).
Summarizing, the calculation of Inh(x, v) is achieved by identifying all prefixes of

v and calculating the final marking w.r.t. x for each such prefix. The maximum over
all these numbers gives Inh(x, v); the inhibitor value Inh(x, v) specifies how small the
inhibitor weight I(p, l(v)) may minimally be without prohibiting the event v.

Definition 12 (Inhibitor value). Let L be a stratified language, x be a token flow func-
tion of L and v be an event of an LSO S ∈ L. The inhibitor value Inh(x, v) of v w.r.t. x
is defined by Inh(x, v) = max{mS′(x) | S′ is prefix of v w.r.t. S}.

Figure 4 shows the token flow function from Figure 3 supplemented with the inhibitor
values of all nodes (depicted in circles attached to the nodes). For example, consider
the c-labelled node of the first LSO (from left). This node has four prefixes: the empty
prefix with final marking 0, two prefixes consisting of one a-labelled node each with
final marking 1 and a prefix with both a-labelled nodes and final marking 2.

Having determined Inh(x, v) for all nodes v of all LSOs in L one can specify the
minimal inhibitor weight I(p, t) from p to some transition t such that no t-labelled event

a a

b

c

1 1

2b

c a

b

a

1 1

b

c a

b

1

a

b

1

b

c a

1

a

b

1

b

c a

p

22

33

22

33

22 22

33

22 22

33

11

22

33

22 11

22

33

22

3

3

2

2 2 1

1

22

2

1

1

2

33 33

Fig. 4. The token flow function from Figure 3 supplemented with the inhibitor values of all
LSO nodes and the feasible place corresponding to the respective region with minimal inhibitor
weights

358 R. Lorenz, S. Mauser, and R. Bergenthum

is prohibited by the supremum of all Inh(x, v) for events v labelled by t. This leads to
Imin(p, t) because the fact that no such t-labelled event is prohibited by the inhibitor
weight I(p, t) exactly describes that the place p is still feasible with this inhibitor weight
I(p, t) (instead of ω): Imin(p, t) = sup({Inh(x, v) | v ∈ VL, l(v) = t} ∪ {0}), where
VL =

⋃
(V,≺,�,l)∈L V is the set of all nodes of L. That means we calculate the inhibitor

values of all nodes (over all LSOs of L) w.r.t. a given token flow function x using
the method described above. The suprema of all inhibitor values of equally labelled
nodes lead to the minimal inhibitor weights defining a feasible place w.r.t. L which
corresponds to x. These minimal inhibitor weights I(p, t) = Imin(p, t) represent the
strongest behavioural restriction through inhibitor arcs for the place p defined by x
guaranteeing the feasible-property. Thus regions of stratified languages w.r.t. pti-nets
are defined by token flow functions x (defining p/t-net places) attached with inhibitor
weight mappings I : T → N ∪ {ω} determining an inhibitor weight to every transition
t ∈ T which exceeds Imin(p, t):

Definition 13 (Region). A region of a stratified language L with labels T w.r.t. pti-nets
is a tuple r = (x, I) where x is a token flow function of L and I : T → N∪{ω} is a map-
ping assigning inhibitor weights to all transitions satisfying I(t) ≥ sup({Inh(x, v) |
v ∈ VL, l(v) = t} ∪ {0}).

The place pr (in a net with transition set T) corresponding to a region r = (x, I) of L
is defined by the flow weights and the initial marking of the place px corresponding to
the token flow function x (i.e. W (l(v), pr) = Outlpo(v, x), W (pr, l(v)) = Inlpo(v, x)
and m0(pr) = Outlpo(v0, x) for LPOs lpo underlying LSOs in L) and the inhibitor
weights I(pr, t) = I(t) for t ∈ T .

The token flow function x in Figure 4 together with the mapping I given by I(a) =
3, I(b) = 3, I(c) = 2 defines a region r = (x, I). In fact this is the respective region
with minimal inhibitor weights, i.e. r′ = (x, I′) is also a region if I′ ≥ I but no region
if I′ �≥ I. On the right the feasible place p corresponding to r is depicted.

The main theorem of this paper showing the consistency of the above regions defini-
tion now states (1) and (2) (compare Section 3) in this setting. Its proof essentially uses
the definition of the enabledness of an LSO via the enabledness of its linearizations.
According to the following lemma the enabledness of an event after some prefix of an
LSO can be examined on the set of its linearizations.

Lemma 2. Let S = (V, ≺, �) be an so-structure, V ′ ⊆ V and v ∈ V . Then V ′ defines
a prefix of v w.r.t. S if and only if there is a linearization S′ ∈ lin(S) such that V ′

defines a prefix of v w.r.t. S′.

Proof. The if-statement clearly follows from S′ ⊇ S.
For the only if-statement we construct a sequence of event-sets V1 . . . Vn with V =

V1 ∪ . . . ∪ Vn defining S′ through ≺S′=
⋃

i<j Vi × Vj and �S′= ((
⋃

i Vi × Vi)∪ ≺S′

) \ idV as follows: V1 = {v ∈ V ′ | ∀v′ ∈ V ′ : v′ �≺ v}, V2 = {v ∈ V ′ \ V1 |
∀v′ ∈ V ′ \ V1 : v′ �≺ v} and so on, i.e. we define Vi ⊆ V ′ as the set of nodes
{v ∈ V ′ \ (

⋃i−1
j=1 Vj) | ∀v′ ∈ V ′ \ (

⋃i−1
j=1 Vj) : v′ �≺ v} which are minimal w.r.t.

the restriction of ≺ onto the node set V ′ \ (
⋃i−1

j=1 Vj), as long as V ′ \ (
⋃i−1

j=1 Vj) �= ∅.

Then continue with the same procedure on V \ V ′ = V \ (
⋃i

j=1 Vj), i.e. Vi+1 = {v ∈

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 359

V \ (
⋃i

j=1 Vj) | ∀v′ ∈ V \ (
⋃i

j=1 Vj) : v′ �≺ v} and so on. By construction V ′ is a
prefix (of v) w.r.t. S′. A straightforward computation also yields S′ ∈ lin(S).

Theorem 2. Given a stratified language L with set of labels T : (1) Every place cor-
responding to a region of L is feasible w.r.t. L and (2) every feasible place w.r.t. L is
corresponding to a region of L.

Proof. (1): Let p be corresponding to a region r = (x, I) of L. We have to show that
S ∈ L is enabled w.r.t. the one-place net (N, m0) having p as its only place. Since x
is a token flow function (called region in [10]) of the partial language L′ underlying L
the main result of [10] tells us that the LPO lpoS ∈ L′ underlying S is enabled w.r.t.
the place px corresponding to x. Consequently also S (since lin(S) ⊆ lin(lpoS))) is
enabled w.r.t. px. In order to show that S is enabled w.r.t. p (differing from px only in
the inhibitor weights), we consider a sequence of transition steps σ = τ1 . . . τn, whose
underlying LSO Sσ is a linearization of S. We have to show that σ is an enabled step
occurrence sequence of (N, m0). For this, we show inductively that if σk = τ1 . . . τk

is an enabled step occurrence sequence, then τk+1 is a transition step enabled in the
marking m reached after the execution of σk for 0 � k � n − 1. The above con-
siderations (S enabled w.r.t. px) already imply the first condition of Definition 2 that
m(p) ≥

∑
t∈τk+1

τk+1(t)W (p, t). It remains to verify the condition of Definition 2
that m(p) ≤ I(p, t) for each transition t ∈ τk+1. If Sσk

= (Vk, ≺k, �k, lk) is the LSO
underlying σk and Sσ ⊇ S is the LSO underlying σ, then Sσk

is a prefix of an event
v ∈ V with l(v) = t w.r.t. Sσ . By Lemma 2, Vk also defines a prefix Sk of v w.r.t. S.
It is enough to show that m(p) = mSk

(x), since mSk
(x) ≤ Inh(x, v) ≤ I(l(v)) =

I(p, t) (Definitions 12 and 13): m(p) = m0(p) −
∑k

i=1
∑

t∈τi
τ(t)(W (p, t) −

W (t, p)) = m0(p) −
∑

v∈Vk
(W (p, l(v)) − W (l(v), p)) = mSk

(x) (compare the re-
marks to Definition 11).

(2): Let p be feasible w.r.t. L. Then, by Lemma 1 the place p′ underlying p is feasible
w.r.t. the partial language L′ underlying L. The main result of [10] now states that there
is a token flow function x of L′ (called region in [10]) generating p′. We show now that
r = (x, I(p, ·)) is a region of L (according to Definition 13). The first part that x is
a token flow function of L is clear since x is a token flow function of L′. It remains
to show I(p, t) ≥ sup({Inh(x, v) | v ∈ VL, l(v) = t} ∪ {0}). For this let v ∈ V
for S = (V, ≺, �, l) ∈ L with l(v) = t and S′ be a prefix of v defined by V ′. We
have to show that mS′(x) ≤ I(p, t) (compare Definition 12). By Lemma 2 there is a
linearization Slin of S such that V ′ also defines a prefix S′

lin of v w.r.t. Slin. Since S is
enabled w.r.t. the one-place net (N, m0) having p as its only place, there is an enabled
step occurrence sequence σ = τ1 . . . τn of (N, m0) whose underlying LSO Sσ equals
Slin. Since prefixes are downward �-closed, a prefix σ′ = τ1 . . . τm (m < n) of σ
with l(v) = t ∈ τm+1 must exist which corresponds to S′

lin. In other words, the LSO
Sσ′ underlying σ′ equals S′

lin. It is enough to show now that m(p) = mS′(x) for the
marking m reached after the execution of σ′ in (N, m0), since m(p) ≤ I(p, t) for each
transition t ∈ τm+1. The necessary computation is as in (1).

Thus the set of all feasible places and therefore a solution for the synthesis problem can
be derived from the set of regions.

360 R. Lorenz, S. Mauser, and R. Bergenthum

5 Conclusion

In this paper we introduced the notion of regions for a (possibly infinite) set of LSOs
– called stratified language – describing the behaviour of a pti-net. Given a stratified
language L, using such regions allows to define the saturated feasible pti-net (N, m0)
w.r.t. L. The set of executions L(N, m0) of (N, m0) includes L and is as small as
possible with this property.5 Thus, the contribution of this paper is to solve the synthesis
problem satisfactory from the theoretical point of view (for the considered setting).
Practical algorithmic considerations are a topic of further research (see also below).

The presented approach carries over to the a-posteriori semantics of pti-nets, whose
non-sequential scenario-based behaviour is given by LPOs, i.e. by partial languages.
To define regions for partial languages w.r.t. pti-nets, one can analogously start with
regions of the partial language from [10] not specifying inhibitor arcs and then assign
inhibitor values to each node. Now, these inhibitor values are determined as maxima
over all final markings of classical prefixes of nodes of an LPO, where one has to use
a slightly different definition of final markings. It is moreover possible to adapt the
presented definition of regions to other less general inhibitor net classes, such as p/t-
nets with unweighted inhibitor arcs and elementary nets with inhibitor arcs. Thereby
in the case of elementary nets one additionally has to regard that a place defined by
a region must not carry more than one token in each intermediate state of an LSO.
This can be ensured by only allowing final markings of prefixes � 1 (that means by an
analogous mechanism as used for the definition of inhibitor arcs). For step transition
systems and stratified languages which produce the same language of step sequences,
it would be interesting to compare our (adapted) definition of regions for elementary
nets with inhibitor arcs and the definition of regions from [11,12]. The relation is not
obvious since several different step transition systems may define the same language of
step sequences. In general the ideas presented in this paper should also be useful for the
consideration of the synthesis problem of other so-structure based net classes (such as
nets with read arcs, priorities, reset arcs, etc.) as well as net classes conceptually similar
to inhibitor nets (e.g. elementary nets and nets with capacities).

One of course is interested in practical algorithmic solutions of the synthesis prob-
lem. Basically the regions approach has the problem that there is an infinite number of
feasible places respectively regions of a stratified language. Our recent publication [9]
tackles this problem for finite partial languages and p/t-nets, i.e. a special case of the
setting in [10]. Thereto the definition of token flow function is translated into a finite
integer system of homogenous inequations A ·x ≥ 0: The finite vector x represents the
token flow function and the inequations reflect the conditions of Definition 9 and en-
sure positive token flows (x ≥ 0). It is shown that one can calculate a finite set of basis
solutions of this system which defines a set of places spanning all feasible places.6 That
means the net consisting only of these finite, algorithmically determinable set of places

5 Note that such a region based approach is not appropriate to find a pti-net (N, m0) such that
L(N, m0) ⊆ L and L(N, m0) is as large as possible.

6 An alternative approach is to compute finite many regions which ”separate” specified behav-
iour from not specified behaviour. It is possible to deduce appropriate separation properties
from the mentioned algorithm. Such an approach leads to a different finite representation of
the saturated feasible net.

Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios 361

has the same set of executions as the saturated feasible net. Furthermore an algorithm
testing if this net has the behaviour specified by the finite partial language is shown. In
the setting of this paper a similar approach for the effective synthesis of pti-nets from
finite stratified languages is possible, i.e. it is possible to calculate finitely many basis
regions spanning the set of all regions (using an adequate inequation system). The for-
mal evolution and proofs for this approach including complexity issues are one of our
recent research projects in this topic.

But this approach still leaves the problem that it does not work for infinite stratified
languages. For algorithmic purposes an infinite stratified language first has to be finitely
represented. This problem is strongly connected to the similar problem in the case of
p/t-nets and partial languages which is one of our central current research fields.

References

1. Badouel, E., Darondeau, P.: On the synthesis of general petri nets. Technical Report 3025,
Inria (1996)

2. Busi, N., Pinna, G.M.: Synthesis of nets with inhibitor arcs. In: Mazurkiewicz, A.W.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165. Springer, Heidelberg
(1997)

3. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Hardware and
petri nets: Application to asynchronous circuit design. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 1–15. Springer, Heidelberg (2000)

4. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part i: Basic notions and the rep-
resentation problem. Acta Inf. 27(4), 315–342 (1989)

5. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part ii: State spaces of concurrent
systems. Acta Inf. 27(4), 343–368 (1989)

6. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)
7. Juhás, G., Lorenz, R., Mauser, S.: Complete process semantics for inhibitor nets. In: Pro-

ceedings of ICATPN 2007 (2007)
8. Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190(1),

18–69 (2004)
9. Lorenz, R., Bergenthum, R., Mauser, S., Desel, J.: Synthesis of petri nets from finite partial

languages. In: Proceedings of ACSD 2007 (2007)
10. Lorenz, R., Juhás, G.: Towards synthesis of petri nets from scenarios. In: Donatelli, S., Thi-

agarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 302–321. Springer, Heidelberg
(2006)

11. Pietkiewicz-Koutny, M.: The synthesis problem for elementary net systems with inhibitor
arcs. Fundam. Inform. 40(2-3), 251–283 (1999)

12. Pietkiewicz-Koutny, M.: Synthesising elementary net systems with inhibitor arcs from step
transition systems. Fundam. Inform. 50(2), 175–203 (2002)

13. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47(2),
237–267 (2003)

14. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

15. Zhou, M., Cesare, F.D.: Petri Net Synthesis for Discrete Event Control of Manufacturing
Systems. Kluwer, Dordrecht (1993)

Utilizing Fuzzy Petri Net for Choreography

Based Semantic Web Services Discovery�

Peng Men, Zhenhua Duan, and Bin Yu

Institute of Computing Theory and Technology
Xidian University

Xi’an, 710071, P.R. China
pengmen@gmail.com, zhhduan@mail.xidian.edu.cn,

yubin@mail.xidian.edu.cn

Abstract. Semantic Web Services have received great popularity these
days for their capability of providing more automatic web services dis-
coveries and compositions. However, the issue of behavior compatibility
is still not properly solved. In this paper, we propose a choreography-
based formal approach to discover semantic web services that are com-
patible with their behaviors. The fuzzy petri net is used to perform the
modeling, verification, analysis and evaluation for the matchmaking of
semantic web services. The requested and provided services are modeled
by two fuzzy petri nets combined through a set of combination rules. By
analyzing the composite fuzzy petri net, the behavior compatibility can
be verified, and the matching degree between requested and provided
services can be obtained. With our approach, the success rate and accu-
racy of the semantic web services discoveries can be improved, and the
final services set can be optimized.

Keywords: fuzzy petri net, semantic web services, ontology,
matchmaking.

1 Introduction

Web services are the corner stone of the Service Oriented Architecture (SOA),
and made it possible to build loose-coupled and platform-independent systems
in an Internet scale. A web service performs an encapsulated function and can
be described by WSDL [1]. However, the SOA is not able to be realized unless
web services can flexibly be composed. To achieve such flexible compositions,
the Business Execution Languages for Web Services (BPEL4WS) [2] was co-
authored by current major IT players, such as Microsoft and IBM. OWL-S [3]
made further attempts by incorporating semantic web technologies to achieve
more automatic web services discoveries and compositions.

� This research is supported by the NSFC Grant No. 60373103 and 60433010.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 362–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Utilizing Fuzzy Petri Net for Choreography 363

In order to compose web services effectively by selecting the most suitable
services, we need to discover web services that can be safely integrated. It is
necessary to consider the following issues:

1. The behavior compatibility needs to be solved for OWL-S based discoveries
and compositions. A composite service usually offers multiple operations,
which must be choreographed according to its conversation protocol, i.e. two
semantic web services must be compatible in their behaviors. The behaviors
of two web services are compatible if their operations can be successfully
invoked in the desired orders specified in related business protocols.

2. Rational evaluating the matching degree between two web services is re-
quired. It need evaluate what extent the provided services can meet the
requested services. According to the results of evaluating, we can select the
most suitable services. The composite web services based on choreography
accomplish a series of interactive processes. Thus, for calculating the match-
ing degree between services, not only are the service functions and qualities
compared, but also their interactions are considered.

For solving both of the problems, a formal method is proposed in this paper.
With this approach, fuzzy petri net (FPN) is utilized modeling the behavior
descriptions in requested and provided services. By combining the two FPNs
and analyzing the composite FPN, the compatibility of behavior can be validated
effectively. Further, using FPN fuzzy reasoning can calculate the matching degree
between services. This method not only evaluates the possibility of one atomic
operation substituting for another, but also considers the possibility of match
between two services in all kinds of interactions. Therefore, the matching degree
between services can be comprehensively evaluated.

The rest of the paper is organized as follows. Section 2 describes existing
problems in current web services discoveries with a motivating example; Section
3 briefly introduces the FPN and the ontology concept similarity; Section 4
proposes the transformation from the OWL-S process model into an FPN; after
that, in Section 5, the matchmaking algorithm is introduced to compose the
FPNs describing the two web services into one FPN; In Section 6, the resulted
FPN is analyzed to determine if the behaviors of the two web services in question
are compatible, and the matching degree between two services is also evaluated;
the conclusion and future works are drawn in Section 7.

2 Motivation Example

In this section, a car sale example is used to introduce the notion of our approach.
The entire car sale business process is based on the choreography between buyer
and seller services. The internal business processes of the two services are de-
scribed with OWL-S. As depicted in Fig.1, the car sale is performed in the
following order:

– The buyer service invokes the operation SearchCarInfo of the seller service
to inquire whether the desired car is available.

364 P. Men, Z. Duan, and B. Yu

– If the desired car is not available, the operation NotifyOutofStock of the
buyer service is invoked. Then the buyer service replies the client with a
message, and the transaction terminates.

– If the desired car is available, the seller service informs the buyer service
by invoking the NotifyinStock operation. Then, the buyer service in turn
invokes the operations SetAccount and SetPIN of seller service to pass the
AccountInfo and PINInfo messages, respectively.

– Finally, the seller service passes the order confirmation to the buyer service
by invoking the SetOrderConfirm operation, and the confirmation message
is returned to the client.

Buyer Service

Choice Stock status

SendFailure

SendAccount

SendPIN

SendOrder

Seller Service

SearchCarInfo

ChoicebyStock

SetPINInfo

SendOrderConfirm

SetAccount

SendNotifyinStock SendNotifyOutofStockNotifyinStockNotifyOutofStock

SetOrderConfirm

SearchCar

Fig. 1. The interaction between the seller service and the buyer service

The matchmaking of current semantic web services discoveries [4,9,10] widely
employs the following strategies: the input of the provided service subsumes
the requested input; the output of the provided service subsumes the requested
output. However, this kind of pure subsumption based matchmaking has some
deficiencies. For instance, the buyer and seller services are not likely to be aware
of the existence of the other services in advance, and might be implemented based
on different business protocols. This can cause direct conflicts in execution condi-
tions. For example, the seller service requires account information before making
any inquiries, while the buyer service prefers to perform free inquiries before any
account information is sent. In this case, the business protocol differences cause
a deadlock, even the semantics of the two service interfaces are matched. The
compatibility of two web services is verified by Alex [5] and Wombacher [6]

Utilizing Fuzzy Petri Net for Choreography 365

with petri net and automata, respectively. However, these approaches are not
based on semantics. They are performed under the assumption that elements of
two message sequences to be compared must come from the same WSDL doc-
ument to guarantee the same message name represents the same semantics. In
[7] Lei transforms OWL-S Process Models into Extended Deterministic Finite
Automata (EDFA), and multiplies the resulted EDFAs to determine whether
the service described by the OWL-S Process Model is matched. However, the
approach can only handle the cases that the semantics of the input and output
parameters are exactly matched, without the matching degree being specified.

For the calculation of the matching degree between services, in general, some
approaches for comparing the semantics of IOPE or/andQoS are adopted [8]. Nev-
ertheless, this method has not considered the effect of interactions on the matching
degree. In fact, for the different business processes, possibly there exist lots of dif-
ferent interactions between services. So, it is necessary to consider all the possible
interactions when we calculate the matching degree between two services.

Currently, the matchmaking performed during semantic web services discov-
ery is based on the subsumption relationship among different ontology concepts.
However, it might not be satisfied with required demand. For example, when
someone wants to find a car seller service, as a result of the match, a truck seller
might be found instead of a car seller, and it may turn out to be acceptable. So,
We need consider relationship between two arbitrary concepts. In this way, the
matchmaking approach can be enhanced.

To solve the above problems, we utilize FPNs to perform web services dis-
covery at the OWL-S process level. First, the OWL-S process is modeled by an
FPN; then, we calculate the concept similarities with an ontology matchmak-
ing technique; to do so, the relationship between arbitrary ontology concepts is
considered; the two FPNs describing the OWL-S processes are combined into a
composite FPN, and the FPN is analyzed to see whether the behaviors of the
two processes are compatible; as a result, if they are compatible in behaviors,
the matching degree between them is calculated with FPN reasoning rules and
the most suitable services can be selected.

3 Preliminaries

3.1 Introduction to FPN

The FPN is firstly introduced in [12] by Looney. It is frequently applied in fuzzy
knowledge representation and reasoning about the fuzzy information that cannot
be handled by simple petri nets, such as the work introduced in [13,17].

According to the definition in [13], an FPN can be defined as an 8-tuples:

FPN = (P , T , D, I, O, f , α, β), where,
P = {p1, p2, . . . , pn} is a finite set of places;
T = {t1, t2, . . . , tm} is a finite set of transitions;
D = {d1, d2, . . . , dn} is a finite set of propositions;
|P | = |D|

366 P. Men, Z. Duan, and B. Yu

I: T → P∞ is an input function, mapping transitions to sets of their input
places;

O: T → P∞ is an output function, mapping transitions to sets of their output
places;

f : T → [0, 1] is a function, mapping transitions to real values between zero
and one to express the Confidence Factors (CF) of the corresponding rules;

α: P → [0, 1] is a function, mapping places to real values between zero and
one to denote the degrees of truth of the corresponding propositions;

β: P → D is an association function, mapping places to propositions.

When an FPN is used for fuzzy reasoning, a proposition corresponds to a
place; a transition is used to represent the relation between causes and effects; a
token value stands for the degree of truth of a proposition; each transition has
a related CF value representing the strength of the belief in the rule.

In a fuzzy Petri net, the initial token value in a place pi, pi ∈ P , is denoted
by α(pi), where α(pi) ∈ [0,1]. If β(pi)=di, α(pi) = yi then it indicates that
the degree of truth of proposition di is yi. A transition t may fire if α(pi) ≥
λ, ∀α(pi) ∈ I(t) , where λ is a threshold value between zero and one. When
transition t fires, the token values of its input places are used to calculate the
token values of its output places according to certain rule-types.

The basic reasoning rule is of form Ri : IF dj THEN dk (CF = μi) , where dj

and dk are propositions. It can be modeled as shown in Fig.2, where propositions
dj and dk are represented as the places pj and pk, respectively, and the causality
between the two propositions is represented as the transition ti. If yj > λi, rule
Ri becomes valid, and the degree of truth of the consequence proposition dk is
yj = yi × μi; otherwise, rule Ri is invalid and the transition ti cannot be fired.

dj djdk dkμi μi

(a) (b)
ti ti

yj yk yk = yj × μi

Fig. 2. The simplest FPN. (a)Before firing transition ti. (b)After firing transition ti.

If there exist some cases where the antecedent part or consequence part of
a fuzzy rule contain ”AND” or ”OR” connectors, then it is called a composite
fuzzy production rule. According to [13], composite fuzzy production rules are
classified into the following three types:

– Type 1 : IF dj1 AND dj2 AND . . . AND djn THEN dk (CF =μi),where djk

(1≤ k ≤ n) ∈ D. The fuzzy reasoning process of this rule can be modeled
by an FPN as shown in Fig. 3. After fuzzy reasoning, the degree of truth of
dk is min(dj1 , dj2 , . . . , djn) × μi.

– Type 2 : IF dj THEN dk1 AND dk2 AND . . . AND dkx (CF =μi),where dkx

(1≤ x ≤ n) ∈ D. It can be modeled by a FPN as shown in Fig. 4.

Utilizing Fuzzy Petri Net for Choreography 367

– Type 3 : IF dj1 OR dj2 OR . . . OR djn THEN dk (CF =μi),where djk

(1≤ k ≤ n) ∈ D. The fuzzy reasoning process of this rule can be modeled
by an FPN as shown in Fig. 5.

dj1

dkμi

(a) (b)

ti

yj1

yk = min(yj1, yj2, ..., yjn) × μi

yj2

yjn

dj2

djn

dj1

dkμi

ti

yj1

yj2

yjn

dj2

djn

yk

Fig. 3. Fuzzy reasoning process of Type 1 (a)Before firing transition ti. (b)After firing
transition ti.

μi

(a)

ti

yk1 = yj × μi

yj

dk1 yk1

yk2

ykn

dk2

dkn

μi

(b)

ti

yj

dk1 yk1

yk2

ykx

dk2

dkx

yk2 = yj × μi

ykx = yj × μi

dj dj

Fig. 4. Fuzzy reasoning process of Type 2. (a)Before firing transition ti. (b)After firing
transition ti.

dj1

dk

μ1

(a)

t1
yj1

yk = max(yj1 × μ1, yj2 × μ2, yji × μi)

yj2

yjn

dj2

djn

dj1

dkμi

(a)

yj1

yj2

yjn

dj2

djn

t2

tn

t1

t2

tn

μ2

μi

μ1

μ2

μi

Fig. 5. Fuzzy reasoning process of Type 3. (a)Before firing transition ti. (b)After firing
transition ti.

3.2 The Ontology Concept Similarity Value

The pure subsumption based approach has won great popularity in the ontology
concept matchmaking. Typically, this approach tells us how similar one concept
is to another by dividing the similarity into several concrete degrees, such as the
approach in [4]. However, we are motivated to present an approach to calculate
the similarity values over (0,1] instead of evaluating the similarity degrees such
as exact, plugIn, subsumes, and fail. The similarity value can determine how
similar one concept is to the other. By specifying the similarity value, the concept
matchmaking procedure can be more effectively performed.

368 P. Men, Z. Duan, and B. Yu

Transport Tools

0.9 0.7 0.6

Automobile Aircraft
Navigation

0.7
0.9

Jeep Car

0.9
0.7

0.8
0.8

0.6

0.9

Off-road Jeep

Military Jeep

Household Jeep Compact
Convertible

Luxury Car

Truck
0.85

Fig. 6. The class hierarchy of transportation ontology

Cn

C1

Ci

Cn

C1

C1

Cn

Ck

Ci

(a) Cn subsumes C1 (b) C1 subsumes Cn (c) no subsumption relationship

0.8

0.9

0.6

0.87

0.75

0.95

0.8

0.95 0.76

0.9

0.84

Fig. 7. The relation between two concepts

Given an ontology, a concept hierarchy, such as the one depicted in Fig. 6,
can be derived. With each branch, a child concept is associated with a parent
concept. Since the child concepts are derived by property restrictions, they are
more concrete and can provide all the information available from their parent
concepts. Thus, the similarity value is direction-dependent.

For two arbitrary concepts C1 and Cn in the same ontology, their relationships
are shown in Fig.7.

Let the similarity from two adjacent superclass C1 to subclass C2 be denoted
by S(C1, C2). The value can be obtained according to [19].

SimValue(C1, Cn) depending on their positions in the concept hierarchy can
be calculated as follows.

– If C1 and Cn are the same or C1 is the subclass of Cn, as shown (a) in Fig.7,
then SimValue(C1, Cn)=1.

– If C1 is an adjacent subclass of Cn, then SimValue(C1, Cn)= S(C1, Cn).
– If C1 is a parent concept of Cn (n ≥ 2) as depicted in the position relationship

(b) in Fig.7, then SimValue(C1, Cn) is the product of the similarity values
for a series of adjacent classes from C1 class to Cn.
SimValue(C1, Cn)= SimValue(C1, C2) × SimValue(C2, C3) × . . . × Sim-
Value(Cn−1, Cn)

– If there is a kind of relationship between C1 and Cn as depicted in the
position relationship (c) in Fig.7, a Least General Parent (LGP) concept
Ck is calculated, where k≥2 and n≥k+1. Ck is the LGP concept of C1 and

Utilizing Fuzzy Petri Net for Choreography 369

Cn if Ck is the parent concept of C1 and Cn and there is no child concept
of Ck that subsumes C1 and Cn. In this case, the similarity value from C1
to Cn is calculated as follows: SimValue(C1, Cn)= SimValue(Ck, C1) ×
SimValue(Ck, Cn)

4 Transformation and Matchmaking

OWL-S is a semantic markup language that enables us to describe Web services
so that available services can be selected, invoked and composed. The essential
properties of a service are described by the following three classes: ServiceProfile,
ServiceModel and ServiceGrounding. The ServiceProfile provides all the neces-
sary information for a service to be found and possibly selected. In OWL-S,
services are viewed as processes. So, the ServiceModel describes the service in
terms of a process model. The ServiceGrounding defines how to access to the
service by specifying the communication protocols and messages, and the port
numbers to be used.

As part of the ServiceModel, a process model can be used to describe the
interaction protocol between a service and its clients. An OWL-S process model
is organized as a process-based workflow, and describes the behaviors of the
web services. To determine whether two services can be matched, the OWL-
S process models need to be transformed into FPNs. Process models can be
grouped under two heads: atomic and composite processes. Thus, the atomic
process is first modeled by the FPN that can describe four operation primitives.
The composite processes are composed hierarchically of some processes using
control constructs. Therefore, a composite process can be recursively transformed
by unfolding subprocess until the FPN is only constructed by atomic processes
and control constructs.

An FPN can be utilized to model a process model. Such a model is called an
FPN process model.

Definition 1. An FPN = (P , T , D, I, O, f , α, β) is called an FPN process
model if the following conditions can be satisfied:

(1) The set of places is divided into three disjoint sets: internal places PN ,
input places P I and output places PO.

(2) The flow relation is divided into internal flow FN ⊆ (PN × T) ∪ (T ×
PN) and communication flow FC ⊆ (P I × T) ∪ (T × PO).

(3) The net WN = (PN , T, FN) is a workflow net.
(4) f(t) = 1, ∀ t ∈ T .

An FPN represents a composite process, where the net WN is the business
protocol described by the composite process of the service;

4.1 Atomic Process Transformation and Operations Matching

Atomic processes correspond to operations that the service can be directly ex-
ecuted; they have no subprocesses. Each atomic process is described by four

370 P. Men, Z. Duan, and B. Yu

kinds of components: inputs, outputs, preconditions and effects. it can have sev-
eral (includes zero) inputs, outputs, preconditions and effects. In general, the
inputs and outputs of an atomic process can not be empty at the same time. For
simplicity, only input and output are taken into consideration.

There are four web service operation primitives: request-response operation,
one-way operation, notification operation, solicit-response operation, and the
first three primitives can be described by OWL-S atomic processes. An atomic
process with both inputs and outputs corresponds to a WSDL request-response
operation, and can be represented by the FPN process model shown in Fig.8(a).
The transition Op stands for the execution of an atomic process, place Pre
represents the states before the execution of the atomic process, while place Post
represents the states after the execution. Place Input is an input parameter, place
Output is an output parameter. The places Pre and Post belong to PN , while
Places Input and Output belong to P I and PO respectively. An atomic process
can have more than one input/output parameters that are represented by a
group of places. The value of transition CF is 1. Similarly, an atomic process
with inputs, but no outputs, corresponds to a WSDL one-way operation, as
shown in Fig.8(b). An atomic process with outputs, but no inputs, corresponds
to a WSDL notification operation, as shown in Fig.8(c).

Op

Input

Output

Pre

Post

(a) request-response operation

Op

Input

(b) one-way operation

OpOutput

(c) notification operation

interim

(d) solicit-response operation

Output

Input

Pre

PrePre

Post

Post

Post

Fig. 8. Modeling four types of operation

OWL-S uses a composite process to describe solicit-response operation. It is a
composite process with both outputs and inputs, and with the sending of outputs
specified as coming before the reception of inputs. We model the solicit response
operation with an FPN by combining the FPNs for the notification operation
and the one-way operation correspondingly, as shown in Fig.8(d).

Utilizing Fuzzy Petri Net for Choreography 371

A process represents a communication activity. If two web services can interact
with each other, the solicit-response operation and request response operation
should be compatible. Similarly, the notification operation and one way operation
should be compatible. Thus, we propose an algorithm written in pseudo code
shown below to determine if the two operations can be matched.

Requested service operation Provided service operation

RP

RE

RI

PP

PE

ROutput1

ROutputn

PInput1

PInputn

POutput1

POutputm

RInput1

RInputm

t1

tn

tn+1

tn+m

Fig. 9. Matchmaking of the two operations

Fig.9 shows the matchmaking of two operations. In the left dashed border, a
solicit-response operation is described to represent a requested operation, and
the set of output places ROutputSet = { ROutput1, . . . , ROutputn} corresponds
to the operation’s output parameters, while the input places corresponds to
RInputSet = { RInput1, . . . , RInputm}. Similarly in the right dashed border,
a request response operation is described to represent provided operation.

The algorithm of matchmaking two operations

(1) Match the output parameters of the requested operation against the input
parameters of the provided operation.

boolean RequestToProvidedMatch(ROutputSet, PInputSet , threshold)
1 x =| ROutputSet | ; y=| PInputSet |;
2 if (y > x) return false;
3 for each ROutputi in ROutputSet, each PInputj in PInputSet
4 μi = Max (SimVal (Concept(ROutputi),Concept(PInputj)));
5 if (μi < threshhold) return false;
6 connect ROutputi to PInputj with ti whose Confidence Factor is

μi

7 ROutputSet = ROutputSet - ROutputi;
8 PInputSet = PInputSet - PInputj;
9 return true;

372 P. Men, Z. Duan, and B. Yu

The input of the algorithm includes ROutputSet and PInputSet, which are
sets of output and input places corresponding to the requested and provided
service operations’ parameters, respectively. The minimum similarity between
ROutputSet and PInputSet is specified by the parameter threshold. At line 2, if
the size of input sets of the provided service atomic operations is bigger than the
size of output sets of the requested service operations, the two operations are not
matched. At line 4, from each of ROutputSet and PInputSet, a place is picked
out to form a place pair. Function Concept is used to get the concepts of the two
places, while function SimVal and Max are applied to obtain the place pair which
has the biggest concept similarity value. If the biggest similarity value is smaller
than the threshold, the matchmaking fails; otherwise, the place ROutputi is
connected to PInputj via ti whose Confidence Factor is μi. Finally, ROutpui and
PInputj are removed from ROutputSet and PInputSet respectively. If PInputSet
is empty, the for loop completes and the matchmaking is successful.

(2) Match the intput parameters of the requested operation against the output
parameters of the provided operation.

boolean ProvidedToRequestMatch(ROutputSet, PInputSet , threshold)
This algorithm is quite similar to the algorithm in step 1. If the matchmaking

is successful, and RInputi is connected to POutputj with t whose Confidence
Factor is Max (SimVal(Concept (POutputj), Concept(RInputi))).

(3) Check whether the two processes can be matched or not.

boolean RequestToProvidedMatch(ROutputSet, PInputSet, threshold)
∩ boolean RequestToProvidedMatch(POutputSet, RInputSet, threshold)

This algorithm just evaluate the I/O matchmaking result. The two atomic
processes can be matched if their I/O can be both matched.

4.2 Composite Process Transformation and Matchmaking

Composite processes are composed hierarchically of some processes using control
constructs, which represent a series of message exchanges between the service and
its users. The OWL-S process model provides nine control constructs : sequence,
split, split+join, anyorder, if-then-else, choice, iteration, repeat-while and repeat-
until, which specify the temporal sequences of the components.

Each composite process can be regarded as a tree structure, where the non-
leaf nodes are control constructs and the leaf nodes are the atomic processes to
be executed. Fig. 10 shows a tree that represents the OWL-S process model, and
describes the behavior of the seller service in the motivation example. Search-
CarInfo, SendNotifyinStock, SendNotifyOutofStock, SetAccount, SetPinInfo and
SendOrderConfirm are six atomic processes that depict the communication ac-
tivities between the seller service and the buyer service. They are composed hier-
archically of atomic processes and composite processes. In Fig.10, SellerService
process and Continue process are sequentially constructed and ChoiceByStock
is of the Choice structure.

Utilizing Fuzzy Petri Net for Choreography 373

SellerService
(Sequence)

SearchCarInfo
(Atomic)

ChoiceByStock
(Choice)

Continue
(Sequence)

SendNotifyOutofStock
(Atomic)

SendNotifyInStock
(Atomic)

SetAccount
(Atomic)

SetPINInfo
(Atomic)

SendConfirm
(Atomic)

Fig. 10. The tree structure of the OWL-S process model

We transform the composite process into an FPN process modeled by the
following steps:

(1) According to the business protocol of the web service, the composite
process is transformed into a tree structure shown in Fig.10;

(2) The tree structure is transformed into a workflow net. We first define a
transition to represent the web service. The transition just includes one input and
one output place(representing preconditions and post-conditions respectively)as
shown in Fig.11(a). Then this transition is refined using the sequence pattern.
Two new transitions, namely SearchCarInfo and ChoiceByStock, are defined
to replace the previous one. The two transition, SearchCarInfo represents an
atomic process while ChoiceByStock represents a composite process as shown in
Fig.11(b). Finally, it is transformed a workflow net as shown in Fig.11(d).

(3) According to the input/output parameters of the atomic process, the tran-
sitions of the workflow net are connected by directed arcs and places which rep-
resent the interfaces of the atomic process. Finally, an FPN process model in
Fig.11(e) can be formed.

5 Combining FPN Process Modules

To evaluate the matching degree of the two semantic services, the FPN process
models of the two services need to be combined. Then, the result FPN is analyzed
and processed.

Let A = (Pa, Ta, Da, Ia, Oa, fa, αa, βa) and B = (Pb, Tb, Db, Ib, Ob, fb, αb,
βb) be two FPN process models, they are combined into a composite FPN C =
(Pc, Tc, Dc, Ic, Oc, fc, αa, βa) with the following steps:

(1) Add two additional places Cstart and Cfinish, as well as two transitions tα
and tβ whose certification factor is 1. Then the starting and ending places of the
two FPN process models are connected. Thus, Pc = Pa ∪Pb∪ {Cstart, Cfinish },
Dc = Da ∪ Db∪ {“The matchmaking start”, “The matchmaking finish”}, Tc =
Ta∪Tb∪{tα, tβ}, Ic = Ia∪Ib∪{Ic(tα) = {Cstart}, Ic(tβ) = {Afinish, Bfinish}}
and Oc = Oa ∪ Ob ∪ {Oc(tα) = {Astart, Bstart}, Oc(tβ) = {Cfinish}}.

374 P. Men, Z. Duan, and B. Yu

Sequence

Choice

Sequence

seller start

seller finish

seller service

seller start

seller finish

SearchCarInfo

Selling

SearchCarInfo

seller start

seller finish

S1

S1

SendOutofStock Continue

seller start

SearchCarInfo

S1

SendOutofStock

seller finish

SendInStock

S2

SetAccount

S3

SetPINInfo

S3

seller start

SearchCarInfo

S1

SendOutofStock

seller finish

SendInStock

S2

SetAccount

S3

SetPINInfo

S3

SendConfirm

SendConfirm

InputSCI

InputSPI

InputSA

OutputSOS

OutputSIS

OutputSC

(a)

(b)

(c) (d) (e)

Fig. 11. The FPN composite process model transition

(2) Connect the input and output places of the matched two operations. Tran-
sition of the FPN process models represent an atomic process, and they can be
composited into four different operation primitives to describe the requested
operation and provided operation. We need to match each pair of requested op-
eration and provided operations. If the requested operations in one composite
process can be met by the other composite process, they are matched, otherwise
they are not. Whether the two operations are matched can be determined by the
algorithm introduced in Section 4. After the above steps, the places representing
interfaces of operations can be connected by transitions with CF value. Then
the two FPN process models can be combined into the composite FPN. Fig.12
shows the FPN of the matched operations in the motivation example.

6 Analysis

6.1 Analysis Soundness of FPN

The communication between two semantic web services is based on choreog-
raphy. Thus, their behaviors must be compatible besides their interfaces are
semantically equivalent. The composition of two FPN service models into a sin-
gle FPN ensures that the semantics of their interfaces are equivalent. Hence,
we need to verify deadlock-freeness of the composite FPN. A very efficient and
widely accepted method to verify properties is the state space method [20]. The
basic idea is to generate reachable states - as many as necessary to prove or

Utilizing Fuzzy Petri Net for Choreography 375

start

finish

tα

tβ

Astart

Afinish Bfinish

Bstart

SearchCarInfo

B1

SendOutofStock

OutputSOS

SendInStock
OutputSIS

B2

SetPINInfo

B3

B4

SetAccount

SendConfirm

OutputSC

InputSPI

InputSA

InputSCI

SearchCarInfo

OutputSCI

A1

A2

A3

A4

SetOutofStock SetInStock

InputSOS

InputSIS

OutputSPI

SendPINInfo

OutputSA

InputSC

SendAccount

SetConfirm

tSCT

tSIT

tSOS

tSPI

tSA

tSC

Fig. 12. Matchmaking of the two FPN process models

disprove the property. Each node of the graph represents one state of the FPN,
and each arc represents the firing of one transition. Currently, many petri net
tools verify the system soundness with this approach. When a deadlock is found,
the tool generates the relevant part of the reachability graph. More details on
the implemented reachability graph analysis can be found in [20].

In our motivation example, if the seller service requires the buyer service to
provide account information before any further inquiry while the buyer service
requires inquiries first, a deadlock happens. The communication between the
two web services can be easily modeled by FPNs, and the trace from the initial
state to the deadlock can be found through the state space approach. Thus,
we draw the conclusion that our approach can effectively verify the behavior
compatibility of two semantic web services.

6.2 The Matching Degree of Two Web Services

An FPN process model stands for the business protocol of a service, then the FPN
resulted from the composition of the two FPN process models represents the in-
teraction of the two services. Each place corresponds to a proposition, while each
transition represents a fuzzy production rule. For example, the place start corre-
sponds to the proposition: “the interaction starts”; the place end corresponds to
the proposition: “the interaction end”, the transition tα represents the reasoning
rule: IF “the interaction starts” THEN “the buyer service is ready” AND “the
seller service is ready”, with the Confidence Factor of the rule being 1;

376 P. Men, Z. Duan, and B. Yu

Thus, the evaluation of the matching degree can be performed by an FPN
reasoning process: first, the degree of truth of the initial places in the resulted
FPN is 1, and according to the reasoning rules, the degree of truth of the goal
place can be derived. The derived value represents the matching degree of the
two services.

We use the FPN for the reasoning, since it has been proved to be a powerful
representation method for the reasoning of a rule-based system. The popular
reasoning algorithm can be classified into two types, forward reasoning[12,13,14]
and backward reasoning [15,16]. The advantage of backward reasoning is that
only information relative to the goal will be considered. This feature makes
the reasoning process more flexible and more intelligent. Thus, we adopt the
backward reasoning algorithm in this paper. First, an FPN is transformed into a
Backward Tree according to the transformation rules; then, with the Backward
tree, the reasoning process can be performed easily by firing the transitions from
the top layer to the bottom layer; finally the degree of truth of the token in the
goal place is exactly the reasoning result.

Illustration Example
For the sake of the simplicity, Fig.13 only shows a simplified interaction process
of the buyer and seller services.

Let place start, finish, P1, P2,. . . , P12 be fourteen propositions.
D(start): The interaction starts
D(P1) : The buyer service starts
D(P2) : The seller service starts
D(P3) : The parameter provided by the buyer is Aα

D(P4) : The parameter desired by the seller is Aβ

D(P5) : The buyer waits for inquiry result
D(P6) : The seller prepares sending the inquiry result according to the stock
D(P7) : The parameter desired by the buyer is Bα

D(P9) : The parameter provided by the seller is Bβ

D(P8) : The parameter desired by the buyer is Cα

D(P10) : The parameter provided by the seller is Cβ

D(P11) : The buyer service finish
D(P12) : The seller service finish
D(finish): The interaction finish
The interaction of the two web services can be regarded as a rule-based system.

According to the previous interaction process, eleven fuzzy production rules can
be derived, as well as the CF:

Rtα : IF D(start) THEN D(P1) AND D(P2) (CF = 1)
Rt1 : IF D(P1) THEN D(P3) AND D(P5) (CF = 1)
RtSCI : IF D(P3) THEN D(P4) (CF = 0.95)
Rt2 : IF D(P2) AND D(P4) THEN D(P6) (CF = 1)
Rt3 : IF D(P5) AND D(P7) THEN D(P11) (CF = 1)
Rt4 : IF D(P5) AND D(P8) THEN D(P11) (CF = 1)
RtSIS : IF D(P9) THEN D(P8) (CF = 0.85)
Rt5 : IF D(P6) THEN D(P9) AND D(P12) (CF = 1)

Utilizing Fuzzy Petri Net for Choreography 377

start

finish

tα

tβ

P1 tSCI

tSIS

tSOS

P2

P3 P4

P5
P6

P7 P8 P9

P10P12

t1 t2

t3 t4
t5 t6

t7

P11 P12

Fig. 13. A simplified interaction process of the buyer and seller services

Rt6 : IF D(P6) THEN D(P10) AND D(P12) (CF = 1)
RtSOS : IF D(P10) THEN D(P7) (CF = 0.70)
Rtβ

: IF D(P11) AND D(P12) THEN D(finish) (CF = 1)
Let the degree of truth of the proposition D(start) be 1, then we want to

know the degree of truth of proposition D(finish). According to the algorithm in
[16], the FPN structure can be transformed into a Backward Tree, as shown in
Fig.14.

After constructing the Backward Tree, transitions can fire in turn from the
top layer (Layer 8) to the bottom layer (Layer 1). The reasoning process is shown
as follows:

Layer 8: tα fires, then KPS={{P1, 1}}
Layer 7: t1 fires, then KPS={{P1, 1},{P3, 1}}
Layer 6: tα fires, then KPS={{P1, 1},{P3, 1},{P2, 1}}

tSCI fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95}}
Layer 5: t2 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95}}

t1 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95}}
Layer 4: tα fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95}}

t6 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95} ,
{P10, 0.95}}

t5 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95} ,
{P10, 0.95},{P9, 0.95}

tSCI fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95}
,

{P10, 0.95},{P9, 0.95}}
Layer 3: t1 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},

{P10, 0.95},{P9, 0.95},{P5, 1}}
tSOS fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},

{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66}}

378 P. Men, Z. Duan, and B. Yu

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

start

tα

P1

t1

start

start start

start

P3

tSCI

P4

tα

tα tα

tα

P1

P1

P2

P2

t2

P6

t6

P10

tSOS

P7

t1

P5

t3

P11

t1

P3

tSCI

P4

t2

P6

t5 t6

P6

P12
tβ

finish

P6

t5

P9

tSIS

P5 P8

t4

Fig. 14. Backward Tree of the FPN

tSIS fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}

t2 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}

Layer 2: t2 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}
{P11, 0.66}}

t4 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}
{P11, 0.80}}

t5 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}
{P11, 0.80},{P12, 0.95}}

t6 fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}
{P11, 0.80},{P12, 1}}

Layer 1: tβ fires, then KPS={{P1, 1},{P3, 1},{P2, 1},{P4, 0.95},{P6, 0.95},
{P10, 0.95},{P9, 0.95},{P5, 1},{P7, 0.66},{P8, 0.80}}
{P11, 0.80},{P12, 1},{finish, 0.80}}

Now, the degree of truth of the goal place finish has been derived, and it is
valued as 0.80. The value indicates the possibility of the interaction being suc-
cessfully completed. It represents the matching degree between the two services.

Utilizing Fuzzy Petri Net for Choreography 379

7 Conclusion

To accurately and automatically discover required web services for dynamic and
flexible integrating business processes, a formal approach by means of FPNs has
been used. Our approach evaluates the compatibility of services based on the
behavior of web services by semantic matching. It ensures that messages can be
exchanged successfully between provided and requested services and produces
expected effects as much as possible. FPNs are used to perform fuzzy reasoning
and calculate the matching degree of two web services. Therefore, the most
suitable services can be selected.

However, there is a limitation for using our approach to integrate business
processes since we consider only a bilateral matching of web services in this pa-
per. In the future, we will further investigate a multi-lateral matching of web
services. Moreover, a prototype system needs to be developed to prove the fea-
sibility of our approach.

References

1. Chinnic, R., Gudgin, M., Moreau, J-J., Weeawarana, S.: Web Services Description
Language Version 1.2 (2003) http://www.w3.org/TR/2003/WD-wsdl12-20030303

2. Andrews, T., Curbera, F., Dholakia, H., et al.: Business Process Execution Lan-
guage for Web Services (BPEL4WS) version 1.1 (May 2003)

3. The OWL-S Coalition. OWL-S 1.1 Draft Release (2004) http://www.daml.org/
services/owl-s/1.1/

4. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

5. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

6. Wombacher, A., Fankhauser, P., Mahleko, B.: Matchmaking for Business Processes
based on Choreographies. In: Proceedings of the IEEE International Conference
on e-Technology, e-Commerce and e-Service (2004)

7. Lei, L., Duan, Z.: Transforming OWL-S Process Model into EDFA for Service
Discovery. In: Proceedings of the IEEE international Conference on Web Services
(Icws’06), vol. 00, pp. 137–144 (2006)

8. Jian, W.U.: Web service fuzzy matching in internet based manufacturing. Journal
of Zhejiang University, vol. 9 (2006)

9. Xu, J., Zhu, Q., Li, J., Tang, J., Zhang, P., Wang, K.: Semantic Based Web Services
Discovery. In: Proceedings of the AWCC 2004. LNCS, vol. 3309, pp. 388-393 (2004)

10. Sycara, K.: Dynamic Discovery, Invocation and Composition. In: Vouros, G.A.,
Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, Springer, Hei-
delberg (2004)

11. Moszkowski, B.C.: Reasoning about digital circuits. Ph.D Thesis, Stanford Univer-
sity. TRSTAN-CS-83-970 (1983)

12. Looney, C.G.: Fuzzy Petri nets for rule based decision making. IEEE Transactions
on System, Man, and Cybernetics-Part A SMC218 (1), 178–183 (1988)

13. Chen, S.M., Ke, J.S., Chang, J.F.: Knowledge representation using fuzzy Petri nets.
IEEE Transactions on Knowledge and Data Engineering 2(3), 311–319 (1990)

http://www.w3.org/TR/2003/WD-wsdl12-20030303
http://www.daml.org/services/owl-s/1.1/
http://www.daml.org/services/owl-s/1.1/

380 P. Men, Z. Duan, and B. Yu

14. Pedrycz, W., Gomide, F.: A generalized fuzzy Petri net model. IEEE Transaction
Fuzzy Systems 2, 295–301 (1994)

15. Chen, S M: Fuzzy backward reasoning using fuzzy Petri nets. In: IEEE Transactions
SMC Part B: Cybernetics, vol. 30, pp. 846–855

16. Yang, R., Heng, P-A., Leung, K-S.: Backward Reasoning on Rule-Based System
Modeled by Fuzzy Petri Nets through Backward Tree. FSKD, pp. 18-22 (2002)

17. Meimei, G., Mengchu, Z., Xiaoguang, H., et al.: Fuzzy reasoning Petri nets. IEEE
Transactions on System, Man, and Cybernetics-Part A 33(3), 314–324 (2003)

18. Guangsheng, Z., Changjun, J., Zhijun, D.: Service Discovery Framework Using
Fuzzy Petri Net. Journal of Computer Research and Development (2006)

19. Rong, Z.: Study on ontology based Web service discovery and composition tech-
nique: [Master dissertation] Shenyang: Northeastern University (2004)

20. Funk, K.: Petrinetz basierte Analyse von BPEL4WS Geschäftsprozessen. Master’s
thesis, Fachhochschule Nordostniedersachsen, FB Wirtschaft (2005)

Formal Models for Multicast Traffic in Network on Chip
Architectures with Compositional High-Level Petri Nets

Elisabeth Pelz1 and Dietmar Tutsch2

1 LACL, Université Paris 12, Faculté de Sciences, Créteil, France
2 Technische Universität Berlin, Real-Time Systems and Robotics, Berlin, Germany

Abstract. Systems on chip and multicore processors emerged for the last years.
The required networks on chips can be realized by multistage interconnection net-
works (MIN). Prior to technical realizations, establishing and investigating for-
mal models help to choose best adequate MIN architectures. This paper presents
a Petri net semantics for modeling such MINs in case of multicast traffic. The new
semantics is inspired by high-level versions of the Petri box algebra providing a
method to formally represent concurrent communication systems in a fully com-
positional way. In our approach, a dedicated net class is formed, which leads to
three kinds of basic nets describing a switching element, a packet generator, and
a packet flush. With these basic nets, models of MINs of arbitrary crossbar size
can be established compositionally following their inductive definition. Particu-
lar token generation within these high-level nets, as for instance, random load,
yields an alternative approach to the use of stochastic Petri nets as in previous
studies. The simulation of the models under step semantics provides a basis for
performance evaluation and comparison of various MIN architectures and their
usability for networks on chips. Particularly, multicast traffic patterns, which are
important for multicore processors, can be handled by the new model.

1 Introduction

For the last years, systems on chip (SoC) emerged to build entire systems on a single
chip. It is a result of the ongoing improvements in component integration on chips. For
the same reason, multicore processors attracted interest of the processor developers.

To allow cooperating cores on such a multicore processor chip, an appropriate com-
munication structure between them must be provided. In case of a low number of cores
(e.g. a dual core processor), a shared bus may be sufficient. But in the future, hundreds
or even thousands of cores will collaborate on a single chip. Then, more advanced
network topologies will be needed. Many topologies are proposed for these so called
networks-on-chips (NoCs) [1,4,6,7,17]. Multistage interconnection networks (MINs)
could be an option to realize NoCs [9,16] and will be considered in this paper.

Some investigations on MINs as networks-on-chips already exist: For instance, to
map the communication demands of on-chip cores onto predefined topologies like
MINs, but also torus, etc., Bertozzi et al. [6] invented a tool called NetChip (consisting
of SUNMAP and xpipes). This tool provides complete synthesis flows for NoC archi-
tectures. Another example where MINs serve as NoC is given by Guerrier and Greiner
[9] who established a fat tree structure using Field Programmable Gate Arrays (FPGAs).

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 381–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 E. Pelz and D. Tutsch

They called this on-chip network with particular router design and communication pro-
tocol Scalable, Programmable, Integrated Network (SPIN). For different network buffer
sizes the performances were compared with this tool. Alderighi et al. [1] used MINs
with the Clos structure. Multiple parallel Clos networks connect the inputs and outputs
to achieve fault tolerance abilities. Again, FPGAs serve as basis for realization.

But previous papers only considered unicast traffic in the NoC. It is obvious that
multicore processors also have to deal with multicast traffic. For instance, if a core
changes a shared variable that is also stored in the cache of other cores, multicasting the
new value to the other cores keeps them up to date. Thus, multicast traffic constitutes
a non-negligible part of the traffic. As consequence, networks for multicore systems
should outstandingly support multicast traffic.

To choose the best adapted MIN topology for multicast traffic of multicore proces-
sors, it is necessary to study the numerous topologies widely. As Jantsch [10] stressed in
his last year lecture, the need for formal models is very important, to allow simulations
and performance analysis preliminarily to technical realizations. Jantsch himself estab-
lished an abstract model of computation (MoC) for performance evaluation of NoCs,
which was applied to a mesh topology.

Such formal models like the MoC currently exist only for few network topologies.
Our work aims to contribute to this area by investigating MINs. The first originality of
our work consists of proposing a general modeling concept which allows to consider
networks of arbitrary size, which are built out of components, i.e. switching elements,
of arbitrary size. The second originality is to treat stochastic events in a non stochastic
model, in which just arbitrary produced data will be processed and which is easier to
analyze. This overcomes the drawback of ordinary mathematical modeling concepts,
i.e., the huge model development time since complex systems of equations have to be
established (see, for instance, [14,19,21] for mathematical models of MINs). Moreover,
simulation can be easily applied to our Petri net model. A model as simple as possible
helps either to accelerate simulation run time or to keep the mathematical model small
enough to be manageable and solvable by a computer tool.

This paper presents a Petri net semantics for modeling multistage interconnection
networks in the case of multicast traffic in a very generic way. Up to now, Petri net
models of MINs for multicast traffic were only proposed for a fixed crossbar size c,
usually c = 2 [15]. Petri net models of MINs with arbitrary crossbar size exist only
for unicast traffic, for instance [2]. But Bashirov and Crespi [2] only investigated the
permutation capability of MINs operating in circuit switching mode. Our model deter-
mines performance results like throughput and delay times in case of packet switching
and multicast traffic. Crossbars of arbitrary size c can be handled. This becomes possi-
ble by a fully compositional approach inspired by high-level (i.e. colored) versions of
the Petri box algebra providing a method to formally represent concurrent communica-
tion systems. A dedicated net class is proposed, which leads to three kinds of basic nets
describing a switching element, a packet generator and a packet flush. With these basic
nets, models of MINs can be established compositionally following their inductive def-
inition. The use of high level nets, instead of stochastic Petri nets, as for instance in our
previous studies [15], makes simulation and analysis really easier and does not need

Formal Models for Multicast Traffic in Network on Chip Architectures 383

specialized tools. For instance, a generalized step semantics reveals to be the adequate
execution mode of this model.

Our approach has already been applied for unicast traffic [13]. But considering mul-
ticast traffic needs a more sophisticated net semantics. Such a net semantics for dealing
with multicasting is given in this paper.

The paper is organized as follows. Section 2 describes multistage interconnection
networks and the concept of multicast. The considered net class and the basic nets
are introduced in Section 3 assuming that the Petri net formalism is well-known to
the reader. Section 4 defines the formal Petri net semantics of arbitrary MINs. The
simulation and evaluation of such models is presented in Section 5. Finally, a conclusion
and ideas for future works can be found in Section 6.

2 Multistage Interconnection Networks

Multistage Interconnection Networks (MINs) are dynamic networks which are based
on switching elements (SE). The most common approach to SEs are crossbars. SEs are
arranged in stages and connected by interstage links. The link structure and amount of
SEs characterizes the MIN.

MINs [19,21] with the banyan property are networks where a unique path exists from
an input to an output. Such MINs of size N×N (N inputs and N outputs numbered
from 0 to N − 1, respectively) consist of c×c switching elements (SEs of c inputs and
c outputs numbered from 0 to c − 1, respectively) with N = cn and n, c, N ∈ N. The
number of stages is given by n. Figure 1 depicts a 3-stage MIN, with detailed numbering
of one 2 × 2 SE, the bottom left one of the MIN.

1

2

SE
1

2 = c−1

1

0

2

3

4

5

6

0

1

2

3

4

5

6

7N−1 = 7

0stage 1stage 2stage

Fig. 1. 3-stage MIN consisting of 2×2 SEs

A message to be transferred in the MIN is divided into packets of equal size. The
packets consist of a header representing the routing tag and of a payload field filled
with the corresponding part of the message. To allow multicasting, the routing tag is

384 E. Pelz and D. Tutsch

0 1 0

1

1

1

10 1 1

0 0
11

00

1 1

0 7.........

1 0 0 0 00

0

1

2

3

packet tag (outputs):

Fig. 2. Multicasting by tag

given as a binary N -digit number, each digit representing the corresponding network
output. The digits of the desired outputs for the packet are set to “1”, all others to “0”.
Routing is realized as follows. If the packet arrives at a c×c SE, the tag is divided into c
subtags of equal size. Each subtag belongs to one switch output, the first (lower indices)
subtag to the first output, the second subtag to the second output, etc. If a subtag contains
at least one “1”, a copy of the packet is sent to the corresponding output containing the
subtag as the new tag. Figure 2 gives an example. A part of an 8×8 MIN consisting of
2×2 SEs is shown. A packet, which is destined to Output 1, 2, and 3, resulting in tag
01110000, crosses the network. At each stage, the tag is divided in the middle into
two (c = 2) subtags. According to the existence of at least one “1” value in the subtag,
a copy of the packet is sent to the corresponding SE output.

To achieve synchronously operating switches, the network is internally clocked by a
central clock. Because packet switching is applied, buffers can be introduced. In each
stage k (k ∈ N and 0 ≤ k ≤ n− 1), there is a FIFO buffer of equal size in front of each
SE input to store a maximum number of mmax packets (mmax ∈ N). The packets are
forwarded by store-and-forward switching from a stage to its succeeding one: at most,
a single stage per clock cycle is passed to keep the hardware amount for switching
reasonable small. Due to the synchronously operating switches, all packets in all stages
that are able to move are forwarded simultaneously to the next stage.

Packets that are destined to full buffers can be handled by dropping those packets [20]
or by applying backpressure mechanism. The backpressure mechanism keeps packets
in their current stage until the required buffer becomes available again. That means that
no packets are lost within the network in contrast to the method of dropping packets.
Local and global backpressure are distinguished. Local backpressure only observes the
destination buffer of the next stage: The packet of stage k is sent if space at stage
k + 1 is available. Global backpressure, which we will consider in the sequel, gets
additional information about packet flows: the packet of stage k is sent even if no space
at stage k + 1 is currently available but becomes available till the packet is received.
Such a situation may arise if a packet leaves stage k +1 at the same clock cycle. Global
backpressure impresses by a higher performance.

If a packet is destined to multiple buffers of the succeeding stage (multicast) and
some of the destination buffers are not available, copies of the packet are only sent to

Formal Models for Multicast Traffic in Network on Chip Architectures 385

the available buffers. But the packet stays in its current buffer till all buffers for which
it is destined have been reached. Such a behavior is called partial multicast and is the
one considered in this paper.

Numerous multistage interconnection network topologies are given in the literature
[12]. The structure of their interstage connections distinguishes them. They are referred
to as Omega, Flip, Baseline, Indirect Binary Cube (IBC), and Modified Data Manipula-
tor (MDM). Some of them can be defined by induction, which means that a MIN with n
stages is built from MINs with at most n−1 stages, as for instance, the cn×cn Modified
Data Manipulator, named MDM(c, n, mmax) where the parameters c and mmax need
to be fixed. The MDM topology will be investigated in the rest of the paper, but we
could have chosen any other inductively defined MIN as well.

MDM construction
First step i = 1: The smallest MIN of this type is given by a MDM(c, 1, mmax) net-
work, which consists in a single c×c SE.

Now, it is assumed that all MINs MDM(c, j, mmax) with 1 ≤ j ≤ i already exist.
Step i + 1: MIN MDM(c, i + 1, mmax) can be set up as follows (see Figure 3 as an

example with c = 2 and i = 2): Stage 0 is built by placing ci SEs in a column. The

001
000

100

110

010
011

101

111

000
001

010
011

100
101

110
111

Stage 2Stage 1Stage 0

MDM(2, 2, mmax)

MDM(2, 2, mmax)

Fig. 3. Establishing MDM(2, 3, mmax) out of MDM(2, 2, mmax)

inputs as well as the outputs of this SE column are c-ary numbered from top to bottom,
respectively. These numberings start with 0 and end with ci+1 − 1 each. Thus, a c-ary
i-digit number αiαi−1αi−2 . . . α2α1α0 results for each input and output, respectively.
Such a number can be factorized as αiβα0 where β includes all digits except the first
and last one (cf. Section 4).

The remaining Stages 1 to i of the ci+1×ci+1 MIN are established by placing c
copies of ci×ci MINs in a column. The inputs at the left side of this column of MINs

386 E. Pelz and D. Tutsch

are also c-ary numbered from 0 to ci+1 − 1 from top to bottom. The same numbering is
applied to the outputs at the right side of the column of MINs.

To finish the construction of the ci+1×ci+1 MIN, the interstage connections between
Stage 0 and Stage 1 must be established according to the following MDM rule: the input
αiβα0 of the column of ci×ci MINs is connected to the output α0βαi of the SEs at
Stage 0. That means the corresponding output number is found by simply exchanging
the first and last digit of the input number.

3 Compositional High-Level Petri Nets

As explained in the introduction, the model used in our approach is inspired by high-
level versions of the Petri box algebra [3,5,11] which allow to formally represent con-
current communicating systems and to study various properties of their executions.
These nets N = (P (N), T (N), A, γ), like other high-level Petri net models, carry the
usual annotations, given by a labeling γ on places P (N) (types, i.e., sets of allowed
tokens), on transitions T (N) (guards which are Boolean expressions, γ playing the role
of occurrence conditions) and on arcs A (multisets of net variables).

3.1 A Dedicated Small Net Class

To model MINs, we may restrict us to a quite small, particular high-level net class where
an arc inscription always consists of exactly one variable and where two kind of places
exist: buffer places which all have the same type (lists of numbers representing queues
of packet headers in the buffers of SEs) and entry places which have trivial black token
type. From the set of operations, which give all box-like models an algebraic structure,
we only need two: renaming and parallel composition.

The marking of such a net associates to each place a unique value (token) from the
type of the places. If the net N is given with an initial marking M0 we call it a net
system Σ = (N, M0). The transition rule is like for other high-level nets; namely, a
transition t can be executed at a given marking if the inscriptions of its input arcs can
be mapped to values which are present in the input places of t and if the guard of t,
γ(t), evaluates to true under that mapping, more precisely, under an extension of it to
the variables on the output arcs. The execution of t under this mapping transforms the
marking by removing values from the input places of t and by depositing values in the
output places of t (accordingly to the chosen mapping).

Note that given a transition t and a marking M , there may be, in general, several
possible executions (firings) depending on different mappings of variables to values
(called bindings and denoted by σ) in the inscriptions around t. But as all places are
always marked with exactly one token (cf. Proposition 4 in a later section) the binding σ
will be fixed on the restriction to variables on the input arcs of t. Only if the guard allows
mappings of the variables on the output arcs to several values, there may exist several
total bindings (corresponding to a non-deterministic choice). We write M((t : σ) > M ′

if the firing of t under binding σ at marking M yields the new marking M ′. We call
reachable markings all markings which can be reached from the initial one after firing
a finite sequence of transitions.

Formal Models for Multicast Traffic in Network on Chip Architectures 387

Now we distinguish precisely the following sets of tokens as types for the places in
our nets. The type {•} will be that one for entry places.

We will have a parameterized type BList(c, mmax) (for Binary Lists) if dealing
with nets for c×c SEs with buffer size mmax for MINs : its elements are strings
(lists) of at most mmax binary numbers, each of length ck for some k > 0, seen as
c blocks of binary numbers of same length ck−1. These token represent a queue of
packet headers (like this one in Figure 2) in buffers with maximal length mmax . This
type may be restricted to numbers (initial addresses) of a given length cn, called type
BListn(c, mmax). The smallest token of binary list type, ε, will represent the empty
list, and 0 a block of zeros.

As operations on this type, we only allow the following ones, where x and y being
lists:

- x[0] for taking the head of the list x, returning ε if list x is empty.
- x[0]h for reading/taking the h-th block of the head of the list x.
- x[1 :] for taking the tail of x, returning ε if list x[1 :] is empty.
- ≺max (x) the predicate being true if the length of list x is smaller than mmax.
- nb[x] the predicate being true if the length of list x is one, i.e., if the list x contains

exactly one number ck.
- x + y for appending y to list x
- For z being an already defined number or block,

z = 0 for testing if z is a block of zeros, i.e. if z did not contain some 1.

Example: Let us consider the following list x from BList(c, mmax) with c = 2 and
mmax = 10, with its head, tail and some blocks indicated. Here k = 3, so each binary
number has length eight. The list consists of four numbers, so its length 4 is less than
mmax:

x =

x[0]
︷ ︸︸ ︷
0111︸︷︷︸
x[0]0

0000︸︷︷︸
x[0]1

.

x[1:]
︷ ︸︸ ︷
10101000.00100000.11000100

All of the following conditions are true for the given example: ≺max (x), x[0] �= 0,
x[0]0 �= 0, x[0]1 = 0, nb[x[0]] and ¬ nb[x[1 :]]. Note that only the header
of the SE buffers are represented by our token type for buffer places. The payload field
can and will be neglected, to avoid heavy structures and because this data part is not
important for the modeling of routing and consecutive performance evaluation.

3.2 Net Composition Operations

A renaming consists in a function denoted by a Greek letter, for instance ν(N), μ(N)
or ρ(N), renaming the places and transitions of a net N. They are explicitely defined on
the part of the domain, where names have to be changed, and are id (i.e., stay identical)
everywhere else.

The parallel composition, denoted by N1‖N2, consists of putting N1 and N2 side by
side while buffer places p1 ∈ N1 and p2 ∈ N2 having the same name are merged. If one
of the merged places has the restricted binary list type BListn(c, mmax) for a given n,
the resulting place will also have it.

Note that renaming will be used for N1 and/or N2 in order to ensure that places which
should be merged have the same name.

388 E. Pelz and D. Tutsch

3.3 Basic Net NSE(c, mmax)

By analogy with SEs, which are the basic components of the MINs, we introduce a
basic net modeling one SE. We also propose basic nets which are able to represent the
packet generators and receivers in a later section. Each of them has a single transition,
and some input/output places around.

Let us describe first the basic nets for SEs, simply called NSE(c, mmax). They de-
pend on two parameters, c and mmax for dealing with c × c SEs with maximal buffer
size mmax. NSE(c, mmax) consists of a single transition t and 2c buffer places of type
BList(c, mmax), which are all connected with one input and one output arc to t, cf.
Figure 4. The c “left places”, representing the SE input buffers, are named from top to
bottom
0 to
c−1. Similarly, the c “right places”, covering the SE outputs, are named
r0 to rc−1. The arc inscriptions are as shown in Figure 4 below, chosen in such a way
that they also express the direction of the flow: if the arc enters the transition we have
xi and yi, if it leaves it, the same names are primed.

�0

�c−1 rc−1

r0

t

γ(t)

x0

x′

c−1

x′

0

xc−1

y′
0

y0

y′
c−1

yc−1

Fig. 4. Basic net NSE(c, mmax) for a c × c SE

Role of the guard
The guard γ(t) determines when and how the transition fires. We require from the
global net that we will build later on, the property that all reachable markings are such
that each place contains exactly one token. This will be proved later (cf. Proposition 3
in Section 5.2).

The condition of the firing in the language of the SEs performing the backpressure
mechanism is to investigate each block h of every first header. If it isn’t zero, it becomes
an address of the destination output, under the condition that the h-th output buffer is
not full. The effect is to shift then the h-th block of a header to the h-th SE output, if it
is not full, and not moving it, if this output is full or if a shift from a concurrent input to
this output is executed.

Translated in the net language the condition will be determined by the tokens around
t: each block h ∈ {0, c − 1} of the first number in each input place will tell us if a
transfer to the h-th output is asked for, and each token in an output place tells us if it
reaches maximum size (the place is “full”) or not (the place stays “available”).

Here we need to express this by logical formulae (without quantifiers, i.e. boolean
expressions), built over variables, constants (values) of type BList(c, mmax) and the
operations of this type.

Formal Models for Multicast Traffic in Network on Chip Architectures 389

Construction of the guard
We will use the following convention to improve readability: inscriptions of arcs on the
left side of the transition, i.e. x or x′, will always have indices I, i, i′, . . ., and those
of arcs right to the transition, i.e. y or y′, will have indices J, H, j, j′, . . . or h, h′. The
following auxiliary notations need to be introduced, where C = {0, . . . , c − 1} is the
c-ary alphabet.

For a set of pairs S ⊆ C
2, its I and H -sides, i.e. its first and second projections, are

I(S) = (S�1) = {i ∈ C | ∃h (i, h) ∈ S }
H(S) = (S�2) = {h ∈ C | ∃i (i, h) ∈ S }.

For an element i ∈ C, H(i) = {h ∈ C | (i, h) ∈ S } defines the right sides of
pairs in S with left side i.

The guard is given by the following formula, whose intuitive meaning -line by
line- will become clear in the proof of its satisfiability under every marking (see next
proposition).

γMC(t) ≡
∨

J⊂C

(
∧

j∈J

≺max (yj) ∧
∧

j∈C\J

(
¬ ≺max (yj) ∧ y′

j = yj

)
∧

[
∨

S⊂C2 with |S|=|H(S)| , H(S)⊆J

[(
∧

j∈J\H(S)

(
yj = y′

j ∧
∧

i∈C

xi[0]j = 0
)

)

∧
(

∧

i∈I(S)

[∧

h∈H(i)

(xi[0]h �= 0 ∧ y′
h = yh + xi[0]h)

]

∧
[(∧

h/∈H(i)

xi[0]h = 0 −→ x′
i = xi[1 :]

)
∨

(∨

h/∈H(i)

xi[0]h �= 0 −→
[∧

h/∈H(i)

x′
i[0]h = xi[0]h ∧ x′

i[1 :] = xi[1 :]

∧ (
∧

h∈H(i)

x′
i[0]h = 0)

])]
)

∧
∧

i/∈I(S)

x′
i = xi

]])

Proposition 1: Consider an arbitrary marking of NSE(c, mmax) verifying that each
place contains exactly one token. Then, the transition is firable, i.e. there is at least one
binding under which the guard is true.

Proof: First let us bind all xi and yj to the unique tokens present in the corresponding
places. Let us show how to find an appropriate extension of this partial binding under
which the formula becomes true.

Because each right place is marked, there is exactly one set of indices J for which
the tokens in these places do not have the maximal size (i.e., the buffers there are still
available) and the tokens in the others ones have the maximal size (the buffers there are
full). Thus exactly one subformula of the outer disjunction can be true.

390 E. Pelz and D. Tutsch

First case: If in the disjunction J = ∅ then the formula becomes
(

∧

j∈C

(
¬ ≺max (yj) ∧ y′

j = yj

)
∧

∧

i∈C

x′
i = xi

)

expressing the situation where nothing is changed by the firing of t, i.e., the marking
does not change, which is consistent with the fact that all output buffers are full.

General case: J is not empty. We have to show, that for this J the formula in big
parenthesis is true:

Now we can always choose one S0 (between the S satisfying the big conjunction of
Line 2, being a maximal choice of pairs (i, j) with j ∈ J, thus H(S0) ⊆ J, expressing
the movements to be done of a packet header from SE input i to SE output j. Each
output j can be served by only one i, expressed by the condition | S0 |=| H(S0) |. But
each input i ∈ I(S0) can have several considered outputs j ∈ H(i) due to multicast.

The maximality of the set S0 is expressed in the conjunction of Line 2: for each
available j not included in H(S0) no input i desires a transfer to this j (i.e., all i-th
subtags are 0), and the token in place rj does not change (i.e. y′

j = yj).
It remains to show that the big conjunction of Lines 3 to 6 insures correctly the

transfer from each concerned input i ∈ I(S0):

- Line 3 tells that the first routing tag in
i asks the h ∈ H(i) for outputs, i.e. xi[0]h �=
0 , and each corresponding transfer of the packet header is done by appending the
h-th subtag to the token in rh (by y′

h = yh + xi[0]h).
- Now two cases are to be distinguished, the disjunction between the subformula of

line 4 and that of lines 5-6 tells this:

• for no other h a transfer is asked for, nothing else needs to be done and the
whole first tag in the buffer (token) can be omitted, by taking the tail of the list
as new token (Line 4).

• there are desired output addresses h, which could not be considered in the
choice of S0 (i.e. (i, h) /∈ S0), they need to be treated at a later moment, thus
the token xi in
i stays the same (Line 5) except for the subtags for which the
transfer was done (Line 6, left side).

- Finally, the tokens in the other input places will stay the same, i.e., x′
i = xi (right

conjunction of Line 6).

Now we can take values for the x′
i and y′

j according to the transfers fixed in the set
S0 just described above, which completes the binding.

3.4 Basic Net PG(c, mmax)

In order to observe the behavior of the net models of MINs, which we will obtain later,
we need some way to produce test data for simulation. Thus we will introduce a second
kind of basic net, that one for a packet generator, depending on the same parameters,
and called PG(c, mmax). It consists of one transition t′ linked to one entry place pe of

Formal Models for Multicast Traffic in Network on Chip Architectures 391

type black token by a loop (arc inscription may be omitted). There is also one buffer
place
 of type BListn(c, mmax) for some n, i.e. we fix here the length of the numbers
to that of the desired addresses. It will become an interface with a net model of MINs,
with an output arc inscribed by y and an input arc inscribed by y′, cf. Figure 5(a). Note
that place pe becomes a run place once it is marked by one •.

pe

t′

�

y

y′

(a) Basic net PG(c, mmax)

r1

x
t0

ε

(b) Basic net PF(c, mmax)

Fig. 5. Basic nets for packet generation and packet flush

Choice of a guard
We have different options to define the guard γ(t′) depending on which network load
hypothesis we would like to feed later on the simulations. We will quote some of the
possibilities, standard and non standard ones, already assuming that the token in place

 is initially the empty list ε:

(1) each firing adds just one arbitrary address to the token in
 if possible1, correspond-
ing to a very regular but permanent load:

γ1(t′) ≡ (y′ = y + z ∧ nb[z]) ∨ (y′ = y ∧ ¬ ≺max (y))

(2) each firing adds just no (ε) or one arbitrary address to the token in
 corresponding
to a nondeterministic small load

γ2(t′) ≡ (y′ = y + z ∧ (nb[z] ∨ z = ε))

(3) each firing fills the buffer to its maximal size representing very high traffic load

γ3(t′) ≡ (y′ = y + z ∨ y′ = y) ∧ ¬ ≺max (y′))

(4) always the same address, for instance a0, is added to the token in
 if possible1, to
investigate traffic streams

γ4(t′) ≡ (y′ = y + a0) ∨ (y′ = y ∧ ¬ ≺max (y))

(5) each firing appends no or several arbitrary addresses x to the token already in
,
which express a totally random load

γ5(t′) ≡ y′ = y + z

Note that the length of the value of y′ is always less or equal to mmax, due to the
type of the buffer place
. Thus never a too long z can be appended to y, for instance by
choice (2) or (5).

1 I.e. for the case the token in place � has already maximal size, we will always put the alternative
y = y′ in the guard.

392 E. Pelz and D. Tutsch

Notice that this basic net is constructed in a such way, that its only transition is
always firable:

Proposition 2: Consider the net PG(c, mmax) and γ(t′) one of the five guards defined
as above. From each marking of this net with one black token in place pe and one token
of buffer type in place
, the transition t′ is firable.

Proof: Trivial, due to the construction of the net and the guard γ(t′), which can always
be set true by an appropriate binding, for instance by choosing the value ε for z in the
last choice γ5(t′).

A network traffic, like (1), (3) or (4), should be selected in order to study worst case
throughput. If nothing else is specified, we assume in the sequel that γ(t′) = γ5(t′),
which seems to be a quite realistic choice.

3.5 Basic Net PF(c, mmax)

Finally, to represent the arrival or reception of a packet at the output of the MIN, to
which it was destined, we need a way to ”empty” (i.e., to set to ε) a given buffer place.
We call such a net packet flush PF(c, mmax), given in Figure 5(b), where the buffer
place r1 is of type BList(c, mmax). The firing of transition t0, with trivial guard ”true”,
always sets the token in the place r1 to ε.

The following proposition is trivial, as the trivial guard annotates t0:

Proposition 3: From each marking of the net PF(c, mmax) with one token of buffer
type in place r1, the transition t0 is firable.

4 Net Semantics of MINs

Using the previously defined basic net NSE(c, mmax) a Petri net model of multistage
interconnection networks can be established. This section particularly describes the
Petri net semantics of an N×N Modified Data Manipulator MDM(c, n, mmax), which
consists of n stages of c×c switching elements.

We define, by induction, a semantical function PN associating high-level Petri nets
to MDMs: PN (MDM(c, n, mmax)) is a net called Nn(c, mmax).

The construction will be such that all net elements, i.e. places and transitions, will
have double-indexed names (identified by their annotation): the index at the top gives
the level of construction by natural (decimal) numbers from 1 to n. All elements in a
column will have the same index at the top. Note that this index enumerates the columns
(representing the stages) from right to left while the stage numbers increase from left
to right, as depicted in Figure 1. The lower index reflects a top down enumeration of
the elements in a column by numbers interpreted as words β in the c-ary alphabet2

C = {0, . . . , c − 1}. This naming is based on some particular renaming functions: they
change the names of places and transition by renaming the indices.

2 Thus, concatenating c-ary numbers η with β yields ηβ. No lower index is considered as empty
word β = ε, thus concatenating η with the empty word yields η. We can also factorize β in
e.g. αβ′α′, where α, α′ ∈ C are the first and last letter of the word β, respectively.

Formal Models for Multicast Traffic in Network on Chip Architectures 393

For a given high-level net N = (P (N), T (N), A, γ) we define μstart(N), μi
η(N),

νη(N), ϑ(N), and ρ(N) as follows.
For all xβ ∈ P (N)

⋃
T (N) we set

μstart(xβ) = x1
β

i.e. the top index “1” is added to the original name, for instance μstart(t) = t1; also

μi
η(xβ) = xi

ηβ

Here, the top index “i” is added and η prefixed to the existing lower index, for instance
μ3

10(r11) = r3
1011.

For all xi
β ∈ P (N)

⋃
T (N) (a top index already exists) we set

νη(xi
β) = xi

ηβ

Here, the top index is unchanged and η is prefixed to the lower one.

ϑ(xi
β) = bi

β if xi
β = ri

β

= xi
β otherwise

saying that right places, r, should become middle places, b, (simple buffer places).

ρ(xi
β) = bi+1

α′β′α if xi
β =
i

αβ′α′ and α, α′ ∈ C

= xi
β otherwise

saying that left places,
, should become middle places, b. The index is changed accord-
ing to the rule of stage interconnections between Stage 0 and Stage 1 of MDMs given
in Section 2 by swapping the two outer digits.

A composition of such functions is expressed as usual by ◦, for instance ρ◦ν1(
2
10) =

ρ(
2
110) = b3

110 and ϑ ◦ μ3
01(r1) = ϑ(r3

011) = b3
011.

The Petri net model can be given now by induction according to the inductive MDM
scheme presented in Section 2.

Step 1: Let us define N1(c, mmax) modeling the smallest possible MDM, which is of
size c×c, just by renaming the basic net with μstart:

PN (MDM(c, 1, mmax)) = N1(c, mmax) = μstart(NSE(c, mmax))

By induction hypothesis, it is assumed that the nets Nj(c, mmax) with 1 ≤ j ≤ i
already exist.
Step i+1: We construct Ni+1(c, mmax) from two intermediate nets: a net N′ represent-
ing Stage 0 can be established by ci copies of the basic net, correctly renamed from top
to bottom by μi+1

η (with η < ci) and then by ϑ to signalize that the right side is ready
to be merged:

N′ =

∥
∥
∥

0≤η<ci
ϑ ◦ μi+1

η (NSE(c, mmax))

394 E. Pelz and D. Tutsch

Further on, c copies of the net Ni(c, mmax)) are needed, correctly renamed from top
to bottom by νη (adding one digit η to obtain a numbering from 0 to ci) and then by ρ
to signal that the left side is ready to be merged. The result is called N′′ representing
Stages 1 to i:

N′′ =

∥
∥
∥

0≤η<c
ρ ◦ νη(Ni(c, mmax))

Both nets N′ and N′′ have places named bi+1
η for 0 ≤ η < ci. By taking the parallel

composition of them, the places with the same name will be merged. Thus we build
Ni+1(c, mmax) by setting:

PN (MDM(c, i + 1, mmax)) = Ni+1(c, mmax) = N′ ‖ N′′

r1
001

t200

t201

b2000

b2001

b2010

b2011

t100

t101

r1
000

r1
010

r1
011

r1
100

r1
101

r1
110

r1
111

t110

t111

b2100

b2101

b2110

b2111

t210

t211

b3000

b3001

b3010

b3011

b3100

b3101

b3110

b3111

t300

t301

t310

t311

�3000

�3001

�3010

�3011

�3100

�
3
101

�3110

�3111

Fig. 6. Petri net model of an MDM(2, 3, mmax)

Figure 6 depicts an example, where the Petri net semantics of an 8×8 MDM con-
sisting of 2×2 SEs is shown. The inscriptions of the arcs are omitted to keep the
figure readable (they are the original ones, because arcs are never renamed in the
construction).

The Petri net semantics of any N×N MDM can now be established by applying the
given definition with parameter n such that cn = N .

Formal Models for Multicast Traffic in Network on Chip Architectures 395

5 Simulation

Network topologies like MINs are mainly examined concerning their behavior and per-
formance. Simulating the presented model deals with this task.

5.1 Incorporated Packet Generators and Packet Flushes

To produce test data for the simulation of the net model Nn(c, mmax) with cn = N , a
packet generator model has to be added. As test data should arrive at all N left places
of this net, we will consider N copies of the packet generator basic net PG(c, mmax),
and rename them for connection to these places. Now, the size of the required packets is
known, so we consider their places
 of type BListn(c, mmax) (with cn = N) and all
copies having uniformly the same guard γ. We can use one of the renaming functions,
μn

η , already introduced in the previous section. Let us call Nn
PG(c, mmax) the entire

net we have to add:

Nn
PG(c, mmax) =

∥
∥
∥

0≤η<cn
μn

η (PG(c, mmax))

In the same manner we have to add flushes at the right (destination) side of the model
to removed the received data. For this, we take N copies of the basic net PF(c, mmax),
whose top indices are already the good ones, having places r1 and transitions t0. Then
we enumerate them from top to bottom by using the adequate renaming functions ν:

Nn
PF (c, mmax) =

∥
∥
∥

0≤η<cn
νη(PF(c, mmax))

Putting the three nets side by side and merging the corresponding places
n
η and r1

η ,
respectively, yields the desired connection. We will add an initial marking, by putting •
in all entry places and ε in all other places, i.e., in all buffer places. Thus

M0(p) = • if p = pe
n
η with 0 ≤ η < cn

= ε otherwise

The obtained net system

Σn(c, mmax) = (Nn
PG(c, mmax)‖Nn(c, mmax)‖Nn

PF (c, mmax), M0)

will be executed, analyzed and evaluated in the sequel.

5.2 Execution

An investigation of the network behavior is usually started with an empty network, well
represented by the chosen initial marking by putting ε in all buffer places.

Let us first establish some useful properties.

Proposition 4: All reachable markings of Σn(c, mmax) satisfy that each place contains
exactly one token.

396 E. Pelz and D. Tutsch

Proof: Clearly true, given the initial marking where each place contains exactly one
token and the definition of all transitions in the net which are all connected with one
input and one output arc to each one of their surrounding places.

Proposition 5: At each reachable marking of Σn(c, mmax), each transition in the net
is firable.

Proof: Immediate consequence from Propositions 1, 2, 3 and 4.

Proposition 5 does not establish a bad property in the way that it allows all possible
interleavings of transitions. Such an interleaving semantics will never be considered
here, because it would not correspond to anything in the modeled MIN. We have to
find and are able to find a special execution mode of the Petri net which corresponds
naturally to a network clock cycle under the principle of store-and-forward switching,
cf Section 2.

At each moment in the evolution of this net system all sets of transitions that do not
share surrounding places are concurrently firable. This allows us to group certain sets
of transitions in steps, which can be fired at the same time.

In fact, in our net system such a clock cycle of a n-stage MIN can be naturally
simulated by n + 2 steps using step semantics.

Due to the global backpressure algorithm, packet switching is performed in MINs
stage by stage, starting with the last one, to determine the availability of succeeding
buffers. But nevertheless, all switches of the same stage operate in parallel. Similarly,
we will group transitions of the same column, i.e. of each stage i to simple steps

ui = {tiβ|0 ≤ β < N} with 0 ≤ i ≤ n,
as well as those transitions of the packet generation column to a step

upg = {t′β|0 ≤ β < N}.
Let us remark, that other ways to group transitions in steps are possible from a Petri net
point of view, like the step of all transitions of odd stages and the step of all transitions
of even stages. But once more, their executions would not correspond at all to MINs,
and would in particular violate their switching principle. Thus, such steps will never be
considered.

Now, let us consider first a step sequence defined by the firing of the previously
defined simple steps from right to left starting with the initial marking. There exist
some appropriate bindings and intermediate markings such that

M0((u0 : σ0) > M0
0 ((u1 : σ1) > M1

0 ((u2 : σ2) > M2
0 (. . . >

Mn−1
0 ((un : σn) > Mn

0 ((upg : σ′) > M1 .

The first n+1 steps are ordered from 0 to n such that in step i, all transitions ti of Stage
n − i (or column i) fire together (Stage n virtually represents the receivers following
the network outputs). These steps realize the simulation of the global backpressure
mechanism of a MIN, which is usually sequentialized by first moving the packets of the
input buffers of the succeeding network stage before it is decided at the current stage
whether a packet can be moved towards them.

Step 0, the starting one, puts ε in the most right places. In step n + 1, the network
load is modeled by firing upg. Let us recall that we have chosen in Section 3.4 a guard
for transitions t′β which adds a (possibly empty) list of tags of arbitrary size as long

Formal Models for Multicast Traffic in Network on Chip Architectures 397

as the maximum length is not exceeded. This simulates a random network load. The
transition guard γ can (and should) be changed to one of the other choices if we need
to model any other desired network load.

We consider the entire step sequence as a global step leading from M0 to M1 cor-
responding to an entire clock cycle. Then, this global step can be iterated as often as
necessary (for instance till any desired confidence level is reached) to obtain arbitrarily
long simulations:

Mi((u0 : σ0
i)(u1 : σ1

i)(u2 : σ2
i) . . . (un : σn

i)(upg : σ′
i) > Mi+1

with i > 0. Thus we can refer to marking Mk
i as marking that is reached after the firing

of uk in the i-th global step.
By consequence, this generalized step semantics reveals to be the adequate execution

mode of the model, according to the global backpressure mechanism.

5.3 Measures

The aim of modeling networks like MINs is usually to determine the performance
of these networks. Performance measures like mean throughput, mean buffer queue
lengths, or mean delay time are of interest. In the literature, this is estimated by stochas-
tic analytical methods or by simulation, cf. [18,20]. Up to now, both methods (simula-
tion and much more the analytical methods) suffered from the very complex task to
establish the model: for instance in case of applying Markov chains, a large system of
equations must be set up. This large system of equations, which is usually represented
by matrices, must be handled by a computer to be solved. Due to the fast growing ma-
trices if network size is increased and no model simplification is performed, only very
small networks (N � 10) can be solved and performance measures obtained if using
stochastic analytical methods.

We will present here, how these measures can be obtained in our context of model-
ing, just by establishing the model by induction and by tracing a sufficient amount of
observations under the proposed step semantics.

Remember that in each buffer place p, M(p) is always a unique token of type list of
binary numbers (by Proposition 3). In the sequel, we denote by Len the function giving
the length of such a list of numbers. Furthermore, the number of symbols “1” in the
entire list M(p), is as usual denoted by |M(p)|1.

Because the model deals with stochastic events (e.g. conflicts between packets at SE
inputs are randomly solved), several observations must be performed to achieve a cer-
tain accuracy in the results. The proposed step semantics is repeated till any predefined
confidence level is reached.

All markings quoted below refer to executions under the global backpressure mech-
anism as described in the last subsection.

- The mean queue length of a particular buffer is represented by the average length
of the token held by the corresponding place. Again: a sufficient number of simu-
lation results must be considered to reach a reasonable confidence level. We could
observe one place during a sufficiently long execution or even better, all places in
one column k (Stage n − k) together in case of symmetric traffic. The average

398 E. Pelz and D. Tutsch

value of
∑

η(Len(Mi(bk
η))) (called Lenk(Mi)) for i just needs to be calculated

and added to the confidence statistics.
- The mean throughput denotes the average number of packets that leave (or enter)

a network per clock cycle and per network output (or input, respectively). Thus, the
presented model determines the mean throughput of the modeled MIN by summing
up (over all elements in a step) the number of markings changed in the observed
places. Thus, we control how many list entries are deleted indicating that a packet
is moved.

Precisely, for one (the i-th) global step, Sinput(i) = 1
N ·

∑
η[Len(Mi+1(
n

η)) −
Len(Mn

i (
n
η))] yields the throughput at the inputs for this step. A sufficient num-

ber of observations determines the average throughput at the inputs considering a
reasonable confidence level.

The list in each right place r1
η is either empty or of length c0 = 1, i.e. consist

of a single symbol 1 representing a packet that leaves the modeled MIN (before
being flushed in the next global step). To determine the throughput at the outputs,
these lists (or 1s) must be observed: Soutput(i) = 1

N ·
∑

η Len(Mi(r1
η)) yields

the throughout at the outputs for the i-th step. The average throughput at the
outputs with a reasonable confidence level results by collecting a sufficient number
of observations.

Often, the worst case scenario of a congested network is of particular interest.
Such a network state is achieved by permanently offering packets to the network in-
puts. We could study this by choosing an appropriate guard γ′ for the PG transition
as defined in the options (1) or (4), cf. subsection 3.4.

- The mean delay time denotes the average time a packet spends in the MIN from
entering it to leaving it. Taking advantage of Little’s Law, the delay time at the i-th
global step can be calculated by the ratio of the number of packets in the MIN to the
throughput at all outputs. But because multicasts occur, the number of packets in
the MINs actually represents the number of related unicast packets. That means a
multicast packet that is destined to g network outputs must be counted as g unicast
packets. The number of such unicast packets is given by the number of “1” in the
headers of all packets that are in the MIN. Little’s Law results in a delay for the i-th
step of d(i) = (

∑
η[|Mi(
n

η)|1 +
∑

k |Mi(bk
η)|1])/(N · Soutput(i)). A sufficient

number of observations yields the mean delay time considering a given confidence
level.

The given equations defining the calculus of several measures from observations are not
necessarily implemented as they are given above. Faster calculations can be obtained
by more sophisticated realizations. For instance, checking all places for their list entries
to determine the delay time is not very efficient. An alternative approach would be to
count the number of destinations of newly generated packets at each clock cycle directly
by the net. A place may act as global counter of this number and subtract the number
of received packets at the network outputs in the same cycle. Then, the counter holds
the current number of unicast-equivalent packets in the MIN needed to determine the
delay.

Formal Models for Multicast Traffic in Network on Chip Architectures 399

6 Conclusion and Ongoing Work

Systems on chip and multicore processors emerged for the last years. The required
networks on chips can be realized by multistage interconnection networks. This paper
presented a formal semantics of MINs to simulate and evaluate them. Particularly, mul-
ticast traffic patterns could be handled. Multicast traffic is an important traffic pattern
if NoCs for multicore processors are investigated. In such networks, cache coherence
strategies need multicast features for instance.

The semantics was inspired by the high-level version of the Petri box algebra which
allows to represent concurrent communication systems in a totally compositional way.
A dedicated small net class was formed. It led to a basic net used as a starting point
to model MINs. The models were established by induction. Renaming the basic net
built the model of the smallest MIN, which consists of a single stage. Models of larger
MINs resulted just from a composition of basic nets as well as of MINs of one stage
less.

Combining the entire model of the MIN in question with models of packet generators
to feed the network with packets and packet flushes to remove received packets at the
network outputs has risen a Petri net model that helps to investigate the behavior of
MINs. Step semantics was very naturally applied to simulate the network behavior.

Our presented model provides a basis for performance evaluation and comparison
of various MIN architectures that deal with multicast traffic patterns. If global back-
pressure mechanism is applied, a network cycle is modeled by n + 2 steps, each one
consisting of the concurrent firings of the related transitions ti in one step. That means
the presented model allows to model a clock cycle by only n + 2 steps: a simulation
complexity of O(n) = O(logc N) results. The previous stochastic Petri net models of
[15] suffered from a complexity of O(N logc N). The originality of our approach is to
use a compositional net class, and so we are able to propose a generic modeling scheme,
which applies for each MIN size and each crossbar size.

Recently we incorporated the new semantics into the toolkit Snakes, developed in
our research group at Université Paris 12, establishing a prototype of our MIN model.
The construction of a MIN is very fast for small n, as expected, and takes about 3 hours
for a MDM(3,7,10) with N = 2187 or 5 hours for a MDM(2,11,10) with N = 2048.
For those big models we can observe in one hour about one thousand global steps in the
described semantics. We are now able to compute the mean throughputs, mean queue
length, and mean delay times. Corresponding algorithms to determine the confidence
level of results also need to be incorporated in the prototype, for instance the Akaroa
tool [8]. Then, the tool will allow the evaluation of the measures in question.

Another advantage arises from the way how packet generators are modeled. Con-
cerning the packet destinations, any traffic pattern can be implemented (by just
redefining the guard of the PG net) representing for instance hot spot traffic. Some
non-standard packet generation to simulate for instance a special kind of congested net-
work where the same address is permanently produced, could also be expressed by an
appropriate guard and allows to study worst case throughput.

400 E. Pelz and D. Tutsch

References

1. Alderighi, M., Casini, F., D’Angelo, S., Salvi, D., Sechi, G.R.: A fault-tolerant FPGA-based
multi-stage interconnection network for space applications. In: Proceedings of the First IEEE
International Workshop on Electronic Design, Test and Applications (DELTA’02), pp. 302–
306 (2002)

2. Bashirov, R., Crespi, V.: Analyzing permutation capability of multistage interconnection net-
works with colored Petri nets. In: Information Sciences, vol. 176(21), pp. 3143–3165. Else-
vier, Amsterdam (2006)

3. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on TCS,
Springer, Heidelberg (2001) ISBN 3-540-67398-9

4. Benini, L., De Micheli, G.: Networks on chips: A new SoC paradigm. IEEE Computer 35(1),
70–80 (2002)

5. Best, E., Fra̧czak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: an algebra of high level
Petri nets, with an application to the semantics of concurrent programming languages. Acta
Informatica, vol. 35, Springer,Heidelberg (1998)

6. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., De Micheli, G.:
NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Transactions on Parallel and Distributed Systems 16(2), 113–129 (2005)

7. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In:
Proceedings of Design Automation Conference (DAC 2001), pp. 684–689 (2001)

8. Ewing, G., Pawlikowski, K., McNickle, D.: Akaroa2: Exploiting network computing by dis-
tributing stochastic simulation. In: Proceedings of the European Simulation Multiconference
(ESM’99), pp. 175–181 (1999)

9. Guerrier, P., Grenier, A.: A generic architecture for on-chip packet-switched interconnec-
tions. In: Proceedings of IEEE Design Automation and Test in Europe (DATE 2000), pp.
250–256. IEEE Press, New York (2000)

10. Jantsch, A.: Models of computation for networks on chip. In: Proceedings of the Sixth In-
ternational Conference on Application of Concurrency to System Design (ACSD’06), joint
invited paper ACSD and ICATPN, pp. 165–176 (2006)

11. Klaudel, H., Pommereau, F.: Asynchronous links in the PBC and M-nets. In: ASIAN 1999.
LNCS, vol. 1742, Springer, Heidelberg (1999)

12. Kruskal, C.P., Snir, M.: A unified theory of interconnection network structure. Theoretical
Computer Science 48(1), 75–94 (1986)

13. Pelz, E., Tutsch, D.: Modeling multistage interconnection networks of arbitrary crossbar size
with compositional high level Petri nets. In: Proceedings of the 2005 European Simulation
and Modelling Conference (ESM 2005),Eurosim, pp. 537–543. (2005)

14. Turner, J., Melen, R.: Multirate Clos networks. IEEE Communications Magazine 41(10),
38–44 (2003)

15. Tutsch, D., Hommel, G.: Performance of buffered multistage interconnection networks in
case of packet multicasting. In: Proceedings of the 1997 Conference on Advances in Parallel
and Distributed Computing (APDC’97), Shanghai, pp. 50–57. IEEE Computer Society Press,
Washington (March 1997)

16. Tutsch, D., Hommel, G.: High performance low cost multicore No C architectures for em-
bedded systems. In: Proceedings of the International Workshop on Embedded Systems –
Modeling, Technology and Applications, pp. 53–62. Springer, Heidelberg (June 2006)

17. Tutsch, D., Lüdtke, D.: Compatibility of multicast and spatial traffic distribution for model-
ing multicore networks. In: Proceedings of the 13th International Conference on Analytical
and Stochastic Modelling Techniques and Applications (ASMTA 2006); Bonn, pp. 29–36.
IEEE/SCS (2006)

Formal Models for Multicast Traffic in Network on Chip Architectures 401

18. Tutsch, D., Lüdtke, D., Kühm, M.: Investigating dynamic reconfiguration of network archi-
tectures with CINSim. In: Proceedings of the 13th Conference on Measurement, Modeling,
and Evaluation of Computer and Communication Systems 2006 (MMB 2006); Nürnberg, pp.
445–448, VDE (March 2006)

19. Wolf, T., Turner, J.: Design issues for high performance active routers. IEEE Journal on
Selected Areas of Communications 19(3), 404–409 (March 2001)

20. Yang, Y.: An analytical model for the performance of buffered multicast banyan networks.
Computer Communications 22, 598–607 (1999)

21. Yang, Y., Wang, J.: A class of multistage conference switching networks for group commu-
nication. IEEE Transactions on Parallel and Distributed Systems 15(3), 228–243 (2004)

Name Creation vs. Replication in

Petri Net Systems�

Fernando Rosa-Velardo and David de Frutos-Escrig

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

{fernandorosa,defrutos}@sip.ucm.es

Abstract. We study the relationship between name creation and repli-
cation in a setting of infinite-state communicating automata. By name
creation we mean the capacity of dynamically producing pure names,
with no relation between them other than equality or inequality. By
replication we understand the ability of systems of creating new parallel
identical threads, that can synchronize with each other. We have devel-
oped our study in the framework of Petri nets, by considering several
extensions of P/T nets. In particular, we prove that in this setting name
creation and replication are equivalent, but only when a garbage collec-
tion mechanism is added for idle threads. However, when simultaneously
considering both extensions the obtained model is, a bit surprisingly,
Turing complete and therefore, more expressive than when considered
separately.

1 Introduction

Extensive work has been developed in the last years in the field of multithreaded
programs [21]. In general, once thread synchronization is allowed, reachability
becomes undecidable [18], so that the effort is devoted to compute overapproxi-
mations of the set of reachable markings. For instance, [2] studies the case where
threads are finite state, [3] considers a framework to statically analyze multi-
threaded systems with a fixed number of infinite-state communicating threads,
and in [4] that work is extended to cope with dynamic creation of threads.

Dynamic name generation has also been thoroughly studied, mainly in the
field of security and mobility [13]. Paradigmatic examples of nominal calculi are
the π-calculus [16], and the Ambient Calculus [6]. Since the early versions of
all these calculi are Turing complete, numerous efforts have been focused on
the static analysis of undecidable properties [7, 17] and in the restriction of
the original formalisms [5, 27] to get more manageable languages where some
interesting properties become decidable.

In this paper we investigate the relationships between name creation and
replication in this setting of infinite-state communicating automata, that in our

� Work partially supported by the Spanish projects DESAFIOS TIN2006-15660-C02-
02, WEST TIN2006-15578-C02-01 and PROMESAS-CAM S-0505/TIC/0407.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 402–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Name Creation vs. Replication in Petri Net Systems 403

case are Petri nets. By name creation we mean a mechanism to generate fresh
names that can be communicated between components, with no relation between
them other than equality or inequality, which have been called pure names in [13].
By replication we understand the capability of processes of creating an exact
replica of themselves, though always starting its execution in a fixed initial state.
Once created, these replicated processes evolve in an independent way, though
possibly interacting with other processes.

We will prove that these two mechanism are equivalent, in the sense that
they simulate each other. On the one hand, names can be used to represent the
states of the different threads of a process that are running in parallel over a
single copy of the (virtually) replicated process. On the other hand, different
copies of the same component can be used to mimic the effect of adding pure
names. In the proof of this equivalence it is essential to consider a garbage
collection mechanism that removes idle threads, given that the corresponding
garbage collection mechanism for names is implicit in the model (the set of used
names is not an explicit part of the state). In fact, reachability is undecidable
for the extension with name creation (equivalently with replication and garbage
collection), but decidable if no such mechanism is considered.

However, though name creation and replication are equivalent, it turns out
that they do not overlap, in the sense that a model dealing simultaneously with
both surpasses the strength of any of these two features, reaching indeed Turing
completeness. The intuitive explanation of why this is true is that once we have
names, they can be used to distinguish between what at first were indistinguish-
able components, so that now threads can have a unique personality.

A formalism that encompasses both dynamic name generation and replication
is TDL [9]. In TDL there are primitives both for name creation and thread
creation. However, no garbage collection mechanism is considered, neither for
names nor for threads. As a consequence, and quite surprisingly, reachability is
decidable, though coverability is undecidable.

The remainder of the paper is structured as follows. Section 2 presents the
basic model, that will be the starting point of our work. Section 3 extends the
basic model with a mechanism for name creation and name communication, and
gives a brief insight of the expressive power of the obtained model. Section 4
extends again the basic model, but now with a replication primitive, and proves
the equivalence between the two extensions. In Section 5 we consider the model
obtained when introducing the two features at the same time, and prove its
Turing-completeness. Section 6 presents some results regarding boundedness.
Finally, Section 7 presents our conclusions and some directions for further work.

2 The Basic Model

In order to concentrate on the two features of interest we will first consider a
very basic model, based on Petri Nets, which could be considered not too useful
in practice, but which will be an adequate starting point for later extensions.
First, let us introduce some notations that we will use throughout the paper.

404 F. Rosa-Velardo and D. de Frutos-Escrig

Given an arbitrary set A we will denote by MS(A) the set of finite multisets of
A, that is, the set of mappings m : A → N. We denote by S(m) the support of
m, that is, the set {a ∈ A | m(a) > 0}, |m| =

∑

a∈S(m)
m(a), and by + and − the

sum and difference operators for multisets, to distinguish them from ∪ and \,
the corresponding operators over sets. If f : A → B is an injective mapping and
m ∈ MS(A), then we define f(m) ∈ MS(B) by f(m)(b) = m(a) if b = f(a) or
f(m)(b) = 0, otherwise. We will consider a set S of service names, endowed with
a function arity : S → {n ∈ N | n ≥ 2} and we take the set of synchronizing
labels Sync = {s(i) | s ∈ S, 1 ≤ i ≤ arity(s)}. If arity(s) = 2 then we will
write s? and s! instead of s(1) and s(2), respectively, that can be interpreted as
the offer and request of an ordinary service. We also use a set A of labels for
autonomous transitions.

Definition 1. A component net is a labelled Petri net N = (P, T, F, λ) where:

– P and T are disjoint finite sets of places and transitions, respectively,
– F ⊆ (P × T) ∪ (T × P) is the set of arcs of the net, and
– λ is a function from T to the set of labels A ∪ Sync.

A marking M of N is a finite multiset of places of N , that is, M ∈ MS(P).

As usual, we denote by t• and •t the set of postconditions and preconditions of
t, respectively, that is, t• = {p | (t, p) ∈ F} and •t = {p | (p, t) ∈ F}.

Definition 2. A basic net system is a set N of pairwise disjoint component
nets. A marking of N is a set of markings of its components, one marking per
component.

For a net system N we will denote by P , T , F and λ the union of the corre-
sponding elements in each net component, and we will denote simply by F the
characteristic function of the set F . Analogously, we will consider markings as
multisets of P . Now let us define the firing rules of the two kind of transitions.

Definition 3. Let N be a basic net system and M a marking of N. An au-
tonomous transition, t ∈ T with λ(t) ∈ A, is enabled at marking M if •t ⊆ M .
The reached state of N after the firing of t is M ′ = M − •t + t•.

Therefore, autonomous transitions are exactly as ordinary transitions in P/T
nets (see Fig. 1 left). This is not the case for synchronizing transitions.

Definition 4. Let N be a basic net system and s ∈ S with arity(s) = n. The
transitions in a tuple t = (t1, . . . , tn) are said to be compatible for s if λ(ti) = s(i)

for all i ∈ {1, . . . , n}. We write •t =
n∑

i=1

•ti and t
• =

n∑

i=1
t•i .

Definition 5. Let N be a basic net system and M a marking of N. A tuple of
synchronizing transitions t is enabled at marking M if •t ⊆ M . The reached
state of N after the firing of t is M ′ = M − •t + t

•.

Name Creation vs. Replication in Petri Net Systems 405

• k

a

• l

• k

s!

• l

•

s?

h

•

Fig. 1. Autonomous (left) and synchronizing (right) transitions

Thus, any synchronizing transition (Fig. 1 right) needs the presence of compat-
ible enabled transitions, in which case they can be fired simultaneously. Notice
that since the different nets of a basic net system do not have a name they must
be addressed by communications in an anonymous way. Indeed, a net component
is willing to synchronize with any nets that have enabled compatible transitions.
Intuitively, it is willing to receive a service from anyone offering it. Therefore,
there is no way in the present model to discriminate between different compo-
nents. In fact, a process willing to synchronize can do it with any compatible
counterpart, and its state after the execution will be the same whichever was
that counterpart. In [12] we proved the analogous to the following result, but
with a model with only two-way synchronizations.

Proposition 1. Every Basic Net System can be simulated by a P/T net.

The proof basically consists on having a different transition for every tuple of
compatible synchronizing transitions, so that the firing of the tuple t is simulated
by the firing of transition t. In fact, there we proved this result for a model
which also considered localities, so that each component is localized and can
only synchronize with co-located components, thus proving that these locations
do not introduce any further expressive power.

In the result above and some other times along the paper we assert that a model
M′ simulates another model M. By that we mean here that for every system N

in M there is N′ = F (N) in M′, where F is a computable function, such that
the transition systems generated by the semantics of N and N′ are isomorphic.
Therefore, reachability in N and N′ are equivalent. Moreover, that isomorphism
also preserves the considered orders between markings, so that coverability and
boundedness are also preserved. As a consequence, whenever reachability, cover-
ability or boundedness are decidable in M′ they are also decidable in M.

Since reachability, coverability and boundedness are decidable for P/T nets,
we have the following:

Corollary 1. Reachability, coverability and boundedness are decidable for Basic
Net Systems.

3 Name Creation

In this section we extend the previous model with the capability of name man-
agement. Names can be created, communicated between components and used

406 F. Rosa-Velardo and D. de Frutos-Escrig

k k

a

l l

x y

y ν

k k

s!

l l

x z

y x

h

s?

h

k

x

x
z

Fig. 2. Autonomous (left) and synchronizing (right) transitions

to restrict synchronizations to happen only between components that know a
particular name, as we have illustrated with several examples in [24]. We can
use this mechanism to deal with authentication issues in our systems. We for-
malize the latter by replacing ordinary tokens by distinguishable tokens, thus
adding a touch of colour to our nets. In order to handle these colours, we need
matching variables labelling the arcs of the nets, taken from a set Var . Moreover,
we add a primitive capable of creating fresh names, formalized by means of a
special variable ν ∈ Var .

Definition 6. A ν-net component is a labelled coloured Petri Net N =(P, T, F, λ),
where P and T are finite disjoint sets of places and transitions of the net, respec-
tively, F : (P × T) ∪ (T × P) → Var is a partial function, λ : T → A ∪ Sync is a
function labelling transitions, such that for every t ∈ T :

1. ν /∈ pre(t),
2. If λ(t) ∈ A then post(t) \ {ν} ⊆ pre(t),
3. If λ(t) ∈ Sync then ν /∈ Var(t),

where •t = {p | (p, t) ∈ Dom(F)}, t• = {p | (t, p) ∈ Dom(F)}, pre(t) = {F (p, t) |
p ∈ •t}, post(t) = {F (t, p) | p ∈ t•} and Var(t) = pre(t) ∪ post(t).

A ν-net component is a special kind of labelled coloured Petri Net with only
one colour type for identifiers, taken from an infinite set Id , except for the
special variable ν. Unlike for ordinary Coloured Petri Nets, where arbitrary
expressions over some syntax can label arcs, we only allow variables, that are used
to specify the flow of tokens from preconditions to postconditions. In particular,
this means that only equality of identifiers can be checked by matching.1 If t is an
autonomous transition then it must be the case that every variable annotating a
postcondition arc, except ν, also annotates some precondition arc. Then, the only
way transitions can produce new names is by means of the variable ν attached
to one of its outgoing arcs, which always produces a new name, not present in
the current marking of the system.

Definition 7. A marking of a ν-net N = (P, T, F, λ) is a function M : P →
MS(Id). We denote by S(M) the set of names in M , that is, S(M)=

⋃

p∈P

S(M(p)).

Definition 8. A ν-net system N is a set of disjoint ν-net components. A mark-
ing of N is a collection of markings of its components, one marking each.
1 In fact, analogous results could be obtained if we could also check inequality.

Name Creation vs. Replication in Petri Net Systems 407

In fact, ν-net systems with a single component correspond to the minimal OO-
nets defined in [14]. As for any kind of coloured Petri nets, transitions are fired
relative to a mode σ : Var(t) → Id , that chooses among the tokens that lie in
the precondition places. We will denote modes by σ, σ′, σ1, σ2, . . .

Definition 9. Let N be a ν-net system, t ∈ T with λ(t) ∈ A and M a marking
of N. A transition t is enabled with mode σ if σ(ν) /∈ S(M) and for all p ∈ •t,
σ(F (p, t)) ∈ M(p). The reached state of N after the firing of t with mode σ is
the marking M ′ given by M ′(p) = M(p) − {σ(F (p, t))} + {σ(F (t, p))} ∀p ∈ P .

Autonomous transitions work mainly as the ordinary transitions in coloured
nets (see Fig. 2 left). The only novelty is the presence of the variable ν, which
is specially treated in the firing rule: The condition σ(ν) /∈ S(M) causes the
creation of fresh (equal) identifiers in all the places reached by arcs labelled by
that special variable.

For a tuple of synchronizing transitions t = (t1, . . . , tn) we denote by post(t) =
n⋃

i=1
post(ti), pre(t) =

n⋃

i=1
pre(ti) and V ar(t) = post(t) ∪ pre(t).

Definition 10. Let t = (t1, . . . , tn) be a tuple of synchronizing transitions of a
ν-net system. We say the transitions in t are compatible if:

1. λ(ti) = s(i) for some s ∈ S with arity(s) = n,
2. post(t) \ {ν} ⊆ pre(t)

The compatibility conditions are still merely syntactical: All the transitions in
the tuple must meet together the same constraint imposed to autonomous tran-
sitions (see Fig. 2 right). A mode for t is a map σ : Var(t) → Id .

Definition 11. Let N be a ν-net system and M a marking of N. We say that
the tuple of compatible transitions t = (t1, . . . , tn) is enabled with mode σ if for

all p ∈ •t,
n∑

i=1
{σ(F (p, ti))} ⊆ M(p). The reached state of N after the firing of t

with mode σ is the marking M ′, given by

M ′(p) = M(p) −
n∑

i=1

{σ(F (p, ti))} +
n∑

i=1

{σ(F (ti, p))} ∀p ∈ P

By means of synchronization we achieve both name communication and restric-
tion of communications by name matching. If t = (t1, t2), the former is obtained
by using a variable in post(t1) \ pre(t1) and in pre(t2) (or vice versa), as the
variable z in Fig. 2 right. The latter is obtained by using the same label both
in pre(t1) and pre(t2), which forces the matching between the corresponding
tokens, as the variable x in Fig. 2 right.

In [24] we proved several interesting (un)decidability results for a model we
call Mobile Synchronizing Petri Nets, that are essentially these ν-net systems,
but again with some syntactic sugar supporting a flat kind of mobility and
allowing only two-way synchronizations. In particular, though reachability turns
out to be undecidable when adding names, as proved in [14] for minimal OO-nets,

408 F. Rosa-Velardo and D. de Frutos-Escrig

coverability remains decidable, meaning that the expressive power of this model
lies somewhere in between ordinary P/T nets and Turing machines. The latter
was proved by taking into account the abstract nature of created names. More
precisely, we proved that they are well structured systems [11] when we consider
the order defined by M1 	α M2 ⇔ if there is some M ′ such that M1 ≡α M ′

(they are equal up to renaming of identifier tokens) and M ′(p) ⊆ M2(p) ∀p ∈ P .
All these results are trivially transferred to the model considered in this paper.

4 Replication

So far, components were not an essential feature of any of the models just con-
sidered. In fact, any basic net system or ν-net system could be flattened to an
equivalent one with a single component. However, we have preferred to maintain
components in order to have an incremental presentation, and because they are
the basis of the agent based architecture of mobile systems that motivated our
study. In this section we introduce a replication primitive, that creates an iden-
tical copy of the net component that executes it, marked in some fixed way. This
primitive makes very desirable the structuring of the system by means of com-
ponents. Replication, together with synchronization, can be used to implement
a spawning primitive, that creates a different component taken from a finite set.

Definition 12. A Replicated Net (RN) is a labelled Petri net N = (P, T, F, λ)
where:

– P and T are finite disjoint sets of places and transitions, respectively,
– F ⊆(P ×T)∪ (T ×P) is the set of arcs of the net,
– λ is a function from T to the set of labels A ∪ Sync ∪ MS(P).

A marking M of N is a finite multiset of places of N .

The only syntactical difference with basic nets is that now some transitions
may be labelled by a multiset of places, that is, by a marking. That multiset
corresponds to the initial marking of the replicated net that is created when
firing such a transition.

We represent the presence in the system of several copies of a net by consid-
ering several markings of that net, so that now each N ∈ N does not represent
a single net component, but one of the possible types of nets that can appear
in the system. Therefore, unlike for ordinary basic nets, a marking is not just a
collection of individual markings, one marking per component, but a multiset of
markings, and not necessarily one marking per component, but any natural.

Definition 13. An RN system N is a set of pairwise disjoint RNs. A marking
M of N is a finite multiset of markings of its components.

Alternatively, we could expand the state of a replicated net system, getting
an equivalent system with several copies of each net in the initial system, each
marked by an ordinary marking. Then, the firing of a replication transition would

Name Creation vs. Replication in Petri Net Systems 409

• •

• •
•

{p, q}

aut

p

q

�
• •

• •
•

{p, q}

aut

p

q

• •

• •
•

{p, q}

aut

p

q

Fig. 3. RN system

add a new component to the system, thus modifying its architecture. However,
in order to clearly justify our positive results about the decidability of some
properties it is crucial to stress the fact that the set of types of the components
of the system remains the same, as explicitly captured by our definitions.

Given an RN system N, marked by M, we will denote by M(N) the marking of
the subsystem of N composed only of copies of N , so that in order to completely
specify a marking M it is enough to specify each M(N) for every N ∈ N. The
definitions of enabled transition and firing of transitions are analogous to those
for basic net systems. Next, we will present the definitions corresponding to
autonomous transitions.

Definition 14. Given an RN system N with N = {N1, . . . , Nn}, Ni =
(Pi, Ti, Fi, λi), and M a marking of N, t ∈ Ti with λ(t) ∈ A is M -enabled if
M ∈ M(Ni) and •t ⊆ M . The reached marking after the M -firing of t is M′,
where

– M′(Ni) = M(Ni) − {M} + {M ′}, where M ′ = M − •t + t•,
– M′(Nj) = M(Nj) for every j with i �= j.

In the previous definition, the marking of the component firing the transition is
replaced in M(N) by the resulting marking of that firing, where N is the type
of that component.

The definition of firing of a tuple of synchronizing transitions is analogous to
that in the previous sections, but taking into account that now there may be
several components of the same type and that the synchronizing transitions may
or may not belong to the same components. To complete the presentation, we
define the firing of replication transitions.

Definition 15. Given an RN system N with N = {N1, . . . , Nn}, Ni =
(Pi, Ti, Fi, λi), and M a marking of N, t ∈ Ti with λ(t) ∈ MS(Pi) is M -enabled
if M ∈ M(Ni) and •t ⊆ M . The reached marking after the M -firing of t is M′,
where

– M′(Ni) = M(Ni) − {M} + {M ′, λ(t)}, where M ′ = M − •t + t•,
– M′(Nj) = M(Nj) for every j with i �= j.

Therefore, the net firing the replication transition is changed as if it were an
autonomous transition; besides, a new net of the same type is created, initially

410 F. Rosa-Velardo and D. de Frutos-Escrig

marked by λ(t). Fig. 3 illustrates an RN system, initially with one component
that can either fire an autonomous transition (labelled by aut) or create a replica
that can only fire that autonomous transition, and chooses to do the latter.

So far, net components can only be created, but never removed, even though
no tokens lie in them, thus making impossible the firing of any of its transi-
tions (supposing, without loss of generality that every transition has at least one
precondition). In such a case, we proved in [26] that both reachability and cov-
erability are decidable. The former is proved by taking into account that mark-
ings must remember the number of created components, even if some of them
are deadlocked. Since this assumption is not very realistic, next we introduce
a garbage collection mechanism, that allows us to remove from markings those
nets that do not currently have any token, which form a subset of deadlocked
components, if we assume that every transition has at least one precondition.
We do it simply by disregarding the empty marking as a possible marking of a
net, as formalized in the next definition.

Definition 16. Given two markings M and M′ of an RN system N we will write
M ≡ M′ if for all N ∈ N, M(N) ≡N M′(N), where ≡N is the least equivalence
relation on multisets of markings of N such that M ≡N M + {∅}.

If we identify markings up to ≡, every time a net component becomes empty, we
will ignore it. We will write g-RN to denote RN systems with garbage collection.
Once again, in [26] we proved the decidability of coverability for g-RN systems
by means of a simulation of them using ν-net components.

Proposition 2. Every g-RN system can be simulated by a ν-net system.

The proof of the previous result consists on simulating the behaviour of every
copy of the same component within the same net, using a different identifier
to simulate the ordinary black tokens in each of the copies, thus distinguishing
between the different copies. In particular, garbage collection of empty compo-
nents is obtained for free by means of the disappearance of the identifier that
represents it. We guarantee that different components do not incorrectly interact
with each other labelling every arc of the autonomous transitions with the same
variable, so that they only manipulate tokens of the same type (representing
one single net component). Moreover, creation of net components is mapped to
creation of new tokens that reflect the initial marking of the new component.

Notice that if we removed every deadlocked component, instead of only the
empty ones, this simulation would no longer be correct, unless we could remove
from ν-net markings useless identifiers (those that cannot enable any transition).
This fact illustrates that in fact the garbage collection for identifiers obtained for
free due to their disappearance is not an optimal garbage collection mechanism,
but a conservative one.

Therefore, every decidable problem for ν-net systems that is preserved by this
simulation is also decidable for g-RN systems, so that coverability is decidable for
the latter. Now we prove that the reciprocal is also true, so that undecidability
results are also transferred from ν-net systems to g-RN systems.

Name Creation vs. Replication in Petri Net Systems 411

ap1

bp2

• qaut

x

y

x

Fig. 4. ν-net without name creation

Proposition 3. Every ν-net system can be simulated by a g-RN system.

Proof (sketch). Given a ν-net system N , we have to simulate it using a g-RN
system N∗. Without loss of generality, we assume that the ν-net system is just a
ν-net without synchronizing transitions, since every ν-net system can be easily
flattened to a single equivalent component.

The key idea is to use an RN component for each different name, all of the
same type. This component type has the same places as N , so that a black token
in a place p corresponding to the component that is simulating the identifier a
stands for a token a in the place p of the original net. Fig. 5 shows the simulation
of the net in Fig. 4. There, the net in the left simulates the occurrence of a in
Fig. 4, and the one in the right does the same for b.

This is a straightforward way to represent the markings of N in N∗. However,
the simulation of firings is quite more intricate. Given a transition of N , if every
arc that is adjacent to it is labelled with the same variable, then the firing of that
transition only involves one token name. If, for instance, that token is a then the
RN component representing a can fire an autonomous transition that mimics
that firing, moving tokens from the preconditions of t to its postconditions.
However, if there is more than one variable adjacent to t then that is not possible.
Consider the net in Fig. 4, with two different variables x and y next to its sole
transition. It may still be the case that it is fired with x and y instantiated to
the same value, so that we need an autonomous transition, labelled by x = y in
Fig. 5, that mimics the original transition, as in the previous case. However, t can
also be fired taking two different tokens, say a and b, for x and y, respectively. In
that case two net components, one representing a and one representing b, should
interact by means of a pair of synchronizing transitions to simulate the firing:
The one representing a should remove a token from p1 and put it in q (action
(x �= y)x in Fig. 5), while the one representing b should just remove a token from
its place p2 (action (x �= y)y in Fig. 5). However, since both components must
be of the same type, they both must be ready to perform these three actions.
That is why in the simulation shown in Fig. 5 we have three transitions, one
autonomous transition and two synchronizing transitions.

Regarding name creation, we map it to component creation. Thus, every tran-
sition with outgoing arcs labelled by ν are simulated by replicating transitions.
The initial marking of the new component is that with a token in every post-
condition linked by a ν-arc (see Fig. 6). Notice that we have to remove in the
simulation the arcs labelled by ν, since the replicating transition automatically
marks those places when fired. This construction works if we assume that tran-
sitions that create names do not deal with more than two token names, which in

412 F. Rosa-Velardo and D. de Frutos-Escrig

•p1

•p2

• q

s?

x = y

s!

(x �= y)x

(x �= y)y

•p1

•p2

• q

s?

x = y

s!

(x �= y)x

(x �= y)y

Fig. 5. Simulation of the ν-net in Figure 4 by means of g-RN systems

a b

•

aut

aut

x x

ν

x

x

p

• •

•

{p}

aut p

Fig. 6. ν-net with name creation and its RN simulation

fact can be done without loss of generality (otherwise, RN components should
allow synchronizing transitions to create new components).

The previous construction can be generalized to transitions with an arbitrary
number of variables. In the case of two variables, we have implicitly used the
two partitions of the set {x, y}, namely {{x, y}} and {{x}, {y}}. In general, for
an arbitrary transition t, we would need to consider any possible partition of the
set Var(t). For each element in the partition, if it has n elements then we add
n transitions, and label them with labels s(1), . . . , s(n) for some new s ∈ S with
arity n, to make them compatible.

Corollary 2. The reachability problem is undecidable and the coverability prob-
lem is decidable for g-RN systems.

5 Name Creation + Replication

Now we consider a model in which we combine the two features in the two
previous sections, that is, systems composed of nets that can both create fresh
identifiers and replicate themselves. Formally, ν-RN systems are ν-net systems
for which we allow an extra transition label type, so that we can label transitions
with markings of components, as in the previous section, but now these markings
are composed of named tokens.

Quite surprisingly, though the expressive powers obtained by adding either
name creation or only replication are identical, as we have proved in the previous
section, it turns out that they are somehow orthogonal, so that when combined
we reach Turing-completeness, as we will prove next. Informally, we could say
that both features generate bidimensional infinite state systems. In the case of
ν-net components we may have an unbounded number of different tokens, each

Name Creation vs. Replication in Petri Net Systems 413

of which can appear in markings an unbounded number of times. Analogously,
in the case of RN systems, we may have an unbounded number of components,
each of them with a possible unbounded number of tokens. However, these two
dimensional spaces are not the same, although somehow equivalent to each other,
according to Prop. 2 and Prop. 3. But when we merge the three sources of infinity,
only the common dimension overlaps, or following the geometric metaphor, we
have two perpendicular planes, that no longer generate a bidimensional space,
but the whole tridimensional space. We will see that this space is too rich, thus
producing a Turing-complete formalism.

Proposition 4. Any Turing machine can be simulated by a ν-RN System.

Proof (sketch). Given a Turing machine, we have to simulate it using a ν-RN
System. The main problem to simulate Turing machines is the representation of
the potentially one-way infinite set of cells of the tape. We represent the tape
by means of a doubly-linked list. Each node of the list (or cell of the tape) will
be represented by a different copy of the same process, depicted in Fig. 7. This
process has a memory with two kinds of data: First, it must know whether its
value is 0 or 1. For that purpose, it has two places named 0 and 1, that are marked
in mutual exclusion. Second, and more important, the cell must hold information
about which are the previous and next cell whenever it becomes part of the tape
of the machine, for what we will use identifiers. For that purpose, components
that represent cells have three places (among others), me, prev and next , that
contain three different identifiers: the name of the cell in me, that of the previous
cell in prev and that of the next cell in next.

At any time, the tape has a final cell, that does know its own name and that
of its previous cell (it has been initialized firing its init? transition), but not
that of the next cell, which in fact does not still exist. In order to expand the
tape a new cell can be created by firing the replicating transition {i, 0}. The new
cell can generate its own name, after which it is willing to synchronize with its
parent net (the cell at the end of the tape). Then, the synchronization of the
transitions init ! and init? causes the exchange of the respective names of the
cells, putting them in the corresponding next and prev places, so that the net
in the tape now knows the name of its next cell, and the new cell becomes the
last of the tape.

Finally, the cells should also have synchronizing transitions that output the
name of the previous and the next cell (transitions left ! and right !, respectively),
two others that output its current value (transitions r(0)! and r(1)!) and finally
four more that change it as indicated by the program of the machine (those
labelled by w(0)? and w(1)?). All these transitions are doubly-linked with the
place me, by arrows labelled by auth (those labelled by w(0)? and w(1)? should
also have those arrows, but we have omitted them in the picture for readability).

The part of the construction described so far is the same for any Turing
Machine. The rest of the simulation only needs an additional net component for
the control, with a place now containing the identifier of the cell where the head
is pointing. All the synchronizations with the program mentioned in the previous
paragraph are done forcing the matching between the value in the place now of

414 F. Rosa-Velardo and D. de Frutos-Escrig

•

•

•

•
me

•

• prev• next

•

•

{i, 0}

aut

r(0)!

r(1)!

init?

left!

w(1)?

w(1)?

w(0)?

w(0)?

right !

init !

ν

link

prevlink

link2

next

auth

auth

auth

auth

link2

0

1

i

Fig. 7. Turing cell

• •

••

now

w(0)!

right?

w(1)!

right?

auth

auth

auth

nextauth

next

Fig. 8. Turing machine that computes 0101 . . .

the program and the value in the place me of the cell, by means of the variable
auth, so that the head can only read and modify the proper cell. Of course, it
should also have one place per state of the machine, marked in mutual exclusion,
each of them with the corresponding actions attached. As an example, Fig. 8
shows the simulation of the head of a Turing machine that computes the infinite
sequence 0101 . . .

Notice that the simulation in the proof of the previous result does not make any
use of garbage collection, so that Turing completeness is achieved even without it.
In fact, we are implicitly considering a kind of garbage collection for identifiers,
in the sense that they could disappear from markings after the firing of some
transition (as happens for instance to identifier b in Fig. 4 after firing aut), thus
becoming reusable. We conjecture that if we avoided this automatic garbage
collection for names, by including the full set of created names to the state,

Name Creation vs. Replication in Petri Net Systems 415

M1 M2 M3

1 1 1
1 2 2 2 2 2

2 3 3 3 3 3
3 4 4 4

Fig. 9. The natural order of ν-RNs is not a wqo

we would get a situation analogous to that in [9], so that reachability is also
decidable. Instead, we can prove the following undecidability result.

Corollary 3. Coverability and reachability are undecidable for ν-RN systems.

Proof. It is clear that reachability remains undecidable since it also was unde-
cidable in the less general model of ν-net systems. Coverability is undecidable
for ν-RN systems, or we could use the previous simulation to decide the halting
problem in Turing machines, just by asking whether the marking with a token
in the place representing the final state can be covered.

It is worth pointing out that though the natural orders for both ν-net systems
and RN systems are well-quasi orders (wqo) [11], as a consequence of the previous
undecidability result, the natural order for ν-RN systems, that extends both,
cannot be wqo.

Definition 17. Given two markings M1 and M2 of a ν-RN system N we define
the order 	 given by M1 	 M2 if there are two injections h1 : M1 → M2 and
h2 : S(M1) → S(M2) such that for every M ∈ M1, h1(M)(p) ⊆ h2(M(p)).

Therefore, h1 has the role of mapping components of M1 to components of
M2, while h2 has the role of mapping identifiers in M1 to identifiers in M2.
Indeed, the defined order is not a well-quasi order. To see that, it is enough to
consider the simple case of systems with a single net type, with just one place,
so that every marking of such a system consists on a multiset of multisets of
identifiers. In this case, the previous definition is simplified to M1 	 M2 if there
are two injections h1 : M1 → M2 and h2 : S(M1) → S(M2) such that for all
M ∈ M1, h1(M) ⊆ h2(M). Let us take Id = N and consider the sequence of
markings depicted in Fig. 9, Mi = {M i

1, . . . , M
i
i , M

i
i+1}, for i = 1, 2, . . ., where

M i
k = {k, . . .

i
, k} for k = 1, . . . , i and M i

i+1 = {i, i + 1, . . .
i

, i + 1}, for which there

are no indices i < j such that Mi 	 Mj. This is so because for any i < j, by
cardinality, the only possible choice is to take h1 and h2 as h1(M i

k) = M j
k for

k = 1, . . . , i, and h2 the identity, which does not work because i ∈ M i
i+1 but

i /∈ M j
k for all k ≥ i + 1.

416 F. Rosa-Velardo and D. de Frutos-Escrig

a kt
x x

p1 p2

Fig. 10. Width-bounded but not depth-bounded ν-net

• kt
ν

Fig. 11. Depth-bounded but not width-bounded ν-net

6 Boundedness Results

Unlike ordinary P/T nets, that have a single infinite dimension, our ν-net sys-
tems have two infinite dimensions, since identifiers can appear an unbounded
number of times, and there may also be an unbounded amount of different
identifiers. Therefore, we can consider three different notions of boundedness,
depending on the dimensions we are considering. In this chapter we will con-
sider ν-net systems with a single component since, as we have said before, every
ν-net system can be flattened to an equivalent ν-net.

Definition 18. Let N = (P, T, F, M0) be a ν-net.

1. N is bounded if there is n ∈ N such that for every reachable M and every
p ∈ P, |M(p)| ≤ n.

2. N is depth-bounded if there is n ∈ N such that for every reachable M , a ∈ Id
and p ∈ P , M(p)(a) ≤ n.

3. N is width-bounded if there is n ∈ N such that for every reachable M ,
|S(M)| ≤ n.

Proposition 5. A ν-net is bounded if and only if it is depth-bounded and width-
bounded.

As we have said before, in [24] we proved that ν-net systems2 with order 	α

are well structured systems. Moreover, Prop. 4.5 and Lemma 4.7 prove that,
in fact, they are strictly well structured (well structured systems with strict
monotonicity). In [11] it is proved that for this kind of systems the boundedness
notion induced by the considered order is decidable.

Corollary 4. Boundedness is decidable for ν-nets.

Therefore, according to the previous result, we can decide if a ν-net is bounded,
in which case it is both depth and width-bounded according to Prop. 5. However,
if it is not bounded, it could still be the case that it is width-bounded (see Fig. 10)
or depth-bounded (see Fig. 11), though not both simultaneously.

Now let us see that width-boundedness is also decidable for ν-nets, for which
we can reuse the proof for P/T nets.

2 MSPN systems with abstract identifiers, as called there.

Name Creation vs. Replication in Petri Net Systems 417

s1 = {{p1}}

s2

s s

t

t

s2 = {{p1, ∞(p2)}}

Fig. 12. Karp-Miller tree of the ν-net in Fig. 10

Proposition 6. Let N be a ν-net with initial marking M0. N is width-unbounded
if and only if there are two markings M1 and M2 such that:

– M1 is reachable from M0 and M2 is reachable from M1
– M1 	α M2
– |S(M1)| < |S(M2)|

As a consequence, in order to prove that a net is width-unbounded it is enough
to find two witness markings like the ones appearing in the result above. These
witnesses can be found by constructing a modified version of the Karp-Miller
tree that considers markings that are identified up to renaming of identifiers
and some of the identifiers can appear infinitely-many times, and by cutting out
branches in which the amount of different identifiers strictly grows.

Corollary 5. The problem of deciding whether a ν-net is width-bounded is
decidable.

We have said that though the coverability problem for ν-net systems is decidable,
reachability is undecidable. Of course, if the net is bounded then its space state
is finite and, therefore, reachability for this class of ν-nets is decidable. In fact,
this is also true for the class of width-bounded ν-nets, even though they can
generate infinite state spaces. This is so because it is possible to simulate every
width-bounded ν-net by means of a ν-net that does not use the ν-variable, that
is, that does not create any identifier, and nets in this subclass are equivalent to
P/T nets [23].

Proposition 7. Every width-bounded ν-net can be simulated by a ν-net without
name creation.

The simulation is based on the fact that, for identifiers that can appear a bounded
number of times, we can control when they are removed by explicitly having the
nodes of the Karp-Miller tree of the net as places of the simulating net, marked
(in mutual exclusion) whenever the ω-marking they represent cover the current
marking. By knowing when an identifier is removed, they can be reused, so that
at that point we can put them in a repository R of identifiers that can be used
whenever a new one was created in the original net. Moreover, we only need to
reuse identifiers that can appear a bounded number of times, since they are the
only ones that may disappear in all possible executions (even though identifiers
that appear an unbounded number of times could also eventually disappear).

418 F. Rosa-Velardo and D. de Frutos-Escrig

a

k

•

k

k

t(s1, s2)

t(s2, s2)

x

x

x

x

p1

p2

s1

s2

R

Fig. 13. ν-net without name creation that simulates the ν-net in Fig. 10

a

k

b

t1

t2

y

x

x

ν

x
x

p1

p2

p3

Fig. 14. Another ν-net

s1s1 = {{p1}, {p3}}

s2s2 = {{p2}}

t1 t2

Fig. 15. Karp-Miller tree of the ν-net in Fig. 14

As an example, let us consider the ν-net in Fig. 10 (which does not create any
identifier already), whose Karp-Miller tree is depicted in Fig. 12. Since we are
identifying markings up to renaming of identifiers, we can represent them as the
multiset of multisets of places in which identifiers appear, one multiset of places
per identifier. Then, the ν-net that results of the simulation sketched above is
shown in Fig. 13. Another example is shown in Fig. 14, whose Karp-Miller tree
is depicted in Fig. 15, and the simulating ν-net is that in Fig. 16. In it we use
a variable ν′, different from ν, that mimics the effect of ν by taking the “new”
identifier from the repository.

Corollary 6. Reachability is decidable for width-bounded ν-nets.

Proof. Given a marking M of the ν-net N , we construct its Karp-Miller tree,
which is finite, and the ν-net without name creation N∗ that simulates it. Let
n be a natural such that |S(M)| ≤ n for all M ∈ S. If |S(M)| > n then M
is trivially not reachable. Let us suppose that |S(M)| ≤ n. In that case, M is

Name Creation vs. Replication in Petri Net Systems 419

a

k

b

•

k

b

t1

t2

y

x

x

ν′

x

x

y

ν′

p1

p2

p3

s2

s1

R

Fig. 16. ν-net without name creation simulating the ν-net in Fig. 14

reachable in N if and only if there is M ∈ S and a bijection h : I → S(M) such
that:

– M 	α M
– M∗ is reachable in N∗, where

• M∗(p)(a) = M(p)(h(a)) for all p ∈ P ,
• M∗(M) = 1 and M∗(s) = 0 for all s �= M .

Since S is finite and there are finitely-many bijections between I and S(M),
reachability in N reduces to reachability in N∗, which is decidable [24].

As final remark, all the boundedness results we have seen in this section regarding
identifiers can be translated to the setting with replication, thanks to Prop. 3
and Prop. 2. Therefore, the analogous version of width-boundedness, that we can
call component-boundedness is decidable for g-RN systems, and reachability is
also decidable for component-bounded g-RN systems.

7 Conclusions and Future Work

We have investigated the consequences of adding two different primitives to Petri
Net Systems. The first one is a pure name creation primitive. The model that
results from adding it was already studied in [14] and [24], where we proved that
its expressive power lies in between that of ordinary Petri Nets and Turing ma-
chines. The second primitive, which was presented in [26], deals with component
replication. We have proved that these two extensions can simulate each other
and thus have the same power. However, when we simultaneously extend the
basic model in the two directions, by incorporating both the name creation and
the replication primitive, the obtained model turns out to be Turing complete.

There are several directions in which we plan to continue our research. First,
we would like to know the relation between our g-RN systems (or equivalently,
our ν-net systems) and some well established Petri net formalisms, whose ex-
pressive power is also in between Turing machines and Petri nets, such as Petri
nets with transfer or reset arcs. We already know that both can be weakly (that

420 F. Rosa-Velardo and D. de Frutos-Escrig

is, preserving reachability) simulated using ν-nets, but we do not know if a more
faithful simulation that preserves the full behaviour of the net is also possible.

Another interesting issue would be finding some restrictions to the use of the
ν variable or that of replicating transitions, so that a model with constrained
features but including both primitives would no longer be Turing complete, thus
having similar results to those presented in Sect. 6 in the complete model. For
instance, it is clear that this is the case if the number of times we can use the
replication transitions is globally bounded, or equivalently, whenever we can only
create a finite number of names. Certainly, the simulation of Turing machines
we have presented would not work if only a bounded quantity of different names
could appear at any reachable marking, even if an arbitrary number of them can
be created, which suggests that coverability remains decidable in that case.

It would also be desirable to establish a complete hierarchy of models, includ-
ing those appearing in [23], and other related models such as [8, 9, 15]. This
hierarchy would be based on the quantity of information about the past that a
configuration of a system remembers [22]. For instance, the difference between
replication with and without garbage collection is that in the former case we force
the configuration to remember the number of replicated componentes, which we
do not do in the latter.

We are also interested in the practical implementation of the results presented
in this paper. In [25] we presented a prototype of a tool for the verification of
MSPN systems, which mainly corresponds to our ν-nets here. We plan to extend
it to include the replication operator and coverability, boundedness and reacha-
bility algorithms, covering the cases in which these properties are decidable.

Finally, let us comment that we have found many interesting connections be-
tween the concepts discussed in this paper and the (un)decidability of properties
that we have obtained, and those used and obtained in the field of security proto-
cols, like those studied in [10]. In particular, the study of the restrictions needed
to preserve the decidability of coverability, could be related with some other re-
cent studies in the field of security protocols [19, 20], while we could also try to
use the efficient algorithms [1] that combine forward and backward reachability,
to decide security properties of protocols.

References

[1] Abdulla, P.A., Deneux, J., Mahata, P., Nylén, A.: Forward Reachability Analysis
of Timed Petri Nets. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 343–362. Springer, Heidelberg (2004)

[2] Ball, T., Chaki, S., Rajamani, S.K.: Parameterized Verification of Multithreaded
Software Libraries. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001.
LNCS, vol. 2031, pp. 158–173. Springer, Heidelberg (2001)

[3] Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: 30th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’03. ACM SIGPLAN, vol. 38(1),
pp. 62-73. ACM (2003)

Name Creation vs. Replication in Petri Net Systems 421

[4] Bouajjani, A., Esparza, J., Touili, T.: Reachability Analysis of Synchronized PA
Systems. In: 6th Int. Workshop on Verification of Infinite-State Systems, INFIN-
ITY’04. ENTCS vol. 138(2), pp. 153-178. Elsevier, Amsterdam (2005)

[5] Busi, N., Zavattaro, G.: Deciding Reachability in Mobile Ambients. In: Sagiv, M.
(ed.) ESTAPS’05. LNCS, vol. 3444, pp. 248–262. Springer, Heidelberg (2005)

[6] Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998
and FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[7] Cardelli, L., Ghelli, G., Gordon, A.D.: Types for the Ambient Calculus. Informa-
tion and Computation 177(2), 160–194 (2002)

[8] Delzanno, G.: An overview of MSR(C): A CLP-based Framework for the Sym-
bolic Verification of Parameterized Concurrent Systems. In: 11th Int. Workshop
on Functional and Logic Programming, WFLP’02. ENTCS, vol. 76, Elsevier, Am-
sterdam (2002)

[9] Delzanno, G.: Constraint-based Automatic Verification of Abstract Models of
Multitreaded Programs. To appear in the Journal of Theory and Practice of Logic
Programming (2006)

[10] Durgin, N.A., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: Undecidability of
bounded security protocols. In: Proc. Workshop on Formal Methods and Security
Protocols (FMSP’99)

[11] Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! The-
oretical Computer Science 256(1-2), 63–92 (2001)

[12] Frutos-Escrig, D., Marroqúın-Alonso, O., Rosa-Velardo, F.: Ubiquitous Systems
and Petri Nets. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.)
APWeb 2006. LNCS, vol. 3841, Springer, Heidelberg (2005)

[13] Gordon, A.: Notes on Nominal Calculi for Security and Mobility. In: Focardi,
R., Gorrieri, R. (eds.) Foundations of Security Analysis and Design (FOSAD’00).
LNCS, vol. 2171, pp. 262–330. Springer, Heidelberg (2001)

[14] Kummer, O.: Undecidability in object-oriented Petri nets. Petri Net Newsletter 59,
18–23 (2000)

[15] Lazic, R.: Decidability of Reachability for Polymorphic Systems with Arrays: A
Complete Classification. ENTCS 138(3), 3–19 (2005)

[16] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Information
and Computation 100(1), 1–40 (1992)

[17] Nielson, F., Hansen, R.R., Nielson, H.R.: Abstract interpretation of mobile ambi-
ents. Sci. Comput. Program 47(2-3), 145–175 (2003)

[18] Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

[19] Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols.
Journal of Computer Security 13(1), 135–165 (2005)

[20] Ramanujam, R., Suresh, S.P.: Tagging makes secrecy decidable with unbounded
nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Founda-
tions of Software Technology and Theoretical Computer Science. LNCS, vol. 2914,
pp. 363–374. Springer, Heidelberg (2003)

[21] Rinard, M.: Analysis of multithreaded programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

[22] Rosa Velardo, F., Segura Dı́az, C., de Frutos Escrig, D.: Tagged systems: a frame-
work for the specification of history dependent properties. Fourth Spanish Confer-
ence on Programming and Computer Languages, PROLE’04. ENTCS vol. 137(1),
(2005).

422 F. Rosa-Velardo and D. de Frutos-Escrig

[23] Rosa-Velardo, F., Frutos-Escrig, D., Marroqúın-Alonso, O.: Mobile Synchroniz-
ing Petri Nets: a choreographic approach for coordination in Ubiquitous Systems.
In: 1st Int. Workshop on Methods and Tools for Coordinating Concurrent, Dis-
tributed and Mobile Systems, MTCoord’05. ENTCS, vol. 150(1), Elsevier, Ams-
terdam (2006)

[24] Rosa-Velardo, F., Frutos-Escrig, D., Marroqúın-Alonso, O.: On the expressiveness
of Mobile Synchronizing Petri Nets. In: 3rd Int. Workshop on Security Issues in
Concurrency, SecCo’05. ENTCS (to appear)

[25] Rosa-Velardo, F.: Coding Mobile Synchronizing Petri Nets into Rewriting Logic.
7th Int. Workshop on Rule-based Programming, RULE’06. ENTCS (to appear)

[26] Rosa-Velardo, F., Frutos-Escrig, D., Marroqúın-Alonso, O.: Replicated Ubiquitous
Nets. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganà,
A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3983, Springer, Heidelberg
(2006)

[27] Zimmer, P.: On the Expressiveness of Pure Mobile Ambients. In: 7th Int. Work-
shop on Expressiveness in Concurrency, EXPRESS’00. ENTCS, vol. 39(1), Else-
vier, Amsterdam (2003)

Modelling the Datagram Congestion Control

Protocol’s Connection Management and
Synchronization Procedures

Somsak Vanit-Anunchai� and Jonathan Billington

Computer Systems Engineering Centre
University of South Australia, Mawson Lakes Campus, SA 5095, Australia
vansy014@students.unisa.edu.au, jonathan.billington@unisa.edu.au

Abstract. The Datagram Congestion Control Protocol (DCCP) is a new
transport protocol standardised by the Internet Engineering Task Force
in March 2006. This paper specifies the connection management and syn-
chronisation procedures of DCCP using Coloured Petri nets (CPNs). Af-
ter introducing the protocol, we describe how the CPN model has evolved
as DCCP was being developed. We focus on our experience of incremen-
tal enhancement and iterative modelling in the hope that this will provide
guidance to those attempting to build complex protocol models. In par-
ticular we discuss how the architecture, data structures and specification
style of the model have evolved as DCCP was developed. The impact of
this work on the DCCP standard is also briefly discussed.

Keywords: Internet Protocols, DCCP, Coloured Petri Nets, Formal
Specification.

1 Introduction

Background. Recently, the Internet Engineering Task Force (IETF) has pub-
lished a set of standards for a new transport protocol, the Datagram Conges-
tion Control Protocol (DCCP) [8], comprising four standards called Request
For Comments (RFCs): RFC 4336 [2]; RFC 4340 [14]; RFC 4341 [3]; and RFC
4342 [4]. RFC 4336 discusses problems with existing transport protocols and the
motivation for designing a new transport protocol. RFC 4340 specifies reliable
connection management procedures; synchronisation procedures; and reliable ne-
gotiation of various options. RFC 4340 also provides a mechanism for negotiating
the congestion control procedure to be used, called “Congestion Control Identifi-
cation” (CCID). The congestion control mechanisms themselves are specified in
other RFCs. Currently there are two published: RFC 4341 (CCID2) “TCP-like
congestion control” [3] and RFC 4342 (CCID3) “TCP-Friendly Rate Control” [4]
but more mechanisms are being developed for the standard.
� Partially supported by an Australian Research Council Discovery Grant (DP0559927).

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 423–444, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

424 S. Vanit-Anunchai and J. Billington

Motivation. RFC 4340 [14] describes its procedures using narrative, state ma-
chines and pseudo code. The pseudo code has several drawbacks. Firstly, it does
not include timers and user commands. Secondly, because it executes sequentially,
unnecessary processes can execute before reaching the process that is needed. This
unnecessary execution makes it difficult to read, which may lead to misinterpre-
tation of the procedures. Thus to avoid misinterpretation, the implementor has to
strictly follow the pseudo code. Following the sequential pseudo code, we cannot
exploit the inherent concurrency in the protocol. Thirdly, there may also be subtle
errors in the RFC which may be found using formal methods. This has motivated
us to formally specify DCCP’s procedures using Coloured Petri Nets (CPNs) [7].

Previous Work. We have closely followed the development, design and spec-
ification of DCCP Connection Management (DCCP-CM) since Internet Draft
version 5 [16]. Our study aims to determine if any errors or deficiencies exist in
the protocol procedures. We analysed the connection establishment procedures
of version 5 and discovered a deadlock [19]. When version 6 [9] was released,
we upgraded our CPN model [17] and found similar deadlocks. Version 11 of
the DCCP specification was submitted to IETF for approval as a standard. We
updated our model accordingly and included the synchronization mechanism.
We found that the deadlocks were removed but we discovered a serious prob-
lem known as chatter1 [23, 21]. When updating the CPN model to RFC 4340,
we investigated the connection establishment procedure when sequence numbers
wrap [20]. We found that in this case it is possible that the attempt to set up
the connection fails. In [5] we defined the DCCP service and confirmed that
the sequence of user observable events of the protocol conformed to its service.
In [22] we proposed an idea to improve the efficiency of the sweep-line method
using DCCP as a case study.

However, all of these papers place emphasis on the model’s analysis and
present very little of the model itself. In contrast, this paper focuses on the
modelling process. It discusses design decisions and how the DCCP-CM CPN
models were developed rather than the analysis of the protocol procedures. Our
final version of the DCCP-CM CPN model is the result of incremental refinement
of three earlier versions which were used to obtain the results in [19, 17, 23].

Contribution. We use Coloured Petri Nets to model the DCCP connection
management and synchronization procedures of RFC 4340. In contrast to the
pseudo code, our proposed CPN specification includes user commands, timer
expiry and channels. It is formalised so that ambiguities are removed and the
risk of misinterpretation is low. The specification is restructured so that relevant
aspects of the procedures are brought together and don’t need to be sought in
different parts of the document. It now captures concurrent behaviour which
is inherent in the protocol whereas the pseudo code and state machine are se-
quential. The CPN model can be analysed to determine errors. In particular we

1 The chatter scenario comprised undesired interactions between Reset and Sync pack-
ets involving a long but finite exchange of messages where no progress was made,
until finally the system corrected itself.

Modelling the DCCP’s Connection Management 425

illustrate how to use hierarchical CPNs to model DCCP connection management
and discuss our experience during the modelling process.

The rest of the paper is organised as follows. Section 2 provides an overview
of DCCP and its connection management procedures. Section 3 describes the
evolution of our DCCP-CM CPN model as DCCP has been developed by IETF.
Finally, conclusions and future work are discussed in Section 4.

2 Overview of DCCP’s Connection Management
Procedures

DCCP is a point-to-point protocol operating over the Internet between two
DCCP entities, which we shall call the client and the server. DCCP is connection-
oriented to facilitate congestion control. DCCP’s procedures for connection man-
agement comprise connection establishment and five closing procedures. RFC
4340 includes the state transition diagram shown in Fig. 1(a), which gives the
basic procedures for both the server and client entities. The server is identified
by always passing through the LISTEN state after a “passive open” command
from the application, whereas the client is instantiated by an “active open” and
passes through the REQUEST state. Also, only the server can issue the “server
active close” command.

2.1 DCCP Packet Format

A set of messages, called packets, is used to setup and release connections, syn-
chronize sequence numbers, and to convey data between a client and a server.
RFC 4340 [14] defines a DCCP packet as a sequence of 32 bit words comprising
a DCCP Header and Application Data as shown in Fig. 1(b). The header com-
prises a generic header, followed by an acknowledgement number (if any) and
then fields for options and features. The DCCP header contains 16 bit source
and destination port numbers (for addressing application processes), and a 16
bit checksum to detect transmission errors. Since the Options field can vary in
length, an 8 bit data offset indicates the length in 32-bit words from the begin-
ning of the Header to the beginning of the Application data. CCVal, a 4 bit field,
is a value used by the congestion control mechanisms [4]. Checksum Coverage
(CsCov), also a 4 bit field, specifies the part of the packet being protected by
the checksum. A four bit field specifies the type of packet: Request, Response,
Data, DataAck, Ack, CloseReq, Close, Reset, Sync and SyncAck. By default,
packets include a 48-bit sequence number. Request and Data packets do not
include acknowledgement numbers. The sequence numbers of Data packets and
the sequence numbers and acknowledgement numbers of Ack and DataAck pack-
ets can be reduced to 24-bit (short) when setting the Extend Sequence Number
(X) field to 0. The Option fields contain state information or commands for ap-
plications to negotiate various features such as the Congestion Control Identifier
(CCID) and the width of the sequence number validity window [14].

426 S. Vanit-Anunchai and J. Billington

CLOSED

REQUEST

PARTOPEN

OPEN

LISTEN

RESPOND

CLOSING

TIMEWAIT

CLOSEREQ
server
active close
snd CloseReq

active close
or rcv CloseReq
snd Close

rcv Close
snd Reset

rcv Response
snd Ack/DataAck

passive
open

active open
snd Request

rcv Request
snd Response

rcv
Ack/DataAck

rcv
packet

2 MPL
timer exipres

rcv
Reset

(a)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port

Data Offset CcVal CsCov Checksum

 Generic

 Header Packet X

Res Type = Reserved Sequence Number (high bits)

 DCCP 1

 Header

Sequence Number (low bits)

Reserved Acknowledge Number

(high bits)

Acknowledge Number (low bits)

Option Type Length Feature No. Values

Options

and Padding

. . .

Application Data

Application

Data

. . .

(b)

Fig. 1. (a) DCCP state diagram redrawn from [14] (b) DCCP packet format

2.2 DCCP Connection Management Procedures

The typical procedure of connection establishment is shown in the time sequence
diagramof Fig. 2(a). We assume that the server has entered the LISTEN state after
a “passive open” command is issued by the application at the server. On receiving
an “active open” command from its application, the client enters the REQUEST
state and sends a DCCP-Request packet requesting a connection to be established.
This packet may include any options and features that require negotiation.

When receiving the DCCP-Request packet, the server (in LISTEN) enters
the RESPOND state, and replies with a DCCP-Response packet indicating its
willingness to establish the connection. The DCCP-Response will also include
any options and features being negotiated. On receiving the DCCP-Response, the
client (in REQUEST) replies with either a DCCP-Ack or DCCP-DataAck packet
to acknowledge the DCCP-Response and enters PARTOPEN. After receiving an
acknowledgement from the client, the server enters the OPEN state and may
start transferring data. After receiving a DCCP-Data, DCCP-Ack or DCCP-
DataAck packet, the client enters OPEN indicating that the connection has been
established. During data transfer, the server and client may exchange DCCP-
Data, DCCP-Ack and DCCP-DataAck packets.

In order to ensure that no old packets are delivered in the new connection, one
side has to wait for 2 Maximum packet lifetimes (MPL2) before a connection can
be restarted. To improve performance, especially in the face of state exhaustion
attacks3, the server should not be burdened with this delay. Typically it is the

2 Maximum packet lifetime time (MPL)=Maximum Segment Lifetime (MSL) in TCP.
3 A state exhaustion attack involves attackers trying to use up the server’s memory

by requesting an enormous number of connections to be established.

Modelling the DCCP’s Connection Management 427

 Client Server

 CLOSED CLOSED

[active open] [passive open]

 LISTEN

 Request (seq=x)

 REQUEST

 Response (seq = y, ack=x)

 RESPOND

 Ack (seq = x+1, ack = y)

 PARTOPEN

 Ack (seq = y+1, ack = x+1)

 OPEN

 OPEN

(a)

 Client Server

 OPEN OPEN

 [server active close]

 CloseReq (seq = m, ack = n)

 CLOSEREQ

 Close (seq = n+1, ack = m)

 CLOSING

 Reset (seq = m+1, ack = n+1)

 CLOSED

 TIMEWAIT

 (2MPL)

 .

 CLOSED

(b)

Fig. 2. Typical connection establishment and release scenarios

client that waits before closing is complete. Fig. 2(b) shows the typical close
down procedure when the application at the server initiates connection release
by issuing a “server active close” command. After sending a DCCP-CloseReq
packet, the server enters the CLOSEREQ state. On receiving a DCCP-CloseReq,
the client replies with a DCCP-Close to which the server responds with a DCCP-
Reset packet and enters the CLOSED state. On receiving the DCCP-Reset, the
client waits in the TIMEWAIT state for 2 MPL before entering the CLOSED
state.

Either entity may send a DCCP-Close packet to terminate the connection
on receiving an “active close” command from the application. The entity that
receives the DCCP-Reset packet will enter the TIMEWAIT state. There are
another 2 possible scenarios beside these three closing procedures called simul-
taneous closing. One scenario occurs when applications on both sides issue an
“active close”. The other is when the client user issues an “active close” and the
server user issues the “server active close” command.

2.3 Synchronization Procedure

During the connection, DCCP entities maintain a set of state variables. The
important variables are Greatest Sequence Number Sent (GSS), Greatest Se-
quence Number Received (GSR), Greatest Acknowledgement Number Received
(GAR), Initial Sequence Number Sent and Received (ISS and ISR), Valid Se-
quence Number window width (W) and Acknowledgement Number validity
window width (AW). Based on the state variables, the valid sequence and ac-
knowledgement number intervals are defined by Sequence Number Window Low
and High [SWL,SWH], and Acknowledgement Number Window Low and High
[AWL,AWH] (see [14, 23, 20]). In general, received packets having sequence and
acknowledgement numbers outside these windows are sequence-invalid. DCCP
performs a sequence validity check when packets arrive but not in the CLOSED,
LISTEN, REQUEST and TIMEWAIT states.

428 S. Vanit-Anunchai and J. Billington

On receiving a sequence-invalid packet, DCCP re-synchronizes the state vari-
ables, GSR and GAR, by sending a DCCP-Sync packet. It does not update its
GSR and GAR. According to section 7.5.4 of [14] the acknowledgement number
in the DCCP-Sync is set equal to the invalid received sequence number (ex-
cept when receiving an invalid DCCP-Reset). After the other end receives the
DCCP-Sync, it updates GSR and replies with a DCCP SyncAck. It does not up-
date GAR since the acknowledge number is sequence-invalid. Upon receiving the
DCCP-SyncAck, the DCCP entity updates GSR and GAR. A sequence-invalid
DCCP-Sync and DCCP-SyncAck must be ignored. However if the entity receives
a DCCP-Sync or DCCP-SyncAck (either valid or invalid) in CLOSED, LISTEN,
REQUEST and TIMEWAIT, it replies with a DCCP-Reset packet.

3 CPN Model Development

This section describes our CPN model and how it has evolved during the period
of modelling as DCCP was developed in a series of Internet Drafts. We start with
a simple and abstract model with a lot of assumptions. While the DCCP spec-
ification was being developed by IETF, our DCCP-CM CPN models have been
gradually refined to faithfully reflect the DCCP specification. Our contribution
to RFC 4340 is also discussed in this section.

Our models were created and maintained using Design/CPN [18], a soft-
ware package for the creation, editing, simulation and state space analysis of
CPNs. Design/CPN supports the hierarchical construction of CPNs [7], using
constructs called substitution transitions. These transitions (macro expansions)
hide the details of subnets and allow further nesting of substitution transitions.
This allows a complex specification to be managed as a series of hierarchically
related pages which are visualised in a hierarchy page, automatically generated
by Design/CPN.

3.1 Refinement of the Hierarchical Structure of DCCP-CM CPN
Model

The first step of modelling DCCP connection management (DCCP-CM) is to
identify the interaction between DCCP entities and their environment. The top
level of our initial CPN model [19] (Internet Draft version 5) shown in Fig. 3
comprises six places and two substitution transitions. Substitution transition
DCCP C represents the client and DCCP S represents the server. There are two
places, App Client and App Server which store application commands (e.g. Ac-
tive Open), for the client and server, two places, Client State and Server State,
that store DCCP entity states, including state variables, in a so called Control
Block (CB) and two places, CH C S and CH S C, representing channels be-
tween the client and server (one for each direction). The layout of the model is
suggestive of the conceptual locations of the entities being modelled: the appli-
cations in the layer “above” DCCP; the client on the left and server on the right;
and the channels between the client and server. This follows the practice adopted

Modelling the DCCP’s Connection Management 429

DCCP_S

HS

DCCP_C

HS

APP_Client
COMMAND

1‘appOpens

APP_Server

COMMAND

1‘appListens

Server_State

CB

1‘(CLOSED,OFF,
{GSS=4000,GSR=0})

Client_State

CB

1‘(CLOSED,OFF,
{GSS=100,GSR=0})

CH_C_S

PACKETS

CH_S_C

PACKETS

Fig. 3. The top level page from [19]

DCCP#1 M Prime

Hierarchy#10010 Declarations#11

DCCP_CM#2

CLOSED#3

LISTEN#4

RESPOND#6

CLOSEREQ#8

OPEN#7

TimeWai1#10

CLOSING#9

REQUEST#5

DCCP_C
DCCP_S

Closed

Listen

Request

Closing

TimeWait

Open

CloseReq

Respond

(a)

State
CB

P I/O

CH_B_A

PACKETS

P In

CH_A_B

PACKETS

P Out
App_A

COMMAND

P In
HS

Closed

HS

Listen

Respond
HS

CloseReq
HS

Open
HS

TimeWait
HS

Closing
HS

Request
HS

(b)

Fig. 4. (a) The hierarchy page from [19] (b) The second level page from [19]

in [1] and is very similar to the top level page of our CPN model of TCP [1,6].
We initially assume the packets in channels can be reordered but not lost.

The next step is to model the DCCP entities in the second level CPN page.
The substitution transitions DCCP C and DCCP S are linked to the DCCP CM#2
page (see Fig. 4 (a)). The DCCP CM#2 is arranged into a further eight4 substi-
tution transitions (Fig. 4 (b)) named after DCCP major states. Each substitution
transition is linked to a third level CPN page which models DCCP behaviour for
each major state.

This modelling method follows a “state-based” approach because the model
is similar to how DCCP is specified using the state diagram. In a state-based
approach, every major state is considered in turn, and in each state, transitions

4 DCCP Internet Draft version 5 did not include the PARTOPEN state.

430 S. Vanit-Anunchai and J. Billington

Hierarchy#10010

Respond#6

Close_Request#8

Closing#11

DCCP#1

M Prime

Listen#5

Timewait#12

PartOpen#9

Declarations#3

Open#10

Request#7

DCCP_CM#2

Closed#4

Request_Teardown#15

Request_Timeout#23

Request_Receive_Packet#24

Respond_Teardown#25

Respond_Receive_Packet#26

PartOpen_Teardown#27

PartOpen_Receiver_Packet#28

PartOpen_Timeout#29

Open_Teardown#30

CloseReq_Teardown#31

CloseReq_Timeout#32

Closing_Teardown#33

Closing_Timeout#34

PartOpen

Closing

TimeWait

CloseReq

Respond

Closed

Request

Open

Listen

DCCP_C

DCCP_S

Rcv_Terminate_Packet

TimeOut

Rcv_nonTerminate_Packet

Rcv_Terminate_Packet

Rcv_nonTerminate_Packet

Rcv_Terminate_Packet

TimeOut

Rcv_nonTerminate_Packet

Rcv_Terminate_Packet

Rcv_Terminate_Packet

TimeOut

Rcv_Terminate_Packet

TimeOut

Fig. 5. The hierarchy page from [17]

are created for each input, which may be a user command, the arrival of a packet
or the expiry of a timer. The state-based approach is very suitable when we are
creating and building a new model as it is easy to understand and validate
against the state machine and the narrative description. A disadvantage of the
state-based approach is that the model may include a lot of redundancy because
different states may process the same inputs in the same or similar way.

When we upgraded the model [17] to DCCP version 6, one state could have
many executable transitions (more than 7-8 transitions). Thus we regrouped
transitions that have similar functions into fourth level pages as shown in Fig 5.
For example, the client’s actions in the REQUEST state are rearranged into
three groups: terminating the connection; not-terminating the connection; and
retransmission on time-out.

As we refined the state-based CPN model by including more detail of the Inter-
net Drafts, it became increasingly difficult to maintain the model. We faced this
difficulty when developing the CPN model [23] for version 11. To overcome this
problem we folded transitions that are common to many states and moved them
to a CommonProcessing#7 page as shown in Fig. 6. The obvious common actions
are how to respond to DCCP-Sync and DCCP-Reset packets. This resulted in an
immediate pay off. When we reported the chatter problem [23] in version 11 [11] to
IETF, IETF asked us to test their solution [13] in our CPN model. To incorporate
the solution we changed only a single variable on an arc in the Reset Rcv page.

Modelling the DCCP’s Connection Management 431

Closing_Timeout#482

Closing#38

Closing_Teardown#483

CloseReq_Teardown#473

Sync_Rcv#499

DCCP#1 M Prime Declarations#12

Listen#31

Timewait#35

Respond_Receive_Packet#431

Respond#33

Respond_Teardown#432

PartOpen#34

Reset_Rcv#498

RecOthPkt#497

Open#36

Open_Teardown#462

PartOpen_Teardown#443

PartOpen_Receiver_Packet#441

DCCP_CM#2

Close_Request#37

CloseReq__Timeout#472Request_Timeout#422

Request#32

PartOpen_Timeout#442

Request_Receive_Packet#421

Closed#30

Hierarchy#10

CommonProcesses#7

RcvTerminatePkt38

TimeOut38

DCCP_S

DCCP_C

RcvNonTerminate_Pkt33

RcvTerminatePkt33

RcvNonTerminatePkt34

RcvTerminatePkt34

TimeOut34

RcvTerminatePkt36
Listen

Open

Request

Closed

Respond

CloseReq

TimeWait

Closing

PartOpen

RcvTerminatePkt37

TimeOut37

RcvNonTerminated_Pkt32

TimeOut32

RcvSync

RcvReset

Common

RcvOtherPkt

Fig. 6. The hierarchy page from [23]

We could thus analyse the modified model within five minutes to show that chat-
ter had been removed. The important merit of removing redundancy by folding
similar transitions is the ability to maintain the model efficiently. The resulting
CPN model is a little more difficult to read, but the maintenance pay off is well
worth it.

When the specification is mature and relatively stable, we recommend remov-
ing redundancies by folding similar transitions so that it is easier to maintain.
After IETF had revised DCCP and issued version 13 [12], we decided to re-
move further redundancies by folding and regrouping all transitions (which we
illustrate in section 3.3). During the folding process we considered a trade-off
between redundancy and readability. The structure of the final CPN model is
shown in Fig. 7. We merged the CLOSED, LISTEN and TIMEWAIT states
and gathered them into the IdleState page. The procedures that are common to
states other than the idle states were regrouped into new pages, including the
UserCommands and ClosingDown pages, and those grouped together under the
CommonProcessing page such as the Retransmission page. This also involved
some renaming of pages and resulted in a much simpler architecture as can be
seen in Fig. 7. The number of pages was reduced from 32 to 15, and the number
of transitions from 86 to 52.

432 S. Vanit-Anunchai and J. Billington

DCCP#1 M Prime

DCCP_CM#2

RcvSync#11

Declarations#16

PartOpen#7

ClosingDown#9

DataTransfer#8

RcvReset#12

Retransmission#13

Request#5

UnExpected#14

IdleState#4

UserCommands#3

Respond#6

CommonProcessing#10

Hierarchy#10010

RcvInvalid#15

DCCP_S

DCCP_C

UserCMD

ClosingDown

Idle_State

Common

RcvSync

RcvReset

UnexpectedPkt

RcvInvalidHeader

Request

Respond

PartOpen

TimeOut

DataTransfer

Fig. 7. The hierarchy page of the final DCCP-CM CPN model

3.2 Refinement of the Data Structures of the DCCP-CM CPN
Model

In the previous subsection we discussed the modelling process and the refinement
of the structure of our models. This section discusses the way we refined the
data structures over four versions of DCCP-CM CPN model [19,17,23,22]. The
DCCP-CM model we initially built and published in [19] is based on DCCP
version 5 [16]. The model was simple and abstract and has the following merits:
compact, easy to understand, rapidly built and fast to analyse. It took only two
weeks for an inexperienced student to create and test the model [19]. A deadlock
was quickly discovered using state space analysis.

DCCP Internet Draft Version 5. Our initial model [19] was based on a
number of assumptions:

1) A DCCP packet was modelled by its packet type and sequence and acknowl-
edgement numbers. Other fields in the DCCP header were omitted because they
do not affect the operation of the connection management procedure.

Modelling the DCCP’s Connection Management 433

1: color STATE = with CLOSED | LISTEN | REQUEST | RESPOND | OPEN | CLOSEREQ
2: | CLOSING | TIMEWAIT;
3: color BackOffFlag = with ON | OFF;
4: color StateVariable = record GSS:INT*GSR:INT;
5: color CB = product STATE*BackOffFlag*StateVariable;
6: color PacketType = with Request | Response | Ack | DataAck | Data | CloseReq
7: | Close | Rst ;
8: color SeqAck = record SEQ:INT*ACK:INT;
9: color PACKETS = product PacketType*SeqAck;

Fig. 8. Definition of DCCP’s Control Block and PACKETS from [19]

2) DCCP version 5 specified 24-bit sequence numbers and provided an op-
tion for extended 48-bit sequence numbers. We only modelled 24-bit sequence
numbers.

3) Version 5 specified that the Request and Data packets do not have ac-
knowledgement numbers. However for ease and speed of creating the model we
allowed these two packet types to have dummy acknowledgement numbers.

4) State variable GAR was omitted because it was optional in DCCP version 5.
5) After version 5 was released, there was a lot discussion in IETF regarding

the synchronization procedure. At that time the synchronization procedure was
not mature. (For example version 5 did not specify the DCCP-SyncAck packet.)
Hence synchronization was not included.

6) Processing of unexpected packets was not taken into account.
7) Wrapping of sequence numbers was not included.
8) Features/options were not included.
9) Malicious attacks were not considered.

Assumptions 3 and 4 allowed us to defined the CB (Control Block) in Fig. 8 to
be a product of STATE, BackOffFlag and a record of GSS and GSR. For example,
Fig. 3 shows the initial marking 1‘(CLOSED, OFF, {GSS=100, GSR=0}) in the
place Client State. Because we used the same data structure for every state, the
CPN model was simple and built rapidly. As a result of assumption 7, we did not
need to implement modulo arithmetic, however, our results were restricted to
when sequence numbers do not wrap. Despite all these assumptions, our analysis
of the initial DCCP-CM CPN model revealed that a deadlock occurred during
connection setup [19]. The deadlock was due to Reset packets with sequence
number zero being valid. Hence the deadlock we found was not due to any of
the assumptions made.

DCCP Internet Draft Version 6. When we updated the DCCP-CM model to
DCCPversion 6 [17],we attempted to faithfully define the packet structure. Firstly,
we restricted the value of the sequence number to range from zero to 224 −1 (line 1
of Fig. 9). Secondly, the sequence and acknowledgement number record (SeqAck)
was redefined as a union of the sets SeqWAck and SEQ24 (line 5 of Fig. 9). Thus the
Request and Data packets, which do not include an acknowledgement number, can
be modelled accurately. The model in [17] also includes the PARTOPEN state but
does not include the re-synchronization process. The analysis of the CPN model of
DCCP Internet Draft version 6 showed the deadlock problem was still present.

434 S. Vanit-Anunchai and J. Billington

1: color SEQ24 = int with 0..16777215; (* 24-bit sequence number *)
2: color PacketType = with Request | Response | Ack | DataAck | Data | CloseReq
3: | Close | Rst;
4: color SeqWAck = record SEQ:SEQ24*ACK:SEQ24;
5: color SeqAck = union WAck:SeqWAck + SEQ24;
6: color PACKETS = product PacketType*SeqAck;

Fig. 9. Definition of PACKETS from [17]

1: color PacketType1 = with Request | Data;
2: color PacketType2 = with Sync | SyncAck | Response | Ack | DataAck
3: | CloseReq | Close | Rst;
4: color SN = IntInf with ZERO..MaxSeqNo;
5: color SN_AN = record SEQ:SN*ACK:SN;
6: color PacketType1xSN = product PacketType1*SN;
7: color PacketType2xSN_AN = product PacketType2*SN_AN;
8: color PACKETS = union PKT1:PacketType1xSN+PKT2:PacketType2xSN_AN;

Fig. 10. Definition of PACKETS from [23]

DCCP Internet Draft Version 11. Instead of 24-bit sequence numbers, In-
ternet Draft version 7 [10] specified 48-bit long sequence numbers as mandatory
for all packet types. Short sequence numbers were only allowed to be used in
Data, Ack and DataAck packets. We upgraded the DCCP-CM CPN model [23]
according to DCCP version 11 [11]. This model represents long sequence numbers
by “infinite integers” in ML, ranging from zero to 248 − 1 (line 4 of Fig. 10) but
does not include short sequence numbers. We also incorporated an up-to-date al-
gorithm for checking sequence number validity and included the synchronization
mechanism. The previous declaration in Fig. 9 allows Request and Data packets
to have acknowledgement numbers and other packet types to be without ac-
knowledgement numbers. To improve the representation of the packet structure,
we defined PacketType1 to be a DCCP packet without an acknowledgement
number and PacketType2 to be a DCCP packet with an acknowledgement num-
ber as shown in Fig. 10 (line 1-2).

In DCCP versions 5 and 6 we found deadlocks because a delayed Reset packet
with a sequence number of zero is always valid. Since version 7 [10] a Reset packet
with a sequence number of zero was no longer always valid. This modification to
the specification removed these deadlock problems. Although we did not find any
deadlocks or livelocks in DCCP version 11, we discovered chatter [23]. In [21]
we showed that if a chattering scenario occurs, it is highly likely (probability
> 0.99999) that more than two billion messages will be needlessly exchanged.
Although the chance of a particular scenario is low, we discovered a large number
of possible chattering scenarios.

The Internet Standard RFC4340. After submitting the discovery of chat-
ter to IETF, the principal editor of the specification advised us that the chatter
problem was more severe than we originally thought, especially when using short
sequence numbers. This motivated us to revise the model to include both long and
short sequence numbers. Figure 11 shows the definition of PACKETS in the final
CPN model. As before, long sequence numbers (SN48) in line 15 of Fig. 11 are

Modelling the DCCP’s Connection Management 435

1: (* Packet Structure *)
2: (* Maximum Sequence Number Values *)
3: val MaxSeqNo48 = IntInf.-(IntInf.pow(IntInf.fromInt(2),48),IntInf.fromInt(1));
4: val MaxSeqNo24 = IntInf.-(IntInf.pow(IntInf.fromInt(2),24),IntInf.fromInt(1));
5: val max_seq_no24 = IntInf.toInt(MaxSeqNo24);
6: (* Packet Types *)
7: color PktType1 = with Request | Data;
8: color PktType2 = with Sync | SyncAck | Response | Ack | DataAck
9: | CloseReq | Close | Rst;
10: color DATA=subset PktType1 with [Data];
11: color ACK_DATAACK=subset PktType2 with [DataAck,Ack];
12: (* Extended Sequence Number Flag *)
13: color X = with LONG | SHORT;
14: (* Sequence Number *)
15: color SN48 = IntInf with ZERO..MaxSeqNo48;
16: color SN48_AN48 = record SEQ:SN48*ACK:SN48;
17: color SN24 = int with 0..max_seq_no24;
18: color SN24_AN24 = record SEQ:SN24*ACK:SN24;
19: (* Four Different Types of Packets *)
20: color Type1LongPkt=product PktType1*X*SN48;
21: color Type2LongPkt=product PktType2*X*SN48_AN48;
22: color Type1ShortPkt=product DATA*X*SN24;
23: color Type2ShortPkt=product ACK_DATAACK*X*SN24_AN24;
24: color PACKETS=union PKT1:Type1LongPkt + PKT2:Type2LongPkt
25: + PKT1s:Type1ShortPkt + PKT2s:Type2ShortPkt;
26: (* Variables *)
27: var sn:SN48; var sn_an:SN48_AN48;
28: var sn24:SN24; var sn24_an24:SN24_AN24;
29: var LS:BOOL; var ack_dataack:ACK_DATAACK;

Fig. 11. Definition of DCCP PACKETS in the final CPN model

represented by infinite integers ranging from zero to 248 −1. Short sequence num-
bers (SN24) in line 17 are represented by integers ranging from zero to 224−1. The
strong typing of packets is very useful for developing and debugging the model, as
certain mistakes can be easily detected by a syntax check.

While analysing the revised model, we found an error in the algorithm for
extending short sequence numbers to long sequence numbers (page 60 of [11])
and submitted the problem to IETF. IETF devised solutions to these problems
(chatter and the algorithm for short sequence number extension) [13]. These
solutions have been incorporated into RFC 4340 [14].

When revising the CPN model, we attempted to define the control block in
Fig. 12 so that it truly reflected DCCP’s definition and removed ambiguities.
When in CLOSED and LISTEN, the GSS, GSR, GAR, ISS and ISR state vari-
ables do not exist, while the client in the REQUEST state has only instantiated
GSS and ISS. Thus we classify DCCP states into three groups: idle, request and
active states. These three groups also have differences regarding the functional
behaviour of how to respond to the DCCP-Reset and DCCP-Sync packets. We
suggested to IETF that it is not necessary for TIMEWAIT to maintain state
variables because the connection is about to close. It was agreed that TIME-
WAIT should be classified in the group of idle states [15]. This helps to reduce
the size of the state space (e.g. from 42,192 to 26,859 nodes for the case of
connection establishment).

We define each group of states with a different set of state variables.
Fig. 12 defines CB (line 14) as a union of colour sets: IDLE, REQUEST and

436 S. Vanit-Anunchai and J. Billington

1: (* DCCP state variables*)
2: color RCNT=int;(*Retransmission Counter*)
3: (* FSM State *)
4: color IDLE=with CLOSED_I| LISTEN| CLOSED_F| TIMEWAIT;
5: color REQUEST = product RCNT*SN48*SN48;
6: color ACTIVE = with RESPOND| PARTOPEN| S_OPEN| C_OPEN
7: | CLOSEREQ | C_CLOSING |S_CLOSING;
8: (* Sequence Number Variables *)
9: color GS = record GSS:SN48*GSR:SN48*GAR:SN48;
10: (* Initial Sequence Number *)
11: color ISN = record ISS:SN48*ISR:SN48;
12: (* Control Block *)
13: color ACTIVExRCNTxGSxISN=product ACTIVE*RCNT*GS*ISN;
14: color CB = union IdleState:IDLE
15: + ReqState:REQUEST
16: + ActiveState:ACTIVExRCNTxGSxISN;
17: (* User Commmands *)
18: color COMMAND = with p_Open | a_Open | a_Close | server_a_Close;
19: (* Variables *)
20: var idle_state:IDLE; var active_state:ACTIVE; var g:GS;

Fig. 12. DCCP’s control block and user commands in the final model

ACTIVExRCNTxGSxISN. IDLE (line 4) defines three idle states: CLOSED,
LISTEN and TIMEWAIT. The CLOSED state is split into CLOSED I to repre-
sent the initial CLOSED state and CLOSED F to represent a terminal CLOSED
state. This separation is useful when analysing state spaces [22]. The colour set
REQUEST is a product comprising RCNT (Retransmission Counter, line 2),
GSS and ISS. Because there is only one state in this group, the REQUEST state
is already distinguished from other states by using the ML selector ReqState in
the union (line 14). The ACTIVExRCNTxGSxISN (line 13) is a product com-
prising ACTIVE (line 6), RCNT, GS (Greatest Sequence and Acknowledgement
Numbers, line 9) and ISN (Initial Sequence Numbers, line 11). ACTIVE (line 6)
defines five DCCP states: RESPOND, PARTOPEN, OPEN, CLOSEREQ and
CLOSING. Because the client and server respond to the CloseReq packet differ-
ently in the OPEN and CLOSING states, we differentiate these states for the
client and server: C OPEN and C CLOSING for the client; and S OPEN and
S CLOSING for the server.

Figure 12 also defines the colour set, COMMAND, on line 18. The places
App Client and App Server in Fig. 3, typed by COMMAND, model DCCP
user commands (i.e. commands that can be issued by the applications that use
DCCP). For example, the user command 1‘a Open is the initial marking of
App Client indicating that the client’s application desires to open a connection.

3.3 Illustration of Folding and Regrouping of Transitions at the
Executable Level

This section discusses some examples of how the DCCP CM CPN model has
evolved at the executable level from the purely state-based approach to a mixed
state-based and event processing model. We firstly present the second-level page
to provide an overview of the revised model.

Modelling the DCCP’s Connection Management 437

The Second Level Page. Figure 13 shows the DCCP CM page which com-
prises eight substitution transitions. UserCMD models the actions taken when
receiving commands from users. Idle State combines similar processing actions re-
quired in the CLOSED, LISTEN and TIMEWAIT states. Request, Respond and
PartOpen encapsulate the major processing actions in each of the correspond-
ing states. DataTransfer represents actions taken when receiving the DCCP-
Data, DCCP-Ack and DCCP-DataAck packets in the OPEN, CLOSEREQ and
CLOSING states. ClosingDown defines the procedures undertaken on receiving
a DCCP-Close or DCCP-CloseReq packet in the five active states: RESPOND,
PARTOPEN, OPEN, CLOSEREQ and CLOSING. Finally, Common Processing
comprises procedures that are common to various states including packet re-
transmissions, timer expiry, and the receipt of DCCP-Reset, DCCP-Sync and
DCCP-SyncAck packets, unexpected packets and packets with an invalid header.

State

CB

P I/O

Ch_A_B

PACKETS

P OutUserCMD
HS

ClosingDown
HS

Request
HS

Idle_State
HS

Respond
HS

DataTransfer
HS

PartOpen
HS

Ch_B_A

PACKETS

P In

App_A

COMMAND
P In

Common
ProcessingHS

Fig. 13. The DCCP CM page

The IdleState Page. The “state-based” model of Fig. 6 was further refined
to include the processing of short sequence numbers. The resulting procedures
for DCCP in the CLOSED, LISTEN and TIMEWAIT states are shown in Figs
14, 15 and 16. It is apparent that the procedures for receiving packets in each
of these three states are almost identical. The only difference is the receipt of
the Request packet in LISTEN. We also observe that the TIMEWAIT state
includes state variables such as those required for recording sequence number
values (e.g. for GSS, GSR and GAR). However, on close inspection we considered
that these variables were not required. We discussed this issue with the main
IETF DCCP editor, who agreed to remove ambiguity in the specification to

438 S. Vanit-Anunchai and J. Billington

State

CB

P I/O

PassiveOpen

ActiveOpen

RcvPktWAck

[(p_type2<>Rst) andalso (cb=IdleState CLOSED_I
orelse cb = IdleState CLOSED_F)]

Output

PACKETS

P Out

Input

PACKETS

P In

App_A

COMMAND
P In

RcvPktWOAck

[cb=IdleState CLOSED_I orelse
cb=IdleState CLOSED_F]

RcvReset

[cb=IdleState CLOSED_I orelse
 cb = IdleState CLOSED_F]

RcvShortSeq

HS

IdleState CLOSED_I

1‘a_Open

1‘p_Open

ReqState (0,C_iss,C_iss)

IdleState CLOSED_I

IdleState LISTEN

PKT2 (Rst, LONG, {SEQ=incr(#ACK(sn_an)),
ACK=#SEQ(sn_an)})cb

PKT2 (p_type2, LONG, sn_an)

PKT1 (p_type1, LONG, sn)

cb PKT2 (Rst, LONG, {SEQ=ZERO,ACK=sn})

PKT2 (Rst, LONG, sn_an)
cb

PKT1 (Request, LONG, C_iss)

Fig. 14. The CLOSED page

State

CB

P I/O

Input

PACKETS

P In

Output

PACKETS

P Out

RcvRequest

RcvPktWAck

[p_type2 <> Rst]

RcvReset

RcvPktWOAck

[p_type1 <> Request]

RcvShortSeq

HS

PKT1 (Request, LONG, sn)

IdleState LISTEN

ActiveState (RESPOND, 0, {GSS=S_iss,
GSR=sn, GAR=S_iss},{ISS=S_iss,ISR=sn})

PKT2 (p_type2, LONG, sn_an)

PKT2 (Rst, LONG, {SEQ=incr(#ACK(sn_an)),
ACK= #SEQ(sn_an)})

IdleState LISTEN

PKT2 (Rst, LONG, sn_an)

IdleState LISTEN

PKT1 (p_type1, LONG, sn)

PKT2 (Rst, LONG, {SEQ=ZERO, ACK = sn})

PKT2 (Response, LONG,
{SEQ=S_iss, ACK=sn})

IdleState LISTEN

Fig. 15. The LISTEN page

make it clear that these variables are not needed in TIMEWAIT. We therefore
deleted these variables. Further we grouped all the user commands together in
a new page called UserCommands, thus removing transitions PassiveOpen and
ActiveOpen from the CLOSED page. This then allowed the CLOSED, LISTEN
and TIMEWAIT pages to be merged into a single page called IdleState shown in
Fig. 17. The RcvRequest and TimerExpire transitions remain the same, but the

Modelling the DCCP’s Connection Management 439

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

TimerExpire

RcvPktWAck

[p_type2 <>Rst]

RcvPktWOAck

RcvReset

RcvShortSeq
HS

ActiveState (TIMEWAIT, rcnt, g, isn)

ActiveState (TIMEWAIT, rcnt, g, isn)

ActiveState (TIMEWAIT, 0, {GSS=incr(#GSS(g)),
GSR=Update(#SEQ(sn_an), #GSR(g)),
GAR=Update(#ACK(sn_an), #GAR(g))}, isn)

PKT2(p_type2, LONG, sn_an)

PKT1 (p_type1, LONG, sn)ActiveState (TIMEWAIT, 0, {GSS=incr(#GSS(g)),
GSR=Update(sn,#GSR(g)),GAR=#GAR(g)}, isn)

ActiveState (TIMEWAIT, rcnt, g, isn)

ActiveState (TIMEWAIT, rcnt, g, isn) PKT2 (Rst, LONG, sn_an)

PKT2 (Rst, LONG, {SEQ=incr(#GSS(g)),
ACK=Update(sn,#GSR(g))})

PKT2(Rst, LONG, {SEQ=incr(#GSS(g)),
ACK=Update(#SEQ(sn_an),#GSR(g))})

IdleState CLOSED_F

Fig. 16. The TIMEWAIT page

other transitions for receipt of packets are folded together, and the substitution
transition for the processing of short sequence number packets is expanded, so
that all processing at a similar level is included on this page. This reduces the
number of (executable) transitions from 17 to 7, and removes 3 substitution
transitions. The folded model thus elegantly captures common processing in
these states, highlights the differences and reduces maintenance effort, at the
cost of introducing a variable that runs over the idle states.

The RcvReset Page. During the development process we gained insight into
the protocol’s behaviour. An example of this is that DCCP’s behaviour, when
receiving a Reset packet, can be classified into three cases. Firstly, the CLOSED,
LISTEN and TIMEWAIT states ignore Reset packets as shown in Fig. 17. Sec-
ondly the client in the REQUEST state replies with a Reset packet. Because the
client in REQUEST has not yet recorded an ISR, the acknowledgement number
of the outgoing Reset is equal to zero according to section 8.1.1 of [14]. Thirdly,
when the DCCP entity in any other active state receives a valid Reset, it enters
TIMEWAIT but on receiving an invalid Reset, it replies with a Sync packet.
However the Sync packet has an acknowledgement number equal to GSR rather
than the sequence number received (section 7.5.4 of [14]). Instead of including a
RcvReset transition in every state page, we group this behaviour into one CPN
page as shown in Fig. 18. It comprises three transitions: InActiveState, InRe-
questState and InIdleState. Each one models the action of DCCP when receiving
a Reset packet in a state corresponding to its name. Thus we moved transition
RcvReset from IdleState to the RcvReset page. This page illustrates the “event
processing” style of specification. In this case it provides a more compact and
maintainable model compared with the state-based approach, where the number
of executable transitions has been reduced from 9 to 3.

The Retransmission Page. During connection set up and close down retrans-
missions occur when DCCP has not received a response from its peer within a

440 S. Vanit-Anunchai and J. Billington

State

CB

P I/O

RcvLongWAck

[p_type2<>Rst]

Output

PACKETS

P Out

Input

PACKETS

P In

RcvLongWOAck

[idle_state <> LISTEN orelse
p_type1 <> Request]

RcvReset

RcvShortWOAck

[ShortEnable]

TimerExpires

RcvShortWAck

[(p_type2 = Ack orelse
p_type2 = DataAck) andalso
ShortEnable]

RcvRequest

PKT2 (Rst, LONG,
SeqAck(NoGS, SA48 sn_an))

IdleState idle_state

PKT2 (p_type2, LONG, sn_an)

PKT1 (p_type1, LONG, sn)
IdleState idle_state

PKT2(Rst, LONG, SeqAck(NoGS, S48 sn))

PKT2 (Rst, LONG, sn_an)IdleState idle_state

IdleState idle_state
PKT2 (Rst, LONG,
SeqAck(NoGS, S24 sn24))

PKT1s (Data, SHORT, sn24)

IdleState TIMEWAIT

IdleState CLOSED_F

IdleState idle_state
PKT2 (Rst, LONG,
SeqAck(NoGS,SA24 sn24_an24))

PKT2s (p_type2, SHORT, sn24_an24)

IdleState LISTEN
PKT2 (Response, LONG, {SEQ=S_iss,ACK=sn})

PKT1 (Request, LONG, sn)

ActiveState (RESPOND,0,{GSS=S_iss,
GSR=sn,GAR=S_iss},{ISS=S_iss,ISR=sn})

Fig. 17. The IdleState page

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

InActiveState

InRequestState

InIdleState

ActiveState (active_state,rcnt,g,isn)

if PktValid(Rst, sn_an, g, isn)
then IdleState TIMEWAIT
else ActiveState (active_state,rcnt,incrGSS(g),isn)

PKT2 (Rst, LONG, sn_an)

if RstValidinReqState(sn_an,gss,iss)
then empty
else SndRstInReq(gss)ReqState (rcnt,gss,iss)

if RstValidinReqState(sn_an,gss,iss)
then IdleState TIMEWAIT
else ReqState (rcnt,IntInf.+(gss,ONE),iss)

PKT2(Rst, LONG, sn_an)

if PktValid(Rst,sn_an,g,isn) then empty
else 1‘PKT2(Sync, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

PKT2 (Rst, LONG, sn_an)

IdleState idle_state

Fig. 18. The RcvReset page

specified period (a timer expires). We group all transitions related to retransmis-
sion into a CPN page called the Retransmission page shown in Fig. 19. Retrans-
mission in each state is modelled by the transition corresponding to the state’s
name: Retrans REQUEST; RetransShort PARTOPEN; RetransLong PARTOPEN;
Retrans CLOSEREQ and Retrans CLOSING. In PARTOPEN the client can re-
transmit either an Ack or a DataAck with short or long sequence numbers. Each
retransmission increases the retransmission counter (rcnt) by one. This approach
clearly shows the states in which retransmission is possible. For example, retrans-
mission does not occur in the RESPOND state.

Modelling the DCCP’s Connection Management 441

State

CB

P I/O
Output

PACKETS

P Out
RetransLong_PARTOPEN

[rcnt < MaxRetransAckDataAck]

BackOff_ActiveState

[BackOff(active_state,rcnt)]

RetransShort_PARTOPEN

[rcnt < MaxRetransAckDataAck
andalso ShortEnable]

Retrans_CLOSEREQ

[rcnt < MaxRetransCloseReq]

Retrans_Request
[rcnt < MaxRetransRequest]

BackOff_REQUEST

Retrans_CLOSING

[(active_state = C_CLOSING orelse active_state =S_CLOSING)
andalso rcnt < MaxRetransClose]

ActiveState (PARTOPEN,rcnt,g,isn)

ActiveState (PARTOPEN,rcnt+1,
incrGSS(g),isn)

PKT2(ack_dataack, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

ActiveState (active_state,rcnt,g,isn)
PKT2(Rst, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

PKT2s(ack_dataack,SHORT,
{SEQ=mod_sn24(incr(#GSS(g))),
ACK=mod_sn24(#GSR(g))})ActiveState (PARTOPEN, rcnt, g, isn)

ActiveState (PARTOPEN,rcnt+1,
incrGSS(g),isn)

PKT2 (CloseReq, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})ActiveState (CLOSEREQ,rcnt,g,isn)

ActiveState(CLOSEREQ, rcnt+1,incrGSS(g),isn)

IdleState CLOSED_F

PKT1 (Request, LONG, incr(gss))

SndRstInReq(gss)

ReqState(rcnt, gss, iss)

IdleState CLOSED_F

ReqState (rcnt+1, incr(gss), iss)

ReqState (MaxRetransRequest,gss,iss)

PKT2 (Close, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})ActiveState (active_state,rcnt,g,isn)

ActiveState (active_state, rcnt+1,incrGSS(g),isn)

Fig. 19. The Retransmission page

When the counter reaches the maximum retransmission value, DCCP resets
the connection and enters the CLOSED state. These actions are modelled by the
transition BackOff REQUEST for the REQUEST state and BackOff ActiveState
for the RESPOND, PARTOPEN, CLOSEREQ and CLOSING states. The guard
function, BackOff, checks whether the number of retransmissions has reached the
maximum value or not. Although no Response packet is retransmitted in RE-
SPOND, DCCP enters the CLOSED state after holding the RESPOND state for
longer than the backoff timer period (4MPL). The common backoff timer pro-
cedure for active states is captured in the one transition (BackOff ActiveState),
avoiding repetition of this behaviour in each state page.

4 Conclusion and Future Work

This paper has presented our approach to the development of a formal model
of the connection management and synchronization procedures of the Internet’s
Datagram Congestion Control Protocol. We discuss how our CPN model was re-
fined using an incremental approach while the specification was being developed
by IETF. We started with a small model of an early Internet Draft and illus-
trated how to use hierarchical CPNs to structure the model. This model used
a state-based approach. We then showed how the model’s hierarchical struc-
ture and data structures evolved to capture DCCP’s specification faithfully as it
was progressively developed by IETF. At various stages of the development we
analysed the model and found errors in the specification. Serious errors, such as

442 S. Vanit-Anunchai and J. Billington

chatter, were reported to IETF and their solutions verified before DCCP became
a standard (RFC 4340).

We found that as the state-based CPN model grew, a lot redundancy crept
into the model. This was especially the case when including the synchroniza-
tion procedures. The redundancy occurs when the receipt of the same packet
in different states requires the same processing. We revised parts of the model
using an event processing style so that similar events occurring in various states
are regrouped into one transition. The final model is significantly more compact
than the previous models.

Significant effort was put into validating the model. This can be facilitated by
firstly using the state-based approach so that it is easy to check that an action is
defined for the receipt of each packet in each state. The state-based approach is
easier to read, however, the judicious introduction of the event processing style
in significant parts of the model made it easier to maintain, as our interaction
with IETF proved.

The overall benefits of the approach include: the model is formal and hence
removes ambiguity; the model gathers together disparate parts of the RFC that
are specified by a combination of narrative, a state machine and pseudo code in
different sections; the concurrency inherent in the protocol is retained; and the
CPN model can be analysed to obtain results which are fed back into the stan-
dardisation process to improve the specification before it becomes a standard.

Our incremental approach to the analysis of the model requires consideration
of four different channel types: ordered without loss; ordered with loss; reordered
without loss; and reordered with loss. To facilitate maintenance of the model,
we are currently integrating these different channel types into a single CPN
model. We are also interested in modelling and analysing the feature negotiation
procedures.

Acknowledgements

The authors gratefully acknowledge the constructive comments of the anony-
mous referees which have helped to improve this paper.

References

1. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net Approach to Protocol
Verification. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency
and Petri Nets, Advances in Petri Nets. LNCS, vol. 3098, pp. 210–290. Springer,
Heidelberg (2004)

2. Floyd, S., Handley, M., Kohler, E.: Problem Statement for the Datagram
Congestion Control Protocol (DCCP), RFC 4336 (March 2006) Available via
http://www.rfc-editor.org/rfc/rfc4336.txt

3. Floyd, S., Kohler, E.: Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 2: TCP-like Congestion Control, RFC 4341 (March
2006) Available via http://www.rfc-editor.org/rfc/rfc4341.txt

 http://www.rfc-editor.org/rfc/rfc4336.txt
 http://www.rfc-editor.org/rfc/rfc4341.txt

Modelling the DCCP’s Connection Management 443

4. Floyd, S., Kohler, E., Padhye, J.: Profile for Datagram Congestion Control Protocol
(DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC), RFC 4342
(March 2006) Available via http://www.rfc-editor.org/rfc/rfc4342.txt

5. Gallasch, G.E., Billington, J., Vanit-Anunchai, S., Kristensen, L.M.: Checking
Safety Properties On-The-Fly with the Sweep-line Method. In: International Jour-
nal on Software Tools for Technology Transfer, Springer, Heidelberg (to appear
2007)

6. Han, B.: Formal Specification of the TCP Service and Verification of TCP Con-
nection Management. PhD thesis, Computer Systems Engineering Centre, School
of Electrical and Information Engineering, University of South Australia, South
Australia (December 2004)

7. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-
cal Use. vol. 1, Basic Concepts. Monographs in Theoretical Computer Science.
Springer, Heidelberg (2nd edition, 1997)

8. Kohler, E., Handley, M., Floyd, S.: Designing DCCP: Congestion Control Without
Reliability. In: Proceedings of the 2006 ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIGCOMM’06),
Pisa, Italy, pp. 27–38 (September 11-15, 2006)

9. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Con-
trol Protocol, draft-ietf-dccp-spec-6 (February 2004) Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-06.txt

10. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Con-
trol Protocol, draft-ietf-dccp-spec-7 (July 2004) Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-07.txt

11. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Con-
trol Protocol, draft-ietf-dccp-spec-11 (March 2005) Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-11.txt

12. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Con-
trol Protocol, draft-ietf-dccp-spec-13 (December 2005) Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-13.txt

13. Kohler, E., Handley, M., Floyd, S.: SUBSTANTIVE DIFFERENCES BETWEEN
draft-ietf-dccp-spec-11 AND draft-ietf-dccp-spec-12 (December 2005) Available via
http://www.read.cs.ucla.edu/dccp/diff-spec-11-12-explain.txt

14. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol, RFC
4340 (March 2006) Available via http://www.rfc-editor.org/rfc/rfc4340.txt

15. Kohler, E., Handley, M., Floyd, S.: SUBSTANTIVE DIFFERENCES BE-
TWEEN draft-ietf-dccp-spec-13 AND RFC 4340 March (2006) Available via
http://www.read.cs.ucla.edu/dccp/diff-spec-13-rfc-explain.txt

16. Kohler, E., Handley, M., Floyd, S., Padhye, J.: Datagram Congestion
Control Protocol, draft-ietf-dccp-spec-5 (October 2003) Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-05.txt

17. Kongprakaiwoot, T.: Verification of the Datagram Congestion Control Protocol
using Coloured Petri Nets. Master’s thesis, Computer Systems Engineering Centre,
School of Electrical and Information Engineering, University of South Australia,
South Australia (November 2004)

18. University of Aarhus. Design/CPN Online. Department of Computer Science
(2004) Available via http://www.daimi.au.dk/designCPN/

19. Vanit-Anunchai, S., Billington, J.: Initial Result of a Formal Analysis of DCCP
Connection Management. In: Proceedings of Fourth International Network Confer-
ence (INC 2004), pp. 63–70, Plymouth, UK, 6-9 July 2004. University of Plymouth
(2004)

 http://www.rfc-editor.org/rfc/rfc4342.txt
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-06.txt
 http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-07.txt
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-13.txt
http://www.read.cs.ucla.edu/dccp/diff-spec-11-12-explain.txt
 http://www.rfc-editor.org/rfc/rfc4340.txt
http://www.read.cs.ucla.edu/dccp/diff-spec-13-rfc-explain.txt
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-05.txt
http://www.daimi.au.dk/designCPN/

444 S. Vanit-Anunchai and J. Billington

20. Vanit-Anunchai, S., Billington, J.: Effect of Sequence Number Wrap on DCCP
Connection Establishment. In: Proceedings of the 14th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), Monterey, California, USA, 11-13 September 2006, pp.
345–354. IEEE Computer Society Press, Washington (2006)

21. Vanit-Anunchai, S., Billington, J.: Chattering Behaviour in the Datagram Conges-
tion Control Protocol. IEE Electronics Letters 41(21), 1198–1199 (2005)

22. Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Sweep-line Analysis of DCCP
Connection Management. In: Proceeding of the Seventh Workshop and Tuto-
rial on Practical Use of Coloured Petri Nets and the CPN Tools, Technical
Report, DAIMI PB-579, Aarhus, Denmark, 24-26 October, pp. 157–175, De-
partment of Computer Science, University of Aarhus. (2006) Available via
http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/

23. Vanit-Anunchai, S., Billington, J., Kongprakaiwoot, T.: Discovering Chatter and
Incompleteness in the Datagram Congestion Control Protocol. In: Wang, F. (ed.)
FORTE 2005. LNCS, vol. 3731, pp. 143–158. Springer, Heidelberg (2005)

http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/

The ComBack Method – Extending

Hash Compaction with Backtracking

Michael Westergaard, Lars Michael Kristensen�, Gerth Stølting Brodal,
and Lars Arge

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{mw,kris,gerth,large}@daimi.au.dk

Abstract. This paper presents the ComBack method for explicit state
space exploration. The ComBack method extends the well-known hash
compaction method such that full coverage of the state space is guar-
anteed. Each encountered state is mapped into a compressed state de-
scriptor (hash value) as in hash compaction. The method additionally
stores for each state an integer representing the identity of the state and
a backedge to a predecessor state. This allows hash collisions to be re-
solved on-the-fly during state space exploration using backtracking to
reconstruct the full state descriptors when required for comparison with
newly encountered states. A prototype implementation of the ComBack
method is used to evaluate the method on several example systems and
compare its performance to related methods. The results show a reduc-
tion in memory usage at an acceptable cost in exploration time.

1 Introduction

Explicit state space exploration is one of the main approaches to verification of
finite-state concurrent systems. The underlying idea is to enumerate all reach-
able states of the system under consideration, and it has been implemented in
computer tools such as SPIN [9], Murφ [10], CPN Tools [18], and LoLa [20].

The main drawback of verification methods based on state space exploration
is the state explosion problem [25], and several reduction methods have been
developed to alleviate this inherent complexity problem. For explicit state space
exploration these include: methods that explore only a subset of the state space
directed by the verification question [17, 24]; methods that delete states from
memory during state space exploration [6, 3, 1]; methods that store states in a
compact manner in memory [8, 12, 5]; and methods that use external storage to
store the set of visited states [22]. Another approach is symbolic model checking
using, e.g., binary decision diagrams [2] or multi-valued decision diagrams [13].

Of particular interest in the context of this paper is the hash compaction
method [27,21], a method to reduce the amount of memory used to store states.

� Supported by the Carlsberg Foundation and the Danish Research Council for Tech-
nology and Production.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 445–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

446 M. Westergaard et al.

Hash compaction uses a hash function H to map each encountered state s into a
fixed-sized bit-vector H(s) called the compressed state descriptor which is stored
in memory as a representation of the state. The full state descriptor is not stored
in memory. Thus, each discovered state is represented compactly using typically
32 or 64 bits. The disadvantage of hash compaction is that two different states
may be mapped to the same compressed state descriptor which implies that the
hash compaction method may not explore all reachable states. The probability
of hash collisions can be reduced by using multiple hash functions [21], but the
method still cannot guarantee full coverage of the state space. If the intent of
state space exploration is to find (some) errors, this is acceptable. If, however, the
goal is to prove the absence of errors, discarding parts of the state space is not
acceptable, meaning that hash compaction is mainly suited for error detection.

The idea of the ComBack method is to augment the hash compaction method
such that hash collisions can be resolved during state space exploration. This
is achieved by assigning a unique state number to each visited state and by
storing, for each compressed state descriptor, a list of state numbers that have
been mapped to this compressed state descriptor. This information is stored in a
state table. Furthermore, a backedge table stores a backedge for each visited state.
A backedge for a state s consists of a transition t and a state number n, such that
executing transition t in the predecessor state s′ with state number n leads to
s. The backedges stored in the backedge table determine a spanning tree rooted
in the initial state for the partial state space currently explored. The backedge
table makes it possible, given the state number of a visited state s, to backtrack
to the initial state and thereby obtain a sequence of transitions (corresponding
to a path in the state space) which, when executed from the initial state, leads
to s, which makes it possible to reconstruct the full state descriptor of s.

A potential hash collision is detected whenever a newly generated state s
is mapped to a compressed state descriptor H(s) already stored in the state
table. From the compressed state descriptor and the state table we obtain the
list of visited state numbers mapped to this compressed state descriptor. Using
the backedge table, the full state descriptor can be reconstructed for each of
these states and compared to the newly generated state s. If none of the full
state descriptors for the already stored state numbers is equal to the full state
descriptor of s, then s has not been visited before, and a hash collision has been
detected. The state s is therefore assigned a new state number which is appended
to the list of state numbers for the given compressed state descriptor, and a
backedge for s is inserted into the backedge table. Otherwise, s was identical to
an already visited state and no action is required.

The rest of this paper is organised as follows. Section 2 introduces the ba-
sic notation and presents the hash compaction algorithm. Section 3 introduces
the ComBack method using a small example, and Sect. 4 formally specifies the
ComBack algorithm. Section 5 presents several variants of the basic ComBack
algorithm, and Sect. 6 presents a prototype implementation together with ex-
perimental results obtained on a number of example systems. Finally, in Sect. 7,

The ComBack Method – Extending Hash Compaction with Backtracking 447

we sum up the conclusions and discuss future work. The reader is assumed to
be familiar with the basic ideas of explicit state space exploration.

2 Background

The ComBack method has been developed in the context of Coloured Petri
nets (CP-nets or CPNs) [11], but applies to many other modelling languages for
concurrent systems such as PT-nets [19], CCS [16], and CSP [7]. We therefore
formulate the ComBack method in the context of (finite) labelled transition
systems to make the presentation independent of a concrete modelling language.

Definition 1 (Labelled Transition System). A labelled transition system
(LTS) is a tuple S = (S, T, Δ, sI), where S is a finite set of states, T is a finite
set of transitions, Δ ⊆ S × T × S is the transition relation, and sI ∈ S is
the initial state.

In the rest of this paper we assume that we are given a labelled transition system
S = (S, T, Δ, sI). Let s, s′ ∈ S be two states and t ∈ T a transition. If (s, t, s′) ∈
Δ, then t is said to be enabled in s and the occurrence (execution) of t in s leads to
the state s′. This is also written s

t−→ s′. An occurrence sequence is an alternating
sequence of states si and transitions ti written s1

t1−→ s2
t2−→ s3 · · · sn−1

tn−1−−−→ sn

and satisfying si
ti−→ si+1 for 1 ≤ i ≤ n−1. For the presentation of the ComBack

method, we initially assume that transitions are deterministic, i.e., if s
t−→ s′ and

s
t−→ s′′ then s′ = s′′. This holds for transitions in, e.g., PT-nets and CP-nets.

In Sect. 5 we show how to extend the ComBack method to modelling languages
with non-deterministic transitions.

We use →∗ to denote the transitive and reflexive closure of Δ, i.e., s →∗ s′ if
and only if there exists an occurrence sequence s1

t1−→ s2
t2−→ s3 · · · sn−1

tn−1−−−→ sn,
n ≥ 1, with s = s1 and s′ = sn. A state s′ is reachable from s if and only if s →∗

s′, and reach(s) = { s′ ∈ S | s →∗ s′ } denotes the set of states reachable from s.
The state space of a system is the directed graph (V, E) where V = reach(sI) is
the set of nodes and E = {(s, t, s′) ∈ Δ | s, s′ ∈ V } is the set of edges.

The standard algorithm for explicit state space exploration relies on two data
structures: a state table storing the states that have been discovered until now,
and a waiting set containing the states for which successor states have not yet
been calculated. The state table can be implemented as a hash table, and the
waiting set can be implemented, e.g., as a stack or a fifo-queue if depth-first
or breadth-first exploration is desired. The state table and the waiting set are
initialised to contain the initial state and the algorithm terminates when the
waiting set is empty, at which point the state table contains the reachable states.

The basic idea of the hash compaction method [27,21] is to use a hash function
H mapping from states S into the set of bit-strings of some fixed length. Instead
of storing the full state descriptor in the state table for each visited state s, only
the compressed state descriptor (hash value) H(s) is stored. The waiting set
still stores full state descriptors. Algorithm 1 gives the basic hash compaction

448 M. Westergaard et al.

Algorithm 1. Basic Hash Compaction Algorithm
1: StateTable.Init(); StateTable.Insert(H(sI))
2: WaitingSet.Init(); WaitingSet.Insert(sI)
3:
4: while ¬ WaitingSet.Empty() do
5: s ← WaitingSet.Select()

6: for all t, s′ such that (s, t, s′) ∈ Δ do
7: if ¬ StateTable.Contains(H(s′)) then
8: StateTable.Insert(H(s′))
9: WaitingSet.Insert(s′)

algorithm [27]. The state table and the waiting set are initialised in lines 1–2 with
the compressed and full state descriptors for the initial state sI , respectively. The
algorithm then executes a while-loop (lines 4-9) until the waiting set is empty.
In each iteration of the while loop, a state s is selected and removed from the
waiting set (line 5) and each of the successor states s′ of s are calculated and
examined (lines 6-9). If the compressed state descriptor H(s′) for s′ is not in
the state table, then s′ has not been visited before, and H(s′) is added to the
state table and s′ is added to the waiting set. If the compressed state descriptor
H(s′) for s′ is already in the state table, the assumption of the hash compaction
method is that s′ has already been visited. The advantage of the hash compaction
method is that the number of bytes stored per state is heavily reduced compared
to storing the full state descriptor, which can be several hundreds of bytes for
complex systems. The disadvantage is that the method cannot guarantee full
coverage of the state space.

Figure 1 shows an example state space which will also be used when intro-
ducing the ComBack method in the next section. Figure 1(left) shows the full
state space consisting of the states s1, s2, . . . , s6. The initial state is s1. The
compressed state descriptors h1, h2, h3, h4 have been written to the upper right
of each state. As an example, it can be seen that the states s3, s5, and s6 are
mapped to the same compressed state descriptor h3. Figure 1(right) shows the
part of the state space explored by the hash compaction method. The hash com-
paction method will consider the states s3, s5, and s6 to be the same state since
they are mapped to the same compressed state descriptor h3. As a result, the
hash compaction method does not explore the full state space.

Several improvements have been developed for the basic hash compaction
method to reduce the probability of not exploring the full state space [21]. None
of these improvements guarantee full coverage of the state space. For the purpose
of this paper it therefore suffices to consider the basic hash compaction algorithm.

3 The ComBack Method

The basic idea of the ComBack method is similar to that of the hash compaction
method: instead of storing the full state descriptors, a hash function is used to

The ComBack Method – Extending Hash Compaction with Backtracking 449

calculate a compressed state descriptor. When using hash compaction, the main
problem is hash collisions , i.e., that states with different full state descriptors
(such as s3, s5, and s6 in Fig. 1) are mapped to the same compressed state de-
scriptor. The ComBack method addresses this problem by comparing the full
state descriptors whenever a new state is generated for which the compressed
state descriptor is already stored in the state table. This is, however, done with-
out storing the full state descriptors for the states in the state table. Instead the
full state descriptors of states in the state table are reconstructed on-demand
using backtracking to resolve hash collisions. The reconstruction of full state
descriptors using backtracking is achieved by augmenting the hash compaction
algorithm in the following ways:

1. A state number N(s) (integer) is assigned to each visited state s.
2. The state table stores for each compressed state descriptor a collision list of

state numbers for visited states mapped to this compressed state descriptor.
3. A backedge table is maintained which for each state number N(s) of a visited

state s stores a backedge consisting of a transition t and a state number N(s′)
of a visited state s′ such that s′ t−→ s.

The augmented state table makes it possible, given a compressed state descrip-
tor H(s) for a newly generated state s, to obtain the state numbers for the
visited states mapped to the compressed state descriptor H(s). For each such
state number N(s′) of a state s′, the backedge table can be used to obtain the
sequence of transitions, t1t2 · · · tn, on some path (occurrence sequence) in the
state space leading from the initial state sI to s′. As we have initially assumed
that transitions are deterministic, executing this occurrence sequence starting
in the initial state will reconstruct the full state descriptor for s′. It is therefore
possible to compare the full state descriptor of the newly generated state s to
the full state descriptor of s′ and thereby determine whether s has already been
encountered.

Figure 2 (left) shows a snapshot of state space exploration using the ComBack
method on the example that was introduced in Fig. 1. The snapshot represents
the situation where the successors of the initial state s1 have been generated,
and the states s2 and s6 are the states currently in the waiting set. The state
number assigned to each state is written inside a box to the upper left of each

a

b

bb

s1

s2

s6

s4

s3

s5

h3

h3

h4

h3

h2

h1

a

a

a
b

h1

h3

h4

s1

s2

b

s4

s6

h2

a

Fig. 1. Full state space (left) and state space explored using hash compaction (right)

450 M. Westergaard et al.

state. Figure 2 (middle) shows the contents of the state table, which for each
compressed state descriptor hi lists the state numbers mapped to hi. Figure 2
(right) shows the contents of the backedge table. The backedge table gives for
each state number N(s) a pair (N(s′), t), consisting of the state number N(s′)
of a predecessor state s′ and a transition t such that s′ t−→ s. As an example,
for state number 3 (which is state s6) the backedge table specifies the pair (1, b)
corresponding to the edge in the state space going from state s1 to state s6
labelled with the transition b. For the initial state, which by convention always
has state number 1, no backedge is specified since backtracking will always be
stopped at the initial state.

Assume that s2 is the next state removed from the waiting set. It has a single
successor state s3 which is mapped to the compressed state descriptor h3 (see
Fig. 1). A lookup in the state table shows that for the compressed state descriptor
h3 we already have a state with state number 3 stored. We therefore need to
reconstruct the full state descriptor for state number 3 in order to determine
whether s3 is a newly discovered state. The reconstruction is done in two phases.
The first phase uses the backedge table to obtain a sequence of transitions which,
when executed from the initial state, leads to the state with number 3. A lookup
in the backedge table for the state with state number 3 yields the pair (1, b). Since
1 represents the initial state, the backtracking terminates with the transition
sequence consisting of b. In the second phase, we use the transition relation Δ
for the system to execute the transition b in the initial state and obtain the
full state descriptor for state number 3 (which is s6). We can now compare the
full state descriptors s3 and s6. Since these are different, s3 is a new state and
assigned state number 4, which is added to the state table by appending it to
the collision list for the compressed state descriptor h3. In addition s3 is added
to the waiting set, and an entry (2, a) is added to the backedge table for state
number 4 in case we will have to reconstruct s3 later. Figure 3 shows the state
space explored, the state table, and the backedge table after processing s2.

The waiting set now contains s3 and s6. Assume that s3 is selected from the
waiting set. The two successor states s4 and s5 will be generated. First, we will
check whether s4 has already been generated. As s4 has the compressed state
descriptor h4, which has no state numbers in its collision list, it is new, and it
is assigned state number 5, and an entry (4, a) is added to the backedge table.
Then we check if s5 is new. State s5 has the compressed state descriptor h3 and
a lookup in the state table yields the collision list consisting of states number

a

b

h1

h3

s1

s2

s6

h2

1

2

3 2

h3 3

h1 1

h2

(1, b)

1

2

3

(1, a)

Fig. 2. Before s2 is processed: state space explored (left), state table (middle), and
backedge table (right)

The ComBack Method – Extending Hash Compaction with Backtracking 451

a

b

h1

h3

s1

s2

s6

s3

h3

h2

1

2

4

3
a

4h3 3

h1 1

h2 2

(2, a)

1

2

3

(1, a)

(1, b)

4

Fig. 3. After processing s2: state space explored (left), state table (middle), and
backedge table (right)

3 and 4. Using the backedge table, we obtain the two corresponding transition
sequences: (1, b) and (2, a)(1, a). Executing the occurrence sequences: s1

b−→ s6

and s1
a−→ s2

a−→ s3 yields the full state descriptors for s3 and s6. By comparison
with the full state descriptor for s5 it is concluded that s5 is new and the state
table, the waiting set, and the backedge table are updated accordingly.

When state s3 has been processed, the waiting set contains the states s4, s5,
and s6. The processing of s4 and s5 does not result in any new states as these
two states do not have successor states. Consider the processing of s6. We will
tentatively denote the full state descriptor for the successor of s6 corresponding
to s4 by s′ as the algorithm has not yet determined that it is equal to s4. State
s′ has the compressed state descriptor h4 and a lookup in the state table shows
that we have a single state with number 5 stored for h4. The backedge table is
then used starting from state number 5 to obtain the backedges (4, a), (2, a), and
(1, a). Executing the corresponding occurrence sequence s1

a−→ s2
a−→ s3

a−→ s4
yields full state descriptor for s4, and we conclude that this full state descriptor
is equal to s′, so s′ has already been visited and no changes are required to the
state table, the waiting set or the backedge table.

Figure 4 shows the situation after state s6 has been processed. The thick edges
correspond to the backedges stored in the backedge table. It can be seen that
the backedges stored in the backedge table determine a spanning tree rooted in
the initial state in all stages of the construction (Figs. 2–4).

a

b

h1

h3

h4

s1

s2

b

s3

s4s5
b

s6

h3

h3

h2

1

5

4

2

3

6

a

a

h4

h3 3

h1 1

h2 2

4

5

6

(4, b)

1

2

3

(1, a)

(1, b)

4 (2, a)

5

6

(4, a)

Fig. 4. After processing s6: state space explored (left), state table (middle), and
backedge table (right)

452 M. Westergaard et al.

4 The ComBack Algorithm

The ComBack algorithm introduced in the previous section is listed in Algo-
rithm 2. The first part of the algorithm (lines 1–4) initialises the global data
structures. The global variable m is used to enumerate the states, i.e., assign
state numbers to states, and is initially 1 since the initial state is the first state
considered. The state table has an Insert operation which takes a compressed
state descriptor and a state number and appends the state number to the collision
list for the compressed state descriptor. The waiting set stores pairs consisting
of a full state descriptor and its number. The state number is needed when cre-
ating the backedge for a newly discovered state. The backedge table stores pairs
consisting of a state number and a transition label. The empty backedge denoted
⊥ is initially inserted in the backedge table for state number 1 (the initial state).

The algorithm then executes a while-loop (lines 6–13) until the waiting set is
empty. In each iteration of the while-loop, a pair, (s, n′), consisting of a state

Algorithm 2. The ComBack Algorithm
1: m ← 1
2: StateTable.Init(); StateTable.Insert(H(sI), 1))
3: WaitingSet.Init(); WaitingSet.Insert(sI, 1)
4: BackEdgeTable.Init(); BackEdgeTable.Insert(1, ⊥)
5:
6: while ¬ WaitingSet.Empty() do
7: (s, n′) ← WaitingSet.Select()

8: for all t, s′ such that (s, t, s′) ∈ Δ do
9: if ¬ Contains(s′) then

10: m ← m + 1
11: StateTable.Insert(H(s′), m)
12: WaitingSet.Insert(s′, m)
13: BackEdgeTable.Insert(m, (n′, t))
14:
15: proc Contains(s′) is
16: for all n ∈ StateTable.Lookup(H(s′)) do
17: if Matches(n, s′) then
18: return tt
19: return ff
20:
21: proc Matches(n, s′) is
22: return s′ = Reconstruct(n)
23:
24: proc Reconstruct(n) is
25: if n = 1 then
26: return sI

27: else
28: (n′, t) ← BackEdgeTable.Lookup(n)
29: s ← Reconstruct(n′)
30: return Execute(s, t)

The ComBack Method – Extending Hash Compaction with Backtracking 453

and its state number is selected from the waiting set (line 7) and each of the
successor states, s′, of s is examined (lines 8–13). Whether a successor state, s′,
is a newly discovered state is determined using the Contains procedure, which
will be explained below. If s′ is a newly discovered state, m is incremented by one
to obtain the state number assigned to s′, the state number for s′ is appended
to the collision list associated with the compressed state descriptor H(s′), and
(n′, t) is inserted as a backedge in the backedge table for the state s′ which has
been given state number m.

The procedure Contains (lines 15–19) is used to determine whether a newly
generated state s′ has been visited before. The procedure looks up the collision
list for the compressed state descriptor H(s′) for s′, and for each state number, n,
in the collision list it checks if s′ corresponds to n using the Matches procedure.
If a reconstructed state descriptor is identical to s′, then s′ has already been
visited and tt (true) is returned. Otherwise ff (false) is returned. The procedure
Matches (lines 21–22) reconstructs the full state descriptor corresponding to n
using Reconstruct procedure and returns whether it is equal to s′.

The procedure Reconstruct recursively backtracks using the backedge ta-
ble to reconstruct the full state descriptor for state number n. The function
recursively finds the state number of a predecessor using the backedge table and
calculates the full state descriptor using the Execute procedure. The procedure
exploits the convention that the initial state has number 1 to determine when
to stop the recursion. The Execute procedure (not shown) uses the transition
relation Δ to compute the state resulting from an occurrence of the transition t
in the state s, i.e., if (s, t, s′) ∈ Δ then Execute(s, t) = s′. This is well-defined
since we have assumed that transitions are deterministic.

It can be seen that the ComBack algorithm is very similar to the standard
algorithm for state space exploration. The main difference is that determining
whether a state has already been visited relies on the Contains procedure which
uses the backedge table to reconstruct the full state descriptors before the com-
parison with a newly generated state is done. Since the backedge table at any
time during state exploration determines a spanning tree rooted in the initial
state for the currently explored part of the state space, we can reconstruct the
full state descriptor for any visited state. It follows that the ComBack algorithm
terminates after having explored all reachable states exactly once.

Space Usage. The ComBack algorithm explores the full state space at the
expense of using more memory per state than hash compaction and by using
time on reconstruction of full state descriptors. We will now discuss these two
issues in more detail. First we consider memory usage. Let wN denote the number
of bits used to represent a state number, and let wH denote the number of bits
in a compressed state descriptor. Let |hi| denote the number of reachable states
mapped to the compressed state descriptor hi. The entry corresponding to hi

in the state table can be stored as a pair consisting of the compressed state
descriptor and a counter of size wc specifying the length of an array of state
numbers (the collision list). The total amount of memory used to store the
states whose compressed state descriptor is hi is therefore given by wH + wc +
|hi| · wN . Considering all compressed state descriptors, the worst-case memory

454 M. Westergaard et al.

usage occurs if all collision lists have length 1. This means that the worst-case
memory usage for the state table is:

|reach(sI)| · (wH + wc + wN)

We need at least wN = �log2 |reach(sI)|	 bits for storing unique numbers for
each state and wc = �log2 |reach(sI)|	 bits for storing the number of states in
each collision list. The worst-case memory usage for the elements in the state
table is therefore:

|reach(sI)| · (wH + 2 · �log2 |reach(sI)|�)

Consider now the backedge table. The entries can be implemented as an ar-
ray where entry i specifies the backedge associated with state number i. If we
enumerate all transitions, each transition in a backedge can be represented us-
ing �log2 |T |	 bits. Each state number in a backedge can be represented using
�log2 |reach(sI)|	 bits. Observing that each reachable state will have one entry
in the backedge table upon termination this implies that the memory used for
the elements in the backedge table is given by:

|reach(sI)| · (�log2 |reach(sI)|� + �log2 |T |�)

The above means that the total amount memory used for the elements in the
state table and the backedge table is in worst-case given by:

|reach(sI)| · (wH + 3 · �log2 |reach(sI)|� + �log2 |T |�)

This is 3 · �log2 |reach(sI)|	+ �log2 |T |	 bits more per visited state than the hash
compaction method. The ComBack method and the hash compaction method
both store the full state descriptor for those states that are in the waiting set,
but the ComBack method additionally stores the state number of each state in
the waiting set which implies that the ComBack method uses �log2 |reach(sI)|	
more bits per state in the waiting set. In reality, we will not know |reach(sI)|
in advance, and we will therefore use a machine word (w bits) for storing state
numbers. If we furthermore assume that we store each transition using a machine
word and use a hash function generating compressed state descriptors of size
wH = w, we use a total of 5 ·w bits or 5 machine words per state, corresponding
to 20 bytes on a 32-bit architecture.

Time Analysis. Let us now consider the additional time used by the ComBack
algorithm for reconstruction of full state descriptors. Let ĥi = {s1, s2, . . . , sn}
denote the states that are mapped to given compressed state descriptor hi and
assume that they are discovered in this order. The first state s1 mapped to hi

will not result in a state reconstruction, but when state sj is discovered the first
time it will cause a reconstruction of the states s1, s2, . . . sj−1. This means that
the number of reconstructions caused by the first discovery of each of the states
is given by:

�|ĥi|
j=1 (j − 1) = |ĥi|·(|ĥi|−1)

2

Any additional input edge of an already discovered state mapped to hi will in
worst-case cause all other discovered states to be regenerated. In the worst case,

The ComBack Method – Extending Hash Compaction with Backtracking 455

the additional input edges are discovered after all |ĥi| states have been discovered
for the first time. Let in(s) denote the number of input edges for a state s. The
number of reconstructions caused by additional input edges is then given by:

|ĥi| ·
�

sj∈ĥi
(in(sj) − 1)

This means that the total number of state reconstructions for a given compressed
state descriptor hi is given by:

|ĥi|·(|ĥi|−1)
2 + |ĥi| ·

�
sj∈ĥi

(in(sj) − 1) = 1
2 |ĥi|

2 − |ĥi|
2 + |ĥi| ·

�
sj∈ĥi

in(sj) − |ĥi|
2

= − 1
2 |ĥi|

2 − |ĥi|
2 + |ĥi| ·

�
sj∈ĥi

in (sj)

≤ |ĥi| ·
�

sj∈ĥi
in (sj)

Let Ĥ = { H(s) | s ∈ reach(sI) } denote the set of compressed state descriptors
for the set of reachable states. The number of reconstructions used for the entire
state space exploration can be then be approximated by:

�
hi∈Ĥ |ĥi| ·

�
sj∈ĥi

in (sj) ≤
�

hi∈Ĥ

�
maxhk∈Ĥ |hk| ·

�
sj∈ĥi

in (sj)
�

= maxhk∈Ĥ |ĥk| ·
�

hi∈Ĥ

�
sj∈ĥi

in (sj)

= maxhk∈Ĥ |ĥk| ·
�

s∈reach(sI) in (sj)

If we assume that we are using a good hash function for computing the com-
pressed state descriptors, then |ĥi| will in practice be small (at most 2 or 3). This
means that the total number of state reconstructions will be close to the sum of
the in-degrees of all reachable states which is equal to number of edges in the full
state space. A poor hash function will cause many state reconstructions which
in turn will seriously affect the run-time performance of the algorithm. In Sect. 6
we will show how to obtain a good hash function in the context of CP-nets. If
the backedge table is implemented as an array, we get a constant look-up time,
and a state can be reconstructed in time proportional to the length of the path.

The above is summarised in the following theorem where {0, 1}wH denotes
the set of bit strings of length wH .

Theorem 1. Let S = (S, T, Δ, sI) be a labelled transition system and H : S →
{0, 1}wH be a hash function. The ComBack algorithm in Algorithm 2 terminates
after having explored all reachable states of S exactly once. The elements in the
state table and the backedge table can be represented using:

|reach(sI)| · (wH + 3 · �log2 |reach(sI)|� + �log2 |T |�) bits

The total number of state reconstructions during exploration is bounded by:

maxhk∈Ĥ |ĥk| ·
�

s∈reach(sI) in (sj)

5 Variants and Extensions

In this section, we sketch several variants of the basic ComBack algorithm. Vari-
ants 1 and 2 are aimed at reducing time usage while Variants 3 and 4 are aimed

456 M. Westergaard et al.

at reducing memory usage. Variant 5 shows how the ComBack method can be
used for modelling languages with non-deterministic transitions.

Variant 1: Path Optimisation. The amount of time used on reconstruction
of a state s is proportional to the length of the occurrence sequence leading to
s stored in the backedge table. If the state space is constructed in a breadth-
first order, the backedge table automatically contains the shortest occurrence
sequences for reconstruction of states. This is not the case, e.g., when using
depth-first exploration. When the state space is not explored breadth-first, it is
therefore preferable to keep the occurrence sequences in the backedge table short.
As an example consider Fig. 4. The occurrence sequences stored in the backedge
table for s4 (state number 5) is s1

a−→ s2
a−→ s3

a−→ s4, which is of length 3. A
shorter path s1

b−→ s6
b−→ s4 has however been found when s4 was re-discovered

from s6. When re-discovering s4 from s6, it is therefore beneficial to replace the
backedge (4, a) stored for s4 to (3, b) such that the shorter occurrence sequence
s1

b−→ s6
b−→ s4 is stored in the backedge table. It is easy to modify the algorithm

to make such simple path optimisations by storing the depth of each state in the
waiting set along with the full state descriptor and state number. The depth of a
state s stored in the waiting set is the length of the occurrence sequence through
which s was explored. Whenever a state s is removed from the waiting set in
line 7 of Algorithm 2, we obtain the depth d of s. By incrementing d by one, we
obtain the depth of each successor state s′ of s. If the Reconstruct procedure
(see lines 24–30 in Algorithm 2) reconstructs s′ based on the backedge table
using an occurrence sequences of length greater than d + 1, then the backedge
stored for s′ should be changed to point to the state number of s since going via
s results in a shorter occurrence sequence. It is easy to see that the above path
optimisation shortens the occurrence sequences stored in the backedge table, but
it does not necessary yield the shortest occurrence sequences.

Variant 2: Caching of Full State Descriptors. Another possibility of reduc-
ing the time spent on state reconstruction is to maintain a small cache of some
full state descriptors for the visited states. As an example, consider Fig. 4 and
assume that we have cached state s3 (with state number 4) during exploration.
Then we would not need to do backtracking for state number 4 when we generate
state s5 – we can immediately see that even though states s3 and s5 both have
the compressed state descriptor h3, the cached full state descriptor for s3 is not
the same as the full state descriptor for s5. Caching s3 also yields an optimisa-
tion when we generate state s4 (with state number 5) when processing s6. In
this case we would not have to backtrack all the way back to the initial state,
but as soon as we encounter state number 4 in the backtracking process we can
obtain the full state descriptor for s3 (since it is cached), and it suffices to exe-
cute the occurrence sequence s3

a−→ s4 to reconstruct the full state descriptor for
s4. This shows that caching also optimises state reconstruction for non-cached
states. Another way to further optimise backtracking is to re-order the states
in the collision lists according to some heuristics that attempt to predict which

The ComBack Method – Extending Hash Compaction with Backtracking 457

state is most likely to be re-visited. A simple heuristic is to move a state number
to the front of the collision list every time we re-encounter it.

Variant 3: Backwards State Reconstruction. Some modelling languages,
including PT-nets and CP-nets, allow transitions to be executed backwards, i.e.
we can obtain a function Δ−1 such that Δ−1(s′, t) = s ⇐⇒ (s, t, s′) ∈ Δ. This
can be used to execute occurrence sequences from the backedge table backwards,
starting from the full state descriptor of a newly generated state s′, in order to
determine whether s′ has already been visited. This has two benefits. Firstly, we
do not need to store the occurrence sequence obtained from the backedge table
in memory, but can just iteratively look up a backedge in the backedge table and
transform the current state using Δ−1. Secondly, the backtracking process may
stop early if we encounter an invalid state. What qualifies as an invalid state
depends on the modelling formalism. A simple implementation for PT-nets and
CP-nets is to consider states to be invalid if there is a negative amount of tokens
on a place (which may happen when transitions are executed backwards).

Variant 4: Reconstruction of Waiting Set States. In the basic ComBack
algorithm we store the full state descriptors for the states in the waiting set. This
may take up a considerable amount of memory. It can be observed that we do
not actually need to store the full state descriptor for states in the waiting set. It
suffices to store the state number as the full state descriptor can be reconstructed
from the state number and the backedge table when the state number is selected
from the waiting set. This reduces memory usage at the expense of having to
make up to |reach(sI)| extra reconstructions of states. We can alleviate this,
however, if we do depth-first exploration and cache at least the last state that
was processed.

Variant 5: Non-deterministic Transitions. For modelling languages with
non-deterministic transitions we may have (s, t, s′) ∈ Δ ∧ (s, t, s′′) ∈ Δ such
that s′ = s′′. This means that we may not have a single unique state when
executing occurrence sequences obtained from the backedge table, and a state
reconstruction procedure is required that operates on sets of states. Consider
the reconstruction of a visited state with number n. From the backedge table we
obtain (as before) a sequence of backedges (nm, tm) · · · (ni, ti) · · · (n2, t2)(n1, t1)
where n1 = 1 (the initial state). In the i’th step of the reconstruction process
when considering the backedge (ni, ti), now have a set of states S1 containing the
states that can be reached by executing the transition sequence t1t2ti−1 starting
in the initial state. From this set we obtain a new set of states S2 which is the
set of states obtained by executing ti in those states of S1 where ti is enabled.
To reduce the size of the set S2 we observe that S2 should only contain those
states that has the same compressed state descriptor as state number ni+1. The
compressed state descriptor for state number ni+1 can be obtained from the
state table. With a good hash function H , this is expected to keep the size of
the sets of states considered during state reconstruction small.

Revised Matches and Reconstruct procedures for Variant 5 are shown
in Algorithm 3. The Reconstruct procedure is changed to return a set of

458 M. Westergaard et al.

Algorithm 3. Matches and Reconstruct procedures for Variant 5
1: proc Matches(n, s) is
2: return s ∈ Reconstruct(n)
3:
4: proc Reconstruct(n) is
5: if n = 1 then
6: return {sI}
7: else
8: (n′, t) ← BackEdgeTable.Lookup(n)
9: S1 ← Reconstruct(n′)

10: S2 ← {s2 ∈ S | ∃s1 ∈ S1 : (s1, t, s2) ∈ Δ}
11: S3 ← {s2 ∈ S2 | n ∈ StateTable.Lookup(H(s2))}
12: return S3

possible states matching the state number n, so Matches is changed to check
if s is among those (line 2). The only state corresponding to state number 1 is
the initial state (line 6). In line 8 we look up the number of a predecessor state
in the backedge table and recursively reconstruct all states that can match that
state (line 9). Then we calculate all possible successors of those states (line 10).
After that we check that the state number we are looking for, n, is actually in
the collision list of the compressed state descriptor of all calculated successors
(line 11), and finally return the result. The algorithm will work without the
weeding of states in line 11, but at the expense of considering larger state sets.

6 Experimental Results

A prototype of the basic algorithm as described in Sects. 3 and 4 has been
implemented in CPN Tools [18] which supports construction and analysis of
CPN models [11]. The algorithm is implemented in Standard ML of New Jersey
(SML/NJ) [23] version 110.60.

The StateTable is implemented as a hash mapping (using lists for handling
collisions) and the BackEdgeTable is implemented as a dynamic extensible
array. This ensures that we can make lookups and insertions in (at least amor-
tized) constant time. The collision list is implemented using SML/NJ’s built-in
list data type, which is a linked list (rather than an array with a length). A
more efficient implementation of the StateTable could be obtained using very
tight hashing [5]. This would allow us to remove some redundant bits from the
compressed state descriptor. We have implemented both depth-first exploration
(DFS) and breadth-first exploration (BFS).

The compressed state descriptors calculated by the hash function as well as
the state numbers are 31-bit unsigned integers as SML/NJ uses the 32nd bit for
garbage collection. The hash function used is defined inductively on the state of
the CPN model. In CP-nets, a state of the system is a marking of a set of places .
Each marking is a multi-set over a given type. We use a standard hash function
for each type. We extend this hash function to multi-sets by using a combinator

The ComBack Method – Extending Hash Compaction with Backtracking 459

function, which takes two hash values and returns a new hash value. We extend
the hash functions on markings of places to a hash function of the entire model
by using the combinator function on the place hash functions.

We also implemented caching of full state descriptors as explained in Sect. 5.
The caching strategy used is simple: we use a hash mapping from state numbers
to full state descriptors, which does not account for collisions of hash values.
That way, if we allocate a hash mapping of, say, size 1000, we can store at most
1000 full state descriptors in the cache. We have not implemented re-ordering of
states in the collision lists, as the collision lists have length at most 2 (with two
exceptions) for all our examples.

We use a test-suite consisting of three kinds of models: small examples, medium-
sized examples and real-life applications. In the first category, we have three mod-
els: a model of the dining philosophers system (DP), a model of replicating
database managers (DB), and a model of a stop-and-wait network protocol (SW).
In the second category, we have a model of a telephone system (TS). In the last
category, we have a model of a protocol (ERDP) for distributing network prefixes
to gateways in a network consisting of standard wired networks and wireless mo-
bile ad-hoc networks [14]. All of the models are parametrised: DP by the number
of philosophers, DB by the number of database managers, SW by the number of
packets transmitted and the capacity of the network, TS by the number of tele-
phones, and ERDP by the number of available prefixes and the capacity of the
network. We will denote each model by its name and its parameter(s), e.g. DP22
denotes DP with 22 philosophers and ERDP6,2 denotes the ERDP protocol with
six prefixes and a network capacity of two.

We have evaluated the performance of the ComBack method without cache,
denoted by ComBack, and with cache of size n, denoted ComBack n. We have
compared the ComBack method with implementations of basic hash compaction
[27], bit-state hashing [8] by means of double hashing [4] which uses a linear
combination of two hash functions to compute, in this case, 15 compressed state
descriptors. Instead of storing the compressed state descriptors, like hash com-
paction, bit-state hashing uses the values to set bits in a bit-array. Finally, we
compare the ComBack method to standard state space exploration of the full
state space using a hash table for storing the full state descriptors. For each
model, we have measured how much memory and how much CPU time was used
to conduct the state space exploration. Memory is measured by performing a
full garbage collection and measuring the size of the heap. This is done every 0.5
second or 40 states, whichever comes last. As garbage collection takes time, the
CPU time used is measured independently. We have measured the time three
times and used the average as the result.

Table 1 shows the results of the experiments. For each model (column 1) and
each exploration method (column 2), we show the number of nodes (states) and
arcs explored (columns 3 and 4). We also show the CPU time spent (in seconds)
and the amount of space (memory) used (in mega-bytes) for a depth-first tra-
versal (DFS) and a breadth-first traversal (BFS) of the state space (columns 5,
7, 10, and 12). In addition we show how much time and memory is used relative

460 M. Westergaard et al.

to traversal using a standard exploration using DFS (columns 6, 8, 11, and 13)
and how much memory (in bytes) is used per state (columns 9 and 14).

We note that for each model, independent of the reduction technique, either
DFS performs better memory-wise than BFS or vice versa. For the more realistic
examples, TS and ERDP, DFS is slower than BFS. This is due to the fact that
the models resemble real systems and have more complex behaviour, which leads
to very long occurrence sequences in the backedge table, and thus impacts the
performance of the ComBack method. If we instrument the ComBack method
with even a small cache when using DFS, or if we use BFS, processing is much
faster for realistic examples. We see that the ComBack method uses quite a
bit more memory than the 5 machine words predicted in the previous section.
One cause for this is that the calculation in Sect. 4 did not take the Wait-

ingSet into account and only considered the elements of the state table and
the backedge table, not the tables themselves. Furthermore, SML is not very
memory-efficient, doubling usage. We also note that the standard exploration as
well as the ComBack method using BFS were not able to complete due to lack

Table 1. Experimental results

m
od

el

m
et
ho

d

no
de

s
ar
cs

DFS BFS

time space time space
sec % Mb % /state sec % Mb % /state

D
P
2
2

ComBack 39604 481625 2791 10337 23.0 97 608 59 219 9.8 42 260
ComBack 100 39604 481625 800 2963 23.0 98 610 56 207 9.9 42 261
ComBack 1000 39604 481625 98 363 23.6 100 625 57 211 10.6 45 281
Hash compaction 39603 481609 25 93 20.8 88 550 26 96 8.4 35 222
Bit-state 39604 481609 28 104 32.0 135 846 29 107 20.0 85 531
Standard 39604 481625 27 100 23.6 100 625 27 100 14.3 61 380

D
B
9

ComBack 59051 314947 60 214 4.5 10 80 63 225 11.9 28 212
ComBack 100 59051 314947 50 178 4.7 11 83 51 182 12.1 28 214
ComBack 1000 59051 314947 48 171 5.5 13 98 44 157 12.9 30 229
Hash compaction 59049 314937 25 89 1.4 3 25 27 96 10.1 23 179
Bit-state 59051 314947 29 104 12.3 28 218 33 118 21.3 49 379
Standard 59051 314947 28 100 43.3 100 769 28 100 43.4 100 770

D
B
1
0

ComBack 196832 1181001 286 44 15.4 9 82 307 48 43.1 25 230
ComBack 100 196832 1181001 247 38 15.6 9 83 264 41 43.3 25 231
ComBack 1000 196832 1181001 240 37 16.6 10 89 250 39 44.4 26 236
Hash compaction 196798 1180790 118 18 4.9 3 26 133 21 36.8 21 196
Bit-state 196832 1181001 138 21 12.3 7 66 152 24 46.3 27 247
Standard 196832 1181001 643 100 174.0 100 927 693 106 174.0 100 927

S
W

7
,4

ComBack 215196 1242386 115 319 17.5 41 85 115 319 20.1 47 98
ComBack 100 215196 1242386 68 189 17.6 41 86 100 278 20.2 47 98
ComBack 1000 215196 1242386 64 178 17.9 42 87 93 258 20.6 48 100
Hash compaction 214569 1238803 33 92 5.2 12 25 37 103 9.8 23 48
Bit-state 215196 1242386 41 114 12.3 28 60 46 128 18.3 43 89
Standard 215196 1242386 36 100 43.0 100 210 40 100 43.1 100 210

T
S
5

ComBack 107648 1017490 3302 6115 51.4 84 500 103 191 17.6 29 172
ComBack 100 107648 1017490 933 1728 51.4 83 501 102 189 17.7 29 172
ComBack 1000 107648 1017490 207 383 51.9 85 506 107 198 18.4 30 180
Hash compaction 107647 1017474 50 93 45.7 75 445 52 96 14.7 24 143
Bit-state 107648 1017490 58 107 55.4 90 540 62 115 25.8 42 251
Standard 107648 1017490 54 100 61.2 100 596 57 106 45.0 73 438

E
R

D
P
6
,2

ComBack 207003 1199703 986 865 29.1 33 147 867 761 35.7 41 181
ComBack 100 207003 1199703 259 227 29.0 33 147 481 422 35.8 41 181
ComBack 1000 207003 1199703 205 180 29.6 34 150 402 353 36.4 42 184
Hash compaction 206921 1199200 106 93 5.1 6 26 114 100 18.6 21 94
Bit-state 207003 1199703 123 108 12.3 14 62 135 118 27.3 31 138
Standard 207003 1199703 114 100 87.4 100 443 131 115 88.5 101 449

E
R

D
P
6
,3

ComBack 4277126 31021101 42711 - 572.3 - 140 65354 - 708.1 - 174
ComBack 100 4277126 31021101 18043 - 571.2 - 140 - - - - -
ComBack 1000 4277126 31021101 23084 - 571.7 - 140 - - - - -
Hash compaction 4270926 30975030 3341 - 113.5 - 28 20512 - 403.6 - 99
Bit-state 4277125 31021091 3732 - 12.1 - 3 17481 - 347.9 - 85
Standard - - - - - - - - - - - -

The ComBack Method – Extending Hash Compaction with Backtracking 461

of memory for the ERDP6,3 model. The hash compaction bit-state hashing were
also not able to explore all states for this example (as can be seen in the nodes
column of Table 1). This means we are comparing methods guaranteeing full
coverage with methods that do not, so while the hash compaction and bit-state
hashing methods seem to perform well, they do so at a cost.

Figure 5 shows charts depicting memory and time usage relative to stan-
dard DFS exploration (i.e. one chart for columns 5 and 7 and another chart
for columns 10 and 12). These charts allow us to better understand how the
different exploration methods perform compared to each other, independent of
the example. We see that the values fall into 7 rectangles corresponding to 6
different exploration methods and an abnormal experiment. Rectangle 1: stan-
dard exploration; all results are near 100% on both axes, showing that when we
store full state descriptors in a hash table, it does not matter whether we use
DFS or BFS. Rectangle 2: hash compaction; all are near 100% on the time axis
and between 2% and 100% (DFS) or 20% and 40% (BFS) on the memory axis,
showing that hash compaction uses as much time as storing the full state de-
scriptors, but significantly less space. Rectangle 3: bit-state hashing; all are near
100% time-wise, but slightly higher than 1 and 2 (this is probably because we
have to calculate two hash values instead of just one). All range between 15%
and 150% memory-wise. The bit-state hashing method consistently uses 12.5
mega-bytes plus the size of the waiting set, so it performs well memory-wise on
models with large state spaces, but performs poorly on models with small state
spaces. This means that memory optimisations are possible, but customisation
is required by the user. All the show models are reasonable large, leading to rea-
sonable performance of bit-state hashing. Rectangle 4: ComBack without cache;
all are above 150% time-wise and between 10% and 100% (DFS) or 25% and 40%
(BFS) memory-wise. Time is also better bounded in the BFS results. This indi-
cates that ComBack without cache yields a reduction (it is never above 100%),
and when using BFS we have better control of the time and memory used. DFS
makes it possible to save more memory, but can be very costly time-wise, and
sometimes we do not save any memory at all (e.g. in the Dining philosophers
example, where we can end up with most of the state space in the waiting set).
Rectangles 5+6: ComBack with cache; these use slightly more memory but less
time than 4, in particular in the DFS case. More cache yields more memory and
less time used, but the differences are not that large, and even a small cache
yields great optimizations in time compared to the ComBack method with no
cache at all. Rectangle 7: DB10; these points fall outside of all the other boxes.
Inspection of the data in Table 1 shows that the DB10 example has irregular
behaviour, as exploration using the standard exploration is slow as a full state
descriptor for this model is large, and thus the SML/NJ garbage collector is in-
voked often. This yields a performance penalty and causes all other experiments,
as they are relative to the standard exploration, to fall outside the other boxes.
ERDP6,3 is not shown as the standard exploration was unable to terminate.

All of the shown experiments have been performed using a hash-function
generating 31-bit compressed state descriptors. We have also tested the method

462 M. Westergaard et al.

1

7

6

5

4

3
2

 10
 1000

lo
g(

tim
e

%
)

log(memory %)

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

 10 1

100000

 10000

 1000

 100

 100

1

7

6

5

4

3

2

 10

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

lo
g(

tim
e

%
)

 1000 100 10

1000

 100

log(memory %)

Fig. 5. Time and memory usage for the various reduction techniques using DFS ex-
ploration (top) and BFS exploration (bottom). Values are relative to corresponding
values for standard depth-first exploration.

using a hash function generating 62-bit compressed state descriptors, but have
not shown those results, as the time usage is the same but more memory is
consumed, as the 31-bit hash function causes few collisions. We have verified the
quality of the hash-function by calculating the lengths of the collision lists for
all examples. The worst case is example SW7,4, where there are 214009 collision
lists of length 1, 592 lists of length 2 and 1 list of length 3, so 99.7 % of the
collision lists have the minimum length. It also means that hash compaction
misses at least 1 · 592 + 2 · 1 = 594 states due to hash collisions.

7 Conclusions and Future Work

In this paper we have presented the ComBack method for alleviating the state
explosion problem. The basic idea of the method is to augment the hash com-
paction method with a backedge table that makes it possible to reconstruct full
state descriptors and ensure full coverage of the state space. We have made a

The ComBack Method – Extending Hash Compaction with Backtracking 463

prototype implementation of the method in CPN Tools and our experimental
results demonstrate that the method (as expected) uses more time and memory
than hash compaction, but less memory than ordinary state space exploration.

The advantage of the ComBack method is that it guarantees full coverage of
the state space, unlike related methods such as hash compaction and bit-state
hashing. From a practical viewpoint one could therefore use methods such as
hash compaction in early phases of a verification process to discover errors, and
when no further errors can be detected, the ComBack method could be used for
formal verification of properties.

In this paper we have not discussed verification of properties using the ComBack
method. It can be observed that the method explores the full state space without
mandating a particular exploration order. Furthermore, the state reconstruction
that occurs when checking whether a state has already been visited can be made
fully transparent to the verification algorithm being applied in conjunction with
the state space exploration. This makes the method compatible with most on-the-
fly verification algorithms (e.g., verification of safety properties and on-the-fly LTL
model checking [26]). The ComBack method is also compatible with off-line verifi-
cation algorithms such as CTL model checking [15] since the backedge table allows
the reconstruction of any of the full state descriptors which in turn allows the for-
ward edges between states to be reconstructed. Alternatively, we can simple store
the forward edges in an additional table during state space exploration.

The ComBack method opens up several areas for future work. One topic is the
integration of verification algorithms as sketched in the previous paragraph.Future
work also includes implementation of the additional variants presented in Sect. 5,
and the development and evaluation of caching strategies and organisation of colli-
sion lists to reduce the time spent on state reconstruction. It would also be interest-
ing to compare the ComBack method to other complete techniques such as state
caching [6]. Another important topic is to explore the combination of the Com-
Back method with other reduction methods. For this purpose, partial-order meth-
ods [17, 24] appear particularly promising as they reduce the in-degree of states
which in turn will lead to a reduction in the number of state reconstructions.

References

1. Behrmann, G., Larsen, K.G., Pelánek, R.: To Store or Not to Store. In: Proc. of
CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Heidelberg (2003)

2. Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

3. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001.
LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)

4. Dillinger, P.C., Manolios, P.: Fast and accurate Bitstate Verification for SPIN.
In: Graf, S., Mounier, L. (eds.) Proc. of SPIN 2004. LNCS, vol. 2989, Springer,
Heidelberg (2004)

5. Geldenhuys, J., Valmari, A.: A Nearly Memory-Optimal Data Structure for Sets
and Mappings. In: Ball, T., Rajamani, S.K. (eds.) Proc. of SPIN 2003. LNCS,
vol. 2648, pp. 136–150. Springer, Heidelberg (2003)

464 M. Westergaard et al.

6. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-Space Caching Revisited. Formal
Methods in System Design 7(3), 227–241 (1995)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

8. Holzmann, G.J.: An Analysis of Bitstate Hashing. Formal Methods in System
Design 13, 289–307 (1998)

9. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, London (2004)
10. Ip, C.N., Dill, D.L.: Better Verification Through Symmetry. Formal Methods in

System Design, vol. 9 (1996)
11. Jensen, K.: Coloured Petri Nets—Basic Concepts, Analysis Methods and Practical

Use. In: Basic Concepts, vol. 1, Springer, Heidelberg (1992)
12. Jensen, K.: Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal

Methods in System Design, vol. 9 (1996)
13. Kam, T.: State Minimization of Finite State Machines using Implicit Techniques.

PhD thesis, University of California at Berkeley (1995)
14. Kristensen, L.M., Jensen, K.: Specification and Validation of an Edge Router Dis-

covery Protocol for Mobile Ad-hoc Networks. In: Ehrig, H., Damm, W., Desel, J.,
Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) Proc. of INT’04.
LNCS, vol. 3147, pp. 248–269. Springer, Heidelberg (2004)

15. Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to
Branching-Time Model Checking. Journal of the ACM 47(2), 312–360 (2000)

16. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
17. Peled, D.: All for One, One for All: On Model Checking Using Representatives. In:

Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

18. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E. (eds.)
ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)

19. Reisig, W.: Petri Nets. In: EATCS Monographs on Theoretical Computer Science,
vol. 4, Springer, Heidelberg (1985)

20. Schmidt, K.: LoLA - A Low Level Analyser . In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

21. Stern, U., Dill, D.L.: Improved Probabilistic Verification by Hash Compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995)

22. Stern, U., Dill, D.L.: Using Magnetic Disk instead of Main Memory in the Murphi
Verifier. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

23. Ullman, J.D.: Elements of ML Programming. Prentice-Hall, Englewood Cliffs (1998)
24. Valmari, A.: Stubborn Sets for Reduced State Space Generation. In: Advances in

Petri Nets ’90. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1990)
25. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)

Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 429–528. Springer,
Heidelberg (1998)

26. Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: Proc. of IEEE Symposium on Logic in Computer Science, pp.
322–331 (1986)

27. Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

Computing Minimal Elements of Upward-Closed

Sets for Petri Nets

Hsu-Chun Yen� and Chien-Liang Chen

Dept. of Electrical Engineering, National Taiwan University
Taipei, Taiwan 106, Republic of China

yen@cc.ee.ntu.edu.tw

Abstract. Upward-closed sets of integer vectors enjoy the merit of hav-
ing a finite number of minimal elements, which is behind the decidability
of a number of Petri net related problems. In general, however, such a
finite set of minimal elements may not be effectively computable. In this
paper, we develop a unified strategy for computing the sizes of the min-
imal elements of certain upward-closed sets associated with Petri nets.
Our approach can be regarded as a refinement of a previous work by Valk
and Jantzen (in which a necessary and sufficient condition for effective
computability of the set was given), in the sense that complexity bounds
now become available provided that a bound can be placed on the size
of a witness for a key query. The sizes of several upward-closed sets that
arise in the theory of Petri nets as well as in backward-reachability analy-
sis in automated verification are derived in this paper, improving upon
previous decidability results shown in the literature.

1 Introduction

A set U over k-dimensional vectors of natural numbers is called upward-closed (or
right-closed) if ∀x ∈ U, y ≥ x =⇒ y ∈ U . It is well known that an upward-closed
set is completely characterized by its minimal elements, which always form a
finite set. Aside from being of interest mathematically, evidence has suggested
that upward-closed sets play a key role in a number of decidability results in
automated verification of infinite state systems [1,4,6,13]. In the analysis of Petri
nets, the notion of upward-closed sets is closely related to the so-called property
of monotonicity which serves as the foundation for many decision procedures for
Petri net problems. What the monotonicity property says is that if a sequence
σ of transitions of a Petri net is executable from a marking (i.e., configuration)
μ ∈ N

k, then the same sequence is legitimate at any marking greater than or
equal to μ. That is, all the markings enabling σ form an upward-closed set.

In spite of the fact that the set of all the minimal elements of an upward-
closed set is always finite, such a set may not be effectively computable in gen-
eral. There are, however, certain interesting upward-closed sets for which their

� Corresponding author. Research supported in part by ‘Excellent Research Projects
of National Taiwan University,’ 95R0062-AE00-05.

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 465–483, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

466 H.-C. Yen and C.-L. Chen

minimal elements are effectively computable. A notable example is the set of
initial markings of a Petri net from which a designated final marking is cover-
able. More recent work of [1] demonstrated decidability to compute, from a given
upward-closed set of final states, the set of states that are backward reachable
from the final states. In a practical aspect of research in upward-closed sets,
BDD-like data structures called covering sharing trees [6] have been developed
to represent in a compact way collections of upward-closed sets over numerical
domains. Subsequent experimental results [7] have further demonstrated such
symbolic representations and manipulations of upward-closed sets to be promis-
ing in performing backward reachability analysis of problems for infinite state
systems such as Petri nets.

Given the importance of upward-closed sets, it is of interest theoretically and
practically to be able to characterize the class of upward-closed sets for which
their minimal elements are computable. Along this line of research, Valk and
Jantzen ([13]) presented a sufficient and necessary condition under which the
set of minimal elements of an upward-closed set is guaranteed to be effectively
computable. Supposed U is an upward-closed set over N

k and ω is a symbol rep-
resenting something being arbitrarily large. In [13], it was shown that the set of
minimal elements of U is effectively computable iff the question ‘reg(v)∩U �= ∅?’
is decidable for every v ∈ (N∪{ω})k, where reg(v) = {x | x ∈ N

k, x ≤ v}. (More
will be Such a strategy has been successfully applied to showing computability of
a number of upward-closed sets associated with Petri nets ([13]). Note, however,
that [13] reveals no complexity bounds for the sizes of the minimal elements.
As knowing the size of minimal elements might turn out to be handy in many
cases, the following question arises naturally. If more is known about the query
‘reg(v)∩U �= ∅?’ (other than just being decidable), could the size of the minimal
elements be measured? In fact, answering the question in the affirmative is the
main contribution of this work.

Given a vector v ∈ (N ∪ ω)k, suppose ||v|| is defined to be the maximum
component (excluding ω) in v. We demonstrate that for every v, if a bound on the
size of a witness for reg(v)∩U �= ∅? (if one exists) is available, then such a bound
can be applied inductively to obtain a bound for all the minimal elements of U . In
a recent article [14], such a strategy was first used for characterizing the solution
space of a restricted class of parametric timed automata. In this paper, we move
a step further by formulating a general strategy as well as applying our unified
framework to a wide variety of Petri net problems with upward-closed solution
sets. In addition to those upward-closed sets investigated in [13] for general
Petri nets, we illustrate the usefulness of our approach in performing backward-
reachability analysis, which is a useful technique in automated verification.

Given a system S with initial state q, and a designated set of states Q,
backward-reachability analysis involves computing the set pre∗(S, Q) which con-
sists of all the states from which some state in Q is reachable, and then deciding
whether q ∈ pre∗(S, Q). Forward-reachability analysis, on the other hand, com-
putes all the states that can be reached from q to see whether the intersection
with Q is non-empty or not. In general, pre∗(S, Q) may not be computable for

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 467

infinite state systems. We show that for certain classes of Petri nets and state set
Q, pre∗(S, Q) is not only upward-closed but falls into the category to which our
unified approach can be applied. Such Petri nets include several well known sub-
classes for which reachability is characterizable by integer linear programming.
Our analysis can also be applied to the model of lossy vector addition systems
with states (VASSs) [4] to derive bounds for the backward-reachability sets. For
(conventional or lossy) VASSs, we further enhance the work of [4] by providing
complexity bounds for the so-called global model checking problem with respect
to a certain class of formulas. (In [4], such a problem was only shown to be
decidable, yet no complexity was available there.) Upward-closed sets associated
with a kind of parametric clocked Petri nets are also investigated in this paper,
serving as yet another application of our unified approach.

The remainder of this paper is organized as follows. Section 2 gives basic
definitions and notations of upward-closed sets, as well as the models of Petri
nets and vector addition systems with states. In Section 3, our unified strategy
for reasoning about the sizes of upward-closed sets is investigated. Section 4 is
devoted to applications of our strategy to various problems in Petri nets and
related models. A conclusion is given in Section 5.

2 Preliminaries

Let Z (N, resp.) be the set of all integers (nonnegative integers, resp.), and Z
k

(Nk, resp.) be the set of k-dimensional vectors of integers (nonnegative integers,
resp.). Let 0 be the zero vector. Let v(i), 1 ≤ i ≤ k, denote the i-th component
of a k-dimensional vector v. Given two vectors u and v(∈ N

k), u ≤ v if ∀1 ≤
i ≤ k, u(i) ≤ v(i), and u < v if u ≤ v and u �= v. We define the max-value of
v, denoted by ||v||, to be max{|v(i)| | 1 ≤ i ≤ k}, i.e., the absolute value of the
largest component in v. For a set of vectors V = {v1, ..., vm}, the max-value of V
(also written as ||V ||) is defined to be max{||vi|| | 1 ≤ i ≤ m}. In our subsequent
discussion, we let Nω = N ∪ {ω} (ω is a new element capturing the notion of
something being ‘arbitrarily large’). We assume the following arithmetics for ω:
(1) ∀n ∈ N, n < ω, (2) ∀n ∈ Nω, n + ω = ω − n = ω, (n + 1) × ω = ω, 0 × ω =
ω×0 = 0. We also let N

k
ω = (N∪{ω})k = {(v1, ..., vk) | vi ∈ (N∪{ω}), 1 ≤ i ≤ k}.

For a v ∈ N
k
ω, we also write ||v|| to denote max{v(i) | v(i) �= ω} (i.e., the largest

component in v excluding ω) if v �= (ω, ..., ω); ||(ω, ..., ω)|| = 1. For an element
v ∈ N

k
ω, let reg(v) = {w ∈ N

k | w ≤ v}.
A set U(⊆ N

k) is called upward-closed (or right-closed in some literature) if
∀x ∈ U , ∀y, y ≥ x =⇒ y ∈ U . An element x (∈ U) is said to be minimal if
there is no y (�= x) ∈ U such that y < x. We write min(U) to denote the set
of minimal elements of U . From Dicksons lemma, it is well-known that for each
upward-closed set U(⊆ N

k), min(U) is finite. Even so, min(U) might not be
effectively computable in general.

Given a function f , we write the k-fold composition of f as f (k) (i.e., f (k)(x) =
k

︷ ︸︸ ︷
f ◦ · · · ◦ f(x)). Given a set T , we denote by T ∗ (resp., T ω) the set of all finite

468 H.-C. Yen and C.-L. Chen

(resp., infinite) strings of symbols from T , and T + = T ∗ − {λ}, where λ is the
empty string.

A Petri net (PN, for short) is a 3-tuple P = (P, T, ϕ), where P is a finite set
of places, T is a finite set of transitions, and ϕ is a flow function ϕ : (P × T)
∪ (T × P) → N . Let k and m denote |P | (the number of places) and |T | (the
number of transitions), respectively. The k is also called the dimension of the
PN. A marking is a mapping μ : P → N . The transition vector of a transition t,
denoted by t̄, is a k-dimensional vector in Z

k, such that t̄(i) = ϕ(t, pi)−ϕ(pi, t),
and the set of transition vectors, denoted by T̄ , to be {t̄ | t ∈ T }.

A transition t ∈ T is enabled at a marking μ iff ∀p ∈ P , ϕ(p, t) ≤ μ(p). If a
transition t is enabled, it may fire and yields marking μ′ (written as μ

t→ μ′)
with μ′(p) = μ(p)−ϕ(p, t)+ϕ(t, p), ∀p ∈ P . A sequence of transitions σ = t1...tn

is a firing sequence from μ0 iff μ0
t1→ μ1

t2→ · · · tn→ μn for some markings μ1,...,μn.
(We also write ‘μ0

σ→ μn’.) We write ‘μ0
σ→’ to denote that σ is enabled and

can be fired from μ0, i.e., μ0
σ→ iff there exists a marking μ such that μ0

σ→ μ.
The notation μ0

∗→ μ is used to denote the existence of a σ ∈ T ∗ such that
μ0

σ→ μ. A marked PN is a pair ((P, T, ϕ), μ0), where (P, T, ϕ) is a PN, and μ0 is
called the initial marking. Throughout the rest of this paper, the word ‘marked’
will be omitted if it is clear from the context. By establishing an ordering on
the elements of P and T (i.e., P = {p1, ..., pk} and T = {r1, ..., rm}), we can
view a marking μ as a k-dimensional vector with its i-th component being μ(pi),
and #σ as an m-dimensional vector with its jth entry denoting the number of
occurrences of transition rj in σ. The reachability set of P with respect to μ0 is
the set R(P , μ0) = {μ | ∃σ ∈ T ∗, μ0

σ→ μ}. The reachability problem is that of,
given a marked PN (P , μ0) and a marking μ, deciding whether μ ∈ R(P , μ0).
F (P , μ0) (= {σ ∈ T ∗ | μ0

σ→}) denotes the set of all fireable sequences of
transitions in PN (P , μ0). Given a σ ∈ T ω, In(σ) denotes the set of all elements
in T that occur infinitely many times in σ.

A k-dimensional vector addition system with states (VASSs) is a 5-tuple
(v0, V, s1, S, δ), where v0 ∈ N

k is called the start vector, V (⊆ Z
k) is called

the set of addition rules, S is a finite set of states, δ(⊆ S × S × V) is the tran-
sition relation, and s1 (∈ S) is the initial state. Elements (p, q, v) of δ are called
transitions and are usually written as p → (q, v). A configuration of a VASS is a
pair (p, x) where p ∈ S and x ∈ N

k. For convenience, we write state((p, x)) = p
and val((p, x)) = x. (s1, v0) is the initial configuration. The transition p → (q, v)
can be applied to the configuration (p, x) and yields the configuration (q, x+ v),
provided that x + v ≥ 0. In this case, (q, x + v) is said to follow (p, x). Let σ0
and σt be two configurations. Then σt is said to be reachable from σ0 iff σt = σ0
or configurations σ1, ..., σt−1 such that σr+1 follows σr for r = 0, ..., t − 1. A k-
dimensional VASS is basically a k-counter machine without zero-test capabilities
(i.e., the counter machine cannot test individual counters for empty and then
acts accordingly). It is well known that PNs and VASSs are computationally
equivalent.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 469

3 A Strategy for Computing the Sizes of Minimal
Elements

It is well known that every upward-closed set over N
k has a finite number of

minimal elements. However, such a finite set may not be effectively computable
in general. In an article [13] by Valk and Jantzen, the following result was proven
which suggests a sufficient and necessary condition under which the set of min-
imal elements of an upward-closed set is effectively computable:

Theorem 1. ([13]) For each upward-closed set K(⊆ N
k), min(K) is effectively

computable iff for every v ∈ N
k
ω, the problem ‘reg(v) ∩ K �= ∅?’ is decidable.

(Recall that reg(v) = {w ∈ N
k | w ≤ v}.)

In what follows, we show that for every v ∈ N
k
ω, should we be able to compute

the size of a witness for reg(v) ∩ U �= ∅ (if one exists), then an upper bound can
be placed on the sizes of all the minimal elements.

Theorem 2. Given an upward-closed set U(⊆ N
k), if for every v ∈ N

k
ω, a

witness ŵ ∈ N
k for ‘reg(v) ∩ U �= ∅’ (if one exists) can be computed with

(i) ||ŵ|| ≤ b, for some b ∈ N when v = (ω, ..., ω),
(ii) ||ŵ|| ≤ f(||v||) when v �= (ω, ..., ω), for some monotone function f ,

then ||min(U)|| ≤ f (k−1)(b).

Proof. Given an arbitrary h, 1 ≤ h ≤ k, we show inductively that for each
m ∈ min(U), there exist h indices im1 , ..., imh

such that ∀l, 1 ≤ l ≤ h, m(iml
) ≤

f (h−1)(b).
(Induction Basis). Consider the case when h = 1. We begin with v0 =

(ω, ..., ω). Assume that w0 is a witness for reg(v0) ∩ U �= ∅, which, according
to the assumption of the theorem, satisfies ||w0|| ≤ b = f (0)(b). Let min1(U) =
min(U)\reg((b, ..., b)), i.e., those in min(U) that have at least one component
larger than b. If min1(U) = ∅, then the theorem follows since f (0)(b) becomes
a bound for ||min(U)||. Otherwise, ∀m ∈ min1(U), it must be the case that
∃i, 1 ≤ i ≤ k, m(i) < b; otherwise, m would not have been minimal since
w0 ≤ (b, ..., b). Hence, the assertion holds for h = 1, i.e., f (0)(b) is a bound for
at least one component for all the elements in min(U). See Figure 1.

(Induction Step). Assume that the assertion holds for h (< k), we now show
the case for h + 1. Consider minh(U) = min(U)\

⋃
v∈Nk,||v||≤f(h−1)(b){reg(v)},

i.e., the set of minimal elements that have at least one coordinate exceeding
f (h−1)(b). If minh(U) = ∅, the assertion holds; otherwise, take an arbitrary
m ∈ minh(U), and let im1 , ..., imh

be the indices of those components satisfying
the assertion, i.e., ∀1 ≤ j ≤ h, m(imj) ≤ f (h−1)(b). Let vm

h be such that vm
h (l) =

m(imj), if l = imj ; =ω otherwise. That is, vm
h agrees with m on coordinates

im1 , ..., imh
, and carries the value ω for the remaining coordinates. Notice that

||vm
h || ≤ f (h−1)(b). According to the assumption of the theorem, a witness wm

h

for reg(vm
h) ∩ U �= ∅ with ||wm

h || bounded by f(||vm
h ||) (≤ f(f (h−1)(b))) can

be obtained. Furthermore, wm
h (imj) ≤ m(imj), 1 ≤ j ≤ h. (Notice that m ∈

470 H.-C. Yen and C.-L. Chen

w0

m

b

b

U

Fig. 1. Induction Basis

minh(U) implies the existence of such a witness.) It must be the case that there
exists an index imh+1(�∈ {im1, ..., imh

}) such that m(imh+1) ≤ wm
h (imh+1) (≤

f(f (h−1)(b))) = f (h)(b)), since otherwise, wm
h < m – contradicting that m being

minimal. The induction step is therefore proven.

4 Some Applications

In this section, Theorem 2 is used to derive upper bounds for the minimal ele-
ments of various upward-closed sets associated with PNs and VASSs.

4.1 Petri Nets

We examine some upward-closed sets defined and discussed in [13]. Some defin-
itions from [13] are recalled first. Given a PN (P, T, ϕ), a vector μ ∈ N

k is said
to be

– T̂ -blocked, for T̂ ⊆ T , if ∀μ′ ∈ R(P , μ), ¬(∃t ∈ T̂ , μ′ t→). For the case when
T̂= T , μ is said to be a total deadlock.

– dead if F (P , μ) is finite.
– bounded if R(P , μ) is finite; otherwise, it is called unbounded.
– T̂ -continual, for T̂ ⊆ T , if there exists a σ ∈ T ω, μ

σ→ and T̂ ⊆ In(σ).

For a PN (P , μ0), consider the following four sets defined in [13]:

– NOTBLOCKED(T̂)={μ ∈ N
k | μ is not T̂ -blocked}.

– NOTDEAD={μ ∈ N
k | μ is not dead}.

– UNBOUNDED={μ ∈ N
k | μ is unbounded}.

– CONTINUAL(T̂)={μ ∈ N
k | μ is T̂ -continual}.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 471

It has been shown in [13] that for each of the above four upward-closed sets,
the ‘reg(v)∩K �= ∅?’ query of Theorem 1 is decidable; as a consequence, the set
of minimal elements is effectively computable. We now show how to use Theorem
2 to estimate the bound of the minimal elements for each of the four sets. To this
end, we show that if ‘reg(v)∩K �= ∅’, where K is any of the above four upward-
closed sets, then there is a witness whose max-value is bounded by n2d×k×logk

,
where d is a constant, n is the maximum number of tokens that can be added to
or subtracted from a place in the k-dimensional PN and n is independent of v.

Our analysis makes use of a multi-parameter version [12] of the inductive
strategy developed by Rackoff in [11] in which the complexities of the bounded-
ness and covering problems for vector addition systems (equivalently, PNs) were
developed. By a multi-parameter analysis of PNs we mean treating the dimen-
sion and the max-value of PN transition vectors as two separate parameters, as
opposed to regarding the size of the PN as the sole parameter as was the case in
[11]. (The interested reader is referred to [12] for more about the multi-parameter
approach for analyzing PNs.) By doing so, the key function f in Theorem 2 is
better estimated. Before going into details, we require the following definitions,
most of which can be found in [11]. Intuitively speaking, Rackoff’s strategy relies
on showing that if a path exhibiting unboundedness or coverability exists, then
there is a ‘short’ witness.

A generalized marking is a mapping μ : P → Z (i.e., negative coordinates
are allowed). A w ∈ Z

k is called i-bounded (resp., i-r bounded) if 0 ≤ w(j),
∀1 ≤ j ≤ i (resp. 0 ≤ w(j) ≤ r, ∀1 ≤ j ≤ i). Given a k-dimensional PN
P = (P, T, ϕ), suppose p = w1w2 · · · wl is a sequence of vectors (generalized
markings) in Z

k such that ∀j, 1 ≤ j < l, zj+1 − zj ∈ T̄ (the set of transition
vectors). Sequence p is said to be

– i-bounded (resp., i-r bounded) if every member of p is i-bounded (resp., i-r
bounded).

– i-covering with respect to v if wl(j) ≥ v(j) ∀1 ≤ j ≤ i
– self-covering (resp., ∅-self-covering) if there is a j, 1 ≤ j ≤ l such that

wj < wl (resp. wj ≤ wl).
– an i-loop if wl(j) = w1(j), ∀1 ≤ j ≤ i.

First consider the set NOTBLOCKED(T̂). It is reasonably easy to see that
a vector μ ∈ NOTBLOCKED(T̂) iff there exists a t ∈ T̂ , and a μ′ ∈ R(P , μ)
such that μ′ t→. Notice that μ′ t→ is equivalent to ∀p ∈ P, μ′(p) ≥ ϕ(p, t), which
is exactly the problem of asking whether there exists a computation from μ to
some reachable vector μ′ which covers t−, where t− ∈ N

k is defined as t−(i) =
ϕ(pi, t) ∀1 ≤ i ≤ k. The question is in fact an instance of the well-known covering
problem1 of PNs. As a result, NOTBLOCKED(T̂)=

⋃
t∈T̂ NOTBLOCKED({t})=⋃

t∈T̂ {μ | t− can be covered in PN (P , μ)}. To bound the size of
NOTBLOCKED(T̂), it suffices to find a bound for the minimal elements of
each of the constituent NOTBLOCKED({t}).
1 The covering problem is that of, given a PN (P , μ0) and a marking μ, deciding

whether there is a reachable marking μ′ such that μ′ ≥ μ (i.e., μ′ covers μ).

472 H.-C. Yen and C.-L. Chen

Lemma 1. Given a k-dimensional PN (P, T, ϕ), a transition t ∈ T , a z ∈ N
k
ω,

reg(z)∩ NOTBLOCKED({t}) �= ∅ iff there is a witness z′ with ||z′|| ≤ n2d×k×logk

,
where n = ||T̄ || and d is a constant. (Note that the bound is independent of z).

Proof. (Sketch) The proof tailors the inductive approach used in [11] for the
covering problem of PNs to incorporating a multi-parameter analysis.

As was done in [11], for each w ∈ Z
k, let s(i, w) be the length of the shortest

i-bounded i-covering path (starting from w) with respect to t, if at least one such
path exists; otherwise, let s(i, w) = 0. We define h(i) = max{s(i, w) | w ∈ N

k}.
It is important to note, as pointed out in [11], that h(i) depends on t and T̄ ,
and is independent of the starting vector from which the path of the PN begins.
Let n be ||T̄ ||, which is an upper bound on the number of tokens that can be
removed from a place as a result of firing a single PN transition. Lemmas 3.3
and 3.4 of [11] show that

h(0) = 1 and h(i + 1) ≤ (n × h(i))i+1 + h(i), for 1 ≤ i < k.

In order to be self-contained, a proof sketch of the above is given below. h(0) = 1
is trivial (as indicated in Lemma 3.3 of [11]). The key in Rackoff’s proof relies
on finding a bound for h(i) inductively, where i = 1, 2, ..., k.

Let p : v1 · · · vm be any (i + 1)-covering path. Consider two cases:

– Case 1: Path p is (i+1)− (n×h(i))-bounded. Then there exists an (i+1)−
(n×h(i))-bounded (i+1)-covering path with no two vectors agree on all the
first i + 1 coordinates. Hence, the length of such a path is ≤ (n × h(i))i+1.

– Case 2: Otherwise, let vh be the first vector along p that is not (n × h(i))
bounded. By chopping off (i + 1)-loops, the prefix v1...vh can be shortened
if necessary (as in Case 1) to make the length ≤ (n × h(i))i+1. With no loss
of generality, we assume the (i + 1)st position to be the coordinate whose
value exceeds n × h(i) at vh. Recalling the definition of h(i), there is an i-
covering path, say l, of length ≤ h(i) from vh. By appending l to v1...vh (i.e.,
replacing the original suffix path vh...vm by l), the new path is an (i + 1)-
bounded (i + 1)-covering path, because the value of the (i + 1)st coordinate
exceeds n × h(i) and the path l (of length bounded by ≤ h(i)) can at most
subtract (n×h(i)) from coordinate i+1. (Note that the application of a PN
transition can subtract at most n from a given coordinate.) Note that the
length of the new path is bounded by (n × h(i))i+1 + h(i).

By solving the recurrence relation h(0) = 1 and h(i+1) ≤ (n×h(i))i+1 +h(i),
for 1 ≤ i < k, we have h(k) ≤ n2c×k×logk

, for some constant c. What this bound
means is that regardless of the initial vector, if v can be covered then there
is a covering path of length bounded by n2c×k×logk

. Since a path of length ≤
n2c×k×logk

can at most subtract ||T̄ ||×n2c×k×logk

from any component, the witness
||z′|| is therefore bounded by (||t̄|| + ||T̄ || × n2c×k×logk

) ≤ n2d×k×logk

, for some
constant d.

Now consider the set UNBOUNDED.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 473

Lemma 2. Given a k-dimensional PN (P, T, ϕ), a z ∈ N
k
ω,

reg(z)∩ UNBOUNDED �= ∅ iff there is a witness z′ with ||z′|| ≤ n2d×k×logk

,
where n = ||T̄ || and d is a constant. (Note that the bound is independent of z).

Proof. (Sketch) We follow some of the results of a multi-parameter analysis of
the boundedness problem for Petri nets in [12], which can be regarded as a
refinement of the respective work in [11].

For each w ∈ Z
k, let m(i, w) be the length of the shortest i-bounded self-

covering path (starting from w), if at least one such path exists; otherwise,
let m(i, w) = 0. We define g(i) = max{m(i, w) | w ∈ Z

k}. Note that g(i) is
independent of the initial vector of the PN. Let n be ||T̄ ||. Lemmas 2.3 and 2.4
of [12] show that

g(0) ≤ nck, and g(i + 1) ≤ (n2 × g(i))kc

, for 1 ≤ i < k and some constant c.

By recursively applying the above, g(k) ≤ n2c′×k×logk

, for some constant c′.
The derivation of the above recurrence relation is similar to that given in the
proof of our previous lemma. What this bound means is that regardless of the
initial vector, the PN is unbounded iff there is a self-covering path of length
bounded by n2c′×k×logk

. Since a path of length ≤ n2c′×k×logk

can at most subtract
n × n2c′×k×logk

from any place, ||z′|| is therefore bounded by (n × n2c′×k×logk

) ≤
n2d×k×logk

, for some constant d.

We now turn our attention to the set NOTDEAD. It is easy to see that
NOTDEAD = {μ | μ

δ→ μ′ σ→ μ′′, μ′ ≤ μ′′, for some δ ∈ T ∗, σ ∈ T +}. By
noting that the condition ‘μ δ→ μ′ σ→ μ′′, μ′ ≤ μ′′’ is equivalent to having a
k-bounded ∅-self-covering path from μ, an argument very similar to the UN-
BOUNDED case is sufficient to show the following:

Lemma 3. Given a k-dimensional PN (P, T, ϕ), a z ∈ N
k
ω, reg(z)∩ NOTDEAD

�= ∅ iff there is a witness z′ with ||z′|| ≤ n2d×k×logk

, where n = ||T̄ || and d is a
constant.

For the set CONTINUAL(T̂), we have the following:

Lemma 4. Given a k-dimensional PN (P, T, ϕ), a subset T̂ ⊆ T , a z ∈ N
k
ω,

reg(z)∩ CONTINUAL(T̂) �= ∅ iff there is a witness z′ with ||z′|| ≤ n2d×k×logk

,
where n = ||T̄ || and d is a constant.

Proof. (Sketch) The proof is in principle similar to that of Lemma 2. The thing
that has to be taken care of is to ensure that the ∅-self-covering path uses
all the transitions in T̂ . We define a path z1, z2, ..., zp to be T̂ -self-covering
if there exists a 1 ≤ j < p such that zj ≤ zp and all the transitions in
T̂ are utilized in the sub-sequence zj , ..., zp. For each w ∈ Z

k, let m′(i, w)

474 H.-C. Yen and C.-L. Chen

be the length of the shortest i-bounded T̂ -self-covering path (starting from w),
if at least one such path exists; otherwise, let m′(i, w) = 0. We define g′(i) =
max{m′(i, w) | w ∈ Z

k}. Then following a very similar inductive argument as
presented in [11,12], a recurrence relation g′(0) ≤ nck, and g′(i + 1) ≤ (n2 ×
g′(i))kc

, for 1 ≤ i < k and some constant c, can be derived. The rest is easy.

Theorem 3. Given a k-dimensional PN (P, T, ϕ) and a T̂ ⊆ T ,
||min(NOTBLOCKED(T̂))||, ||min(UNBOUNDED)||, ||min(NOTDEAD)||,
||min(CONTINUAL(T̂))|| ≤ n2d×k×logk

, where n = ||T̄ || and d is a constant.

Proof. (Sketch) Given a z ∈ N
k
ω, define f(||z||) = n2d×k×logk

(where n = ||T̄ || and
d a constant stated in Lemma 1) which provides an upper bound for a witness
certifying reg(z)∩ NOTBLOCKED(T̂) �= ∅, if one exists. Notice that the value
of f is independent of z. Our result follows immediately from Theorem 2. From
Lemmas 2, 3, and 4, the other three cases are similar.

The results in Theorem 3 can easily be modified for the model of VASSs. It
is interesting to point out that the minimal elements of a number of upward-
closed sets concerning infinite computations of Petri nets with respect to various
notions of fairness (see Definition 6.9 of [13]) can also be obtained from the result
of Theorem 3, as the set CONTINUAL is sufficient to capture such infinite fair
computations.

Now we consider a problem that arises frequently in automated verification.
Given a system S with initial state q, and a designated set of states Q, it is often
of interest and importance to ask whether some state in Q can be reached from q,
which constitutes a question related to the analysis of a safety property. Instead
of using the forward-reachability analysis (which computes all the states that can
be reached from q to see whether the intersection with Q is non-empty or not),
an equally useful approach is to use the so-called backward-reachability analysis.
In the latter, we compute the set pre∗(S, Q) which consists of all the states from
which some state in Q is reachable, and then decide whether q ∈ pre∗(S, Q). In
general, pre∗(S, Q) may not be computable for infinite state systems.

For PNs, we define the backward-reachability (BR, for short) problem as
follows:

– Input: A PN P and a set U of markings
– Output: The set pre∗(P , U) = {μ | R(P , μ) ∩ U �= ∅}

In words, the problem is to find the set of initial markings from which a marking
in U can be reached. Now suppose U is upward-closed, then {μ | R(P , μ)∩U �= ∅}
is upward-closed as well, and is, in fact, equivalent to

⋃
ν∈min(U){μ | ∃μ′ ∈

R(P , μ), μ′ ≥ ν}. The latter is basically asking about coverability issues of PNs.
Hence, the max-value of the minimal elements can be derived along the same
line as that for the set NOTBLOCKED.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 475

4.2 Parametric Clocked Petri Nets

Clocked Petri nets are Petri nets augmented by a finite set of real-value clocks
and clock constraints. Clocks are used to measure the progress of real-time in
the system. All the clocks are resetable and increase at a uniform rate. We can
as well regard clocks as stop-watches which refer to the same global clock. The
use of such clock structure was originally introduced in [2] for defining timed
automata.

Given a set X = {x1, x2, . . . , xh} of clock variables, the set Φ(X) of clock
constraints δ is defined inductively by

δ := x ≤ c | c ≤ x | ¬δ | δ ∧ δ,

where x is a clock in X and c is a constant in Q
+ (i.e., the set of nonnegative

rationals). A clock reading is a mapping ν : X → R which assigns each clock a
real value. For η ∈ R, we write ν + η to denote the clock reading which maps
every clock x to the value ν(x) + η. That is, after η time units added to the
global clock, the value of every clock must increase by η units as well. A clock
reading ν for X satisfies a clock constraint δ over X , denoted by δ(ν) ≡ true ,
iff δ evaluates to true using the values given by ν.

A clocked Petri net is a 6-tuple N = (P, T, ϕ, X, r, q), where (P, T, ϕ) is a PN,
X is a finite set of real-value clock variables, r : T −→ 2X is a labeling function
assigning clocks to transitions, and q : T −→ Φ(X) is a labeling function
assigning clock constraints to transitions. Intuitively, r(t) contains those clock
variables which are reset when transition t is fired. A configuration (μ, η, ν) of a
clocked Petri net consists of a marking μ, the global time η and the present clock
reading ν. Note that the clock reading ν is continuously being updated as η, the
global time, advances. Hence, ν and η are not completely independent. Given a
configuration (μ, η, ν) of a clocked Petri net P , a transition t is enabled iff ∀ p ∈
P, ϕ(p, t) ≤ μ(p), and ν satisfies q(t), the set of constraints associated with
transition t, i.e., q(t)(ν) ≡ true . Let μ be the marking and ν the clock reading
at time η. Then t may fire at η if t is enabled in the marking μ with the clock

reading ν. We then write (μ, ν)
(t,η)→ (μ′, ν′), where μ′(p) = μ(p)−ϕ(p, t)+ϕ(t, p)

(for all p ∈ P), and ν′(x) = 0 (for all x ∈ r(t)). Note that the global time remains
unchanged as a result of firing t. That is, the firing of a transition is assumed to
let no time elapse at all. The global clock will start moving immediately after
the firing of a transition is completed. Initially, we assume the initial global time
η0 and clock reading ν0 to be η0 = 0 and ν0(x) = 0(∀x ∈ X), respectively. It
is important to point out that, as opposed to timed PNs under urgent firing
semantics, enabledness is necessary but not sufficient for transition firing in a
clocked PN. In other words, it is not required to fire all the enabled transitions
at any point in time during the course of the computation.

Now consider clocked PNs with parameterized constraints. That is, the ‘c’ in
the atomic constraints x ≤ c and c ≤ x is not a constant; instead, it is an
unknown parameter. We are interested in the following question:

- Input: Given a clocked PN P with unknown integer parameters θ1, · · · , θn

in its clock constraints, and a set Q of goal markings

476 H.-C. Yen and C.-L. Chen

- Output: find the values of θ1, · · · , θn (if they exist) so that there exists a
computation reaching a marking in Q. In what follows, we let S(θ1, · · · , θn)
denote such a set of solutions.

Even for timed automata, it is known that the emptiness problem (i.e., the
problem of deciding whether there exists a parameter setting under which the
associated timed language is empty or not) is undecidable when three or more
clocks are compared with unknown parameters [3]. In what follows, we consider
a special case in which the involved atomic clock constraints are only of the form
x ≤ θ or x < θ, and there are no negative signs immediately before inequalities.
In this case, the set ‘{(θ1, · · · , θn) | there exists a computation in P reaching
a marking in Q under (θ1, · · · , θn)}’ is clearly upward-closed, as x ≤ θ =⇒
x ≤ θ′ and x < θ =⇒ x < θ′, if θ ≤ θ′. That is, whatever enabled under θ is also
enabled under θ′.

A technique known to be useful for reasoning about timed automata is based
on the notion of ‘equivalence classes’ [2]. In spite of the differences in value, two
different clock readings may induce identical system’s behaviors; in this case,
they are said to be in the same clock region. For clock constraints falling into
the types given in our setting, the number of distinct clock regions is always finite
[2], meaning that a timed automaton (which is of infinite-state potentially) is
equivalent behaviorally to a so-called region automaton (which is of finite-state).
Furthermore, the number of clock regions of a timed automaton A is bounded
by 2|Q|(|X | · (CA + 2))|X|, where |Q| is the number of states of A, |X | is the
number of clocks of A, and CA is the maximum timing constant involved in A
(see [2] for details). This, coupled with our earlier discussion of upward-closed
sets and PNs, yields the following result:

Theorem 4. Given a k-dimensional clocked PN P with unknown integer para-
meters θ1, · · · , θn in its clock constraints, and an upward-closed set Q of goal
markings, ||min(S(θ1, · · · , θn))|| is bounded by O((D · |X |)2d2 ·n·k·logk·|X|n), where
|X | is the number of clocks, D is the absolute value of the maximum number
involved in P and min(Q), and d2 is a constant.

Proof. (Sketch) The proof is somewhat involved, and hence, only a proof sketch
is given here. Our derivation is based on the approach detailed in Theorem 2.

For the PN to reach Q, it suffices to consider whether a marking covering an
element in min(Q) is reachable or not. Recall from Theorem 2 that our approach
for computing ||min(S(θ1, · · · , θn))|| begins by letting (θ1, · · · , θn)=(ω, · · · , ω) =
v0. In this case, the associated clocked PN can be simplified by deleting all the
clock constraints involving θi, because x ≤ (<)ω always holds. Now the idea is
to simulate clocked PNs by VASSs. To this end, we use the ‘state’ portion of the
VASS to capture the structure of (finitely many) clock regions of a clocked PN as
discussed earlier, and an ‘addition vector’ of the VASS to simulate a transition
of the PN. Using the analysis of [2], it is not hard to see that the number of clock
regions is bounded by O((|X | · C0)|X|), where |X | is the number of clocks and
C0 is the maximum timing constant (i.e., maximum value of constants involved
in clock constraints), which corresponds to the number of states of the VASS.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 477

It was shown in [12], using the technique of multi-parameter analysis, that
for an m-state, k-dimensional VASS whose largest integer can be represented
in l bits, the length of the shortest witnessing path covering a given marking is
bounded by O((2l · m)2

d·k·logk

). Applying a similar analysis to our constructed
VASS and the concept of clock regions, a witness for ‘reg(v0)∩S(θ1, · · · , θn)) �=
∅?’ (if it exists) of max-value bounded by d1 · (D · (|X | · C0)|X|)2

d2·k·logk

can be
found, for some constants d1, d2. This bound corresponds to the b value in the
statement of Theorem 2.

The next step in to start with v1 = (θ1, ω, ..., ω) with θ1 < d1 · (D · (|X | ·
C0)|X|)2

d2·k·logk

. Let this value be C1. In this case, those clock constraints in-
volving θ1 can no longer be ignored. We construct a new VASS simulating the
associated clocked PN, and such a VASS has its number of states bounded by
O((|X | ·C1)|X|), implying that a witness for ‘reg(v1)∩S(θ1, · · · , θn)) �= ∅?’ (if it
exists) of max-value bounded by d1 ·(D·(|X |·C1)|X|)2

d2·k·logk

can be found, which
corresponds to the f function (w.r.t. variable C1) in Theorem 2. Finally, The-
orem 2 immediately yields ||min(S(θ1, · · · , θn))|| = O((D · |X |)2d2·n·k·logk·|X|n).

4.3 Subclasses of Petri Nets

In this section, we show how Theorem 2 can be applied to deriving bounds for
upward-closed sets associated with a variety of subclasses of PNs depicted in
Figure 2. The problem under consideration is as follows:

– Input: A PN P = (P, T, ϕ), a marking μ′, and a system of linear (in)equalities
L(v1, ..., vm), where m = |T |. Clearly, the set pre∗(P , (μ′, L)) = {μ | ∃σ ∈
T ∗, μ

σ→ μ′′, μ′′ ≥ μ′ and L(#σ(t1), · · · , #σ(tm)) holds } is upward-
closed. (Intuitively, the set contains those markings μ from which there is a
computation covering μ′ and along which the transition firing count vector
(#σ(t1), · · · , #σ(tm)) satisfies L.)

– Output: min(pre∗(P , (μ′, L)))

What makes the subclasses of PNs in Figure 2 of interest is that their reacha-
bility sets can be characterized by integer linear programming (ILP) – a relatively
well-understood mathematical model (see [16]). In our subsequent discussion, we
shall use normal PNs as an example to show how to derive the max-value of the
minimal elements of the pre∗ associated with a normal PN and an upward-closed
goal set U . Before going into details, the definition of normal PNs is in order.

A circuit of a PN is a ‘simple’ closed path in the PN graph. (By ‘simple’
we mean all nodes are distinct along the closed path.) Given a PN P , let c =
p1t1p2t2 · · · pntnp1 be a circuit and let μ be a marking. Let Pc = {p1, p2, · · · , pn}
denote the set of places in c. We define the token count of circuit c in marking
μ to be μ(c) =

∑

p∈Pc

μ(p). A PN is normal [15] iff for every minimal circuit c and

transition tj ,
∑

pi∈Pc

ai,j ≥ 0, where ai,j = ϕ(tj , pi) − ϕ(pi, tj). Hence, for every

minimal circuit c and transition t in a normal PN, if one of t’s input places is in

478 H.-C. Yen and C.-L. Chen

c, then one of t’s output places must be in c as well. Intuitively, a PN is normal
iff no transition can decrease the token count of a minimal circuit by firing at
any marking. For the definitions and the related properties for the rest of the
PNs in Figure 2, the reader is referred to [16].

Trap- Extended
Trap-Circuit

Normal

General Petri Nets

Conflict-
Free

BPP

Circuit

Fig. 2. Containment relationship among subclasses of PNs

In [10], the reachabiliy problem of normal PNs was equated with ILP using
the so-called decompositional approach. The idea behind the decompositional
technique relies on the ability to decompose a PN P=(P, T, ϕ) (possibly in a
nondeterministic fashion) into sub-PNs Pi = (P, Ti, ϕi) (1 ≤ i ≤ n, Ti ⊆ T ,
and ϕi is the restriction of ϕ to (P × Ti) ∪ (Ti × P)) such that for an arbi-
trary computation μ0

σ→ μ of PN P , σ can be rearranged into a canonical form
σ1σ2 · · · σn with μ0

σ1→ μ1
σ2→ μ2 · · ·μn−1

σn→ μn = μ, and for each i, a system
of linear inequalities ILPi(x, y, z) can be set up (based upon sub-PN Pi, where
x, y, z are vector variables) in such a way that ILPi(μi−1, μi, z) has a solution
for z iff there exists a σi in T ∗

i such that μi−1
σi→ μi and z = #σi . See Figure 3.

Consider a normal PN P = (P, T, ϕ) and let P = {p1, ..., pk} and T =
{t1, ..., tm}. In [10], it was shown that an arbitrary computation of a normal PN
can be decomposed according to a sequence of distinct transitions τ = tj1 · · · tjn .
More precisely, we define the characteristic system of inequalities for P and τ as
S(P , τ) =

⋃
1≤h≤n Sh, where

- Sh = {xh−1(i) ≥ ϕ(pi, tjh
), xh = xh−1 + Ah · yh | 1 ≤ i ≤ k}, Ah is an

k × h matrix whose columns are t̄j1 , · · · , t̄jh
, yh is a h × 1 column vector, for

1 ≤ h ≤ n.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 479

�
�
�

�
�
�

��
��
��

��
��
��

μ0 − σ1 → μ1 − σ2 → μ2 · · · μn−1 − σn → μ

Subnet P1 Subnet P2

Fig. 3. Decompositional approach

The variables in S are the components of the k-dimensional column vectors
x0, ..., xn and the h-dimensional column vectors yh, 1 ≤ h ≤ n. In [10], it was
shown that μ′ ∈ R(P , μ) iff there exists a sequence of distinct transitions τ =
tj1 · · · tjn such that {x0 = μ} ∪ {xn = μ′} ∪ S(P , τ) has a nonnegative integer
solution. In particular, for each 1 ≤ h ≤ n, the i-th coordinate of the yh variable
(an h × 1 column vector) represents the number of times transition tji (1 ≤ i ≤
h) is used along the path reaching from xh−1 to xh. Intuitively speaking, the
decomposition is carried out in such a way that

– stage h involves one more transition (namely tjh
) than its preceding stage

h − 1; furthermore, tjh
must be enabled in xh−1 as the condition ‘xh−1(i) ≥

ϕ(pi, tjh
)’ in Sh enforces,

– xh represents the marking at the end of stage h and the begining of stage
h + 1,

– the computation from xh−1 to xh is captured by Sh, in which ‘xh = xh−1 +
Ah · yh’ simply says that the state equation associated with the sub-PN
in stage h is sufficient and necessary to capture reachability between two
markings.

For convenience, we define y′
h to be a vector in N

m such that y′
h(ji) = yh(i),

1 ≤ i ≤ h, and the remaining coordinates are zero. Note that y′
h is an m

dimensional vector w.r.t. the ordering t1, t2, ..., tm and yh is an h dimensional
vector w.r.t. the ordering tj1 , tj2 , ..., tjh

. Intuitively speaking, y′
h(i) serves as the

purpose of rearranging the vector yh w.r.t. the ordering t1, t2, ..., tm, while filling
those coordinates not corresponding to tj1 , tj2 , ..., tjh

with zero.
Before deriving our result, we need the following concerning the size of the

solutions of ILP instances.

Lemma 5. (From [5]) Let d1, d2 ∈ N
+, let B be a d1 ×d2 integer matrix and let

b be a d1 × 1 integer matrix. Let d ≥ d2 be an upper bound on the absolute val-
ues the integers in B and b. If there exists a vector v ∈ N

d2 which is a solution to

480 H.-C. Yen and C.-L. Chen

Bv ≥ b, then for some constant c independent of d, d1, d2, there exists a vector
v such that Bv ≥ b and ||v|| ≤ dcd1 .

Now we are in a position to derive a bound for the minimal elements of pre∗ for
normal PNs.

Theorem 5. Given a normal PN P = (P, T, ϕ) with |P | = k and |T | = m, a
marking μ′, and a linear constraint L(v1, ..., vm), then ||min(pre∗(P , (μ′, L)))|| ≤
(a1)(c∗a2)k

, where c is some constant, a1 = max{||T̄ ||, s, (m + k) ∗ m} ∗ m ∗ ||T̄||,
a2 = (m ∗ k + r), r the number of (in)equalities in L, and s the absolute value
of the largest integer mentioned in L.

Proof. Given a subset of places Q ⊆ P , we define a restriction of P on Q as PN
PQ = (Q, T, ϕQ), where ϕQ is the restriction of ϕ on Q and T (i.e., ϕQ(p, t) =
ϕ(p, t); ϕQ(t, p) = ϕ(t, p) if p ∈ Q). It is obvious from the definition of normal
PNs that PQ is normal as well.

Now consider a vector v ∈ N
k
ω. To find a witness for reg(v)∩pre∗(P , (μ′, L)) �=

∅, if one exists, it suffices to consider sub-PN with Q(v) = {p | v(p) �= ω, p ∈ P}
as the set of places (as opposed to the original set P), since each ω place can
supply an arbitrary number of tokens to each of its output transitions. (That
is, places associated with ω components in v can be ignored as far as reaching
a goal marking in U is concerned.) Hence, reg(v) ∩ pre∗(P , (μ′, L)) �= ∅ iff for
some τ (of length ≤ m), the following system of linear inequalities has a solution

H ≡ S(PQ, τ) ∪{x0 = v} ∪ {xn ≥ μ′} ∪ L(v1, ..., vm) ∪
{(v1, ..., vm)tr = y′

1 + ... + y′
n}.2

Notice that in the above, {(v1, ..., vm)tr = y′
1 + ... + y′

n} ensures that for each
transition ti, the number of times ti being used in the computation (i.e., y′

1(i)+
y′
2(i) + · · · + y′

n(i)) captured by S(PQ, τ) equals vi. Recall that y′
h captures the

firing count vector in segment h.
A careful examination reveals that in H , the number of inequalities is bounded

by O(m ∗ k + r), and the number of variables is bounded by O((m + k) ∗ m).
Furthermore, the absolute value of the maximal numbers in H is bounded by
max{||v||, ||T̄ ||, s}. Using Lemma 5, if H has a solution, then a ‘small’ solution of
max-value bounded by (max{||v||, ||T̄ ||, s, (m+k)∗m})b∗(m∗k+r) exists, for some
constant b. Recall that the y′

h vector variable represents the numbers of times
the respective transitions are used along segment h of the reachability path.
As a result, an initial marking with at most m ∗ ((max{||v||, ||T̄ ||, s, (m + k) ∗
m})b∗(m∗k+r)) ∗ ||T̄ || tokens in each of the ω places suffices for such a path to be
valid in the original PN, since each transition consumes at most ||T̄ || tokens from
a place. The above is bounded by (a1∗||v||)b∗a2 (for a1, a2 given in the statement
of the theorem), where b is a constant. Now define f(||v||) = (a1 ∗||v||)b∗a2 . From
Theorem 2, ||min(pre∗(P , (μ′, L)))|| is bounded by f (k−1)(||(ω, ..., ω)||), which
can easily be shown to be bounded by (a1)(c∗a2)k

, for some constant c.

2 The superscript tr denotes the transpose of a matrix.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 481

The above theorem provides a framework for analyzing a number of upward-
closed sets associated with normal PNs. The BR problem mentioned at the end
of Section 4.1 clearly falls into this category. Our results for normal PNs carry
over to the rest of the subclasses listed in Figure 2, although the bounds are
slightly different. Due to space limitations, the details are omitted here.

4.4 Lossy Petri Nets

Lossy Petri nets (or equivalently, lossy vector addition systems with states) were
first defined and investigated in [4] with respect to various model checking prob-
lems. A lossy Petri net (P, T, ϕ) is a PN for which tokens may be lost spon-
taneously without transition firing during the course of a computation. To be
more precise, an execution step from markings μ to μ′, denoted by μ ⇒ μ′, of a
lossy PN can be of one of the following forms: (1) ∃t ∈ T, μ

t→ μ′, or (2) μ > μ′

(denoting token loss spontaneously at μ). As usual, ∗⇒ is reflexive and transitive
closure of ⇒. It is easy to observe that for arbitrary goal set U (not necessar-
ily upward-closed), the set pre∗(P , U) for lossy PN P is always upward-closed.
Consider the case when U = {μ′}. We have:

Theorem 6. Given a lossy PN P= (P, T, ϕ), and a goal marking μ′, the min-
imal elements of the set pre∗(P , {μ′}) = {μ | μ

∗⇒ μ′} have their max-values
bounded by n2d×k×logk

, where n = max{||T̄ ||, ||μ′||} and d is a constant.

Proof. It is not hard to see that pre∗(P , {μ′}) = {μ | μ
∗⇒ μ′} = {μ | μ

∗→
μ′′, μ′′ ≥ μ′}, which involves coverability-related queries. Hence, the result fol-
lows from our discussion in Section 4.1.

The above result can be easily extended to the case when U is an upward-closed
set.

In [4], the global model checking problem for (conventional or lossy) VASSs
with respect to formula of the form ∃Aω(π1, ..., πm) has been shown to be decid-
able. We shall see how our unified strategy as well as results obtained previously
can be applied to deriving complexity bound for the above model checking prob-
lem. Before doing that, some definitions, many of which can be found in [4], are
needed.

An upward-closed constraint π over variable set X = {x1, ..., xk} is of the
form

∨
xi∈X xi ≥ ci, where ci ∈ N, 1 ≤ i ≤ k. A k-dimensional vector v is said

to satisfy π, denoted by v |= π, if v(i) ≥ ci, ∀1 ≤ i ≤ k.
Consider a k-dim VASS V= (v0, V, s1, S, δ) with S = {s1, ..., sh}. Given h

upward-closed constraints π1, ..., πh over variable set X = {x1, ..., xk}, and a
configuration σ1, we write σ1 |= ∃ω(π1, ..., πh), iff there is an infinite computa-
tion σ1, σ2, · · · , σi, · · · , such that ∀i ≥ 1, if state(σi) = sj , then val(σi) |= πj . In
words, there exists an infinite path from configuration σ1 along which the vector
value of each configuration satisfies the upward-closed constraint associated with

482 H.-C. Yen and C.-L. Chen

the state of the configuration. In [4], it was shown the following global model
checking problem to be decidable:

– Given a k-dim VASS V= (v0, V, s1, S, δ) with S = {s1, ..., sh} and a formula
φ = ∃ω(π1, ..., πh), for upward-closed constraints π1, ..., πh,

– Output: The set [[φ]]V={σ | σ |= φ in V}.

The following result gives a complexity bound for the above problem.

Theorem 7. For each state s ∈ S, ||min({v ∈ N
k | (s, v) ∈ [[φ]]V})|| is bounded

by n2d×k×logk

, where n = max{||T̄ ||, u}, u is the absolute value of the largest
number mentioned in φ, and d is a constant.

Proof. (Sketch) The proof is done by constructing a VASS V ′=(v′0, V
′, s′1, S

′, δ′)
from V such that (s1, v0) |= φ in V iff there exists an infinite path from (s′1, v′0)
in V ′.

Assume that πi =
∨

1≤l≤k(xl ≥ ci,l). For convenience, for a value c and an
index l, we define [c]l to be a vector whose l − th coordinate equals c; the rest
of the coordinates are zero. The construction is as follows:

– S′ = S ∪ {qi,l,j | 1 ≤ i ≤ h, 1 ≤ l ≤ k, 1 ≤ j ≤ h}
– For each addition rule v ∈ δ(si, sj), k addition rules are used to test the

k primitive constraints in πi, by including the following rules: ∀1 ≤ l ≤ k,
[−ci,l]l ∈ δ′(si, qi,l,j). Furthermore, we also have (v + [ci,l]l) ∈ δ′(qi,l,j , sj) to
restore the testing of ci,l as well as adding vector v.

– v′0 = v0 and s′1 = s1

Based upon the above construction, it is reasonably easy to show that (s1, v0) |=
φ in V iff there exists an infinite path from (s′1, v

′
0) in V ′. The bound of the the-

orem then follows from Theorem 3.

5 Conclusion

We have developed a unified strategy for computing the sizes of the minimal
elements of certain upward-closed sets associated with Petri nets. Our approach
can be regarded as a refinement of [13] in the sense that complexity bounds
become available (as opposed to merely decidability as was the case in [13]), as
long as the size of a witness for a key query is known. Several upward-closed
sets that arise in the theory of Petri nets as well as in backward-reachability
analysis in automated verification have been derived in this paper. The reader
is referred to [8] [9] for related results concerning complexity and decidability of
some upward-closed sets associated with Petri nets. It would be interesting to
seek additional applications of our technique.

Acknowledgments. The authors thank the anonymous referees for their com-
ments that improved the presentation of this paper.

Computing Minimal Elements of Upward-Closed Sets for Petri Nets 483

References

1. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation 160(1/2), 109–127
(2000)

2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

3. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: Proc. 25th
ACM STOC, pp, 592–601 (1993)

4. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Meinel,
C., Tison, S. (eds.) STACS’ 99. LNCS, vol. 1563, pp. 323–333. Springer, Heidelberg
(1999)

5. Borosh, I., Treybis, L.: Bounds on positive integral solutions to linear diophantine
equations. Proc. Amer. Math. Soc. 55, 299–304 (1976)

6. Delzanno, G., Raskin, J.: Symbolic representation of upward-closed sets. In:
Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS,
vol. 1785, pp. 426–440. Springer, Heidelberg (2000)

7. Delzanno, G., Raskin, J., Van Begin, L.: Covering sharing-trees: a compact data-
structure for parametrized verification. In: J. Software Tools for Technology Trans-
fer, vol. 5(2-3), pp. 268–297. Springer, Heidelberg (2004)

8. Esparza, J.: Decidability and complexity of Petri net problems - an introduction.
In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS,
vol. 1491, pp. 374–428. Springer, Heidelberg (1998)

9. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Journal of
Informatik Processing and Cybernetics 30(3), 143–160 (1994)

10. Howell, R., Rosier, L., Yen, H.: Normal and sinkless Petri nets. J. Comput. System
Sci. 46, 1–26 (1993)

11. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comput. Sci. 6, 223–231 (1978)

12. Rosier, L., Yen, H.: A multiparameter analysis of the boundedness problem for
vector addition systems. J. Comput. System Sci. 32, 105–135 (1986)

13. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability
in Petri nets. Acta Informatica 21, 643–674 (1985)

14. Wang, F., Yen, H.: Timing parameter characterization of real-time systems. In:
Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 23–34. Springer,
Heidelberg (2003)

15. Yamasaki, H.: Normal Petri nets. Theoret. Comput. Sci. 31, 307–315 (1984)
16. Yen, H.: Integer linear programming and the analysis of some Petri net problems.

Theory of Computing Systems 32(4), 467–485 (1999)

ProM 4.0: Comprehensive Support for Real
Process Analysis

W.M.P. van der Aalst1, B.F. van Dongen1, C.W. Günther1, R.S. Mans1, A.K.
Alves de Medeiros1, A. Rozinat1, V. Rubin2,1, M. Song1, H.M.W. Verbeek1,

and A.J.M.M. Weijters1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

2 University of Paderborn, Paderborn, Germany

Abstract. This tool paper describes the functionality of ProM. Version
4.0 of ProM has been released at the end of 2006 and this version reflects
recent achievements in process mining. Process mining techniques at-
tempt to extract non-trivial and useful information from so-called “event
logs”. One element of process mining is control-flow discovery, i.e., auto-
matically constructing a process model (e.g., a Petri net) describing the
causal dependencies between activities. Control-flow discovery is an in-
teresting and practically relevant challenge for Petri-net researchers and
ProM provides an excellent platform for this. For example, the theory
of regions, genetic algorithms, free-choice-net properties, etc. can be ex-
ploited to derive Petri nets based on example behavior. However, as we
will show in this paper, the functionality of ProM 4.0 is not limited to
control-flow discovery. ProM 4.0 also allows for the discovery of other
perspectives (e.g., data and resources) and supports related techniques
such as conformance checking, model extension, model transformation,
verification, etc. This makes ProM a versatile tool for process analy-
sis which is not restricted to model analysis but also includes log-based
analysis.

1 Introduction

The first version of ProM was released in 2004. The initial goal of ProM was to
unify process mining efforts at Eindhoven University of Technology and other
cooperating groups [4]. Traditionally, most analysis tools focusing on processes
are restricted to model-based analysis, i.e., a model is used as the starting point
of analysis. For example, the alternating-bit protocol can be modeled as a Petri
net and verification techniques can then be used to check the correctness of the
protocol while simulation can be used to estimate performance aspects. Such
analysis is only useful if the model reflects reality. Process mining techniques use
event logs as input, i.e., information recorded by systems ranging from infor-
mation systems to embedded systems. Hence the starting point is not a model
but the observed reality. Therefore, we use the phrase real process analysis to
position process mining with respect to classical model-based analysis. Note that

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 484–494, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ProM 4.0: Comprehensive Support for Real Process Analysis 485

ProM also uses models (e.g., Petri nets). However, these models (1) are discov-
ered from event logs, (2) are used to reflect on the observed reality (conformance
checking), or (3) are extended based on information extracted from logs.

Process mining is relevant since more and more information about processes
is collected in the form of event logs. The widespread use of information systems,
e.g., systems constructed using ERP, WFM, CRM, SCM, and PDM software,
resulted in the omnipresence of vast amounts of event data. Events may be
recorded in the form of audit trails, transactions logs, or databases and may
refer to patient treatments, order processing, claims handling, trading, travel
booking, etc. Moreover, recently, more and more devices started to collect data
using TCP/IP, GSM, Bluetooth, and RFID technology (cf. high-end copiers,
wireless sensor networks, medical systems, etc.).

Table 1. Comparing ProM 1.1 presented in [7] with ProM 4.0

Version ProM 1.1 ProM 4.0

Mining plug-ins 6 27
Analysis plug-ins 7 35
Import plug-ins 4 16
Export plug-ins 9 28
Conversion plug-ins 3 22
Log filter plug-ins 0 14

Total number of plug-ins 29 142

At the Petri net conference in 2005, Version 1.1 of ProM was presented [7]. In
the last two years ProM has been extended dramatically and currently dozens
of researchers are developing plug-ins for ProM. ProM is open source and uses
a plug-able architecture, e.g., people can add new process mining techniques
by adding plug-ins without spending any efforts on the loading and filtering of
event logs and the visualization of the resulting models. An example is the plug-in
implementing the α-algorithm [5], i.e., a technique to automatically derive Petri
nets from event logs. The version of ProM presented at the Petri net conference
in 2005 (Version 1.1) contained only 29 plug-ins. Version 4.0 provides 142 plug-
ins, i.e., there are almost five times as many plug-ins. Moreover, there have been
spectacular improvements in the quality of mining algorithms and the scope
of ProM has been extended considerably. This is illustrated by Table 1 which
compares the version presented in [7] with the current version. To facilitate the
understanding of Table 1, we briefly describe the six types of plug-ins:

– Mining plug-ins implement some mining algorithm, e.g., the α-miner to dis-
cover a Petri net [5] or the social network miner to discover a social network
[1].

– Export plug-ins implement some “save as” functionality for specific objects
in ProM. For example, there are plug-ins to save Petri nets, EPCs, social
networks, YAWL, spreadsheets, etc. often also in different formats (PNML,
CPN Tools, EPML, AML, etc.).

486 W.M.P. van der Aalst et al.

– Import plug-ins implement an “open” functionality for specific objects, e.g.,
load instance-EPCs from ARIS PPM or BPEL models from WebSphere.

– Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph. However,
there are also analysis plug-ins to compare a log and a model (i.e., confor-
mance checking) or a log and an LTL formula. Moreover, there are analysis
plug-ins related to performance measurement (e.g., projecting waiting times
onto a Petri net).

– Conversion plug-ins implement conversions between different data formats,
e.g., from EPCs to Petri nets or from Petri nets to BPEL.

– Log filter plug-ins implement different ways of “massaging” the log before
applying process mining techniques. For example, there are plug-ins to select
different parts of the log, to abstract from infrequent behavior, clean the log
by removing incomplete cases, etc.

In this paper we do not elaborate on the architecture and implementation frame-
work for plug-ins (for this we refer to [7]). Instead we focus on the functionality
provided by the many new plug-ins in ProM 4.0.

The remainder of this paper is organized as follows. Section 2 provides an
overview of process mining and briefly introduces the basic concepts. Section 3
describes the “teleclaims” process of an Australian insurance company. A log of
this process is used as a running example and is used to explain the different
types of process mining: Discovery (Section 4), Conformance (Section 5), and
Extension (Section 6). Section 7 briefly mentions additional functionality such
as verification and model transformation. Section 8 concludes the paper.

2 Overview

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs. Today
many of the activities occurring in processes are either supported or monitored
by information systems. Consider for example ERP, WFM, CRM, SCM, and
PDM systems to support a wide variety of business processes while recording
well-structured and detailed event logs. However, process mining is not limited to
information systems and can also be used to monitor other operational processes
or systems. For example, we have applied process mining to complex X-ray
machines, high-end copiers, web services, wafer steppers, careflows in hospitals,
etc. All of these applications have in common that there is a notion of a process
and that the occurrence of activities are recorded in so-called event logs.

Assuming that we are able to log events, a wide range of process mining
techniques comes into reach. The basic idea of process mining is to learn from
observed executions of a process and can be used to (1) discover new models
(e.g., constructing a Petri net that is able to reproduce the observed behavior),
(2) check the conformance of a model by checking whether the modeled behavior
matches the observed behavior, and (3) extend an existing model by projecting

ProM 4.0: Comprehensive Support for Real Process Analysis 487

models

analyzes

records

events, e.g.,

messages,

transactions,

etc.

specifies

configures

implements

analyzes

supports/

controls

people machines

organizations

components

business processes

Fig. 1. Overview showing three types of process mining supported by ProM: (1) Dis-
covery, (2) Conformance, and (3) Extension

information extracted from the logs onto some initial model (e.g., show bottle-
necks in a process model by analyzing the event log). All three types of analysis
have in common that they assume the existence of some event log. Figure 1 shows
the three types of process mining. Each of these is supported by ProM through
various plug-ins as will be shown in the remainder using a running example.

3 Running Example

As a working example, we consider the “teleclaims” process of an Australian
insurance company described in [2]. This process deals with the handling of
inbound phone calls, whereby different types of insurance claims (household, car,
etc.) are lodged over the phone. The process is supported by two separate call
centres operating for two different organizational entities (Brisbane and Sydney).
Both centres are similar in terms of incoming call volume (approx. 9,000 per
week) and average total call handling time (550 seconds), but different in the
way call centre agents are deployed, underlying IT systems, etc. The teleclaims
process model is shown in Figure 2. The two highlighted boxes at the top show
the subprocesses in both call centres. The lower part describes the process in the
back-office.

This process model is expressed in terms of an Event-Driven Process Chain
(EPC) (see [8] for a discussion on the semantics of EPCs). For the purpose of
the paper it is not necessary to understand the process and EPC notation in
any detail. However, for a basic understanding, consider the subprocess corre-
sponding to the call centre in Brisbane. The process starts with event “Phone
call received”. This event triggers function “Check if sufficient information is
available”. This function is executed by a “Call Center Agent”. Then a choice is
made. The circle represents a so-called connector. The “x” inside the connector
and the two outgoing arcs indicate that it is an exclusive OR-split (XOR). The

488 W.M.P. van der Aalst et al.

XOR connector results in event “Sufficient information is available” or event
“Sufficient information is not available”. In the latter case the process ends. If
the information is available, the claim is registered (cf. function “Register claim”
also executed by a “Call Center Agent”) resulting in event “Claim is registered”.
The call centre in Sydney has a similar subprocess and the back-office process
should be self-explaining after this short introduction to EPCs. Note that there
are three types of split and join connectors: AND, XOR, and OR, e.g., in the
back-office process there is one AND-split (∧) indicating that the last part is
executed in parallel.

Call Centre Brisbane / 24x7

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Claims Handler

150

Payment has
been initiated

Claims Handler

150

Call Centre
Agent

90

0.85

Sufficient
information is

available

0.80

Sufficient
information is
not available

0.15

0.20

Call Centre
Agent

90

0.90 0.10

520.00 Second(s)
Register

claim

Claim
is registered

20.00 Second(s)
Determine

likelihood of
claim

Insured
could be liable

Insured
could not be

iable

660.00 Second(s) Assess claim

Claim has been
accepted

Claim has been
rejected

120.00 Second(s)
Initiate

payment
180.00 Second(s)

Advise claimant
on

reimbursement

30.00 Second(s)
Close
claim

Claims Handler

150

Claims Handler

150

Claims Handler

150

Caimant has
been advised

Claim has
been closed

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Call Centre
Agent

90

Sufficient
information is

available

Sufficient
information is
not available

Call Centre
Agent

90

0.90 0.10

520.00 Second(s)
Register

claim

Claim
is registered

Call Centre Sydney / 5 days, 9-5

Fig. 2. Insurance claim handling EPC [2]

...

<ProcessInstance id="3055" description="Claim being handled">

<AuditTrailEntry>

<Data><Attribute name = "call centre">Sydney </Attribute>

</Data><WorkflowModelElement>incoming claim

</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>

<Originator>customer</Originator>

</AuditTrailEntry>

<AuditTrailEntry>

<Data><Attribute name = "location">Sydney </Attribute>

</Data><WorkflowModelElement>check if sufficient

information is available</WorkflowModelElement>

<EventType >start</EventType>

<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>

<Originator>Call Centre Agent Sydney</Originator>

</AuditTrailEntry>

<AuditTrailEntry>

<Data><Attribute name = "location">Sydney </Attribute>

</Data><WorkflowModelElement>check if sufficient

information is available</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T07:51:25.000+01:00</Timestamp>

<Originator>Call Centre Agent Sydney</Originator>

</AuditTrailEntry>

...

<AuditTrailEntry>

<Data><Attribute name = "outcome">processed </Attribute>

<Attribute name = "duration">1732 </Attribute>

</Data><WorkflowModelElement>end</WorkflowModelElement>

<EventType >complete</EventType>

<Timestamp>2006-12-01T08:19:57.000+01:00</Timestamp>

<Originator>Claims handler</Originator>

</AuditTrailEntry>

</ProcessInstance>

...

Fig. 3. Fragment of the MXML log con-
taining 3512 cases (process instances) and
46138 events (audit trail entries)

Figure 3 shows a fragment of the log in MXML format, the format used by
ProM. In this case, the event log was obtained from a simulation using CPN Tools.
Using ProMimport one can extract logs from a wide variety of systems, e.g., work-
flow management systems like Staffware, case handling systems like FLOWer,
ERP components like PeopleSoft Financials, simulation tools like ARIS and CPN
Tools, middleware systems like WebSphere, BI tools like ARIS PPM, etc., and it
has also been used to develop many organization/system-specific conversions (e.g.,
hospitals, banks, governments, etc.). Figure 3 illustrates the typical data present in
most event logs, i.e., a log is composed of process instances (i.e., cases) and within
each instance there are audit trail entries (i.e., events) with various attributes.
Note that it is not required that systems log all of this information, e.g., some

ProM 4.0: Comprehensive Support for Real Process Analysis 489

systems do not record transactional information (e.g., just the completion of ac-
tivities is recorded), related data, or timestamps. In the MXML format only the
ProcessInstance (i.e., case) field and the WorkflowModelElement (i.e., activity)
field are obligatory, i.e., any event needs to be linked to a case (process instance)
and an activity. All other fields (data, timestamps, resources, etc.) are optional.

For control-flow discovery, e.g., deriving a Petri net model from an MXML
file, we often focus on the ordering of activities within individual cases. In this
context, a single case σ can be described by a sequence of activities, i.e., a trace
σ ∈ A∗ where A is the set of activities. Consequently, such an abstraction of the
log can be described by a multiset of traces.

4 Discovery

Process mining techniques supporting discovery do not assume an a-priori model,
i.e., based on an event log, some model is constructed (cf. Figure 1). ProM 4.0
offers 27 mining plug-ins able to construct a wide variety of models. One of the
first plug-ins was the α-miner [5] which constructs a Petri net model from an
MXML log, i.e., based on an analysis of the log which does not contain any
explicit process information (e.g., AND/XOR-splits/joins), a process model is
derived. However, the α-miner is unable to discover complex process models.
For example, it is unable to correctly discover the teleclaims process illustrated
in Figure 2. However, ProM 4.0 has several new mining plug-ins that are able
to correctly discover this process using various approaches (regions, heuristics,
genetic algorithms, etc.) and representations (Petri nets, EPCs, transitions sys-
tems, heuristic nets).

Figure 4 shows a Petri net discovered by ProM. The top window shows the
overall process while the second window zooms in on the first part of the discov-
ered model. This model is behaviorally equivalent to the EPC model in Figure 2
and has been obtained using an approach which first builds a transition system
(see Figure 5) and then uses extensions of the classical theory of regions [6] to
construct a Petri net. ProM provides various ways to extract transition systems
from logs, a plug-in to construct regions on-the-fly, and an import and export
plug-in for Petrify [6] (see [3] for details).

Process mining is not limited to process models (i.e., control flow). ProM
also allows for the discovery of models related to data, time, transactions, and
resources. As an example, Figure 6 shows the plug-in to extract social networks
from event logs using the technique presented in [1]. The social network shown in
Figure 6 is constructed based on frequencies of work being transferred from one
resource class to another. The diagram adequately shows that work is generated
by customers and then flows via the call centre agents to the claims handlers in
the back office.

It is impossible to provide an overview of all the discovery algorithms sup-
ported. However, of the 27 mining plug-ins we would like to mention the heuris-
tics miner (Figure 7) able to discover processes in the presence of noise and

490 W.M.P. van der Aalst et al.

Fig. 4. A Petri net discovered using ProM based on an analysis of the 3512 cases

Fig. 5. Transition system system used to
construct the Petri net in Figure 4

Fig. 6. Social network obtained using the
“handover of work” metric

the multi-phase miner using an EPC representation. Both approaches are more
robust than the region-based approach and the classical α-algorithm. It is also
possible to convert models of one type to another. For example, Figure 8 shows
the EPC representation of the Petri net in Figure 4.

ProM 4.0: Comprehensive Support for Real Process Analysis 491

Fig. 7. Heuristics net obtained by applying
the heuristics miner to the log of Figure 3

Fig. 8. EPC discovered from the log in
Figure 3

5 Conformance

Conformance checking requires, in addition to an event log, some a-priori model.
This model may be handcrafted or obtained through process discovery. What-
ever its source, ProM provides various ways of checking whether reality conforms
to such a model. For example, there may be a process model indicating that pur-
chase orders of more than one million Euro require two checks. Another example
is the checking of the so-called “four-eyes principle”. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. ProM 4.0 also supports conformance
checking, i.e., comparing an a-priori model with the observed reality stored in
some MXML log. For example, we could take the discovered model shown in
Figure 4 and compare it with the log shown in Figure 3 using the conformance
checking plug-in in ProM. Figure 9 shows the result. This analysis shows that
the fitness of the model is 1.0, i.e., the model is able to “parse” all cases. The
conformance checker also calculates metrics such as behavioral appropriateness

492 W.M.P. van der Aalst et al.

(i.e., precision) and structural appropriateness [9] all indicating that the discov-
ered model is indeed a good reflection of reality. Note that, typically, confor-
mance checking is done not with respect to a discovered model, but with respect
to some normative/descriptive hand-crafted model. For example, given an event
log obtained from the real teleclaims process it would be interesting to detect
potential deviations from the process model in Figure 2. In case that there is not
a complete a-priori process model but just a set of requirements (e.g., business
rules), ProM’s LTL checker can be used.

Fig. 9. Conformance checker Fig. 10. Performance analyzer

6 Extension

For model extension it is also assumed that there is an initial model (cf. Figure 1).
This model is extended with a new aspect or perspective, i.e., the goal is not
to check conformance but to enrich the model with performance/time aspects,
organizational/resource aspects, and data/information aspects. Consider for ex-
ample a Petri net (either discovered, hand-crafted, or resulting from some model
transformation) describing a process which is also logged. It is possible to enrich
the Petri net using information in the log. Most logs also contain information
about resources, data, and time. ProM 4.0 supports for example decision mining,
i.e., by analyzing the data attached to events and using classical decision tree
analysis, it is possible to add decision rules to the Petri net (represented as con-
ditions on arcs). Information about resources (Originator field in the MXML log)
can be analyzed and used to add allocation rules to a Petri net. Figure 10 shows
a performance analysis plug-in which projects timing information on places and
transitions. It graphically shows the bottlenecks and all kinds of performance in-
dicators, e.g., average/variance of the total flow time or the time spent between
two activities. The information coming from all kinds of sources can be stitched
together and exported to CPN Tools, i.e., ProM is able to turn MXML logs into
colored Petri nets describing all perspectives (control-flow, data, time, resources,
etc.). CPN Tools can then be used to simulate the process without adding any
additional information to the generated model.

ProM 4.0: Comprehensive Support for Real Process Analysis 493

7 Additional Functionality

It is not possible to give a complete overview of all 142 plug-ins. The figures
shown in previous sections reflect only the functionality of 7 plug-ins. However,
it is important to note that the functionality of ProM is not limited to process
mining. ProM also allows for model conversion. For example, a model discovered
in terms of a heuristic net can be mapped onto an EPC which can be converted
into a Petri net which is saved as a YAWL file that can be uploaded in the
workflow system YAWL thereby directly enacting the discovered model. For
some of the models, ProM also provides analysis plug-ins. For example, the basic
Petri net analysis techniques (invariants, reachability graphs, reduction rules, S-
components, soundness checks, etc.) are supported. There are also interfaces
to different analysis (e.g., Petrify, Fiona, and Woflan) and visualization (e.g.,
FSMView and DiaGraphica) tools.

8 Conclusion

ProM 4.0 consolidates the state-of-the-art of process mining. It provides a plug-
able environment for process mining offering a wide variety of plug-ins for process
discovery, conformance checking, model extension, model transformation, etc.
ProM is open source and can be downloaded from www.processmining.org.
Many of its plug-ins work on Petri nets, e.g., there are several plug-ins to discover
Petri nets using techniques ranging from genetic algorithms and heuristics to
regions and partial orders. Moreover, Petri nets can be analyzed in various ways
using the various analysis plug-ins.

Acknowledgements. The development of ProM is supported by EIT, NWO-
EW, the Technology Foundation STW, and the IOP program of the Dutch Min-
istry of Economic Affairs.

References

1. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from
Event Logs. Computer Supported Cooperative work 14(6), 549–593 (2005)

2. van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based Escalation
in Process-Aware Information Systems. Decision Support Systems 43(2), 492–511
(2007)

3. van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.:
Process Mining: A Two-Step Approach using Transition Systems and Regions. BPM
Center Report BPM-06-30, (2006) BPMcenter.org

4. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data.
and Knowledge Engineering 47(2), 237–267 (2003)

5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data. Engineering 16(9), 1128–1142 (2004)

www.processmining.org
BPMcenter.org

494 W.M.P. van der Aalst et al.

6. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets from
Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882 (1998)

7. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A New Era in Process Mining Tool
Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

8. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering 56(1), 23–40 (2006)

9. Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring the Fit and
Appropriateness of Event Logs and Process Models. In: Bussler, C., Haller, A. (eds.)
BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006)

dmcG: A Distributed Symbolic Model Checker
Based on GreatSPN

Alexandre Hamez, Fabrice Kordon, Yann Thierry-Mieg, and Fabrice Legond-Aubry

Université P. & M. Curie,
LIP6 - CNRS UMR 7606

4 Place Jussieu, 75252 Paris cedex 05, France
Alexandre.Hamez@lip6.fr, Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr,

Fabrice.Legond-Aubry@lip6.fr

Abstract. We encountered some limits when using the GreatSPN model checker
on life-size models, both in time and space complexity. Even when the exponen-
tial blow-up of state space size is adequately handled by the tool thanks to the use
of a canonization function that allows to exploit system symmetries, time com-
plexity becomes critical. Indeed the canonization procedure is computationally
expensive, and verification time for a single property may exceed 2 days (without
exhausting memory).

Using the GreatSPN model-checking core, we have built a distributed model-
checker, dmcG, to benefit from the aggregated resources of a cluster. We built this
distributed version using a flexible software architecture dedicated to parallel
and distributed model-checking, thus allowing full reuse of GreatSPN source
code at a low development cost. We report performances on several specifications
that show we reach the theoretical linear speedup w.r.t. the number of nodes.
Furthermore, through intensive use of multi-threading, performances on multi-
processors architectures reach a speedup linear to the number of processors.

Keywords: GreatSPN, Symbolic Reachability Graph, Distributed Model
Checking.

1 Introduction

If we want model checking to cope with industrial-size specifications, it is necessary to
be able to handle large state spaces. Several techniques do help:

i compact encoding of a state space using decision diagrams; these techniques are
called symbolic1 model checking [3,1],

ii equivalence relation based representation of states that group numerous concrete
states of a system into a symbolic state [2]; these techniques are also called
symbolic,

iii executing the model checker on a distributed architecture [4,5,6,7,8].

1 The word symbolic is associated with two different techniques. The first one is based on state
space encoding and was introduced in [1]. The second one relies on set-based representations
of states having similar structures and was introduced in [2].

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 495–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

496 A. Hamez et al.

These three techniques can be stacked. This was experimented for (i) and (ii) in [9].
GreatSPN [10] is a well known tool implementing technique (ii) in its model che-

cking kernel thanks to the use of Symmetric Nets 2 for input specifications. We have
successfully used it for many studies requiring to analyse complex systems with more
than 1018 concrete states and an exponential gain between the concrete reachability
graph and the symbolic reachability graph [11].

However, these studies and another one dedicated to intelligent transport systems
[12] revealed two problems. First, generation of the symbolic reachability graph re-
quires a canonical representation of states to detect already existing ones. This is a
known problem that requires CPU time. So, even if memory consumption is reduced,
CPU load becomes a problem.

The second problem deals with an implementation constant that prevented us to han-
dle more than 12 million symbolic states in the version we had (in the first study we
mentioned, this was the equivalent to 1018 concrete states).

So, to handle larger systems, the idea is to use the aggregated resources of a cluster
and thus, merge techniques (ii) and (iii) by implementing a distributed model checker
for Symmetric Nets able to generate faster larger state spaces.

This paper presents how we built dmcG, a distributed model checker based on the
GreatSPN model-checking core. We did not change the GreatSPN sources files. They
were encapsulated in a higher-level program called libdmc [13]. This library is dedicated
to parallelization and distribution of model checkers and orchestrates services provided
by GreatSPN to enable a distributed execution.

The paper is organized as follow. After a survey of related works in Section 2, Section
3 explains how we built dmcG atop libdmc using GreatSPN. Then, Section 4 presents
performances of dmcG and discusses about them.

2 Related Work

Several attempts at proposing a distributed model-checker have been made. In [6] the
authors implemented a distributed version of Spin. The problem however, was that the
main state space reduction technique of Spin, called partial order reduction, had to
be re-implemented in a manner that degrades its effectiveness as the number of hosts
collaborating increases. Thus performances, reported up to 4 hosts in the original paper,
were reported to actually not scale well on a cluster (see Nasa’s case study in [14]).
Another effort to implement a distributed Spin is DivSpin [4]. However, they chose to
re-implement a Promela engine rather than using Spin’s source code. As a result their
sequential version is at least twice as slow as sequential Spin in it’s most degraded
setting with optimizations deactivated. And any further improvements of the Spin tool
will not profit their implementation.

An effort that has met better success is reported in [5] for a distributed version of the
Murphi verifier from Stanford. Murphi exhibits a costly canonization procedure. The
original implementation in [5] was built on top of specific Berkeley NOW hardware3,
which limits its portability. A more recent implementation [7] is based on MPI [15],

2 Formerly known as Well-Formed Nets [2], a class of High-level Petri Nets.
3 The Berkeley Network of Workstations.

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN 497

however it is limited to two threads per hosts, one handling the network and one for
computation of the next state function. Our work is however comparable to that effort
in terms of design goals: reuse of existing code over a network of multi-processor ma-
chines, a popular architecture due to its good performance/cost ratio. The good results
reported by these Murphi-based tools with slightly sublinear speedup over the number
of hosts encourage further experimentation in this direction.

We can also cite [8] which is an effort to distribute the generation of (but theoretically
not limited to) LOTOS specifications. They report near linear speedups.

3 Building dmcG

Our strategy is to build a model checker based on the GreatSPN core, thus reusing its
implementation of the symbolic reachability graph. So, we let GreatSPN compute suc-
cessors but its execution is handled by the libdmc library. This one distributes the state
space over the nodes of a cluster and manages all the networking and multi-threaded
aspects of the state space generation.

To distribute memory load, we assign an owner node to each state, responsible for
storing it. We use a static localization function that, for each state, designates a host.
Note that this function should have a homogeneous distribution to ensure load balanc-
ing: we chose MD5 as it is known to provide a good distribution for any kind of input.

To distribute CPU load, each node has an active component that computes succes-
sors. This is the computationally most expensive task in the model-checking procedure,
particularly because of the canonization algorithms of GreatSPN.

3.1 Architecture of dmcG

dmcG is designed using a component based approach. Each node instantiates the com-
ponents shown on figure 1:

1. The StateManager is a passive storage component instanciated once per node, that
stores the states owned by the node. The behavior of processState is to determine

FiringManager

Multiple threads
FiringManager

Multiple threads
FiringManager

Multiple threads
NewStatesSet

GreatSPN successors computation

pop_state()

Distributed
StateManager

StateManager

Unicity tableprocess_state()

SM Proxy SM ServiceNetwork

 process_state()

process_state()

local state

state incoming from a distant host
state owned by a distant host

push_state()process_state()

distribution management

Fig. 1. dmcG architecture

498 A. Hamez et al.

whether a state is new or not. If a state is new, it is stored in an unicity table and
also pushed into the NewStatesSet, otherwise, it is discarded.

2. The NewStatesSet is a protected passive state container, used to store states that
have not been fully explored. Each node has a single occurrence of this component,
shared by the active computing threads.

3. The FiringManager represents an active thread used to compute successors by call-
ing GreatSPN successors functions. Several instances of this component are instan-
ciated on each node to allow full use of multi-processor machines, and to overlap
network latency. As shown in figure 1, each FiringManager instance repeatedly
pops a state from the NewStatesSet, computes its successors and passes them to the
DistributedStateManager. One privileged FiringManager initiates the computation
by processing the initial state(s) on a master node.

4. The DistributedStateManager is responsible for forwarding the states to their ow-
ner, using the localization function. This component deals with a set of StateMana-
ger Proxies representing distant StateManager (proxy design pattern [16]). When
a state is not owned by the node which computed it, it is transmitted to its owner
through its proxy/service pair. Each node instantiates one DistributedStateManager
component for localization purposes, one proxy per distant node, and one service
to receive incoming states computed on other nodes.

3.2 Interaction with GreatSPN

The first step was to identify the core functions of GreatSPN which compute successors
of a state. This work was made easier thanks to a previous similar effort aimed at in-
tegrating LTL model-checking capacity in GreatSPN, using the Spot library [17]. The
interface we defined corresponds to a labeled automata: we extracted functions to ob-
tain the initial state, and a successor function returning the set of successors of a given
state (using an iterator). An additional labeling function was extracted to allow labeling
of states satisfying a given criterion (deadlock state, state verifying some arbitrary state
property...).

This simple interface is defined to minimize dependencies from libdmc to a given for-
malism. We did not redevelop any algorithms for successor generation in libdmc: this
is essential to allow the reuse of existing efficient implementations of state space gen-
erators, and their usually quite complex data representation. The (existing) algorithms
related to state representation algorithms are cleanly separated from the distribution re-
lated algorithms. The use of a canonization function by GreatSPN is thus transparent
for libdmc. It manipulates compact state representations, in which each "symbolic state"
actually represents an equivalence class of states of the concrete reachability graph.

The states are handled in an opaque manner by libdmc : they are seen as a simple
block of contiguous memory, at interaction points between model-checking engine and
libdmc, thus reducing dependencies between the model-checker and libdmc. This choice
of retaining a raw binary encoding of states allows a low overhead of the library, but
forces to operate over a homogeneous hardware configuration so that all nodes have
a common interpretation of the state data. In any case, a layer integrating machine
independent state encodings (i.e. XDR) could be added, but has not been implemented.

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN 499

libdmc is intensely multi-threaded to allow the better use of modern hardware archi-
tectures, thus posing some problems when integrating legacy C code such as GreatSPN.
GreatSPN is inherently non-reentrant, due to numerous global variables. The solution
adopted consists in compiling the tool as a shared library that can be loaded and dy-
namically linked into. Simply copying the resulting shared object file in different file
locations allows to load it several times into different memory spaces. This is necessary
as threads usually share memory space. Each successor computation thread is assigned
a separate copy of the GreatSPN binary.

We should emphasize the fact that a complete rewriting of GreatSPN was not possi-
ble since it is made of complex algorithms stacked in an architecture that has more than
ten years of existence. Furthermore It wouldn’t have validated the fact that the libdmc
can interact with legacy code.

3.3 Verification of Safety Properties

The verification of safety or reachability properties is an important task since many
aspects of modeled systems can be checked by such properties, and it is a necessary
basis to handle more complex temporal logics. Finding reachable states that verify or
not a property is an easy task once the state space is generated. Each node simply
examines the states it has stored. This provides a yes/no answer to reachability queries.
However, to let users determine how errors happened in their specifications, we need to
provide a witness trace (or ’counter-example’) leading to the target state. We provide a
minimal counter-example in order to simplify the debuging task for the designer.

During the construction of the reachable state set, arcs are not stored however. And
unfortunately, no predecessor function is available in the GreatSPN core. The approach
used is to store during the construction in each state its distance to the initial state along
the shortest path possible. Due to nondeterminism, the first path found to a given state
is not necessarily the shortest, thus the distance may be updated if a state is reached
later by a shorter path. In such a case, we have to recompute successors of the state to
update their own distance, etc. . . Since this scheme can be costly, to avoid its occurrence
as much as possible, states are popped from each node’s NewStatesSet in ascending
distance. This scheme does not introduce additional synchronization among nodes, and
helps to maintain an overall approximative BFS state exploration.

After the generation of the whole state space, we build an index on each node that
orders states by depth. It’s not a CPU intensive task since we only need to iterate once
on the state space (it only takes a few seconds). The drawback is that the size of this
index increases with state space depth.

Once this index is built a master node controls the construction of the counter-
example which leads to a state s in error at a distance n. The master asks to each slave
a predecessor of s at a distance n−1. Slaves compute this predecessor by iterating over
all states at depth n − 1, using the index. The first state whose successor is s is sent to
the master and the iteration is stopped. Then the master stores the first received pre-
decessor in the counter-example. This operation is performed until the initial state has
been found as predecessor. We then have a minimal counter-example.

500 A. Hamez et al.

4 Experimentations

Performances results have been measured on a cluster of 22 dual Xeons hyper-threaded
at 2.8GHz, with 2GB of RAM and interconnected with Gigabit ethernet. We focused
our evaluations on two parameters: states distribution and obtained speedups.

The following parametric specifications have been selected:

– the Dining Philosophers, a well known academic example; it is parameterized with
the number of philosophers.

– a Client-Server specification with asynchronous send of messages and acknowle-
dgments; it is parameterized with the number of clients and servers.

– the model of the PolyORB middleware kernel [11]; it is parameterized with the
number of threads in the middleware. Let us note that the analysis of this model
could not be achieved for more than 17 threads in sequential generation (it took
more than 40 hours).

4.1 State Distribution

A homogeneous distribution of the states over the hosts in the cluster is an important
issue since it is related to load balancing of dmcG. The goal is to avoid the situation
were some hosts are overloaded while others are idle. This is required to reach a linear
speedup.

Therefore, we measured the number of states owned by each host, in order to vali-
date the choice of MD5 as a localization function. We then compared these results to
the theoretical mean value and noted the variation. These measures are summarized
in Table 1. In this table, column 1 represents the parameter that scales up the model,
column 2 the number of involved hosts, column 3 the total number of symbolic states,
column 4 the theoretical mean value, column 5 the standard deviation and column 6 the
standard deviation expressed in percentage of the mean value.

We obtain standard deviations that are from less than 0.1% to less than 5% of the
mean values. Such results are obtained for every model we analyzed in any configura-
tion (model parameters and number of nodes). So our expectations are met since the
state space is evenly distributed over the whole cluster. However, we observe that, as a
possible side effect of the MD5 checksum, it is preferable to have a number of nodes
that is a power of 2, in which case the standard deviation is smaller than 1% of the mean
value. Additional experiments showed that the usage of a more complex checksum like
SHA-1 doesn’t seem to improve or to decrease the quality of the states distribution.

4.2 Speedups

Figures 2, 3 and 4 show the compared time of sequential and distributed generation
needed for the three specifications we analyzed. They also show the speedups we obtain
for the distributed generation of these models. Speedups are compared to the runtime
of the standard GreatSPN tool running the same example.

dmcG has a low overhead: execution for the mono-threaded, single host version of
dmcG takes within 95% to 105% of the time needed by the standard GreatSPN version

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN 501

Table 1. States distribution for the Philosophers, Client-Server and PolyORB specifications

Parameter Hosts Symb. States Mean Std. deviation Percentage
Dining Philosophers

12 philosophers 4 347 337 86 834 427 0.5%
15 philosophers 4 12 545 925 3 136 481 792 < 0.1%
12 philosophers 22 347 337 15 788 689 4.4%
15 philosophers 22 12 545 925 570 269 24 179 4.2%

Client-Server
100 processes 4 176 851 44 213 202 0.5%
400 processes 4 10 827 401 2 706 850 1327 < 0.1%
100 processes 20 176 851 8 843 316 3.57%
400 processes 20 10 827 401 541 370 17 438 3.22%

PolyORB middleware
11 threads 16 3 366 471 210 404 402 0.2%
17 threads 16 12 055 899 753 494 1131 0.2%
11 threads 20 3 366 471 168 324 5393 3.2%
17 threads 20 12 055 899 602 795 19 557 3.2%
25 threads 20 37 623 267 1 881 163 60 540 3.7%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 9 10 11 12 13 14 15

T
im

e
(s

)

Number of philosophers

GreatSPN
dmcG with 22 bi-processors nodes

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

Hosts (dual-processors)

Theoretical speedup
11 philosophers
12 philosophers
13 philosophers
14 philosophers

Fig. 2. Generation time (left) and speedups (right) for the Dining Philosophers specification

(these variations are due to implementation details concerning the storage of states).
The local but multi-threaded version is truly twice as fast on a dual-processor machine.

The main observation is that, in many cases, the observed speedup is over the the-
oretical one based on the number of processors (two per host): we have a supra-linear
acceleration factor, up to 50 with 20 bi-processors nodes (fig. 3). We observed this in
near all our experiments on several models with various parameters. We attribute this to
hyper-threading since the supra-linear acceleration factor was not observed on classic
dual processors (without hyper-threading). This hypothesis is confirmed by [18].

The stall observed in figure 3 for the Client-Server specification parameterized with
100 processes is simply due to the fact that the execution time is very small (<5s): the
specification becomes too simple to compute for a number of nodes superior to 16.

502 A. Hamez et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 100 200 300 400

T
im

e
(s

)

Number of processes

GreatSPN
dmcG with 20 bi-processors nodes

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

Hosts (dual-processors)

Theoretical speedup
100 processes
200 processes
300 processes
400 processes

Fig. 3. Generation time (left) and speedups (right) for the Client-Server specification

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 5 10 15 20 25

T
im

e
(s

)

Number of modeled threads

GreatSPN
dmcG with 20 bi-processors nodes

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

Hosts (dual-processors)

Theoretical speedup
4 threads

11 threads
17 threads

Fig. 4. Generation time (left) and speedups (right) for the PolyORB specification

4.3 Other Considerations

Another measure of interest is the network bandwidth consumption: measured band-
widths per node are from 230 KB/s for the PolyORB specification to 1.5 MB/s for the
Client-Server specification, in a configuration with 20 nodes. That means that we do
not use more than 30 MB/s of total bandwidth in this configuration, which any modern
switch should handle easily.

We also observe that the larger the state space, the more efficient dmcG is. We impute
this to the fact that there are more chances for a state to have at least a successor that
is then distributed to another host, leading the NewStatesSet of each node to never be
empty during the computation (which would make idle hosts).

Finally, a preliminary campaign on a larger cluster with 128 dual-processors nodes
shows that dmcG scales up very well: we continue to observe a growing linear speedup
with large models, as well as a homogeneous distribution.

5 Conclusion

In this paper, we presented dmcG, a distributed model checker working on a symbolic
state space. The goal is to stack two accelerating techniques for model checking in order
to get a more powerful tool. As a basis for the core functions of this distributed model

dmcG: A Distributed Symbolic Model Checker Based on GreatSPN 503

checker, we used GreatSPN implementation without changing it. It was connected to a
library dedicated to the distribution of model checking: libdmc.

Performances on several models, including industrial-like case study (the verifica-
tion of a middleware’s core) are almost optimal. We observe a nearly linear speedup
with, in some favorable cases, a supra-linear speedup (due to the intensive use of both
distribution and multi-threading). Using dmcG, we can push memory and CPU capacity
of our model-checker one to two orders of magnitude further.

So far, our model checker basically manages safety properties and, when a property
is not verified, provides an execution path to the faulty state. It takes as input AMI-nets
or native GreatSPN format models, with additional parameters to specify properties.
The multi-node version still requires some skill to install and configure, but we plan to
make it available soon. The multi-threaded single node version is immediately useful to
owners of a bi-processor machine.

We are currently challenging libdmc to handle the verification of temporal logic
formulae.

References

1. Burch, J., Clarke, E., McMillan, K.: Symbolic model checking: 1020 states and beyond. In-
formation and Computation (Special issue for best papers from LICS90) 98(2), 153–181
(1992)

2. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and
their symbolic reachability graph. In: Jensen, K., Rozenberg, G. (eds.) Procedings of the 11th
International Conference on Application and Theory of Petri Nets (ICATPN’90), Reprinted
in High-Level Petri Nets, Theory and Application, Springer, Heidelberg (1991)

3. Ciardo, G., Luettgen, G., Siminiceanu, R.: Efficient symbolic state-space construction for
asynchronous systems. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825,
pp. 103–122. Springer, Heidelberg (2000)

4. Barnat, J., Forejt, V., Leucker, M., Weber, M.: DivSPIN - a SPIN compatible distributed
model checker. In: Leucker, M., van de Pol, J., eds.: 4th International Workshop on Parallel
and Distributed Methods in verifiCation (PDMC’05), Lisbon, Portuga (2005)

5. Stern, U., Dill, D.L.: Parallelizing the Murϕ verifier. In: Proceedings of the 9th International
Conference on Computer Aided Verification, pp. 256–278. Springer, Heidelberg (1997)

6. Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Dams, D.R., Gerth,
R., Leue, S., Massink, M. (eds.) Theoretical and Practical Aspects of SPIN Model Checking.
LNCS, vol. 1680, Springer, Heidelberg (1999)

7. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.: Parallel and
distributed model checking in eddy. In: Valmari, A. (ed.) Model Checking Software. LNCS,
vol. 3925, pp. 108–125. Springer, Heidelberg (2006)

8. Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for Model-
Checking. vol. 2057 (2001)

9. Thierry-Mieg, Y., llié, J.M., Poitrenaud, D.: A symbolic symbolic state space representation.
In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 276–291.
Springer, Heidelberg (2004)

10. GreatSPN V2.0 (2007) http://www.di.unito.it/~greatspn/index.html
11. Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the For-

mal Verification of Middleware Behavioral Properties. In: 9th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’04), pp. 139–157. Elsevier, Ams-
terdam (2004)

http://www.di.unito.it/~greatspn/index.html

504 A. Hamez et al.

12. Bonnefoi, F., Hillah, L., Kordon, F., Frémont, G.: An approach to model variations of a sce-
nario: Application to Intelligent Transport Systems. In: Workshop on Modelling of Objects,
Components, and Agents (MOCA’06), Turku, Finland (2006)

13. Hamez, A., Kordon, F., Thierry-Mieg, Y.: libDMC: a library to Operate Efficient Distributed
Model Checking. In: Workshop on Performance Optimization for High-Level Languages
and Libraries - associated to IPDPS’2007, Long Beach, California, USA, IEEE Computer
Society, Washington (2007)

14. Rangarajan, M., Dajani-Brown, S., Schloegel, K., Cofer, D.D.: Analysis of distributed spin
applied to industrial-scale models. In: Graf, S., Mounier, L. (eds.) Model Checking Software.
LNCS, vol. 2989, pp. 267–285. Springer, Heidelberg (2004)

15. Message Passing Interface (2007) http://www.mpi-forum.org/
16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software. Addison-Wesley Longman Publishing Co., Inc.„ Boston, MA, USA
(1995)

17. Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library using transition-
based generalized Büchi automata. In: Proceedings of the 12th IEEE/ACM International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS’04), Volendam, The Netherlands, pp. 76–83. IEEE Computer Society
Press, Washington (2004)

18. Koufaty, D., Marr, D.T.: Hyperthreading Technology in the Netburst Microarchitecture. IEEE
Micro 23(2), 56–65 (2003)

http://www.mpi-forum.org/

Workcraft: A Static Data Flow Structure Editing,
Visualisation and Analysis Tool

Ivan Poliakov, Danil Sokolov, and Andrey Mokhov

Microelectronics System Design Research Group, School of EECE,
University of Newcastle, Newcastle upon Tyne, UK

{ivan.poliakov,danil.sokolov,andrey.mokhov}@ncl.ac.uk

Abstract. Reliable high-level modeling constructs are crucial to the de-
sign of efficient asynchronous circuits. Concepts such as static data flow
structures (SDFS) considerably facilitate the design process by separat-
ing the circuit structure and functionality from the lower-level imple-
mentation details.

Aside from providing a more abstract, higher level view, SDFS allow
for efficient circuit analysis that is done by converting it to a Petri Net
preserving behavioural equivalence. Once the equivalent Petri Net is ob-
tained, existing theoretical and tool base can be applied to perform the
model verification.

However, recent advances in SDFS design were largely theoretical.
There are no practical software tools available which would allow working
with different SDFS models in a consistent way and provide means for
their analysis and comparison.

This paper presents a tool which aims to provide a common, cross-
platform environment to assist with aforementioned tasks. The tool of-
fers a GUI-based framework for visual editing, real-time simulation, an-
imation and extendable analysis features for different SDFS types. The
models themselves, as well as the supporting tools, are implemented as
plug-ins.

1 Introduction

For a long time, token-flow based models, such as Petri nets, have been used as
a major tool for modelling and analysis of concurrent systems. Many higher level
models were developed for numerous applications; one of them is a static data flow
structure which is used for data path modelling in asynchronous circuit design.

Static dataflow structure (SDFS) [12] is a directed graph with two types of
nodes which model registers and combinational logic. The nodes are connected
by edges which represent data channels. Registers can contain tokens, which
represent the data values. The tokens can propagate in the direction of graph
edges, thus modelling the propagation of data in the underlying data path.

First attempts to model asynchronous data paths using SDFS were based on
mostly intuitive and somewhat naïve analogy to RTL (register transfer level)
models used in synchronous design. Having been designed this way, they failed

J. Kleijn and A. Yakovlev (Eds.): ICATPN 2007, LNCS 4546, pp. 505–514, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

506 I. Poliakov, D. Sokolov, and A. Mokhov

to take into account some of asynchronous circuit functionality specifics, leading
to considerable limitations. There are several notable recent developments in
this field, extending the basic SDFS semantics proposed in [13], such as spread
token [12], anti-token [8], and counterflow [6] models, each of them allowing to
model a significantly wider class of circuits.

The second chapter of this paper explains reasons which lead to the necessity
of development of the presented tool. The third chapter summarizes the tool’s
architecture: software components, their function and interaction. The fourth
chapter presents an overview of the software technologies which were used to
develop the tool, with explanation of why they were chosen. The fifth chap-
ter demonstrates the functionality of the user interface, and the sixth chapter
presents an example of how Workcraft can be used to perform an analysis of a
high-level model.

2 Motivation

It proves to be very hard [12] to analytically determine which model would be
most appropriate for a particular class of circuits, or to compare its properties
with other models; it is much easier to discover practical advantages or disad-
vantages if the actual modelling can be done.

This generated a need for a software tool which would provide means to
integrate several different models into one consistent framework, thus enabling
a circuit designer to effectively test and compare them. The tool was designed
from the start to provide two key features: easy extensibility and robust cross-
platform operation. To deal with evolving nature of the available models, the
tool is based on plug-in architecture, so that introducing modifications to the
existing models, or introduction of a new model is done independently of the
framework. To enable efficient and intuitive document editing, a flexible vector
graphics based visualisation system was designed.

This tool is the first to address the issue of supporting token-based models
for asynchronous datapath modelling and design. The complex nature of concur-
rency in such designs, including aspects of early evaluation and Or-causality [16],
presses the need for such a tool.

3 Architecture

The tool is composed of a base framework and three principal plug-in types
as shown in Figure 1. The thick arrows on the figure depict the fact that the
models, tools, and components are implemented externally and are loaded into
the framework at run-time. The thinner arrows represent interaction between
framework modules, i.e. the fact that one particular module is able to use the
functionality provided by another one. For example, the tools can access the
scripting engine, and the tools themselves can be used by scripts; the editor uses
functions provided by the visualisation module, however the module itself is not
aware of editor’s existence.

Workcraft: A SDFS Editing, Visualisation and Analysis Tool 507

Fig. 1. Framework-plugin interaction

The framework consists of three functionally separate modules: core plug-in
management and scripting system, which is referred to as the server, the GUI-
based editor, and the vector graphics visualisation system.

The server module is the fundamental part of the framework. It performs
automatic plug-in management (loading external plug-in classes, and grouping
them using the reported model identifiers). It also provides a scripting engine,
based on Jython [4], which is used to provide further run-time customization
flexibility.

The editor provides visual environment for efficient model design. Its functions
include rendering a document view using the visualisation system; viewport scal-
ing and panning; moving and connecting components; group move, delete and
copy/paste operations. The editor also supports auxiliary features, such as “snap-
to-grid” function (which restricts component coordinates to intersection points
of grid lines), thus enabling the user to get desired alignment of the components
with ease.

The vector graphics visualisation system is designed to provide two types of
output: interactive visualisation, which is implemented using OpenGL hardware
acceleration, and graphics export, which renders the document as an SVG [3] file.
Both visualisation methods support a common set of drawing functions, which
includes drawing of lines, polylines, Bezier-curves, text and arbitrary shapes with
customizable fill and outline styles. The two methods produce nearly identical
result, so the developer only has to implement his or her component’s drawing
routine once for both interactive and external visualisation. The exported graph-
ics provide measurements in real-world units, so that the effort of using them
in printed material is minimal. The editor grid cells also have explicitly defined
real-world size, thus document’s final look on paper is always well-defined.

The concept of model is central to the software’s plug-in architecture; the
other plug-in types identify themselves as belonging to one or several models.
The model plug-in manages simulation behaviour, handles component creation,
deletion and connection operations, as well as performing document validation.
Each model type defines a model identifier in the form of UUID (universally

508 I. Poliakov, D. Sokolov, and A. Mokhov

unique identifier), which is used by other plug-in types to report supported
models.

Component plug-in type defines individual nodes, such as registers and combi-
national logic. Components define the model-related data elements, visualisation
features, user-editable properties, and serialization mechanism.

Tool plug-ins define operations on the model. Their functionality is not limited
in any way, so this plug-in class includes everything from external file format
exporters to interfaces with stand-alone model-checking tools.

4 Software Technologies

The framework itself is implemented in Java programming language. This pro-
vides reliable cross-platform functionality, as well as very easy extensibility mech-
anism due to language’s reflection features [14]. The plug-ins are implemented
as Java classes, and the only action that is needed to make a plug-in accessible
from the framework is adding a single line with the class name to the plug-in
manifest file. There are also some disadvantages of using Java, with the most
noticeable one being performance penalty. However, there are several options
to alleviate Java’s performance hit on computationally complex algorithms that
may be required by analysis tools. Java Native Interface can be used to create
plug-in classes which can access native code; while efficient performance-wise,
this approach is somewhat cumbersome, because one has to take care of main-
taining dynamically loaded code objects for each platform (which are stored in
the form of DLL files in Windows, SO files in Linux and so on). Moreover, the
JNI API is not very easy to use. Another approach is to implement the tools as
external programs, and use the Java plug-in simply as an interface to call them.
This approach can also be applied to interface already existing tools.

The framework supports scripting via Jython [4], a Java implementation of
the Python programming language [5]. The framework automatically registers
document components in Python namespace using their unique IDs, so that they
can be referenced to through scripting from any place of the program.

The hardware-accelerated real-time visualisation is implemented using
JOGL (Java bindings for OpenGL) [2], which gives considerable improvement
in drawing performance over any software-based rendering solution, especially
considering Java platform’s inherent unsuitability for computationally expensive
tasks. It only uses basic OpenGL functionality, and is thus compatible even with
very old graphics hardware.

The XML [1] format is used to store document data. The format is very simple,
flexible and modular, and the document data structures are easily mapped into
it. Java platform also provides built-in support for building and parsing of XML
documents. Scalable Vector Graphics [3] is used as the external graphics format
because of its easy-to-use and efficient structure. For a more detailed explanation
of the reasons why these choices were made, please refer to [11].

Workcraft: A SDFS Editing, Visualisation and Analysis Tool 509

5 User Interface

The framework’s main window is shown on figure 2. The main menu (1), beside
standard file and editing operations, includes automatically selected set of tools
which support current model. This selection occurs when new document is cre-
ated, or a document is open from a file. The editor commands (2) are duplicated
both in the main menu and by hotkeys. The component list (3) presents set of
all components supported by current model, which are chosen in similar fashion
to the tool set. A component can be added to the document either by dragging
it from the component list, or by using a hotkey, which is optionally specified by
the component. All components are further assigned numeric hotkeys from ’1’
to ’9’, corresponding to their order in component list. The editor options bar (4)
contains toggle buttons to enable or disable certain auxiliary functions, such as
display of labels, component IDs, editor grid and snap-to-grid editing mode. The
document view pane (5) presents the document visualisation. It supports scaling
(using the mouse wheel) and panning (holding right mouse button and dragging)
to change the current viewport. It also supports moving components which is
done by dragging them and group selection done by holding the left mouse
button and dragging the selection box over desired components. The selected
components can then be moved together by dragging any of them, or deleted.
The property editor (6) displays properties of currently selected component and

Fig. 2. Main GUI window

510 I. Poliakov, D. Sokolov, and A. Mokhov

allows editing them, such as, for example, changing the number of tokens in
a Petri Net place. The utility area (7) holds three tabs: the console, which is
used to display various information during normal execution of the program and
also allows to execute script commands; the problems list which displays a list
of errors which occur during execution; and the simulation control panel which
allows to start, stop and reset model simulation, as well as presenting additional,
model-defined simulation controls.

6 High-Level Model Analysis Within Workcraft
Framework

High-level modelling introduces new challenges for the designer such as model
verification and checking for certain properties e.g. deadlock-freedom. Developing
a special verification theory for each high-level model is a very sophisticated
problem. A possible workaround here is to transform the initial high-level model
to behaviourally equivalent low-level model and thus gain access to a wide variety
of theoretical and practical verification tools available for the latter. Petri nets
with read-arcs [10] would be a good choice for such a low-level model as they are
known for many long years and have been comprehensively studied. The chapter
presents a method for conversion of an SDFS model with spread token semantics
into behaviourally equivalent Petri net.

6.1 SDFS with Spread Token Semantics

An SDFS is a directed graph G = 〈V, E, D, M0〉, where V is a set of vertices (or
nodes), E ⊆ V × V is a set of edges denoting the flow relation, D is a semantic
domain of data values and M0 is an initial marking of the graph. There is an
edge between nodes x ∈ V and y ∈ V iff (x, y) ∈ E. There are two types of
vertices with different semantics: registers R and combinational logic nodes L,
R ∪ L = V . The registers can contain tokens, thus defining the marking M
of an SDFS. The tokens can be associated with data values from the semantic
domain D.

The preset of a vertex x ∈ V is defined as •x = {y ∈ V | (y, x) ∈ E} and the
postset as x• = {y ∈ V | (x, y) ∈ E}. Note that only registers can have empty
presets and postsets. A register with empty preset is called a source (can be
used to model system inputs), and with empty postset is called a sink (models
system outputs).

A sequence of vertices (z0, z1, ..., zn) such that(zi−1, zi) ∈ E, i = 1...n is called
a path from z0 ∈ V (called a start vertex) to zn ∈ V (called an end vertex) and
is denoted as σ (z0, zn).

The R-preset of a vertex x ∈ V is defined as �x =
{r ∈ R | ∃σ (r, x) : σ (r, x) ↓ R = {r, x} ∩ R} and the R-postset is defined
as x� = {r ∈ R | ∃σ (x, r) : σ (x, r) ↓ R = {x, r} ∩ R}.

The spread token model extends the intuitive token game presented in [13]. In
this model the marking is defined as a mapping M : R → {0, 1}, i.e. a register

Workcraft: A SDFS Editing, Visualisation and Analysis Tool 511

can contain maximum one token. The evaluation state of an SDFS is a mapping
Ξ : L → {0, 1} which defines if a combinational logic node l ∈ L has computed
its output (Ξ (l) = 1) or has not computed it yet (Ξ (l) = 0). A node l ∈ L is
said to be evaluated if Ξ (l) = 1 and reset if Ξ (l) = 0. Initially all combinational
logic nodes are reset.

A reset combinational logic node l ∈ L may evaluate iff ∀k ∈ •l∩L is evaluated
and ∀q ∈ •l∩R is marked. Similarly, an evaluated combinational logic node l ∈ L
may reset iff ∀k ∈ •l ∩ L is reset and ∀q ∈ •l ∩ R is not marked.

Initially all unmarked registers are disabled and all marked registers are en-
abled. An unmarked register r ∈ R becomes enabled iff ∀l ∈ •r ∩ L is evaluated
and ∀q ∈ •r ∩ R is marked. A marked register r ∈ R becomes disabled iff
∀l ∈ •r ∩ L is reset and ∀q ∈ •r ∩ R is unmarked.

An enabled register r ∈ R can be marked with a token iff ∀q ∈ �r is marked
and ∀q ∈ r� is not marked. A token can be removed from a disabled register
r ∈ R iff ∀q ∈ �r is not marked and ∀q ∈ r� is marked.

6.2 Conversion of SDFS Models into Petri Nets

To convert an SDFS with spread token semantics into the corresponding be-
haviourally equivalent Petri net it is possible to use the following mapping al-
gorithm. Each register r ∈ R is mapped into a pair of elementary cycles de-
noting the enabling Er and marking Mr of the register. Each combinational
logic node l ∈ L is mapped into an elementary cycle denoting its evaluation
state Sl. The rising and falling transitions of the elementary cycles read (by
means of read-arcs) the state of other cycles according to the token game rules
of the spread token model. Figures 3(a,b) shows the Petri net mappings of a
register and a combinational logic node. One can see in Figure 3(a) that the
two elementary cycles of a register mapping are connected by four read-arcs.
It captures the fact that a register follows such a cyclic behaviour during its
lifetime: enabled & unmarked → enabled & marked → disabled & marked →
disabled & unmarked → enabled& unmarked → ... and so on.

An SDFS model with spread token semantics can be refined to take into
account the early propagation effect. In some cases combinational logic node
can evaluate its function without waiting for all of its preset nodes to become
marked/evaluated. The mapping of such an early propagative combinational
logic node is different and may contain several parallel transitions in the elemen-
tary cycle as shown in Figure 3(c). The figure shows the mapping of a node l that
can evaluate after at least one of its preset registers (a and b) has been marked
(parallel transitions Sl+/1 and Sl+/2). And it can reset after both of the reg-
isters have been unmarked (transition Sl-). In general each combinational logic
node can have a propagation function [12] associated with it. The function de-
termines when a reset node can evaluate and when an evaluated node can reset.
The propagation function is parsed into disjunctive normal form (DNF) expres-
sions. Then each of the clauses in the obtained DNF is mapped into transition
in the elementary cycle that corresponds to the node that is being processed.

512 I. Poliakov, D. Sokolov, and A. Mokhov

(a) register (b) logic (c) logic
with early
propagation

Fig. 3. Petri net mappings of spread token SDFS register and combinational logic

An example of application of the mapping algorithm is shown in Figure 4.
After initial SDFS model has been transformed to the corresponding Petri net it
is possible to apply the existing variety of verification and model checking tech-
niques available for Petri net models [9,7]. Other SDFS models besides spread
token are mapped in a similar way.

The majority of Petri net verification and model checking tools use
unfoldingsgimp-2.2.13-i586-setup-1 theory to overcome state explosion prob-
lem [9]. Large amount of read-arcs used in the Petri nets obtained after con-
version from SDFS models can potentially slow down the tools that are based
on unfoldings. In traditional unfolding tools a read-arc is treated as a pair of
separate (one consuming and one producing) arcs of opposite directions which
form a cycle. Such cycles may cause exponential grow of the unfolding prefix. In
order to improve the efficiency of verification tools based on unfoldings a special
technique is required which reduces read-arcs complexity by disallowing a place
to have multiple read arcs [15].

6.3 Propagation of Petri Net Model Checking Results to High-Level
Models

In case a Petri net analysis tool reports a problem with the model, it is possible
to see what sequence of events may lead to the reported problematic state on the
higher level. This is accomplished using the fact that the identifiers of transitions
are constructed in such a way during the mapping process that it becomes a
trivial task to restore the higher-level component identifiers and events from
the tool’s low-level event trace. For example, if the trace includes a transition
named ’r3_mrk_plus’, it is easy to deduce that the register ’r3’ was marked.
This information is automatically parsed and presented to the user, who can

Workcraft: A SDFS Editing, Visualisation and Analysis Tool 513

(a) initial spread token
SDFS model

(b) Petri net mapping

Fig. 4. Conversion of a simple spread token SDFS model into Petri net

then use the interactive simulation mode to reproduce the chain of events that
lead to the problem.

7 Conclusion

The Workcraft tool presents a consistent framework for design, simulation and
analysis of SDFS-based models. Its plug-in based architecture makes it easily
extensible and very flexible environment, while inherent support for run-time
scripting makes it even more powerful. Compact visualisation interface is very
easy to use, and produces nearly identical results for both real-time visualisa-
tion and export to external graphics format without additional effort from the
developer. Workcraft uses OpenGL hardware acceleration for real-time visual-
isation, which allows fluent, interactive animated simulations to be presented.
Underlying Java technology provides robust cross-platform operation.

Currently existing Workcraft plug-ins support editing and simulation of Petri
Nets, spread token, anti-token and counterflow SDFS models; conversion of
SDFS models to behaviourally equivalent Petri Nets; Petri Net export in several
formats for analysis using external tools.

Acknowledgements. We are grateful to Victor Khomenko for the insight on
Petri net analysis issues. This work is supported by EPSRC grant EP/D053064/1
(SEDATE).

514 I. Poliakov, D. Sokolov, and A. Mokhov

References

1. Extensible Markup Language (XML) - http://www.w3.org/XML/
2. JOGL API project - https://jogl.dev.java.net/
3. Scalable Vector Graphics - http://www.w3.org/Graphics/SVG/
4. The Jython Project - http://www.jython.org/
5. The Python Programming Language - http://www.python.org/
6. Ampalam, M., Singh, M.: Counterflow pipelining: architectural support for preemp-

tion in asynchronous systems using anti-tokens. In: Proc. International Conference
Computer-Aided Design (ICCAD) (November 2006)

7. Best, E., Grundmann, B.: PEP - more than a Petri net tool. In: Proc. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Springer, Hei-
delberg (1995)

8. Brej, C.: Early output logic and anti-tokens. PhD thesis, Dept. of Computer Sci-
ence, University of Manchester (2005)

9. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, University of Newcastle upon Tyne, School of Computing Science (2003)

10. Montanari, U., Rossi, F.: Contextual nets. Acta Informacia 32(6), 545–596 (1995)
11. Poliakov, I., Sokolov, D., Yakovlev, A.: Software requirements analysis for asyn-

chronous circuit modelling and simulation tool. Technical Report NCL-EECE-
MSD-TR-2007-118, University of Newcastle (2006)

12. Sokolov, D., Poliakov, I., Yakovlev, A.: Asynchronous data path models. In: 7th In-
ternational Conference on Application of Concurrency to System Design (to appear
2007)

13. Sparsø, J., Furber, S. (eds.): Principles of Asynchronous Circuit Design: A Systems
Perspective (2001)

14. Morrison, R., Stemple, D.W.: Software - Practice and Experience. In: Linguistic
Reflection in Java, pp. 1045–1077. John Wiley & Sons, New York (1998)

15. Vogler, W., Semenov, A.L., Yakovlev, A.: Unfolding and finite prefix for nets with
read arcs. In: International Conference on Concurrency Theory, pp. 501–516 (1998)

16. Yakovlev, A., Kishinevsky, M., Kondratyev, A., Lavagno, L., Pietkiewicz-Koutny,
M.: Formal Methods in System Design. In: On the Models for Asynchronous Circuit
Behaviour with OR Causality, pp. 189–233. Kluwer Academic Publishers, Boston
(1996)

http://www.w3.org/XML/
https://jogl.dev.java.net/
http://www.w3.org/Graphics/SVG/
http://www.jython.org/
http://www.python.org/

Author Index

Aalst, W.M.P. van der 164, 484
Abramsky, Samson 1
Alves de Medeiros, A.K. 484
Arge, Lars 445

Beccuti, M. 43
Bergenthum, Robin 342
Billington, Jonathan 423
Boyer, M. 63
Brodal, Gerth Stølting 445

Chen, Chien-Liang 465
Ciardo, Gianfranco 83
Cortadella, Jordi 144

de Frutos-Escrig, David 402
Dongen, B.F. van 484
Duan, Zhenhua 362

Ehrig, Hartmut 104
Ermel, Claudia 104

Farwer, Berndt 244
Franceschinis, G. 43

Ganty, Pierre 124
Gorgônio, Kyller 144
Günther, C.W. 484

Haddad, S. 43
Hamez, Alexandre 495
Hee, Kees van 164
Hoffmann, Kathrin 104

Juhás, Gabriel 184

Khomenko, Victor 204, 223
Köhler, Michael 244, 263
Kordon, Fabrice 495
Koutny, Maciej 281
Kristensen, Lars Michael 445
Kumagai, Sadatoshi 3

Lazić, Ranko 301
Legond-Aubry, Fabrice 495
Lohmann, Niels 321
Lorenz, Robert 184, 342
Lüttgen, Gerald 83

Mans, R.S. 484
Massuthe, Peter 321

Mauser, Sebastian 184, 342
Mazurkiewicz, Antoni 20
Men, Peng 362
Miyamoto, Toshiyuki 3
Mokhov, Andrey 505

Newcomb, Tom 301

Ouaknine, Joël 301

Padberg, Julia 104
Pelz, Elisabeth 381
Pietkiewicz-Koutny, Marta 281
Poliakov, Ivan 505
Prange, Ulrike 104

Raskin, Jean-François 124
Rölke, Heiko 263
Rosa-Velardo, Fernando 402
Roscoe, A.W. 301
Roux, O.H. 63
Rozinat, A. 484
Rubin, V. 484

Schaefer, Mark 223
Serebrenik, Alexander 164
Sidorova, Natalia 164
Sokolov, Danil 505
Song, M. 484

Tarlecki, Andrzej 24
Thierry-Mieg, Yann 495
Tutsch, Dietmar 381

Van Begin, Laurent 124
Vanit-Anunchai, Somsak 423
Verbeek, H.M.W. 484

Weijters, A.J.M.M. 484
Westergaard, Michael 445
Wolf, Karsten 29, 321
Worrell, James 301

Xia, Fei 144

Yen, Hsu-Chun 465
Yu, Andy Jinqing 83
Yu, Bin 362

	Title
	Preface
	Organization
	Table of Contents
	Petri Nets, Discrete Physics, and Distributed Quantum Computation
	Autonomous Distributed System and Its Realization by Multi Agent Nets
	Introduction
	Autonomous Distributed System Paradigm
	Multi Agent Nets
	Software Environment for the Multi Agent Nets
	Realization of ADS by Multi Agent Nets
	Next Generation Manufacturing [9]
	Secret Sharing Distributed Storage System[10]
	Distributed Energy Management Systems for CO2 Reduction [11]

	Conclusion
	References

	Petri Nets Without Tokens (Invited talk)
	Toward Specifications for Reconfigurable Component Systems (Preliminary Abstract)
	Generating Petri Net State Spaces
	Introduction
	The State Space Generation Tool LoLA
	Some Applications of LoLA
	Core Procedures in a State Space Generator
	Reduction Techniques
	Conclusion

	Markov Decision Petri Net and Markov Decision Well-Formed Net Formalisms
	Introduction
	Markov Decision Petri Net
	Markov Decision Process
	Markov Decision Petri Net

	Markov Decision Well-Formed Net
	WN Informal Introduction
	Markov Decision Well-Formed Net Definition
	MDWN Semantics
	Theoretical Results on Symmetry Exploitation

	Experiments Discussion
	Related Work
	Conclusion

	Comparison of the Expressiveness of Arc, Place and Transition Time Petri Nets
	Introduction
	Framework Definition
	${T,A,P}-TPN$: Definitions and Semantics
	Common Definitions
	Transition Time Petri Nets $(T-TPN)$
	Place Time Petri Nets $(P-TPN)$
	Arc Time Petri Nets $(A-TPN)$

	Comparison of the Expressiveness Wrt Bisimulation
	$\overline{\txpn} \not \leqbisim \protect\underline{\txpn} \text{~with~} X \in \{T,A,P\}$
	$\protect\underline{\tppn} \sleqbisim \overline{\tppn}$
	$\protect\underline{\tapn} \sleqbisim \overline{\tapn}$
	$\protect\underline{\ttpn} \not \leqbisim \overline{\ttpn}$
	$\overline{\tppn} \not \leqbisim \overline{\ttpn}$
	$\overline{\ttpn} \not \leqbisim \overline{\tppn}$ and $ \protect\underline{\ttpn} \not \leqbisim \protect\underline{\tppn}$}

	$\overline{\ttpn} \sleqbisim \overline{\tapn}$ and $ \protect\underline{\ttpn} \leqbisim \protect\underline{\tapn}$
	$\strong{\tppn} \sleqbisim \strong{\tapn}$ and $\protect\weak{\tppn} \sleqbisim \protect\weak{\tapn}$
	Sum Up

	Conclusion

	Improving Static Variable Orders Via Invariants
	Introduction
	Preliminaries
	Petri Nets and Self-modifying Nets
	Reachability Analysis and Invariant Analysis
	Decision Diagrams
	Symbolic Algorithms to Generate the State Space of a Net

	Structural Invariants to Improve Symbolic Algorithms
	Using Structural Invariants to Merge State Variables
	Using Structural Invariants to Order State Variables

	Experimental Results
	Related Work
	Conclusions and Future Work

	Independence of Net Transformations and Token Firing in Reconfigurable Place/Transition Systems
	Introduction
	Mobile Network Scenario
	Reconfigurable P/T-Systems
	Independence of Net Transformations and Token Firing
	General Framework of Net Transformations
	Conclusion

	From Many Places to Few: Automatic Abstraction Refinement for Petri Nets
	Introduction
	Preliminaries and Outline
	Abstraction of Sets of Markings
	Efficient Abstract Semantics
	Abstraction Refinement
	The Algorithm
	Experimental Results

	A Compositional Method for the Synthesis of Asynchronous Communication Mechanisms
	Introduction
	ACM Example

	Overview of the Approach
	Models for Verification and Implementation

	The Abstract Model for RRBB ACMs
	Coherence
	Freshness

	The Implementation Model and Its Verification
	Generation of the Implementation Model
	Verification of the Implementation Model

	Synthesizing the Source Code
	Conclusions and Future Work

	History-Dependent Petri Nets
	Introduction
	Preliminaries
	Event History and History Logic
	Token History Nets
	Global History Nets
	Global History Nets with Counting Formulae Guards
	Nets with Counting Formulae as Guards vs. Inhibitor Nets
	Guards Depending on the Marking Only
	Counting Formulae with Bounded Synchronization Distance

	Global History Nets with LTL Guards
	Related Work
	Conclusion

	Complete Process Semantics for Inhibitor Nets
	Introduction
	Preliminaries
	The Semantical Framework
	Process Semantics of Pti-nets
	Conclusion

	Behaviour-Preserving Transition Insertions in Unfolding Prefixes
	Introduction
	Basic Notions
	Petri Nets
	Unfolding Prefixes

	Transformations
	Sequential Pre-insertion
	Sequential Post-insertion
	Concurrent Insertion

	Insertions in the Prefix
	Sequential Pre-insertion
	Sequential Post-insertion
	Concurrent Insertion

	Optimisation
	Equivalent Transformations
	Commutative Transformations

	Conclusions

	Combining Decomposition and Unfolding for STG Synthesis
	Introduction
	Basic Definitions
	Petri Nets
	Signal Transition Graphs
	Unfolding Prefixes

	Unfolding-Based Synthesis
	STG Decomposition
	Tree Decomposition
	CSC-Aware Decomposition

	Combining Decomposition and Unfolding Techniques
	Results
	Conclusion

	Object Nets for Mobility
	Introduction
	Object Nets
	Elementary Object Systems
	Name Spaces for EOS

	Mobile EOS
	Relating Mobile EOS to EOS
	Name Spaces and Mobile EOS
	Conclusion

	Web Service Orchestration with Super-Dual Object Nets
	Motivation: Web Service Orchestration
	Introduction to Super-Dual Petri Nets
	Basic Definitions
	Petri Nets
	Super-Dual Nets

	From Object Nets to Super-Dual Object Nets
	Object Nets and Object Net Systems
	Super-Dual Object Nets

	Simulating Super-Dual Object Nets
	Transition Refinement: A First Approach in Renew
	Related Work
	Conclusion

	Synthesis of Elementary Net Systems with Context Arcs and Localities
	Introduction
	ENCL-Systems
	Step Transition Systems and Context Regions
	Transition Systems of ENCL-Systems
	Solving the Synthesis Problem
	Concluding Remarks

	Nets with Tokens Which Carry Data
	Introduction
	Preliminaries
	Affine Well-Structured Nets
	Data Nets
	Decision Problems
	Classes of Data Nets
	Example: A File System

	Reset Nets and Lossy Channel Systems
	Decidability
	Hardness
	Concluding Remarks

	Operating Guidelines for Finite-State Services
	Introduction
	Models for Services
	Open Workflow Nets (oWFN)
	Service Automata
	Translation from oWFN to Service Automata

	A Characterization of Deadlocks
	A Canonical Partner
	Operating Guidelines
	Implementation
	Conclusion

	Theory of Regions for the Synthesis of Inhibitor Nets from Scenarios
	Introduction
	Pti-nets
	The Synthesis Problem
	Regions of Stratified Languages (w.r.t. Pti-nets)
	Conclusion

	Utilizing Fuzzy Petri Net for Choreography Based Semantic Web Services Discovery
	Introduction
	Motivation Example
	Preliminaries
	Introduction to FPN
	The Ontology Concept Similarity Value

	Transformation and Matchmaking
	Atomic Process Transformation and Operations Matching
	Composite Process Transformation and Matchmaking

	Combining FPN Process Modules
	Analysis
	Analysis Soundness of FPN
	The Matching Degree of Two Web Services

	Conclusion

	Formal Models for Multicast Traffic in Network on Chip Architectures with Compositional High-Level Petri Nets
	Introduction
	Multistage Interconnection Networks
	Compositional High-Level Petri Nets
	A Dedicated Small Net Class
	Net Composition Operations
	Basic Net $\net_{SE} (c,m_{max})$
	Basic Net $\PG(c,m_{max})$
	Basic Net $\PF(c,m_{max})$

	Net Semantics of MINs
	Simulation
	Incorporated Packet Generators and Packet Flushes
	Execution
	Measures

	Conclusion and Ongoing Work

	Name Creation vs. Replication in Petri Net Systems
	Introduction
	The Basic Model
	Name Creation
	Replication
	Name Creation + Replication
	Boundedness Results
	Conclusions and Future Work

	Modelling the Datagram Congestion Control Protocol’s Connection Management and Synchronization Procedures
	Introduction
	Overview of DCCP's Connection Management Procedures
	DCCP Packet Format
	DCCP Connection Management Procedures
	Synchronization Procedure

	CPN Model Development
	Refinement of the Hierarchical Structure of DCCP-CM CPN Model
	Refinement of the Data Structures of the DCCP-CM CPN Model
	Illustration of Folding and Regrouping of Transitions at the Executable Level

	Conclusion and Future Work

	The ComBack Method – Extending Hash Compaction with Backtracking
	Introduction
	Background
	The ComBack Method
	The ComBack Algorithm
	Variants and Extensions
	Experimental Results
	Conclusions and Future Work

	Computing Minimal Elements of Upward-Closed Sets for Petri Nets
	Introduction
	Preliminaries
	A Strategy for Computing the Sizes of Minimal Elements
	Some Applications
	Petri Nets
	Parametric Clocked Petri Nets
	Subclasses of Petri Nets
	Lossy Petri Nets

	Conclusion

	ProM 4.0: Comprehensive Support for Real Process Analysis
	Introduction
	Overview
	Running Example
	Discovery
	Conformance
	Extension
	Additional Functionality
	Conclusion

	dmcG: A Distributed Symbolic Model Checker Based on GreatSPN
	Introduction
	Related Work
	Building $dmcG$
	Architecture of $dmcG$
	Interaction with GreatSPN
	Verification of Safety Properties

	Experimentations
	State Distribution
	Speedups
	Other Considerations

	Conclusion

	Workcraft: A Static Data Flow Structure Editing, Visualisation and Analysis Tool
	Introduction
	Motivation
	Architecture
	Software Technologies
	User Interface
	High-Level Model Analysis Within Workcraft Framework
	SDFS with Spread Token Semantics
	Conversion of SDFS Models into Petri Nets
	Propagation of Petri Net Model Checking Results to High-Level Models

	Conclusion

	Author Index

