

Lecture Notes in Computer Science 4549
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

James Aspnes Christian Scheideler
Anish Arora Samuel Madden (Eds.)

Distributed Computing
in Sensor Systems

Third IEEE International Conference, DCOSS 2007
Santa Fe, NM, USA, June 18-20, 2007
Proceedings

13

Volume Editors

James Aspnes
Yale University, Department of Computer Science
51 Prospect Street, New Haven, CT 06520-8285, USA
E-mail: aspnes@cs.yale.edu

Christian Scheideler
Technical University of Munich, Institute of Informatics
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: scheideler@in.tum.de

Anish Arora
Ohio State University, Department of Computer Science and Engineering
395 Dreese Hall, Columbus, OH 43210-1277, USA
E-mail: anish@cse.ohio-state.edu

Samuel Madden
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory (CSAIL)
32 Vassar St., Cambridge, MA 02139, USA
E-mail: srmadden@mit.edu

Library of Congress Control Number: 2007928495

CR Subject Classification (1998): C.2.4, C.2, D.4.4, E.1, F.2.2, G.2.2, H.4

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-73089-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73089-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12077670 06/3180 5 4 3 2 1 0

Message from the General Co-chairs

We are pleased to welcome you to the proceedings of DCOSS 2007, the IEEE
International Conference on Distributed Computing in Sensor Systems, the third
event in this annual conference series. The DCOSS meeting series covers the key
aspects of distributed computing in sensor systems, such as high-level abstrac-
tions, computational models, systematic design methodologies, algorithms, tools
and applications.

This meeting would not have been possible without the tireless effort of many
volunteers. We are indebted to the DCOSS 2007 Program Chair, James Asp-
nes, for overseeing the review process and composing the technical program.
We appreciate his leadership in putting together a strong and diverse Program
Committee (PC) covering various aspects of this multidisciplinary research area.

We would like to thank the PC Vice Chairs, the members of the Program
Committee, the external referees consulted by the PC, as well as all of the authors
who submitted their work to DCOSS 2007.

Several volunteers contributed significantly to the realization of the meeting.
We wish to thank the organizers of the three workshops that were collocated
with DCOSS 2007. We would like to thank Wendi Heinzelman and Bhaskar
Krishnamachari for their efforts in organizing the poster session. Special thanks
go to Amol Bakshi for handling Web-based publicity and local arrangements,
and Yang Yu for his assistance in putting together this proceedings volume.

We would like to especially thank Jose Rolim, DCOSS Steering Committee
Chair, for inviting us to be the General Co-chairs. His invaluable input in shaping
this conference series and his timely contributions in resolving meeting-related
issues are gratefully acknowledged.

We wish to thank the keynote speakers, Richard M. Karp (University of Cali-
fornia at Berkeley) and P.R. Kumar (University of Illinois, Urbana-Champaign).
We deeply appreciate their participation in the meeting.

Finally, we would like to acknowledge the sponsorship by the IEEE Techni-
cal Committee on Parallel Processing, the IEEE Technical Committee on Dis-
tributed Processing, the TCS-Sensor Lab of the Centre Universitaire d. Infor-
matique of the University of Geneva, Switzerland and the European Association
for Theoretical Computer Science (EATCS).

The research area of sensor networks is rapidly evolving, influenced by fasci-
nating advances in supporting technologies. We sincerely hope that this confer-
ence series will serve as a forum for researchers working in different, complemen-
tary aspects of this multidisciplinary field to exchange ideas and interact and
cross-fertilize research in the algorithmic and foundational aspects, high-level
approaches as well as more applied and technology-related issues focusing on
tools and applications of wireless sensor networks.

June 2007 Sotiris Nikoletseas
Viktor K. Prasanna

Message from the Program Chair

This volume holds the proceedings of the 3rd Annual Conference on Distributed
Computing on Sensor Systems (DCOSS 2007). The 27 papers in this volume
where selected from 71 submissions in three tracks covering the areas of al-
gorithms, applications, and systems. The conference continues in its mission
to bring together researchers in all areas of sensor systems and ensure cross-
pollination both between theory and practice and between the broader field of
distributed computing and the specific issues arising in sensor networks and
related systems.

Selecting the papers for this volume required the efforts of many people, in-
cluding the members of the Program Committee and numerous outside referees.
The work of the three Program Committee Vice Chairs—Christian Scheideler,
for the Algorithms track; Anish Arora, for the Applications track; and Samuel
Madden, for the Systems track—to make this process run smoothly was an in-
valuable contribution to its success. I am deeply in their debt for agreeing to take
on this responsibility, as I am to the many members of the Program Committee
and the many external referees who worked with them.

I would also like to thank the Proceedings Chair, Yang Yu, for his tireless
work in assembling the conference proceedings, and the General Co-chairs Sotiris
Nikoletseas and Viktor Prasanna for their guidance and countless efforts in or-
ganizing the conference.

June 2007 James Aspnes

Organization

General Chair

Sotiris Nikoletseas University of Patras and CTI, Greece
Viktor K. Prasanna University of Southern California, USA

Vice General Chair

Azzedine Boukerche University of Ottawa, Canada

Program Chair

James Aspnes Yale University, USA

Program Vice Chairs

Algorithms
Christian Scheideler Technical University of Munich, Germany

Applications
Anish Arora Ohio State University, USA

Systems
Samuel Madden Massachusetts Institute of Technology, USA

Steering Committee Chair

Jose Rolim University of Geneva, Switzerland

Steering Committee

Sajal Das University of Texas at Arlington, USA
Josep Diaz UPC Barcelona, Spain
Deborah Estrin University of California, Los Angeles, USA
Phillip B. Gibbons Intel Research, Pittsburgh, USA
Sotiris Nikoletseas University of Patras and CTI, Greece
Christos Papadimitriou University of California, Berkeley, USA
Kris Pister University of California, Berkeley, and Dust,

Inc., USA
Viktor Prasanna University of Southern California, Los Angeles,

USA

VIII Organization

Poster Chair

Wendi Heinzelman University of Rochester, USA
Bhaskar Krishnamachari University of Southern California, USA

Proceedings Chair

Yang Yu Motorola Labs, USA

Publicity Co-chairs

Amol Bakshi University of Southern California, USA
Sanjay Jha University of New South Wales, Australia
Christian Schindelhauer University of Freiburg, Germany

Finance Chair

Germaine Gusthiot University of Geneva, Switzerland

Sponsoring Organizations

IEEE Computer Society Technical Committee on Parallel Processing (TCPP)
IEEE Computer Society Technical Committee on Distributed Processing

(TCDP)

Held in Cooperation with

ACM Special Interest Group on Computer Architecture (SIGARCH)
ACM Special Interest Group on Embedded Systems (SIGBED)
European Association for Theoretical Computer Science (EATCS)
IFIP WG 10.3

Program Committee

Tarek Abdelzaher University of Illinois at Urbana-Champaign,
USA

Philippe Bonnet University of Copenhagen, Denmark
Bogdan Chlebus of Colorado at Denver, USA
Alfredo Cuzzocrea University of Calabria, Italy
Uday Desai Indian Institute of Technology at Bombay,

India
Amol Deshpande University of Maryland, College Park, USA
Deborah Estrin University of California at Los Angeles, USA
Andras Farago University of Texas at Dallas, USA

Organization IX

Sandor Fekete Braunschweig University of Technology,
Germany

Thomas Fuhrmann University of Karlsruhe, Germany
Jie Gao Stony Brook University, USA
David Gay Intel Research, Berkeley, USA
Ramesh Govindan University of Southern California, USA
Tom Henderson University of Utah, USA
Teruo Higashino Osaka University, Japan
S. Sitharama Iyengar Louisiana State University, USA
Bill Kaiser University of California at Los Angeles, USA
David Kempe University of Southern California, USA
Eddie Kohler University of California at Los Angeles, USA
Bhaskar Krishnamachari University of Southern California, USA
Alex Labrinidis University of Pittsburgh, USA
Xiang-Yang Li Illinois Institute of Technology, USA
Sharad Mehrotra University of California at Irvine, USA
Vinayak Naik University of California at Los Angeles, USA
Suman Nath Microsoft Research, USA
Alessandro Panconesi University of Rome “La Sapienza,” Italy
Joe Paradiso Massachusetts Institute of Technology, USA
Rajmohan Rajaraman Northeastern University, USA
Jim Reich Xerox Parc, USA
Andrea Richa Arizona State University, USA
Kay Römer ETH Zurich, Switzerland
Christian Scheideler Technical University of Munich, Germany
Jack Stankovic University of Virginia, USA
Gaurav Sukhatme University of Southern California, USA
Subhash Suri University of California at Santa Barbara,

Germany
Andreas Terzis Johns Hopkins University, USA
Yu-Chee Tseng National Chiao Tung University, Taiwan, ROC
Matt Welsh Harvard University, USA
Peter Widmayer ETH Zurich, Switzerland
Wei Ye USC ISI, USA
Hongwei Zhang Wayne State University, USA
Lisa Zhang Bell Labs, USA

Referees

Fang Bian
Flavio Chierichetti
Jingjing Duan
Devdatt Dubhashi
Amitabha Ghosh
Omprakash Gnawali

Sameh Gobriel
Anandha Gopalan
Shenoda Guirguis
Ted Herman
Hojjat Jafarpour
Ravi Chandra Jammala-

madaka
Ki-Young Jang
Shyam Kapadia
Jason Kirschenbaum
Teresa Ko
Nupur Kothari

X Organization

Alexander Kroeller
Vinod Kulathumani
Santosh Kumar
Rafael Laufer
Xin Liu
Daniel Massaguer
Michele Nati
Melih Onus
Jeongyeup Paek
Joseph Paradiso
Sundeep Pattem
Roberto Petroccia

Mohammad Rahimi
Rik Sarkar
Tom Schoellhammer
Michael Segal
Mohamed Sharaf
Abhishek Sharma
Simone Silvestri
Primoz Skraba
Dongjin Son
Avinash Sridharan
Bin Tang
Bishal Thapa

Claudio Vicari
Yin Wang
Karen Weeks
Donglin Xia
Bo Xing
Guoliang Xue
Kiran Yedavalli
Xingbo Yu
Xianjin Zhu

Table of Contents

Distributed Coalition Formation in Visual Sensor Networks: A Virtual
Vision Approach . 1

Faisal Qureshi and Demetri Terzopoulos

Efficient and Distributed Access Control for Sensor Networks 21
Donggang Liu

Optimizing End to End Routing Performance in Wireless Sensor
Networks . 36

Chen Wang, Guokai Zeng, and Li Xiao

Improving Event-to-Sink Throughput in Wireless Sensor Networks 50
Chen Wang and Li Xiao

Dwarf: Delay-aWAre Robust Forwarding for Energy-Constrained
Wireless Sensor Networks . 64

Mario Strasser, Andreas Meier, Koen Langendoen, and Philipp Blum

Localization for Anchoritic Sensor Networks . 82
Yuliy Baryshnikov and Jian Tan

Mobile Anchor-Free Localization for Wireless Sensor Networks 96
Yurong Xu, Yi Ouyang, Zhengyi Le, James Ford, and Fillia Makedon

Optimal Cluster Association in Two-Tiered Wireless Sensor
Networks . 110

WeiZhao Wang, Wen-Zhan Song, Xiang-Yang Li, and
Kousha Moaveni-Nejad

Distributed Facility Location Algorithms for Flexible Configuration of
Wireless Sensor Networks . 124

Christian Frank and Kay Römer

SNTS: Sensor Network Troubleshooting Suite . 142
Mohammad Maifi Hasan Khan, Liqian Luo, Chengdu Huang, and
Tarek Abdelzaher

Design and Implementation of a Flexible Location Directory Service for
Tiered Sensor Networks . 158

Sangeeta Bhattacharya, Chien-Liang Fok, Chenyang Lu, and
Gruia-Catalin Roman

XII Table of Contents

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor
Networks . 174

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan,
Anton Riabov, and Fan Ye

A Compilation Framework for Macroprogramming Networked
Sensors . 189

Animesh Pathak, Luca Mottola, Amol Bakshi,
Viktor K. Prasanna, and Gian Pietro Picco

Passive Inspection of Sensor Networks . 205
Matthias Ringwald, Kay Römer, and Andrea Vitaletti

Separating the Wheat from the Chaff: Practical Anomaly Detection
Schemes in Ecological Applications of Distributed Sensor Networks 223

Lúıs M.A. Bettencourt, Aric A. Hagberg, and Levi B. Larkey

Image Change Detection Using Wireless Sensor Networks 240
SreeRamya Yelisetty and Kamesh R. Namuduri

Near Optimal Sensor Selection in the COlumbia RIvEr (CORIE)
Observation Network for Data Assimilation Using Genetic
Algorithms . 253

Thanh Dang, Sergey Frolov, Nirupama Bulusu, Wu-chi Feng, and
António Baptista

Data Salmon: A Greedy Mobile Basestation Protocol for Efficient Data
Collection in Wireless Sensor Networks . 267

Murat Demirbas, Onur Soysal, and Ali Şaman Tosun

SDIP3: Structured and Dynamic Information Push and Pull Protocols
for Distributed Sensor Networks . 281

Ying Zhang and Qingfeng Huang

Efficient Computation of Minimum Exposure Paths in a Sensor
Network Field . 295

Hristo N. Djidjev

Energy Efficient Intrusion Detection in Camera Sensor Networks 309
Primoz Skraba and Leonidas Guibas

Leveraging Redundancy in Sampling-Interpolation Applications for
Sensor Networks . 324

Periklis Liaskovits and Curt Schurgers

A Fully Polynomial Approximation Algorithm for Collaborative
Relaying in Sensor Networks Under Finite Rate Constraints 338

Rajgopal Kannan, Shuangqing Wei, Vasu Chakravarthy, and
Murali Rangaswamy

Table of Contents XIII

A Connectivity Based Partition Approach for Node Scheduling in
Sensor Networks . 354

Yong Ding, Chen Wang, and Li Xiao

Energy-Efficient Data Acquisition Using a Distributed and
Self-organizing Scheduling Algorithm for Wireless Sensor Networks 368

Supriyo Chatterjea, Tim Nieberg, Yang Zhang, and Paul Havinga

An Adaptive Scheduling Protocol for Multi-scale Sensor Network
Architecture . 386

Santashil PalChaudhuri and David B. Johnson

Minimum-Energy Broadcast with Few Senders . 404
Stefan Funke, Sören Laue, and Rouven Naujoks

Author Index . 417

Distributed Coalition Formation in Visual Sensor
Networks: A Virtual Vision Approach

Faisal Qureshi1 and Demetri Terzopoulos1,2

1 Dept. of Computer Science, University of Toronto, Toronto, ON, Canada
faisal@cs.toronto.edu

2 Computer Science Dept., University of California, Los Angeles, CA, USA
dt@cs.ucla.edu

Abstract. We propose a distributed coalition formation strategy for collabora-
tive sensing tasks in camera sensor networks. The proposed model supports task-
dependent node selection and aggregation through an announcement/bidding/
selection strategy. It resolves node assignment conflicts by solving an equiva-
lent constraint satisfaction problem. Our technique is scalable, as it lacks any
central controller, and it is robust to node failures and imperfect communication.
Another unique aspect of our work is that we advocate visually and behaviorally
realistic virtual environments as a simulation tool in support of research on large-
scale camera sensor networks. Specifically, our visual sensor network comprises
uncalibrated static and active simulated video surveillance cameras deployed in a
virtual train station populated by autonomously self-animating pedestrians. The
readily reconfigurable virtual cameras generate synthetic video feeds that emu-
late those generated by real surveillance cameras monitoring public spaces. Our
simulation approach, which runs on high-end commodity PCs, has proven to be
beneficial because this type of research would be difficult to carry out in the real
world in view of the impediments to deploying and experimenting with an appro-
priately complex camera network in extensive public spaces.

Keywords: Camera sensor networks, Sensor coordination and control,
Distributed coalition formation, Video surveillance.

1 Introduction

Camera sensor networks are becoming increasingly important to next generation appli-
cations in surveillance, in environment and disaster monitoring, and in the military. In
contrast to current video surveillance systems, camera sensor networks are character-
ized by smart cameras, large network sizes, and ad hoc deployment.1 These systems
lie at the intersection of machine vision and sensor networks, raising issues in the two
fields that must be addressed simultaneously. The effective visual coverage of extensive
areas—public spaces, disaster zones, and battlefields—requires multiple cameras to col-
laborate towards common sensing goals. As the size of the camera network grows, it

1 Smart cameras are self-contained vision systems, complete with image sensors, power cir-
cuitry, communication interfaces, and on-board processing capabilities [1].

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 F. Qureshi and D. Terzopoulos

Fig. 1. Plan view of the virtual Penn Station environment with the roof not rendered, revealing the
concourses and train tracks (left), the main waiting room (center), and the long shopping arcade
(right). (The yellow rectangles indicate station pedestrian portals.) An example visual sensor
network comprising 16 simulated active (pan-tilt-zoom) video surveillance cameras is shown.

becomes infeasible for human operators to monitor the multiple video streams and iden-
tify all events of possible interest, or even to control individual cameras in performing
advanced surveillance tasks. Therefore, it is desirable to design camera sensor networks
that are capable of performing visual surveillance tasks autonomously, or at least with
minimal human intervention.

In this paper, we demonstrate a camera network model comprising uncalibrated pas-
sive and active simulated video cameras that with minimal operator assistance can per-
form persistent surveillance of a large virtual public space—a train station populated
by autonomously self-animating virtual pedestrians (Fig. 1). Once a human operator or
an automated visual behavior analysis routine monitoring the surveillance video feeds
identified a pedestrian of interest, the cameras decide amongst themselves how best to
observe the subject. For example, a subset of the active pan/tilt/zoom (PTZ) cameras
can collaboratively track the pedestrian as (s)he weaves through the crowd. The prob-
lem of assigning cameras to persistently monitor pedestrians becomes challenging when
there are multiple pedestrians of interest. To deal with the numerous possibilities, the
cameras must be able to reason about the dynamic situation. To this end, we propose a
distributed camera network control strategy that is capable of dynamic task-driven node
aggregation through local decision making and inter-node communication.

1.1 Virtual Vision

Deploying a large-scale camera sensor network in the real world is a major under-
taking whose cost can easily be prohibitive for most researchers interested in design-
ing and experimenting with sensor networks. Moreover, privacy laws generally restrict
the monitoring of people in public spaces for experimental purposes. As a means of

Distributed Coalition Formation in Visual Sensor Networks 3

Fig. 2. Virtual vision paradigm (image from [2])

overcoming these impediments, we advocate the pursuit of camera sensor network re-
search in the context of a unique synthesis of advanced computer graphics and vision
simulation technologies. In particular, we demonstrate the design of simulated cam-
era sensor network systems and meaningful experimentation with such systems within
visually and behaviorally realistic virtual environments (Fig. 2).

Legal impediments and cost considerations aside, the use of realistic virtual envi-
ronments in sensor network research offer significantly greater flexibility during the
design and evaluation cycle, thus expediting the engineering process: The multiple vir-
tual cameras, which generate synthetic video feeds that emulate those generated by real
surveillance cameras monitoring public spaces, are very easily reconfigurable in the
virtual space. The virtual world provides readily accessible ground-truth data for the
purposes of visual sensor network algorithm validation. Experiments are perfectly re-
peatable in the virtual world, so we can readily modify algorithms and parameters and
immediately determine their effect. The hard real-time constraints of the real world can
easily be relaxed in the simulated world; i.e., simulation time can be prolonged relative
to real, “wall-clock time”, in principle permitting arbitrary amounts of computational
processing to be carried out during each unit of simulated time. Finally, despite its so-
phistication, our simulator runs on high-end commodity PCs, thus obviating the need
to grapple with special-purpose hardware and software.

1.2 Distributed Control in Camera Sensor Networks

Our work deals with distributed control in camera sensor networks and many of the
characteristic challenges associated with sensor networks are relevant. Task-based sen-
sor selection is a fundamental issue in sensor networks [3]. The selection process must
take into account the information contribution of each node against its resource con-
sumption or potential utility in other tasks. Another key issue in sensor networks is node
organization, which has been proposed by researchers as a means to limit the commu-
nication to those nodes that are relevant to the task at hand. Distributed approaches for
node selection or node organization are preferable to centralized approaches and offer
what are perhaps the greatest advantages of networked sensing—robustness and scala-
bility. Also, in a typical sensor network, each sensor node has local autonomy and can
communicate with a small number of neighboring nodes that are within radio commu-
nication range.

4 F. Qureshi and D. Terzopoulos

Mindful of these issues, we propose a novel camera sensor network control strat-
egy that does not require camera calibration, a detailed world model, or a central con-
troller. We model virtual cameras as nodes in a communication network that emulates
those found in physical sensor networks: 1) nodes can communicate directly with their
neighbours, 2) if necessary, a node can communicate with another node in the network
through multi-hop routing, and 3) unreliable communication. The overall behavior of
the network is the consequence of the local processing at each node and inter-node com-
munication. The network is robust to node and communication link failures; moreover,
it is scalable due to the lack of a central controller. Visual surveillance tasks are per-
formed by groups of one or more camera nodes. These groups, which are created on the
fly, define the information sharing parameters and the extent of collaboration between
nodes. During the lifetime of the surveillance task, a group evolves—i.e., old nodes
leave the group and new nodes join it. One node in each group acts as the group leader
and is responsible for group-level decision making. We also present a new constraint
satisfaction problem formulation for resolving group interactions.

1.3 Overview

The contributions of this paper are twofold. We introduce a novel camera sensor net-
work framework suitable for next generation visual surveillance applications. Further-
more, we demonstrate the advantages of developing and evaluating camera sensor net-
works within a sophisticated virtual reality simulation environment. The remainder of
the paper is organized as follows: Section 2 covers relevant prior work. We explain the
low-level vision emulation and behavior models for camera nodes in Section 3. Sec-
tion 4 introduces the sensor network communication model. In Section 5, we demon-
strate the application of this model in the context of visual surveillance. We present our
results in Section 6 and our conclusions and future research directions in Section 7.

2 Related Work

As was argued in [4, 5], computer graphics and virtual reality technologies are rapidly
presenting viable alternatives to the real world for developing sensory systems (see
also [6]). Our camera network is deployed and tested within the virtual train station
simulator that was developed in [2]. The simulator incorporates a large-scale environ-
mental model (of the original Pennsylvania Station in New York City) with a sophisti-
cated pedestrian animation system. The simulator can efficiently synthesize well over
1000 self-animating pedestrians performing a rich variety of activities in the extensive
indoor urban environment. Like real humans, the synthetic pedestrians are fully au-
tonomous. They perceive the virtual environment around them, analyze environmental
situations, make decisions and behave naturally within the train station. Standard com-
puter graphics techniques enable a photorealistic rendering of the busy urban scene with
considerable geometric and photometric detail (Fig. 1).

The problem of forming sensor groups based on task requirements and resource
availability has received much attention within the sensor networks community [3].
Reference [1] argues that task-based grouping in ad hoc camera networks is highly ad-
vantageous. Collaborative tracking, which subsumes the above issue, is considered an

Distributed Coalition Formation in Visual Sensor Networks 5

essential capability in many sensor networks [3]. Reference [7] introduces an informa-
tion driven approach to collaborative tracking, which attempts to minimize the energy
expenditure at each node by reducing inter-node communication. A node selects the
next node by utilizing the information gain vs. energy expenditure tradeoff estimates
for its neighbor nodes. In the context of camera networks, it is often difficult for a cam-
era node to estimate the expected information gain by assigning another camera to the
task without explicit geometric and camera-calibration knowledge, but such knowledge
is tedious to obtain and maintain during the lifetime of the camera network. Therefore,
our camera networks do without such knowledge; a node needs to communicate with
nearby nodes in order to select new nodes.

Nodes comprising sensor networks are usually untethered sensing units with limited
onboard power reserves. Consequently, a crucial concern in sensor networks is the en-
ergy expenditure at each node, which determines the life-span of a sensor network [8].
Node communications have large power requirements; therefore, sensor network con-
trol strategies attempt to minimize the inter-node communication [9, 7]. Presently, we
do not address this issue. However, the communication protocol that we propose limits
the communication to the active nodes and their neighbors.

Little attention has been paid in computer vision to the problem of controlling active
cameras to provide visual coverage of an extensive public area, such as a train station or
an airport [10,11]. Previous work on camera networks in computer vision has dealt with
issues related to low-level and mid-level computer vision, namely segmentation, track-
ing, and identification of moving objects [12], and camera network calibration [13]. Our
approach does not require calibration; however, we assume that the cameras can identify
a pedestrian with reasonable accuracy. To this end, we employ color-based pedestrian
appearance models.

IrisNet is a sensor network architecture tailored towards high-capability multimedia
sensors connected via high-capacity communication channels [14]. It takes a central-
ized view of the network and models it as a distributed database, allowing efficient
access to sensor readings. We consider this work to be orthogonal to ours. SensEye is a
recent sensor-network inspired multi-camera systems [15]. It demonstrates the benefits
of a multi-tiered network—each tier defines a set of sensing capabilities and corre-
sponds to a single class of smart camera sensors—over single-tiered networks in terms
of low-latencies and energy efficiency. However, SensEye does not deal with the dis-
tributed camera control issues that we address.

Our node grouping strategy is inspired by the ContractNet distributed problem solv-
ing protocol [16] and realizes group formation via inter-node negotiation. Unlike Mal-
lett’s [1] approach to node grouping where groups are defined implicitly via member-
ship nodes, our approach defines groups explicitly through group leaders. This sim-
plifies reasoning about groups; e.g., Mallett’s approach requires specialized nodes for
group termination. Our strategy handles group leader failures through group merging
and group leader demotion operations.

Resolving group-group interactions requires sensor assignment to various tasks,
which shares many features with Multi-Robot Task Allocation (MRTA) problems stud-
ied by the multi-agent systems community [17]. Specifically, according to the taxon-
omy provided in [17], our sensor assignment formulation belongs to the single-task

6 F. Qureshi and D. Terzopoulos

robots (ST), multi-robot tasks (MR), instantaneous assignment (IA) category. ST-MR-
IA problems are significantly more difficult than single robot task MTRA problems.
Task-based robot grouping arise naturally in ST-MR-IA problems, which are sometimes
referred to as coalition formation. ST-MR-IA problems are extensively studied and can
be reduced to a Set Partitioning Problem (SPP), which is strongly NP-hard [18]. How-
ever, many heuristics-based set partitioning algorithms exist that produce good results
on large SPPs [19]. Fortunately, the sizes of MRTA problems, and by extension SPPs,
encountered in our camera sensor network setting are small due to the spatial/locality
constraints inherent to the camera sensors.

We model sensor assignments as a Constraint Satisfaction Problem (CSP), which we
solve using “centralized” backtracking. Each sensor assignment that passes the hard
constraints is assigned a weight, and the assignment with the highest weight is se-
lected. We have intentionally avoided distributed constraint optimization techniques,
such as [20] and [21], due to their explosive communication requirements even for
small sized problems. Additionally, it is not obvious how they handle node and com-
munication failures. Our strategy lies somewhere between purely distributed and fully
centralized schemes for sensor assignments—sensor assignment is distributed at the
level of the network, whereas it is centralized at the level of a group.

3 Camera Nodes

Each virtual camera node in the sensor network is able to perform low-level visual
processing and is an active sensor with a repertoire of camera behaviors. The next two
sections describe each of these aspects of a camera node.

3.1 Local Vision Routines

Each camera has its own suite of visual routines for pedestrian recognition, identifi-
cation, and tracking, which we dub “Local Vision Routines” (LVRs). The LVRs are
computer vision algorithms that directly operate upon the synthetic video acquired by
the virtual cameras. LVRs do not have access to any 3D information available from the
virtual world, and they mimic the performance of a state-of-the-art pedestrian segmen-
tation and tracking module (Fig. 3(a)). In particular, pedestrian tracking can fail due to
occlusions, poor segmentation, bad lighting, or crowding. Tracking sometimes locks on
the wrong pedestrian, especially if the scene contains multiple pedestrians with similar
visual appearance; i.e., wearing similar clothes. Our imaging model emulates artifacts
that are of interest to camera network researchers, such as video compression and inter-
lacing. It also models camera jitter and imperfect color response.

We employ appearance-based models to track pedestrians. Pedestrians are segmented
to construct unique and robust color-based signatures (appearance models), which are
then matched across the subsequent frames. Color-based signatures have found
widespread use in tracking applications [22], but they are sensitive to illumination
changes. However, this shortcoming can be mitigated by operating in HSV space in-
stead of RGB space. Furthermore, zooming can drastically change the appearance of a
pedestrian, thereby confounding conventional appearance-based schemes. We employ a

Distributed Coalition Formation in Visual Sensor Networks 7

(a) (b) (c) (d)

Fig. 3. (a) The LVRs are programmed to track Pedestrians 1 and 3. Pedestrian 3 is tracked suc-
cessfully; however, track is lost of Pedestrian 1 who blends in with the background. The tracking
routine loses Pedestrian 3 when she is occluded by Pedestrian 2, but it regains track of Pedestrian
3 when Pedestrian 2 moves out of the way. (b) Tracking while fixating on a pedestrian. (c) Track-
ing while zooming in on a pedestrian. (d) Camera returns to its default settings upon losing the
pedestrian; it is now ready for another task.

modified color-indexing scheme [23] to tackle this problem. Thus, a distinctive charac-
teristic of our pedestrian tracking routine is its ability to operate over a range of camera
zoom settings. It is important to note that we do not assume camera calibration. See [24]
for more details.

3.2 Camera Node Behaviors

Each camera node is an autonomous agent capable of communicating with nearby
nodes. The LVRs determine the sensing capabilities of a camera node, whose over-
all behavior is determined by the LVR (bottom-up) and the current task (top-down). We
model the camera controller as an augmented hierarchical finite state machine (Fig. 4).

In its default state, Idle, the camera node is not involved in any task. A camera node
transitions into the ComputingRelevance state upon receiving a queryrelevance mes-
sage from a nearby node. Using the description of the task that is contained within
the queryrelevance message and by employing the LVRs, the camera node can com-
pute its relevance to the task. For example, a camera can use visual search to find a
pedestrian that matches the appearance-based signature passed by the querying node.
The relevance encodes the expectation of how successful a camera node will be at a
particular sensing task. The camera returns to the Idle state when it fails to compute

8 F. Qureshi and D. Terzopoulos

Fig. 4. Top-level camera controller. Dashed states contain the child finite state machine shown in
the inset.

the relevance because it cannot find a pedestrian that matches the description. When
the camera successfully finds the desired pedestrian, however, it returns the relevance
value to the querying node. The querying node passes the relevance value to the leader
(leader node) of the group, which decides whether or not to include the camera node
in the group. The camera goes into PerformingTask state upon joining a group where
the embedded child finite state machine (Fig. 4 inset) hides the sensing details from
the top-level controller and enables the node to handle short-duration sensing (tracking)
failures. Built-in timers allow the camera node to transition into the default state instead
of hanging in some state waiting for a message from another node, which might never
arrive due to a communication error or node failure.

Each camera can fixate and zoom in on an object of interest. Fixation and zoom-
ing routines are image driven and do not require any 3D information, such as camera
calibration or a global frame of reference. We discovered that traditional Proportional
Derivative (PD) controllers generate unsteady control signals, resulting in jittery cam-
era motion. The noisy nature of tracking forces the PD controller to try continuously
to minimize the error metric without ever succeeding, so the camera keeps servoing.
Hence, we model the fixation and zooming routines as dual-state controllers. The states
are used to activate/deactivate the PD controllers. In the act state the PD controller tries
to minimize the error signal; whereas, in the maintain state the PD controller ignores
the error signal altogether and does nothing.

The fixate routine brings the region of interest—e.g., a pedestrian’s bounding box—
into the center of the image by tilting the camera about its local x and y axes (Fig. 3(b)).
The zoom routine controls the FOV of the camera such that the region of interest occu-
pies the desired percentage of the image (Fig. 3(c)). See [24] for the details.

A camera node returns to its default stance after finishing a task using the reset
routine, which is a PD controller that attempts to minimize the error between the current
zoom/tilt settings and the default zoom/tilt settings (Fig. 3(d)).

4 Sensor Network Model

We now explain the sensor network communication scheme that enables task-specific
coalition formation. The idea is as follows: A human operator presents a particular

Distributed Coalition Formation in Visual Sensor Networks 9

(a) Announcement (b) Bidding (c) Selection

Fig. 5. Task auction supports coalition formation. The red cross indicates a lost message.

sensing request to one of the nodes. In response to this request, relevant nodes self-
organize into a group with the aim of fulfilling the sensing task. The group, which
formalizes the collaboration between member nodes, is a dynamic arrangement that
evolves throughout the lifetime of the task. At any given time, multiple groups might be
active, each performing its respective task. Group formation is determined by the local
computation at each node and the communication between the nodes. Specifically, we
employ the ContractNet protocol, which models auctions (announcement, bidding, and
selection) for group formation [16] (see Fig. 5). The local computation at each node
involves choosing an appropriate bid for the announced sensing task.

From the standpoint of user interaction, we have identified two kinds of sensing
queries: 1) where the queried sensor itself can measure the phenomenon of interest—
e.g., when a human operator selects a pedestrian to be tracked within a particular video
feed—and 2) when the queried node might not be able to perform the required sens-
ing and needs to route the query to other nodes. For instance, an operator can request
the network to count the number of pedestrians wearing green shirts. To date we have
experimented only with the first kind of queries, which are sufficient for setting up
collaborative tracking tasks; however, this is by no means a limitation of the proposed
communication model.

4.1 Coalition Formation

Node grouping commences when a node n receives a sensing query. In response to
the query, the node sets up a named task and creates a single-node group. Initially, as
node n is the only node in the group, it is chosen as the leader node. To recruit new
nodes for the current task, node n begins by sending queryrelevance messages to its
neighboring nodes, Nn. This is akin to auctioning the task in the hope of finding suitable
nodes. A subset N ′ of Nn respond by sending their relevance values for the current task
(relevance message). This is the bidding phase. Upon receiving the relevance values,
node n selects a subset M of N ′ to include in the group, and sends join messages to
the chosen nodes. This is the selection phase. When there is no resource contention
between groups (tasks)—e.g., when only one task is active, or when multiple tasks that
do not require the same nodes for successful operation are active—the selection process
is relatively straightforward; node n picks those nodes from N ′ that have the highest
relevance values. On the other hand, a conflict resolution mechanism is required when
multiple groups vie for the same nodes; we present a scheme to handle this situation in

10 F. Qureshi and D. Terzopoulos

Fig. 6. (a)-(b) A node leaves a group after receiving a leave message from the group leader. (c)-
(d) Old group leader selects a new group leader and leaves the group. (e) A leader node detects
another leader performing the same task; leader/supervisor demotion commences. (f) Conflict
detection between two resources.

the next section. A node that is not already part of any group can join the group upon
receiving a join message from the leader of that group. After receiving the join message,
a subset M ′ of M elect to join the group.

For multinode groups, if a group leader decides to recruit more nodes for the task at
hand, it instructs group nodes to broadcast task requirements. This is accomplished via
sending queryrelevance to group nodes. The leader node is responsible for group-level
decisions, so member nodes forward to the group leader all the group-related messages,
such as the relevance messages from potential candidates for group membership. Dur-
ing the lifetime of a group, group nodes broadcast status messages at regular intervals.
Group leaders use status messages to update the relevance information of the group
nodes. When a leader node receives a status message from another node performing the
same task, the leader node includes that node into its group. The leader node uses the
most recent relevance values to decide when to drop a member node. A group leader
also removes a node from the group if it has not received a status message from the
node in some preset time limit.2 Similarly, a group node can choose to stop performing
the task when it detects that its relevance value is below a certain threshold. When a
leader detects that its own relevance value for the current task is below the predefined
threshold, it selects a new leader from amongst the member nodes. The group vanishes
when the last node leaves the group.

4.2 Conflict Resolution

A conflict resolution mechanism is needed when multiple groups require the same re-
sources (Fig. 6(f)). The problem of assigning sensors to the contending groups can be
treated as a Constraint Satisfaction Problem (CSP) [25]. Formally, a CSP consists of
a set of variables {v1, v2, v3, · · · , vk}, a set of allowed values Dom[vi] for each vari-
able vi (called the domain of vi), and a set of constraints {C1, C2, C3, · · · , Cm}. The
solution to the CSP is a set {vi ← ai|ai ∈ Dom[vi]}, where the ais satisfy all the
constraints.

We treat each group g as a variable, whose domain consists of the non-empty subsets
of the set of sensors with relevance values (with respect to g) greater than a predefined

2 The relevance value of a group node decays over time in the absence of new status messages
from that node. Thus, we can conveniently model node dependent timeouts; i.e., the time
duration during which at least one status message must be received by the node in question.

Distributed Coalition Formation in Visual Sensor Networks 11

threshold. The constraints restrict the assignment of a sensor to multiple groups. As-
sume, for example, a group g and a set of nodes {n1, n2, n3} with relevance values
{r1, r2, r3}, respectively. If r3 is less than the predefined threshold, the set of nodes
that will be considered for assignment to g is {n1, n2}, and the domain of g is the
set {{n1}, {n2}, {n1, n2}}. We define a constraint Cij as ai ∩ aj = {Φ}, where ai

and aj are sensor assignments to groups gi and gj , respectively; k groups give rise to
k!/2!(k − 2)! constraints.

We can then define a CSP as P = (G, D, C), where G = {g1, g2, · · · , gk} is the set
of groups (variables) with non-empty domains, S = {Dom[gi]|i ∈ [1, k]} is the set of
domains for each group, and C = {Cij |i, j ∈ [1, k], i �= j} is the set of constraints.
To solve P , we employ backtracking to search systematically through the space of pos-
sibilities. We find all solutions, rank these solutions according to the relevance values
for sensors (with respect to each group), and select the best solution to find the opti-
mal assignments. The solution ranking procedure can easily incorporate other relevant
concerns such as a preference for sensors that are positioned orthogonal to each other
with respect to the pedestrian so as to increase the position estimate accuracy or using
sensors that are within one hop distance of each other. When P has no solution, When
P has no solution, we solve smaller CSPs by relaxing the node requirements for each
task.

A node initiates the conflict resolution procedure upon identifying a group-group
conflict; e.g., when it intercepts a queryrelevance message from multiple groups, or
when it already belongs to a group and it receives a queryrelevance message from an-
other group. The conflict resolution procedure begins by centralizing the CSP in one
of the leader nodes that uses backtracking to solve the problem.3 The result is then
conveyed to the other leader nodes.

CSPs have been studied extensively in the computer science literature and there exist
more powerful variants of the basic backtracking method; however, we employ the naive
backtracking approach in the interest of simplicity and because it can easily cope with
the size of problems encountered in the current setting. A key feature of our conflict
resolution scheme is centralization, which requires that all the relevant information be
gathered at the node that is responsible for solving the CSP. For smaller CSPs, the cost
of centralization is easily offset by the speed and ease of solving the CSP.

Solving the CSP. Any solution of the above CSP P is a valid sensor node assignment;
however, some solutions are better than others as not all nodes are equally suitable for
any given sensing task. The node relevance value with respect to a group quantifies the
suitability of the node to the task performed by that group, and we can view the quality
of a solution as a function of the quality of sensor assignments to different groups. In a
restrictive setting, we can define the quality of a solution to be the sum of the quality of
sensor assignments to individual groups.

When it is possible to compare the quality of a partial solution to that of a full solu-
tion, we can store the currently best result and backtrack whenever the current partial
solution is of poorer quality. Using this strategy, we can guarantee an optimal solution

3 Leader node where centralization occurs is selected using a strategy similar to that used for
group merging (Fig. 7).

12 F. Qureshi and D. Terzopoulos

Table 1. Finding an optimal sensor node assignment. The problem is to assign three sensors each
to two groups. The average number of relevant nodes for each group is 12 and 16. AllSolu finds
all solutions, ranks them, and picks the best one, whereas BestSolu computes the optimal solution
by storing the currently best solution and backtracking when partial assignment yields a poorer
solution. As expected, the BestSolu solver outperforms the AllSolusolver.

Test cases 1 2 3 4

Number of groups 2 2 2 2
Number of sensors per group 3 3 3 3
Average number of relevant sensors 12 12 16 16
Average domain size 220 220 560 560
Number of solutions 29290 9 221347 17
Nodes explored 29511 175 221908 401
Number of Backtracks 48620 36520 314160 215040
Solver used AllSolu BestSolu AllSolu BestSolu

under the assumption that the quality of solutions increase monotonically as values are
assigned to more variables. For example, compare test cases 1 and 2 in Table 1. The
goal was to assign 3 sensors each to the two groups. Optimal assignments were found
in both cases; however, BestSolu, which employs backtracking based on the quality of
the partial solution, visited only 175 nodes to find the optimal solution, as opposed to
AllSolu, which visited 29290 nodes. The AllSolu solver enumerates every solution to
find the optimal sensor assignment. The same trend is observed in columns 3 and 4
in the table. The BestSolu solver clearly outperforms the AllSolu solver in finding the
optimal node assignment. Of course, when operating under time/resource constraints,
we can always choose the first solution or pick the best solution after a predetermined
number of nodes have been explored.

4.3 Node Failures and Communication Errors

The purposed communication model takes into consideration node and communication
failures. Communication failures are perceived as sensor failures; for example, when a
node is expecting a message from another node, and the message never arrives, the first
node concludes that the second node is malfunctioning. A node failure is assumed when
the leader node does not receive a status from the node during some predefined inter-
val, and the leader node removes the problem node from the group. On the other hand,
when a member node does not receive any message (status or queryrelevance) from the
leader node during a predefined interval, it assumes that the leader node has experienced
a failure and selects itself to be the leader of the group. An actual or perceived leader
node failure can therefore give rise to multiple single-node groups performing the same
task. Multiple groups assigned to the same task are merged by demoting all of the leader
nodes of the constituent groups, except one. Consider, for example, a group comprising
three nodes a, b, and c, with node a being the leader node. When a fails, b and c form
two single-node groups and continue to perform the sensing task. In due course, nodes b

Distributed Coalition Formation in Visual Sensor Networks 13

Assumptions: Nodes n and m are two leader nodes performing Task 1.
Case 1: Node n receives a queryrelevance or status message from node m.

if Node n is not involved in demotion negotiations with another node then send demote mes-
sage to node m after a random interval.
Case 2: Node n receives a demote message from node m.

a) if Node n has not sent a demote message to another node then demote node n and send
demoteack message to node m.

b) if Node n has sent a demote message to node m then send demoteretry message to node m
and send a demote message to node m after a random interval.

c) if Node n has sent a demote message to another node then send a demotenack message to
node m.
Case 3: Node n receives a demotenack message from node m.

Terminate demotion negotiations with node m.
Case 4: Node n receives a demoteack message from node m.

Add m to node n’s group.
Case 5: Node n receives a demoteretry message from node m.

Send a demote message to node m after a random interval.

Fig. 7. Group merging via leader demotion

and c discover each other—e.g., when b intercepts a queryrelevance or a status message
from c—and they form a new group comprising b and c, demoting node c in the process.
Thus, our proposed communication model is able to handle node failures.

Demotion is either carried out based upon the unique ID assigned to each node—
among the conflicting nodes, the one with the highest ID is selected to be the group
leader—or, when unique node IDs are not guaranteed, demotion can be carried out via
the process shown in Fig. 7. The following observations suggest that our leader demo-
tion strategy is correct; i.e., only a single leader node survives the demotion negotiations
and every other leader node is demoted.

– Observation 1: The demotion process between two leader nodes either succeeds
or fails. It succeeds when one of the two nodes is demoted. Demotion between two
nodes is based on the contention management scheme that was first introduced in
the ALOHA network protocol [26]. The ALOHA network protocol was developed
in the late 60s and it is a precursor to the widely used Ethernet protocol. In its basic
version, the ALOHA protocol states

• if you have data to send, send it.
• if there is a collision, resend after a random interval.

We point the interested reader to [27] for the details. What is important here is to
note that eventually one of the two leader nodes will be demoted; i.e., the demotion
process between two nodes will eventually succeed.

– Observation 2: The demotion process between more than two nodes involves re-
peated (distributed and parallel) application of the demotion process between two
nodes.

14 F. Qureshi and D. Terzopoulos

5 Video Surveillance

We now consider how a sensor network of dynamic cameras may be used in the con-
text of video surveillance. A human operator spots one or more suspicious pedestri-
ans in one of the video feeds and, for example, requests the network to “observe this
pedestrian,” “zoom in on this pedestrian,” or “observe the entire group.” The successful
execution and completion of these tasks requires intelligent allocation and scheduling
of the available cameras. In particular, the network must decide which cameras should
track the pedestrian and for how long.

A detailed world model that includes the location of cameras, their fields of view,
pedestrian motion prediction models, occlusion models, and pedestrian movement path-
ways may allow (in some sense) optimal allocation and scheduling of cameras; how-
ever, it is cumbersome and in most cases infeasible to acquire such a world model. Our
approach does not require such a knowledge base. We assume only that a pedestrian
can be identified by different cameras with reasonable accuracy and that the camera
network topology is known a priori. A direct consequence of this approach is that the
network can easily be modified through removal, addition, or replacement of camera
nodes.

5.1 Computing Camera Node Relevance

The accuracy with which individual camera nodes are able to compute their relevance
to the task at hand determines the overall performance of the network. Our scheme for
computing the relevance of a camera to a video surveillance task encodes the intuitive
observations that 1) a camera that is currently free should be chosen for the task, 2)
a camera with better tracking performance with respect to the task at hand should be
chosen, 3) the turn and zoom limits of cameras should be taken into account when
assigning a camera to a task; i.e., a camera that has more leeway in terms of turning
and zooming might be able to follow a pedestrian for a longer time, and 4) it is better
to avoid unnecessary reassignments of cameras to different tasks, as that might degrade
the performance of the underlying computer vision routines.

Upon receiving a task request, a camera node returns to the leader node a relevance
metric—a list of attribute-value pairs describing its relevance to the current task along
multiple dimensions (Fig. 8). The leader node converts this metric into a scalar rele-
vance value r as follows:

r =

⎧
⎪⎨

⎪⎩

exp
(
− (c−1)2

2σc
2 − (θ−θ̂)2

2σθ
2 − (α−α̂)2

2σα
2 − (β−β̂)2

2σβ
2

)

when s = free
t

t+γ when s = busy

(1)

where θ̂ = (θmin + θmax)/2, α̂ = (αmin + αmax)/2, and β̂ = (βmin + βmax)/2, and
where θmin and θmax are extremal field of view settings, αmin and αmax are extremal
rotation angles around the x-axis (up-down), and βmin and βmax are extremal rotation
angles around the y-axis (left-right). Here, 0.3 ≤ σc ≤ 0.33, σθ = (θmax − θmin)/6,
σα = (αmax −αmin)/6, and σβ = (βmax −βmin)/6. The value of γ is chosen empirically
(for our experiments we have selected γ to be 1000).

Distributed Coalition Formation in Visual Sensor Networks 15

Status = s ∈ {busy, free}
Quality = c ∈ [0, 1]
Fov = θ ∈ [θmin, θmax] degrees

XTurn = α ∈ [αmin, αmax] degrees

YTurn = β ∈ [βmin, βmax] degrees

Time = t ∈ [0, ∞) seconds
Task = a ∈ {ai|i = 1, 2, · · · }

Fig. 8. The relevance metric returned by a camera node relative to a new task request. The leader
node converts the metric into a scalar value representing the relevance of the node for the partic-
ular surveillance task.

The computed relevance values are used by the node selection scheme described
above to assign cameras to various tasks. The leader node gives preference to the nodes
that are currently free, so the nodes that are part of another group are selected only when
an insufficient number of free nodes are available for the current task.

5.2 Surveillance Tasks

We have implemented an interface that presents the operator a display of the synthetic
video feeds from multiple virtual surveillance cameras. The operator can select a pedes-
trian in any video feed and instruct the camera network to perform one of the following
tasks: 1) follow the pedestrian, 2) capture a high-resolution snapshot, or 3) zoom-in and
follow the pedestrian. The network then automatically assigns cameras to fulfill the task
requirements. The operator can also initiate multiple tasks, in which case either cameras
that are not currently occupied are chosen for the new task or some currently occupied
cameras are reassigned to the new task.

6 Results

To date, we have tested our visual sensor network system with up to 16 stationary and
pan-tilt-zoom cameras, and we have populated the virtual Penn Station environment
with up to 100 pedestrians. The sensor network correctly assigned cameras in most of
the cases. Some of the problems that we encountered are related to pedestrian iden-
tification and tracking. As we increase the number of virtual pedestrians in the train
station, the identification and tracking module has increasing difficulty following the
correct pedestrian, so the probability increases that the surveillance task fails (and the
cameras just return to their default settings).

For the example shown in Fig. 9, we placed 16 active PTZ cameras in the train
station, as shown in Fig. 1. The operator selects the pedestrian with the red shirt in
Camera 7 (Fig. 9(e)) and initiates the “follow” task. Camera 7 forms the task group and
begins tracking the pedestrian. Subsequently, Camera 7 recruits Camera 6, which in turn
recruits Cameras 2 and 3 to track the pedestrian. Camera 6 becomes the leader of the
group when Camera 7 loses track of the pedestrian and leaves the group. Subsequently,
Camera 6 experiences a tracking failure, sets Camera 3 as the group leader, and leaves
the group. Cameras 2 and 3 track the pedestrian during her stay in the main waiting
room, where she also visits a vending machine. When the pedestrian starts walking
towards the concourse, Cameras 10 and 11 take over the group from Cameras 2 and 3.

16 F. Qureshi and D. Terzopoulos

(a) C 1; 30s (b) C 9; 30s (c) C 7; 30s (d) C 6; 30s (e) C 7; 1.5min (f) C 7; 2.0min (g) C 6; 2.2min

(h) C 6; 3.0min (i) C 7; 3.5min (j) C 6; 4.2min (k) C 2; 3.0min (l) C 2; 4.0min (m) C 2; 4.3min (n) C 3; 4.0min

(o) C 3; 5.0min (p) C 3; 6.0min (q) C 3; 13.0min (r) C 10; 13.4min (s) C 11; 14.0min (t) C 9; 15.0min

Fig. 9. A pedestrian is successively tracked by Cameras 7, 6, 2, 3, 10, and 9 (see Fig. 1) as she
makes her way through the station to the concourse. (a-d) Cameras observing the station. (e) The
operator selects a pedestrian in the video feed from Camera 7. (f) Camera 7 has zoomed in on the
pedestrian, (g) Camera 6, which is recruited by Camera 7, acquires the pedestrian. (h) Camera
6 zooms in on the pedestrian. (i) Camera 7 reverts to its default mode after losing track of the
pedestrian and is now ready for another task (j) Camera 6 has lost track of the pedestrian. (k)
Camera 2. (l) Camera 2, which is recruited by Camera 6, acquires the pedestrian. (m) Camera
2 tracking the pedestrian. (n) Camera 3 is recruited by Camera 6; Camera 3 has acquired the
pedestrian. (o) Camera 3 zooming in on the pedestrian. (p) Pedestrian is at the vending machine.
(q) Pedestrian is walking towards the concourse. (r) Camera 10 is recruited by Camera 3; Camera
10 is tracking the pedestrian. (s) Camera 11 is recruited by Camera 10. (t) Camera 9 is recruited
by Camera 10.

(a) (b) (c) (d) (e)

Fig. 10. “Follow” sequence. (a) The operator selects a pedestrian in Camera 1 (upper row). (b)
and (c) Camera 1 and Camera 2 (lower row) are tracking the pedestrian. (d) Camera 2 loses track.
(e) Camera 1 is still tracking; Camera 2 has returned to its default settings.

Distributed Coalition Formation in Visual Sensor Networks 17

Fig. 11. Group merging and leader failure. Blue nodes are idle. Red nodes are following the
targets shown as pink cones. Square nodes represent group leaders and black nodes indicate node
failures.

Cameras 2 and 3 leave the group and return to their default modes. Later Camera 11,
which is now acting as the group’s leader, recruits Camera 9, which tracks the pedestrian
as she enters the concourse.

Fig. 10 illustrates a “follow” task sequence. An operator selects the pedestrian with
the green shirt in Camera 1 (top row). Camera 1 forms a group with Camera 2 (bot-
tom row) to follow and zoom in on the pedestrian. At some point, Camera 2 loses the
pedestrian (due to occlusion), and it invokes a search routine, but it fails to reacquire
the pedestrian. Camera 1, however, is still tracking the pedestrian. Camera 2 leaves the
group and returns to its default settings.

Fig. 11 presents a simulation of larger sensor networks outside our virtual vision
simulator. It shows a sensor network of 50 nodes placed randomly in a 25 m2 area. The
nodes that are within 5 m of each other can directly communicate with each other. Each
node can communicate with another node in the network through multi-hop routing.
Fig. 11(a)–(e) show group merging. When the leader of the group fails (Fig. 11(f)),
multiple member nodes assume leadership (Fig. 11(g)). These nodes negotiate each
other to select a single leader (Fig. 11(h)).

6.1 Discussion

Given the above results, we make the following observations about the proposed scheme:

– The proposed protocol successfully forms camera groups to carry out various ob-
servation tasks. Cameras that belong to a single group collaborate with each other
for the purposes of carrying out the observation task. Currently we support a few
observation tasks that are of interest to the visual surveillance community. These
are 1) taking snapshots of a pedestrian, 2) closely observing a pedestrian during
his/her stay in the designated region, and 3) following a pedestrian across multiple
cameras.

18 F. Qureshi and D. Terzopoulos

– Camera grouping does not require camera calibration or camera network topology
information, which makes our system suitable for ad hoc deployment. This is not to
say that the proposed protocol cannot take advantage of camera calibration and/or
camera network topology information if such information were available.

– Camera groups are dynamic and transient arrangements that evolve in order to per-
form an observation task. Like group formation, group evolution is a negotiation
between the relevant nodes.

– The proposed protocol can deal with node and message failures. This suggests that
the network protocol can handle addition and removal of camera nodes during the
lifetime of an observation task.

– Camera hand off occurs naturally during negotiations.
– Smaller group sizes are preferable. Larger groups have slower responses and higher

maintenance costs. The proposed protocol might fail to carry out an observation
task even when each (camera) node is assumed to be a perfect sensor if the group
evolution cannot keep up with a fast changing observation task.

– Assuming that each (camera) node is a perfect sensor, the proposed protocol still
might fail to carry out an observation task if a large fraction of nodes fail or a
significant fraction of messages are lost.

– Camera node aggregation is fully distributed and lacks a central controller, so it
is scalable. Sensor assignment in the presence of conflicts, however, is centralized
over the involved groups. Therefore, our scheme lies somewhere between a fully
distributed and a fully centralized system. In the interest of scalability, group sizes
should be kept small.

7 Conclusion

We envision future video surveillance systems to be networks of stationary and active
cameras capable of providing perceptive coverage of extensive environments with min-
imal reliance on human operators. Such systems will require not only robust, low-level
vision routines, but also novel sensor network methodologies. The work presented in
this paper is a step toward the realization of these new sensor networks and our initial
results are promising.

A unique and, in our view, important aspect of our work is that we have developed
and demonstrated our prototype video surveillance system in a realistic virtual train sta-
tion environment populated by lifelike, autonomously self-animating virtual pedestri-
ans. Our sophisticated sensor network simulator should continue to facilitate our ability
to design large-scale networks and experiment with them on commodity personal com-
puters.

The overall behavior of our prototype sensor network is governed by local decision
making at each node and communication between the nodes. Our approach is new in-
sofar as it does not require camera calibration, a detailed world model, or a central
controller. We have intentionally avoided multi-camera tracking schemes that assume
prior camera network calibration which, we believe, is an unrealistic goal for a large-
scale camera network consisting of heterogeneous cameras. Similarly, our approach
does not expect a detailed world model, which is generally hard to acquire. We expect
the proposed approach to be robust and scalable.

Distributed Coalition Formation in Visual Sensor Networks 19

We are currently pursuing a Cognitive Modeling [28] approach to node organization
and camera scheduling. We are also investigating scalability and node failure issues.
Moreover, we are constructing more elaborate scenarios involving multiple cameras
situated in different locations within the train station, with which we would like to
study the performance of the network when it is required to follow multiple pedestrians
during their prolonged stay in the train station.

Acknowledgments

The research reported herein was supported in part by a grant from the Defense Ad-
vanced Research Projects Agency (DARPA) of the Department of Defense. We thank
Tom Strat, formerly of DARPA, for his generous support and encouragement. We also
thank Wei Shao and Mauricio Plaza-Villegas for their invaluable contributions to the
implementation of the Penn Station simulator. Deborah Estrin provided helpful advice
and pointers into the sensor networks literature.

References

1. Mallett, J.: The Role of Groups in Smart Camera Networks. PhD thesis, Program of Me-
dia Arts and Sciences, School of Architecture, Massachusetts Institute of Technology (Feb.
2006)

2. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proc. ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, Los Angeles, CA (July 2005) 19–28

3. Zhao, F., Liu, J., Liu, J., Guibas, L., Reich, J.: Collaborative signal and information process-
ing: An information directed approach. Proceedings of the IEEE 91(8) (2003) 1199–1209

4. Terzopoulos, D., Rabie, T.: Animat vision: Active vision in artificial animals. Videre: Journal
of Computer Vision Research 1(1) (September 1997) 2–19

5. Terzopoulos, D.: Perceptive agents and systems in virtual reality. In: Proc. 10th ACM Sym-
posium on Virtual Reality Software and Technology, Osaka, Japan (October 2003) 1–3

6. Santuari, A., Lanz, O., Brunelli, R.: Synthetic movies for computer vision applications. In:
Proc. 3rd IASTED International Conference: Visualization, Imaging, and Image Processing
(VIIP 2003). Number 1, Spain (September 2003) 1–6

7. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for tracking
applications. In: IEEE Signal Processing Magazine. Volume 19. (March 2002) 61–72

8. Bhardwaj, M., Chandrakasan, A., Garnett, T.: Upper bounds on the lifetime of sensor net-
works. In: IEEE International Conference on Communications. Number 26 (2001) 785 –
790

9. Chang, J.H., Tassiulas, L.: Energy conserving routing in wireless adhoc networks. In: Pro-
ceedings of the IEEE Conference on Computer Communications (INFOCOM), Tel Aviv,
Israel (March 2000) 22–31

10. Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensor
surveillance. Proceedings of the IEEE 89(10) (October 2001) 1456–1477

11. Costello, C.J., Diehl, C.P., Banerjee, A., Fisher, H.: Scheduling an active camera to observe
people. In: Proc. 2nd ACM International Workshop on Video Surveillance and Sensor Net-
works, New York, NY, ACM Press (2004) 39–45

12. Collins, R., Amidi, O., Kanade, T.: An active camera system for acquiring multi-view video.
In: Proc. International Conference on Image Processing, Rochester, NY, USA (September
2002) 517–520

20 F. Qureshi and D. Terzopoulos

13. Devarajan, D., Radke, R.J., Chung, H.: Distributed metric calibration of ad hoc camera
networks. ACM Transactions on Sensor Networks 2(3) (2006) 380–403

14. Campbell, J., Gibbons, P.B., Nath, S., Pillai, P., Seshan, S., Sukthankar, R.: Irisnet: An
internet-scale architecture for multimedia sensors. In: Proc. of the 13th annual ACM inter-
national conference on Multimedia (MULTIMEDIA ’05), New York, NY, USA, ACM Press
(2005) 81–88

15. Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor network.
In: MULTIMEDIA ’05: Proc. of the 13th annual ACM international conference on Multime-
dia, New York, NY, USA, ACM Press (2005) 229–238

16. Smith, R.G.: The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transctions on Computers C-29(12) (Dec 1980) 1104–1113

17. Gerkey, B., Matari, M.: A formal analysis and taxonomy of task allocation in multi-robot
systems. International Journal of Robotics Research 23(9) (2004) 939–954

18. Garey, M.R., Johnson, D.S.: “strong” npcompleteness results: Motivation, examples, and
implications. Journal of the ACM 25(3) (1978) 499–508

19. Atamturk, A., Nemhauser, G., Savelsbergh, M.: A combined lagrangian, linear programming
and implication heuristic for large-scale set partitioning problems. Journal of Heuristics 1
(1995) 247–259

20. Modi, P.J., Shen, W.S., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence 161(1–2) (Mar 2006) 149–180
Elsevier.

21. Yokoo, M.: Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent
Systems. Springer-Verlag, Berlin, Germany (2001)

22. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean
shift. In: Proc. of the 2000 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 00). Volume 2., Hilton Head Island, South Carolina, USA (2000) 142–151

23. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1)
(Nov 1991) 11–32

24. Qureshi, F.Z.: Intelligent Perception in Virtual Camera Networks and Space Robotics. PhD
thesis, Department of Computer Science, University of Toronto (January 2007)

25. Pearson, J.K., Jeavons, P.G.: A survey of tractable constraint satisfaction problems. Technical
Report CSD-TR-97-15, Royal Holloway, University of London (July 1997)

26. Kuo, F.F.: The aloha system. ACM SIGCOMM Computer Communication Review 25(1)
(1995) 41–44 Special twenty-fifth anniversary issue. Highlights from 25 years of the Com-
puter Communication Review.

27. Murthy, C., Manoj, B.: Ad Hoc Wireless Networks Architectures and Protocols. Prentice
Hall (2004)

28. Qureshi, F., Terzopoulos, D., Jaseiobedzki, P.: Cognitive vision for autonomous satellite ren-
dezvous and docking. In: Proc. IAPR Conference on Machine Vision Applications, Tsukuba
Science City, Japan (May 2005) 314–319

Efficient and Distributed Access Control for

Sensor Networks

Donggang Liu

iSec laboratory, CSE Department
The University of Texas at Arlington

dliu@uta.edu

Abstract. Sensor networks are often used to sense the physical world
and provide observations for various uses. In hostile environments, it is
critical to control the network access to ensure the integrity, availabil-
ity, and at times confidentiality of the sensor data. This paper develops
efficient methods for distributed access control in sensor networks. The
paper starts with a baseline approach, which provides a more flexible
and efficient way to enforce access control when compared with previ-
ous solutions. This paper then extends the baseline approach to enable
privilege delegation, which allows a user to delegate its privilege to other
users without using a trusted server, and broadcast query, which allows
a user to access the network at a large scale efficiently. The privilege
delegation and broadcast query are very useful in practice; none of the
current solutions can achieve these two properties.

1 Introduction

The primary purpose of deploying a sensor network is to monitor the physical
world and provide observations for various uses. In hostile environments, it is
critical to control the access to the sensor nodes (e.g., reading sensor data), es-
pecially when there are many users in the system. For example, a sensor network
may be deployed to monitor the activities in a battlefield and provide informa-
tion for soldiers and commanders to make decisions during military operations.
Every soldier or commander will be a potential system user. In applications like
this, different users may have different access privileges. A soldier may be only
allowed to read the sensor data, while a commander may be able to re-configure
the network or update the internal states of the sensor nodes. The application
will be compromised if the access control is not properly enforced.

However, enforcing access control in sensor networks is particularly challeng-
ing. First, the resource constraints on sensor nodes often make it undesirable to
implement expensive algorithms. For example, the commonly used MICAz plat-
form uses an 8-bits ATmega128 CPU that operates at 7.7MHz [1]. It only has
128KB ROM for programming code and 4KB RAM for buffers and variables.
Second, sensor nodes are usually deployed unattended and may be compromised
after deployment [2]. Hence, any security protocol has to be resilient to node
compromises.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 21–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 D. Liu

A number of techniques have been developed recently to achieve access control
in sensor networks. These include the Least-Privilege scheme [3] and the Wang-
Li scheme [4]. However, the former can only be used for a specific type of access
control where the access is limited to the data at a pre-determined physical path
in the field. The latter is based on Elliptic Curve Cryptography (ECC), which
has been shown to be feasible for sensor nodes [5]. However, the DoS attacks
on signature verification were not properly addressed, making this scheme less
attractive. In addition, this scheme can only access one sensor node at a time,
while a significant part of actual access requests are targeted to many sensor
nodes via broadcast.

In this paper, we start with a baseline approach to deal with the situation
where every access request is targeted to a specific sensor node. Compared with
the previous schemes, our baseline approach has a number of advantages. First,
it provides a generic access control method and can be easily used to enforce any
type of access control policies. Second, it only uses symmetric key cryptography,
which is much more efficient than public key cryptography. Third, our approach
only involves a single message for every request from the user to a sensor node,
while the scheme in [4] needs to employ a more expensive challenge-responsive
protocol for accessing a local sensor node and a much more complicated cooper-
ative protocol for accessing a remote sensor node. Finally, our approach provides
strong security guarantee against compromised sensor nodes or users. Indeed, no
matter how many sensor nodes or users are compromised, a benign sensor node
will not grant the attacker any access that is beyond the simple union of the
privileges of the compromised users.

In addition to the baseline approach, we also develop techniques that enable
privilege delegation and broadcast query. The idea of privilege delegation allows a
user to delegate its access privilege to other users without a trusted third party.
The idea of broadcast query allows a user to efficiently access the sensor nodes
at a large scale. These two additional functionalities can be very useful in many
sensor operations, making our access control approach much more appealing
than the previous solutions.

This paper is organized as follows. The next section gives the system model
and assumptions. Section 3 presents the proposed techniques for access control
in sensor networks. Section 4 shows the evaluation of the proposed techniques.
Section 5 reviews some related work on sensor network security. The last section
summarizes this paper and discusses future research directions.

2 System Models and Assumptions

In this paper, we consider wireless sensor networks that consist of a large number
of resource-constrained sensor nodes, many system users, and a trusted server
such as the base station. The sensor nodes are used to sense conditions in their
local surroundings and report their observations to system users based on var-
ious query commands. The system users (e.g., soldiers) use access devices such as

Efficient and Distributed Access Control for Sensor Networks 23

PDAs and Laptops to access the sensor data. The trusted server is used to
bootstrap the keying materials for access devices to enforce access control policy.

Dataset Table: For every sensor node, the sensor data that are accessible for
system users can be viewed as a dataset table. Every record in this table is a
snapshot of the values of different attributes at a particular time. An attribute is
defined as a specific type of sensor data in the network. Examples of attributes
include the sensor readings (e.g., temperature) and the sensor states (e.g., the
active sensor). Table 1 shows an example of the dataset table of a sensor node
at time tn. This node is able to sense the temperature and humidity of its local
environments. It may activate one or both sensors, depending on the value of
the third attribute, the active sensor.

Table 1. Dataset table at time tn

Time Temp. Hum. Active Sensor

t1 80 N/A temp. sensor

t2 82 N/A temp. sensor

t3 N/A 45 hum. sensor
...

...
...

...

tn N/A 50 hum. sensor

Let A = {a1, a2, ..., am} be the set
of attributes in the system. Any value
d in the dataset table can be located
based on the attribute name a ∈ A
and the time t. For simplicity, let da,t

be the value of the attribute a at time
t, A(d) be the attribute name related
to data d, and T (d) be the time re-
lated to data d. Clearly, A(da,t) = a
and T (da,t) = t.

Access Model: A system user can perform two possible access operations on
a particular data value in the table, read and write. For example, the sensor
readings such as temperature and humidity are usually read only, while the
attributes related to the system states can be modified by a user with some
proper privilege. Based on the dataset table, we define a capability matrix for a
given user. A two-bit value at column i and row j in this matrix indicates the
user’s access privilege to dai,tj in the dataset table. This value can be 00 (no
access), 01 (read-only), 10 (write-only), or 11 (read and write).

Note that the capability matrix can be very large. Fortunately, most sensor
applications use a simple way to specify a user’s capability. For example, the
policy “user U can only read the humidity readings collected from time t1 to
time t2” can be encoded as “(A(d) = humidity)∧ (t1 ≤ T (d) ≤ t2) ∧ (O = 01)”,
where O denotes the operation performed by the user. Hence, we can usually
encode the capability matrix into a short capability string. We will not discuss
the details of the encoding and decoding schemes for capability strings since they
are application-specific and orthogonal to our approaches.

A user’s capability string can be used to define its access privilege. However,
we might have other requirements for the user’s access to the sensor data. For
example, the user may only be able to access the data at a rate of no more
than one packet per 30 seconds. Hence, we define a user’s access privilege as a
constraint. The user’s capability string can be also viewed as a constraint. A
constraint can be built from multiple constraints by simply using “AND” (∧)
or “OR” (∨) operator. For example, “(A(d) = humidity ∧ O = 01) ∧ (R ≥ 30)”

24 D. Liu

means that the user can only read the sensed humidity at a rate of no more
than one packet per 30 seconds. In this constraint, the first part is the capability
string of the user, while the second part (R ≥ 30) is an additional constraint on
the packet rate.

A constraint can usually be written in an appropriate formal language. How-
ever, our method is independent from how we write the constraints. Hence, we
simply discuss it informally rather than proposing a formal language to define
constraints. As a result, we denote the access privilege of a user u as a constraint
Cu. The access will be granted to u only when the queried sensor data meets
the constraint Cu. This access model is simple yet flexible for a sensor network.
We believe that it is sufficient for most sensing applications.

Attack Model: An attacker can launch a wide range of attacks against the
network. For example, he can simply perform a denial-of-service (DoS) attack
to jam the wireless channel and disable the network operation. Such DoS attack
is easy to mount and common to the protocols in every sensor network. There
are no effective ways to stop the attacker from doing such attack. However, in
this paper, we are more interested in the attacks whose goal is to access the valu-
able sensor data that he is not supposed to access. We assume an attacker can
eavesdrop, modify, forge, replay or block any network traffic. We assume that it
is computationally infeasible to break the underlying cryptographic primitives
such as encryption, decryption, and hash. We assume that the attacker is able to
compromise a few sensor nodes and learn the key materials stored on the com-
promised sensor nodes. We also assume that some users may be compromised.
Once a user is compromised, all the secrets assigned to the user will be disclosed.

3 Efficient and Distributed Access Control

This section presents the proposed method for access control as well as the
detailed analysis. We start with a baseline approach and then develop techniques
to enable privilege delegation and broadcast query.

3.1 The Baseline Approach

The main focus of the baseline approach is to provide efficient access control
when a user queries only one node at a time. With this technique, it will be also
practical to access a few nodes at a time as long as the query packet has space
for additional information such as MACs. We assume that the user knows the
ID of the sensor that has the requested data. We also assume a routing protocol
that can be used to deliver the query to such node.

It is clearly possible that the query message gets lost on the way to the queried
node due to the unreliable channel or malicious attacks. For example, an attacker
can always jam the channel and interrupt the delivery of any message. There are
no effective methods to prevent an attacker from mounting such DoS attacks.
Therefore, our focus in this paper is to stop unauthorized user access to the
sensor networks.

Efficient and Distributed Access Control for Sensor Networks 25

The main idea of our baseline approach is to map the access privilege of a
user into a cryptographic key. This key is used to prove that the user does have
the access privilege he claims. As a result, achieving confidentiality and integrity
using this key also achieves the access control.

– Initialization: Before deployment, every node i shares a key Ki with a
trusted server. Every user u will contact this server for the keying materials
for access control. The server first determines the constraint Cu based on
the user’s credentials, depending on the application. With the constraint Cu,
the user u gets pre-loaded a hash key Ku,i = H(u||Cu||Ki) for every node i,
where H is a one-way hash function and “||” denotes the concatenation of
two bit strings. Clearly, for a network of n nodes, a user will need to store
n hash keys. We believe that this storage overhead will not be a problem
for users who have powerful computing devices such as PDAs or Laptops. In
fact, even for a resource-poor sensor node such as TelosB motes [1], it has
1MB flash memory to store the keying materials for a network of 128,000
nodes if every hash image is 8-byte long.

– Access Query: Let {·}K be the message authentication operation using K.
When a user u wants to access a sensor node i, it constructs an appropriate
query command Q(u) and send the following message to node i.

u → i : {Cu, Q(u)}Ku,i

Once node i receives such message, it can re-construct the hash key Ku,i from
Cu since it has the key Ki. With this hash key, it can check the authenticity
of the query message. If the message is authenticated, it is certain that user
u does have the access privilege defined by Cu and the query Q(u) does come
from u. If Q(u) also meets the constraint Cu, the access to i’s data defined
by Q(u) will be granted to u.

Security: The focus of our security study is the access to the data at non-
compromised nodes. For a benign user u, we can see that a benign node i will
provide access to this user only when u does make a corresponding request. The
reason is that every request from user u to node i has to be authenticated by
the key Ku,i, which is only known by user u, node i and the trusted server.

We then study the access capability of an adversary who compromised a set
of system users Uc. Assume that an adversary issues a query command Qc to
access the sensor data. The following theorem tells us that no matter how many
sensor nodes are compromised, the collusion of compromised users and sensor
nodes will not give the adversary any additional privilege that is beyond the
simple union of privileges of compromised users.

Theorem 1. To access the sensor data at benign sensor nodes, the query Qc

from the attacker must meet the constraint
∨

v∈Uc
(Cv), where Uc is the set of

compromised users.

Proof. According to the initialization step, every keying material at a user is
generated using a one-way hash function. Hence, no matter how many sensor

26 D. Liu

nodes or system users are compromised, an adversary is unable to access the
communication between a benign user and a benign sensor node. Hence, the
adversary must issue Qc as a user v ∈ Uc since otherwise Qc will be immediately
rejected because of the failure in the authentication. When v ∈ Uc, if the query
Qc doesn’t meet the constraint Cv, Qc will also be rejected by any benign sensor
node i. Hence, the query Qc must meet

∨
v∈Uc

(Cv) in order to gain access to a
benign sensor node.

Overheads: In the baseline approach, a sensor node only needs to store a single
key, while a system user needs to store n keys for a network of n nodes. However,
as we mentioned, this is usually not a problem for the users who have powerful
and resourceful platforms such as PDAs and Laptops. To access the data at
a sensor node, a user only needs to send a single message. For every query
message, the user only needs to perform one efficient hash operation, while the
target node only needs to do two efficient hash operations, one for generating
the authentication key and the other for authentication.

Comparison: The baseline approach has many advantages over the previous
schemes in [3, 4]. First, it provides a generic access control method and can be
easily used to enforce any type of access policies. While the technique in [3] can
only achieve a specific type of access control where the system can only force the
user to access the network at a pre-determined physical path in the field. Second,
our approach only involves a few efficient one-way hash operations. This is much
more efficient than the ECC-based signature scheme in [4]. Third, our approach
only involves a single message for each query, while the schemes in [4] need three
messages for a local sensor node and a lot more messages for a remote sensor
node. In their method, a certain number of local sensor nodes have to collaborate
together to commit the query message for a remote sensor node. This complicates
the protocol and increases the overheads significantly. Finally, our approach is
more resilient to the compromise of sensor nodes. Indeed, no matter how many
sensor nodes or users are compromised, the control of the access from any user
to a benign sensor node can still be properly enforced. In contrast, the collusion
of a small number of sensor nodes will allow the attacker to access any sensor
node for the technique in [4].

3.2 Enabling Privilege Delegation

In many cases, a user may want to directly delegate its privilege to other users in
the system without going through a trusted server. This can be very useful when
the trusted server is not available for bootstrapping the keying materials. For
example, in a battlefield, the trusted server may stay in the military base, while
an officer may want to temporarily delegate its privilege to a soldier during the
military operation in the field. In this case, it is often not practical to contact
the trusted server to bootstrap the keying materials for the soldier.

Fortunately, privilege delegation can be easily implemented in our baseline ap-
proach. The overall process is similar to the bootstrap in the baseline approach.

Efficient and Distributed Access Control for Sensor Networks 27

Basically, whenever a user wants to delegate its privilege to other users, it can
act as a trusted server since it shares a unique key with every sensor node. A
user with a delegated privilege can further delegate its privilege to other users,
forming a delegation tree. For the sake of presentation, when a user u delegates
its privilege to user v, we call u as v’s parent user and v as u’s child user. Figure
1 shows an example of delegation trees.

Fig. 1. An example of delegation tree

For every user u in the delega-
tion tree, it knows the IDs as well
as the constraints of the users who
are on the path from u to the root
(the trusted server). This information
is pre-loaded to u when the trusted
server or a user bootstraps u. For
the sake of presentation, we use S(u)
and I(u) to denote the set of con-
straints and IDs of the users on the
path from u to the root in the tree
respectively. For example, in Figure
1, we have S(7) = {C7, C6, C2} and
I(7) = {7, 6, 2}.

– Delegation: Assume a user u wants to delegate its privilege to another user
v. u first determines the constraint Cv for user v. User u will then assign a
hash key Kv,i = H(v||Cv||Ku,i) to user v for every sensor node i. User u also
pre-loads I(v) = I(u) ∪ {v} and S(v) = S(u) ∪ {Cv} to v. The actual access
privilege of user v will be determined by S(v). For example, in Figure 1, the
privilege of user 6 is C2 ∧ C6.

– Access Query: When user v needs to access node i, it sends the following
message to i.

v → i : {I(v), S(v), Q(v)}Kv,i

After the node i receives such message, it can easily reconstruct Kv,i based
on I(v) and S(v). When the message is verified, it is certain that user v does
have the access privilege defined by S(v) and the query Q(v) does come from
v as long as the users on the path from v to the root of the delegation tree
are still benign. Finally, node i will check if Q(v) meets all the constraints
in S(v). If yes, the access is granted.

Privilege delegation may cause problems for stateful constraints. A user’s con-
straint is said to be stateful if it requires the node to maintain certain history
information for this user. A potential security problem for these constraints is
that a malicious user can easily bypass them by privilege delegation. As one
example, assume a malicious user can only collect data at a rate of no more
than one packet per 30 seconds. To bypass this constraint, this user can simply
create another user and delegate its privilege to the newly created user to initiate
another information flow with up to one packet per 30 seconds.

28 D. Liu

To address this problem, we propose an upward updating approach. In this
approach, when node i receives an authenticated query from user u, it will con-
sider it as the valid query for every user v ∈ I(u) and check with every v ∈ I(u)
to see if it meets all the constraints in S(v). If not, the query command will be
rejected; otherwise, the query will be accepted, and the sensor node i will update
its state for every user v ∈ I(u) based on the query as well as the response to
such query.

Security: The delegation of a user’s privilege is similar to the process of boot-
strapping the keying materials from the trusted server. Due to the one way
property of the hash function H , we can see that an adversary who compro-
mised a set Uc of users can only access the sensor data that are accessible for
at least one user in Uc. Indeed, the access of adversary is still limited by the
following constraint:

∨
u∈Uc

(S(u)). The proof will be the same as the proof of
Theorem 1. We will then skip the detail of the proof for simplicity.

Overheads: It is worth noting that providing the privilege delegation property
will not increase the storage overhead at sensor nodes. The only difference is
that the states of different users are now organized as a tree structure. As for the
computational overhead, a user will need to generate n hash values to delegate
its access privilege. A sensor node needs to perform a number of hash operations
to generate the key to authenticate the query and protect the sensor data. This
number depends on the distance from the corresponding user to the root of the
delegation tree. Fortunately, the height of the delegation tree will not be very
large in most cases. As for the communication overhead, we can clearly see that
allowing privilege delegation will not introduce much more communication cost.
A user only needs to send a single message, which has the similar format as the
query message in the baseline approach, to access the data at a sensor node.

3.3 Enabling Efficient Broadcast Query

The baseline approach can only support the queries that are targeted to one
sensor node at a time. In practice, however, a system user may want to access the
data at many sensor nodes at a time. We can certainly use the baseline approach
to query these nodes one by one. However, in this case, the communication
overhead will increase linearly with the number of queried nodes. Hence, it is
particularly desirable to enable broadcast query, where many sensor nodes can
be queried at the same time efficiently.

A broadcast authentication method will be needed for broadcast query. Two
possible candidates are μTESLA [6] and the ECC-based signature scheme [5].
μTESLA is based on symmetric cryptography and is believed to be more efficient
than the ECC-based scheme. However, it has some undesirable features such as
the need for time synchronization, the authentication delay, and the update of
key chains. These limit the application of μTESLA in real-world scenarios. On

Efficient and Distributed Access Control for Sensor Networks 29

the other hand, the performance of ECC-based signature schemes have been and
will continue to be optimized by researchers. We thus use ECC-based signature
schemes for broadcast authentication in this paper. However, a critical problem
that has to be addressed before making the ECC-based signature scheme a reality
is the DoS attacks on signature verification. Hence, the main challenge is how to
thwart the DoS attacks against the signature verification.

Note that broadcast is usually done through a network-wide flooding. Many
energy efficient flood mechanisms could be used for this purpose [7,8,9]. Our main
observation is that every flooding message from a sensor node only has a small
number of receivers due to the limited neighbor size. This actually allows us to
weakly authenticate the broadcast message before verifying the digital signature
to thwart the DoS attacks. Since our weak authentication method is independent
from the broadcast protocol, we simply assume a broadcast protocol and will not
discuss how it is achieved. In the following discussion, we assume that every two
neighbor sensor nodes u and v share a pairwise key ku,v. Many existing pairwise
key establishment protocols could be used for this purpose [10, 11, 12, 13]. Note
that we use the lower-case “k” for the pairwise key between two sensor nodes
and the upper-case “K” for the shared key between a user and a sensor node.

– Initialization: The initialization step is similar to the baseline approach.
However, we have additional keying materials for sensor nodes and users.
Specifically, the public key of the trusted server will be pre-loaded to ev-
ery sensor node. Every user u also has a pair of private and public keys
(Ke(u), Kd(u)). The public key Kd(u) and Cu are either signed by the trusted
server or another user who is willing to delegate its privilege to u. Let Cert(u)
be the resulting signature. In the end, user u will get pre-loaded with Cert(v)
for every v ∈ I(u), where I(u) is the set of user IDs on the path from u to
the root of the delegation tree.

After deployment, every node i first discovers a set of neighbors N(i) and
exchange it with every node j ∈ N(i). In the end, we want to make sure that a
sensor node i has the neighbor list N(i) and also knows its position Pj,i in the
set N(j) for every j ∈ N(i). Such position information is used to identify the
values for weakly authenticating the broadcast message.

When a user u needs to query a large number of sensor nodes, it will first
generate a broadcast message MB that includes the constraint Cu, its public
key Kd(u), the certificate Cert(u), the query command Q(u), and a signature
on Q(u) using its private key. User u then sends MB to one or a few randomly
picked nearby nodes to start the broadcast query process.

– Broadcast: When a sensor node i gets an authenticated copy of MB, it will
check to see if it needs to re-broadcast the message based on the broad-
cast protocol. If yes, it will compute a set of committing values (one for
each neighbor node) to weakly authenticate the broadcast message. Specifi-
cally, for each neighbor node j, node i computes H(MB||ki,j) and uses the
most significant l bits of this hash as the Pi,j-th committing value for weak

30 D. Liu

authentication. Let W be the set of these committing values. The final broad-
cast message will be {MB, W}.

– Authentication: When a sensor node j receives the message {MB, W} from
node i for the first time, it computes H(MB||ki,j), extracts the most sig-
nificant l bits, and then compares it with the value at the position Pi,j in
W . If it finds a different value, the packet will be ignored; otherwise, node j
starts to perform two signature verifications on MB, one for the certificate
and the other for the signature signed by node i. Once both signatures are
verified, it is certain that the privilege and the query of user u are correct.
Node j will then grant access to u if the query meets the constraint. Similar
to the baseline approach, the access will be protected by the key Ku,j . Note
that when privilege delegation is enabled, node j will need to receive all the
certificates of the users on the path from u to the root. This can be provided
by u when it is necessary.

Note that a compromised or malicious node can forge the broadcast queries
that can always pass the weak authentication and trigger the expensive signature
verification at other sensor nodes. To deal with this problem, we develop an
anomaly suppression method to make sure that a compromised sensor node
cannot generate a large impact on the signature verification at other sensor
nodes. The main observation is that the fraction of forged broadcast messages
that can pass weak authentication will be very small when the sender is a benign
node. Hence, if a sensor node observes a large fraction of forged messages passing
weak authentication, the sender is very likely to be compromised.

– Anomaly Suppression: We keep track of the number x of forged broadcast
messages that passed the weak authentication at node i during the previous
M forged broadcast messages from node j. If x > m, node i will directly
consider the message as forged and stop any further verification; otherwise,
it will verify the certificate and signature once the broadcast message passes
the weak authentication check. Clearly, the fraction of unnecessary signature
verifications is bounded by m

M .

Security Analysis: We study how well our approach performs under DoS
attacks. Assume that node i receives a forged broadcast message {M ′

B, W ′}
from the adversary who impersonates node j. Note that the committing value
for node i is generated using the key ki,j that is only known by nodes i and j.
The probability that W ′ includes a correct guess of this value can be estimated
by 1

2l . Clearly, our method can effectively reduce the impact of DoS attacks on
signature verification even for a small l. For example, when l = 8, node i only
needs to verify one out of 256 forged messages on average.

When node j is a compromised sensor node, the problem becomes much more
complicated since node j can always forge broadcast messages with correct com-
mitting values. Fortunately, such impact is bounded by the threshold m and
the window size M . Intuitively, setting a smaller m or a larger M brings more

Efficient and Distributed Access Control for Sensor Networks 31

resilience against DoS attacks but generates more false suppressions for benign
sensor nodes. Hence, we study the false suppression rate, which is the probability
that the number of forged messages that passed the weak authentication in a win-
dow of M fake messages exceeds m when the sender is actually benign. The false
suppression is caused by the messages forged by the adversary who impersonates
the sender. This can be viewed as a binomial distribution B(M, 1

2l). The false
suppression rate can thus be estimated by

Pfalse−sup = 1 −
m∑

i=0

M !
i!(M − i)!

(
1
2l

)i(1 − 1
2l

)M−i

Figure 2 shows the false suppression rate under different settings of l, m, and
M . We can clearly see that the false suppression rate is very low for a reasonable
setting of l, m and M .

Overheads: Compared with the baseline approach, the additional storage over-
head at sensor nodes mainly comes from the public keys of the trusted server
and the system users. The additional computation overhead at sensor nodes
mainly comes from the signature verification. Since the DoS attacks against sig-
nature verification can be greatly reduced by our weak authentication method,
we believe that supporting broadcast query using ECC-based signature schemes
is practical for the current generation of sensor networks.

Fig. 2. False suppression rate under dif-
ferent settings of l and M . Assume m =
0.01M .

Our weak authentication scheme
needs additional space for committing
values at every broadcast message.
Let b denote the average number of
neighbor nodes for every sensor node
in the network. The average overhead
is about b × l bits for every broad-
cast message from a sensor node. We
argue that this additional communi-
cation overhead is usually affordable.
First, in many applications, most sen-
sor nodes only have a small number of
neighbors in their radio ranges. It is
unlikely to see a very large b in prac-
tice. Second, the value b can be fur-
ther reduced in many flooding meth-
ods [7, 8, 9] where every broadcast has the receiver size that is much smaller
than the neighbor size. The reason is that two neighbor nodes usually share a
large number of common neighbor nodes, and it is not necessary to have redun-
dant transmission. Third, in cases where the committing values cannot fit into
one packet, we can simply re-broadcast the same message multiple times with
different set of committing values every time.

32 D. Liu

(a) Coverage (b) Average Travel Distance

Fig. 3. Impact on broadcast protocol. Assume channel loss rate Pl = 0.2.

4 Simulation Evaluation

The main focus of our simulation experiments is the security as well as the
performance of the broadcast query. The simulation study will focus on two
aspects of the proposed weak authentication method, its impact on the broadcast
protocol and its performance in dealing with the DoS attacks against the signature
verification.

Many energy efficient flooding mechanisms could be used for broadcast [7,8,9].
However, most of them are developed for wireless ad hoc networks and do not
work well in sensor networks due to the limited bandwidth and the lossy channel.
Instead, we use a naive broadcast protocol in our evaluation. In this method,
when a sensor node receives an authentic broadcast message for the first time,
it will re-broadcast it at a probability of Pr .

In our simulation, we randomly deploy 5,093 sensor nodes in a field of size
1000 × 1000 square meters. Every two sensor nodes can talk to each other if
they are no more than 50 meters away. Thus, there are 40 neighbor nodes on
average for every node. We assume there are 40 bytes available in each packet for
committing values. The broadcast will always start from the center of the field.
Every node will only pick b neighbors for re-broadcasting. Figure 3 shows the
coverage (the fraction of sensor nodes that receives the broadcast message) and
the average travel distance (the average number of hops a broadcast message
travels to reach a sensor node) under different settings. The coverage affects
the effectiveness of the broadcast, and the average travel distance affects the
latency of the broadcast. From the figure, we can see that increasing b does
improve the coverage and reduce the latency. However, after certain point (e.g.,
20), increasing b will not generate much benefit. Thus, as long as b is large
than certain value such as 20, we will not see big differences in terms of the
performance of the broadcast. As a result, the length l of a committing value
can be from 8 bits to 16 bits given 40 bytes space. The simulation result in
the next part will further show that this is enough for us to effectively defend
against the DoS attacks. Note that when b is very small, we will see a small
average travel distance. The reason is that broadcast stops quickly after a few
hops due to a small b.

Efficient and Distributed Access Control for Sensor Networks 33

Fig. 4. Performance under DoS attacks. r is
the fraction of forged messages with correct
committing values (generated by a compro-
mised node).

We now show that the DoS attacks
against signature verification can be
mitigated significantly using our ap-
proach. We conducted two set of ex-
periments. In the first set of exper-
iments, the attacker impersonates a
benign node; in the second set of
experiments, the attacker launches
the DoS attacks through a compro-
mised sensor node. Clearly, in the
second case, the attacker can always
pass the weak authentication if he
wants.

Figure 4 shows the performance of
our protocol in dealing the DoS at-
tacks on signature verification. The suppression point in the figure is defined as
the point (i.e., the index of the fake broadcast message) where a sensor node
starts to suppress the broadcast message from a given neighbor node. For exam-
ple, a suppression point of 500 means that the sensor node starts to suppress the
broadcast message after receiving the 500-th fake message. As discussed before,
this usually happens when the neighbor node is malicious or the attacker has im-
personated this neighbor node for a long period of time. From the figure, we can
see that impersonating a benign node will only generate a small impact on sensor
nodes, while launching attacks through a compromised node actually reveals the
identity of the compromised sensor node and will be suppressed. In conclusion,
our weak authentication approach effectively thwarts the DoS attacks against
signature verification.

5 Related Work

This section reviews current research studies on sensor network security. To es-
tablish pairwise keys between sensor nodes, researchers have developed many key
pre-distribution techniques [10, 11, 12, 13]. μTESLA protocol was developed to
provide broadcast authentication for sensor networks [6]. DoS attacks in sensor
networks have been studied in [14]. Attacks on routing protocols and counter
measures were studied in [15]. Wormhole attacks have been identified as a major
threat to sensor networks [16]. A typical sensor network has many supporting
services such as data aggregation. These services have to be protected properly.
Several techniques were developed to protect in-network processing [17, 18]. Se-
curity issues in localization and time synchronization has been studied in [19,20].
This paper considers a critical security service, access control, in sensor networks.
This is a useful service that is complementary to the above studies.

34 D. Liu

6 Conclusion and Open Problems

This paper studies the problem of access control in sensor networks. The paper
develops a number of techniques to provide a practical and distributed access
control method for sensor networks. There are a number of open problems. First,
when there are huge number (e.g., millions) of sensor nodes and the capability
string are long and detailed, the storage overhead at a user could be a big
problem. Second, in the proposed technique, a malicious user can delegate its
privilege to a large number of fake users and exhaust the memory at sensor
nodes. It is interesting to study ideas to address these issues.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments.

References

1. Crossbow Technology Inc.: Wireless sensor networks. Accessed in February 2006
http://www.xbow.com/Products/Wireless Sensor Networks.htm

2. Hartung, C., Balasalle, J., Han, R.: Node compromise in sensor networks: The
need for secure systems. Technical Report CU-CS-990-05, U. Colorado at Boulder
(January 2005)

3. Zhang, W., Song, H., Zhu, S., Cao, G.: Least privilege and privilege deprivation:
Towards tolerating mobile sink compromises in wireless sensor networks. In: Pro-
ceedings of ACM Mobihoc’05 (2005)

4. Wang, H., Li, Q.: Distributed user access control in sensor networks. In: Gibbons,
P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026,
pp. 305–320. Springer, Heidelberg (2006)

5. Gura, N., Patel, A., Wander, A.: Comparing elliptic curve cryptography and rsa
on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 119–132. Springer, Heidelberg (2004)

6. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: Security protocols
for sensor networks. In: Proceedings of Seventh Annual International Conference
on Mobile Computing and Networks (July 2001)

7. Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc
networks. In: Proceedings of ACM Modeling, Analysis, and Simulation of Wireless
and Mobile Systems (2000)

8. Peng, W., Lu, X.: On the reduction of broadcast redundancy in mobile ad hoc
networks. In: Proceedings of ACM International Symposium on Mobile and Ad
Hoc Networking and Computing (2000)

9. Wu, J., Dai, F.: Broadcasting in ad hoc networks based on self-pruning. In: Pro-
ceedings of INFOCOM (2003)

10. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 41–47 (November 2002)

11. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: IEEE Symposium on Research in Security and Privacy, pp. 197–213
(2003)

http://www.xbow.com/Products/Wireless_Sensor_Networks.htm

Efficient and Distributed Access Control for Sensor Networks 35

12. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In:
Proceedings of 10th ACM Conference on Computer and Communications Security
(CCS’03). pp. 52–61 (October2003)

13. Du, W., Deng, J., Han, Y.S., Varshney, P.: A pairwise key pre-distribution scheme
for wireless sensor networks. In: Proceedings of 10th ACM Conference on Computer
and Communications Security (CCS’03) pp. 42–51(October 2003)

14. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. IEEE Com-
puter 35(10), 54–62 (2002)

15. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and
countermeasures. In: Proceedings of 1st IEEE International Workshop on Sensor
Network Protocols and Applications (May 2003)

16. Hu, Y., Perrig, A., Johnson, D.: Packet leashes: A defense against wormhole attacks
in wireless ad hoc networks. In: Proceedings of INFOCOM 2003 (April 2003)

17. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A witness-based approach for data
fusion assurance in wireless sensor networks. In: Proceedings of IEEE Global Com-
munications Conference (GLOBECOM 03) (December 2003)

18. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor
networks. In: Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys ’03) (November 2003)

19. Liu, D., Ning, P., Du, W.: Attack-resistant location estimation in wireless sensor
networks. In: Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks (IPSN ’05) (April 2005)

20. Sun, K., Ning, P., Wang, C.: Fault-tolerant cluster-wise clock synchronization
for wireless sensor networks. IEEE Transactions on Dependable and Secure
(TDSC) 2(1), 177–189 (2005)

Optimizing End to End Routing Performance in

Wireless Sensor Networks

Chen Wang, Guokai Zeng, and Li Xiao

Department of Computer Science and Engineering
Michigan State University, East Lansing, MI 48824

{wangchen,zengguok,lxiao}@cse.msu.edu

Abstract. The geographic routing is an ideal approach to realize point-
to-point routing in wireless sensor networks because packets can be de-
livered by only maintaining a small set of neighbors’ physical positions.
The geographic routing assumes that a packet can be moved closer to the
destination in the network topology if it is moved geographically closer
to the destination in the physical space. This assumption, however, only
holds in an ideal model where uniformly distributed nodes communi-
cate with neighbors through wireless channels with perfect reception.
Because this model oversimplifies the spatial complexity of a wireless
sensor network, the geographic routing may often lead a packet to the
local minimum or low quality route. Unlike the geographic forwarding,
the ETX-embedding proposed in this paper can accurately encode both a
network’s topological structure and channel quality to small size nodes’
virtual coordinates, which makes it possible for greedy forwarding to
guide a packet along an optimal routing path. Our performance evalua-
tion based on both the MICA2 sensor platform and TOSSIM simulator
shows that the greedy forwarding based on ETX-embedding outperforms
previous geographic routing approaches.

1 Introduction

The geographic routing is a promising approach to realize point-to-point rout-
ing in a wireless sensor network comprising large number of randomly deployed
resource-constrained sensors. By greedily forwarding a packet to the next neigh-
bor which is geographically closer to the destination, the geographic routing can
gradually move the packet towards the destination and finally deliver the packet
through consecutive hop by hop forwarding. Because the simple greedy forward-
ing only requires each intermediate node to maintain a small set of neighbors’
physical positions, the geographic routing incurs small storage and communica-
tion overhead, which makes it preferable to the shortest path routing and the
on-demand routing for resource-constrained wireless sensor networks.

The shortest path routing requires each node to maintain a per-destination
state routing table whose size is proportional to the total number of nodes in a
network. The shortest path routing cannot scale to a large size wireless sensor
network because the large size routing table is unaffordable for individual nodes

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 36–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimizing End to End Routing Performance in Wireless Sensor Networks 37

with limited storage capacity. The on-demand routing such as AODV [1] builds
and maintains a route only when necessary which reduces the size of routing
table because intermediate nodes only keep routing states to currently active
destinations. However, AODV frequently initiates broadcast messages to discover
the routing paths and therefore incurs massive communication overhead.

The geographic routing assumes that a packet can be moved closer to the des-
tination in the network topology when it is moved geographically closer to the
destination in the Euclidean space. This assumption is based on the observation
that the topological structure of a wireless sensor network can be approximated
by its geographic structure. Because a wireless node can only communicate with
its neighbors within the maximum radio transmission range, pairwise nodes may
have a short communication path in the network topology if they are geograph-
ically closer to each other in the Euclidean space, i.e. the hop count distance
between pairwise nodes is proportional to their Euclidean distance. This ob-
servation is correct in an ideal wireless sensor network model where uniformly
distributed nodes communicate with connected neighbors through wireless chan-
nels with perfect reception. Nevertheless, this ideal model often oversimplifies the
spatial complexity of a realistic wireless sensor network which may have compli-
cated topological structure and irregular wireless communication channels.

Due to the discrepancy between a wireless sensor network’s complex spatial
characteristics and its oversimplified geographic description, the geographic rout-
ing may fail to deliver a packet or forward a packet along a suboptimal routing
path. For example, a packet may be trapped in a local minimum where none of
the neighbors is closer to the destination. A packet may also be forwarded along a
route consisting of long distance hops with low quality wireless channels. Numer-
ous approaches have been proposed to recover the geographic routing from local
minimum [2] or find the proper forwarding advance without sacrificing channel
quality [3] [4] [5]. Constrained by the inaccurate geographic model on a network
topology, these workaround solutions cannot guarantee a packet to be efficiently
forwarded along the optimal routing path.

In this paper, we try to improve the end-to-end routing performance of the
greedy forwarding by improving the expression accuracy of a wireless sensor
network. Unlike the simple geographic model where the communication route
is approximated by the geographic path, we embed a wireless sensor network
into a Euclidean space where nodes’ virtual distance is equal to the number
of expected transmissions for a packet to be successfully delivered between the
pairwise nodes. Because the virtual distance directly reflects the end-to-end com-
munication channel quality, the greedy forwarding can guide a packet along the
optimal routing path which has the shortest virtual distance.

In the following discussion, we first introduce the spatial complexity of wireless
sensor networks. We further show how the wireless sensor networks’ complex
spatial characteristics can be efficiently encoded to nodes’ virtual coordinates to
support optimal greedy forwarding. The performance of our proposed approach
is evaluated on the MICA2 sensor platform and TOSSIM simulator.

38 C. Wang, G. Zeng, and L. Xiao

0 20 40 60 80 100 120
0

20

40

60

80

100

120

54

29
84

47491

5 88

Fig. 1. Long distance radio
links of geographic routing

0 10 20 30 40 50
0

50

100

outdoor distance (feet)

su
cc

es
s

ra
te

 %

0 10 20 30 40 50
0

50

100

intdoor distance (feet)

su
cc

es
s

ra
te

 %

Fig. 2. Packet reception
between pairwise wireless
nodes

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Irregular radio trans-
mission pattern

2 Spatial Complexity of Wireless Channels

The geographic routing uses a simple connectivity model to describe the wireless
channels between pairwise nodes, i.e. pairwise nodes have the perfect reception
channel if they are within the maximum transmission range of radio signals. In a
realistic wireless sensor network, neighboring nodes are often connected through
unreliable wireless channels where packets may be lost due to the transmission
error of radio signals. It is normal that packet loss rate is increased with the
transmission range because the radio signals attenuate during their transmission,
which leads to low signal to noise ratio (SNR). Since the geographic routing
greedily selects the next hop which is closest to the destination and therefore
furthest to the sender, the geographic routing tends to include long distance
hops in the routing path which are often unreliable and have high packet loss
rate. An example is shown in Fig 1. Based on the greedy forwarding policy
of the geographic routing, a packet is forwarded along the routing path 84 →
29 → 54, which may have higher packet loss rate and lower throughput than the
routing path of 84 → 5 → 91 → 4 → 47 → 54 consisting of more while shorter
intermediate links.

Several approaches [4] [3] [6] have been proposed to balance the forwarding
distance and radio link quality, which can be divided into two categories:

1. Define a threshold to exclude low quality radio links.
2. Define a new metric which can be maximized under the constraints of both

forwarding distance and radio link quality.

The complex radio signal transmission pattern, however, makes it difficult to
improve the performance of the geographic routing through these two strategies.

For the first strategy, it is difficult to determine a proper threshold value which
can maximize the end-to-end routing performance. Fig. 2 shows the packet re-
ception between pairwise nodes we measured on the MICA2 sensor platform,
which demonstrates that the perfect radio channel with 100% reception only ex-
ists between transceivers within a short distance. If the threshold is aggressively
set to only include links with 100% packet reception, we may have a disconnected

Optimizing End to End Routing Performance in Wireless Sensor Networks 39

network or a routing path comprising excessive intermediate nodes, which in-
creases both the processing cost and delay. We use an example to further explain
how the threshold values affect the end-to-end routing performance. As shown
in Fig. 1, the routing path 84 → 5 → 88 → 54 selected by the 85% threshold
outperforms the routing path 84 → 5 → 91 → 4 → 47 → 54 selected by the
100% threshold, because the former uses less intermediate nodes in the packet
forwarding with slightly inferior links. Because a proper threshold to determine
the optimal routing path may vary from different pairwise nodes, the geographic
routing with a constant threshold cannot provide a universal solution to find the
optimal routing path between any pairwise nodes.

Instead of simply excluding low quality radio links below a certain constant
threshold, the second strategy selects radio links by optimizing the forwarding
advance and quality of radio links simultaneously. For example, the energy-
efficient forwarding [3] chooses the next hop which can maximize the product of
the packet reception rate (PRR) and the distance traversed towards destination.
This strategy can achieve good routing performance when i) nodes are uniformly
distributed; ii) the packet reception rate of the wireless channels can be explicitly
modeled by the transmission distance. However, in an obstructed environment,
radio signals have complex transmission patterns because the signal strength
may be either strengthened or weakened due to multipathing or shading such
that the packet reception rate is less correlated to the transmission distance
and difficult to model. Fig. 2 shows pairwise transceivers have different packet
reception rate in outdoor and indoor environments. The radio signal transmission
may also vary in different directions as shown in Fig. 3.

Even if the geographic routing can find the optimal tradeoff between the
forwarding advance and the link quality for individual hops, it may fail to find
the path with the optimal end-to-end routing performance. Because both the
advance distances and PRR are local metrics, the greedy forwarding may lead
to a local minimum and fail to find the global optimal path, which often happens
in a network topology with complex spatial characteristics.

3 Greedy Forwarding Based on ETX-Distance

In a wireless sensor network with complex spatial characteristics including irreg-
ular wireless channels and concave network topology, the routing cost between
pairwise sensors cannot be estimated simply from their Euclidean distance. Con-
sequently, the greedy forwarding based on geographic distance comparison may
lead a packet along low quality links or towards a local minimum. Instead of us-
ing the geographic distance to indirectly approximate the routing cost, we argue
that the optimal end-to-end routing performance of the greedy forwarding can
only be achieved by comparing neighboring nodes based on the routing metric
with the following properties: i) the metric should reflect the underlying wireless
channel quality between neighboring nodes; ii) the metric should also reflect the
end-to-end channel quality between pairwise nodes.

40 C. Wang, G. Zeng, and L. Xiao

3.1 Underlying Wireless Channel Evaluation

The communication quality and cost of a wireless channel can be evaluated by
various metrics such as packet reception ratio, transmission delay, and through-
put. A detailed comparison of three link-quality metrics - expected transmission
count (ETX) [7], per-hop round trip time (RTT) [8], and per-hop packet pair
delay - has been conducted in [9], which concludes that the ETX metric has
the best performance in a static wireless sensor network. In this paper, we show
that ETX is an ideal metric to define the virtual distance to support the greedy
forwarding to achieve optimal end-to-end routing performance.

To route data over unreliable wireless channels, hop-by-hop recovery is usually
preferred over end-to-end recovery [10]. The hop-by-hop recovery is realized by
acknowledging received packets and retransmitting loss packets. For neighboring
nodes i and j in a route path, the receiver j will send back an acknowledgment
to sender i when a packet is correctly delivered; and the sender i will retransmit
a packet if it has not received the acknowledgment within a certain time period
after a packet transmission. Assume the packet loss rate from node i to j is
Pij and the packet loss rate from node j to node i is Pji. The probability of a
successful packet transmission is (1 − Pij)(1 − Pji), and the expected number of
retransmissions defined as the expected transmission count metric in [7] between
node i and j is:

ETX(i, j) = 1/(1 − Pij)(1 − Pji).

Assume that a pairwise node p1 and pn has the routing path l comprising
intermediate nodes p2, p3, . . . , pn−1; we have the expected transmission count of
the routing path l as:

ETX(l) =
n−1∑

i=1

ETX(pi, pi+1)

It has been proposed in [7] to incorporate the ETX into the on-demand routing
such as DSR to find the optimal routing path between pairwise wireless nodes.
In the combined approach, the source broadcasts route probing messages to an
entire network. The routing paths can be discovered when the destination sends
back the response messages along the reversed paths of the probing message.
Among all the paths connecting the source and the destination, the optimal
routing path can be determined with the minimal ETX.

In this paper, we propose to combine the ETX metric with the greedy for-
warding such that the optimal routing path can be found without reliance on
the frequently broadcast route probing messages.

3.2 Virtual Distance Based Greedy Forwarding

We define the ETX virtual distance between pairwise nodes xi and xj as the
minimal ETX among all the routing paths connecting xi and xj , i.e.

δ(xi,xj) = min
li∈L

ETX(li),

Optimizing End to End Routing Performance in Wireless Sensor Networks 41

where L is the set of routing paths connecting nodes xi and xj . In this section, we
assume that ETX distance between pairwise nodes in a wireless sensor network
can be inferred from their virtual coordinates. How to acquire nodes’ virtual
coordinates will be discussed in detail in the coming section.

Based on the comparison of the ETX distances between neighboring nodes,
the greedy forwarding can determine the next hop as follows: suppose a packet
need to be forwarded to the destination xk. Let node xi be the intermediate
node with the routing packet and set N define all the neighbors of node xi. The
next forwarding hop can be selected from the neighbor set N as:

x̂j = arg min
xj∈N

(δ(xi,xj) + δ(xj ,xk)), (1)

i.e. the packet is greedily forwarded to the next hop xj which minimizes the
summary of the ETX distances δ(xi,xj) and δ(xj ,xk).

Because the ETX distance directly reflects the length of a communication path
between pairwise nodes in a wireless sensor network, the greedy forwarding based
on ETX distance comparison can guide a packet towards the correct direction
and deliver the packet through consecutive hop by hop forwarding.

4 ETX Embedding

The greedy forwarding can achieve optimal end-to-end routing performance
based on ETX distance comparison between neighboring nodes. A simple solu-
tion of realizing ETX distance comparison is to assign each node with a virtual
coordinate which contains ETX distances to all the nodes in the network:

xi = [xi1, xi2, . . . , xiN],

where xij is the ETX distance to node xj . The optimal routing performance,
however, is achieved at the cost of O(N) states maintained by individual nodes,
which is unaffordable to resource-constrained wireless sensors. In order to achieve
high routing performance on the basis of small size routing states, we seek an op-
timal routing design for wireless sensor networks which can compress the O(N)
routing states into constant size routing states while accurately preserving the
ETX distances between pairwise nodes. We generalize the routing states com-
pression problem as embedding a N -dimensional ETX distance metric space
into a M -dimensional Euclidean space which has the following properties: i) M
is a small constant (M � N) which does not scale with network size N ; ii)
ETX distances between pairwise nodes can be precisely inferred from Euclidean
distances in the M -dimensional embedded space.

An embedding problem can be formalized as follows. Let (X, δ) define a metric
space. Here X is a set and δ is a metric which defines a distance function between
elements in X . For elements xi,xj ,xk ∈ X , the distance function δ satisfies (1)
symmetry: δ(xi,xj) = δ(xj ,xi); (2) positive definiteness: δ(xi,xj) ≥ 0 and
δ(xi,xj) = 0 iff i = j; (3) triangular inequality: δ(xi,xk)+ δ(xk,xj) ≥ δ(xi,xj).

42 C. Wang, G. Zeng, and L. Xiao

Let (P, d) define the Euclidean space. Here P is a set of points mapped from
elements in the set X and d is a metric which defines the function of 2-norm
Euclidean distances between pairwise points in P . For pi,pj ∈ P , we have
d(pi,pj) = |pi − pj |.

Definition 1. An embedding of metric space (X, δ) into an Euclidean space
(P, d) is a mapping φ : X → P such that

1. pi = φ(xi);
2. δ(xi,xj) = d(φ(xi), φ(xj)) = d(pi,pj) = |pi − pj |

It can be easily verified that the ETX distance defines a distance metric which
satisfies the properties of symmetry, positive definiteness and triangular inequal-
ity. Consequently, we can embed a wireless sensor network defined by the ETX
distance function into an Euclidean space. The ETX embedding can be intu-
itively explained as given ETX distances between pairwise nodes in a network
topology, finding nodes’ coordinates in a M -dimensional Euclidean space such
that the ETX distances can be inferred from the Euclidean distance of the
mapped space. The objective of the embedding is to find the minimal M such
that δ(xi,xj) = d(φ(xi), φ(xj)), i.e. to embed a ETX distance metric space
into the lowest dimensional Euclidean space in which ETX distances between
pairwise nodes can still be precisely preserved.

Instead of an exact embedding, a network topology can be approximately em-
bedded into an Euclidean space by relaxing condition 2 as δ(xi,xj) ≈ d(φ(xi),
φ(xj)). Here, we slightly sacrifice the embedding accuracy to achieve lower di-
mensionality of the embedded Euclidean space and therefore smaller routing
states. Consequently, we are seeking nodes’ coordinates to minimize differences
between ETX distances of the network topology and Euclidean distances of the
embedded space:

min
∑

xi,xj∈X

(δ(xi,xj) − d(φ(xi), φ(xj))2.

We use the multidimensional scaling (MDS) [11] to embed a N -dimensional
ETX distance metric space to a M -dimensional Euclidean space. MDS has shown
great success in psychology and pattern recognition in discovering meaningful
low-dimensional structures hidden in high-dimensional observations [12]. In this
paper, we show MDS is effective to reduce N -dimensional per-destination state to
low dimensional virtual coordinates from which ETX distances can be accurately
recovered. We use a short deduction below to show how a wireless sensor network
can be embedded to a low-dimensional Euclidean space through MDS. More
details on MDS can be found in [11]. For simplicity, we use short notation δij

to refer to the ETX distance δ(xi,xj) and dij to refer to the Euclidean distance
d(xi,xj)

According to the embedding defined in Definition 1, we have

δ2
ij = |pi − pj |2 = (pi − pj)

t(pi − pj) = pt
ipi + pt

jpj − 2pt
ipj

Optimizing End to End Routing Performance in Wireless Sensor Networks 43

By shifting matrix P to the center, nodes’ coordinates pi and pj can be
expressed as the function of ETX distance δij and we have

P tP = F,

where P = [pt
1;p

t
2; . . .p

t
N] and F = [f(δ2

ij)]. Because F is symmetric, it can be
decomposed through singular value decomposition (SVD) as:

P tP = F = V ΣV t

P t = V Σ1/2.

Here, Σ is a diagonal matrix with the rank-ordered set of singular values σ1 ≥
σ2 ≥ . . . ≥ σr ≥ σr+1 = σr+2 = . . . σN = 0. Let σ

1/2
i ≡ λi. We have

[p1,p2, . . . ,pN] = [λ1v1, λ2v2, . . . , λNvN]t. (2)

From Eqn (2), we have node i’s N -dimensional coordinate

pi = [λ1v1i, λ2v2i, . . . , λNvNi]t

such that
δij = |pi − pj |.

Let p′i = [λ1v1i, λ2v2i, . . . , λmvmi]t, m < r,

where pi defines the m-dimensional virtual coordinates of node i. The differ-
ence between the ETX distance and the Euclidean distance estimated from m-
dimensional coordinates is:

δ2
ij − |p′i − p′j |2 =|pi − pj |2 − |p′i − p′j |2

=
∑

m+1≤k≤r

λ2
k(vki − vkj)2 (3)

Based on Eqn (3), we have |p′i−p′j | → δij when m → r. This reflects the tradeoff
between the accuracy of network expression and the size of network expression.
Moreover, if rank-ordered singular value λi quickly converges to zeros after the
first several most important ones, we have |p′i − p′j | ≈ δij for a relative small
m. This is the case for network embedding and is verified in our performance
evaluations. Here, MDS not only reveals the inherent tradeoff between the ac-
curacy and size of a network expression, but also provide a viable approach to
efficiently approximate a network topology.

5 Sample a Wireless Sensor Network with Beacons

In order to embed a network to a low-dimensional Euclidean space through
MDS, we need to measure ETX distances between all pairwise nodes of a net-
work, which involves massive communication messages. In this section, we show

44 C. Wang, G. Zeng, and L. Xiao

how to achieve the ETX-embedding by sampling the network through a small
number of beacons in a distributed fashion. Instead of measuring ETX-distance
between any pair of nodes, we only measure the ETX-distances from a node to a
set of reference points defined as beacons. Each beacon broadcasts a beacon mes-
sage with a transmission counter initialized by zero. The transmission counter is
increased after each transmission (including retransmission). By finding out the
smallest transmission counter among all the received beacon messages, a node
can infer its ETX distance to the sampling beacon.

Based on the knowledge of ETX-distances to the set of beacons, a wireless
sensor network can be embedded into a low dimensional Euclidean space through
the two steps below:

1. Use MDS to embed all the beacons to the low dimensional Euclidean space
based on the ETX-distances between all pairwise beacons. We have

KM = [k1,k2, . . . ,kM],

where ki is beacon i’s virtual coordinate in the embedded space.
2. Node i’s virtual coordinate in the embedded space can be inferred from its

ETX-distances to the set of beacons using the least square fitting:

p̂i = P (δ, KM) = arg min
pi

M∑

j=1

(δij − |pi − kj |)2.

The ETX-embedding described above can be intuitively explained as follows.
First, all the beacons are embedded into the low dimensional Euclidean space
based on the full measurement between any pair of beacons. After that, the rest
nodes can be embedded according to their relative ETX-distances to the bea-
cons. Accurate embedding can be achieved when sufficient beacons are uniformly
distributed such that a network’s spatial characteristics can be fully represented
by sampling beacons.

6 Performance Evaluation

We evaluate the ETX distance based greedy forwarding through a small scale
experiment based on MICA2 platform and a large scale simulation based on
TOSSIM/TYTHON [13]. TOSSIM is a bit level simulator which shares the same
TinyOS code with the MICA2 platform. We first evaluate the packet transmis-
sion in multihop forwarding on the MICA2 platform. After that, we compare
the greedy forwarding based on ETX distance with the geographic routing in
the TOSSIM simulator. The two metrics below are used in our performance
evaluation.

1. Number of transmissions per packet: The number of packet transmis-
sions per packet is the total number of transmissions, including retransmis-
sions required for a packet to be forwarded from the source to the destination.

Optimizing End to End Routing Performance in Wireless Sensor Networks 45

2. Packet failure rate: A packet routing may fail due to the unreliable wireless
transmission channels. The packet failure rate is the percentage of failed
routing among all the routing tests.

12−21 22−45 15−62 17−24 81−19 38−21 45−72 51−43
0

5

10

15

20

25
GF−ETX
GR

Fig. 4. Number of transmissions between pairwise nodes

6.1 Evaluate the ETX-Embedding in TOSSIM

TOSSIM is a bit level simulator which can accurately simulate the radio trans-
mission channels between wireless sensors. We use the lossy radio model which
assumes each bit of the transmission packet has the probability of p to be flipped.
The probability of bit flipping is measured from the real experiment. When a
packet is received, the correctness is verified/recovered by FEC code. A packet
will be dropped if it cannot be recovered by the FEC verifying code. We use
the TYTHON to control the simulated nodes in TOSSIM, which act as the two
laptops attached to the source and the destination. The pairwise source and
destination are randomly selected from 100 nodes deployed in a 125 by 125 feet
square area. The testing packet is injected to the simulated network through
TYTHON which is forwarded along different routing paths computed from dif-
ferent routing algorithms. The average number of packet transmissions and the

20 25 30 35 40 45
6

7

8

9

10

packet size

GR − threshold
GR − PRR x distance
GF − ETX

Fig. 5. Number of transmissions under dif-
ferent packet sizes

20 25 30 35 40 45
0.1

0.15

0.2

0.25

0.3

0.35

packet size

GR − threshold
GR − PRR x distance
GF − ETX

Fig. 6. Packet failure rate under different
packet sizes

pa

ck
et

 fa
ilu

re
 r

at
e

%

of

 tr
an

sm
is

si
on

s
pe

r
pa

ck
et

46 C. Wang, G. Zeng, and L. Xiao

0 2 4 6 8
6

8

10

12

14

16

number of obstructions

of

 tr
an

sm
is

si
on

s
pe

r
pa

ck
et

GR − threshold
GR − PRR x distance
GF − ETX

Fig. 7. Number of transmissions under dif-
ferent obstructions

0 2 4 6 8
10

15

20

25

30

35

number of obstructions

pa
ck

et
 fa

ilu
re

 r
at

e
%

GR − threshold
GR − PRR x distance
GF − ETX

Fig. 8. Packet failure rate under different
obstructions

packet delivery ratio is logged by TYTHON. In order to minimize the interference
between radio links, we inject the testing packets in a sequential order with a
time interval between consecutive packets.

We first evaluate the greedy forwarding on 8 pairwise nodes randomly selected.
We use both greedy forwarding based on ETX distance (GF-ETX) and the
geographic routing (GR) to forward packets between each pairwise nodes and
record the average number of transmissions. Fig. 4 shows that the GF-ETX uses
less number of transmissions to deliver packets from a source to a destination.

We further compare the GF-ETX, the geographic routing with threshold (GR-
threshold) and the geographic routing based on the product of the packet recep-
tion rate and the forwarding distance (GR-PRR x distance). Fig. 5 and Fig. 6 show
that both the number of packet transmissions and the packet failure rate are in-
creased with the increment of packet size. Moreover, the geographic routings are
more susceptible to the packet size and have high average number of packet trans-
missions for larger size packets. This is because both the routing approaches tend
to select low quality routing links with high bit flipping error and multiple bit er-
rors may happen in long length packets which cannot be recovered by FEC code.

We compare the GF-ETX with the geographic routing in complex deployed
environment by adding obstructions into the deployed area, which increases the
spatial complexity of the network topology. Fig. 7 and Fig. 8 show that the
greedy forwarding based on ETX distance is less affected by the interference from
obstructions and can always learn the optimal routing paths in a complicated
network topology. Because the ETX distance is a global metric which defines the
end-to-end channel quality between pairwise nodes, the greedy forwarding based
on ETX distance can foresee the affection of obstructions and guide packet to
bypass the obstruction along an optimal route.

7 Related Work

Packet routing is a fundamental problem in wireless networks, which has been
studied for decades. Geographic routing has been proposed to route packets

Optimizing End to End Routing Performance in Wireless Sensor Networks 47

based on nodes’ geographic positions [14] [15] [2] [16] [6] [17] [18] [4] [19] [20] [21].
In geographic routing, a packet is greedily forwarded to the next hop which is
geographically closer to the destination. Nevertheless, a packet may be trapped
in a local minimum where none of the neighbors are closer to the destination.
Numerous schemes have been proposed to recover the geographic forwarding
from the local minimum [2] [22] [23] by exploring the geographic characteristics
of a wireless sensor network or relying on small range flooding. The recovery
schemes, however, often have higher computation complexity than the simple
greedy forwarding. In contrast, the ETX embedding proposed in this paper di-
rectly improves the routing success rate of greedy forwarding with no extra
overhead.

Until recently, it has been proposed to construct nodes’ coordinates from hop
count distances instead of geographic distance to support the greedy forward-
ing [24] [25] [26] [27] [28] [23] [29] [30]. The hop count distance based greedy
forwarding outperforms the geographic routing because i) it does not require
nodes’ physical positions; ii) it can find a route close to the shortest path. The
hop count distance based greedy forwarding, however, suffers the same problem
as the geographic routing in that the quality of underlying wireless channels are
not reflected in the routing decision. Both approaches tend to select a route with
fewer intermediate forwarding nodes and therefore longer distance hops.

Several approaches [3] [4] [5] [31] have been proposed to balance the forwarding
distance and radio link quality, which either defines a threshold to exclude low
quality radio links; or defines a new metric which can be maximized under the
constraints of both forwarding distance and radio link quality. As we discussed
before, the greedy forwarding based on defined local metrics may fail to find
the optimal end-to-end routing path because the local metrics combined by the
forwarding advance and the link quality between immediate neighbors can not
reflect the global communication channel qualities.

The optimal routing metrics in a wireless network have been investigated
in [7] [8] [9] [32] [33], which propose the ETX and RTT instead of the shortest
path as the routing metric. The proposed metrics are incorporated into the on-
demand routing such as DSR to discover the optimal routing path.

Different from previous work, the ETX embedding proposed in this paper
embeds a wireless sensor network into a Euclidean space to support the greedy
forwarding. The ETX distance based greedy forwarding finds the route without
relying on frequently broadcast route probing messages. Moreover, it can find
the optimal routing path because the ETX distance is a global metric which
defines end-to-end channel quality.

8 Conclusion

We propose the ETX-embedding for greedy forwarding to achieve optimal end-
to-end routing performance in wireless sensor networks. We show that MDS can
embed a wireless sensor network into a low dimensional Euclidean space where
ETX distances are accurately preserved. Based on the ETX distance compari-

48 C. Wang, G. Zeng, and L. Xiao

son from nodes’ small size virtual coordinates, the simple greedy forwarding can
forward a packet along the optimal routing path without relying on broadcast
route probing messages. Consequently, the optimal end-to-end routing perfor-
mance is achieved with small overhead in terms of storage and communication
costs, which makes the ETX distance based greedy forwarding an ideal routing
approach for resource-constrained wireless sensor networks deployed in compli-
cated environment.

Acknowledgment. This work was supported in part by the US National Sci-
ence Foundation under grants CCF-0514078, CNS-0549006, and CNS 0551464.

References

1. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector (AODV) routing. Inter-
net Draft (1998)

2. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In: MobiCom (2000)

3. Seada, K., Zuniga, M., Helmy, A., Krishnamachari, B.: Energy-efficient forwarding
strategies for geographic routing in lossy wireless sensor networks. In: SenSys (2004)

4. Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient geographic routing in multihop
wireless networks. In: MobiHoc (2005)

5. Wu, S., Candan, K.S.: GPER: Geographic power efficient routing in sensor net-
works. In: ICNP (2004)

6. Wu, S., Candan, K.S.: Gper: Geographic power efficient routing in sensor networks.
In: ICNP (2004)

7. Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric
for multi-hop wireless routing. In: MobiCom (2003)

8. Adya, A., Bahl, P., Padhye, J., Wolman, A., Zhou, L.: A multi-radio unification
protocol for ieee 802.11 wireless networks. In: Broadnets (2004)

9. Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for static multi-hop
wireless networks. In: SIGCOMM (2004)

10. Stann, F., Heidemann, J.: RMST: Reliable data transport in sensor networks. In:
SNPA (2003)

11. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall (1994)

12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science (2000)

13. Levis, P., Lee, N., Culler, M.W.D.: Tossim: Accurate and scalable simulation of
entire tinyos applications. In: SenSys (2003)

14. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. In: ACM Int. Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications (1999)

15. Ko, Y., Vaidya, N.H.: Location-aided routing (LAR) in mobile ad hoc networks.
In: MobiCom (1998)

16. Kim, Y.-J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practi-
cal. In: NSDI (2005)

17. Seada, K., Helmy, A., Govindan, R.: On the effect of localization errors on geo-
graphic face routing in sensor networks. In: IPSN (2004)

Optimizing End to End Routing Performance in Wireless Sensor Networks 49

18. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric adhoc routing: Of
theory and practice. In: PODC (2003)

19. Xing, G., Lu, C., Pless, R., Huang, Q.: On greedy geographic routing algorithms
in sensing covered networks. In: MobiHoc (2004)

20. Bruck, J., Gao, J., Jiang, A.: Localization and routing in sensor networks by local
angle information. In: MobiHoc (2005)

21. Melodia, T., Pompili, D., Akyildiz, I.: On the interdependence of distributed topol-
ogy control and geographical routing in ad hoc and sensor networks. JSAC (2005)

22. Fang, Q., Gao, J., Guibas, L.J.: Locating and bypassing routing holes in sensor
networks. In: InfoCom (2004)

23. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.:
Beacon-vector routing: Scalable point-to-point routing in wireless sensor networks.
In: NSDI (2005)

24. Newsome, J., Song, D.: Gem: Graph embedding for routing and data-centric storage
in sensor networks without geographic information. In: SenSys (2003)

25. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic
routing without location information. In: MobiCom (2003)

26. Leong, B., Mitra, S., Liskov, B.: Path vector face routing: Geographic routing with
local face information. In: ICNP (2005)

27. Lim, M., Greenhalgh, A., ChesterField, J., Crowcroft, J.: Landmark guided for-
warding. In: ICNP (2005)

28. Zhao, Y., Li, B., Zhang, Q., Chen, Y., Zhu, W.: Efficient hop id based routing for
sparse ad hoc networks. In: ICNP (2005)

29. Cao, Q., Abdelzaher, T.F.: A scalable logical coordinates framework for routing in
wireless sensor networks. In: RTSS (2004)

30. Caruso, A., Chessa, S., De, S., Urpi, A.: GPS free coordinate assignment and
routing in wireless sensor networks. In: InfoCom (2005)

31. Zhang, H., Arora, A., Sinha, P.: Learn on the fly: Data-driven link estimation and
routing in sensor network backbones. In: InfoCom (2006)

32. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: SenSys (2003)

33. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: SenSys (2003)

Improving Event-to-Sink Throughput in

Wireless Sensor Networks

Chen Wang and Li Xiao

Department of Computer Science and Engineering
Michigan State University, East Lansing, MI 48824

{wangchen, lxiao}@cse.msu.edu

Abstract. Disaster relief is an important application of sensor networks,
in which bursting data needs to be collected in a short period to the sink
through a multi-hop wireless network. In general, packets containing the
reported data have few correlations among each other, such that mean-
ingful information can be inferred from partially received packets. For
better understanding of monitored events, it is more important to cap-
ture the total number of unique reports rather than to reliably deliver
each individual packet. Therefore, in the case of monitoring disaster filed
with bursting data, communication channel throughput has higher prior-
ity than the channel reliability. Under this circumstance, we revisit the
sensor network transport protocols, which use hop-by-hop recovery to
provide reliable data transmission over unreliable links. We found that
the complex recovery mechanism, while assuring high reliable individ-
ual packet delivery, reduces channel throughput when measured data is
reported at high rate. To provide optimal data transport in a sensor
network with bursting data generation, we propose a light weight sink
centric transport protocol, which maximizes the channel throughput by
minimizing the interference of packet recovery process. We implement the
sink centric transport protocol in TinyOS and evaluate its performance
in the TOSSIM simulator. The comparison shows that our proposed ap-
proach outperforms the hop-by-hop recovery approach in terms of event
reporting throughput and transmission costs.

1 Introduction

Wireless sensor networks have broad applications in habitat monitoring, battle
field surveillance and disaster relief. While sensors normally operate under light
load, they may be suddenly activated by abrupt events such as enemy attack or
fire spread. In such cases, large volume of data may be generated and transmit-
ted to sink within a short period, which demands high throughput transmission
channels to transfer the bursting data in a timely fashion. However, the lossy na-
ture of wireless communication, together with the channel contention incurred by
multi-hop forwarding, makes it a challenging task to achieve the high throughput
data transfer in sensor networks.

Because sensors are equipped with low-power radio transceivers, radio signals
have low signal-to-noise ratio when transmitted to long distance. Consequently,

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 50–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Event-to-Sink Throughput in Wireless Sensor Networks 51

the packet can be easily corrupted and have high lossy rate during the long
range transmission[1]. To achieve reliable packet delivery, sensors are usually
densely deployed such that packets can be forwarded between pairwise sensors
within short range[2]. However, channel interference can easily happen in a dense
sensor network when a large volume of generated packets are quickly forwarded
along the multi-hop paths towards the center of the sink. In order to efficiently
collect data over the unreliable and crowded wireless channels, a suit of transport
protocols have been developed to recover the lossy data and mitigate congested
channels.

The hop-by-hop recovery has been proposed to retransmit a lost packet when
the acknowledgment has not been received within a certain period [3]. The reli-
able data transfer is necessary for critical messages that cannot tolerate packet
loss. However, this timer based retransmission mechanism may degrade channel
throughput because packet acknowledging consumes extra bandwidth and in-
tensifies channel contention. On the other hand, data collection in many sensor
network applications are usually loss tolerant[4][5]. For example, in fire mon-
itoring, it is unnecessary to collect all the measured temperature to the sink
while the fire status can still be well understood. Instead of reliably delivering
all measured data, it is more important to capture the total number of unique
reports in a short period, such that the fire spread and development can be
learned in a timely fashion. Under this background, the best effort data trans-
mission mechanism[5], in which each intermediate node immediately forwards
the received packet to the next hop, may be more effective to deliver bursting
data than the stop-and-wait retransmission mechanism.

The best effort mechanism, however, is not energy efficient because the trans-
mission energy is wasted when packets are lost in the middle of multi-hop paths.
In this paper, we seek an optimal transport protocol design for sensor networks,
which can well balance the channel throughput and energy consumption. We be-
lieve that bursting data can be efficiently collected by a transport protocol which
has the following design principles: i) the generated data has the highest priority
to access the wireless channel which forms a continuous upstream towards the
sink; ii) the channel bandwidth consumed by control messages should be min-
imized; iii) the data reporting rate is properly set to fully utilize the channel
throughput while not incurring intensive channel contention and congestion.

Following the principles above, we propose the sink centric transport protocol,
where the major function of packet recovery and congestion control is achieved
in the sink. In the sink centric transport protocol, packet loss is detected by the
sink from the discontinuous packet sequence numbers, and the sequence numbers
of lost packets are sent back towards sources through virtual backward channels.
In order to maintain the continuous data stream forwarding from sources to the
sink, the backward channel is created by appending missing sequence numbers
to the packets forwarded to the sink, which can be overheard by the previous
node due to the broadcast nature of wireless communication. As a result, the
missing sequence numbers can be relayed backward to the source. If the missing
sequence numbers hit the local buffer of intermediate nodes, the lost packets will

52 C. Wang and L. Xiao

be re-entered into the the transmission queue. Here, the lost packets are pulled
back to the sink through the backward channel, which does not incur extra
message transmission and has minimum impact on the forward data stream.

It is possible that the local buffer of intermediate nodes are overflowed by
a high data reporting rate, such that the missing sequence numbers miss all
the intermediate buffers and reach the sources. We regard this as the symptom
of channel congestion and lower the data reporting rate accordingly. Here, the
backward channel is reused for congestion control.

The sink centric transport protocol is a semi-design between the hop-by-hop
recovery and the end-to-end retransmission. By deferring the packet loss to the
sink, the resources of intermediate nodes are devoted to forward data stream.
Meanwhile, energy is saved by recovering lost packets in the middle of the for-
warding paths. The sink centric transport protocol tries to maximize the channel
throughput of sensor networks through the following strategies.

1. Like the best effort mechanism, each intermediate node immediately for-
wards a received packet to the next hop. As a result, the continuous forward
data stream can be maintained.

2. The retransmission control messages are hitchhiked into the forward data
stream, which has minimal interference on the upstream data forwarding.

3. Because the retransmission decision is deferred to the sink, it is possible for
the sink to intelligently ask for critical lost packets based on the collected
data from multiple sources.

4. Moreover, because the congestion control is integrated into the packet recov-
ery function by sharing the same messaging bytes and operation logic, the
overhead of the transport protocol is minimized.

In the following text of Section II, we compare the packet reliability and event
throughput and discuss how the event throughput is limited by current transport
protocols. We detail our sink centric transport protocol in Section III, which is
evaluate in Section IV. We summarize previous work in Section V and conclude
this paper in Section VI.

2 Preliminary

Because data collection in sensor networks is often loss tolerant, the necessity
of developing reliable transport protocols for upstream data has been argued
in [5][4]. In the following discussion, we compare the difference between event
throughput and packet reliability. After that, we illustrate that current sensor
network transport protocols, which aim to optimize the packet reliability, may
fail to maximize the event throughput.

2.1 Packet Reliability v.s. Event Throughput

The packet reliability R of a multi-hop forwarding path can be defined as below
R = Nr/Ns, where Ns is the number of packets sent by the source node and Nr

Improving Event-to-Sink Throughput in Wireless Sensor Networks 53

is the number of packets received by the sink. The event throughput E is defined
as E = Nτ/τ, where Nτ is the number of packets received by the sink within
the time period τ . The importance of packet reliability R and event throughput
E vary in different sensor applications. In general, packet reliability is critical in
control message transmission, such as sending reprogramming packets from the
sink to sensors, where any packet loss will break the reprogrammed functionality.
The packet reliability R is also important for rare event monitoring, where a
small packet loss may jeopardize the application fidelity. On the other hand,
the event throughput E is more important in sensor applications that generate
bursting data within a short period. It is critical for the sink to collect the
bursting data as soon as possible, while partial data loss is tolerable.

2.2 Hop-by-Hop Recovery Based on Time Out Mechanism

In hop-by-hop recovery based on time out mechanism[3], each intermediate node
waits for the acknowledgment from the next hop after sending out a packet.
The retransmission is initiated when the acknowledgment has not been received
within a certain period. The hop-by-hop recovery based on time out mechanism
reduces the event throughput because of several reasons: i) the stop-and-wait
nature interrupts the continuous forward data stream from sources to the sink;
ii) the acknowledgment messages consume extra bandwidth and intensify channel
contention; iii) the acknowledgment may be lost in unreliable channels, which
leads to false packet loss detection and unnecessary packet retransmissions.

It is notable that the implicit acknowledgment based on overhearing cannot
be directly applied in the hop-by-hop recovery based on time out mechanism.
For instance, assume that node Pi sends packet d to node Pi+1 and waits for the
implicit acknowledgment by overhearing node Pi+1 to transmit packet d. Node
Pi+1, however, will not immediately forward packet d since it is at the tail of the
queue. Consequently, we have the overall acknowledgment delay Dk = Dt + Dq,
where Dt is the transmission delay and Dq is the queue waiting delay. Here, Dq

is not a constant, which makes it difficult to set a proper waiting time for the
time out mechanism to wait for acknowledgments.

2.3 Hop-by-Hop Recovery Based on Out-of-Sequence Mechanism

In hop-by-hop recovery based on out-of-sequence mechanism[6], each interme-
diate node monitors the sequence numbers of forwarded packets. When the se-
quence numbers of received packets are not in the continuous incremental order,
the packet loss is detected and retransmission request containing the missing
sequences is sent back to the previous hop, which resends the lost packets based
on the missing sequences. The retransmission request itself may be lost due to
the unreliable nature of wireless channels. In this case, the receiver will initiate
another retransmission request if the lost packets have not received within a
certain period. The process is repeatedly applied until the packet sequence order
is restored.

54 C. Wang and L. Xiao

1 2 3 4 5

Virtual backward channel

Forward data stream

9 6

Field fx

3 25

Fig. 1. Virtual backward channel is formed by
utilizing the wireless broadcast nature. Node
P2 can overhear packet d5 transmitted by node
P3 to P4. Therefore, the missing sequence in fx

is relayed backward to P2 by the forward data
stream.

head
tail

se
nt

Transmission queue

Sent buffer

Unused buffer

Fig. 2. Three hand circular
queue consists of buffer units
linked by double pointers.
The grey region contains sent
packets that may be recov-
ered later.

The out-of-sequence mechanism outperforms the time out mechanism in that
i) it does not involve stop-and-wait operations; and ii) it eliminates the unnec-
essary retransmission since lost packets are retransmitted only when requested.
However, the hop-by-hop recovery based on out-of-sequence mechanism relies
on the continuous in-order sequences, which limits the event throughput of
communication channels. For example, when node Pk receives packet sequences
[...i − 1, i + 1, i + 2, i + 3, ...], it detects that packet di is lost based on the miss-
ing sequence i. Node Pk will hold all the subsequent packets di+1, di+2, ... until
packet di is restored from the previous hop. Here node Pk cannot send out all
the subsequent packets before the packet di is sent out because the sequence
order must be strictly maintained in the packet forwarding. Otherwise, the next
hop Pk+1 will falsely detect that packet i is lost in the transmission from node
Pk to node Pk+1, which incurs unnecessary packet retransmission requests.

3 Sink Centric Transport Protocol

The analysis above shows that the complicated hop-by-hop recovery, based on
either the time-out mechanism or the out-of-sequence mechanism, is not an opti-
mal design to maximize the event throughput because i) the continuous forward
data stream is interrupted; and ii) the acknowledgments or retransmission re-
quests consume extra bandwidth and intensify channel contention. In order to
provide high event throughput for bursting data, we propose the sink centric
transport protocol to optimize the event throughput by deferring the packet loss
detection to the sink, which has the following advantages:

1. It uses the out-of-sequence mechanism for packet loss detect and therefore
inherits its strength which eliminates stop-and-wait operations and unnec-
essary retransmissions;

2. It does not need to maintain the continuous in-order sequence numbers as
the hop-by-hop recovery. Because loss detection is deferred to the last hop
of the sink, intermediate nodes do not have to main strict sequence order

Improving Event-to-Sink Throughput in Wireless Sensor Networks 55

for loss detection. As a result, the continuous forward data stream can be
achieved by the sink centric approach based on out-of-sequence mechanism.

We detail the packet loss detection and notification, packet retransmission,
and congestion control in the following discussion.

3.1 Packet Loss Detection and Notification

We use the out-of-sequence mechanism to detect lost packets in the sink. When
a source node sends a serial of packets to the sink, it labels each packet with
a sequence number, which is increased by one after each sending. As a result,
the source injects a serial of packets to the communication channel, where each
packet is labeled with a sequence number associated with its transmission order.
All the packets are queued and forwarded by intermediate nodes. Some of the
packets are dropped due to the lossy wireless channels, and the rest are delivered
to the sink. As a result, the sink receives a serial of packets with discontinuous,
while still in-order, sequences. Here, “in-order” means a packet with smaller
sequence must be sent by the source earlier. An example is shown in Fig. 1,
where transmitted packets are labeled with 9, 6, 5, 3, 2, which are not continuous
but still in-order.

Based on the discontinuous and in-order sequences, the sink can detect lost
packets by recording the largest sequences l that it has received. When the sink
receives a new packet with sequence number r, it computes the sequence gap
between r and l as g = r − l. If g = 1, this is the normal status that packets are
continuously received. We simply set the value of the largest sequence number l
as r. If g > 1, this means packets with sequences between l and r are lost, and all
the sequences [l+1, l+2, ...r−1] will be entered into the circular buffer recording
missing sequences. If g < 1, which means the received packet is recovered by the
retransmission mechanism, and we clear the corresponding field in the missing
sequence buffer. In the above process, the sink detects lost packets based on the
sequence continuality.

The missing sequence is sent back towards the source through the virtual
backward channel, which is constructed by overhearing the forward data stream.
We illustrate how missing sequences are sent back along the backward channel
in Fig. 1. When intermediate nodes forward packets from the source to the sink,
the extra field fk in the forwarded packets are allocated to the backward channel.
When node Pi forwards packet d to the next hop Pi+1, node Pi−1 can overhear
packet d due to the broadcast nature of wireless channels. Consequently, node
Pi−1 can retrieve the information in filed fx, which is specially reserved for the
backward channel. In our design, node Pi sets the value of field fx as the missing
sequences such that the missing sequences can be overheard by previous hop Pi−1

when packets are being transmitted from node Pi to Pi+1. Missing sequences can
be transmitted from the sink to sources via the continuous backward relay of
intermediate nodes.

One important issue of the backward channel is how to inject missing subse-
quences from the sink. Because the sink does not forward received packets any

56 C. Wang and L. Xiao

more, the last hop prior to the sink cannot overhear missing sequences hitchhiked
to the forward data stream. To solve this problem with a uniform solution, we
force the sink to forward received packets to the next virtual destination such
that the last hop can work as other intermediate nodes to overhear packets trans-
mitted by the next hop. When the sink forwards a received packet to the next
virtual destination, the fields of fx are set with missing sequences extracted from
the circular buffer, which is populated by the packet loss detection process. In
order to inject all the missing sequences into the backward channel, the pointer
head is maintained for the missing sequence circular buffer. The field of fx is
set by the value pointed by head which is increased automatically. The missing
sequences will be recycled after all sequences in the buffer have been scanned by
head.

3.2 Packet Retransmission

When intermediate nodes receive missing sequences through the backward chan-
nel, they will check the local transmission buffer. If the lost packet can be found,
the retransmission is initiated by re-entering the lost packet to the transmission
queue. In order to minimize the interference of packet retransmission to the for-
ward data stream, we implement the packet retransmission mechanism through
a three-hand double linked queue.

As shown in Fig. 2, the three-hand double linked queue consists of buffer
units connected by double links. Pointer head points to the buffer containing
the sending packet. Pointer tail points to the buffer ready to receive a packet.
Here, the black region between head and tail works as the normal transmission
queue, which follows the FIFO rule to receive packets at tail and send packet at
head. When a packet is sent out, pointer head is moved to the next buffer unit
and the buffer of the sent packet is moved to the grey region accordingly, which
is between pointer head and sent.

When a missing sequence is received by intermediate node Pi, it will scan
the grey region containing sent packets. If the lost packet is found, the buffer
containing the lost packet will re-enter to the black region of the transmission
queue by relinking the buffer unit to the black region. Otherwise, node Pi will
continue to scan the black region of the transmission queue, if the lost packet
is found, which means that the lost packet has been recovered by the previous
retransmission request, node Pi will not start the buffer relink. For both cases,
node Pi will drop the missing sequence and not relay it backward to the source
any more. This is achieved by setting the field of fx to zero in the backward
channel. If the missing sequence can not be matched in both the black region
and the gray region, the sequence number will be continuously relayed backward
to the source through the backward channel.

The process above illustrates how lost packets are recovered in the sink centric
approach. After a packet is sent out and leaves the transmission region, it enters
the temporal buffer of the grey region instead of being discarded. If a missing
sequence matches the packet temporally kept in the grey region, the packet will
be re-linked into the black region of the transmission queue.

Improving Event-to-Sink Throughput in Wireless Sensor Networks 57

It is notable that the operation of missing sequence matching and the packet
forwarding can be finished concurrently. Similar to the best effort mechanism,
each intermediate node receives packets into the tail of the transmission queue
and sends out packets at the head immediately when the communication channel
is available. Consequently, the continuous forward data stream is maintained,
which maximizes the utilization of the communication channel throughput. Here,
the packet retransmission is achieved by simply re-linking the lost packets back
to the transmission queue and therefore minimizes the interference to the forward
data stream.

4 Performance Evaluation

We implement the sink centric transport protocol on TinyOS and compare the
proposed protocol with the best effort approach and the hop-by-hop recovery
approach based on time out mechanism in TOSSIM [7]. TOSSIM is a bit-level
simulator that accurately simulates radio communications in sensor networks.
TOSSIM re-implements the hardware platform of the TinyOS, such that the
same code that runs on sensor network hardware can directly run in TOSSIM.
TOSSIM models network channels with a directed graph. Each edge (u, v) is
described by its bit error rate euv. When a bit is sent from node u to node v,
it may be flipped with the probability of euv. The asymmetric links of wireless
channels can be modeled with different euv and evu (euv �= evu).

Based on the bit error model, TOSSIM simulates the TinyOS network stack
with high fidelity, which includes the CSMA media access protocol and packet
error detection/correction with a full packet CRC. Before sender u transmits a
packet, it enters the CSMA mode to listen for an idle channel. After the CSMA
model, the sender transmits a serial of start symbols to synchronize the receiver,
which is followed by the transmission packet. During the transmission, each bit
has the error probability to be flipped between zero and one. The incorrect
bytes in a packet may be detected and corrected by the CRC code appended
to the end of the packet. If the packet cannot be recovered, it will be discarded
by the receiver. Because TOSSIM simulates the radio communication in sensor
networks in high fidelity, where channel contention and packet corruption are
accurately described, it provide a good basis for us to compare the sink centric
approach, the best effort approach, and the hop-by-hop recovery approach based
on time out mechanism.

In our evaluation, we use TYTHON[8], a scripting environment to interact
and observe the simulated sensor nodes. In our simulation, a group of sensors
P1, P2, ..., Pn are arranged in a line. We use TYTHON to inject radio packets
to the sensor network, which are received by the first node P1, and thereafter
forwarded by node P2, P3... in sequence. When packets reach the destination,
they will be transmitted back to the TYTHON script through the serial port.
Here, we implement the sink function in the combination of the destination and

58 C. Wang and L. Xiao

the TYTHON script. When a packet is received from the serial port, its sequence
number r will be checked against the largest sequence number l ever received.
If r is larger than l but not increased by one, all the missing sequences will be
entered into the circular buffer, which will be sent back towards the source along
the backward channel.

In our simulation, we vary the packet inject rate at the source to test the event
throughput of different transport protocols. The comparison is also conducted
under different channel qualities. We achieve this by varying the interval between
forwarding sensors. The bit error rates are assigned to the wireless channels be-
tween pairwise sensors according to their distances, which is based on empirical
data from the real experiment. The number of received packets received by the
sink are recorded by the TYTHON script. By monitoring the internal variables
of each sensor node, the total number of packet transmissions (including re-
transmissions) can be read and logged by the TYTHON scripts. Based on all
the observed data, we evaluate the three transport protocols in terms of trans-
mission quality and cost. The evaluation metrics are defined as below.

– Event throughput: The number of unique packets received by the sink per
unit time.

– Packet reliability: The number of unique packets received by the sink
divided by the number packets sent by the source.

– Transmission cost: The number of transmitted (including retransmitted)
bits per packet which is successfully delivered to the sink.

– Inject rate: The number of packets sent by the source per unit time.

In the following simulation, we compare the three transport protocols un-
der different conditions by varying the packet inject rate, the interval between
forwarding sensors, and the hop distance between the source and the sink.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

inject rate

ev
en

t t
hr

ou
gh

pu
t

hop−by−hop recovery
best effort
sink centric

Fig. 3. Event throughput comparison
under inject rate

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

inject rate

pa
ck

et
 r

el
ia

bi
lit

y
%

hop−by−hop recovery
best effort
sink centric

Fig. 4. Packet reliability comparison
under different inject rate

4.1 Impact of Packet Inject Rate

We first evaluate the maximum event throughput that a transport protocol can
achieve under a certain channel quality. In this evaluation, we use the TYTHON

Improving Event-to-Sink Throughput in Wireless Sensor Networks 59

script to inject packets, which are forwarded by 6 sensor nodes before reaching
the destination. We increase the packet inject rate from 2 packet/second to 20
packets/second. The event throughput measured at the sink is shown in Fig. 3,
which illustrates that the event throughput can be increased by increasing packet
inject rate. However, after a certain critical point, the event throughput is de-
creased when packet inject rate is further increased. This demonstrates that a
maximum event throughput exists for each transport protocol. When the packet
inject rate exceeds the maximum event throughput, the actual event throughput
is reduced due to buffer overflow and channel contention.

We also observe that the maximum of event throughput of the best effort
approach is higher than that of the hop-by-hop recovery approach. This happens
because the timer-based hop-by-hop recovery approach uses the stop-and-wait
mechanism to retransmit lost packets, which interrupts the continuous forward
data stream and therefore lowers the maximum event throughput a channel can
offer. Meanwhile, the extra acknowledge messages intensify channel contention,
which further reduce the maximum event throughput.

Fig. 3 also shows that among all the three approaches, the sink centric trans-
port protocol has the highest maximum event throughput. This is because the
sink centric approach maintains the continuous forward data stream and recovers
lost packets with minimum overhead. Since no extra acknowledge messages are
incurred to compete for channels, and lost packets are retransmitted by simple
buffer relinking, the interference of recovery process on the forward data stream
is minimized. Consequently, extra event throughput can be obtained by the light
weight recovery mechanism of the sink centric approach.

We further compare the packet reliability under different packet inject rates.
Fig. 4 shows that the packet reliability decreases with the increased packet in-
ject rates. This is because the increased packet inject rate intensifies channel
contention which leads to packet dropping, and therefore the number of success-
fully delivered packets is reduced. Fig. 4 also shows that at the low packet inject
rate, the hop-by-hop recovery approach outperforms the other two approaches
with the highest packet reliability. However, the packet reliability of the hop-
by-hop recovery approach drops faster when the packet inject rate is increased,
and the sink centric approach has the best performance under high packet in-
ject rates. This illustrates again that channel contention and interference have
severe impact on data transmission when wireless channels are heavily loaded.
Reducing the channel contention not only improves the event throughput but
also improves the packet reliability.

Fig. 5 shows the transmission cost comparison under different packet inject
rates. The transmission costs increase with the increased packet inject rates.
This happens because more packets are dropped in the middle of the forwarding
path when the packet inject rates are increased. As a result, the average num-
ber of transmissions per successful packet is increased. Fig. 5 also shows that
the hop-by-hop recovery incurs higher packet transmission cost than the best
effort approach and the sink centric approach. The extra communication costs

60 C. Wang and L. Xiao

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

inject rate

tr
an

sm
is

si
on

 c
os

t

hop−by−hop
best effort
sink centric

Fig. 5. Transmission cost comparison
under different inject rate

2 3 4 5 6
1.5

2

2.5

3

3.5

4

hop distance

ev
en

t t
hr

ou
gh

pu
t

hop−by−hop recovery
best effort
sink centric

Fig. 6. Event throughput under differ-
ent hop distances

of the hop-by-hop approach are incurred by the acknowledge messages and their
intensified channel contention.

Based on the comparison above, we conclude that if we aim to improve the
event throughput, instead of the high reliable data transmission at low transfer
speed, the light weight sink centric transport protocol is preferable over the hop-
by-hop recovery approach based on time-out mechanism. The former can provide
higher maximum event throughput with lower transmission cost.

4.2 Impact of the Hop Distances

We discuss the impact of the hop distances between the source and the sink
on the event throughput and communication costs. In the evaluation we fix the
packet inject rate at 4 packets/second. Along the forwarding path with uniformly
distributed nodes P1, P2, ...Pn, we select different destination Pd (3 ≤ d ≤ 7) for
each test. As a result, the number of forwarding hops varies from 2 to 6 and the
interval distance between neighbors in each test is the same.

Fig. 6 shows that the event throughput of all the three approaches decreases
with the increased lengths of the forwarding paths, which is resulted from two
reasons: i) packets are dropped with higher probability when they have to be for-
warded through more unreliable links; ii) channel contention and interference are
intensified when more forwarding hops are involved in the packet transmission.
Fig. 6 also shows that both the sink centric approach and the hop-by-hop re-
covery approach have high event throughput when the forwarding path is short.
However, the event throughput of the hop-by-hop recovery approach decreases
fast with the increased number of forwarding hops. This happens because of two
reasons: i) channel contention incurred by the acknowledgments becomes more
intense when more intermediate nodes are involved in the packet forwarding; ii)
lost acknowledgments incur unnecessary retransmissions that further intensify
the channel contention and interference.

Improving Event-to-Sink Throughput in Wireless Sensor Networks 61

5 Related Work

Packet delivery performance in sensor networks has been intensively studied
in [2][1], which shows that packet loss is common when they are transmitted
in the unreliable links between pairwise nodes equipped with low-power radio
transceivers. To successfully deliver packets over lossy and collisional wireless
channels, a suit of protocols have been developed to properly allocate commu-
nication channels and recovery lost packets.

To allocate the shared wireless channels among neighboring nodes, a variety of
media access protocols have been proposed[9] [10][11][12][13], which aim to solve
the channel contention between neighboring nodes. However, media access proto-
cols neither reduce packet loss due to buffer overflow incurred by channel conges-
tion, nor recover lost packets corrupted by the channel interference. Consequently,
it is necessary to develop the transport protocol in sensor networks for reliable
data transmission, which is achieved by congestion control and packet recovery.

Channel congestion can easily happen in sensor networks due to their un-
symmetrical communication model, where a large volume of data packets are
converged from multiple sources to the sink. This makes the wireless channels
close to the sink become heavily loaded. To mitigate channel congestion in sen-
sor networks, several transport protocols focusing on the congestion control have
been proposed[14][15][16][17][18]. Different from these approaches, our proposed
sink centric approach focuses on efficiently recovering lost packets with mini-
mal interference on the forward data stream. In the sink centric approach, the
congestion control message and logic are integrated into the packet recovery pro-
cess and therefore the overhead incurred by the control messages of transport
protocols is minimized.

To reliably transmit packets over lossy wireless channels, a group of transport
protocols have been proposed to recover lost packets based on the retransmis-
sion mechanism. Among the proposed approaches, the RMST[3] and RBC[19]
approaches use time out mechanism to detect lost packets. As we discussed
before, the stop-and-wait nature of the time out mechanism reduces channel
throughput. On the other hand, the out-of-sequence mechanism is used by the
PSFQ[4], GARUDA[20], and the lazy loss detection [6] to detect lost packets in
a hop-by-hop fashion. The out-of-sequence mechanism uses the strict continu-
ous in-order sequence numbers to detect lost packets, which may incur packet
delay and reduce channel throughput. This happens because packets cannot be
forwarded by an intermediate node if any packets with lower sequence numbers
have not been recovered. Otherwise, unnecessary packets retransmission requests
will be falsely invoked. The above recovery approaches ensure high data trans-
mission reliability through complex mechanisms to detect and retransmit lost
packets, which is critical to applications where packet loss is intolerable. For ex-
ample, the PSFQ and GARUDA approaches are specially designed for download
stream transmission, such as delivering reprogramming packets, from the sink to
sensors. Different from the approaches above, the sink centric approach aims to
improve event throughput instead of packet reliability, which maximizes channel
throughput by minimizing interference from packet recovery process.

62 C. Wang and L. Xiao

The sink centric protocol proposed in this paper is designed for upstream data
forwarding from sensors to the sink, which are loss tolerant[5][4]. To improve the
event reliability instead of the packet reliability, ESRT[5] has been proposed to
dynamically adjust event report rate in the source. If the number of packets
received by the sink within a time period is less than the threshold, the source
will aggressively increase the event report rate such that more packets can arrive
in the sink. ESRT uses the best effort mechanism to transmit packets and uses
sink broadcast to adjust source report rate. However, low data arrival rate at
the sink incurred by channel congestion may be falsely judged by the ESRT as
by packet loss. As a result, ESRT will increase the source data reporting rate,
which further intensify channel congestion. the sink centric approach improves
the ESRT approach in that i) it is more energy efficient since lost packets are
recovered from the middle of forwarding paths; ii) control messages are sent
through virtual backward channel instead of broadcast; iii) it can distinguish
the reasons of low data arrival rate at the sink between channel congestion and
packet loss by integrating congestion detection into the lost packet recovery
process.

6 Conclusion

We propose the sink centric transport protocol to improve event throughput in
sensor networks. The sink centric transport protocol is specially designed for
applications where bursting data is generated within a short time. Aiming at
improving the event throughput instead of reliably transmitting each individ-
ual packets, the sink centric approach optimizes the sensor network transport
protocol as follows: i) it maintains the continuous upstream data forwarding by
minimizing overhead incurred by control messages; ii) the virtual backward chan-
nel is created by utilizing the broadcast nature of wireless channels; ii) the packet
recovery and congestion control are integrated into the same logic, which further
minimizes the overhead incurred by control messages. We prove the effectiveness
of the sink centric protocol through both theoretical analysis and experimental
comparison conducted in a TOSSIM environment, which shows that the sink
centric transport protocol outperforms the hop-by-hop recovery and the best
effort approach when events are reported with high frequency through a dense
sensor network.

Acknowledgment. This work was supported in part by the US National Sci-
ence Foundation under grants CCF-0514078, CNS-0549006, and CNS 0551464.

References

1. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: SenSys (2003)

2. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: SenSys (2003)

Improving Event-to-Sink Throughput in Wireless Sensor Networks 63

3. Stann, F., Heidemann, J.: RMST: Reliable data transport in sensor networks. In:
SNPA (2003)

4. Wan, C.-Y., Campbell, A.T., Krishnamurthy, L.: PSFQ: a reliable transport pro-
tocol for wireless sensor networks. In: WSNA (2002)

5. Sankarasubramaniam, Y., Akan, O.B., Akyildiz, I.F.: ESRT: event-to-sink reliable
transport in wireless sensor networks. In: MobiHoc (2003)

6. Cao, Q., He, T., Fang, L., Abdelzaher, T., Stankovic, J., Son, S.: Efficiency centric
communication model for wireless sensor networks. In: INFOCOM (2006)

7. Levis, P., Lee, N., Culler, M.W.D.: Tossim: Accurate and scalable simulation of
entire tinyos applications. In: SenSys (2003)

8. Demmer, M., Levis, P.: Tython: Scripting tossim (2004) in
http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html

9. Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor
networks. In: MobiCom, pp. 221–235 (2001)

10. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks. In: INFOCOM (2002)

11. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wire-
less sensor networks. In: SenSys (2003)

12. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys (2004)

13. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: a hybrid mac for wireless sensor
networks. In: SenSys (2005)

14. Hull, B., Jamieson, K., Balakrishnan, H.: Mitigating congestion in wireless sensor
networks. In: SenSys (2004)

15. Wan, C.-Y., Eisenman, S.B., Campbell, A.T.: CODA: congestion detection and
avoidance in sensor networks. In: SenSys (2003)

16. Wan, C.-Y., Eisenman, S.B., Campbell, A.T., Crowcroft, J.: Siphon: overload traffic
management using multi-radio virtual sinks in sensor networks. In: SenSys (2005)

17. Ee, C.T., Bajcsy, R.: Congestion control and fairness for many-to-one routing in
sensor networks. In: SenSys (2004)

18. Wang, C., Sohraby, K., Lawrence, V., Li, B., Hu, Y.: Priority-based congestion con-
trol in wireless sensor networks. In: Sensor Networks, Ubiquitous, and Trustworthy
Computing (2006)

19. Zhang, H., Arora, A., ri Choi, Y., Gouda, M. G.: Reliable bursty convergecast in
wireless sensor networks. In: MobiHoc (2005)

20. Park, S.-J., Vedantham, R., Sivakumar, R., Akyildiz, I.F.: A scalable approach for
reliable downstream data delivery in wireless sensor networks. In: MobiHoc (2004)

http://www.tinyos.net/tinyos-1.x/doc/tython/manual.html

Dwarf: Delay-aWAre Robust Forwarding for

Energy-Constrained Wireless Sensor Networks

Mario Strasser1, Andreas Meier1, Koen Langendoen2, and Philipp Blum3

1 ETH Zurich, Switzerland (equally contributing authors)
2 Delft University of Technology, The Netherlands

3 Siemens Building Technologies, Switzerland

Abstract. With the field of wireless sensor networks rapidly maturing,
the focus shifts from “easy” deployments, like remote monitoring, to more
difficult domains where applications impose strict, real-time constraints
on performance. One such class of applications is safety critical systems,
like fire and burglar alarms, where events detected by sensor nodes have
to be reported reliably and timely to a sink node. A complicating factor is
that systems must operate for years without manual intervention, which
puts very strong demands on the energy efficiency of protocols running
on current sensor-node platforms.

Since we are not aware of a solution that meets all requirements of
safety-critical systems, i.e. provides reliable data delivery and low la-
tency and low energy consumption, we present Dwarf, an energy-efficient,
robust and dependable forwarding algorithm. The core idea is to use
unicast-based partial flooding along with a delay-aware node selection
strategy. Our analysis and extensive simulations of real-world scenarios
show that Dwarf tolerates large fractions of link and node failures, yet
is energy efficient enough to allow for an operational lifetime of several
years.

1 Introduction

The state of the art in Wireless Sensor Networks (WSN) is rapidly changing.
From the Smart Dust vision in 1999 [4], through the early Great Duck Island
experiment with first-generation hardware in 2002 [9], to a host of (pilot) de-
ployments in operation today [1,11,17]. Although the application domains vary,
these deployments typically fall into the class of remote monitoring, where rather
soft constraints on performance (e.g., latency, throughput, and lifetime) allow
for straightforward engineering solutions. The experience gained with these pi-
lots is being incorporated into a second-generation software that is better tuned,
more robust, and offers the potential for enlarging the scope to more demanding
applications.

Using WSN technology for implementing safety-critical applications such as
fire and burglar alarm systems is a big challenge because of the real-time con-
straints imposed by their users. Typically, alarms detected by sensor nodes have
to be reported reliably and within a few seconds to at least one sink node, even in

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 64–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 65

case that some of the nodes and communication links fail. Additionally, safety-
critical applications are required to observe the status of the network and report
node failures within a specified time. A complicating factor is that maintenance
costs have to be very low to make an application economically feasible. This re-
quires energy-efficient operation of the sensor network, because batteries should
not be replaced more often than once every two to three years.

With current generation sensor node hardware built out of COTS compo-
nents, the radio consumes the most power, and the above lifetime requirement
translates into a duty cycle of well below 1%. This, in turn, limits the data
rate to about 1 message per second and leaves little room for re-transmissions
in a multi-hop scenario. Multi-path routing proposed for ad-hoc networks is an
alternative way of handling link and node failures, but solutions either compro-
mise on latency or rely on broadcast for efficiency. A broadcast-based approach,
however, is consuming way too much energy as it implies that nodes listen to
all neighboring traffic including regular status-update messages for monitoring
system integrity. Furthermore, broadcast causes channel contention problems
and introduces synchronization overhead. The need to avoid broadcast is also a
reason that standard data gathering algorithms for WSN networks, like TAG [8]
and Synopsis Diffusion [12], cannot be used.

To jointly address the three fundamental requirements associated with safety-
critical applications (reliable data delivery, low latency, low energy consumption)
we advocate an integrated approach that cuts across the individual MAC, rout-
ing, and transport layers, to arrive at a working solution for commodity sensor
nodes in use today. To this end, we present Dwarf, a Delay-aWAre Robust For-
warding algorithm that is based on the following observations and assumptions:

a) One of the most robust, yet simple forwarding algorithms is flooding because
it ensures that a message will eventually reach its destination as long as the
network remains connected.

b) Traditional flooding is very expensive (with regard to energy consumption
and transfer costs) and does not consider the message delivery time at all.

c) Nodes duty-cycle their radio to increase network lifetime and spend most
of their time in sleep mode. Also, to minimize overheads and reduce pro-
tocol complexity, nodes do not synchronize globally (as in TDMA-based
systems [5,7]) and wake up independently of each other.

d) The node-to-sink notification time is determined by the, relatively long, sleep
periods of the destination nodes along the path. What is more, the transfer
time of a message is much smaller than the time between two wake-ups
(10ms vs. 1000ms in our alarm-system scenario, see Section 3).

The fundamental idea of Dwarf is to perform a unicast-based partial flooding
towards the sink in combination with a (greedy) delay-aware node selection strat-
egy to overcome the drawbacks mentioned above. More precisely, the number of
neighbors k to which an alarm is forwarded determines the degree of introduced
redundancy, thus making the algorithm more robust at the expense of an in-
crease in the number of messages and the associated complexity in handling

66 M. Strasser et al.

peak loads (e.g., collisions). The selection of the destination nodes according to
their wake-up time and relative position aims at reducing the overall alarm no-
tification time. That is, neighbors that wake up first and are closer to a sink are
favored over nodes that wake up later or are not on the shortest path towards
the sink. In order to maintain system integrity, status messages are exchanged
between neighboring nodes on a regular basis. This enables to detect (tempo-
rary) link failures as well as (permanent) node failures, which must be reported
to the sink so operators can take appropriate action (e.g., replace batteries). The
status messages are also used to account for clock drifts in individual nodes and
keep an up-to-date view on neighboring nodes’ wake-up times.

Summarized, the main contributions of this paper are threefold:

1. It presents a novel, integrated algorithm (Dwarf) for the robust and timely
delivery of alarm messages at the sink node in a energy-constrained multi-
hop sensor network.

2. It provides a theoretical analysis of fundamental performance guarantees
that Dwarf can achieve.

3. It shows through a set of detailed simulations that the Dwarf algorithm
meets the requirements of an alarm system taken in a real-world scenario.

The remainder of this paper is organized as follows. Section 2 discusses related
work, followed by a list of requirements and assumptions in Section 3, which
set the boundary for the actual Dwarf algorithm presented in Section 4. The
evaluation in Section 5 includes a formal analysis as well as an extensive set of
simulations. Finally, Section 6 concludes the paper.

2 Related Work

The need for energy-efficient operation is at the core of WSN research and has
received considerable attention. At the MAC layer, the excess channel capacity
can be exploited by duty-cycling the radio; at the routing layer, the redundancy
in the number of nodes can be exploited by rotating on/off duties. The latter
approach, however, is not an option in an alarm system where all nodes are
essential. WSN-specific MAC protocols generally save energy at the expense of
an increase in (multi-hop) latency, but differ in their exact trade-off [6]. The class
of Low-Power Listening protocols, such as B-MAC [13] or more sophisticated
approaches like SCP-MAC [21] and WiseMAC [2] fit best because of the low
power consumption doing idle listening and explicit control of the length of the
interval between wake-ups. SCP-MAC is based on a global synchronization of
the wake-up slots and hence introduces overhearing of the regular status-update
messages. WiseMAC on the other hand is based on asynchronous wake-up slots,
naturally minimizing message overhearing. Dwarf will be working with a slightly
enhanced version of WiseMAC that is discussed in detail in Section 3.2.

Another corner stone of WSN research is the need to handle errors in the wire-
less channel (short-term packet loss, long-term link failures) and the possibilities
of node failures. Surprisingly little research has been done on providing reli-
able end-to-end message delivery. The transport protocols that do address link

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 67

failures (e.g., ESRT [15], RMST [16], and PSFQ [18]) include techniques like re-
transmissions and path diversity to overcome the errors on individual links, but
do not provide end-to-end reliability because of the high costs and long (multi-
hop) latencies involved. At best, advanced protocols like MMSPEED [3] provide
probabilistic bounds on end-to-end delivery ratios1. Therefore, an application
should always be prepared to tolerate (residual) packet loss.

An effective, but expensive, approach to handle communication errors is to use
flooding. Quite often network-wide redundancy is not needed and partial flooding
suffices. For example, the GRAB protocol [20] uses a credit mechanism to specify
how many additional hops may be made to reach the destination, effectively
creating a “wide-path”. GRAB requires the set-up of a gradient field towards
the destination, hence, is only applicable to a few, popular destinations like the
sink(s) in an alarm system. The DFRF framework [10] generalizes this idea and
allows for easy creation of tailor-made partial-flooding protocols. Unfortunately,
DFRF does not integrate well with the MAC layer below making it difficult to
control latency and energy consumption.

An issue specific to safety-critical systems is the importance of detecting failed
nodes, which compromise the integrity of the system. A straightforward solution
is to make use of heart-beat style failure detectors where nodes periodically send
out a message notifying neighbors of their status. Wang and Kuo extend this idea
to a two-phase gossiping protocol suited for ad-hoc networks [19]. Although very
robust, information propagates slowly and at high cost. Recent work by Rost
and Balakrishnan shows that more-advanced failure detectors help in reducing
the message overhead [14], but latency remains an issue.

The lack of an integrated protocol that provides fast and robust delivery
of alarm messages in a multi-hop WSN, combined with a low-overhead failure
detector prompted us to design Dwarf.

3 Requirements and Assumptions

The design of the Dwarf forwarding and failure detection algorithms were driven,
on the one hand, by the requirements from the safety-critical application that it
should support and, on the other hand, by the functionality and configurability
that the MAC layer below provides. As always in a design process, the boundary
conditions were not crystal clear and subject to change. Hence, we had to make
some assumptions, which are also detailed in this section.

3.1 Alarm-System Scenario

The concrete application scenario for which Dwarf was designed is a distributed
indoor wireless alarm system. Each sensor node consists of a micro controller
(ATMEL ATMega128), a communication unit (CC1000 transceiver), a power
supply (2 AA batteries) and a sensor for detecting a specific alarm condition.
1 MMSPEED in fact provides QoS guarantees on reliability and latency, but ignores

energy consumption, rendering it unsuitable for our purposes.

68 M. Strasser et al.

All nodes are manually deployed at fixed locations in a building as with ordinary,
wired sensors. In addition, there is at least one mains-powered sink node that is
connected to a central control station. Domain specific regulations require that
an alarm raised by a sensor is reported at the control station (sink) within 10
seconds, which leaves little room for per-hop delays in typical office buildings
with long corridors and one control station per floor.

A second domain specific requirement is that failing nodes must be reported
within 5 minutes at the control station. Since link errors caused by environ-
mental interference are much more likely to occur than a node running out of
energy or failing for some other reason, we assume that unreachable nodes, al-
though technically still alive, must also be reported. This requires a periodic
status observation of the nodes, which must send out at least one message per 5
minutes. The control station needs to be positively informed about the aliveness
of each node, necessitating a collective, multi-hop forwarding scheme.

A failed node must be replaced, which is a costly operation due to the need
of calling in a qualified technician asserting the integrity of the complete alarm
system. Thus, it makes sense to replace the batteries of all nodes as soon as
the first one runs out of energy. However, to reduce operational costs, such a
grand replacement procedure should not occur more often than every two to
three years. This consideration requires Dwarf to minimize and to equalize the
power consumption for all sensor nodes.

3.2 MAC Protocol

A first requirement on the MAC protocol is that the effective duty-cycle must
be well below 1 %, which follows from the minimum lifetime (2 years), the
power consumption of the target radio in use (15mA) and the battery capacity
(2800mAh). A further constraint follows from the maximum end-to-end latency
of 10 s and the assumption that topologies with a depth of at least 5 hops must be
supported, together bounding the maximum wake-up interval (Tw) to at most 2 s
(careful staggering wake-up periods a la DMAC [7] would allow for even longer
intervals, but runs the risk of excessive delays in the case of link errors).

A 1% duty cycle and a 2 s wake-up interval allow for an active period of about
20ms, which is enough to perform a carrier sense operation taking approximately
2.5ms on a CC1000 radio [13]. Recall that Dwarf is based on partial flooding
to overcome link and node failures, and needs to contact several nodes per hop.
To avoid accumulating delays in doing so, it is essential that a MAC protocol
provides an interface which allows for querying the wake-up schedule of neigh-
boring nodes. Note further that, although most MAC protocols do not provide
such functionality, only minor modifications are required to enhance them.

To allow for easy deployment and a high resilience to errors, a MAC protocol
that requires no time synchronization between nodes is strongly preferred. This
limits the choice to the class of low-power listening protocols, in which a sender
pretends each message with a preamble that is slightly longer than Tw to ensure
that the intended receiver will sense a busy channel and listen in on the com-
plete transmission. These long preambles increase latency, but a sophisticated

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 69

protocol like WiseMAC, which learns the wake-up schedules of its neighbors,
can still use ordinary (short) preambles in most cases; the exact length of the
preamble depends on the clock drift and the time passed since the last message
was exchanged with the intended receiver. Thus, in order to use WiseMAC effec-
tively, Dwarf should ensure that neighboring nodes are periodically contacted.

3.3 Definitions

Throughout this paper, we represent the sensor network by the graph G := (V, E)
consisting of the set of sink nodes S ⊂ V , the set of sensor nodes V \ S, and
the set of edges E. All communication links are considered to be bidirectional
and two nodes u, v ∈ V can directly communicate with each other (i.e., are
neighbors) if and only if {u, v} ∈ E. Furthermore, all sensor nodes are organized
in rings according to their distance to the nearest sink; nodes with the same
distance are said to be in the same ring:

Definition 1. Let d(u, v) be the distance (i.e., the length of the shortest path)
between two nodes u and v. A node u is said to be in the i-th ring, or alternatively
to be on level l(u) = i with respect to the set of sink nodes S if and only if
min{d(u, s) : s ∈ S} = i. The set Ri := {u : u ∈ V ∧ l(u) = i} contains all nodes
on level i and the maximal level is denoted by L := max{l(u) : u ∈ V }.

Based on Definition 1, the neighbors of a node are divided into parents, peers,
and children (see Figure 1(a)):

Definition 2. We denote the set N−u := {v : {u, v} ∈ E ∧ l(v) = l(u) − 1} as
the parents of a node u, the set N0

u := {v : {u, v} ∈ E ∧ l(v) = l(u)} as its peers,
and the set N+

u := {v : {u, v} ∈ E ∧ l(v) = l(u)+ 1} as its children, respectively.

As already mentioned, we assume that all nodes but the sinks sleep most of the
time in order to save energy, and only wake up periodically. The wake-up period
of node u is denoted by Tw(u), its wake-up times by τu,i.

Definition 3. Let τu,i, u ∈ V \ S and i ∈ {0, 1, 2, . . .} be the wake-up times
of node u, such that τu,i+1 = τu,i + Tw(u) and 0 < Tw(u) < ∞. The duration
until the upcoming wake-up time relative to the current time t is denoted by
τ(u, t) := min{τu,i : τu,i > t} − t. Sink nodes are assumed to be always listening
hence, ∀s ∈ S : τ(s, u) := 0.

Finally, we set Tw := max{Tw(u) : u ∈ V \ S}, assume that there exists a
constant upper bound tm ∈ O(1) on the transmission time of any message m,
and use k to denote the (constant) upper bound on the number of neighbors to
which a message is forwarded.

4 Algorithms

In this section, we present the proposed Dwarf algorithm which consists of two
main tasks: alarm forwarding and node or link status observation.

70 M. Strasser et al.

Fig. 1. On the left, the local neighborhood of node u with parents N−
u := {a, b, c}, peers

N0
u := {d, e} and children N+

u := {f, g, h} is depicted. A corresponding forwarding
example with k = 4 and a failing transmission to node a is shown on the right.

4.1 Alarm Forwarding

When a node detects an alarm, it creates an appropriate alarm message m and
calls the function forwardAlarm() which, in turn, forwards it to min(k, |N−u | +
|N0

u|) parents and peers (see Algorithm 1). To this end, a set of parent candidates
Ñ−u,m as well as a set of peer candidates Ñ0

u,m is maintained for each message.
The actual selection of the nodes to which a message is forwarded is performed by
the function getNextHop(). The function determines the parent candidate that
wakes up next and, after removing it from the candidate set, returns it as the
current destination. If there are no more parents to chose from (i.e., Ñ−u,m = ∅),
the peer that wakes up next is returned instead. Once both sets are empty, they
are reinitialized with N−u \ N̂ and N0

u \ N̂ , respectively, with N̂ being the set
of neighbors that successfully received the message (or forwarded it in the first
place). In order to keep the induced traffic as low as possible and because there
would be no additional gain otherwise, a node on level one aborts the forwarding
process as soon as it has successfully delivered the message to at least one sink.

Upon reception of an alarm message m, a node first verifies that the message
has not already been forwarded (i.e., m �∈ H). New messages are appended2 to
the message history H and forwarded in the same manner as a newly generated
alarm using the function forwardAlarm().

Should an alarm message be dropped because of a send, receive, or trans-
mission failure, it is retransmitted up to ra times, resulting in maximal k + ra

transmissions per message m. For each retransmission, however, a new destina-
tion is selected with getNextHop(), thus ensuring that retransmissions are also
forwarded in the fastest way possible.

A forwarding example for the scenario depicted in Figure 1(a) and k = 4 is
presented in Figure 1(b). After receiving an alarm message, node u forwards the

2 Of course not a whole message m has to be stored but only an unique identifier such
as the tuple (alarm originator, sequence number).

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 71

Algorithm 1. Alarm forwarding for node u
1: var H ← ∅
2:

3: function initCandidates(m)

4: Ñ−
u,m ← N−

u \ N̂m

5: Ñ0
u,m ← N0

u \ N̂m

6: end function
7:

8: function getNextHop(m)

9: if Ñ−
u,m = ∅ and Ñ0

u,m = ∅ then
10: initCandidates(m)

11: end if
12: if Ñ−

u,m �= ∅ then

13: select v ∈ Ñ−
u,m such that

14: τ(v) = min{τ(w) : w ∈ Ñ−
u,m}

15: Ñ−
u,m ← Ñ−

u,m \ {v}
16: return v
17: else if Ñ0

u,m �= ∅ then

18: select v ∈ Ñ0
u,m such that

19: τ(v) = min{τ(w) : w ∈ Ñ0
u,m}

20: Ñ0
u,m ← Ñ0

u,m \ {v}
21: return v
22: else
23: return ⊥
24: end if
25: end function
26:

27: function forwardAlarm(m)
28: H ← H ∪ {m}
29: initCandidates(m)

30: rm ← 0
31: im ← 1
32: v ← getNextHop(m)
33: send alarm message m to node v
34: end function

35: upon acknowledgment of alarm message m
sent to w

36: if im < min(k, |N−
u | + |N0

u|) and w �∈ S
then

37: N̂m ← N̂m ∪ {w}
38: im ← im + 1
39: v ← getNextHop(m)
40: send alarm message m to node v
41: end if
42: end upon
43:

44: upon drop of alarm message m sent to w
45: if rm < ra then
46: rm ← rm + 1
47: v ← getNextHop(m)
48: send alarm message m to node v
49: else if im < min(k, |N−

u | + |N0
u|) then

50: im ← im + 1
51: v ← getNextHop(m)
52: send alarm message m to node v
53: end if
54: end upon
55:

56: upon reception of alarm message m from v
57: if m �∈ H then
58: N̂m ← {v}
59: forwardAlarm(m)

60: else if v �∈ N̂m then
61: N̂m ← N̂m ∪ {v}
62: end if
63: end upon
64:

65: upon detection of an alarm
66: create alarm message m

67: N̂m ← {}
68: forwardAlarm(m)
69: end upon

message to the parents b, and c as well as to peers d and e, assuming that the
transmission to parent a failed.

4.2 Node Status Observation

The purpose of the status messages is twofold: On the one hand, they are required
in order to detect node or link failures, and on the other hand, they keep the
mutual knowledge of neighboring nodes regarding their wake-up times up to
date. Therefore, nodes send a status message to a peer as well as to a parent in a
round robin fashion every interval Ts (see Algorithm 2). In the scenario depicted
in Figure 1(a), for instance, node u would first send its status message to a and
d, after interval Ts to b and e, then to c and d etc. Each status message contains a
list of nodes which are known to be up and running; or put differently, present a
node’s (limited) view of the network. Whenever a node receives a status message,
the included node status list X ′ is merged with its own list X (i.e., X := X ∪̇X ′);
the list is cleared every interval Ts once it has been sent to a parent. Should a
message to a peer (parent) be dropped, the next peer (parent) is chosen and the
message retransmitted up to rs times.

72 M. Strasser et al.

Fig. 2. Each node periodically sends a status message to first a peer and then a parent,
containing a list of all running nodes it knows about. When a node receives such a status
message it appends the mentioned nodes to its own status list. Nodes in the outer rings
send first such that the sink will eventually receive the complete status of the network.

By having the nodes in the outer rings of the network send first (see Figure 2),
node states are disseminated — and thereby gradually updated — in form of
waves towards the sink which eventually receives a complete list of all running
nodes every interval Ts

3. Therefore, the status-update interval Ts is divided into
L sub-intervals of length Tr := Ts/L, which, in turn, are halved into a peer
and a parent slot. Furthermore, each node in the i-th ring is associated with
i-th sub-interval and sends its status message to the selected peer and parent in
the corresponding peer or parent slot, respectively. By scheduling the peer slot
before the parent slot, some additional reliability is introduced as a node’s status
list is now forwarded by one of its peers as well. The exact sending time within a
slot is independently and uniform-randomly chosen by each node and, if possible,
rounded to the nearest regular wake-up time. It might be worth mentioning that,
due to the relatively large delay between two subsequent parent slots within a
wave, a loose time synchronization (i.e., in the order of seconds) is sufficient for
the proposed algorithm.

4.3 Startup

The required knowledge of a node u consists of: (i) its level l(u), (ii) its one-hop
neighbors and their levels (i.e., N−u , N0

u, and N+
u), and (iii) the starting time for

the status waves. The information regarding level and neighbors can easily be
obtained as part of an enhanced neighborhood discovery algorithm that works
as follows:

1. Initially, the level of all nodes but the sinks is set to infinite and they have
no information about their neighborhood.

2. The sinks initiate the algorithm by broadcasting their ID and level.
3. A node u which receives a message from a neighbor v with l(v) < l(u) − 1

sets its own level to l(v) + 1, updates the parent, peer, and children and
(re)broadcasts its new level.

3 If there is more than one sink, each of them receives only a partial list. However, we
assume that all sink nodes are connected with each other, either directly or via a
central control station, and thus can easily obtain all partial lists.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 73

Algorithm 2. Status message exchange for node u
1: var next parent ← 0
2: var next peer ← 0
3: var X ← {u}
4: var tu ← uniform randomly out of [0, Tr)
5: start peer timer for Δt = tu + (L− l(u))Tr

6: start parent timer for Δt = tu +((L−l(u))+
1
2)Tr

7:

8: function nextNodeToProbe

9: if use parent = true then
10: if next parent < |N−

u | − 1 then
11: next parent ← next parent + 1
12: else
13: next parent ← 0
14: end if
15: return N−

u [next parent]
16: else
17: if next peer < |N0

u| − 1 then
18: next peer ← next peer + 1
19: else
20: next peer ← 0
21: end if
22: return N0

u[next peer]
23: end if
24: end function
25:

26: upon timeout of peer timer
27: use parent ← false

28: rm ← 0
29: v ← nextNodeToProbe()
30: create status message m
31: send status message m to node v
32: start peer timer for Δt = Ts

33: end upon
34:

35: upon timeout of parent timer
36: use parent ← true
37: rm ← 0
38: v ← nextNodeToProbe()
39: create status message m
40: send status message m to node v
41: X ← {u}
42: start parent timer for Δt = Ts

43: end upon
44:

45: upon drop of status message m
46: if rm < rs then
47: rm ← rm + 1
48: v ← nextNodeToProbe()
49: send message m to node v
50: end if
51: end upon
52:

53: upon reception of status message m
54: merge received status X′ with X
55: end upon

An accurate propagation of the starting time of the status waves could be
achieved by flooding a relative starting time which is gradually updated by
subtracting the (approximated) transfer times.

5 Evaluation

In this section, we provide an analytical evaluation of the proposed algorithms
and present findings of simulations for scenarios derived from real-world data.

5.1 Analytical

In the following, we present proofs for the maximal number of link and node
failures that can be tolerated, show an upper bound on the required hop count,
and prove that the proposed destination selection algorithm is only a constant
factor worse than the optimal solution.

Theorem 1. The proposed alarm forwarding algorithm (Algorithm 1) can tol-
erate up to tl := min(k, δ) − 1 link failures with δ = min{|N−u | + |N0

u| : u ∈ V }
and k being the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive or create
an alarm which cannot be forwarded to a node on level i − 1. Consequently, all
links to u’s parents must be broken. In addition, for ≥ min(k, |N0

u|) of u’s peers
either the links from u to them or from them to their parents must be broken.

74 M. Strasser et al.

Per definition, each node has at least one parent. Thus, in total ≥ |N−u | +
min(k, |N0

u|) ≥ min(k, δ) > tl links must be down, contradicting the assumption
that there are at most tl link failures. The threshold is tight for k ≥ δ as a node
u with |N−u | + |N0

u| = δ, which exists per definition, can be isolated from all its
parents and peers if we allow ≥ δ = tl + 1 link failures.

Theorem 2. If at most tl links fail (see Theorem 1), an alarm initiated by node
u on level l(u) will reach the nearest sink after at most l(u)+min(tl, l(u)) ≤ 2l(u)
hops.

Proof. In order to extend the number of required hops by one, the links to all
parents of a node v must be broken. However, as a message is forwarded to
min(k, |N0

v |) peers, at least min(k, |N0
v |) − (tl − |N−v |) = min(k + |N−v |, |N0

v | +
|N−v |) − tl ≥ min(k, δ) − tl = 1 of them are able to forward it to one of their
parents. As a result, the number of required hops can be extended by only one
for each level and requires that at least one link is down. The maximal number
of additional hops is thus min(tl, l(u)).

Definition 4. For a node u, we denote by |NZ
u | the maximal number of peers

such that: (i) for each peer there exists a path to a node on level l(u) − 1 that
is not a parent of u; (ii) on each path, all but the last node are on level l(u);
and (iii) all paths are mutually node-disjoint. More precisely, |NZ

u | = max{|a| |
a ⊆ N0

u ∧ ∀v ∈ a : ∃ path (v, v1, v2, v3, . . . , vm) such that ∀vi, 1 ≤ i < m : vi ∈
Rl(u) and vm ∈ Rl(u)−1 \ N−u ∧ ∀v, w ∈ a, v �= w : ∀i, j : vi �= wj}
Theorem 3. The proposed alarm forwarding algorithm (Algorithm 1) can tol-
erate up to tp := min(k, γ)− 1 node failures with γ = min{|N−u |+ |NZ

u | : u ∈ V }
and k being the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive or create
an alarm which cannot be forwarded to a node on level i − 1. Consequently, all
parents of u must have failed. In addition, for ≥ min(k, |NZ

u |) of u’s peers, they,
a node on the corresponding node disjoint path, or the corresponding node in the
next level must have failed. Thus, in total ≥ |N−u | + min(k, |NZ

u |) ≥ min(k, γ) >
tp nodes must be down, contradicting the assumption that there are at most tp
node failures. The threshold is tight for k ≥ γ as a node u with |N−u |+ |NZ

u | = γ,
which exists per definition, can be isolated from all nodes in the next level if we
allow ≥ γ = tp + 1 node failures.

Theorem 4. If at most tp nodes fail (see Theorem 3), an alarm initiated by
node u on level l(u) will reach the nearest sink after at most l(u)+βtp hops with
β = max{|N+

u | : u ∈ V }.
Proof. Given that at most tp nodes fail, there exists a path (u, u1, u2, u3, . . . , um)
which connects a node u with a node um in the next lower level. A node v that
fails has at most |N+

v | children and thus can prevent at most |N+
v | nodes on

level i from forwarding an alarm to level i − 1. Consequently, after at least |N+
v |

hops in the same level a node with a different parent is reached. As a result,
each failed node v can extend the number of required hops by at most |N+

v | ≤ β
and the maximal number of additional hops is bounded by βtp.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 75

20 40 60 80 100 120
10

20

30

40

 Sink

Network Topology [m] (one of two Floors)

1 2 3 4 5 6
0

10

20

30

#N
od

es

#Hops

0 5 10 15 20
0

5

10

15

#Neighbors

#N
od

es

Fig. 3. 80 sensor nodes are positioned according to a real world, but wired deployment;
connectivity is based on measured path-loss coefficients

Theorem 5. The presented (greedy) destination selection algorithm selects a
route that is at most 1 + Tw

tm
∈ O(1) times slower than the optimal route.

Proof. If there are no link failures, an alarm m initiated by node u on level l(u)
will reach the nearest sink in time tb = l(u)tm in the best case and in time
tw = l(u)(Tw + tm) in the worst case. Thus, if the algorithm prefers parent v
over w because τ(v, t0) = T < τ(w, t0) = T + ε we get a worst case ratio of

c =
T + (l(u) − 1)(Tw + tm)

T + ε + (l(u) − 1)tm
≤ Tw + tm

tm
= 1 +

Tw

tm

5.2 Simulation

To evaluate Dwarf under appropriate and realistic conditions, we conducted
a set of measurements in an existing (wired) real-world alarm system located
in a large historic public building comprising 80 sensor nodes and one central
control station (sink). In particular, the complete 80x80 path-loss matrix was
recorded, capturing the link quality between any pair of nodes. In addition, we
enhanced GloMoSim such that it can be directed to work with this recorded
data. During simulation, a signal-to-interference-plus-noise-rate (SINR) model
is used to compute the bit-error rate for each transmission individually. The
packet-error rates are then calculated based on the packet length not assuming
any bit-error correction. Figure 3 shows the topology and some basic charac-
teristics in the case without interference; links are shown if the bit-error rate
is below 0.1%. The realistic channel model is complemented with the original
GloMoSim implementation of the WiseMAC protocol, enhanced by its authors
to include an API for querying the wake-up times of contacted neighbors. This
functionality was needed to implement Dwarf’s parent selection for rapid alarm
forwarding.

In the remainder of this section, we present the results of our simulations with
respect to alarm notification time, message complexity, energy consumption, and
robustness against link failures.

76 M. Strasser et al.

0 500 1000 1500 2000
0

0.5

1

1.5

2
La

te
nc

y
[s

]

Wake−up Period [ms]

k = 1
k = 2
k = 5

(a) Average latency

0 500 1000 1500 2000
0

2

4

6

8

10

La
te

nc
y

[s
]

Wake−up Period [ms]

k = 1
k = 2
k = 5

(b) 99-quantile latency

0 2 4 6 8 10
0

10

20

30
 Average: 0.935s

Latency of alarms [s]

(c) Tw = 1s, k = 2

0 2 4 6 8 10
0

10

20

30
 Average: 1.29s

Latency of alarms [s]

(d) Tw = 1.5s, k = 2

Fig. 4. Fire-alarm performance without link failures

Alarm Notification Time. Figure 4(b) presents the 99-quantile of the la-
tency for different Tw and k in a first experiment without any node and link
failures. Note that, since no absolute guarantees can be given in any wireless
system, we report the worst case latency of all simulations except the 1% patho-
logical cases. The first observation that can be made is that the maximum
(6-hop) notification delay increases linearly with Tw due to the wake-up pe-
riod dominating the actual message transfer time (Tw � tm). In addition to
the 99-quantile, the latency distribution of all alarm messages for k = 2 and
Tw = {1s, 1.5s} is depicted in Figures 5.2 and 5.2. This latency distribution
shows that the average (3-hop) latency is just 0.94s for Tw = 1s and 1.29s for
Tw = 1.5s, which is even smaller than the nodes’ wake-up time. This is a con-
sequence of Dwarf’s forwarding scheme that selects the next hop according to
its level and wake-up time. The average hop delay is therefore much smaller
than Tw. In contrast to the 99-quantile, the average latency increases less than
linear with Tw. This behavior can be explained by the fact that an always lis-
tening sink has a much bigger impact on the average latency than on the 99-
quantile. Since the outliers become more distinct with an increasing wake-up
time, we will use Tw = 1s from now on as the default setting for the remaining
experiments.

Figure 4(b) also shows the impact of the parameter k. One can observe that
the smaller k, the more outliers occur. This is especially severe for k = 1 where
such a distinct outlier can be noticed at Tw = 1.8s. Choosing k > 1 prevents
them to occur, since a local jam can be bypassed on another route. Even though
k = 5 seems to be more stable in terms of small outliers, k = 2 already delivers
the messages well within the required 10s.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 77

Table 1. The number of messages Dwarf injects into the network as a function of
trigger level and k. For comparison, a network-wide flood generates 479 messages.

Level k=1 k=2 k=3 k=4 k=5

1 1.00 1.00 1.00 1.00 1.00

2 2.00 4.23 7.51 11.46 19.84

3 3.01 9.25 18.30 27.19 35.81

4 4.02 15.97 26.73 35.51 40.95

5 5.03 22.69 34.56 43.20 48.40

6 6.07 30.68 42.14 49.23 53.29

Message Complexity. The parameter k has not only an impact on the latency
but also on the number of propagated alarm messages. Table 1 shows the average
number of totally generated messages per alarm, depending on k and the level
on which the alarm was triggered. For k = 1 the number of messages is just
slightly larger than the level, showing that messages can usually be forwarded
to parents. For k = 2 the number of messages increases in the order of 2level

up to the 4th level. For k = 5, on the other hand, the increase in the number
of messages is far below 5level, mainly because messages are not sent backwards
to children and due to the topology of real deployments that enforce frequent
unifications of alarm messages routed on different paths. As a result, increasing
k from 2 to 5 for a level-6 alarm will not even double the number of generated
messages. Furthermore, an alarm is considered to be a very rare event, allowing
a certain message overhead in order to ensure robust operation.

Energy Consumption. There are two main sources of energy consumption:
First, the radio must be turned on regularly in order to check for a possible
alarm message and second, sending and receiving status messages. The en-
ergy consumption of the former increases linearly with the wake-up frequency
1/Tw, while the latter depends on the total number of sent messages. This
number, in turn, heavily depends on the update interval Ts, which was cho-
sen to be 150 seconds in order to ensure that node failures are reported in time
(2Ts ≤ 5min). Figure 5(a) depicts this partitioning of the maximal energy con-
sumption for the usual idle state where no alarms are generated. It shows that
the energy consumption of status messages is constant for Tw � 500ms, but
significantly increases for shorter wake-up times due to a more frequent over-
hearing of status messages. As already mentioned, the targeted duty cycle is
required to be below 1%, which can be achieved with Tw � 500ms. However,
having a wake-up time of about 1s provides some additional flexibility and ac-
counts for additional maintenance tasks as well as network initialization. Finally,
Figure 5(b) shows that Dwarf provides the desired equalized energy consump-
tion of all nodes; the maximum duty cycle is only about 25% higher than the
average.

78 M. Strasser et al.

D
ut

y
C

yc
le

Wake Up Period [ms]
100 500 1000 1500 2000
0

0.01

0.02

0.03
Status messages
Carrier Sense

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Duty Cycle (%)

N
um

be
r

of
 N

od
es

 Average: 0.51%

Fig. 5. Worst-case energy consumption for status message exchange and carrier sense.
As shown on the right, the node’s energy consumption well-balanced.

Robustness Analysis. So far we considered a benign communication environ-
ment without any failing links. In order to analyze Dwarf’s performance in a
harsher environment, we added random but static link failures while ensuring
that the network remains connected. Furthermore, we triggered the alarm mes-
sages synchronous to the link failures, in order to avoid that Dwarf adapts to the
limited communication environment, and, as discussed before, chose Tw being
equal to 1s.

Figure 6(b) presents the 99-quantile of the latency with up to 40% link failures
and different k’s. Setting k = 1 clearly does not provide a lot of robustness. This
can also be seen in Figure 6(c) showing the fraction of messages that are not
delivered at all. For instance, there is a single alarm that is not reported with
only 7.5% link failures. This can happen if the communication of a node towards
the sink is blocked and no redundant messages are sent. In contrast to the failure-
less case in Figure 4, having k = 2 or k = 5 makes a difference in the alarm
performance. Especially the 99-quantile shows fewer outliers with bigger k’s. The
unreported alarms, on the other hand, show a similar trend for different k ≥ 2.
The explanation for this is that each k > 2 provides enough redundancy to find
a way to the sink, except when the way towards the sink is completely blocked
at the alarm-triggering node (i.e., neither parents nor peers are available).

Figure 6(d) shows the distribution of the latency for 30% link failures with
Tw = 1s and k = 2. Compared to the case without link failures (cf. Figure 4), the
alarms take about 50% longer to reach the sink, but still get there on time, except
for one outlier. We determined that such outliers are caused by the increase in
the number of status messages in response to the link failures, which effectively
blocks the channel for alarm messages. There is little we can do about this
because ongoing transmissions cannot be aborted.

The impact of link failures on the average latency is shown in Figure 6(a).
The main observation that can be made is that k = 2 shows a better average
performance than k = 1, since alarm messages are bypassed on other routes.

Not only the alarm messages are affected by link failures, but also the sta-
tus messages. Their performance in combination with link failures is shown in
Figure 7. By design, Dwarf does not report any false negatives that is, Dwarf
never reports nodes being alive which actually have failed. In contrast, the num-
ber of false positives (alive nodes reported missing) suffers severely from the

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 79

0 5 10 15 20 25 30 35 40
0

1

2

3

Number of Link Failures (%)

La
te

nc
y

[s
]

k=1
k=2
k=5

(a) Average latency with link failures

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Number of Link Failures (%)

La
te

nc
y

[s
]

k=1
k=2
k=5

(b) 99-quantile latency with link failures.
The lines end when more than 1% of the
messages are not reported

0 5 10 15 20 25 30 35 40
0

5

10

15

Number of Link Failures (%)

U
nr

ep
or

te
d

A
la

rm
s

(%
) k=1

k=2
k=5

(c) Unreported alarm messages

0 2 4 6 8 10 12
0

20

40

60

80

100
 Average: 1.47s

Latency [s]

N
um

be
r

of
 A

la
rm

s

(d) Latency distribution for 30% link fail-
ures and k = 2

Fig. 6. Fire-alarm performance with link failures, based on 400 triggered alarm mes-
sages per sample point.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

Number of Link Failures (%)

F
al

se
 S

ta
tu

s
R

ep
or

t (
%

)

False positives − 5min
False positives − 10min
False negatives

Fig. 7. Status message performance with link failures

bad communication environment as shown in Figure 7. The performance can
be increased significantly, however, when the reporting time for node failures is
increased and the results of several status monitoring intervals can be combined,
as shown in Figure 7 for a doubled reporting time of 10min. Alternatively, Ts

could be decreased, resulting in increased power consumption.

6 Conclusions

In this paper we presented Dwarf, an energy-efficient, robust and dependable
forwarding algorithm for the accurate notification of alarm messages in safety-
critical WSN applications. The fundamental idea of Dwarf is to perform a
unicast-based partial flooding in combination with a (greedy) delay-aware node
selection strategy. Our evaluation, based on a real-world scenario, shows that

80 M. Strasser et al.

alarm messages are dependably reported at the sink, even if a substantial number
of links in the network fail. On average alarms are delivered over multiple hops
in less than a node’s wake-up time Tw. For a Tw in the order of 1s, over 99% of
the alarm messages are reported well within the required 10s, even if 30% of the
links fail. The effective duty-cycle is always below 1%, yielding an operational
lifetime of several years. Finally, Dwarf manages to reliably report failed nodes
within the target interval of 5 minutes. Under poor conditions, i.e. when many
links fail, alarm and status messages actually interfere showing that application
scenarios should always be regarded as a whole. We firmly believe that alarm re-
porting, failure detection, and duty-cycling should be addressed in an integrated
way, as Dwarf does.

Possible enhancements that are left for future work are to also consider the
children of a weakly connected node (with a certain probability) and to change
the number of forwarding destinations k (dynamically) per node, depending on
either a node’s local view of the network or the history of a message. Furthermore,
the link-quality between nodes has been assumed to be static but is likely to
vary on a long-term basis. This would require Dwarf to adapt its ring structure
accordingly in order to ensure that only good-quality links are being used.

Acknowledgments

The work presented in this paper was supported by CTI grant number 8222.1
and the National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322. We would like to
thank Bernhard Imfeld from Siemens Building Technologies for providing us
with the real-world scenarios and Amre El-Hoiydi for adapting WiseMAC.

References

1. Culler, D., Estrin, D., Srivastava, M. (eds.): Special issue IEEE Computer on Wire-
less Sensor Networks (August 2004)

2. El-Hoiydi, A., Decotignie, J.-D.: WiseMAC: An ultra low power MAC protocol
for multi-hop wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.)
ALGOSENSORS 2004. LNCS, vol. 3121, pp. 18–31. Springer, Heidelberg (2004)

3. Felemban, E., Lee, C.-G., Ekici, E.: MMSPEED: Multipath Multi-SPEED protocol
for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE
Trans. on Mobile Computing 5(6), 738–754 (2006)

4. Kahn, J., Katz, R., Pister, K.: Next Century Challenges: Mobile Networking for
Smart Dust. In: 5th ACM/IEEE Conf. on Mobile Computing and Networks (Mo-
biCom ’99), Seatle, WA pp. 271–278(August 1999)

5. Keshavarzian, A., Lee, H., Venkatraman, L.: Wakeup scheduling in wireless sensor
networks. In: 7th ACM symposium on Mobile ad hoc networking and computing
(MobiHoc) , Florence, Italy pp. 322–333 (2006)

6. Langendoen, K., Halkes, G.: Energy-efficient medium access control. In: Zurawski,
R. (ed.) Embedded Systems Handbook, pp. 34.1–34.29 CRC press, Boca Raton,
USA (2005)

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 81

7. Lu, G., Krishnamachari, B., Raghavendra, C.: An adaptive energy-efficient and
low-latency MAC for data gathering in sensor networks. In: Algorithms for Wire-
less, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, NM, (April 2004)

8. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation ser-
vice for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review, vol.
36(SI) pp. 131–146 (2002)

9. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM Workshop on Wireless Sensor Net-
works and Application (WSNA), Atlanta, GA pp. 88–97 (September 2002)

10. Maroti, M.: Directed flood-routing framework for wireless sensor networks. In: 5th
ACM/IFIP/USENIX Conf. on Middleware, pp. 99–114 (2004)

11. Marrón, P.J., Voigt, T., Rohner, C., Ahlgren, B. (eds.): 2nd ACM Workshop on
Real-World Wireless Sensor Networks (REALWSN), Uppsala, Sweden (June 2006)

12. Nath, S., Gibbons, P., Seshan, S., Anderson, Z.: Synopsis diffusion for robust ag-
gregation in sensor networks. In: 2nd ACM Conf. on Embedded Networked Sensor
Systems, Baltimore, MD pp. 250–262 (November 2004)

13. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: 2nd ACM Conf. on Embedded Networked Sensor Systems, Baltimore,
MD pp. 95–107 (November 2004)

14. Rost, S., Balakrishnan, H.: Memento: A health monitoring system for wireless
sensor networks. In: IEEE SECON, Reston, VA (September 2006)

15. Sankarasubramaniam, Y., Akan, O., Akyildiz, I.: ESRT: Event-to-sink reliable
transport in wireless sensor networks. In: 4th ACM Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc), pp. 177–188 (June 2003)

16. Stann, F., Heidemann, J.: RMST: Reliable data transport in sensor networks. In:
First IEEE Workshop on Sensor Net Protocols and Applications, Anchorage, AK,
pp. 102–112 (April 2003)

17. Voigt, T., Rohner, C. (eds.): Workshop on Real-World Wireless Sensor Networks
(REALWSN), Stockholm, Sweden, (June 2005)

18. Wan, C.-Y., Campbell, A., Krishnamurthy, L.: PSFQ: A reliable transport protocol
for wireless sensor networks. In: ACM Workshop on Wireless Sensor Networks and
Application (WSNA), Atlanta, GA pp. 1–11 (September 2002)

19. Wang, S.-C., Kuo, S.-Y.: Communication strategies for heartbeat-style failure de-
tectors in wireless ad hoc networks. In: Conf. od Dependable Systems and Net-
works, San Francisco, CA, pp. 361–370 (June 2003)

20. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient Broadcast: A robust data delivery
protocol for large scale sensor networks. Wireless Networks 11(3), 285–298 (2005)

21. Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle mac with scheduled chan-
nel polling. In: 4th ACM Conf. on Embedded Networked Sensor Systems (SenSys
2006), Boulder, CO pp. 321–334 (November 2006)

Localization for Anchoritic Sensor Networks�

Yuliy Baryshnikov1 and Jian Tan2

1 Bell Laboratories, Murray Hill, 07974 NJ
2 Department of Electrical Engineering, Columbia University

New York, NY 10027

Abstract. We introduce a class of anchoritic sensor networks, where
communications between sensor nodes are undesirable or infeasible due
to, e.g., harsh environments, energy constraints, or security considera-
tions. Instead, we assume that the sensors buffer the measurements over
the lifetime and report them directly to a sink without necessarily re-
quiring communications. Upon retrieval of the reports, all sensor data
measurements will be available to a central entity for post processing.

Our algorithm is based on the further assumption that some of the
data fields that are being observed by the sensors can be modeled as a
local (i.e. having decaying spatial correlations) stochastic process; if not,
then choose an auxiliary field, e.g., carefully engineered random signals
intentionally generated by arranged devices, “cloud shadows” cast on
the ground, or animal heat. The sensor nodes record the measurements,
or a function of the measurements, e.g., “1” when the measured signal
is above a threshold, and “0” otherwise. These time-stamped sequences
are ultimately transferred to the sink. The localization problem is then
approached by analyzing the correlations between these sequences at
pairs of nodes.

As for applications, we discuss the localization scheme for large-scaled
sensor networks deployed on the seabed and study a two-tiered architec-
ture that organizes deaf sensors with local masters.

1 Introduction

The “coordinate-free” localization problem in sensor networks has attracted sig-
nificant attention in the literature; see, e.g., the survey [9] and the references
therein. The problem is to determine positions of the nodes in the network with-
out absolute reference information, like GPS or direction/distance information
relative to some known beacons. Coordinate-free localization problem is therefore
to determine the absolute positions of the nodes using only the local information,
e.g., the internode distances or relative directions. This local-to-global localiza-
tion problem presents a serious research challenge and the amount of work on
it is rapidly growing [16,10,4,17,7,14,12,13,18,11,1]. However, in the majority of
the publications, solving the localization problem assumes extensive internode
communications, i.e., bidirectional exchanges of signals used to infer the pairwise

� This work is supported by DARPA SToMP grant and Bell Labs SIP program.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 82–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Localization for Anchoritic Sensor Networks 83

distances, or globally received calibrating signals serving as a system of beacons
(the “poor man’s GPS”).

As for localization schemes that rely on internode communications, people
use one or a combination of RSS(received signal strength), ToA (time of arrival)
and AoA (angle of arrival) data to reconstruct the mutual positions of the nodes,
and consequently to determine their absolute positions. The beacons with known
positions provide absolute reference points for the remaining sensor nodes.

Methods using centrally controlled global signals can also be applied to cali-
brate locations. For example, the Spotlight system [20] with the aid of steerable
laser rays that sweep over the monitored terrain locate the sensors without equip-
ping them with specialized ranging hardware. However, this approach requires
precise knowledge on the trajectory of the ray.

In this paper, we study networks that are subject to severe communication
constraints. Particularly, we do not allow either internode communications or
any centrally structured signals for the localization. We decouple the localization
problem into two steps: the first stage is to recover the internode mutual posi-
tions, and the second stage is to reconstruct the global positions of the nodes by
the information obtained from the first stage.

Traditionally, the localization problem, in the absence of centrally steered
signals, implicitly assumes that the relative position information is obtained from
the signal exchange between the nodes, and that a subsequent processing of the
exchanged signals is necessary. However, as we argue below, the requirement
that the sensors are able to regularly emit signals and to process information
is undesirable in some applications, due to, e.g., harsh environments, energy
constraints, or security reasons. Assuming this for an instant, we ask:

Can the localization problem, in particular the first stage of recovering
the inter node distances, be solved under the conditions that the sensors
do not have the ability to exchange signals, and that no global signals
are applicable for reference?

Clearly, the sensors have to be able to gather some measurements and eventually
report them to a sink/processing entity; a sensor unable to do even that much
can be removed without any detrimental effect for the network operation.

We refer to sensor networks that are deprived of the ability to chat and lack
centrally controlled global signals as anchoritic sensor networks. More precisely,
chatting is a two-way process involving listen and talk, while for anchoritic sen-
sors, either they can not listen or they can not talk, or even neither.

It is perhaps counterintuitive that the localization problem for anchoritic sen-
sor networks can be solved. Before presenting our approach, we need, however,
answer the following natural questions:

1. When and where are anchoritic sensor networks necessary?
2. If no communications are allowed, how can the measurements collected by

each individual sensors be transferred to the sink/center?

These questions are addressed in the next subsection. In the last subsec-
tion of the introduction we describe related works. The rest of this paper is

84 Y. Baryshnikov and J. Tan

organized as follows: after describing our approach to the localization problem
for anchoritic sensor networks and some engineering ramifications, we study sev-
eral random field models in section 3. These models are candidates for recovering
the inter node distances that are inspired by possible real applications, for which
we conduct some simulation experiments.

1.1 Motivation

Scenarios that one has to resort to the anchoritic assumption are much more
widespread than one might suppose.

First of all, when the sensor networks are immersed into harsh environments
where the communications between the sensor nodes are difficult or infeasible,
standard approaches that use inter node communication signals to infer the
pairwise distances no longer applies. For example, consider a large-scaled sensor
network deployed on the seabed. Using sophisticated techniques such as SONAR
may not be a good solution because of the latency of acoustic signals, the effec-
tive data rates [19] and the size of the devices. Hence one might look into the
possibility of keeping the sensors silent over the whole life.

Also, the cost of the devices for locating and communication scales with the
number of sensors. To equip a single sensor only increases innocuous amount of
cost, but this results in a prohibitive expense for large-scaled sensor networks.
Hence, the idea of only choosing mute or deaf sensors that are cheap, or organiz-
ing them with some expensive and powerful sensors, might force the developers
to adopt the anchoritic requirements.

Another situation that relates to security is in adversary environments. Trans-
mitting signals may reveal the presence of the sensors, and therefore makes them
vulnerable to suppression and manipulation. Similarly, one would not deploy any
globally structured signals for localization purposes as an adversary could gen-
erate noises or worse, emulate the system signals to compromise the localization
completely.

While there are further scenarios where anchortic networks could be neces-
sary, these situations — physical constraints, cost considerations, security re-
quirements — seem to cover most of them.

Now, if the sensors in the network are silent, how can they report the data to
the sink? There are again several scenarios.

First, the sensors (or their data storage units) can be indirectly collected after
their mission is completed. As for the sensor networks deployed on the seabed,
buoyant sensors can be attached to heavy ballasts and sink themselves. After a
period of time during which the sensors perform their measurements, the ballasts
are released and the sensors emerge to the surface where their measurements can
be collected, for example, by radio. Clearly, the original positions of the sensors
cannot be reliably estimated just by their locations on the sea surface.

Another case involves sensors that may only be able to pass their measurements
to a collection node once, perhaps after the moving collection node approaches
them close enough. For example, in some adversary environments sensors should
not reveal themselves except being activated. Here, the sensors are equipped with

Localization for Anchoritic Sensor Networks 85

devices capable of talking. However, for the reasons stated above, the communi-
cation should be made on demand and kept short. Hence, the sensors transmit
just once in their operation cycle, transferring to the center (which can be, e.g.,
a mobile agent that passes by) all the information they gathered. After that, the
sensors either wait for another transmission cycle, or even are compromised.

In either case, the central entity has to recover the original positions of the
sensors depending only on the individual measurements from each sensor, and
this information is oblivious of the positions and the existence of all the other
sensors in the network.

1.2 Related Work

As we mentioned above, most of the publications on the “coordinate-free” lo-
calization problem follow the path of reconstructing locations from the proxim-
ity data. These approaches typically assume the distances being given by RSS
data, or by the connectivity patters of the network formed by the sensors. Then
some geometric properties are used, followed possibly by iterative adjustment
and fine tuning. The works following to some degree this direction are, e.g.,
[16,10,4,17,7,12,13,18,11,1].

Some deviations from this scheme are also considered in literature. For ex-
ample, the work [2,14] assumes a lack of communications between the nodes,
yet relies on several anchors which can communicate with significant parts of
the network. The distances to these anchors are then used for the localization.
Similarly, [15] assumes a system of beacons having known positions and send-
ing acoustic signals used for the localization. A somewhat more complicated
approach mixing internode chatter and beacons is used in [6]. The localization
system [20] achieves high accuracy in recovering coordinates of the nodes with-
out requiring internode chatter. However, some ranging signals (steerable laser
rays sweeping over the terrain populated with sensors) are necessary.

In the existing literature, the one most close to our techniques appears to
be the ingenious SLAT (simultaneous localization and tracking) proposal [5].
There, the authors consider a network of cameras tracking a moving object by
recovering their own positions and then the trajectory of the tracked object.
While conceptually not completely disjoint from our model of random walkers
(see Section 3.3), the approach of [5] relies heavily on the uniqueness of the
moving object and on the far range of their sensing devices. Introducing many
targets seems to require a major overhaul of the approach used there, which
might lead to a statistical procedure of distinguishing multiple targets, and thus
to techniques close to ours.

On a conceptual level, the correlations between the measurements have been
used in the sensor/ad-hoc networks, most notably to develop coding schemes.
It has been proposed to use correlations in the measurements to improve the
network throughput. Similarly, using correlated signals in ad-hoc wireless MIMO
networks can improve the transmission rates. Here, however, we do not try to
filter the noise out of the signals, but rather to use the noise (insofar it admits
some decaying correlation functions) for the localization.

86 Y. Baryshnikov and J. Tan

2 Our Approach

We approach the problem of recovering the mutual distances between the nodes
in an anchoritic sensor network by exploiting the time-space correlation structure
of some random field observed by the sensors. This random field can be what the
sensors are tasked with measuring, or some auxiliary signals randomly generated
by the sensors intentionally (no need for any coordination) .

2.1 Description

Our algorithm is based on the assumption that the data observed by the sensors
can be modeled as a locally isotropic stationary random field (for a precise
definition, see the discussion before Theorem 1); if not, then choose another
auxiliary field that satisfies the condition, e.g., hydroacoustic noise near the
seabed, cloud shadows cast on the ground, or even carefully engineered random
radio signals. The sensor nodes record the measurements, or a function of the
measurements. For example, simply record “1” when the measured signal is
above a threshold; otherwise record “0”. In the end, the Boolean sequences as well
as the data measurements will be transferred to the sink. The crucial intuition
behind this approach is that the correlations between these Boolean sequences
at different sensors decrease with the mutual distances. Then, by analyzing the
sequence correlations at pairs of nodes, we can approach the localization problem
indirectly. Note that, though each sensor has to reserve an extra space for the
Boolean sequence, the overhead is negligible since even 250 bytes contains 2000
bits.

More precisely, we assume that a random field {ξ(z, t)}z∈R
2,t∈R

is measured
by the sensors N = {1, 2, . . . , N} at synchronized instants to, t1, . . . , tT . The
position of sensor i is denoted as zi = (xi, yi), and it records “1” when the
measured signal ξ(zi, t) is above a threshold, otherwise record “0” (this can be
generalized to multivalued records) at time t.

Definition 1. For a subset I = {i1, i2, . . . , iS} ⊂ N, define empirical instanta-
neous correlation functions to be

κT (I) =
1
T

T∑

j=1

ξi1 (tj)ξi2 (tj) · · · ξiS (tj), (1)

where ξi(tj) is the record of the field ξ by sensor i at time tj.

Remark 1. Here the requirement for synchronization is not tight, since even
when clocks drift over a long period of time, a small time lag between the mea-
surements will not affect the spatial-temporal correlation too much.

Remark 2. In this paper, we are only interested in analyzing the correlation at
pairs of nodes (S = 2). For S ≥ 3, it contains more information on the relative
positions of the sensors (e.g., S = 3 forms a triangle). We refrain from this
generalization in this work.

Localization for Anchoritic Sensor Networks 87

2.2 Theoretic Framework

Assume that N independent nodes are selected uniformly in a plane region
A ⊂ R

2. The positions of the first B < N nodes (called local beacons) are
assumed to be known, and the positions of the rest are to be determined.

If the mutual distances dij = |zi − zj | are known for all pairs of sensors,
it is possible to reconstruct the whole configuration Z = {z1, . . . , zN} up to an
isometry of the plane preserving the positions of beacons (that is up to a rotation
if B = 1 or up to an axis symmetry if B = 2). Obviously, the positions and
the number of beacons affect the reconstruction. In an anchoritic network, the
sensors do not know their mutual distances, and we resort to the measurements
of (empirical) correlations/cumulants as a proxy for the internode distances to
construct a proximity graph.

Empirical Correlations and Cumulants. When the field ξ is stationary and
ergodic with respect to time t, the empirical correlation function, in the limit of
T → ∞, converges (e.g., see Theorem 9.6 of [8]) to its expected value κ(I) =
Eξi1ξi1 · · · ξiS . In many cases, when the sensors form spatially separated clusters,
the correlation function also clusters correspondingly κ(I) ≈

∏
Ii⊂I κ(Ii), and

the approximation is good when the distances between the clusters {Ii} are
large. Cumulants {cl}l≥1 are defined by

∑
l

cls
l

l! = log(
∑

l
κls

l

l!), where κl =
κ({1, . . . , l}) are the correlations.

We focus on the pairwise cumulants, which reduce to the standard statistical
correlation

c(i, j) = Eξiξj − EξiEξj

for sensor i and j. The notation c(zi, zj) ≡ c2(i, j) is used to indicate the exact
locations of sensor i and j.

The cumulants described above capture the instantaneous spatial dependen-
cies of the random field. One can also exploit the spatial and temporal depen-
dencies simultaneous. A general way to do so is to extend the dimension of the
random field ξ to a new field ξ̃Δ(z, t) = {ξ(z, s)}s∈[t−Δ,t+Δ], Δ > 0 with the
value at point z and time t being the trajectory of ξ at point z between t − Δ
and t+Δ. In this case, the 2-point correlation functions involve a kernel function
K(u, v) and are given by

c̃(i, j) =
∫

[−Δ,Δ]2
ξi(u)K(u, v)ξj(v)dudv.

Proximity Graph. To solve the localization problem, we need to construct
the proximity graph ΓN that connects each node i to kN nodes with the largest
empirical mutual cumulants. The resulting graph ΓN can approximate the cor-
responding kN -nearest neighbor graph that is built on the Euclidean space with
each node being connected to kN nearest nodes under the following two assump-
tions.

A: Convergence of empirical cumulants: c(T)(zi, zj) → c(zi, zj) for all i, j ∈ N
as T → ∞, and,

88 Y. Baryshnikov and J. Tan

B: Asymptotic isotropy: for all x, y ∈ A, the set Sx(δ) � {y : c(x, y) ≥ c(x)− δ}
satisfies, as δ → 0,

Sx(δ)
√

π
√

Area(Sx(δ))
→ a unit circle.

Theorem 1. Under the assumptions A and B, if kN = log N c, c > 1, then, for
any ε > 0,

lim
N→∞

lim
T→∞

P

[∣
∣
∣
∣
∣
h

(N)
ij

√
kN

πN
− dij

∣
∣
∣
∣
∣
< ε, 1 ≤ i, j ≤ N

]

= 1,

where h
(N)
ij is the hop distance between node i and j in ΓN and dij is the Eu-

clidean distance between zi and zj.

The proof of this theorem is presented in Section 6. From this theorem, we see
that knowing the cumulants is enough to reconstruct, with an arbitrary precision,
the positions of all the nodes in the network, assuming that the network is large
enough.

In the next section we study three different models that could be applied in
an anchoritic sensor network.

3 Random Field Models

The sensors are assumed to be scattered uniformly in an open area. For the case
when the sensors are not uniformly positioned, one may have to introduce local
masters/sinks. We will discuss the ramifications in Section 4.

3.1 Boolean Model

This model imitates a random field with shadow/light patterns. To model the
shadow patterns generated by “clouds”, we will apply the widely used Boolean
model (see e.g. [3]). The model is specified by a Poisson point process P and a
class of bounded sets B where B ∈ B is assumed to be a circle with a random
radius R. Given the pair (P , B), the random set C is

C =
⋃

Zα∈P
(Zα + Bα),

where {Bα} are iid realizations of the sets from B. At each time t, the sensors
located in the field observe

ξ(z, t) =
{

1 if z ∈ C;
0 otherwise.

Localization for Anchoritic Sensor Networks 89

3.2 Large Clouds

A variant of the Boolean model deals with the unbounded shapes, the “large
clouds”. Here the clouds are represented as the parallel strips of random widths.
More precisely, we consider the random set C to be bounded by a family of
parallel lines, which are orthogonal to a direction that is chosen uniformly from
the unit circle with crossing points forming a Poisson point process (one can
check that this definition is independent of the choice of the origin in the plane).

In other words, z ∈ C if, for some i,

x2i ≤ 〈z, e〉 ≤ x2i+1,

where 〈, 〉 denote Euclidean scalar product, e is a random vector chosen uniformly
from {|e| = 1} and {xk}∞−∞ is a Poisson point process with constant intensity.

3.3 Random Walkers

This model describes the random field generated by some independent random
walkers in the area A. At time t a sensor at position z records ξ(z, t) = 1 if there
is a walker within a distance less than r from itself; otherwise records ξ(z, t) = 0.
We will use a spatial-temporal correlation function defined by

∑

s

Eξ(z, t)ξ(z′, t + s), |s| < Δ,

which sums up the cumulants of two points over the interval Δ. The precise
expression for the cumulants in this model is a polynomial in Gaussian functions.

4 Engineering Ramifications

The idea of anchoritic sensors can be extended to situations where some powerful
sensors form a class of local masters and other sensors only report measurements
to the nearest masters. The network architecture is depicted as in Figure 1.

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
���

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
� �

�
�

�
�
�

��
��
��
��

��
��
��

��
��
���
�
�

�
�
��

�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
�� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
���
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
���
�
�

�
�
��
�
�

�
�
���

��
��
���
�
�
�

�
�
�
�

��
��
��
��
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
���
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��

�
�

�
�
�

��
��
��
��
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
��

�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

local master

cluster

sensor

Fig. 1. Combine deaf sensors and local masters

90 Y. Baryshnikov and J. Tan

The local masters can exchange information and, if necessary, can even be
carefully engineered to generate random radio or acoustic signals such that we
obtain a desired cumulant function. This can easily build an auxiliary random
field that may be used to locate other sensors. The sensors in a cluster peri-
odically report their data to the local master. Using the correlation values, the
local master can determine the positions of the sensors very precisely, possibly
by using the inverse of the already known cumulant function.

The distinguishing feature of this structure is that it does not require globally
coordinated signals from a central entity.

5 Experimental Results

In this section, based on the random field models described in the preceding
section, we present simulation experiments on constructing the proximity graph
in anchoritic networks. In all these simulations, N = 1000 sensors are chosen in-
dependently at random in the unit square A and are represented as little squares
in the plots. The simulation is conducted in a discrete fashion t = 1, 2, · · · , 2000.
The proximity graph Γ is formed by connecting each node with a given number(
kN = (log N)1.2� = 10

)
of nodes with the largest empirical cumulants (choos-

ing kN = (log N)1.2 is due to Theorem 1). Note that this approach does not
require any apriori knowledge about the statistics of the random field.

Example 1 (Round clouds (Boolean model)). In this simulation, round clouds of
random radii uniformly distributed on [0, .2] are modeled as a Poisson field with
intensity 30. Blue circles on Figure 1 depict a realization of the Boolean model.
One can see that the proximity graph Γ shown on Figure 1 strongly resembles
a nearest neighbor graph; there are very few edges connecting nodes far away,
and almost all pairs of close nodes are connected.

In this example, on each corner of the unit square, a beacon with known
position (illustrated in red) is shown. Though only four beacons are given, based
on the proximity graph, we still can give a reasonably good estimation of the
locations for most of the sensors. This result is presented in Section 5.1.

Example 2 (Big clouds). The big clouds in this simulation were modeled by half
planes (a realization is shown in blue on Figure 2) bounded by lines with isotropic
orientation. A visual inspection indicates a high similarity between the proximity
graph and the nearest neighboring graph.

Example 3 (Random walkers). Consider W = 10 random walkers that are mon-
itored by sensors of a sensing radius r = .13 with Δ = 2. Yellow trajectories
show part of the traces of the walkers.

One can see in Figure 6 that the quality of the proximity graph in this situ-
ation, even in the presence of a much slower convergence speed of this random
field, is as good as that in the previous two examples, which is further illustrated
in the scatter plot of cumulants in Figure 7.

Localization for Anchoritic Sensor Networks 91

Fig. 2. Boolean model with round clouds

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Distance Between Two Sensors
E

m
p
ir
ic

a
l C

u
m

u
la

n
ts

Fig. 3. Cumulant-distance scatter plot for
the round clouds model

Fig. 4. Big clouds formed by isotropic
half-planes

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Distance Between Two Sensors

E
m

p
ir
ic

a
l C

u
m

u
la

n
ts

Fig. 5. Cumulant-distance scatter plot for
the big clouds model

A better feeling about the quality of recovering the distances by the inter node
correlations can be gained from the scatter plots, which show the cumulant values
versus the distances of pairs of sensors. The first two scatter plots, the round
clouds model in Figure 3 and the large clouds model in Figure 5, show the results
for all pairs of sensors. For the random walkers model, the scatter plot (Figure
7) only shows the cumulant-distance pairs with one of the nodes fixed. The
heterogeneity of the occupation measure leads to significantly different ranges of
the cumulants at different parts of the region. However, the cumulants still can
be efficiently used for constructing the proximity graph, as the plot shows.

92 Y. Baryshnikov and J. Tan

Fig. 6. Part of the traces of W = 10
random walkers (reflected at the bound-
ary) are shown in yellow. The region in
which the walkers move is larger than
the region A to avoid irregularities at the
boundary.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance Between Two Sensors

E
m

p
ir
ic

a
l C

u
m

u
la

n
ts

Fig. 7. Cumulant-distance scatter plot for
all pairs of sensors with one fixed. Blue dots
show the data for one node in the region of
high occupation; red dots correspond to an-
other node with low occupation. The plots
are visibly similar, exhibiting a reliable es-
timation of the cumulants.

5.1 Reconstruction of the Sensor Locations

For the round clouds model, we used the cumulant-based proximity graph to
approximate the internode distances and ultimately to reconstruct the positions
of the sensors. Since the second step of reconstructing exact positions is not the
main focus of this paper, we choose to do it in a rather naive way. We compute
the hop distances between each sensor and the four beacons lying on the four
corners using Dijkstra’s algorithm. Assuming the hop distance is proportional
to the real Euclidean distance (which is shown in Theorem 1), we can estimate
the locations of all the sensors as being shown in Figure 8. One can see that
boundary effects (caused by the inefficient algorithm we used here) are rather
significant, yet in the interior of the area the positions are recovered quite well.

Here we did not use any sophisticated machinery for the second stage of the
localization problem. A more holistic approach would be to generate a Gibbs
measure, the ensemble of N nodes in A with a distribution consisting with the
empirical measurements. Sampling from this distribution would give the most
probable positions of the sensors in the region A.

6 Proof of Theorem 1

First, connecting each pair of sensors of distance less than r(N)�
√

(log N)c/πN ,
c > 1, one obtains a graph G(N) with h

(G)
ij being the hop distance between node

i and j. We can prove that, for any ε > 0,

Localization for Anchoritic Sensor Networks 93

lim
N→∞

P

[∣
∣
∣h

(G)
ij r(N) − dij

∣
∣
∣ < ε, ∀Zi, Zj ∈ Z

]
= 1. (2)

The argument goes as follows. Choose ρ(N) =
√

c1 log N
πN , c1 > 2.5. Connect

sensor i and j by a sequence of circles of radius ρ(N) in a way that the centers
of the adjacent circles have a distance of r(N)−2ρ(N) with one of the distances
possibly being less than r(N)−2ρ(N) (when N is large, 0 < r(N)−2ρ(N) < ε).
We call sensor i and j to be ρ-vicinity connected (denoted by {i ↔ j}) if there
exists at least one sensor lying in each of the circles along the line (Zi, Zj), as is
shown in Figure 9.

Fig. 8. Reconstruct the sensor positions in the second stage. The actual node positions
(yellow squares) are connected to their estimated positions (green squares).

ρr−2

ρ sensor jsensor i

Fig. 9. ρ-vicinity connection

Therefore, for any i, j and large N , we have

P
[
{i ↔ j}C , |Zi − Zj | ≥ r(N) − 2ρ(N)

]

≤ E[number of empty circles along (Zi, Zj), |Zi − Zj | ≥ r(N) − 2ρ(N)]

≤
√

2
r(N) − 2ρ(N)

P[one given circle is empty]

=
√

2
r(N) − 2ρ(N)

(1 − πρ(N)2)N−2 ∼
√

2πN

(log N)c
N−c1 ≤ N−(c1− 1

2),

94 Y. Baryshnikov and J. Tan

implying

P [{i ↔ j}, for all |Zi − Zj | ≥ r(N) − 2ρ(N)]

≥ 1 −
∑

1≤i,j≤N

P
[
{i ↔ j}C , |Zi − Zj | ≥ r(N) − 2ρ(N)

]

� 1 −
(

N

2

)

N−c1+
1
2 → 1 as N → ∞,

which proves (2) by the following inequalities

1 ≥ lim
N→∞

P

[∣
∣
∣h

(N)
ij r(N) − dij

∣
∣
∣ < ε, ∀Zi, Zj ∈ Z

]

≥ lim
N→∞

P [{i ↔ j}, for all |Zi − Zj| ≥ r(N) − 2ρ(N)] = 1.

Next, for 0 < ε < 1, by choosing r1(N) =
√

1 − ε · r(N) and r2(N) =
√

1 + ε ·
r(N), we obtain graph G−ε(N) and G+ε(N), respectively. In graph G−ε(N),
define i.i.d. random variables Xij = 1(sensor i and sensor j are connected), j �=
i for sensor i with E[Xij] = (1−ε)(logN)c/N after ignoring the boundary effects.
Let the number of neighbors in G−ε(N) for sensor i to be Yi, and then, for θ > 0,

P[Yi < kN] = P

⎡

⎣
∑

j
=i

Xij < kN

⎤

⎦ = P

[
eθ

∑
j �=i Xij < eθ(log N)c

]
,

which, by noting that E[eθXij] = 1+(eθ−1)(1−ε)(logN)c/N and using Chernoff
bound, yields P[Yi < kN] < he−η(log N)c

for some h, η > 0. Therefore, as N → ∞,

P[Yi < kN , 1 ≤ i ≤ N] ≤
N∑

i=1

P[Yi < kN] ≤ hNe−η(log N)c → 0. (3)

From (3) and recalling the assumptions A and B in Subsection 2.2, we have,

lim
N→∞

lim
T→∞

P[G−ε(N) ⊂ Γ (N)] = 1. (4)

By the same argument, we can prove limN→∞ limT→∞ P[Γ (N) ⊂ Gε(N)] = 1,
which, combined with (2), (4) and passing δ → 0, completes the proof.

References

1. Albowicz, J., Chen, A., Zhang, L.: Recursive position estimation in sensor networks.
In: Ninth International Conference on Network Protocols (November 2001)

2. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for
very small devices. IEEE Personal Communications Magazine 7(5), 28–34 (2000)

3. Stoyan, J.M.D., Kendall, W.S.: Stochastic geometry and its applications. Wiley,
Chichester (1987)

Localization for Anchoritic Sensor Networks 95

4. Dohert, L., Pister, K., Ghaoui, L.: Convex position estimation in wireless sensor
networks. INFOCOM’01 (April 2001)

5. Funiak, S., Guestrin, C., Paskin, M., Sukthankar, R.: Distributed localization of
networked cameras. In: IPSN ’06: Proceedings of the fifth international conference
on Information processing in sensor networks, pp. 34–42. ACM Press, New York,
USA (2006)

6. Girod, L., Bychkovskiy, V., Elson, J., Estrin, D.: Locating tiny sensors in time and
space: A case study. In: Proceedings of the International Conference on Computer
Design (ICCD2002), Freiburg, Germany (September 2002)

7. He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.: Range-free localization
schemes for large scale sensor networks. MobiCom’03, San Diego, CA, USA (August
2003)

8. Kallenberg, O.: Foundations of Modern Probability. Springer Series in Statistics.
Probability and Its Applications (October 1997)

9. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks:
a quantitative comparison. Comput. Networks 43(4), 499–518 (2003)

10. Moses, R.L., Krishnamurthy, D., Patterson, R.: An auto-calibration method for
unattended ground sensors. In: ICASSP, vol. 3, pp. 2941–2944 (May 2002)

11. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from
local information on an ad hoc sensor network. In: 2nd International Workshop on
Information Processing in Sensor Networks (IPSN 03) (April 2003)

12. Niculescu, D., Nath, B.: Localized positioning in ad hoc networks. In: Sensor Net-
work Protocols and Applications, Anchorage, Alaska (April 2003)

13. Patwari, N., A. O. H. III.: Using proximity and quantized RSS for sensor localiza-
tion in wireless networks. WSNA’03.San Diego, CA,USA (September 2003)

14. Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Poster abstract: anchor-
free distributed localization in sensor networks. In: SenSys ’03: Proceedings of the
1st international conference on Embedded networked sensor systems, pp. 340–341.
ACM Press, New York, USA (2003)

15. Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller, S.: The cricket compass
for context-aware mobile applications. In: Proc. of the 6th ACM MOBICOM Conf.
Rome, Italy (July 2001)

16. Savarese, C., Rabaey, J., Beutel, J.: Locationing in distributed ad-hoc wireless
sensor networks. ICASSP (May 2001)

17. Savvides, A., Park, H., Srivastava, M.: The bits and flops of the N-hop multilater-
ation primitive for node localization problems. WSNA’02, Atlanta, Georgia, USA
(September 2002)

18. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from mere con-
nectivity. In: MobiHoc ’03: Proceedings of the 4th ACM international symposium
on Mobile ad hoc networking & computing, pp. 201–212. ACM Press, New York,
USA (2003)

19. Stojanovic, M.: Acoustic (underwater) communications. In: Proakis, J.G. (ed.)
Entry in Encyclopedia of Telecommunications, John Wiley & Sons, New York
(2003)

20. Stoleru, R., He, T., Stankovic, J.A., Luebke, D.: A high-accuracy, low-cost local-
ization system for wireless sensor networks. In: SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pp. 13–26. ACM
Press, New York, USA (2005)

Mobile Anchor-Free Localization for Wireless

Sensor Networks

Yurong Xu1,2, Yi Ouyang1,2, Zhengyi Le1,2, James Ford1,2,
and Fillia Makedon1,2

1DevLab, Computer Science Department, Dartmouth College
2Heracleia Lab, Univ. of Texas at Arlington

{yurong,ouyang,zyle,jford,makedon}@cs.dartmouth.edu

Abstract. In this paper, we consider how to localize individual nodes in
a wireless sensor network when some subset of the network nodes can be
in motion at any given time. For situations in which it is not practical or
cost-efficient to use GPS or anchor nodes, this paper proposes an Anchor-
Free Mobile Geographic Distributed Localization (MGDL) algorithm for
wireless sensor networks. Taking advantage of the accelerometers that
are present in standard motes, MGDL estimates the distance moved by
each node. If this distance is beyond a threshold, then this node will trig-
ger a series of mobile localization procedures to recalculate and update
its location in the node itself. Such procedures will be stopped when the
node stops moving. Data collected using Tmote Invent nodes (Moteiv
Inc.) and simulations show that the proposed detection method can ef-
ficiently detect the movement, and that the localization is accurate and
the communication is efficient in different static and mobile contexts.

Keywords: Localization, Mobility, Wireless Sensor Networks.

1 Introduction

In recent years, Wireless Sensor Networks (WSNs) [18] have emerged as one of
the key enablers for a variety of applications such as environment monitoring,
vehicle tracking and mapping, and emergency response. One important problem
for such applications is how to locate a node’s position. One example scenario is
that of a WSN deployed as part of the static infrastructure to detect fire as well
as to locate and guide fire fighters during fire emergencies by communicating
with mobile nodes they carry or wear.

Though many localization algorithms have been proposed for wireless ad hoc
networks or WSNs [4,5,6,7,15,16], they assume that the nodes inside of the net-
works are static. Little research has been presented on considering localization
in cases where the network cannot be assumed to be static. There are several
potential ways to provide localization for WSNs with mobile nodes:

(1) Let mobile nodes deploy global positioning system (GPS) to get their
locations. However, many applications require node mobility in environments
where GPS signals may not be available, our solution works with GPS, and can
even fill in completely where GPS is unreachable.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 96–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mobile Anchor-Free Localization for Wireless Sensor Networks 97

(2) Re-execute localization algorithms (such as [4,7,15]) periodically to com-
pute the location of the mobile nodes. In order to locate potential fast moving
nodes, localization algorithms will need to be restarted frequently. So, there will
be a significant energy and communication cost for such localization scheme.

(3) Redesign localization algorithms that are particularly focused on the lo-
calization of mobile nodes. There are some existing mobile localization schemes,
such as MCL [11], MCB [3] and ELA [17]. They rely on that there are a set of
nodes (anchor nodes) which already knew their location. Our work focuses on
finding a solution that does not require any anchor nodes in computation.

We use Anchor-Based (AB) to refer to the above methods that rely on some
special nodes that already know their exact physical position. The alternative
to AB localization is Anchor-Free (AF) localization which uses no specially des-
ignated reference nodes with known physical coordinates.

Because they assume that there are some anchor nodes that are aware of
their exact physical location even when moving, MCL, MCB and ELA focus on
ways to use these mobile anchor node to localize nearby nodes. There are several
problems that may be faced under these localization algorithms: 1. The accuracy
of AB schemes is related to the number of anchor nodes, so, in order to achieve
high accuracy, AB schemes usually need large sets of anchor nodes. 2. The fact
that AB schemes depend heavily on anchor nodes makes them vulnerable to the
loss or malfunctioning of any of these anchor nodes. 3. Current AB solutions
such as MCL, MCB and ELA need all nodes, or at least all anchor nodes, to
broadcast their location periodically, even when there is no node movement.

This paper will talk about an AF localization called MGDL for WSNs with
node mobility. We assume that the network is comprised mostly of low-mobility
nodes which are embedded into the environment while some other nodes are
carried by some mobile objects. Based on this assumption, MGDL generates
a distance measurement for each node by combining local network connection
information with hop numbers generated without the help of GPS devices or
anchor nodes. Using the accelerometers deployed in motes, MGDL estimates
the distance moved for each node after the whole network is started. If such
distance is beyond a threshold, then a series of procedures will be triggered to
recalculate/update the location for that node. This procedure will continue while
movement continues to be detected.

In this paper, we make the following contributions: (i) We design a movement
detection procedure for standard motes in WSNs to detect the movement of a
node by using accelerometers. (ii) We propose an MGDL localization algorithm
in detail, based on (i). simulations using the algorithm shows that the MGDL
has high accuracy in localization in different placements of networks, as well as
an efficient communication cost in different movement scenarios.

The remainder of the paper is organized as follows. Section 2 describes related
work, Section 3 discusses the details of MGDL algorithm, and Section 4 reports
simulation results. Finally, Section 5 gives our conclusions.

98 Y. Xu et al.

2 Related Work

The majority of prior research related to localization problems has focused on
static sensor networks [4,5,6,7,15,16]. Recently, however, more attention has been
paid to mobile environments.

S. Čapkun et al. proposed an anchor-free localization called SPA for mobile
WSNs in [9], which localizes nodes in mobile sensor networks through triangula-
tion of neighbor nodes. SPA first computes a relative coordinate system for each
node, then converts the above relative coordinate systems in each node into a
global coordinate system by calculating differences in terms of distance and di-
rection between each node and a particular central node, or a dense group of
nodes called a Location Reference Group (LRG). The problem for SPA is that if
any nodes, especially those nodes inside an LRG, are moved, then a recalculation
must be done in almost the whole network, which is costly and unnecessary.

In [11], Hu and Evans present a range-free anchor-based localization algorithm
for mobile sensor networks based on the sequential Monte Carlo method [8].
The Monte Carlo method has been extensively used in robotics [5] where a
robot estimates its localization based on its motion, perception and possibly
a prelearned map of its environment. Hu and Evans extend the Monte Carlo
method as used in robotics to support the localization of sensors in unmapped
terrain. The authors assume a sensor has little control and knowledge over its
movement, in contrast to a robot. A similar paper [3] shares the same idea.

By using an analogy with a system of springs and masses, the Elastic Localiza-
tion Algorithm (ELA) [17], which is an anchor-based algorithm, tries to calculate
locations using anchor nodes which already know their locations. A mobile ver-
sion of ELA supports mobile localization by updating neighbors’ locations in
each node at fixed intervals. Such periodic updating in the whole network may
lead to significant communication and computation costs.

Work in [12] proposes an anchor-free method which focuses on locating group
movement—cases in which multiple nodes have a similar direction and velocity.
By deploying a compass in each node to detect the direction of a node, each node
computes the relative locations of its neighbors. The work in [12] pays particular
attention to group movement, and does not consider independent movements by
individual nodes, which is an important and common case in mobile networks.

3 Mobile Geographic Distributed Localization (MGDL)

3.1 Overview of MGDL Algorithm

We assume that a node in a WSN can be either in a mobile or a static state, we
use “mobile” or “static” to distinguish whether a node is mobile or not. At the
same time, we use “updated” or “non-updated” to distinguish whether a node is
localized or not. Combining these labels gives four states, which are represented
as S/N (“Static/Non-updated”), S/U (“Static/Updated”), M/N (“Mobile/Non-
Updated”) and M/U (“Mobile/Updated”).

Mobile Anchor-Free Localization for Wireless Sensor Networks 99

Static/Updated State

Static/Non-updated State

Y

N

Mobile/Updated State

Measurement Procedure
Local Map Computation

Procedure
Transformation Procedure

Resampling Procedure
Local Map Computation

Procedure
Retransformation Procedure

Detect
Movement?

Mobile/Non-Updated State

Fig. 1. Sensor States and MGDL Algorithm

Based on the assumption that each node in the networks stays in the “S/N”
state initially, MGDL uses a technique similar to hop-counting as a measurement
procedure (Section 3.2) to measure the distance from some bootstrap node to
other nodes. After the running of the measurement procedure, each node will
collect a set of hop coordinates from its neighbor nodes that are within one
(or k) hop(s) distance of itself, and then it will run Dijkstra’s algorithm to
get the shortest path between each pair of nodes. After that, it will construct a
local map (Section 3.3) using MDS (Multidimensional Scaling). A transformation
procedure (Section 3.4) will merge the local map inside of each node into a global
map. After all the above procedures are done, the state of the node will be set
as “S/U”.

In order to detect the movement of a node, we utilize an accelerometer, which
is a standard component in many current motes (such as Moteiv’s Invent [2]),
to detect the movement of the node. If there is a node that is starting to move
inside of the network, the accelerometer can detect its acceleration, and then
our algorithm will compute the total distance moved based on the acceleration.
If this distance is beyond a threshold, then the state of the node will be set
as “M/N”, and mobile localization procedures (Sections 3.3, 3.6, 3.7) will be
triggered to resample hop-coordinates again, to recompute the local map and
transformation matrix for that local map in order to merge this map into the
global map. While movement continues to be detected, the above procedures will
continue. Once movement is no longer detected, the above updating procedures
will be stopped and the state of the node will be set back to “S/U”. Fig. 1 shows
the states and the whole MGDL algorithm for a node.

100 Y. Xu et al.

3.2 Measurement Procedure

In the measurement step, we assume that all nodes inside of the networks are
static at this step (which is reasonable, since a measurement procedure is rela-
tively fast, and need only be run once at the time of the network deployment).
We use the hop-coordinates [19] technique, which is similar to hop-counting but
has more accurate measurement, to flood a message to the network to finish the
measurement. The basic idea is:

(i) In bootstrap node: A bootstrap node (x) creates a measurement message
with (i = x) to flood the network. After that, the bootstrap node will drop any
measurement message originated by itself.

(ii) In all other nodes in the WSN: Suppose that an arbitrary node a is
calculating its hop distance, and node b is one of the neighbors of node a. Then
the basic hop-coordinates procedure for node a is shown in Procedure 1.

Procedure 1. Measurement Procedure in node a
1: for message (hopb) from any B ∈ Na and not TIMEOUT do
2: if hopb < hopa then
3: hopa = hopb + 1
4: forward(message(hopa)) to MAC
5: else
6: drop(message(hopb))
7: end if
8: end for
9: if |Na| == 0 then

10: offseta = 0
11: else
12: offseta =

∑
b∈Na

(hop
b

−(hopa −1))+1
2(|Na|+1)

13: end if
14: return hop-coordinate hopa+ offseta

Here, a is a node, hopa is the minimum number of hops to reach node a
counting from some bootstrap node (x), the combination of hopa and offseta is
the hop coordinate for node a, Nais a set of nodes which can be reached by node
a in one hop, and |Na| is the number of nodes in Na.

The total cost for this step is as follows: a computational cost of O(1), a
communication cost of O(|Na|), a memory cost of O(|Na|) for each node.

3.3 Local Map Computation

In this step, each node will compute a local map for it’s neighbors based on
the hop-coordinate computed in the previous step. After the generation of hop-
coordinates with Procedure 1, each node will send a request to its neighbor nodes
that are within k hops to send back their hop coordinate from some bootstrap
node (x).

Mobile Anchor-Free Localization for Wireless Sensor Networks 101

After each node receives the hop coordinate from its neighbors, that node will
compute shortest paths between all pairs of nodes k hops to that node, using
Dijkstra’s algorithm or other similar algorithms.

Then, we apply MDS to the (|N a|+1)×(|N a|+1) shortest path matrix (here
|N a| is the number of nodes that can be reached by node A in k hops and retain
the first two (or three) largest eigenvalues and eigenvectors to construct a 2-D
(or 3-D) local map.

The total cost for this step is a computational cost of O(|Na|3 n) and a memory
cost of O(|Na|2) per node, with no communication cost in this step.

3.4 Transformation Procedure

In this step, we will assemble the local maps that are computed and stored in
each node into a global map through a transformation.

First, we will bootstrap from some node to compute the transformation matrix
for that node and follow it by broadcasting a transformation message to its
neighbors to let them start to compute the transformation matrix with their
neighbors, too.

Then, after we find the set of neighboring nodes, we compute a transformation
matrix for each node b in the neighbor node set Na of node a. Suppose that
there are two sets of neighbor nodes, Na and Nb, that are within k hops of
the nodes a and b, respectively. Their intersection is I = Na ∩ Nb, and we use

matrix Ia =
{
. . . , (xi, yi)

′
, . . .

}′

(here (xi, yi) are the coordinates of node i) to
represent the coordinates of nodes in the I generated by node a, and similarly

Ib =
{
. . . , (x̀i, ỳi)

′
, . . .

}′

for node b. We can then compute a transformation

matrix T such that it minimizes
√∑

((xi − x̌i)2 + (yi − y̌i)2), where (xi, yi) ∈
Ia, (x̀i, ỳi) ∈ Ib, and (x̌i, y̌i) ∈ Ib × T . Procedure 2 gives the detail.

Procedure 2. Compute transformation matrix T in node a

Require: Input: matrix T from neighbor node
1: if this node is transformed then
2: drop(matrix T)
3: return
4: end if
5: for each node b ∈ Na do
6: request Nb from node b
7: I = Nb

⋂
Na

8: generate Ib and Ia from I
9: compute transformation matrix T such that

√∑
((xi − x̌i)2 + (yi − y̌i)2)is min-

imized, here (xi, yi) ∈ Ia,(x̌i, y̌i) ∈ Ib × T .
10: send matrix T to node b
11: end for
12: set (this node is transformed)

102 Y. Xu et al.

If a node receives a transformation matrix T, then it will first check whether
it is already transformed or not; if so, the node will drop such a message, and
if not, it will apply Procedure 2. This will allow the node to compute the local
map which it will then send to its |Na| neighbor nodes.

After we have flooded the network to the transformation step in the whole
networks, we archive the global map for the whole network, which is stored in a
distributed way in each node in the network.

Total cost for this step: computational cost of O(|Na|), memory cost of O(|Na|)
for nodes, and communication cost of O(|Na|) for each node or O(n) for whole
network.

3.5 Mobile Measurement Techniques

Until now, we have only talked about how to do localization without considering
mobility of nodes (after the previous procedures, current state of a node is S/U).
In this section, we will solve the problem of how to decide whether a node has
moved, then how to recompute the location of mobile nodes.

2D and 3D Accelerometer. In order to detect the movement of mobile nodes,
we need some sensor which can detect and quantify node movement. In our
algorithm, we make use of accelerometers installed in standard nodes to detect
their movement. An accelerometer is a device that measures its own acceleration.
We can use a 2D (X-Y) accelerometer to measure 2D acceleration,or a 3D (X-
Y-Z) version to measure 3D acceleration. The component we used for 2D in this
paper is a standard component in current commercial motes, such as the Moteiv
Inventor mote [2]. In order to detect 3D movement of the node, one can install an
inexpensive external 3D accelerometer, such as the MMA7260Q accelerometer
[1] from Freescale.

Movement Detection. With the aid of a 2D accelerometer, we can roughly
measure the acceleration vector a in a plane. Since the accelerometer can’t detect
the rotation of a node, it is of limited use as a direct way to measure position
changes. Therefore, we use the integral of the absolute value of the a to compute
an approximation of the moved distance d =

∫ ∫
|a|d2t. If such distance is beyond

a threshold, we then say this node has moved.
First we assume that at the beginning of time t = 0, every node inside of

the network is still. Consider an arbitrary node: suppose its acceleration a = 0,
its velocity v = 0, the distance it has moved d = 0 for that node. Then, we
will sample the accelerometer in that node periodically. Here, we assume that
the interval time for sampling is dt, and the reading of acceleration from the
accelerometer in that node is shown as a, so current velocity for this node can
be approximated as v =

∫
|a|dt, and the distance moved from the beginning

location (when t = 0), can be approximated as d =
∫ ∫

|a|d2t. If d is beyond a
threshold ε, we then say this node has moved, and we let v = 0 and d = 0 to
restart the measurement. Thus, though the values of a, v and d are not accurate,
in comparison to their real values, they are sufficient to detect the movement of
a node. The complete process is described in Procedure 3.

Mobile Anchor-Free Localization for Wireless Sensor Networks 103

Fig. 2. First 40 Seconds of Experiment on Movement Detection with Accelerometer.

Movement is detected within each movement block, although with a slight lag, and is

only occasionally spuriously detected between movements. (Here dt = 0.1s, threshold
ε = 1.5m. If a node is moving then actual movement will be shown as value =5,
otherwise actual movement will be shown as value =0.)

Procedure 3. Movement Detection Procedure
Require: this procedure will be invoked to read the accelerometer during the time

period dt.
1: v = previous v +

∫
|a|dt

2: d = previous d +
∫

vdt
3: if d > threshold ε then
4: v = 0
5: d = 0
6: return “detect movement”
7: end if
8: return “un-detect movement”

If Procedure 3 detects that a node has moved, then MGDL in that node will
recompute its location. Threshold ε will decide when a mobile node should re-
compute its location. The smaller the threshold is, the higher the frequency with
which the node computes its location, leading to higher localization accuracy as
well as more communication cost.

In order to evaluate how to detect the movement of a node with the above
procedure, we set up an experimental environment in a long hallway (about
50 m). A node carried by one person works as a mobile node. The above
movement detection procedure is running inside of that node with dt = 0.1s.
At first, we will let the mobile node start to move from one end of the hall,
and move for 5 seconds with walking speed, then stop for 5 seconds in the
same hall, and so on until reaching the end of the hall, then turn back with
the same movement. The first 40 seconds of this experiment is shown in
Fig. 2.

From Fig. 2, we can see that this movement detection procedure can detect
the movement of a node when that node is moving, albeit with an average delay
of about 0.95 s.

104 Y. Xu et al.

Procedure 4. Resampling Procedure for Node a

1: if |Na| == 0 then
2: keep the previous offseta and hopa

3: else
4: for each node b ∈ Na, for which the state of node b is “S/U” do
5: request hopb from node b
6: end for
7: offseta + hopa =

∑
b∈Na

(hopb+hopb+offseta)
|Na|

8: end if
9: return hopa + offseta

3.6 Resampling Procedure

If we detect that a node is moving with the movement detection as shown in
Procedure 3, we will mark this node as “M/N” (Mobile but Non-updated). Then,
we will resample the hop-coordinate for this node from its neighbors. In order
to increase the accuracy of resampling, we only get hop-coordinates from nodes
that are marked as ”S/U”, instead of from nodes marked “M/N” or “M/U”.

The total cost for this step is as follows: computational cost of O(1), communica-
tion cost of O(|Na|), memory cost of O(|Na|) for each node, and O(n) for the whole
network.

3.7 ReTransformation Procedure

After the resampling procedure and local map computation, we retransform the
local map in this moved node into the global map. In this process we get a new
transformation matrix for this local map, since the old transformation matrix is
new out of date. Suppose this moved node is node a; first, we find a closest neighbor
node with “S/U” state (here we assume it is node b); then compute a new trans-
formation matrix T for node a. Suppose that there are two sets of neighbor nodes
Na and Nb for nodes a, b, respectively. Their intersection is I = Na ∩ Nb, and we

use matrix Ia =
{
. . . , (xi, yi)

′
, . . .

}′

(here (xi, yi) are the coordinates of one node
i) to represent the coordinates of nodes in the I generated by node a, and simi-

larly Ib =
{
. . . , (x̀i, ỳi)

′
, . . .

}′

for node b. We can then compute a transformation

matrix T such that it minimizes
√∑

((xi − x̌i)2 + (yi − y̌i)2), where (xi, yi) ∈ Ia,
(x̀i, ỳi) ∈ Ib, and (x̌i, y̌i) ∈ Ib × T . The procedure is given in Procedure 5.

Total cost for this step: computational cost of O(|Na|), memory cost of O(|Na|)
for nodes, and communication cost of O(|Na|) for each node.

4 Simulation Result

4.1 Simulation Configuration

We implemented our localization algorithm as a routing agent and our boot-
strap node program as a protocol agent in NS-2 version 2.29 [14] with 802.15.4

Mobile Anchor-Free Localization for Wireless Sensor Networks 105

Procedure 5. Recalculate Transformation Matrix T for Node a

1: find node b from Na, such that |hopa+ offseta − (hopb+ offsetb)| is minimized.
2: request Nb from node b
3: request Tb from node b
4: I = Nb

⋂
Na

5: generate Ib and Ia from I
6: compute transformation matrix T such that

√∑
((xi − x̌i)2 + (yi − y̌i)2)is mini-

mized, here (xi, yi) ∈ Ia × Ta, (x̌i, y̌i) ∈ Ib × Tb.
7: set this node to “M/U” state.

0

20

40

60

80

100

120

36 100 225 400 625 900 1225 1600 2025 2500
of nodes

A
ve

ra
ge

 E
rr

or
 (

%
R

)

MGDL (Mobile Nodes)
MGDL (Static Nodes)
MCL
ELA

Fig. 3. Accuracy Comparison with

MGDL, MCL and ELA. Here, ND=10,
and Vavg= 1R/s, Number of Anchors =
4, Number of Nodes = 36,100,225,400,
625,900,1225,1600,2025,2500, ε =
0.1R.

0

50

100

150

200

250

300

36 100 225 400 625 900 1225 1600 2025 2500
of nodes

A
ve

ra
ge

 E
rr

or
 (

%
R

)

MGDL (Mobile Nodes)
MGDL (Static Nodes)
MCL

Fig. 4. Overall Accuracy Comparison

with MGDL and MCL. Here, ND=4.6,
6.5,10,17.5,38,144, Vavg = 1R/s, Num-
ber of Anchors = 4, Number of Nodes
are from 36 to 2500, threshold ε =
0.1R.

MAC layer [20] and CMU wireless [10] extensions. The configuration used for
NS-2 is RF range = 15 meters, propagation = TwoRayGround, antenna = Om-
niAntenna.

In our experiments, we used uniform placement—n nodes are placed on a grid
with ±0.5r randomized placement error. Here r is the width of a small square
in the grid. We constructed a total of 60 placements with n =36, 100, 250, 400,
625, 900, 1600, 2250, and 2500, and with r = 2, 4, 6, 8, 10 and 12 meters,
respectively. The reason we use uniform placement with ±0.5r error is that
usually such a placement produces both node holes and islands in one placement.
To better simulate realistic mobile network situations, in each placement, we let
most of the nodes inside of the network work as static nodes deployed in the
environment, while about 10% of the nodes move inside the network under the
following mobility model.

Mobility Model. Mobile nodes in the simulation move according to a model
that is called as the “random waypoint” model [13]. It is one of the most com-
monly used mobility models for mobile ad hoc networks. In the random waypoint

106 Y. Xu et al.

0

50

100

150

200

250

300

1443819.417.516.513.7107.86.54.6
Network Density (ND)

 A
ve

ra
ge

 E
rr

or
 (

%
R

)

MGDL (Mobile Nodes)

MGDL (Static Nodes)

MCL

Fig. 5. Comparison of Accuracy Vs. Den-

sity of the Networks with MCL. Here, ND
=4.6,6.5,10,17.5,38,144, Vavg = 1R/s,
Number of Anchors = 4, number of
nodes varis from 36 to 2500, ε = 0.1R

0

10

20

30

40

50

60

70

80

90

100

1443817.5106.54.6
Network Density (ND)

 A
ve

ra
ge

 E
rr

or
 (

%
R

)

MGDL (Mobile Nodes)
MGDL (Static Nodes)
MCL
ELA

Fig. 6. Comparison of Accuracy Vs. Den-

sity of the networks with MCL. Here,
number of nodes is 400 (40 anchor
nodes inside them for ELA and MCL),
Vavg=1R/s, threshold ε = 0.1R.

model, a node randomly chooses its destination, its speed of movement, and its
pause time after arriving at the destination. In our simulation we use a pause
time of zero.

It is hard to simulate an accelerometer in NS-2, so for simplification, we feed
the moved distance of one node to the motion detection procedure in that node.

Each node controlled by the mobility model, begins the simulation by remain-
ing stationary. It then selects a random destination in the network space and
moves to that destination at a speed randomized from a uniform distribution
between 0 and some maximum speed. Upon reaching the destination, the node
selects another destination, again, and proceeds there as previously described,
repeating this behavior for the duration of the simulation. Each simulation ran
for 120 seconds of simulated time.

Simulation Parameters. We will control the following parameters in our sim-
ulations:

1. Average speed of nodes (Vavg): We represent the speed as the moving
distance per time unit. A node‘s speed is chosen from a uniform distribution [0,
2 ∗ Vavg], so that the average velocity equals Vavg.

2. Node Density (ND): The average number of nodes in one hop transmission
range. In our placements, we chose r = 2, 4, 6, 8, 10 and 12 meters, which
corresponds to ND = 144, 38, 17.5, 10, 6.5, and 4.6, respectively.

3. Number of nodes: The total number of nodes inside a WSN.
4. Threshold (ε): A threshold is used to judge whether the current node is

moving or not. We assume a fixed threshold ε = 0.1R for all simulations (except
in varying of ε in Section 4.6).

4.2 Localization Accuracy

The key metric for evaluating a mobile localization technique is the accuracy of
location when nodes are moving. Since MGDL is an AF localization, it does not

Mobile Anchor-Free Localization for Wireless Sensor Networks 107

use anchor nodes, while such anchor nodes will be needed inside of the MCL and
ELA. In order to compare MGDL with MCL, and other localization algorithms,
we assume that there are only 4 anchor nodes in both MCL and MGDL, in all
placements, except as noted. Because at the same time there are some nodes
moving and some nodes being still, we also compute the accuracy of localization
for mobile nodes and still nodes, separately.

First we compare these three algorithms under different number of nodes.
ELA only has data when ND = 10 available. Fig. 3 shows the comparison of
localization accuracy of MGDL vs. MCL, ELA under different number of nodes
= 36, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, when ND = 10. Fig. 4
compares the localization accuracy of MGDL vs. MCL under different number
of nodes with different ND = 144, 38, 17.5, 10, 6.5, 4.6. Both figures share same
additional parameters as Vavg = 1R/s, and threshold ε = 0.1R for MGDL. From
the figures we can see that MGDL, unlike MCL or ELA, has stable performance
on localization accuracy even when the number of nodes is very large, while
MCL and ELA usually only have good performance when the number of nodes
is small. To achieve good performance with more nodes, it is necessary that they
should increase the number of anchor nodes significantly.

4.3 Node Density

Since ELA only has data with number of nodes = 400 available for node density,
Fig. 6 shows the comparison of localization accuracy of MGDL, MCL and ELA
under number of nodes = 400. Even when there are about 10% anchor nodes
inside of the network for ELA and MCL, MGDL can still achieve an improve-
ment of about 20% of R on average in localization accuracy over MCL, and an
improvement of about 28%R over ELA. Here we again note that the results from
MCL and ELA are based on using about 10% nodes as anchor nodes, while our
algorithm does’t depend on anchor nodes when computing the global map for
the networks.

Fig. 5 shows the impact of node density over all 60 placements on MGDL and
MCL. MGDL is far beyond MCL in different node densities.

4.4 Node Speed

Fig. 7 compares the localization accuracy of MGDL vs. MCL under the varying of
Vavg from 0 to 1R. Even when the number of anchor nodes for MCL is about 10%
of the number of total nodes, we can see that MGDL shows low localization error
when nodes are in low-mobility, while MCL is encoutering higher error. MGDL
achieves an average of 22%R more location accuracy for the overall varying of
Vavg from 0 to 1R.

4.5 Communication Overhead

One important consideration for WSNs is lowering communications overhead.
Here, we measure communication overhead with the average number of messages

108 Y. Xu et al.

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Speed of Nodes (Vavg) (R/s)

 A
ve

ra
ge

 E
rr

or
 (

%
R

)

MGDL (Mobile Nodes)

MGDL (Static Nodes)

MCL

Fig. 7. Impact of Node Speed Vavg on
MGDL and MCL. Here, # of anchor nodes
for MCL is about 10% of # of total nodes.

0.01

0.1

1

10

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold (R)

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

MGDL (Mobile Nodes) (V=1R/S)

MGDL (Mobile Nodes) (V=0.5R/S)

MGDL (Mobile Nodes) (V=0.1R/S)

MGDL (Mobile Nodes) (V=0.01R/S)

MCL (V=1,0.5,0.1,0 R/S)

Fig. 8. Communication Overhead with
Different Threshold Value on MGDL and
MCL under Different Vavg

transmitted by a node each second. From Fig. 8, we can see that the lower the
speed of mobile nodes is inside of the network, the lower the communication
overhead is in MGDL, while MCL keep the same communication overhead. This
phenomenon shows that our algorithm can efficiently adjust the communication
overhead to save more energy when localizing low-speed mobile nodes while
keep reasonable accuracy for high-speed mobile nodes, as shown in Fig. 8. Also,
at a given communication speed, we can decrease communication overhead by
increasing the threshold ε, at the cost of a slower update frequency for mobile
localization.

5 Summary

In this paper, we proposed an anchor-free localization for mobile WSNs. By
making use of a standard device accelerometer, we proposed a set of movement
detection algorithms, and by testing them on Moteiv’s Invent motes, we verify
that our approach is reasonable. Then based on such movement detection, we
provided the whole AF localization algorithm called MGDL. Based on simulation
in NS-2, we found that our algorithm has more accurate localization results
than previous mobile localization algorithms. MGDL has flexible communication
overhead for both high-mobility and low-mobility nodes, while MCL only has
fixed communication overhead for both of them, which may impose overly high
communication overhead in the latter case.

References

1. Freescale Inc., MMA7260Q 3D Accelerometer. URL http://www.freescale.com/
2. Moteiv Inc., Invent Motes. URL http://www.moteiv.com
3. Baggio, K.L.A.: Monte-carlo localization for mobile wireless sensor networks. In:

2nd Int. Conference on Mobile Ad-hoc and Sensor Networks (MSN 2006), Hong
Kong, China (December 2006)

http://www.freescale.com/
http://www.moteiv.com

Mobile Anchor-Free Localization for Wireless Sensor Networks 109

4. Ash, J., Potter, L.: Sensor network localization via received signal strength mea-
surements with directional antennas. In: Proceedings of the 2004 Allerton Confer-
ence on Communication, Control, and Computing (2004)

5. Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and
tracking system. INFOCOM 2000. In: Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE (2000)

6. Bischoff, R., Wattenhofer, R.: Analyzing connectivity-based multi-hop ad-hoc po-
sitioning. Pervasive Computing and Communications, 2004. PerCom 2004. In: Pro-
ceedings of the Second IEEE Annual Conference on, pp. 165–174 (2004)

7. Bruck, J., Gao, J., Jiang, A.: Localization and routing in sensor networks by local
angle information. In: Proceedings of the 6th ACM international symposium on
Mobile ad hoc networking and computing, pp. 181–192 (2005)

8. Burgard, W., Fox, D., Hennig, D., Schmidt, T.: Estimating the absolute position of
a mobile robot using position probability grids. In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 896–901 (1996)

9. Čapkun, S., Hamdi, M., Hubaux, J.: GPS-free Positioning in Mobile Ad Hoc Net-
works. Cluster Computing 5(2), 157–167 (2002)

10. Group, T.C.M.: Wireless and Mobility Extensions to ns-2. obtain from
http://www.monarch.cs.cmu.edu/cmu-ns.html

11. Hu, L., Evans, D.: Localization for mobile sensor networks. In: Proceedings of the
10th annual international conference on Mobile computing and networking, pp.
45–57 (2004)

12. Akcan, H.B.A.D.H., Kriakov, V.: Gpsfree node localization in mobile wireless sen-
sor networks. In: Proceedings of the 5th ACM international workshop on Data
engineering for wireless and mobile access (MobiDE 2006) (2006)

13. Johnson, D., Maltz, D.: Dynamic source routing in ad hoc wireless networks. Mobile
Computing 353, 153–181 (1996)

14. McCanne, S., Floyd, S.: ns-2 Network Simulator. Obtain via:
http://www.isi.edu/nsnam/ns

15. Shang, Y., Ruml, W.: Improved MDS-based localization. INFOCOM 2004. In:
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies, 4 (2004)

16. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.: Localization from mere connec-
tivity. In: Proceedings of the 4th ACM international symposium on Mobile ad hoc
networking & computing, pp. 201–212 (2003)

17. Vicaire, P., Stankovic, J.: Elastic Localization: Improvements on Distributed,
Range Free Localization for Wireless Sensor Networks. Technical report, Tech.
Rep. CS-2004-35, University of Virginia (2004)

18. Vieira, M., Coelho Jr, C., da Silva Jr, D., da Mata, J.: Survey on wireless sensor
network devices. IEEE Emerging Technologies and Factory Automation, pp. 537–
544 (2003)

19. Xu, Y., Ford, J., Makedon, F.S.: A Variation on Hop-counting for Geographic
Routing. Embedded Networked Sensors, 2006. EmNetS-III. In: The third IEEE
Workshop on (2006)

20. Zheng, J., et al.: 802.15.4 extension to NS-2. Obtain via:
http://www-ee.ccny.cuny.edu/zheng/pub

http://www.monarch.cs.cmu.edu/cmu-ns.html
http://www. isi. edu/nsnam/ns
http://www-ee.ccny.cuny.edu/zheng/pub

Optimal Cluster Association in Two-Tiered

Wireless Sensor Networks

WeiZhao Wang�, Wen-Zhan Song��, Xiang-Yang Li � � �,
and Kousha Moaveni-Nejad���

weizhao@google.com

songwz@wsu.edu

xli@cs.iit.edu, moavkoo@iit.edu

Abstract. In this paper, we study the two-tiered wireless sensor net-
work (WSN) architecture and propose the optimal cluster association
algorithm for it to maximize the overall network lifetime. A two-tiered
WSN is formed by number of small sensor nodes (SNs), powerful appli-
cation nodes (ANs), and base-stations (BSs, or gateways). SNs capture,
encode, and transmit relevant information to ANs, which then send the
combined information to BSs. Assuming the locations of the SNs, ANs,
and BSs are fixed, we consider how to associate the SNs to ANs such that
the network lifetime is maximized while every node meets its bandwidth
requirement. When the SNs are homogeneous (e.g., same bandwidth re-
quirement), we give optimal algorithms to maximize the lifetime of the
WSNs; when the SNs are heterogeneous, we give a 2-approximation al-
gorithm that produces a network whose lifetime is within 1/2 of the
optimum. We also present algorithms to dynamically update the cluster
association when the network topology changes. Numerical results are
given to demonstrate the efficiency and optimality of the proposed ap-
proaches. In simulation study, comparing network lifetime, our algorithm
outperforms other heuristics almost twice.

1 Introduction

The deployment of tiny sensors to large scale wireless sensor networks raises
massive challenges. Due to large scale, it is natural to adopt the two-tired (even
multiple tired) architecture. A two-tiered WSN is formed by number of small
sensor nodes (SNs), powerful application nodes (ANs), and base-stations (BSs,
or gateways). SNs capture, encode, and transmit relevant information to ANs,
which then send the combined information to BSs. In fact, some works have
already addressed different issues regarding this hierarchical architecture, in-
cluding minimizing the number of clusters [1,2], minimizing the total energy

� Google Inc.
�� Washington State University, USA. The research of Wen-Zhan Song is supported

in part by NASA ESTO 05-AIST05-0082.
� � � Illinois Institute of Technology, USA. The research of Xiang-Yang Li was supported

in part by NSF CCR-0311174.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 110–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 111

consumption [3] and maximizing the lifetime [4,5]. Following the work in [4], we
consider how to associate the SNs to ANs such that the network lifetime is max-
imized while every node meets its bandwidth requirement. When the SNs are
homogeneous (e.g., same bandwidth requirement), we give optimal algorithms
to maximize the lifetime of the WSNs; when the SNs are heterogeneous, we give
a 2-approximation algorithm that produces a network whose lifetime is within
1/2 of the optimum. We also present algorithms to dynamically update the clus-
ter association when the network topology changes. Numerical results are given
to demonstrate the efficiency and optimality of the proposed approaches. In
simulation study, comparing network lifetime, our algorithm outperforms other
heuristics almost twice.

Problem Definition. A two-tiered wireless sensor network (WSN) consists of
a set of small sensor nodes (SN), denoted as SM = {s1, s2, · · · , sm}, a set of
application nodes (AN), denoted as VN = {v1, v2, · · · , vn}, and at least one base
station (BS). The ANs and SNs form clusters, and in each cluster there are
many SNs and one AN. For simplicity, we assume that the application node vi

is in cluster Ci and the set of small sensors in cluster Ci is Si ⊆ SM . A small
sensor, once triggered by the internal timer or some external signals, starts to
capture and encode the environmental phenomena (such as temperature, mois-
ture, motion measure, etc) and broadcast the data directly to all ANs within its
transmission range and to certain ANs via the relay of some other neighboring
sensors. Here, if AN vi can receive the data from the small sensor sj , then we
call vi is a neighbor of sj . Here sensor sj may have to reach AN vi via relay of
other sensors. For notational simplicity, we use N(vi) to denote the neighboring
small sensors of AN vi. Remember that although several ANs can receive the
data packets from the small sensor sj, only the AN in the same cluster as sj

processes the information. Here, we assume that once formed, the cluster forma-
tion does not change over the time. We also let ri be the data-rate of the small
sensor si generates and r(S) =

∑
si∈S ri be the total data-rates produced by a

set of small sensors S. Usually, the data-rate ri(t) is a function over the time t
instead of a constant. However, if we average the rate over a period of time T ,
e.g., one day or one week, most often it is a constant. Thus, we can define the

rate ri as the the average rate over a period of time, i.e., ri =
� T+T0

T0
ri(t)

T .
It is reasonable to expect that the life time of an AN decreases when the

number of small sensors in its cluster increases. Given an AN vi, let Si ∈ SM

be the set of small sensors in its logical cluster. The power consumption of the
AN vi is a general function pi(r(Si), N(vi)), where r(Si) is the total data-rate
of the small sensors in Si. Since N(vi) does not depend on the cluster formation
and can be taken as a constant for a given application node vi, we can simplify
the power consumption function as pi(r(Si)). The only assumption in this paper
is that function pi(x) should satisfy that pi(x) > pi(x′) when x > x′. Notice
that, the above monotone increasing property is only assumed to be true for
each AN. For two different ANs vi and vj , it is possible that pi(x) < pj(x′) when

112 W. Wang et al.

x > x′. In this paper, we assume that Pi is the initial battery power level of the
application node vi and pi(r(Si)) is its average energy consumption rate when
the set of small sensors Si is in the cluster Ci. The lifetime of an individual
AN vi is define as li = Pi

pi(r(Si))
. We adopt the following network lifetime def-

initions for theoretical analysis and simulations: (1) Critical Application

Node Lifetime (CANLT): The mission fails when any AN runs out of energy,
i.e., the lifetime LN is LN = minN

i=1{li}. The first AN that run out of energy are
denoted as the critical AN. (2) Full Coverage Lifetime (FCLT): A small
sensor is called a covered sensor if it has at least one alive AN neighbor. The
total sensing area of all covered sensors is called the covered area of the WSN
here. The mission fails when the covered area of the WSN is smaller than the
originally covered area. (FCLT).

Related Works. Numerous literatures have discussed efficient cluster formation
for wireless ad hoc and sensor networks. Although almost all works assumed
that there are some nodes acting as clusterheads who are in charge of gathering
the information from other nodes and sending back to some base stations, the
criteria of forming the clusters vary from case to case. One fundemental difference
between the cluster formation problem studied in this paper and the traditional
cluster formation problems is that every node could be a clusterhead in the
traditional methods, while only the AN can be the clusterhead for the problems
studied here.

In the Linked Cluster Algorithm (LCA) [1], a node becomes the clusterhead if
it has the highest identity among all nodes within one hop of itself or among all
nodes within one hop of one of its neighbors. This algorithm was improved by the
LCA2 algorithm [6], which generates a smaller number of clusters. The LCA2
algorithm elects the node, with the lowest ID among all nodes which are not
within 1-hop of any chosen clusterheads, as a new clusterhead. The algorithm
proposed in [7], chooses the node with highest degree among its 1−hop neighbors
as a clusterhead. In [8], the authors propose a distributed algorithm that is
similar to the LCA2 algorithm. The Distributed Clustering Algorithm (DCA)
uses weights associated with nodes to elect clusterheads [9]. It elects the node
that has the highest weight among its 1-hop neighbors as the clusterhead. The
DCA algorithm is suitable for networks in which nodes are static or moving at
a very low speed.

Results reported in [4,5] are closest to this paper in spirit. In [4], Pan et al.
studied the problem of maximizing lifetime of a two-tiered WSN with focus on
the top-tier. By assuming the prior known fixed cluster formation, the authors
mainly studied how to place the base-station in the network such that the lifetime
of the WSN is maximized. The ANs are assumed to be homogenous in [4] and
generalized to be heterogenous in [5]. The authors also discussed how to relay
the packets via ANs to some fixed based stations. In this paper, we will focus on
the lower-tier of the two-tiered WSN: how to form the cluster (associate small
sensors to application nodes) so the network lifetime is maximized.

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 113

2 Homogeneous Small Sensors

In this section, we study the case when the small sensors are homogeneous, i.e.,
all small sensors have the same data rate, say r. Thus r(S) = r · |S|, where |S|
is the number of small sensors in the set S.

2.1 Homogeneous Application Nodes

In this subsection, we discuss how to maximize the lifetime of the WSN when
all application nodes are homogeneous, i.e., their initial on-board energy are
the same, say P and the energy consumption functions are the same, say p(x).
Remember that LN = minn

i=1{li} = minn
i=1

P
p(r·|Si|)) and p(x) is increasing.

Thus maximizing the lifetime LN of the WSN is equivalent to minimizing the
maximum cluster size. For simplicity, we denote xi,j = 1 if the sensor sj belongs
to cluster Ci, and xi,j = 0 otherwise. Let N(vi) be the set of sensors who are vi’s
neighbors. We formalize the problem of maximizing LN as the following Integer
Programming.

IP (1) : min max
vi∈VN

∑

sj∈SM

xi,j

Subject to constraint set (1)

CS (1) : xi,j = 0, ∀vi, ∀sj �∈ N(vi); xi,j ∈ {0, 1}, ∀sj, ∀vi;
∑

vi

xi,j = 1, ∀sj

Obviously, a feasible solution of the IP (1) problem is a feasible cluster for-
mation. For simplicity, the set of small sensors in the cluster Ci is denoted as
Si in this paper, when no confusion is caused. For simplicity, let xmin be the
solution to IP (1) and T min = min maxvi∈VN

∑
sj∈SM

xmin
i,j . Next we present two

different approaches to solve the IP (1) exactly.

Efficient Centralized Approach. Note that Tmin is a non-negative integer
at most m, thus it could have m possible values. For an given integer k, if we
can decide whether we can find a feasible solution x such that (1) it satisfies
constraint CS (1); (2) min maxvi∈VN

∑
sj∈SM

xmin
i,j = k, then by performing a

binary search on T min we can find the exact value. Following, we use a Max-Flow
approach to find a feasible solution for given integer k if it exists.

The idea is that we construct a flow network as shown in Figure 1 with s as
the source and t as the sink. There is a directional link −→svi, 1 ≤ i ≤ n with
capacity k, a directional link between −−→visj with capacity 1 if sj ∈ N(vi) and a
directional link

−→
sjt with capacity 1. Usually, for a maximum flow problem, the

flow on each directional link could be any real number. Fortunately, all capacities
in the graph take on only integral values. Thus, the maximum flow f has the
property that |f | is integer-valued. Moreover, for all vertices u and v, the flow
on edge uv is an integer. Therefore, each link −−→visj is either 0 or 1. Remember

114 W. Wang et al.

1

v

2v

iv

nv

1s

2s

js

ms

S T

k

k

k

k

1

1

1

1

1

1

1

1

1

1

1

homogeneous SNs

Fig. 1. A flow network for two-tiered WSN

that the flow on link −−→visj corresponds to xi,j , which implies that xi,j ∈ {0, 1}
for every vi and sj ∈ N(vi). Thus, a flow in Figure 1 and a solution to IP (1)
has an one to one mapping.

We can find the solution to IP (1) by solving log m max-flow problems for dif-
ferent values of T . Thus, the time complexity for Max-Flow approach is m·logm·
(n + m)3, which is very expensive and impractical. Notice that the cluster for-
mation problem with minimum cluster size becomes the Maximum Cardinality
Matching problem in a bipartite graph [10]. In [10], Hopcroft and Karp presents
the best known algorithm that achieves the time complexity

√
m · nm. This re-

duces the time complexity from O((n + m)3) to O(nm · (n + m)1/2 log(n + m))
for a fix value T . Therefore, we can solve the IP (1) in time O(n ·m3/2 log2(m)).

Efficient Distributed Algorithm by Smoothing. Although the previous
approach computes a clustering quickly in centralized manner, it may be too
expensive to collect the necessary information. In this subsection, we propose a
different approach that can be implemented efficiently in a distributed manner.
The basic idea of this approach is to construct a virtual directed graph on ANs
and iteratively move the sensors from those clusters who have the largest number
of small sensors to smaller clusters. In the virtual directed graph, there is an edge
−−→vivk from AN vi to vk if there is a sensor sj that can be moved from the cluster
of vi to the cluster of vk. The weight of the edge is the number of such small
sensors that can be moved from the cluster of vi to the cluster of vk. Following
algorithm presents the method constructing a virtual graph based on a feasible
solution x to CS (1).

Algorithm 1. Constructing the virtual graph
1: Set VN as the vertices for virtual graph V G.
2: for every pair of vi and sj such that xi,j = 1 do
3: for every vk such that sj ∈ N(vk) do
4: if there is no directed edge −−→vivk from vi to vk then
5: Add a directed edge −−→vivk from vi to vk. Set the weight of the edge to

c(vivk) = 1.
6: else
7: Update the weight as c(vivk) = c(vivk) + 1.

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 115

In the directed virtual graph V G(x), if there is a path from vi to vj , then we
say vi reaches vj . All vertices that vi can reach forms a set Ri(x), called the
clique centered at the AN vi. Given a solution x of CS (1) and its corresponding
virtual graph V G(x), we have the following property about cliques (its proof is
omitted due to space limit).

Lemma 1. Given a feasible assignment x of small sensors to ANs and its cor-
responding virtual graph V G(x), for any AN vi and its clique Ri(x) in V G(x),
if y is also a feasible assignment of SNs to ANs, we have

∑
vj∈Ri(x) |Si(x)| ≤

∑
vj∈Ri(y) |Si(y)|

The Algorithm relies on the relation between ωi(x), ωj(x) and T min where vi is
the AN with the largest weight and vj is the AN with the smallest weight in Ri(x).

Lemma 2. Let vi be the AN with the largest weight and vj be the AN with
the smallest weight in Ri(x) under any feasible assignment x, then |Sj(x)| ≤
T min ≤ |Si(x)|.

Proof. The proof is omitted here due to space limit. Please refer to full version
of the paper for more details.

Given a virtual graph constructed by Algorithm 1 based on a feasible assignment
of SNs to ANs, our approach to find a better solution is to iteratively apply a
process called Smooth to reduce the maximum weight of the application nodes
if possible. Here, the weight of an application node vi under a feasible assignment
x is the number of small sensors assigned to the cluster Ci, denoted as ωi(x).

Algorithm 2. Smooth Algorithm
1: Construct virtual graph V G(x) based on the x using Algorithm 1.
2: repeat
3: Find any AN with the largest weight, say vi.
4: Find any AN with the smallest weight in Ri(x), say vj .
5: Apply procedure smooth(vi, vj , V G(x),x).
6: until ωi(x) ≤ ωj(x) + 1

Algorithm 3. smooth(vi, vj , V G(x),x)
1: Let vi0vi1 · · · vik be the path connecting vi and vj with the minimum number of

hop. Here, vi0 = vi and vik = vj .
2: for t = 0 to k − 1 do
3: Assume that xt,l = 1 for some SN s� with s� ∈ N(vt) and s� ∈ N(vt+1). Set

xt,l = 0 and xt+1,l = 1, i.e., move s� from cluster Ct to cluster Ct+1.
4: for every va such that s� ∈ N(va) do
5: Update c(−−−→vitva) = c(−−−→vitva) − 1. Remove directed link −−−→vitva if c(−−−→vitva) = 0.

6: Update
−−−−−−→
c(vit+1va) = c(−−−−→vit+1va)+1. Add a directed link −−−−→vit+1va if c(−−−−→vit+1va) =

1.
7: Set ωj(x) = ωj(x) + 1 and ωi(x) = ωi(x) − 1.

116 W. Wang et al.

Theorem 1. Algorithm 2 terminates after at most m iterations, with an solu-
tion to IP (1).

Proof. From Lemma 2, we have ωj(x) ≤ T min ≤ ωi(x). If Algorithm 2 does not
stop at this iteration, we have ωi(x) > ωj(x) + 1, which implies that T min >
ωj(x) + 1. For a feasible solution x, we define δi(x) = |Si(x)| − |Si(xmin)| if
ωi(x) > T min and 0 otherwise. Let Δ(x) =

∑
vi∈VN

δi(x), it is not difficult to
observe that Δ(x) will be decreased by 1 for each iteration. Thus, Algorithm 2
terminates after at most m iterations.

Remember when Algorithm 2 terminates, we have ωi(x) ≤ ωj(x) + 1. Com-
bining with the relation ωj(x) ≤ T min ≤ ωi(x), we have ωj(x) ≤ T min ≤
ωi(x) ≤ ωj(x) + 1. This implies that T min = ωi(x) − 1 or T min = ωi(x).
First, we consider the case when T min = ωi(x) − 1. In this case, we have
ωj(x) ≥ T min for every vj ∈ Ri(x) which implies

∑
vj∈Ri(x) |Si(x)| ≥ T min ·

|Ri(x) − 1| + T min + 1. For the solution xmin of IP (1), every AN’s weight
is not greater than T min. Thus,

∑
vj∈Ri(x) |Si(xmin)| ≤ T min · |Ri(x)|. From

Lemma 1, we have
∑

vj∈Ri(x) |Si(xmin)| ≥
∑

vj∈Ri(x) |Si(x)|. This implies that
T min · |Ri(x)| ≥ T min · |Ri(x) − 1| + T min + 1, which is a contradiction. Thus,
T min = ωi(x). Remember that x is a solution to the CS (1). Therefore, x is a
solution to IP (1). This finishes our proof.

Now we analyze the time complexity of Algorithm 2. In procedure smooth

(vi, vj , V G(x),x), there are at most n nodes on the path between vi, vj and up
to n iterations in the “FOR” loop between line 4-7. Thus, the time complexity
of smooth(vi, vj , V G(x),x) is O(n2). From Theorem 1, it takes at most O(m ·
n2) for Algorithm 2 to terminate. Constructing the virtual graph based on a
feasible solution x could take time O(m · n2). Thus, the total time complexity
of smoothing algorithm is also O(m · n2). If n = o(

√
m), then Algorithm 2

outperforms the best known max-flow algorithm by log2 m; when n is a constant
the time complexity becomes O(m) which is optimal.

Efficient Distributed Implementation. So far we have illustrated the basic
idea of the Smoothing algorithm, which clearly can be implement in a distributed
manner. In the remainder of the section, we will describe how this method can be
implemented efficiently. Given an AN vi, we say vi is adjacent to AN vj if there
is a small sensor sk in the cluster Ci

⋂
N(vj). If vi and vj are not adjacent, then

we define the distance between vi and vj as the smallest number of hops between
them if we consider the adjacent graph of the ANs. For an AN vi that is adjacent

vj , let � be the largest non-negative integer such that
pj(r·

�
sk∈SM

xj,k+�·r)

Pj
<

ωi(x). We define the difference of vi and vj as difi,j(x) = �. Based on the
notation of difference, we have following localized algorithm.

Regarding the distributed Algorithm 4, we have the following theorem.

Theorem 2. Algorithm 4 converges in at most m · n rounds and total message
complexity is O(n2 · m) if the ANs are homogeneous.

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 117

Algorithm 4. Distributed Smoothing algorithm for AN vi

1: When vi receive an UPDATE-LEAVE or UPDATE-JOIN message from an adjacent
AN vj , it updates γi,j if necessary.

2: Let vj be one of vi’s adjacent AN with the maximum difference. Here, we break
the tie arbitrarily.

3: if difi,j(x) ≥ 1 then
4: Send a REQUEST message to AN vj .
5: When vj receives all REQUEST messages the ANs that adjacent to it, it sends out

an ACK message to the AN that has the maximum weight and REJECT messages
to all other ANs.

6: if vi receives an ACK message from vj then
7: Choose one SN, say sk, in Ci

�
N(vj). Set xi,k = 0 and send SUCC message with

the ID k to vj .
8: Upate γi,j = γi,j − 1 and send the UPDATE-LEAVE message with ID k to all

adjacent ANs.
9: When vj receives the SUCC message from vi with ID k, it first sets xj,k = 0 and

γ(j, i) = γ(j, i) + 1. After that it also sends UPDATE-JOIN message with ID k to
all adjacent ANs.
Remark: Afterward, we also say that the small sensor sk is migrating from cluster
Ci to Cj .

Proof. Given an assignment x, we denote κi(x) as the number of small sensors
in ith largest cluster. Let Γi(x) =

∑i
j=1 κj(x), and xk be the assignment of

sensors in round k. Considering Γ k =
∑n

i=1 Γi(xk). If there is a small sensor
joining Cik and leaving Cjk in round k, then |Sik | > |Sjk |+1 and ik < ik. Notice
that after the small sensor migrating from cluster Cik to Cjk , Γ�(xk) decreases
by 1 if j < � ≤ i and does not change otherwise. Thus, Γ k decreases by 1 for
every small sensor migrating. It is not difficult to observe that if there is no small
sensor migrating in round k, then Algorithm 4 terminates. Since Γ 1 < n · m,
Algorithm 4 terminates in at most n · m rounds.

In every round, every AN sends only one REQUEST message and receives
at most one REJECT message. Thus, there is at most O(n) REQUEST and
REJECT messages. It is also not difficult to observe that every AN sends at most
one ACK messages. Thus, there are at most O(n2 · m) REQUEST, ACK and
REJECT messages in total. On the other hand, there is exact one UPDATE-
LEAVE and UPDATE-JOIN message for every small sensor migrating. Thus,
there are at most O(n · m) UPDATE-LEAVE and UPDATE-JOIN messages.
Therefore, the overall message complexity is O(n2 · m).

Notice that the message complexity analysis is very pessimistic. In simula-
tions, it is much smaller than the worst case analysis. Observe that when Al-
gorithm 4 terminates, it not necessarily gives an optimal solution. However,
Algorithm 4 gives the best solution among all localized algorithms in which ev-
ery AN can only know the information of its adjacent ANs. Furthermore, if we
define the diameter of the network as the largest distance of the ANs, we have
the following theorem (its proof is omitted due to space limit).

118 W. Wang et al.

Theorem 3. When Algorithm 4 terminates, it gives an assignment with maxi-
mum cluster size at most T ≤ T min +D where D is the diameter of the network.

2.2 Heterogeneous Application Nodes

In subsection 2.1, we discuss how to form the clusters when both the small
sensors and application nodes are homogeneous. However, in practice, such node
homogeneity cannot always be guaranteed. For example, the initial onboard
energy of ANs built by different vendors may not be proportional to the bit-rate
at which they generate, or the application nodes could be redeployed (e.g., new
ANs join the system long after old ANs have been activated). Furthermore, two
different application nodes may consume different energy to receive, process and
send the information to the base station even given the same set of small sensors.
Thus, it is more practical to assume the application nodes are heterogenous. In
this paper, we consider the heterogeneity in two ways: the initial on board energy
P and energy consumption function p(x) where x is the sum of the rate of the
small sensors in the cluster.

In this subsection, we redefine weight of a AN vi for assignment x as ωi(x) =
pi(r·

�
sj∈SM

xi,j)

Pi
, where Pi is the initial onboard energy and pi(x) is energy

consumption function. Here, the lifetime of the network is defined as L =
maxminvi∈VN

Pi

pi(r·
�

sj∈SM
xi,j)

= min maxvi∈VN ωi(x)

Thus maximizing the lifetime is equivalent to minimizing the maximum weight
over all ANs. Similar to the approach for the homogenous application node case,
we formalize the problem as an Integer Programming as follows.

IP (2) : min max
vi∈VN

pi(r ·
∑

sj∈SM
xi,j)

Pi

Subject to constraint set (2):

CS (2) : xi,j = 0, ∀vi, ∀sj �∈ N(vi); xi,j ∈ {0, 1}, ∀sj, ∀vi;
∑

vi

xi,j = 1, ∀sj

Algorithm 5. Smoothing algorithm for heterogenous ANs
1: Find a feasible solution x, e.g., randomly assign every SN to a neighboring AN.
2: Construct a virtual graph V G(x) based on x by applying Algorithm 1.
3: repeat
4: Choose any one of AN with the largest weight randomly, say vi.

5: Define ω+
k (x) =

pk(r·
�

sj∈SM
xk,j+r)

Pk
.

6: Find any AN vj with the smallest ω+
j (x) in Ri(x). If there are more than one

such ANs, choose one randomly.
7: Apply smooth hete(vi, vj , V G(x),x) if ωi(x) > ω+

j (x)

8: until ωi(x) ≤ ω+
j (x)

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 119

Algorithm 6. smooth het(vi, vj , V G(x),x)
1: Let vi0(vi)vi1 · · · vik (vj) be the path connecting vi and vj with the minimum num-

ber of hop. Here, vi0 = vi and vik = vj .
2: for t = 0 to k − 1 do
3: Assume xt,l = 1 and s� ∈ N(vt+1). Set xt,l = 0 and xt+1,l = 1.
4: for every va such that s� ∈ N(va) do
5: Update c(vitva) = c(vitva) − 1. Remove directed link vit(va) if c(vitva) = 0.
6: for every vb such that s� ∈ N(vb) do
7: c(vit+1vb) = c(vit+1vb) + 1. Add a directed link vit+1vb if c(vit+1vb) = 1.

8: Update ωj(x) = ω+
j (x) and ωi(x) =

pi(r·
�

sj∈SM
xi,j−r)

Pi
.

Smoothing Algorithm. In this subsection we shows that our smoothing Al-
gorithm 2 also applies to the heterogenous case with only minor modification.

Lemma 3. Let vi be the AN with the largest weight and vj be the AN with the
lowest weight that is reachable by vi in a feasible assignment x. Then ωj(x) ≤
T min ≤ ωi(x).

Theorem 4. Algorithm 5 outputs a solution of IP (2) and terminates after m
iterations.

The proof of this theorem is omitted here due to space limit. Surprisingly, the
time complexity of Algorithm 5 is also O(m · n2), which is exactly the same
as in the homogenous case. This reduces the time complexity by an order of√

m log2 m and more importantly, Algorithm 4 also works for the heterogenous
case with only modification of the definition of difference. However, we only have
the following conjecture for the convergence and message complexity of localized
smoothing algorithm. It is an open and interesting problem to either prove or
disprove the following conjecture.

Conjecture 1. Algorithm 4 terminates after at most n · m rounds and the total
message complexity O(n2 · m) when the ANs are heterogenous.

3 Heterogeneous Small Sensors

Usually in WSNs, several different kinds of sensors cooperate together to fulfill
some certain goals. Some sensors may generate data at a higher rate than others
do, e.g., the visual sensors have a bit-rate that is much higher than the bit-rate
generated by a temperature sensor. Even in scenarios when all small sensors
are of same type, sometimes sensors located at different locations may need to
sample the data at a different time interval. Thus, it is more reasonable to assume
that in a WSN different type of sensors produce different bit-rates.

By assuming that every small sensor has its own data rate ri, we formalize
the problem of maximizing the lifetime as an Integer Programming as follows:

IP (3) : min max
vi∈VN

pi(
∑

sj∈SM
rj · xi,j)

Pi

120 W. Wang et al.

Subject to constraint set (3)

CS (3) : xi,j = 0, ∀vi, ∀sj �∈ N(vi); xi,j ∈ {0, 1}, ∀sj, ∀vi;
∑

vi

xi,j = 1, ∀sj

Unlike the case for homogenous SNs in which we can find the solution that
maximizes the lifetime exactly, Theorem 5 shows that it is NP-Hard to find the
solution to IP (3).

Theorem 5. We can not find the solution of IP (3) in polynomial time if P �=
NP .

Proof. We consider the special case when application nodes are homogeneous.
In this case, since pi(x) = p(x) is increasing, it is equivalent to minimizing the
maximum

∑
sj∈SM

rj · xi,j subject to constraints set (1). If every AN vi satisfies
that N(vi) = SM − vi, then the problem becomes the traditional job scheduling
problem [11,12], which is known to be NP-Hard. This finishes our proof.

Since solving IP (3) is NP-hard, we will present an algorithm approximating the
optimal solution by borrowing some ideas from job scheduling [13,14]. Again we
transform IP (3) into Integer Programming as follows.

IP (4) : min T

Subject to constraints set (4)

CS (4) : xi,j = 0, ∀vi, ∀sj �∈ N(vi); xi,j ∈ {0, 1}, ∀sj, ∀vi;
∑

vi

xi,j = 1, ∀sj;
∑

sj∈SM

rj · xi,j ≤ ki, ∀vi

Here ki = p−1
i (Pi · T). Let xmin be the solution to IP (4) and T min be the

min T under solution xmin. It is easy to observe that xmin
ij satisfies the following

constraint.
xi,j = 0 ∀vi, ∀sj rj > ki (1)

If we relax the constraint xi,j ∈ {0, 1}, we obtain a Linear Programming (4).
Let x� be the solution to LP (4) plus constraint 1 and T � be the value of min T
under solution x�. Then T � ≤ T min. By binary search on T � we can find the
solution x� to LP (4) plus constraint 1 in polynomial time. Furthermore, we
can find a solution x� that has some special properties. For a small sensor sj , if
there exists an AN vi such that 0 < xi,j < 1, we call sj is fractionally assigned
to cluster Ci. We construct a graph with vertex VN

⋃
SM and add an edge sjvi

if and only if 0 < xi,j < 1. Obviously, it is a bipartite graph and it is generally
known [14,15] that we can transform the solution x� to another solution x∗ such
that its corresponding bipartite graph is composed of forests with(or without) a
line. Remember that every node in SM connects to at least two nodes in AN , thus
there is a matching such that every node in SM can connect to a distinct node in

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 121

AN . The final solution is to assign sj to cluster with head vi if one of the following
two conditions holds: (1) x∗ij = 1 (2)sj is connected with vi in the matching.

In this section, to make sure that we can guarantee the performance of the
above job-scheduling based approach, we add one more requirement for the power
consumption function pi. We assume that the marginal cost of pi(x) is not in-
creasing, i.e., for x1 ≥ x2, pi(x1 +δ)−pi(x1) ≤ pi(x2 +δ)−pi(x2). This assump-
tion is almost universally satisfied. If this assumption is not satisfied, we can
construct examples to show that the above approach (based on job scheduling)
cannot provide any theoretical performance guarantees, although its practical
performance may still be good.

Theorem 6. Our job scheduling based method produces a cluster formation such
that the lifetime of the WSN is at least 1

2 of the maximum lifetime of the WSN.

4 Performance Studies

We mainly study the case with heterogeneous application nodes and homogeneous
sensor nodes. We randomly placed 2000 sensor nodes in a 800 × 800feet square
region, the transmission range of each sensor node is set to 50feet and the sensing
range is set to 10feet. Then we put a different number of application nodes, from
150 to 300 (with incremental 25) and measured the network lifetime. In addition,
the initial battery power of each sensor node is a random value between 100 units
and 200 units. A SN node is called an alive sensor if it has power remaining and has
at least one alive application node in neighborhood. We compare our Algorithm
2 with other heuristics listed below: (1) [-Nearest] Each sensor node is assigned
to the nearest AN. (2) [-Arbitrary] Each sensor node is randomly assigned to one
of the neighboring application nodes. (3) [-Smart-Arbitrary] : The probability of
a SN sj assigned to a neighboring AN vi is the ratio of the remaining power of
vi over the total remaining power of all neighboring ANs of this SN sj . (4) [-All]
Here, each sensor node is assigned to all the application nodes that are inside the
sensor node’s transmission range. This is clearly the worst method. Thus we will
not compare with this method in most simulations.
Lifetime. We compare the lifetime of four different methods under two differ-
ent definitions of lifetimes: CANLT, FCLT. Figure 2 (a), (b) show the lifetime

150 200 250 300
0

5

10

15

20

25

30

35

40

Number of application nodes

N
um

be
r

N
et

w
or

k
Li

fe
tim

e

Network lifetime befor the first application node dies

Our Method
Smart Arbitrary AN
Arbitrary AN
Nearest AN
All AN

150 200 250 300
5

10

15

20

25

30

35

40

45

Number of ANs

N
et

w
or

k
Li

fe
tim

e

Network lifetime (All sensor nodes are covered)

Our Method
Smart Arbitrary AN
Arbitrary AN
Nearest AN

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Number of ANs

Li
fe

tim
e

(C
A

N
LT

)

Distributed Smoothing Algorithm
Centralized Smoothing Algorithm

(a) CANLT (b) FCLT Localized vs Centralized

Fig. 2. Comparison of lifetime for different methods

122 W. Wang et al.

of different assignment methods under lifetime definition CANLT, FCLT respec-
tively. We generate 100 random WSNs and all results are the average over the
performance of these 100 WSNs.

As can be seen, the network lifetime increases almost linearly with the number
of application nodes available initially for all methods, except the simplest All

approach that does not perform any logic cluster at all. A striking observation
is that, as we expected, our smoothing based method outperforms all other
tree methods under all four definitions of lifetimes regardless of the density of
the application nodes. In all simulations, we found that our method generally
outperforms the other methods by almost 100%. In other words, the network
lifetime is almost doubled when our method is used to form the cluster.

We also compare the performance of the Centralized Smoothing Algorithm
2 (CSA) and Localized Smoothing Algorithm 4 (LSA). We fixed the number of
the ANs to 50 and varies the number of SNs from 200 to 500. Figure 3 (c) shows
difference of the lifetime (CANLT) between CSA and LSA, and it is not difficult
to observe that the lifetime of LSA and CSA only differs about 5% to 8%. This
corroborates our theoretical analysis and we will only compare the lifetime of
CSA with other four methods afterwards.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Time

N
um

be
r

of
 a

liv
e

ap
pl

ic
at

io
n

no
de

s

Our Method
Smart Arbitrary AN
Arbitrary AN
Nearest AN
All AN

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time

N
um

be
r

of
 c

ov
er

ed
 s

en
so

r
no

de
s

Our Method
Smart Arbitrary AN
Arbitrary AN
Nearest AN
All AN

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Time

C
ov

er
ed

 A
re

a
(%

)

Our Method
Smart Arbitrary AN
Arbitrary AN
Nearest AN
All AN

(a) Number of ANs alive (b) Number of SNs alive (c) Area percentage covered

Fig. 3. Comparison for different methods

Load Balancing. As mentioned in Section 2.2, for heterogeneous application
nodes case, application nodes have different initial battery powers, and the ob-
jective of the Algorithm 2 is to assign less sensor nodes to application nodes
that have lower remaining battery power and more sensor nodes to application
nodes that have higher battery power. To see how good the load balancing of our
algorithm is, we run simulation for the networks with 150 application nodes till
all application nodes die. As can be seen in Figure 3, our algorithm achieves a
very good load balancing meaning that all application nodes consume energy at
a rate proportional to their initial battery power and then they all die together.
The result for number of alive sensor nodes and also the percentage of coverage
area are basically the same as shown in Figure 3 (b) and (c).

5 Conclusion

In thispaper,we studiedhowtoorganize theWSNto formlogicclusters tomaximize
the lifetime of the networks. We also showed that it is NP-hard to find the optimum

Optimal Cluster Association in Two-Tiered Wireless Sensor Networks 123

cluster formation. Our theoretical results are corroboratedby extensive simulation
studies. Our simulations show that our algorithms actually perform very well.

References

1. Baker, D.J., Ephremides, A.: The architectural organization of a mobile radio net-
work via a distributed algorithm. IEEE Transactions on Communications 29(11),
1694–1701 (1981)

2. Parekh, A.K.: Selecting routers in ad-hoc wireless networks. In:Proceedings of ITS
(1994)

3. Bandyopadhyay, S., Coyle, E.: An energy efficient hierarchical clustering algorithm
for wireless sensor networks. In: Proceedings of the 22nd Annual Joint Conference
of the IEEE Computer and Communications Societies (Infocom) (2003)

4. Cai, L., Shi, Y., Pan, J., Hou, Y.T., Shen, S.X.: Topology control for wireless sensor
networks. In: Proceedings of the 9th Annual International Conference on Mobile
Computing and Networking, pp. 286–299. ACM Press, New York (2003)

5. Cai, L., Shi, Y., Pan, J., Hou, Y.T., Shen, S.X.: Optimal base-station locations
in two-tiered wireless sensor networks. In: IEEE TRANSACTIONS ON MOBILE
COMPUTING (To appear)

6. Wieselthier, J., Ephremides, A., Baker, D.J.: A design concept for reliable mobile
radio networks with frequency hopping signaling. Proceedings of IEEE 75, 56–73
(1987)

7. Parekh, A.K.: Selecting routers in ad-hoc wireless networks. In: Proceeding ITS
(1994)

8. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE Jour-
nal on Selected Areas in Communications 15, 1265–1275 (1997)

9. Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of the
1999 International Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN ’99), p. 310. IEEE Computer Society, Washington (1999)

10. Hopcroft, J.E., Karp, R.M.: n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2, 225–231 (1973)

11. Graham, R.: Bounds for multiprocessing timing anomalies. In: SIAM Journal on
Applied Mathematics 17 (1969)

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

13. Tardos, E., Lenstra, J.K., Shmoys, D.B.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program 46(3), 259–271 (1990)

14. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated
parallel machines. In: Proceedings of the Thirty-first Annual ACM Symposium on
Theory of Computing, 1999th edn., pp. 408–417. ACM Press, New York (1999)

15. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Math. Program 62(3), 461–474 (1993)

Distributed Facility Location Algorithms for Flexible
Configuration of Wireless Sensor Networks

Christian Frank and Kay Römer

Department of Computer Science
ETH Zurich, Switzerland

{chfrank,roemer}@inf.ethz.ch

Abstract. Many self-configuration problems that occur in sensor networks, such
as clustering or operator placement for in-network data aggregation, can be mod-
eled as facility location problems. Unfortunately, existing distributed facility lo-
cation algorithms are hardly applicable to multi-hop sensor networks. Based on
an existing centralized algorithm, we therefore devise equivalent distributed ver-
sions which, to our knowledge, represent the first distributed approximations
of the facility location problem that can be practicably implemented in multi-
hop sensor networks with local communication. Through simulation studies, we
demonstrate that, for typical instances derived from sensor-network configuration
problems, the algorithms terminate in only few communication rounds, the run-
time does not increase with the network size, and, finally, that our implementation
requires only local communication confined to small network neighborhoods. In
addition, we propose simple extensions to our algorithms to support dynamic
networks with varying link qualities and node additions and deletions. Using link
quality traces collected from a real sensor network deployment, we demonstrate
the effectiveness of our algorithms in realistic multi-hop sensor networks.

1 Introduction

An important problem in wireless sensor networks [1] is self-configuration [2], where
network nodes take on different functions to achieve a given application goal. One ex-
ample is clustering [3], where some nodes are elected as cluster leaders, serving as
communication hubs for nearby nodes. A similar problem is aggregator placement [4],
where some nodes are elected as aggregators that collect and aggregate sensor data
from nearby sensor nodes. Recently, tiered sensor networks [5] have been proposed,
consisting of resource-poor sensor nodes in the first tier and powerful hub nodes in the
second tier. In these networks, every sensor node is assigned to and controlled by a
hub node. Note that in all of the above examples, self-configuration consists in electing
some nodes as servers while the remaining client nodes are assigned to a server.

While many proposals exist for finding such network configurations, they often do
not pay attention to optimizing the overall cost of these configurations, which consists
of two components: on the one hand, the costs of operating the servers (e.g., represent-
ing the servers’ increased communication load as these forward traffic for many clients),
and, on the other hand, the costs of communication between clients and their server. In
wireless networks, the latter cost can be dependent on the physical distance between a

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 124–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed Facility Location 125

client and its server (as a longer wireless link requires higher transmit power and thus
increased energy consumption), on the number of hops in a multi-hop network graph,
or on interference and network congestion. In all cases, lowering communication costs
by means of additional hub nodes may prove beneficial.

Our goal is the provision of a generic and practical mechanism for finding cost-
optimized solutions to the above self-configuration problems. Our approach is based on
the observation that the above optimization problem can be modeled as an (uncapac-
itated) facility location problem. There, we are given a set F of facilities, a set C of
clients (also known as cities or customers), a cost fi for opening a facility i ∈ F and
connection costs cij for connecting client j to facility i. The objective is to open a sub-
set of facilities in F and connect each client to an open facility such that the sum of
connection and opening costs is minimized.

Although the facility location problem has been studied extensively in the past, no
practical solutions exist that would be suitable for multi-hop sensor networks. While
distributed algorithms for facility location exist, they are either not generally applicable
[6], require a certain (albeit small) amount of global knowledge [7], require impractical
communication models [7,8], or (based on the provided approximation factor [8]) might
not improve over existing configuration heuristics for sensor networks.

We therefore contribute a local facility location algorithm that lends itself well for
implementation in multi-hop sensor networks and provides an approximation factor
of 1.61 for metric instances. By means of an experimental study, we show that the
algorithm terminates after few communication rounds for typical problem instances
derived from sensor network configuration problems.

While the above view adopts a static graph model of sensor networks, practical sen-
sor networks are rather dynamic: nodes may fail and the quality of wireless links fluctu-
ates over time. To make our algorithm applicable to such realistic settings, we propose
a set of rules to repair a sensor network configuration in case of node failures, addi-
tions, and link quality changes. Also, we study the optimality of our algorithm using
link quality traces collected from a real sensor network deployment.

2 Preliminaries

We model the multi-hop network subject to configuration as a graph G = (V, E). In
our application of the facility location problem, a network node takes on the role of
a client and that of a potential facility at the same time, that is, F = C = V . In
some cases, only a subset nodes have the necessary capabilities (e.g., remaining energy,
available sensors, communication bandwidth, or processing power) to execute a service.
In such cases, the nodes eligible as facilities can be selected beforehand based on their
capabilities [9], which results in F ⊆ C = V . When clients are connected to facilities,
we will use σ(j) to refer to the facility that connects a client j.

Based on the problem at hand, one may choose a particular setting of opening costs fi

and connection costs cij . In most settings, for a network link (i, j) ∈ E, the respective
communication cost cij will be set to some link metric that can be determined locally at
the nodes, e.g., based on dissipated energy or latency. Some approximation algorithms
require that the costs cij constitute a metric instance. A metric instance requires that,
for any three nodes i, j, k, the direct path is shorter than a detour (cij ≤ cik + ckj).

126 C. Frank and K. Römer

However, if connection costs cij should represent the transmit power used for sending,
these are often proportional to the square of the geographic distance between i and j,
which results in non-metric instances, for example:

i j

k
4

8

1

If the input to a facility location algorithm is non-metric, the problem is particularly
hard to solve (see Section 3 below). However, one may obtain a metric instance by
ignoring non-metric links and setting cij to the cost of a shortest path between two
nodes i and j. In multi-hop networks, the required shortest-paths computation can be
achieved using a local flood around the current node.

When addressing settings in which facilities and clients can be an arbitrary num-
ber of network hops apart, we will always compute cij via shortest-paths. We refer to
this metric problem setting as multi-hop. Alternatively, we will consider a second (con-
strained) version of the problem, in which we require that every client is connected
to a facility which is its direct network neighbor. We denote this constrained problem
definition as one-hop. One-hop instances are inherently non-metric, as missing links
(i, j) /∈ E, modeled by cij = ∞, violate the metric property.

3 Related Work

An ample amount of literature exists on (centralized) approximation algorithms for the
NP-hard facility location problem [10]. Such centralized algorithms are not applicable
as these would require a prohibitive communication overhead associated with collecting
the whole network topology at a single point (e.g., at the network basestation).

For non-metric instances of the facility location problem, even approximations are
hard to come by: As the set cover problem can be reduced to (non-metric) facility lo-
cation, the best achievable approximation ratio (even with a centralized algorithm) is
logarithmic1 in the number of nodes [11]. A classic and simple algorithm [12] already
comes close to this lower bound. Distributed approximations are rare: [7] solve non-
metric facility location even in a constant number of communication rounds. However,
the algorithm requires that a coefficient ρ, which is computed from a global view of
the problem instance, is distributed to all nodes before algorithm execution – which
prevents it from being used “as-is” in practice. Moreover, the algorithm requires global
communication among all relevant clients and facilities and therefore can only effi-
ciently be used in the one-hop setting where such communication can be implemented
efficiently by wireless broadcast. Finally, the best approximation factor it can obtain,
which is independent of the problem instance, is on the order of O(log(m+n) log(mn))
where m and n denote the number of facilities and clients, respectively.

For metric instances of the facility location problem, much better approximation fac-
tors ∈ O(1) can be achieved. While it has been shown [13] that a polynomial-time
algorithm cannot obtain an approximation ratio better than 1.463, a centralized algo-
rithm [14] already provides a solution that is at most a factor of 1.52 away from the
optimum. For the metric case, to our knowledge only one distributed algorithm has

1 This holds unless every problem in NP can be solved in O(nO(log log n)) time.

Distributed Facility Location 127

been mentioned [8] which solves only a constrained version of the problem in which
facilities and clients may be at most 3 hops away. It provides a 3+ ε approximation fac-
tor derived from a parallelized execution of a respective centralized algorithm [15] and
is formulated in terms of a synchronous message passing model. The same paper [8]
includes additional versions, which restrict the facility location problem in one way
or another. Only recently, a highly-constrained version of the facility location problem
has been addressed in a distributed manner [6]. Finally, a distributed algorithm based
on hill-climbing [16] addresses a version of the problem in which exactly k facilities
are opened. However, the worst-case time complexity and the obtained approximation
factor are not discussed explicitly.

In this paper, we develop a distributed version of a centralized algorithm [17] which
provides an 1.61 approximation factor with metric instances. Compared to related work,
our work improves on the approximation factor achievable in a distributed manner.
Moreover, we provide the adaptations required to execute this algorithm in multi-hop
networks for which, to our knowledge, no efficient algorithm with guaranteed worst-
case approximation factor exists. Finally, compared to [7,8], our algorithms do not re-
quire a synchronous message passing model. Instead, they perform synchronization
among network neighbors implicitly as nodes wait for incoming messages.

In the remainder of the paper, we briefly summarize the centralized approximation
algorithms [17] our work is based on in Section 4. We then describe their distributed
re-formulation in two steps. The first variant, in Section 5, still requires global commu-
nication, namely that all clients communicate with all relevant facilities in each step,
and is therefore only applicable to the one-hop setting, where this can be efficiently
implemented as a wireless broadcast. In the second step, we use this algorithm as a
subroutine in the algorithms of Section 6, which distribute messages only to a local
neighborhood around the sending node and may therefore be used in multi-hop net-
works. Finally, we provide experimental results in Section 7 and an outlook to future
work in Section 8.

4 Centralized Algorithms

Jain et al. [17] devised two centralized approximation algorithms for the facility location
problem. Both use the notion of a star (i, B) consisting of a facility i and an arbitrary
choice of clients B ⊆ C (in clustering terminology, a star corresponds to a cluster
leader and a set of associated slave nodes). The first is shown in Algorithm 1. In its core
step (line1.3), the algorithm selects the star (i, B) with best (lowest) cost efficiency. The
cost efficiency of a star is defined as

c(i, B) =
(
fi +

∑
cij

)
/|B| (1)

and represents the average cost per client which this star adds to the total cost.
Therefore, in each step, the algorithm selects the most cost-efficient star (i, B), opens

the respective facility i, connects all clients j ∈ B to i (sets σ(j) = i), and from this
point on disregards all (now connected) clients in B. The algorithm terminates once all
clients are connected.

128 C. Frank and K. Römer

Algorithm 1. Centralized 1.861-approximation algorithm [17]

set U = C1.1

while U �= ∅ do1.2

find most cost-efficient star (i, B) with B ⊆ U1.3

open facility i (if not already open)1.4

set σ(j) = i for all j ∈ B1.5

set U = U \ B1.6

set fi = 01.7

Note that in spite of there being exponentially many sets B ⊆ U , the most efficient
star can be found in polynomial time: For each facility i, clients j can be sorted by
ascending connection cost to i. Any most cost-efficient star spanning some k = |B|
clients will consist of the first k clients with lowest connection costs – all other subsets
of k clients can be disregarded as these cannot be more efficient. Hence, at most |C|
different sets must be considered.

When a facility i is opened, its opening cost fi is set to zero. This allows facility
i to be chosen again to connect additional clients in later iterations, based on a cost-
efficiency that disregards i’s opening costs fi – as the facility i has already been opened
before in order to serve other clients. For metric instances, Algorithm 1 provides a
1.861 approximation factor. Note that line 1.7 constitutes the only difference to a classic
algorithm [12], whose approximation factor for metric instances is much worse. An
even better approximation factor of 1.61 can be obtained when changing the above
algorithm to additionally take into account the benefit of opening a facility i for clients
that are already connected to some other facility. This involves two changes.

First, this requires that a revised cost-efficiency definition is used in line 1.3. We let
B(i) denote the set of clients j which are already connected to some facility σ(j) and
would benefit if i would be opened as their connection cost to i would be lower than
their current connection cost cσ(j)j , i.e.,

B(i) =
{
j ∈ C with σ(j) �= none and cij < cσ(j)j

}
. (2)

The cost efficiency of a star (i, B) can now be restated as

c(i, B) =

⎛

⎝fi +
∑

j∈B

cij −
∑

j∈B(i)

(cσ(j)j − cij)

⎞

⎠ /|B|. (3)

A second analogous change is made to line 1.5. In addition to the clients which are part
of the most-efficient star (i, B), all already-connected clients B(i) which benefit from
switching are connected to i. For this, line 1.5 becomes

set σ(j) = i for all j ∈ B ∪ B(i).

The authors prove [17] that this change improves the approximation factor to 1.61 for
metric instances. In the following, we will present a distributed version of this 1.61-
algorithm. In the discussed distributed adaptations, we will always use the revised cost-
efficiency definition of Eq. (3).

Distributed Facility Location 129

5 One-Hop Approximation

Consider the distributed algorithms given in Algorithm 2 (for facilities) and 3 (for
clients). We will show below that they perform the exact same steps as the centralized
Algorithm 1. While these algorithms require that each client communicates with each
facility and vice versa, the algorithms can be also applied “locally” such that each node
communicates only with its network neighbors. This way, they can be used to com-
pute a solution to the one-hop version of the facility location problem, for example, to
compute an energy-efficient clustering that takes costs of individual links into account.
Unfortunately, this constrained problem version results in a non-metric instance (see
Section 2) and thus the approximation guarantee of 1.61 cannot be preserved. However,
in the next section, we will use these algorithms as a subroutine to obtain an algorithm
that maintains the approximation factor of 1.61 for multi-hop sensor networks. More-
over, we will show that it computes good solutions, nevertheless, in our experimental
results of Section 7.

We assume that after an initial neighbor discovery phase, each client j knows the
set of neighboring facilities, which it stores in the local variable Fj , and the connection
costs cij to facilities i ∈ Fj . Vice versa, each facility i knows the set of neighboring
clients Ci and cij of all i ∈ Ci. In the following we will simply write C and F , as the
respective indices i and j can be deduced from the context.

Algorithm 2. Distributed formulation of Algorithm 1 for Facility i

set U = C2.1

repeat2.2

find most cost-efficient star (i, B) with B ⊆ U2.3

send c(i, B) to all j ∈ U2.4

receive “connect-requests” from set B∗ ⊆ U2.5

if B∗ = B then2.6

open facility i (if not already open)2.7

send “open” to all j ∈ F2.8

set U = U \ B2.9

set fi = 02.10

receive σ(j) �= none from set Ca2.11

set U = U \ Ca2.12

until U = ∅2.13

As in Algorithm 1, this time each facility i maintains a set U of unconnected clients
which is initially equal to C (line 2.1). Facilities start a round by finding the most cost-
efficient star (i, B) with respect to U and sending the respective cost efficiency c(i, B)
to all clients in B (lines 2.3-2.4). In turn, the clients can expect to receive cost-efficiency
numbers c(i, B) from all facilities i ∈ F (line 3.2). In order to connect the most cost-
efficient star among the many existing ones, clients reply to the facility i∗ that has sent
the lowest c(i∗, B) with a “connect request” (line 3.4). In turn, facilities collect a set
of clients B∗ which have sent these “connect requests” (line 2.5). Intuitively, a facility
should only be opened if B = B∗, that is, if it has connect requests from all clients B in
its most efficient star (line 2.6). This is necessary, as it could happen that some clients

130 C. Frank and K. Römer

Algorithm 3. Distributed formulation of Algorithm 1 for a Client j

repeat3.1

receive c(i, B) from all i ∈ F3.2

i∗ = argmini∈F c(i, B) // use node ids to break ties among equal c(i, B)3.3

send “connect-request” to i∗3.4

if received “open” from i∗ then3.5

set σ(j) = i∗3.6

send σ(j) to all i ∈ F3.7

until connected3.8

on “open” from i with cij < cσ(j)j3.9

set σ(j) = i3.10

send σ(j) to all i ∈ F3.11

in B have decided to connect to a different facility than i as this facility spans a more
cost efficient star. So, if all clients in B are ready to connect, facility i opens, notifies all
clients in B about this, removes the connected clients B from U , and sets its opening
costs to 0 (lines 2.7-2.10) as in the centralized algorithm.

If a client j receives such an “open” message from the same facility i∗ which it
had previously selected as the most cost efficient, it can connect to i∗ (lines 3.5-3.6).
Further, in line 3.7, client j notifies all facilities that it is now connected to i∗, which
update their sets of unconnected clients U in lines 2.11-2.12.

Once connected, clients simply switch the facility they are connected to in case a
closer facility becomes available (lines 3.9-3.10). This feature enables the 1.61 approx-
imation factor. Note that whenever a client changes its facility σ(j), it informs all fa-
cilities about this (lines 3.7 and 3.11). All these σ(j) messages include the associated
connection costs cσ(j)j and will be received in line 2.11 of the facility algorithm. By
the next iteration, facilities will have received σ(j) and cσ(j)j from all relevant clients,
and will therefore be able to correctly compute the most cost-efficient star (line 2.3)
according to Eq.(3).

Discussion. In the following, we argue that the distributed and the centralized versions
are equivalent. For this, we denote one execution of the inner loops at Algorithms 3
and 4 as a round. Note that the distributed version opens some stars out-of-order, that
is, earlier than the centralized version. The following lemma states that these stars are
disjunct from any star that might follow and has lower cost-efficiency.

Lemma 1. Let Uk be the set of uncovered clients prior to the beginning of round k. If
a client j is part of a star (i, B) opened by the distributed algorithm in round k, then
there is no star (i′, B′) considering B′ ⊆ Uk with j ∈ B′ and c(i′, B′) < c(i, B).

Proof. Assume the contrary, namely that a star (i′, B′) exists with c(i′, B′) < c(i, B)
and say j is a client in B′ ∩ B. Note that B′ ⊆ Uk, and therefore i′ will choose some
star (i′, B′′) with cost-efficiency c(i′, B′′) ≤ c(i′, B′) in line. However, as (i, B) is
opened in round k, client j has sent its connect request to i and not to i′, which implies
c(i′, B′) ≥ c(i, B) and contradicts the assumption.

Given the above, we can show that the stars opened by the distributed algorithm can be
re-ordered to correspond to the execution of the centralized algorithm.

Distributed Facility Location 131

Theorem 1. The distributed and centralized versions are equivalent.

Proof. We sequentialize the distributed algorithm as follows: In the sequentialized ver-
sion we open only one star (the globally most cost-efficient star) per round. Further,
we postpone opening a star (i, B) which has been opened in parallel by the distributed
algorithm to a later round prior to which all stars (i′, B′) with c(i′, B′) < c(i, B) have
been processed. Let (i′, B′) denote one such star. Because of Lemma 1, B′ ∩ B = ∅,
and therefore opening (i′, B′) ahead of time does not remove any client in B from U
and therefore does not interfere with opening (i, B). Similarly, postponing any (i, B)
will not allow that a more cost-efficient star including elements of B is formed earlier
– again by Lemma 1. Postponing (i, B) can further influence (raise) the cost-efficiency
of the stars (i′, B′) as it changes the set B(i) for these facilities and thus may change
the order in which these are processed. However, as by Lemma 1 all these stars are mu-
tually disjunct, the order in which they are opened does not affect total costs. Finally,
all stars opened in parallel are disjunct and re-ordering them does not change algorithm
execution.

Therefore, the sequentialized version opens the same stars as the distributed algo-
rithm. Moreover, as the sequentialized version opens the most cost-efficient star in every
round, it implements the execution of the centralized algorithm.

Nevertheless, the worst-case number of rounds required by Algorithms 2 and 3 remains
linear in the number of nodes, because there can be a unique point of activity around the
globally most cost-efficient facility i∗ in each round: Consider for instance a chain of
m facilities located on a line, where each pair of facilities is interconnected by at least
one client, and assume that facilities in the chain have monotonously decreasing cost
efficiencies. Each client situated between two facilities will send a “connect-request” to
only one of them (the more cost efficient), thus the second cannot open. In this example,
only the facility at the end of the chain can be opened in one round. Similarly, once at
least one facility is open, it could happen that in each round only one client connects
to this facility. The worst-case runtime is therefore O(n), in which n is the number of
network nodes.

The linear number of rounds required in the worst-case would constitute a very
high overhead in large-scale sensor networks. However, a worst-case configuration
on a larger scale is highly improbable (as we will show in Section 7), and the ap-
proximation factor inherited from the centralized version is intriguing, particularly be-
cause the algorithm performs even much better than 1.61 on average instances. We will
evaluate the average number of rounds required for typical instances in sensor net-
works and the optimality gap when the algorithm is executed with such instances in
Section 7.

As we mentioned, however, the above algorithm only retains its approximation factor
with metric instances, and as any metric instance is essentially a complete graph, it
requires global communication between all clients and facilities. This is only efficient
in few settings, for example when all nodes hear each other over the wireless broadcast
medium. In the next section we use the algorithms of this section as subroutines in an
adapted “local” version that functions properly in multi-hop networks.

132 C. Frank and K. Römer

6 Multi-hop Approximation

The described algorithm can be changed to work in multi-hop settings using only a
slight adaptation. As it turns out, if connection costs represent shortest paths between
network nodes, the communication performed by the algorithms can be restricted to
small network neighborhoods. Specifically, if one is interested in determining whether
a facility i has a cost-efficiency of less than a certain threshold s, it is sufficient to
consider only clients j that are reachable by i over a path with costs of at most s, i.e.,
clients j with cij ≤ s. To see this, consider the definition of a facility’s cost-efficiency
and assume that some star’s cost efficiency c(i, B) ≤ s. One can always obtain an even
smaller cost-efficiency once one removes the clients j ∈ B′ which have cij > s, that
is, c(i, B \ B′) < c(i, B). Similarly, given a facility i, the clients with cσ(j)j > cij will
not occur in the set B(i) of Eq. (3). Therefore, it is sufficient that clients j which are
newly connected to σ(j) distribute σ(j) only to facilities i with cost cij < cσ(j)j .

In an outer loop added around Algorithms 2 and 3, we therefore exponentially in-
crease the communication scope s, that is, the maximum distance over which messages
are forwarded. Specifically, given a certain scope s, a message is only flooded within
a localized neighborhood Ns(i) around the sending node i, where Ns(i) := {j ∈
V with cij ≤ s}. Note that if the direct link (i, j) is not present in the network graph,
cij representing the shortest path from j to i can be determined on the fly while flooding
a message within Ns(j). Nodes simply stop forwarding a message if it has covered a
distance of larger than s or if it has already been received over a shorter path.

The updated versions are given in Algorithm 4 (clients) and Algorithm 5 (facilities).
In the following, we will respectively use Cs and Fs to refer to client and facility nodes
within scope s of the current node.

Algorithm 4. Multi-Hop Adaptation of Algorithm 3 for a Client j

set s = 1, set σ(j) = none4.1

repeat4.2

set s = s × a4.3

send “start(s)” to all i ∈ Fs4.4

if no “begin(s)” received then continue4.5

repeat4.6

receive c(i, B) from all facilities Fs4.7

set Fa = {i ∈ Fs with c(i, B) ≤ s}4.8

if Fa �= ∅ then4.9

i∗ = argmini∈Fa c(i, B) // use node ids to break ties4.10

send “connect-request” to i∗4.11

if received “open(s)” from i∗ then4.12

set σ(j) = i∗4.13

send σ(j) to all i ∈ Fs4.14

until connected or Fa = ∅4.15

until connected4.16

on “open(s∗)” from i with cij < cσ(j)j4.17

set σ(j) = i4.18

send σ(j) to all i ∈ Fs∗4.19

Distributed Facility Location 133

Algorithm 5. Multi-Hop Adaptation of Algorithm 2 for Facility i

set s = 15.1

repeat5.2

set s = s × a5.3

if “start(s)” received then send “begin(s)” to all j ∈ Cs else continue5.4

query σ(j) from all j ∈ Cs5.5

set Us = {j ∈ Cs with σ(j) = none}5.6

repeat5.7

find most cost-efficient star (i, B) with B ⊆ Us5.8

send c(i, B) to all j ∈ Us5.9

if c(i, B) ≤ s then5.10

receive “connect-requests” from set B∗ ⊆ Us.5.11

if B∗ = B then5.12

open facility i (if not already open)5.13

send “open(s)” to all j ∈ C5.14

set Us = Us \ B, set fi = 05.15

receive σ(j) �= none from some clients B′ ⊆ Us5.16

set Us = Us \ B′5.17

until Us = ∅ or c(i, B) > s5.18

until s > smax5.19

In the outer loop, the considered scope s is raised exponentially (lines 4.3 and 5.3). To
initialize an outer round, clients, which have not yet been connected, send a “start” mes-
sage containing their current scope s to all facilities in scope (line 4.4). In turn, facilities
wait for at least one such “start” message for a certain time (line 4.5) upon which they
reply “begin(s)”. The waiting period must be long enough to allow relevant clients to
send the respective start messages and finish earlier rounds. If no “start” messages were
received, facilities simply advance to the next outer round (line 5.4) to wait for “start”
messages from a larger scope. Clients, analogously, wait and then skip the current round
if no neighboring facility has sent “begin”.

A start message sent by a client j thus triggers execution of one outer round at all the
facilities in scope Fs. Facilities then query all clients in scope for their status σ(j) in
line 5.5 and compute the set of yet unconnected clients Us. This query-reply cycle al-
lows the facility to wait for all relevant clients to catch up to the current scope s. Clients
reply to this query once they have reached scope s – note that we have omitted the
respective code in the client algorithm. Similarly clients can wait for facilities lagging
behind in line 4.7 where they expect to receive a message from all facilities in scope.

After this initialization, facilities execute Algorithm 2 in an inner loop (lines 5.7-
5.18) and clients react accordingly (lines 4.6-4.15) implementing Algorithm 3. Com-
pared to Algorithms 2 and 3 the termination conditions of the inner loops must be
changed to allow clients and facilities to proceed to a larger scope in a properly synchro-
nized manner. As with the 1-hop version, clients terminate their inner loop once they are
connected (line 4.15) and facilities once no active clients remain in scope (line 5.18).
In addition, within an inner-loop with scope s, the algorithm should only consider stars
(i, B) with cost-efficiency c(i, B) < s. Therefore, facilities only proceed with the cur-

134 C. Frank and K. Römer

rent inner loop as long as they are efficient enough for this scope (lines 5.10 and 5.18)
while in turn clients only proceed with their inner loop as long as there is a facility in
scope that is efficient enough to connect them (lines 4.8,4.9 and 4.15).

Finally, once a client has been connected (4.17-4.19), it acts analogously to Algo-
rithm 3: It simply changes its facility if this is beneficial and notifies all relevant facil-
ities about it. Here the client can synchronize to the scope s∗ of the sending facility as
it is included in the received “open” message to ensure that all relevant facilities are
informed. Note that the messages sent in line 4.19 are also received by facilities still
performing their inner loop in line 5.16.

Discussion. The algorithms presented in this section enhance Algorithms 3 and 4 by
making them “local”, meaning that they do not need to communicate with all relevant
facilities but only to the ones within a confined neighborhood. This allows to perform
shortest-paths computations in these confined neighborhoods which, in turn, give rise
to metric instances and preserve the approximation factor of Algorithm 1.

An additional outer loop provides for both, an adequate expansion of the involved
communication scope and for sufficient synchronization of the nodes in scope with-
out depending on a synchronized communication model. Because clients and facilities
may repeatedly have to wait in lines 4.5 and 5.4, respectively, the worst-case runtime
becomes O(n loga smax) where smax denotes the cost efficiency of the least efficient
star which occurs in the network and n denotes the total number of participating nodes.
However, the maximum number of rounds involving actual communication is smaller.
If no unconnected clients or eligible facilities are present, the involved nodes do not
communicate in their inner loop at all. Instead, they simply skip the inner loop. In turn,
in rounds involving communication, a client or facility can be a single point of activity
only once during algorithm execution. Therefore, the number of required communica-
tion rounds is still in O(n).

Dynamic Re-configuration. In real-world deployments of sensor networks, link qual-
ities change over time and nodes may fail. To accommodate for major changes in the
network topology, the algorithms are re-executed at regular intervals. As such re-starts
involve relatively high overhead, these are performed only infrequently (e.g., once a
day). In between such re-starts, a client j combines periodic re-evaluations of link costs
cij (within a local scope of size cσ(j)j) with a liveness check on the facility σ(j). In both
cases, if σ(j) has failed or a closer open facility has been found, client j re-connects
to the closest open facility. In Section 7, we will show that such adaptations suffice to
maintain a close-to-optimal configuration over longer periods of time.

7 Experimental Results

In the following, we show results from two distinct sets of experiments. The first, de-
tailed in Section 7.1, is based on simulations which test the scalability of the proposed
algorithms. The second, detailed in Section 7.2 tests the applicability of the proposed
algorithms to operational networks with dynamic links.

Distributed Facility Location 135

7.1 Scalability

In the experiments based on simulations, we uniformly deployed a variable number of
nodes (x-axis) onto a 300m by 300m area. The network graph has an edge (i, j) ∈ E if
the nodes i and j are less than 30m apart (this number stems from a model that is based
on the characteristics of the CC1000 transceiver used on BTnodes [18] and Berkeley
Motes). Assuming that nodes can control their transmit power, for (i, j) ∈ E, we set
connection costs cij ∼ g(i, j)2 where g(i, j) denotes the distance in meters between i
and j and normalize them such that cij ∈ [0, 1].

Scenarios. To test our algorithms with a range of applications, we examined three dif-
ferent parameterizations of the facility location problem, of which qualitative results are
shown in Figure 1. In the first, we set opening costs fi = 1 and additionally require that
clients and facilities must be neighbors. We show a solution obtained by the one-hop
Algorithms 2 and 3 on such an instance in Figure 1(a).

Further, we tested the multi-hop Algorithms 4 and 5 in two different settings. In the
first, we set fi = 5 to denote that a high effort is required to operate a cluster leader,
of which an example result is shown in Figure 1(b). In the second scenario, shown
in Figure 1(c), we assumed that cluster leaders must send much data to the network
basestation and therefore their operation costs increase with their network distance to
the sink (yielding smaller stars close to the sink and larger ones further away).

(a) fi = 1 (b) fi = 5 (c) fi = 2 × D(sink, i)

Fig. 1. Effects of varying opening costs (D(sink, i) denotes the shortest-path distance to the sink,
which is located in the upper left corner of the simulated area)

One-Hop Clusters. In the one-hop setting (Figure 1(a)), we evaluated the costs of
configurations produced by different algorithms while varying the number of nodes in
the simulation area (that is, the node density). The results are given in Figure 2(a) which
shows the costs obtained with the following five methods.

One-hop denotes the simple one-hop algorithms of Section 5. Respectively, one-hop
IP refers to the optimal configuration of the constrained case which requires clients to
connect to facilities which are direct network neighbors. Further, multi-hop denotes the
multi-hop algorithm described in Section 6, which has a 1.61 approximation guarantee.
Here, clients may connect to facilities which are an arbitrary number of hops away. Re-
spectively, multi-hop-IP computes the optimal solution to the facility location problem,

136 C. Frank and K. Römer

in which facilities and clients may be multiple hops apart and the instance is made met-
ric by a centralized shortest-paths computation. Finally, MDS-IP denotes the optimal
solution to the minimum dominating set problem, in which dominator nodes represent
open facilities and slave nodes are clients that connect to the closest dominator node.
The costs are computed using the original (non-metric) instance.

The costs of a minimum dominating set (MDS-IP) which suffer from expensive long
links mark one end of the optimization spectrum. Here we argued that facility loca-
tion can provide a more energy efficient configuration. On the other hand, the optimal
facility-location based configuration (multihop-IP) marks the other end as it represents
a lower bound for the employed approximation algorithms.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 200 250 300 350 400 450 500

C
os

ts

Number of nodes

one-hop
one-hop IP

multi-hop
multi-hop IP

MDS IP

(a) One-hop

 180

 200

 220

 240

 260

 280

 300

 320

 340

 200 250 300 350 400 450 500

C
os

ts

Number of nodes

dist
dist IP
simple

simple IP

(b) Multi-hop

Fig. 2. Performance of one-hop and multi-hop algorithms

The one-hop algorithm performs well and is even close to the respective optimal con-
figuration one-hop IP, although it operates on a non-metric instance and thus without a
guaranteed approximation factor.

Note that in this particular setting, the constrained versions, which require facilities
and clients to be direct neighbors (one-hop and the optimal one-hop IP), are not far away
from the multi-hop results and the optimum of the unconstrained case (multi-hop IP).
This is due to the low opening costs we used, which are set to fi = 1 for all facilities.
With larger opening costs, multi-hop solutions would benefit more from larger stars.

Multi-Hop Clusters. In the experiments shown in Figure 2(b), we additionally evaluate
the quality of the solutions obtained by the multi-hop algorithm with the two different
opening cost settings shown in Figures 1(b) and 1(c). In the first (denoted as simple) we
set opening costs to a constant fi = 5 which corresponds to configurations as shown in
Figure 1(b). In the second, denoted as dist, we apply the heuristic shown in Figure 1(c),
where the opening costs correspond to twice the costs of the shortest path to the sink. In
both cases, the results of the distributed implementation are very close to the achievable
optimum computed by CPLEX on the same instance.

Runtime and Overhead. In the experiments shown in Figure 2(b), the scope s started
out with 0.2 and a was set to 2, thus doubling the scope in each outer round. Note,
however, that these two parameters do not influence the quality of the obtained

Distributed Facility Location 137

solution. Rather, they determine the trade-off achieved between the runtime of the al-
gorithms and the scope within which messages are sent. On the one hand, the smaller a
is set, the more one may be sure that scopes are not increased too far (in vain). On the
other hand, the required number of outer rounds until termination increases with lower
a-values.

Figure 3 demonstrates this trade-off as observed in the simulation run corresponding
to Figure 2(b). In Figure 3(a) we show the average scope with which messages were
sent during algorithm execution, given different settings of a (the scope s always starts
at 0.2). The lower we set a, the better the results as the scope is increased by smaller
amounts. Note that in general, the effort involved in the execution of our algorithm
is proportional to the “locality” implied by the problem instance: On the one hand, if
opening costs are high (here fi = 5), a facility will generally connect clients in a larger
neighborhood (as seen in Figure 1(b)). On the other hand, the experienced scopes are
even much lower with small opening costs (e.g., for fi = 1, not shown).

 0.5

 1

 1.5

 2

 2.5

 3

 200 250 300 350 400 450 500

A
ve

ra
ge

 s
co

pe
 s

iz
e

Number of nodes

a=2.0
a=1.5
a=1.2
a=1.1

(a) Scope

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 200 250 300 350 400 450 500

R
un

tim
e

(in
 r

ou
nd

s)

Number of nodes

a=2.0
a=1.5
a=1.2
a=1.1

(b) Rounds

Fig. 3. Average scope size vs. total runtime (in rounds). In Figure 3(b) the error bars denote the
maximum and the minimum that occurred.

In contrast, in Figure 3(b), we show the runtime in rounds (one round corresponds
to one execution of the inner loop) of the multi-hop algorithm on the same instances.
Note that, while previously the error bars indicated confidence intervals of 95%, we use
them in Figure 3(b) to mark the maximum and minimum values that occurred in 10
random instances (as we are particularly interested in the maximum value). The results
show that – while in theory the worst case runtime can be large – in typical instances
based on multi-hop networks the runtime is sufficiently small and does not even grow
with the number of nodes. Moreover, based on the trade-off between runtime and scope
size, the runtime improves with higher a values. Finally, the scope size decreases with
increasing network density. This is due to the fact that, given certain opening costs,
the algorithms will connect stars of around the same size (namely, facilities are opened
once enough clients are connected to pay for opening them). Therefore, smaller stars
are opened in denser networks and the cumulated communication overhead stays the
same.

138 C. Frank and K. Römer

7.2 Network Dynamics

One open question is whether such, albeit close-to-optimal solutions, can provide a
benefit for real-world deployments in which the network topology changes over time.
To obtain realistic link qualities, we extended a testbed of 13 TMote Sky modules
that gather temperature, humidity, and light measurements from our office premises
to record network topology information as well. Next to its sensor measurements, every
5 seconds, a node reports the set of nodes from which an application-layer message has
been received since the last update.

Such topology information received

8

1

5 3

9

20

15

0

23

7

4

17

12

Fig. 4. Deployment plan (left); network topology at
9:28 a.m. showing cij × 100 and computed configu-
ration (right)

from each node i allows to compute a
(packet-level) link quality estimate
eij(t) for each network link directed
from j to i [19]. The estimate eij

(t) is based on the packet success rate
rij = packets received in T

packets expected in T which is
smoothened using an exponentially
weighted moving average such that
eij(t) = αrij(t)+ (1−α)eij(t−1).
In our experiments, we set α=0.6 ac-
cording to [19] and T to 300 s. We
transform the quality estimates eij ∈
[0, 1] into link cost estimates by set-
ting cij = 1+10(1−eij) if eij > 0.5
and cij = ∞, otherwise. Further, we
set opening costs to constant fi = 2.

To give the reader an impression
of the examined networks, Figure 4
shows our mote deployment, the re-
sulting network topology, and a configuration computed by the multi-hop algorithms.

Given the link costs {cij(t0)} observed at a certain time of the experiment t0, we let
the presented multi-hop algorithms compute a configuration (a set of open facilities and
assigned clients), whose costs C(t0, t) vary with t as link qualities change over time.
Once a configuration has been computed, only small dynamic adaptations (detailed in
Section 6) are performed.

In Figure 5(a), we show the ratio between C(t0, t) and the costs of an optimal con-
figuration Copt computed by CPLEX – for configurations computed at three arbitrarily
chosen instants of time t0. Observe how at t = t0, e.g. at 7:46 or at 11:42, the respec-
tive optimality gap is close to 1. As expected, however, this is not always the case. For
example the configuration obtained at t0=9:28 is not optimal even at this time.

In Figure 5(a), one can observe how the time t0 at which the initial configuration is
computed influences the respective outcome of C(t0, t). To obtain more general results,
t0 is randomly drawn from the total 24 hour interval corresponding to available topol-
ogy data and used to compute the respective curve C(t0, t) in 20 repeated simulation
runs. The ratio of the average C(t0, t) to the costs of the optimal configuration is shown
Figure 5(b). In addition, Figure 5(b) shows the costs CMDS of a minimum dominating
set computed by CPLEX for each instant of experiment time. The latter costs can be

Distributed Facility Location 139

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

07
:0

0

07
:3

0

08
:0

0

08
:3

0

09
:0

0

09
:3

0

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

O
pt

im
al

ity
 g

ap

t

7:46
9:28

11:42

(a) C(t0, t)/Copt for dif-
ferent t0 during 5 hours

 1

 1.2

 1.4

 1.6

 1.8

 2

18
:0

0

20
:0

0

22
:0

0

00
:0

0

02
:0

0

04
:0

0

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

O
pt

im
al

ity
 g

ap

t

CMDS / Copt
Average C(t0,t) / Copt

Confidence intervals (95%)

(b) Average
C(t0, t)/Copt vs. MDS
during 24 hours

Fig. 5. Solutions’ optimality over time

used as an assessment of whether a much faster MDS approximation, which can be
re-executed frequently, could out-perform a facility location algorithm executed more
rarely. As said earlier, however, MDS-based configurations require slaves to use expen-
sive links (with poor link quality estimates) to communicate with their cluster leader.
Such “bad” links are often the most volatile and cause the costs of an MDS-based
configuration to diverge significantly from an optimal configuration. While this is not
always the case (Figure 5(b) has portions in which MDS is close-to-optimal), one can
observe that facility-location based configurations, which focus on high-quality links,
are robust with respect to varying link qualities. The observed gap to an optimal config-
uration remains small – in the observed 24 hours it stayed below 10% at all times.

8 Conclusion and Outlook

In this paper, we motivated the use of facility location algorithms to address configura-
tion tasks in multi-hop networks as they can flexibly implement many sensor-network
configuration problems, such as an energy-efficient clustering, a clustering in which
cluster leaders can connect nodes through multiple hops, or a configuration in which
cluster leaders are chosen based on their distance to the sink. We claim that many more
such applications of the problem can be found.

Further, we have shown that algorithms which are very good in theory (with an ap-
proximation factor of 1.61 whilst the theoretically best polynomial algorithm cannot be
better than 1.463) can be feasibly transformed for distributed execution. The transfor-
mations we described resulted in (to our knowledge) the first facility location algorithm
which can be efficiently executed in multi-hop networks.

In the experimental evaluation, we were able to show that although our algorithm
exhibits a linear worst-case runtime, in typical sensor-network instances it terminates
in only few communication rounds. Moreover, by analyzing the scopes within which
messages were forwarded during algorithm execution, we showed that the devised al-
gorithm, although equivalent to its centralized ancestor, requires only very local com-

140 C. Frank and K. Römer

munication. Further, we showed that the distributed algorithm always performs close to
the optimal solution, a quality which it inherits from the centralized version [17].

Finally, there is much left to do. The algorithms we described could be made faster,
possibly employing a technique inspired by [7], in which stars are connected “frac-
tionally” in small parallel steps and the obtained fractional solution is rounded later.
Moreover, in wireless multi-hop networks two “harder” versions of the facility loca-
tion problem have particular applicability, for which, to our knowledge, no distributed
algorithms exist at all: The capacitated version, in which a facility can only serve a
limited number of clients and the robust version, in which every client is connected by
k facilities.

Acknowledgments. We would like to thank Thomas Moscibroda for many valuable
discussions, in particular on [7,8,17]. This work was supported by NCCR-MICS, a
center funded by the Swiss National Science Foundation.

References

1. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley,
Chichester (2005)

2. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies. In:
Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM’02), New York, NY, USA (June 2002)

3. Basagni, S., Mastrogiovanni, M., Petrioli, C.: A performance comparison of protocols for
clustering and backbone formation in large scale ad hoc networks. In: Proceedings of the 1st
IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS’04) (2004)

4. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), Boston, MA, USA (December 2002)

5. Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan,
R., Kohler, E.: The TENET architecture for tiered sensor networks. In: Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems (SENSYS’06), Boulder,
CO, USA (November 2006)

6. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algorithm for
the uniform facility location problem. In: Proceedings of the 18th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’06), Cambridge, MA, USA (2006)

7. Moscibroda, T., Wattenhofer, R.: Facility location: Distributed approximation. In: Proceed-
ings of the 24th ACM Symposium on Principles of Distributed Computing (PODC’05), pp.
108–117 (2005)

8. Chudak, F., Erlebach, T., Panconesi, A., Sozio, M.: Primal-dual distributed algorithms for
covering and facility location problems. Unpublished Manuscript (2005)

9. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks. In:
Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems
(SENSYS’05), San Diego, CA, USA (November 2005)

10. Vygen, J.: Approximation algorithms for facility location problems. Technical Report 05950-
OR, Research Institute for Discrete Mathematics, University of Bonn (2005)

11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4) (1998)
12. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Program-

ming 22(1), 148–162 (1982)

Distributed Facility Location 141

13. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of
Algorithms 31, 228–248 (1999)

14. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility lo-
cation problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS,
vol. 2462, Springer, Heidelberg (2002)

15. Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility location and
k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’99), pp. 2–13 (October 1999)

16. Krivitski, D., Schuster, A., Wolff, R.: A local facility location algorithm for sensor net-
works. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS,
vol. 3560, Springer, Heidelberg (2005)

17. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algo-
rithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM 50, 795–824
(2003)

18. BTnodes (2006), www.btnode.ethz.ch
19. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop rout-

ing in sensor networks. In: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SENSYS’03), Los Angeles, CA, USA (November 2003)

www.btnode.ethz.ch

SNTS: Sensor Network Troubleshooting Suite

Mohammad Maifi Hasan Khan, Liqian Luo, Chengdu Huang,
and Tarek Abdelzaher

University of Illinois at Urbana Chamapign, Department of Computer Science, USA
mmkhan2@uiuc.edu,lluo2@uiuc.edu,chuang30@uiuc.edu,zaher@cs.uiuc.edu

Abstract. Sensor network troubleshooting is a notoriously difficult task,
further exacerbated by resource constraints, unreliable components, un-
predictable natural phenomena, and experimental programming
paradigms. This paper presents SNTS (Sensor Network Troubleshooting
Suite), a tool that performs automated failure diagnosis in sensor net-
works. SNTS can be used to monitor network conditions using simple
visualization techniques as well as to troubleshoot deployed distributed
sensor systems using data mining approaches. It is composed of (i) a data
collection front-end that records events internal to the network and (ii)
a data processing back-end for subsequent analysis. We use data mining
techniques to automate failure diagnosis on the back-end. The assumption
is that the occurrence of execution conditions that cause failures (e.g.,
traversal of an execution path that contains a “bug” or occurrence of a
sequence of events that a protocol was not designed to handle) will have
a measurable correlation (by causality) with the resulting failure itself.
Hence, by mining for network conditions that correlate with failure states
the root causes of failure are revealed with high probability. To evaluate
the effectiveness of the tool, we have used it to troubleshoot a tracking
system called EnviroTrack [4], which, although performs well most of the
time, occasionally fails to track targets correctly. Results show that SNTS
can identify the major causes of the problem and give developers useful
hints on improving the performance of the tracking system.

Keywords: Sensor network, Data mining, Distributed troubleshooting.

1 Introduction

In this paper we present a distributed troubleshooting tool for automated sen-
sor network failure-diagnosis. The goal is to reduce the effort needed for sensor
network software development. Paradigms for sensor network programming have
received a lot of attention, including node-based [14], group-based [16,31], event-
based [8,9,19], database-centric [24,23], state-centric [20], and virtual-machine-
based approaches [18]. In contrast, efforts to facilitate program troubleshooting
have been rather sparse. This imbalance is not congruent with the develop-
ment needs. Most sensor network programmers who developed large applications
would agree that sensor network troubleshooting is a notoriously difficult task
and in many instances, most of the programmer’s time is spent not on writing
new code, but on making current code operate correctly.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 142–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Sensor Network Troubleshooting Suite 143

The presented tool is aimed at addressing the void in sensor network develop-
ment support brought about by the lack of appropriate network troubleshooting
tools. With few exceptions [28], current troubleshooting support mostly revolves
around laboratory testbeds [33,13], simulation systems [17,32] or emulation-
based tools [1,26]. These may help locate failures by testing or stepping through
instruction execution, but they do not suggest where a programmer should look
in order to find a failure cause. Hence, locating the “bugs” remains an expen-
sive trial-and-error process. In a distributed system, root causes of failure can
be subtle. They may arise because of the complex and unexpected ways dif-
ferent individually sound components interact, as opposed to because of some
coding error within one component. This makes it hard to identify problems in
distributed protocols.

To complement the above techniques, this paper describes a tool that performs
automated failure diagnosis in sensor networks. It is composed of (i) a data
collection front-end that records events internal to the network and (ii) a data
processing back-end for subsequent analysis. We use machine learning techniques
to automate failure diagnosis on the back-end. Failure, in the context of this
paper, refers to any deviation from what the developer deems to be correct
behavior of the system. For example, it could refer to inability to synchronize
clocks, inability to elect a unique leader, incorrect data aggregation, occurrence
of routing cycles, or unusually low link utilization in the presence of backed-up
demand.

Machine learning techniques allow the diagnostic tool to automatically ex-
tract conditions (e.g., sequences of events or ranges of measured system state
parameters) that correlate highly with the occurrence of failures and bring those
conditions to the attention of the developer. The assumption is that the occur-
rence of execution conditions that cause failures (e.g., traversal of an execution
path that contains a “bug” or occurrence of a sequence of events that a protocol
was not designed to handle) will have a measurable correlation (by causality)
with the resulting failure itself. Hence, the conditions identified by the imple-
mented tool will include root causes of failure with high probability. Of the
previous debugging tools, Sympathy [28] is closest in spirit to our automated
failure analysis. However, it is restricted to reasoning about crashed nodes or
disconnected links in the event of reduced network throughput. The presented
tool can investigate and address a broad array of failure types, offering diagnostic
capabilities to the programmer of distributed applications and protocols.

Our approach is supported by an encouraging preliminary evaluation that
leverages advances in data mining and machine learning techniques that have
been applied to failure diagnosis in large systems [6,5,7]. As a proof-of-concept,
our diagnostic tool was applied to a tracking system. The tracking system op-
erated well most of the time, but would occasionally fail to track targets cor-
rectly. The tool uncovered two conditions under which failure occurred with high
probability. Analysis revealed that these conditions corresponded to two corner
cases not considered in the design of the tracking protocol. Understanding and

144 M.M.H. Khan et al.

quantifying practical cases in which a distributed protocol fails is thus one of
the fundamental contributions of the work described in this paper.

While formal methods can also be applied to verify protocol correctness, they
have two limitations. First, in complex concurrent systems, these methods often
make simplifying assumptions (e.g., regarding the sensors or the model of the
physical environment). Hence, properties that have been verified in theory may
not hold in practice. Second, often failures occur because of conditions that have
not been anticipated in the design and protocol specification phase. Hence, while
a protocol can be verified to conform to its specifications, it may still fail in prac-
tice because the specifications are incomplete. Our tool takes the more pragmatic
approach of analyzing problems that do occur and identifying their causes.

Equally important is to understand which potential problems are not the
cause of a current failure. For example, the design of a distributed protocol
might use a simplified model of communication or a simplified failure hypothesis.
It is important to understand, which of the simplifications, if any, are causing
failures and which are not. Since the sensor nodes are very resource constrained,
simplifications that do not cause problems in practice are very welcome.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 describes the scope of the fault diagnosis tool. Section 4 presents
the system architecture and design details of SNTS. A case study of using SNTS
to troubleshoot EnviroTrack is discussed in Section 5. Section 6 presents a dis-
cussion on the generalizability of SNTS and possible future extensions. Section 7
concludes the paper.

2 Related Work

Debugging sensor networks is a promising research area with very few existing
tools in use at the present time. Current tools and middleware that aid the
debugging and evaluation of sensor network applications can generally be divided
into four categories: simulators, emulators, test-beds and services [22].

Simulators are popular tools in debugging and evaluation of sensor network
applications since they don’t usually require the deployment of sensor hardware.
NS-2 [3], GloMoSim [34], TOSSIM [17] and S2DB [32] are good examples. NS-2
is a discrete event simulator supporting various networking protocols over wired
and wireless networks. GloMoSim focuses more on mobile, wireless networks. It
allows comparison of multiple protocols at a given layer. TOSSIM is a simulator
especially designed for TinyOS applications, which provides scalable simulations
of sensor network software. S2DB has extensive functionality for both software
and hardware debugging. Current simulators, however, do not adequately cap-
ture the real behavior of sensor networks. This is due to the difficulty in modeling
practical imperfections such as radio irregularity as well as due to the lack of good
models of environmental inputs. Hence, when used in debugging, they might not
uncover certain failures caused by unexpected considerations in the real world.
More importantly, failures that are revealed by simulation remain unexplained
by the tool. It is up to the programmer to infer the causes of simulated failures.

Sensor Network Troubleshooting Suite 145

Another category of debugging and performance evaluation tools in sensor
networks is emulators that mimic sensor devices either in software or hardware.
AVR JTAG ICE [1], a real time in-circuit emulator, is a good representative of
hardware emulators. It uses the JTAG interface to enable a user to do real-time
emulation of the microcontroller of sensor devices. A drawback of such in-circuit
emulators is that they have to be physically connected to emulated devices,
which causes logistical difficulties in conducting experiments especially for large-
scale applications covering a wide field. Atemu [26] is a software emulator for
AVR-processor-based systems that emulates AVR processors as well as other
peripheral devices on the MICA2 platform. Like TOSSIM, Atemu also simulates
wireless communication. Such software emulators do not introduce the logistical
difficulties exhibited in hardware emulators, but they are usually less realistic in
reproducing network behavior.

The final stages of debugging and performance tuning typically use actual
testbeds to evaluate sensor network applications. For example, Motelab [33] is a
public testbed using MICA2 platforms, which allows users to upload executables
and receive execution results via the Internet. Kansei [25] is another testbed. It
employs XSM, MICA2, and Stargate platforms. EmStar [13] is a combination of
emulators and testbeds for Linux-based sensor network applications, which runs
applications using either a modeled radio channel or the channel of real nodes.
EmTOS [13] extends EmStar to run TinyOS applications by compiling them
into EmStar binaries. These testbeds ease evaluation a lot without requiring
full-scale deployment. However, they merely uncover failures without attempting
to diagnose the root cause. One exception is Sympathy [28], which attempts to
identify node or link failures that result in decreased throughput at the base-
station.

We categorize all other software facilitating field tests of sensor network appli-
cations as services. EnviroLog belongs to this category. Monitoring tools such as
Message Center [30] aid field tests by capturing messages in the air, filtering and
displaying them to users. Closest to EnviroLog is TOSHILT [15], a middleware
for hardware-in-the-loop testing. TOSHILT defines emulated stimuli to replace
the real environmental events, so that applications can be evaluated repeatedly
before the final deployment.

The tool suite described in this paper is unique in that it automates the
process of reasoning about possible causes of observed failures. Hence, unlike
many other tools that help detect, record, reproduce, or step through failure
scenarios, ours will be one that diagnoses the failure (using techniques borrowed
from machine learning).

The idea of diagnosing software failures using various statistical and machine
learning approaches is not new. However, it has not yet been applied to sensor
networks. For example, algorithms for detecting performance bottlenecks in dis-
tributed systems are presented in [5]. Their authors rely on statistical convolution
techniques to identify message (load) pathways through opaque components. Au-
tomated diagnosis of performance anomalies in server farms is presented in [6,7].

146 M.M.H. Khan et al.

Unlike many existing debugging tools for sensor network, ours is geared to
provide insight into the root causes of failure (as opposed to uncovering the
failure location or giving access to system state around failure time). Hence, the
approach offers much help in debugging when there is a fault in the design of
the protocol. It saves the developer the process of guessing the cause by trial
and error, which can be very time consuming and frustrating.

3 Scope of the Fault Diagnosis Tool

Our tool is motivated by the difficulties in sensor network troubleshooting. Un-
like other computing systems, sensor networks interact with their physical en-
vironment in a distributed fashion, intimately combining computation, commu-
nication and sensing. Debugging tools for traditional distributed systems are,
therefore, largely inadequate for sensor networks. It is these deficiencies that we
try to address in our work.

There are several reasons why sensor network code may fail. The first category
is what we call “single node errors” (i.e., code errors that manifest themselves
on one node). Examples might be infinite loops, dereferencing invalid point-
ers, or running out of memory. Current debugging tools are, for the most part,
well-equipped to help find such errors. One can make the argument that since
such errors can manifest themselves on one node in isolation, they are easier to
test for and therefore will more likely be eliminated at an earlier stage of code
development. These errors are therefore not the focus of our tool.

Our tool is geared for uncovering errors that occur in distributed component
interaction. These are typically errors in the design or execution of distributed
protocols. For example, the design of the protocol might not have considered
a particular corner-case or sequence of distributed events that then leads to
incorrect behavior. Since this sequence of events might occur only occasionally,
the error is generally not repeatable. Distributed interaction errors are harder to
debug. They require, possibly, a large-scale system prototype and more testing
to induce and observe a manifestation of the error.

A particularly hard-to-debug category of distributed component interaction
errors are those that are environmentally induced. Distributed sensor network
protocols often make implicit assumptions on factors such as node connectivity,
communication error probability, effective sensing range, communication range,
or sensory signatures of environmental events. These factors are typically de-
pendent on conditions in the physical environment. Environmental execution
conditions are hard to reproduce in the lab. Hence, often manifestations of
environmentally-induced errors do not occur until the network is installed in
the field.

In short, sensor networks often exhibit errors that occur (i) because of unex-
pected interactions between the system and its physical environment, (ii) because
of unexpected interactions between subsystems (e.g., the tracking software and
the kinetic properties of the hardware enclosure), or because of violations in
implicit assumptions (e.g., assumptions regarding sensor performance) made in

Sensor Network Troubleshooting Suite 147

the design or specifications of distributed protocols. It is generally very hard to
uncover such errors. It is also hard to formally verify the protocol or discover
failure by simulation. For example, in a previous actual deployment, the cause of
a failed magnetic tracking subsystem was eventually attributed to windy weather
conditions; the wind was causing device antennas to move which recorded a mag-
netic reading on the local magnetometer and generated a deluge of false alarms.
Formal methods and simulations would have failed to uncover this error since
it is not immediately obvious to a designer that wind has something to do with
magnetic target detection and hence needs to be reflected in the specifications
or introduced in simulations. Tools are needed to help focus the operator’s at-
tention on what might be causing the system malfunction when it occurs at
run-time. Such as tool is described below.

4 System Architecture

The basic idea used in this paper for automated diagnosis of failures in dis-
tributed sensor network protocols is very simple. At a high-level, the tool would
monitor many internal system metrics (which collectively define system state)
and divide these observations into two sets, one for “good” behavior and one
for “bad” behavior, as classified by an operator or by some specified Boolean
condition on measurements. The tool would then automatically analyze each
class to determine the salient features that are different between the two classes.
Chances are, these conditions will be indicative of what has gone wrong in the
“bad” cases. They will provide useful leads on where to focus debugging effort.
Therefore, SNTS consists of two major components: a data collection component
to collect the system metrics and a data analysis component to carry out the
automated analysis.

Fig. 1. System architecture of SNTS

4.1 Data Collection Component

The front end of the tool is a data collection component to collect all the com-
munication traffic in the network, which is accomplished by deploying extra
debugging nodes in real field along with the application nodes, as depicted in
Figure 2. The debugging nodes passively listen to the communication channel,

148 M.M.H. Khan et al.

and record every message into their local nonvolatile storage devices, say, flash.
Every message is timestamped using the local clocks. Once the data collection is
done, we upload the data to a PC. The data collection component is completely
application independent. So once installed, the same set of debugging nodes
can be used repeatedly for different applications. Below, we describe the major
challenges in designing the component and our solutions to them.

Fig. 2. Deployed debugging nodes

Time Synchronization. As we are analyzing time series data, a big challenge
is how to serialize the collected messages that are timestamped by unsynchro-
nized local clocks. Inaccurate serialization may lead to erroneous analysis of the
data. If there is only a single debugging node that is listening to the communica-
tion traffic, the problem becomes trivial. However, covering the whole deployed
network usually requires multiple nodes. A naive solution would be to globally
synchronize the set of debugging nodes. However, most time synchronization
protocols rely on explicitly exchanging control messages to achieve global syn-
chronization. Such control messages may interfere with the application traffic,
changing the normal behavior of the application, and are thus undesirable. To
address this problem, we first record the local times of all the debugging nodes
and the local time of the base node (connected to a PC, not deployed in the
field) before deployment. After data collection, we record again the local times
of all the debugging nodes and the base node. Based on these collected local
times we are able to calibrate all the timestamps according to the local clock of
the base node, thus serializing all the messages correctly.

Eliminating Duplicate Records. In the case of multiple debugging nodes,
it is possible that more than one node record the same message. Such duplicate
records should be discarded after data collection to improve the accuracy of data
analysis. Therefore, after data collection, we sort all messages based on their

Sensor Network Troubleshooting Suite 149

calibrated timestamps. For messages with extremely close timestamps (i.e., the
difference is less than a heuristically determined value ε), we discard all but one
if they contain the same content.

Placement of Debugging Nodes. There can be many ways we can place the
debugging nodes in the field to cover the whole network. The simplest is to use
one debugging node for each application node. However, this will require as many
debugging nodes as there are application nodes, which makes it expensive to
deploy. Rather, we deploy one node at the center of a cell (assuming application
nodes are deployed in a grid structure the cell has four corner nodes) and thus
one debug node can listen to many (e.g., four) application nodes.

4.2 Data Analysis Component

This component is the data processing back-end which runs on a PC. It performs
preprocessing, parsing and analysis of the data to generate the rules and to
identify potential causes of the problem in the network. We describe its inputs
and design in the following sections.

Inputs. Consider a sensor network application developer who is trying to trou-
bleshoot their system. The format of the communication packets exchanged be-
tween application nodes are known to the developer and hence can be made
available to our tool as a header file. We also assume that developer “sees a
problem with the system”. In other words, the developer expects a certain be-
havior of his/her protocol that might be getting violated some of the time. The
developer can specify what behavior to expect at a high level as a function of
metrics available to the diagnosis tool. For example, in a leader-election algo-
rithm the developer might specify that only one leader ID should be measured
in the system at a given time. In a real-time system, the developer might spec-
ify that the difference between message origination timestamp and its delivery
timestamp should be less than some given bound. These timestamps and IDs
should be parameters that the diagnosis system can access. For example, they
might be parameters in normal application message headers or payload, or pa-
rameters explicitly recorded by the collection front-end, such as timestamps. This
enables our tool to automatically recognize good and bad behavior. The message
formats and definition of correct behavior are the only two application-specific
pieces of information that our tool needs in order to analyze the data.

Preprocessing. First, After uploading the data from the debugging nodes, the
data-processing back-end first discards all the redundant communication headers
and then based on a header file supplied by the developer parses the raw data
to extract meaningful information. This header file describes the data formats
of the raw communication packets.

Second, after extracting data, the data analysis component uses user specified
rules to partition the data into separate piles. It separates the sequences of
events which conform to the rules specified by the developer (i.e., good behavior
sequences) from the sequences of events that do not and label as good or bad.

150 M.M.H. Khan et al.

Finally, the tool will generate the metrics that are going to be used by the
machine learning algorithms to correlate with good or bad behavior. Metrics
generated for each sequence (good and bad) for diagnosing the EnviroTrack
application in our case study are shown in Table 1. These are the metrics that we
will feed to the machine learning algorithm. Currently the user has an interface
to suggest suitable metrics. In the absence of user hints, all measured metrics
can be considered.

Data Analysis. At this point, we are ready to analyze the data and may apply
various machine learning algorithms to identify potential causes of the problem.
Among the many choices of machine learning algorithms, we choose the PART
[12] algorithm. PART infers rules by repeatedly creating partial decision trees.
PART does not perform global optimization. Rather it adopts the divide and
conquer strategy. It builds a rule, removes the instances it covers and continues
with the remaining instances. For details of the algorithm, interested readers are
referred to [12]. We choose it because it is is faster than C4.5 [27] and RIPPER
[11] and because accuracy is similar to C4.5 and higher than RIPPER.

As any machine learning algorithm, PART can generate trivial and redundant
rules (conditions that correlate with success or failure) as well as important ones.
Even obvious conditions are important as they indicate (in the case of success
conditions) which parts of the protocol are working.

We also provide trivial network performance metrics like throughput, list of
active nodes in the network, signal strength, etc. We have used the Weka software
[2], a freeware machine learning tool, to analyze the data.

4.3 Interface

The data collection component can be installed on MicaZ motes as a regular
application. As soon as these debugging motes are on, they are going to send
the local time to the base station. After that, they can be deployed in the field
for data collection. Once the data is collected, these motes can upload data to
PC using any TinyOS listening utility program such as Listen tool.

As mentioned above, the user needs to provide two pieces of information. First,
the user has to provide a text file describing the packet formats. Ultimately, this
file is used to infer the byte offset of a particular field in the raw packet and
the length of the field. Second, user specifies boolean rules that can be used to
extract good and bad sequences from the time series data. In the following, a
case study is described based on a tracking application.

5 Case Study: EnviroTrack

This section describes an illustrative application example of using the presented
tool. We use SNTS to troubleshoot EnviroTrack [4] which is a distributed target
tracking application.

Sensor Network Troubleshooting Suite 151

5.1 Failure of the Tracking Protocol

EnviroTrack [21] implements a distributed tracking protocol whereby a detected
target is assigned a new ID. The target should be referred to consistently by
this ID while it remains in the field. This is the cornerstone of EnviroTrack’s
unique target to object mapping. It is key to the programming paradigm and
to application semantics supported by the middleware in which EnviroTrack
operates. If a second (spurious) ID was generated in the network to refer to
the same target, the system will report two detected objects while in reality
there is only one. The problem was that the tracking protocol did not ensure
unique mapping in some deployments, which made it a good candidate for our
case-study.

To appreciate the help offered by automated failure diagnosis, a word is due on
the internals of the target tracking protocol. Briefly, to achieve unique mapping
in EnviroTrack, whenever a set of nodes detect a target, they form an implicit
group and elect a leader who assigns the target an object ID and shares it with
group members. As the target moves, membership of the group changes (being
restricted only to those nodes that sense the target). When a current leader is no
longer able to sense the target, it sends a leader hand-off message, which starts
a new leader election among current group members. Election occurs by setting
a random timeout such that the first member to time out wins. The new leader
continues to use the same ID for the target, ensuring continuity of the unique
target-to-object mapping.

Obviously, the correctness of the above protocol hinges on several simplify-
ing assumptions. For example, there is an assumption on message reliability
(we do send multiple copies of each critical message but if all copies are lost,
there is no way to agree on the target ID). There is also an assumption on
the relation between sensing and communication ranges. Namely, leader election
assumes that all group members (i.e., nodes that can sense a target) can di-
rectly hear each other. If two nodes that sense the same target are outside each
other’s communication range, they may generate different IDs for that target.
Our earlier debugging efforts were directed at these potential causes with no
success.

Interestingly, our tool revealed that the above probable causes were not the
real reasons behind the observed tracking failures. Most failures were in fact
attributed to causes not anticipated in protocol design. The tool identified that
a surprising 80% of all failures to maintain unique identity were attributed to
two corner cases. The first is when a group contained only the leader and no
members. The hand-off failed in this case, because it did not consider the case of
a singleton group. Also, when the target was small enough that it was not picked
up by any of the sensors for a fraction of the time, the protocol failed. Indeed,
the designer had assumed a 100% sensory coverage. This pragmatic evidence
was very valuable to the programmer. It identified what specific problem with
the protocol needed to be fixed.

152 M.M.H. Khan et al.

Table 1. Set of Metrics

Generated Metrics
No Of Messages transmitted between Leader Handoff

Average Time between Each Message between
Leader Handoff

Time difference between the Last message
of Last leader and First Message of Current Leader

No of LTM types Message

No of MTL types Message

No of LTB types Message

Geometric Distance between Last Leader and Current Leader

Type of Sequence(Good or Bad)

5.2 Failure Diagnosis Scenario

The details of the above case study are now presented. In general, the tool
collects state from the network. In the implemented prototype, we restricted
ourselves to collecting externally measurable state. We deployed EnviroTrack
(on sixteen nodes), and deployed additional debugging motes to collect messages
communicated between EnviroTrack nodes. The tool would then analyze the
types, sequences, and timing of these messages. We moved a single target in the
network and collected the communication data. The experiment was repeated
multiple times. We uploaded the data to a PC and used a data-mining tool
(Weka [2]) to analyze it.

With the help of a header file, supplied by the EnviroTrack developer (that
describes the format of message headers), it was possible to automatically distin-
guish different types of messages and different header fields in each message-type
transmitted. There are three different types of messages in EnviroTrack, which
we call MTL (Member to Leader), LTM (Leader to Member) and LTB (Leader
to Base). Data mining tools could then be used to determine sequences of events
or conditions on event types that were predictive of (and hence correlated with)
bad behavior. Currently we only logged the message-type field, the object ID,
the leader ID, the sender field, and the receiver field of message headers. The
sender and receiver identity was used to infer geographic locations of the nodes
involved. We also time-stamped all message events.

State was collected at given intervals. The developer supplied a simple Boolean
function to classify sequences into good and bad. The debugging tool itself did
not need to understand this function. It merely applied it to the message sequence
in each interval and recorded the result. In our case, since we knew that there was
only one target in the experiment, the rule stated that if the object ID (reported
in leader messages) changed within the interval, then an error was reported and
the interval was marked “bad”. Table 1 shows the metrics collected for each
interval.

Sensor Network Troubleshooting Suite 153

Our algorithm extracted bad sequences of events and good sequences of events
across all tests. We subsequently applied several different rule learning algo-
rithms to determine a set of models that correctly classify maximum number of
instances based on the above metrics. A model , in this context, refers to a set of
Boolean conditions on collected metrics. Table 2 shows the output generated by
PART [12], when applied on the metrics for EnviroTrack application. Boolean
conditions suitable for classification are then extracted.

Table 2. Rules generated by PART Algorithm

Rules Generated by PART Algorithm Accuracy
(MTL>0 AND Time diff ≤ 0.58sec) ⇒ OK 83.94%

(MTL = 0) ⇒ Fail
(Distance ≥ 1.41) ⇒ Fail

(T ime diff ≥ 0.83sec) ⇒ Fail

Table 3. Leader Handoff Performance Before and After Parameter Tuning

Target Type Failure Before Parameter Tuning Failure After Parameter Tuning

Light 37.64% 21.40%

Sound 50.60% 44.70%

5.3 Interpretation of the Rules

If we analyze the generated rules, we can see that the absence of member-to-
leader (MTL) messages is the first predictor of failure. When this rule was pre-
sented to the EnviroTrack developer, the developer realized that the protocol
failed because of a lack of members in the group (which would explain the ab-
sence of member-to-leader messages). Indeed, the case of a singleton group had
not been considered in the design of the protocol. Other failure conditions in-
clude the case where the geometric distance between successive leaders is more
than a threshold (Distance ≥ 1.41). This means that the target is moving too
quickly for the leader hand-off to occur correctly. It is therefore picked up by
nodes outside the group of the previous leader, who then create a new ID. This
was expected. A more interesting case is (T ime diff ≥ 0.83sec). By protocol
design, leaders must periodically send messages at a rate higher than the above
interval, as long as they sense a target. Such a large time difference between
successive leader messages is a strong indication that the target must have dis-
appeared in the middle of the field (as would be the case if sensory coverage
was less than 100%, creating blind spots between nodes), or moved too slowly,
eventually causing the group to disband. Indeed, this case was not considered in
the design. It is to be noted that the minimum node distance or the time differ-
ence between two leader handoffs to fail the protocol vary from experiment to
experiment. This is due to the nature of the experiment and each time the target

154 M.M.H. Khan et al.

moving behavior is somewhat different. So each time we collect data, we may
get a different value for threshold but rules are similar in nature and obvious to
interpret consistently.

5.4 Effect of Parameter Tuning

After analyzing the rules generated by the machine learning algorithm, we tuned
the protocol parameters. Since absence of multiple members in a group is the
primary reason for failure, we tuned the protocol parameters to increase leader
broadcasts, and increased member timeout. We then tested the tracking appli-
cation using two types of sensing modalities - light and sound. As we can see
from Table 3 , the number of failed Leader handoffs for Light targets decreases
significantly after tuning the parameters. For Sound targets, the improvement is
not that much because acoustic range is too large violating the required tracking
assumption that communication range exceeds sensing range. It helps to realize
that the current protocol is not good enough to track a certain type of targets.
In the future, we plan to implement an auto-tuner that will tell the developer
what the parameter value should be to detect a target of a particular type and
speed, and whether a particular failure can be fixed by parameter tuning or not.

6 Discussion

SNTS is designed keeping in mind that it should be usable for troubleshooting
many different applications. Data collection and the machine learning part are
totally independent of the application. The only two pieces of information we
need at the data processing stage are a header file describing packet format and
rules to extract good or bad sequences. Thus, the tool is quite general. We plan
to extend the tool so that it can use clustering algorithms to identify deviant
behavior without the help of the boolean rules.

The tool is very easy to use and only needs the header format file and the
boolean rules to adapt to any applications. The user can also specify which of the
fields are important enough to apply data mining. As a general rule, the more
information the user provides, the more accurate diagnosis can be performed.

We envision building a complete debugging suite that can provide support
at different levels of development. The aforementioned diagnosis tool will be
complemented by one for distributed data recording and replay (the Logger), as
well as a tool for system auto-tuning (the Auto-tuner). In many cases, the main
reason for the poor performance or failure of a distributed protocol lies in poor
settings of protocol parameters. The objective of the auto-tuner tool would be to
determine which parameter settings are culprit and auto-tune them to current
operational conditions.

7 Conclusion

The implemented tool shows great promise for both troubleshooting purposes
and validation purposes. From the case study, it is clear that SNTS can help a

Sensor Network Troubleshooting Suite 155

developer better understand his/her own protocol and tune the protocol param-
eters for better performance. The generated rules are very useful for understand-
ing how the implemented protocol behaves in real life, what the limitations are
and to provide useful insights about tuning the protocol parameters for better
performance. The developer does not need to modify the original code and the
tool does not have any impact on the performance of the original application.
SNTS provides an effective way to troubleshoot sensor network applications in
real life.

Acknowledgement

The work reported in this paper was funded in part by NSF grants CNS 06-
13665, DNS 05-54759 and CNS 06-26342.

References

1. Atmel corporation. mature avr jtagice.
http://www.atmel.com/dyn/products/tools-card.asp?toolid=2737

2. http://www.cs.waikato.ac.nz/ml/weka/
3. ns-2. The Network Simulator. http://www.isi.edu/nsnam/ns/
4. Abdelzahera, T., Blum, B., Cao, Q., Evans, D., George, J., George, S., He, T.,

Luo, L., Son, S., Stoleru, R., Stankovic, J., Wood, A.: Envirotrack: Towards an en-
vironmental computing paradigm for distributed sensor networks. In: Proceedings
of the 24th International Conference on Distributed Computing Systems, Japan
(March 2004)

5. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. In: Proc. 19th ACM
SOSP (2003)

6. Bodk, P., Fox, A., Jordan, M.I., Patterson, D., Benerjee, A., Jagannathan, R.,
Su, T., Tenginakai, S., Turner, B., Ingalls, J.: Advanced tools for operators at
amazon.com. In: The First Annual Workshop on Autonomic Computing, Dublin,
Ireland (2006)

7. Bodk, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Fox, A., Jordan,
M.I., Patterson, D., Patel, K., Tolle, G., Hui, J.: Combining visualization and sta-
tistical analysis to improve operator confidence and efficiency for failure detection
and localization. In: Proc. 2nd International Conference on Autonomic Comput-
ing(ICAC05) (2005)

8. Boulis, A., Han, C.-C., Srivastava, M.B.: Design and implementation of a frame-
work for efficient and programmable sensor networks. In: In MobiSys ’03: Pro-
ceedings of the 1st international conference on Mobile systems, applications and
services, pp. 187–200. ACM Press, New York, USA (2003)

9. Cheong, E., Liebman, J., Liu, J., Zhao, F.: Tinygals: a programming model for
eventdriven embedded systems. In: SAC ’03: Proceedings of the 2003 ACM sym-
posium on Applied computing, pp. 698–704. ACM Press, New York, USA (2003)

10. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instru-
mentation data to system states: A building block for automated diagnosis and
control. In: Sixth Symposium on Operating Systems Design and Implemntation,
San Francisco,CA (December 2004)

http://www.atmel.com/dyn/products/tools-card.asp?toolid= 2737
http://www.cs.waikato.ac.nz/ml/weka/
http://www.isi.edu/nsnam/ns/

156 M.M.H. Khan et al.

11. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th Inter-
national Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, San
Francisco (1995)

12. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Shavlik, J. (ed.) Machine Learning: Proceedings of the Fifteenth International
Conference, Morgan Kaufmann Publishers, San Francisco (1998)

13. Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil,
E., Schoellhammer, T.: A system for simulation, emulation, and deployment of
heterogeneous sensor networks. In: Proceedings of the Second ACMConference on
Embedded Networked Sensor Systems (SenSys’04) (November 2004)

14. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor
networks using kairos. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G., Welsh, M.
(eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

15. Jia, D., Krogh, B.H., Wong, C.: Toshilt:middleware for hardware-in-the-loop test-
ing of wirelesssensor networks.
http://www.ece.cmu.edu/webk/sensor-networks/toshilt/toshilt.html

16. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: In MobiSys ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and services, pp. 99–110. ACM Press,
New York, USA (2004)

17. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: Accurate and scalable simula-
tion of entire tinyos applications. In: First International Conference on Embedded
Networked Sensor Systems (SenSys’03) (November 2003)

18. Levis, P., Culler, D.: Mat: A tiny virtual machine for sensor networks. In: ASPLOS-
X: Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (2002)

19. Li, S., Lin, Y., Son, S.H., Stankovic, J., Wei, Y.: Event detection services using data
service middleware in distributed sensor networks. Telecommunication Systems,
Special Issue on Information Processing in Sensor Networks (2004)

20. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: State-centric programming for sensor-
actuator network systems. Pervasive Computing, IEEE (2003)

21. Luo, L., Abdelzaher, T., He, T., Stankovic, J.A.: Envirosuite: An environmentally
immersive programming framework for sensor networks. ACM Transactions on
Embedded Computing Systems (to appear, 2006)

22. Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T., Stankovic, J.A.: Achieving
repeatability of asynchronous events in wireless sensor networks with envirolog.
Infocom (April 2006)

23. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acquisi-
tional query processing system for sensor networks. ACM Transactions on Database
Systems (2005)

24. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev (2002)

25. Ohio State University. Kansei: Sensor Testbed for At-Scale Experiments (Febuary
2005)

26. Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.S.: Atemu: A fine-grained
sensor network simulator. In: First International Conference on Sensor and Ad Hoc
Communications and Networks (October 2004)

27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-
teo, CA (1993)

http://www.ece.cmu.edu/webk/sensor-networks/toshilt/toshilt.html

Sensor Network Troubleshooting Suite 157

28. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sym-
pathy for the sensor network debugger. SenSys’05. UCLA Center for Embedded
Network Sensing, San Diego, California, USA (2005)

29. Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining
causal structures. In: Proceedings of the 24th VLDB Conference, New Yorkm, USA
(1998)

30. Vanderbilt University. Message Center
http://www.isis.vanderbilt.edu/projects/nest/msgctr.html

31. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions.
NSDI ’04: Proceedings of the First USENIX/ACMSymposium on Networked Sys-
tems Design and Implementation (March 2004)

32. Wen, Y., Wolski, R.: s2db: A novel simulation-based debugger for sensor network
applications. UCSB, 2006-01 (2006)

33. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: A wireless sensor network
testbed. In: Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks (IPSN05), Special Track on Platform Tools and
Design Methods for Network Embedded Sensors (SPOTS) (April 2005)

34. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: A library for theparallel simulation
of large-scale wireless networks. In: Proceedings of the 12th Workshop on Parallel
and Distributed Simulation (PADS98) (May 1998)

http://www.isis.vanderbilt.edu/ projects/nest/msgctr.html

Design and Implementation of a Flexible

Location Directory Service for Tiered Sensor
Networks

Sangeeta Bhattacharya, Chien-Liang Fok, Chenyang Lu,
and Gruia-Catalin Roman

Department of Computer Science and Engineering
Washington University in St. Louis

Abstract. Many emergent distributed sensing applications need to keep
track of mobile entities across multiple sensor networks connected via an
IP network. To simplify the realization of such applications, we present
MLDS, a Multi-resolution Location Directory Service for tiered sensor
networks. MLDS provides a rich set of spatial query services ranging
from simple queries about entity location, to complex nearest neighbor
queries. Furthermore, MLDS supports multiple query granularities which
allow an application to achieve the desired tradeoff between query ac-
curacy and communication cost. We implemented MLDS on Agimone,
a unified middleware for sensor and IP networks. We then deployed and
evaluated the service on a tiered testbed consisting of tmote nodes and
base stations. Our experimental results show that, when compared to a
centralized approach, MLDS achieves significant savings in communica-
tion cost while still providing a high degree of accuracy, both within a
single sensor network and across multiple sensor networks.

1 Introduction

Many emerging distributed sensing applications require the capability of keeping
track of a large number of mobile entities over a wide area that is covered by
tiered sensor networks. Let’s consider the specific example of co-ordinating doc-
tors over multiple make-shift clinics, set up after a natural calamity. Such clinics
are often short of doctors and so the doctors may move between the various clin-
ics, depending on the need of the clinics. In such a scenario, there is often a need
to keep track of the doctors, as they move within and between clinics, so that
it is possible to find a particular doctor or the nearest available doctor. Existing
infrastructure (e.g. phone lines and cell phone towers) is often destroyed or over-
loaded in such scenarios, requiring the deployment of sensor networks connected
via ad hoc IP networks to achieve the objective. As another example, consider
the tracking of tools that are shared between various workshops spread across a
manufacturing facility. The tools are usually moved around within one or more
workshops by the workers. Hence, it is very difficult to locate a particular tool
when it is needed. In such a situation it would be helpful to keep track of the

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 158–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Design and Implementation of a Flexible Location Directory Service 159

location of the tools as they are moved within and across workshops. This would
allow a worker to easily find the nearest available tool that he needs. Sensor
networks help realize such applications by providing the capability to sense and
identify the mobile entities. However, to fully realize such applications, it is es-
sential to provide a location directory service that can efficiently maintain the
location information of mobile entities as they move across multiple sensor net-
works as well as support a broad range of spatial queries concerning the mobile
entities. Our goal is to realize exactly such a service. The primary contribution
of our work is the design, implementation, and empirical evaluation of MLDS,
the first Multi-resolution Location Directory Service for tiered sensor networks.
The key contributions of our work include (1) Design of MLDS, which efficiently
maintains location information of mobile entities across multiple sensor and IP
networks and supports a rich set of multi-granular spatial queries; (2) Imple-
mentation of MLDS on tiered sensor networks composed of resource constrained
sensor networks and IP networks and (3) Empirical evaluation of MLDS on a
tiered testbed of 45 tmote nodes. Our empirical results show that MLDS can
maintain a high degree of accuracy at low communication cost, both within a
single sensor network and across multiple sensor networks.

2 Services

MLDS can support multiple sensor networks connected by IP networks. Each
sensor network, consisting of stationary location-aware sensor nodes and a base
station, is assumed to have a unique name that maps to the base station’s IP
address. We assume that the sensor networks track mobile entities in the phys-
ical environment using existing tracking algorithms [1,2,3] or RFID technology.
Furthermore, in our implementation of MLDS, we assume that mobile entities
are represented by mobile agents in the sensor network. A mobile agent is a soft-
ware process that can migrate across nodes while maintaining its state. Mobile
agents present a convenient way of representing mobile entities (e.g. cars, people
and wild fire) in the sensor network [4]. For instance, in the make-shift clinic
example described above, mobile agents may be created to shadow the doctors.
Users can then query the locations of doctors by querying the locations of the
corresponding mobile agents, through MLDS. Note that even though MLDS is
implemented to work with mobile agents, it can be easily extended to work with
other programming models for mobile entity tracking such as EnviroSuite [1]
and others based on message passing [2,3].

MLDS supports four types of flexible spatial queries that include (i) finding
the location of a particular agent, (ii) finding the location of all agents, (iii) find-
ing the number of agents and (iv) finding the agent that is closest to a particular
location. To meet the needs of diverse applications, all of these queries support
different scopes and granularities that can be specified by the application. MLDS
supports two query scopes, (i) local scope i.e. within a single sensor network and
(ii) global scope i.e. across all sensor networks. It supports three query granular-
ities, fine, coarse and network. The query result of a fine query is based on the

160 S. Bhattacharya et al.

exact locations of the mobile agents while the query result of a coarse query is
based on the approximate locations of the mobile agents. The query result of a
network query, on the other hand, is based only on the knowledge of the sensor
networks that the agents are in. MLDS supports queries issued from both within
a sensor network and from outside a sensor network (e.g. by an agent or user on
the IP network). The scope and granularity of a query are set via parameters
S and G, respectively. Queries can also be limited to a “class” of mobile agents
through a parameter C. The API of the four spatial queries are as below:

1. GetLocation(id, S, G) returns the location of an agent with ID id.
2. GetNum(C, S) returns the number of class C agents.
3. GetAll(C, S, G) returns the location of all class C agents.
4. GetNearest(C, L, S, G) returns the location of the class C agent that is

closest to the location L.

3 Design

MLDS is designed for common sensor network tracking applications like vehicle
and personnel tracking for security, emergency care etc. Due to the high mobility
of agents in these systems, the location information update rate is expected to be
much higher than the query rate in these systems. Hence, MLDS is specifically
tailored for systems in which the location information update rate is greater
than the query rate. To optimize the operation of such systems, MLDS adopts a
hierarchical architecture with multi-resolution information storage. As a result
(1) it can support multi-granular spatial queries which enables applications to
achieve the desired tradeoff between location information accuracy and com-
munication cost, (2) location information update is not always propagated to
the upper tiers of the hierarchy, which significantly reduces communication cost
and (3) queries are answered at the closest tier of the hierarchy that meets the
query scope and granularity requirements, thus reducing both communication
cost and query latency. Note that while MLDS’ hierarchical directory structure
bears some resemblance to the Domain Name System (DNS) in the Internet
and cellular networks, its novelty lies in the fact that it is specifically designed
and implemented for tiered sensor networks consisting of resource constrained
sensor platforms. In particular, our goal was to minimize communication cost
without considerable loss in data accuracy. Moreover, MLDS provides a rich set
of multi-granular spatial queries, which is not supported by the above systems.

3.1 Architecture

MLDS has a four tiered hierarchical architecture. The topmost tier of the hi-
erarchy is a central registry that stores information about the different sensor
networks. The base stations of the different sensor networks, that are connected
by IP networks, form the second tier of the hierarchy. The other two tiers of
the hierarchy lie within the sensor networks and are formed by a clustering al-
gorithm that groups the sensor nodes into non-overlapping 1-hop clusters. The

Design and Implementation of a Flexible Location Directory Service 161

clusterheads of these clusters form the third tier of the hierarchy while the cluster
members form the fourth tier. Note that the system consists of heterogeneous
nodes, with nodes at higher tiers having more resources than nodes at lower
tiers. For example, the clusterheads are resource constrained sensor nodes; the
base stations are more powerful computers such as PCs or stargates; while the
registry, is stored at a server or server cluster.

MLDS stores location information at different resolutions, at different tiers
of the hierarchy. Clusterheads store the exact location of the agents in their
cluster while base stations store only the IDs of the clusters that the agents in
their network belong to. The registry on the other hand stores the IDs of the
networks (denoted by the network base station IP address) that all agents in the
system belong to. A base station also maintains the location of the clusterhead
and the minimum bounding rectangle (MBR) of each cluster in its network.
While the registry also stores the MBR of all the connected sensor networks.
The network and cluster MBRs are needed to answer nearest neighbor queries,
as explained later in Section 3.3.

3.2 Location Information Maintenance

Since MLDS maintains less accurate information at higher tiers of the hierarchy,
location information is not always propagated to the upper tiers, which signif-
icantly reduces communication cost. In the following we describe how MLDS
maintains agent location information at different tiers of the hierarchy.

A node hosting an agent periodically sends location update messages to its
clusterhead, at an interval ΔT . Note, periodic messages are required to maintain
the directory in the face of node/agent failures. The location update messages
contain the agent ID, class and location, which is set to the location of the host
node. When a clusterhead receives a location update message, it first updates
it’s directory with the agent information. If the agent has just entered its cluster,
it then sends a message to the base station containing the agent ID and class,
and it’s own ID, instead of the agent location. The base station in turn updates
its directory on receiving this information and also updates the registry if an
entry for the agent did not exist in its directory, previously.

Agent location information at a clusterhead expires after a period 2ΔT . Thus,
if a clusterhead does not receive location update messages from an agent for a
period 2ΔT , it assumes that the agent has left its cluster and hence deletes the
agent from its directory. A clusterhead may therefore have stale information for
a maximum period of 2ΔT . This design trades off accuracy for lower communi-
cation cost and was preferred over other options that provide higher accuracy
but at a higher communication cost.

3.3 Query Processing

MLDS answers a query at the closest tier of the hierarchy that meets the query
scope and granularity requirements. For queries issued from within(outside) a
sensor network, the closest tier would be the lowest(highest) tier of the hierarchy

162 S. Bhattacharya et al.

that meets the query scope and granularity requirements. This approach reduces
both communication cost and query latency. All queries issued by an agent from
within a sensor network are first sent to the clusterhead of the cluster that
the agent is in. If the query type is GetLocation or GetNearest, the clusterhead
checks if it can answer the query. If it can, it sends the query reply to the querying
agent, otherwise it forwards the query to the base station. On the other hand,
if the query type is GetAll or GetNum the query is directly forwarded to the
base station. The base station processes the query and sends the reply to the
clusterhead that sent the query, which in turn forwards the reply to the querying
agent. Queries issued by an external agent or user on the IP network are sent to
the relevant base stations that process the queries and route the result back to
the querying agent/user.

We now explain how MLDS processes a query when the query is issued by
an agent within a sensor network. Since a base station processes in-network-
queries the same way that it processes out-of-network-queries, the later process
can be derived from the description of the former, and hence is not explicitly
described. Moreover, due to space limitations, we only describe the GetNearest
and GetLocation query types in detail. The GetNum query is the simplest of
all queries and just involves querying the base station, while the GetAll query
is a simple extension of the GetLocation query. In the following discussion, we
assume that the ID of the querying agent is q. We also assume that for any agent
with ID i, Ci denotes the clusterhead of the cluster that agent i is in and Bi

denotes the base station of the network that agent i is in.

GetLocation. When clusterhead Cq receives a GetLocation(id, S, G) query
from agent q, it checks if agent id is in its cluster. If the agent is in its cluster,
it sends a query reply to agent q. If agent id is not in agent q’s cluster, then Cq

forwards the query to the base station Bq. On receiving this query, Bq checks
if agent id is in its network. If the agent is in the network, Bq sends a reply
containing either the location of the clusterhead Cid, if the query is coarse or
the exact location of the agent, which it obtains from Cid, if the query is fine. In
the case that agent id is not in the local network (i.e. Bid �= Bq), Bq finds out
Bid from the registry, and forwards the query to Bid. Bid processes the query
as explained above and sends the result to Bq. Bq sends the query result to Cq,
which forwards it to agent q.

GetNearest. When Cq receives a GetNearest(C, L, S, G) query, it checks if
there are class C agents in its cluster. If there are such agents, Cq finds the agent
that is geographically closest to location L and sends a reply to agent q. If there
are no class C agents in the cluster, Cq forwards the query to Bq.

Let’s first see how Bq handles local queries. If the query is coarse, Bq just
returns the location of the clusterhead, whose cluster contains class C agents
and whose location is geographically closest to location L. However, if the query
is fine, Bq finds the answer by using the branch and bound technique [5]. The
intuition behind this technique is to query only those clusters that contain class
C agents whose locations could be closest to location L. These clusters are found

Design and Implementation of a Flexible Location Directory Service 163

by first obtaining a set of clusters that contain class C agents and then looking
at the minimum and maximum distances of the MBRs of the clusters in this
set, from L. Clusters whose minimum distances are greater than the maximum
distance of the cluster that has the least minimum distance, are discarded. Bq

queries the clusterheads of the remaining clusters and waits for a certain time
period to hear from them. When Bq hears from all the clusterheads (before the
end of the time period) or at the end of the time period, Bq computes the agent
that is closest to location L based on the information obtained in the query
replies and sends the reply to Cq. Note that although the MBR of a cluster does
not accurately represent the cluster boundary, it is preferred over other complex
methods like the convex hull due to its low computational complexity.

Bq handles global queries similarly, by first looking up the registry to find
the networks that contain class C agents and then applying the above branch
and bound technique at the network level. Note that by design, this query re-
turns the approximate geographically closest agent. This design achieves lower
communication cost by trading off accuracy.

3.4 Cost Benefits over a Centralized Directory Approach

In this section we discuss key benefits of MLDS when compared to a centralized
directory (CD) approach. In CD, location information is stored in a centralized
directory maintained at the base stations of the sensor networks. Hence, all
location information and queries in a sensor network are sent to the base station
in CD. MLDS has the following key properties when compared to CD:

– MLDS has significantly lower location update cost, when compared to CD,
especially when agents move locally (within a cluster) most of the time,
which is common in many application scenarios.

– MLDS achieves a lower total communication cost compared to CD when the
location update rate is higher than the query rate. Moreover, for a given
update and query rate, the savings in communication cost increase with
increasing locality of movement and also with increasing network size. Thus,
MLDS is more scalable in comparison to CD.

– Coarse and network query cost in MLDS is close to the query cost in CD.
The cost of fine queries is low, when answered locally (by the clusterhead),
but high otherwise. Thus, applications that can tolerate coarse query results
benefit the most from using MLDS.

A more in-depth theoretical comparison of MLDS and CD can be found in [6].

4 Implementation

We have implemented and integrated MLDS with Agimone, a unified middleware
that integrates sensor and IP networks. In this section, we first give an overview
of Agimone and then describe the implementation details of MLDS.

Agimone [7] combines two mobile agent middlewares called Agilla [4] and
Limone [8]. Agilla is optimized for resource-constrained sensor networks and

164 S. Bhattacharya et al.

MLDS Registry

Agilla
TS

Limone
TS

Agimone Agent

MLDS

JVM

MLDS

TinyOS

Agilla

TS
NL

1

MLDS

TinyOS

Agilla

TS NL

Agilla
TS

Limone
TS

Agimone Agent

MLDS

JVM

MLDS

TinyOS

Agilla

TS
NL

0

MLDS

TinyOS

Agilla

TS
NL

Sensor Network 1 Sensor Network 2

1

2

3

4

7
10

8
9

11

12

13

14

Base Station 1 Base Station 2

Clusterhead Clusterhead

Sensor Node Sensor Node

5 6
IP Network

Fig. 1. Interaction between MLDS and Agimone modules when the GetLocation(0,
“global”, “coarse”) query is issued by agent 1.(TS: Tuple Space, NL: Neighbor List).

is implemented in nesC on the TinyOS platform. Limone is designed for more
powerful nodes (e.g. PDAs, stargates and laptops) connected by IP networks
and is implemented in Java on standard Java Virtual Machines (JVMs). In
Agimone, creation and deployment of mobile agents within a sensor network is
done using Agilla, while migration of mobile agents across sensor networks via an
IP network, is done using Limone. Agilla provides primitives for an agent to move
and clone itself from sensor node to sensor node while carrying its code and state,
effectively reprogramming the network. To facilitate inter-agent coordination
within a sensor network, Agilla maintains a local tuple space and neighbor list on
each sensor node. Multiple agents can communicate and coordinate through local
or remote access to tuple spaces. In Agimone, the base stations communicate
through Limone tuple spaces maintained at the base stations. Specific Limone
agents called AgimoneAgents that reside at the base stations provide an interface
between Agilla and Limone and enable the migration of Agilla agents across
an IP network. Agimone maintains a central registry for the registration and
discovery of sensor networks over the IP network.

MLDS is integrated with the Agimone modules that run on the sensor nodes
and base stations. It is implemented in nesC on the sensor nodes and in Java on
the base station. MLDS also extends the Limone registry to serve as the registry
for its location directories. Figure 1 shows the interaction between the MLDS and
Agimone modules at different tiers of the hierarchy when the GetLocation(0,
“global”, “coarse”) query is issued by an agent with ID 1. Agent 1 is in sensor
network 1 while agent 0 is in sensor network 2, in the figure. Note that the
agents are Agilla agents. Steps 1-3 in the figure show the query message being

Design and Implementation of a Flexible Location Directory Service 165

propagated up the hierarchy to the base station. Once it reaches the MLDS
module at the base station, control is transfered to the AgimoneAgent (step 4),
since agent 0 is not found in sensor network 1. The AgimoneAgent then queries
the registry to find out which network agent 0 is in (steps 5-6). Once it finds
that out, it sends the query to the AgimoneAgent at the base station in sensor
network 2 (step 7). The AgimoneAgent in base station 2 queries the local MLDS
module to obtain the result of the query (steps 8-9) and sends the result back
to the AgimoneAgent in base station 1 (step 10). The AgimoneAgent in base
station 1 then sends the query reply to the local MLDS module (step 11). After
that, the query reply is forwarded down the hierarchy to agent 1 (steps 12-14).

MLDS adapts Agimone’s sensor-network-discovery and neighborhood-
maintenance mechanisms, to build and maintain its hierarchical structure. The
upper two tiers of the hierarchy are formed via the sensor-network-discovery
process, in which the base stations register themselves with the registry. The
lower two tiers of the hierarchy that lie within individual sensor networks are
formed via a simple clustering algorithm. MLDS uses Agimone’s neighborhood-
maintenance process to achieve clustering at minimum communication cost. Ag-
imone maintains neighborhood information at each node through a periodic
beaconing process. Each node periodically broadcasts beacon messages contain-
ing its ID and hop count to the base station. The hop count information is used
for routing messages to the base station. Details of the clustering algorithm are
left out due to space limitations but can be found in [6].

5 Experimental Results

We evaluated MLDS through two sets of experiments. The first set of experi-
ments compares MLDS’ performance to the centralized approach (CD) within
a single sensor network. Recall that in CD, location information in a sensor
network is stored only at the base station. All location information and queries
are thus sent to the base station in CD. The second set of experiments evaluate
MLDS’ ability to keep track of mobile agents across sensor networks. In both ex-
periments, tmotes were arranged in a grid, with the gateway node at one corner
of the grid. The gateway node is the tmote that acts as a gateway between the
sensor network and the PC which serves as the base station. Multi-hop commu-
nication between the nodes was achieved by setting a filter at the nodes, that
accepted packets only from neighboring nodes on the grid. In order to collect
trace data, all nodes in a sensor network were connected to a PC via USB ports.

We use the following four metrics to evaluate query performance, in our ex-
periments. (1) Success Ratio: the ratio of the number of queries that returned
the accurate result and the total number of queries issued. Network query results
are considered accurate if they contain the correct network name; coarse query
results are considered accurate if they contain the correct cluster information
and fine query results are considered accurate if they contain the correct agent
location. (2) Average Error: the average error among all queries for which a
query result is received, in term of hops. Fine query error is computed as the

166 S. Bhattacharya et al.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Number of Mobile Agents

S
u

cc
es

s
R

at
io

GL-CD
GL-MLDS-Fine
GL-MLDS-Coarse

(a) Success Ratio

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Number of Mobile Agents

A
ve

ra
g

e
E

rr
o

r
(H

o
p

s) GL-CD
GL-MLDS-Fine
GL-MLDS-Coarse

(b) Average Error

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7
Number of Mobile Agents

A
ve

ra
g

e
L

at
en

cy
 (

m
s) GL-CD

GL-MLDS-Fine
GL-MLDS-Coarse

(c) Average Query Latency

Fig. 2. Performance of local GetLocation queries

number of hops between the location returned in the query result and the actual
location of the agent. Coarse and network query error is computed as the number
of hops the agent is from the clusterhead and from the base station, respectively.
(3) Communication Cost includes Location Update Cost and Query Cost. Lo-
cation Update Cost is the total number of location information messages sent per
experiment while Query Cost is the total number of query messages and query
result messages sent per experiment. (4) Average Query Latency: the aver-
age query latency among all queries for which a query result is received. Query
latency is the time interval between the issuance of a query and the arrival of
the query result, at the querying node. We present 90% confidence intervals for
both average error and query latency.

5.1 Single Sensor Network

This set of experiments was carried out on a testbed of 24 tmote nodes, arranged
in a 6 × 4 grid, with a PC as the base station. In each of these experiments, we
deployed one stationary agent two hops from the gateway, and n (1 ≤ n ≤ 7) mo-
bile agents. The mobile agents were programmed to follow a random movement
pattern over the sensor network at a speed of 1 hop every 5s. Queries were issued
by the stationary agent at the rate of 0.2 queries/s. 200 queries were issued in
each experiment. Note that by varying the number of mobile agents from 1 to 7 in
the experiments, we vary the total location update rate from 0.2 updates/s to 1.4
updates/s and hence evaluate the performance of MLDS under varying network
loads. We evaluate only the performance of the GetLocation and GetNearest
queries in these experiments. Since the GetNum query is the same in both MLDS
and CD by design and the GetAll query is just an extension of the GetLocation
query, we do not evaluate them. We evaluate the performance of the GetLoca-
tion and GetNearest queries, at both fine and coarse granularities, in MLDS.
However, only fine queries are evaluated in the centralized approach since it does
not support coarse queries. We refer to the GetLocation query in the centralized
approach as GL-CD, and the GetLocation fine and coarse queries in MLDS as
GL-MLDS-Fine and GL-MLDS-Coarse, respectively. Similarly, the GetNearest
queries are referred to as GN-CD, GN-MLDS-Fine and GN-MLDS-Coarse.

GetLocation Query Results. Figures 2 and 3 show the results obtained
for the GetLocation query. From Figure 2(a) we see that the success ratio of

Design and Implementation of a Flexible Location Directory Service 167

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7
Number of Mobile Agents

L
o

ca
ti

o
n

 U
p

d
at

e
C

o
st GL-CD

GL-MLDS-Fine
GL-MLDS-Coarse

(a) Location Update Cost

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7
Number of Mobile Agents

Q
u

er
y

C
o

st

GL-CD
GL-MLDS-Fine
GL-MLDS-Coarse

(b) Query Cost

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Update Rate/Query Rate

N
o

rm
al

iz
ed

 T
o

ta
l

C
o

m
m

u
n

ic
at

io
n

 C
o

st

GL-MLDS-Fine
GL-MLDS-Coarse

(c) Communication Cost

Fig. 3. Communication Cost of local GetLocation queries

GL-CD is higher than that of GL-MLDS-Fine, when there are fewer mobile
agents in the network. GL-MLDS-Fine has a lower success ratio partly because
a clusterhead retains outdated location information of an agent that has left its
cluster, for a maximum time period 2ΔT . Interestingly, as the number of mobile
agents increases, the success ratio of GL-CD decreases and approaches that of
GL-MLDS-Fine. This is because, as the number of mobile agents increases, the
number of location information messages also increases. Since all these messages
are sent to the base station in CD, there is an increased number of collisions
and message loss in the network, which lowers the success ratio of GL-CD. In
contrast, the success ratio of GL-MLDS-Fine remains almost constant with the
increase in the number of mobile agents, due to its hierarchical architecture. The
success ratio of GL-MLDS-Coarse is higher than that of GL-MLDS-Fine and only
slightly lower than that of GL-CD. However, since GL-MLDS-Coarse returns an
approximate location, it’s average error is higher than that of GL-MLDS-Fine,
as shown in Figure 2(b). The query reply error of GL-MLDS-Coarse is mostly
1 hop, since MLDS constructs 1-hop clusters. Figure 2(c) displays the query
latencies. As expected, GL-MLDS-Fine has the longest query latency since most
queries and query results of this type take a longer path. The query latencies of
GL-CD and GL-MLDS-Coarse are nearly the same when there are few mobile
agents in the system. However, the query latency of GL-CD becomes higher than
that of GL-MLDS-Coarse when the number of agents increases, as a result of
increased network load.

Figures 3(a), 3(b) and 3(c) show the location update cost, query cost and total
communication cost incurred by the GetLocation queries, respectively. From
Figure 3(a) we see that MLDS achieves about 55% savings in location update
cost when compared to CD. This is due to MLDS’ hierarchical architecture,
by virtue of which, a large number of location information messages are only
sent to the clusterheads and are not forwarded to the base station. Figure 3(b)
shows that the query cost of fine queries is higher in MLDS than in CD. This is
because GL-MLDS-Fine queries that are routed to the base station, get further
routed to a clusterhead. Likewise, the query results of these queries take a longer
route to reach the querying agent. Comparatively, the query cost of GL-MLDS-
Coarse is much lower and is close to that of GL-CD, since these queries are
routed only up to the base station. Overall, MLDS achieves significantly lower

168 S. Bhattacharya et al.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Number of Mobile Agents

S
u

cc
es

s
R

at
io

GN-CD
GN-MLDS-Fine
GN-MLDS-Coarse

(a) Success Ratio

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
Number of Mobile Agents

A
ve

ra
g

e
E

rr
o

r
(H

o
p

s) GN-CD
GN-MLDS-Fine
GN-MLDS-Coarse

(b) Average Error

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7
Number of Mobile Agents

A
ve

ra
g

e
L

at
en

cy
 (

m
s) GN-CD

GN-MLDS-Fine
GN-MLDS-Coarse

(c) Average Query Latency

Fig. 4. Performance of local GetNearest queries

total communication cost than CD as shown in Figure 3(c). The figure shows
the total communication cost of MLDS normalized by the total communication
cost of CD for varying ratios of total update rate and query rate. Note that the
update rate increases due to the increase in the number of mobile agents in the
system. From the figure, we see that the total communication cost of MLDS is
lower than that of CD even when the update rate is the same as the query rate
and decreases further as the update rate becomes higher than the query rate.

GetNearest Query Results. Figure 4 shows the performance of the GetNear-
est queries. From Figure 4(a) we see that the success ratios of GN-MLDS-Fine
and GN-MLDS-Coarse are almost the same, and remain above 80%, irrespective
of the number of mobile agents in the network. The average errors of GN-CD
and GN-MLDS-Fine reflect the same trend as their success ratios, as shown
in Figure 4(b). What is interesting is the trend in the average error of GN-
MLDS-Coarse. The average error of GN-MLDS-Coarse is higher than that of
GN-MLDS-Fine when there are fewer mobile agents in the system. However, it
decreases as the number of mobile agents in the system increases. This trend is
due to the fact that as the number of mobile agents increases, the probability of
a mobile agent being in the same cluster as the querying agent also increases and
so more number of queries are answered directly by the clusterhead of the clus-
ter that the querying agent is in. Thus, with the increase in the agent density,
a higher percentage of the coarse query replies contain exact agent locations,
which in-turn reduces the error.

The query latency of GN-MLDS-Fine is higher than that of GN-CD when
there are few mobile agents in the network, as shown in Figure 4(c). However,
as the number of mobile agents increases, the query latency of GN-CD increases
considerably whereas the query latency of GN-MLDS-Fine decreases. The query
latency of GN-MLDS-Fine becomes less that of GN-CD when there are 7 mobile
agents in the network. The increase in the query latency of GN-CD with the
increase in the number of mobile agents is a result of increased network load. The
reason for the decrease in query latency of GN-MLDS-Fine, with the increase
in mobile agents in the network, is the increase in the percentage of queries
that get answered locally, by the clusterhead. This same reason also causes the
decrease in the query latency of GN-MLDS-Coarse as the number of mobile

Design and Implementation of a Flexible Location Directory Service 169

agents in the network increases. Thus, the GN query benefits significantly from
local responses, made possible by MLDS’ hierarchical architecture. The benefit
is not only decreasing query latency but also decreasing query cost (not shown
here), with increasing agent density.

In summary, MLDS consistently achieves success ratios above 80% in all our
experiments, at significantly lower total communication cost than the centralized
approach. In particular, coarse queries supported by MLDS achieved the lowest
communication cost and query latency, while introducing an average error of
less than 1 hop. Thus, applications that can tolerate a small amount of location
error gain the most from using MLDS. Furthermore, MLDS’ hierarchical archi-
tecture enables efficient execution (low cost and latency) of GetNearest queries,
especially when the density of mobile agents is high.

5.2 Multiple Sensor Networks

We now evaluate MLDS’ performance across multiple sensor networks. In these
experiments, mobile agents move between three sensor networks via an IP net-
work running over 100Mbps Ethernet. The IP network is private with a single
Linksys WRT54G router and an 8 port switch. These experiments were carried
out on a testbed of 45 tmote nodes, equally divided into three sensor networks
arranged in a 5 × 3 grid. Each sensor network has a PC connected via USB to
one of its corner motes that serves as a base station. These base station PCs
are connected to each other via the IP network. A fourth PC on the IP network
serves as the registry. Evaluating MLDS’ performance requires comparing its
results with the ground truth. The ground truth is obtained by connecting every
mote except those directly attached to a base station to the registry PC via
USB. The motes are programmed to send trace messages identifying key events
like agent movement and query activities over their USB port. The registry PC
monitors these connections for incoming trace data and saves them into a file.
In addition, it also accepts trace messages over the IP network, which the base
stations use to record trace messages generated by the motes they are attached
to. The registry PC serves as a central aggregation point for the trace data. Each
trace event is time stamped and saved for off-line analysis.

Like the single sensor network experiments, we evaluate only the performance
of the GetLocation (GL) and the GetNearest (GN) queries. Both the network
and coarse granularity versions of the queries are evaluated. In each of these
experiments, the workload is varied by varying the number of mobile agents in
the system from 1 to 21 in increments of 3. The mobile agents move 10 hops
randomly in a sensor network before randomly migrating to another sensor
network and repeating. Initially, the mobile agents are distributed evenly across
the three sensor networks. The GetLocation and GetNearest queries are issued
at a rate of 1 query every 5s by an external agent running on the registry PC.
Note that this differs from the single network experiments where the querier
was located within the sensor network. By placing the querier on the registry,
the query messages only travel down the hierarchy. Scenarios where the query

170 S. Bhattacharya et al.

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21
Number of Mobile Agents

S
uc

ce
ss

 R
at

io

GL-Coarse
GL-Network

(a) Success Ratio

0

0.5

1

1.5

2

2.5

3

0 3 6 9 12 15 18 21
Number of Mobile Agents

A
ve

ra
ge

 E
rr

or
 (H

op
s) GL-Coarse

GL-Network

(b) Average Error

0
20
40
60
80

100
120
140
160

0 3 6 9 12 15 18 21
Number of Mobile Agents

A
ve

ra
ge

 L
at

en
cy

 (m
s) GL-Coarse

GL-Network

(c) Average Query Latency

Fig. 5. Performance of global GetLocation queries

messages travel up the hierarchy were already evaluated in the single-network
experiments. Each experiment is repeated 100 times.

GetLocation Query Results. For these experiments, a querier located on the
registry periodically issues a GL query for a particular mobile agent (termed the
target agent) within the sensor networks. The success ratio of the GL query is
shown in Figure 5(a). Both the coarse (GL-Coarse) and network (GL-Network)
granularity versions of GL achieve nearly perfect success. GL-Coarse has a
slightly lower success ratio because it attempts to return a more accurate
location of the agent. However, it has approximately 3 times lower error, as
shown in Figure 5(b). Notice that GL-Network has a higher average error
variance and that GL-Coarse has an average error variance of less than one.
This is because an agent may be multiple hops away from the network base
station, but can be at most one hop away from its cluster head. GL-Coarse
queries have significantly longer latency as shown in Figure 5(c). The latency of
GL-Network queries is negligible since the querier is located on the registry and
can query the registry locally to determine which network the target agent is
in. For GL-Coarse queries, the agent must first lookup which network the agent
is in, then query that network’s base station to determine which cluster the
agent is in. As the number of mobile agents increases, the latency also increases
due to increased network congestion.

GetNearest Query Results. The GN experiments are the same as the GL
experiments except the target agent is a stationary agent that resides two hops
away from the base station on one of the sensor networks. The querier on the
registry periodically searches for the mobile agent closest to the target agent.
The results are shown in Figure 6. As the number of mobile agents increase,
the success ratio of GN-Coarse decreases due to network congestion preventing
updates from propagating up the hierarchy, as shown in Figure 6(a). On the
other hand, GN-Network queries almost always succeed since it involves at most
1 call to the registry. The average error of GN-Coarse queries remains roughly
less than 1 hop regardless of the number of agents as shown in Figure 6(b). This is
expected since the cluster members are at most 1 hop away from the cluster head.
The average error of GN-Network queries is also close to 1, but is dependent on
the size of the network. As the number of mobile agents increase, the probability

Design and Implementation of a Flexible Location Directory Service 171

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21
Number of Mobile Agents

S
u

cc
es

s
R

at
io

GN-Coarse
GN-Network

(a) Success Ratio

0

0.5

1

1.5

2

2.5

3

0 3 6 9 12 15 18 21
Number of Mobile Agents

A
ve

ra
g

e
E

rr
o

r
(H

o
p

s)

GN-Coarse
GN-Network

(b) Average Error

0
20
40
60
80

100
120
140
160

0 3 6 9 12 15 18 21
Number of Mobile Agents

A
ve

ra
ge

 L
at

en
cy

 (m
s) GN-Coarse

GN-Network

(c) Average Query Latency

Fig. 6. Performance of global GetNearest queries

of finding an agent in the same network as the target increases, decreasing the
latency of GN-Coarse queries, as shown in Figure 6(c). The latency of GN-
Network queries is negligible because in our experiments, an agent is always
present in the target agent’s network and hence the queries are always answered
locally by the base station.

6 Related Work

MLDS is related to data-centric storage (DCS) systems like GHT [9], DIFS [10],
DIMENSIONS [11] and DIM [12]. GHT hashes data by name to nodes in the
network and provides no index for accessing the data. Hence it is unsuitable for
storing and accessing location information. DIFS leverages on GHT and main-
tains a hierarchical index of histograms to support multi-range queries. DIM,
on the other hand, uses a locality-preserving hash function that maps a multi-
attribute event to a geographic zone. It divides the network into zones and main-
tains a zone tree to resolve multi-dimensional range queries. However, the index
of neither DIF nor DIM can efficiently support spatial queries. DIMENSIONS
hashes sensor data to nodes in the network and maintains a multi-resolution
hierarchical index that enables it to efficiently answer queries by drilling down
to the appropriate nodes. However, DIMENSIONS was not designed for storing
location information and hence does not support spatial queries such as GetN-
earest. Thus, the key differences between the above systems and MLDS are (1)
the above systems store sensor data while MLDS is specifically tailored for stor-
ing location information of mobile entities, (2) MLDS supports a broad range of
flexible spatial queries which cannot be supported efficiently by the above sys-
tems, and (3) MLDS builds a distributed directory over multiple sensor networks
connected by an IP network, while the above systems systems are designed for
a single sensor network. TSAR [13] is another in-network storage architecture,
which stores sensor data at a lower tier consisting of sensor nodes and stores
only meta data at a higher tier consisting of a network of proxies. Unlike the
above approaches, TSAR maintains a distributed index at the proxies. TSAR
differs from MLDS in that it is not tailored for storing location information nor
does it support spatial queries. Moreover, unlike MLDS, TSAR does not have
an in-network tier that enables the system to take advantage of data locality

172 S. Bhattacharya et al.

while resolving queries. The comb-needle approach proposed in [14] also deals
with in-network storage and retrieval of data and uses an adaptive push-pull
technique to achieve this. Unlike MLDS, this approach does not maintain data
locality and hence cannot efficiently support spatial queries. An analysis of this
approach to other DCS approaches has been provided in [15].

Our work is also related to the protocols presented in [16] and [17], which
address in-network processing of K-Nearest Neighbor (KNN) queries and are
based on the branch-and-bound technique [5] which is also used in MLDS. An-
other related service is EASE [18], which keeps track of mobile entities within a
single sensor network through in-network storage and supports multi-precision
queries that fetch the location of a specified mobile entity. MLDS differs from
the above protocols in the following three important ways: (1) MLDS presents
an architecture for storing location information in sensor networks that enables
efficient computation of nearest-neighbor as well as other multi-resolution spa-
tial queries, (2) MLDS is the first location directory service that can keep track
of mobile entities across multiple sensor networks, and (3) we implemented and
integrated MLDS with a mobile agent middleware and present experimental re-
sults on a physical testbed. In contrast, the above protocols are only evaluated
through simulations.

7 Conclusion

We have developed MLDS, a Multi-resolution Location Directory Service for
tiered sensor networks comprising multiple sensor networks connected via IP
networks. MLDS has several salient features: (1) it is the first system that main-
tains location information of mobile entities across sensor and IP networks, (2) it
supports a range of multi-granular spatial queries that can span multiple sensor
networks and (3) it has low communication cost. We integrated MLDS with Ag-
imone, a mobile agent middleware for sensor and IP networks, and evaluated its
performance on a testbed of tmote nodes. The empirical results obtained show
that MLDS successfully keeps track of mobile agents across single and multi-
ple sensor networks at significantly lower communication cost than a centralized
approach. Most importantly, MLDS enables applications to achieve the desired
tradeoff between accuracy and communication cost, which is particularly use-
ful for resource constrained sensor networks. Currently, MLDS is optimized for
systems that have a higher location update rate. As future work, we plan to
extend MLDS such that it dynamically adapts to the query and the update rate
and hence performs well under all conditions. We wish to achieve this by using
a push-pull strategy that dynamically adjusts the location and granularity of
location information based on the query and update load.

Acknowledgments. This work is funded by the NSF under the ITR grant
CCR-0325529 and the NOSS grant CNS-0520220.

Design and Implementation of a Flexible Location Directory Service 173

References

1. Luo, L., Abdelzaher, T., He, T., Stankovic, J.A.: Envirosuite: An environmentally
immersive programming framework for sensor networks. TECS (2006)

2. Liu, J., Reich, J., Zhao, F.: Collaborative in-network processing for target tracking.
Journal of Applied Signal Processing (2003)

3. Pattem, S., Poduri, S., Krishnamachari, B.: Energy-quality tradeoffs for target
tracking in wireless sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003.
LNCS, vol. 2634, Springer, Heidelberg (2003)

4. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of
adaptive wireless sensor network applications (In: ICDCS’05)

5. Roussopoulos, N., Kelly, S., Vincent, F.: Nearest neighbor queries (In: SIGMOD’95)
6. Bhattacharya, S., Fok, C.L., Lu, C., Roman, G.C.: Mlds: A flexible location direc-

tory service for tiered sensor networks. Technical Report WUCSE-2007-1, Dept. of
Computer Science and Engineering, Washington University in St. Louis (2007)

7. Hackmann, G., Fok, C.L., Roman, G.C., Lu, C.: Agimone: Middleware support for
seamless integration of sensor and ip networks (In: DCOSS’06)

8. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination middleware
for mobile computing (In: Coordination’04)

9. Ratnasamy, S., Karp, B., Yin, L., Yu, F.: GHT: A geographic hash table for data-
centric storage (In: WSNA’02)

10. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: DIFS: A
distributed index for features in sensor networks (In: SNPA’03)

11. Ganesan, D., Estrin, D., Heidemann, J.: DIMENSIONS: Why do we need a new
data handling architecture for sensor networks? (In: HotNets-I’02)

12. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in
sensor networks (In: SenSys’03)

13. Desnoyers, P., Ganesan, D., Shenoy, P.: Tsar: A two tier storage architecture using
interval skip graphs (In: SenSys’05)

14. Liu, X., Huang, Q., Zhang, Y.: Combs, needles, haystacks: Balancing push and pull
for discovery in large-scale sensor networks (In: SenSys’04)

15. Kapadia, S., Krishnamachari, B.: Comparative analysis of push-pull query strate-
gies for wireless sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J.,
Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, Springer, Heidelberg (2006)

16. Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks
(In: P2P’03)

17. Winter, J., Xu, Y., Lee, W.C.: Energy efficient processing of k nearest neighbor
queries in location-aware sensor networks (In: Mobiquitous’05)

18. Xu, J., Tang, X., Lee, W.C.: EASE: An energy-efficient in-network storage scheme
for object tracking in sensor networks (In: SECON’05)

A Semantics-Based Middleware for Utilizing

Heterogeneous Sensor Networks

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan, Anton Riabov,
and Fan Ye

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
{ericbou, mfeb, zhenl, arangana, riabov, fanye}@us.ibm.com

Abstract. With the proliferation of various kinds of sensor networks,
we will see large amounts of heterogeneous data. They have different
characteristics such as data content, formats, modality and quality. Ex-
isting research has largely focused on issues related to individual sensor
networks; how to make use of diverse data beyond the individual network
level is largely unaddressed. In this paper, we propose a semantics-based
approach for this problem and describe a system that constructs appli-
cations that utilize many sources of data simultaneously. We propose
models to formally describe the semantics of data sources, and process-
ing modules that perform various kinds of operations on data. Based on
such formal semantics, our system composes data sources and processing
modules together in response to users’ queries. The semantics provides
a common ground such that data sources and processing modules from
various parties can be shared and reused among applications. We de-
scribe our system architecture, illustrate application deployment, and
share our experiences in the semantic approach.

1 Introduction

Increasingly ubiquitous sensors and sensor networks bring us data sources of
various content, formats, modality and quality. They provide vast amount of
information about events and phenomena in the physical world. Current sensor
network research has mostly focused on issues pertaining to individual sensor
networks. As a result, many applications are tied closely to one or a few sensor
networks. Large numbers of diverse data sources, however, present the opportu-
nities for new kinds of applications that utilize many data source simultaneously,
thus achieving functions not possible by using any single sensor network.

Consider the following motivating scenario. Local, state and federal trans-
portation departments deploy cameras, motion / magnetic detectors and tem-
perature sensors along highways and roads. Individually, each data source (i.e.,
a sensor or sensor network) provides traffic information with limited geographic
coverage, sensing modality and data quality. None of them can individually sat-
isfy the diverse needs: drivers want real time driving instructions; the Highway
Patrol wants videos of accident scenes or plates of speeding vehicles; the De-
partment of Transportation wants long-term traffic statistics for road expansion

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 174–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 175

plans. These applications require the use of heterogeneous data sources in an
integrated manner.

In this paper, we propose a semantics-based approach to this problem and
describe a system that constructs such applications on the fly. These applications
ingest data from many distributed, heterogeneous sensors and sensor networks.
They use interconnected software modules (called Processing Elements (PEs)),
which take data of certain content and format, and perform various operations,
from elementary filtration to complex analysis. Finally they produce the highly
summarized end results needed by users.

Our approach is based on the use of ontologies, a formal method for describing
the terms and relations relevant to a certain domain of interest. In our system,
we use ontologies described in OWL [1], a standard representation language in
the Semantic Web. Descriptions of data sources, PEs and users’ queries use the
terms and relations defined in the OWL ontologies. Data sources are described
by the semantics of typical data objects they produce; PEs are described by
the semantics of data objects they consume and produce; queries express the
semantics of end results users desire. An AI planning algorithm, enhanced to
utilize semantic descriptions, automatically composes appropriate data sources
and PEs together as applications that answer users’ queries.

Automatic construction of applications based on formal semantics has many
advantages. With diverse and heterogeneous forms and content of sensed data,
and large numbers of PEs, the composition of such applications becomes a grand
challenge. It is infeasible for a human user to sort out, from thousands of sensor
data sources and PEs, which ones are appropriate for his needs, and the cor-
rect and efficient ways to interconnect them. It is through the formal semantic
descriptions of sources and PEs that the planning algorithm is able to compose
them in legitimate and efficient ways so that they collectively produce meaning-
ful end results.

The formal semantics also enables the reuse of sources and PEs among applica-
tions. We envision many parties will provide data sources or PEs of various kinds.
By tapping on the growing reservoir of data sources and PEs, more and more
powerful applications can be built. Without a common ground for the description
of sources and PEs, one party’s sources and PEs cannot be reused by others.

We make several contributions in this paper. We propose a semantic model for
the formal description of data sources and processing elements so that they can
be reused. We also define the conditions for legitimate connection among sources
and PEs, and devise an efficient semantic planning algorithm to the automatic
construction of applications. We also build a system that implements these ideas
and proves the feasibility of our approach.

The rest of the paper is organized as follows. We give an overview of the sys-
tem in Section 2. In section 3 we present the semantic model used to describe
data sources and PEs. Section 4 explains how to use the semantic descriptions
to construct applications automatically. Section 5 demonstrates an example ap-
plication deployment. We compare with related work in Section 6 and conclude
in Section 7.

176 E. Bouillet et al.

2 System Overview

We have built our middleware of the semantics-based approach and deployed it in
System S [2], which is a distributed stream processing system (Figure 1). Users
submit inquiries that describe the formal semantics of desired end results. A
planner constructs applications on the fly based on formal semantic descriptions
of PEs and data sources. The sources are managed by a Data Source Manager
component. Finally, applications are deployed by Job Manager (JMN) and exe-
cuted on a Stream Processing Core (SPC), running in a cluster of machines.

Fig. 1. The architecture of System S. Users submit inquiries to specify the end results
they need. A planner constructs applications from data sources and PEs, whose seman-
tics are formally described and stored in the ontology. A Data Source Manager (DSM)
manages connections to data sources. Finally applications are deployed through Job
Manager (JMN) and run on the underlying Stream Processing Core.

Our system interacts with sensors and sensor networks on the data level and
lower level issues such as in-network processing are transparent to our system.
As long as they can be accessed through some well-defined interface (e.g., a
gateway or base station), they are treated as data sources providing data whose
semantics can be formally described using ontologies. PEs perform different kinds
of processing on data. Source PEs (denoted by “S” in Figure 1), a special type
of PEs, talk the protocols of these data sources. They can access data sources
and package raw data into internal Stream Data Objects (SDOs), a lightweight
data container format that is used within the system and universally understood
by all PEs. Finally Sink PEs (denoted by “D” in Figure 1) collect and deliver
results to end-users.

Our system uses a small set of commonly agreed upon ontologies. They can
be defined through collaborative efforts, and can reuse existing ontologies from
different domains, such as the NCI cancer ontology [3]; the GALEN medical
ontology [4], geographical metadata, dependable systems1 , etc. The problem of
1 http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 177

exactly how to define ontologies falls in the area of ontology engineering, which
is not our focus in this paper. We focus on how to use ontologies for describing
components and for the automatic construction of applications.

To automatically construct applications, we need to address several critical
issues: 1) How to formally describe the semantics of data sources and PEs; 2)
How to decide the legitimate connection between PEs, i.e., which PEs’ output
streams match the types and semantics of required input streams of other PEs;
3) how to compose PEs and form a processing graph that can produce the desired
final results.

Before we explain how we address these issues in the following sections, we use
an exemplary inquiry to illustrate how it is processed in our system. Consider an
inquiry that requests traffic congestion reports for a particular road intersection.
The final flow graph depicting which PEs are used and how they interconnect
to produce the results is illustrated in Figure 2.

Roadway
Intersection
Video
Camera

D
at

a
So

ur
ce

s

Processing Elements

Roadside
Sound
Sensor

Intersection
Traffic Audio

Pattern Analysis

Video
Image

Sampler

Intersection
Traffic

Image Pattern
Analysis Intersection

Traffic
Congestion

Join

Fig. 2. A Stream Processing Graph example for
an inquiry requesting traffic congestion report at
an intersection

The system needs to know
which data sources provide rele-
vant data. A sound sensor and a
video camera around that inter-
section provide audio and video
raw data from which conges-
tion levels can be extracted.
The system discovers relevant
sources through their semantic
descriptions. Similarly, the sys-
tem needs to know which PEs
can process such data. It can
identify an Audio Pattern Anal-
ysis PE from its semantics as
taking roadside sound and producing traffic pattern. For video, two PEs (Video
Image Sampler and Image Pattern Analysis) have to be connected to produce
traffic pattern. The system needs their semantics to know they can be legiti-
mately connected and produce meaningful results. Finally, a join PE is used to
combine the results from the two chains of analysis.

3 Semantic Model of Data Sources and PEs

We use OWL ontologies [1] as the basis for the formal representation of the se-
mantics of data sources and PEs. OWL ontologies describe concepts (or classes),
properties and individuals (or instances) relevant to a domain of interest.

A concept is the abstraction for a kind of entities sharing common charac-
teristics. In the Traffic services example (Figure 3), Sensor, Location and Multi-
mediaData are concepts. Individuals are specific entities that belong to certain
concepts. Traffic Camera 10036-1 is an individual belonging to concept Sensor, and
BwayAt42nd (the intersection of Broadway and 42nd Street) is an individual be-
longing to concept Location. Concepts are associated with each other through

178 E. Bouillet et al.

Fig. 3. Example ontology in Traffic Services domain defining concepts like Sensor and
Location, properties like capturedBy and atLocation, and individuals like BwayAt42nd

properties that describe the relationship between them. Sensor and Location are
related to each other through property atLocation, meaning that a sensor is lo-
cated at a certain location. Concepts may also have hierarchical relation among
them via subclassOf relation. SoundSensor and Camera are subclasses of Sensor, and
FixedPositionTrafficCamera is a subclass of Camera.

The basic format for semantic descriptions is an RDF triple. An RDF triple
consists of three components: a subject, a predicate and an object. The subject
and object can be concepts or individuals, and the predicate is the property
that associates them. RDF triples can describe OWL axioms and OWL facts,
semantic information about concepts and individuals, respectively. For example,
(Camera subClassOf Sensor) is an OWL axiom; and (TrafficCamera10036-1 atLocation
BwayAt42nd) is an OWL fact.

A set of RDF triples can be represented as a graph, called RDF graph. The
nodes in the graph are subjects and objects in the triples, and the edges are
predicates (properties) between them. One example is shown in Figure 3.

3.1 Descriptions of Data Sources

In our model, a data source produces a continuous stream of SDOs, each of
which contains several data elements. A data source’s semantics lists what data
elements are contained in an SDO, and an RDF graph that describes the char-
acteristics (or semantics) of the data elements.

As an example (Figure 4), consider the semantic description of the data source
VideoCameraBway-42nd, a video camera located around Broadway and the 42nd
Street. It produces a stream Bwy-42ndVideoStream. A typical SDO in this stream
contains two data elements: VideoSegment 1 and TimeInterval 1. The character-
istics of these two data elements are described in the form of an RDF graph.
The characteristics include the concepts they belong to and the values of var-
ious properties. For example, the data element VideoSegment 1 belongs to the
concept VideoSegment and is captured by a camera Traffic Camera 10036-1, which

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 179

Fig. 4. Semantic description of a camera data source describing the stream it produces,
the data elements contained in the stream (VideoSegment 1 and TimeInterval 1) and
the properties of these data elements described as an RDF graph

is a Fixed Position Traffic Camera and located at BwayAt42nd, the intersection of
Broadway and the 42nd Street.

Observe that a typical SDO is described as containing two typical data ele-
ments: VideoSegment 1 and TimeInterval 1. We refer to these typical data ele-
ments as exemplars, since they provide an example description of the elements
in the stream. Actual SDOs in the stream may replace these exemplars by actual
values. For example, they may have specific VideoSegment instances that share
the semantics of the exemplar, e.g. they have the same values of the ofSubject and
capturedBy properties. Exemplars are represented as individuals that belong to
the special concept called “Exemplar”. Syntactically, we denote exemplars with
a preceding double underscore (i.e. “ ”).

The RDF graph that describes the semantics of the stream is based on domain
ontologies, such as the one in Fig 3. The domain ontologies provide the common
“language” for the interoperability of sources from different parties. When they
describe their sources using the same ontology, we are sure that the same term
has exactly the same meaning, even if they come from different parties.

To summarize, the semantic description of a data source (or its stream) is a
pair, (D, G), where

– D is the set of data elements contained in the typical SDO in the stream.
These data elements are represented as exemplar individuals.

– G is an RDF Graph that describes the semantics of the data elements on
the typical SDO as a set of OWL facts.

180 E. Bouillet et al.

Fig. 5. Semantic description of VideoImageSampler PE that takes as input a stream
containing a video segment and a time interval and produces a stream containing an
image and a time

3.2 Descriptions of PEs

A Processing Element takes some number of input streams and produces some
number of output streams. We treat PEs as “black boxes” and describe PEs
through the semantics of their input streams and output streams. Each input
and output is described by a stream pattern, which specifies the kinds of streams
that can be fed to the PE as legitimate input, and the kinds of streams the PE
produces as output. The stream patterns are defined using variables, which are
represented with a preceding question mark (“?”).

As an example, the VideoImageSampler PE in Figure 5 is defined as requiring
a stream whose SDO contains two data elements: ?VideoSegment 1 and ?TimeIn-
terval 1. In addition, it specifies several constraints on the semantics of these
elements. For example, ?VideoSegment 1 should be of type VideoSegment and
?VideoSegment 1 should be taken at ?TimeInterval 1, a certain time interval. When
an input stream that satisfies these constraints is connected to this PE, the
PE produces a single output stream that contains two exemplar data elements:

Image 1 and Time 1. These exemplars are associated with a semantic descrip-
tion that describes their characteristics and also relate them back to the in-
put data elements. E.g., (Image 1 extractedFrom ?VideoSegment 1) means that

Image 1 element in output stream is extracted from the video segment element
?VideoSegment 1 in input stream. They also share the same subject ?subject.

The input stream pattern describes the set of constraints that must be satisfied
by any stream that can be legitimately connected as input to the PE. It may
be regarded as a semantic query that must be satisfied by the description of an
input stream. The output stream pattern describes new streams produced by a

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 181

Fig. 6. Semantically matched data source and PE. The dashed lines show the variable
substitutions that allow the input graph pattern of the PE to be embedded in the
output graph of the data source, after DLP reasoning.

PE as the result of connecting compatible input streams to the PE. We now give
a formal definition of stream patterns.

A triple pattern is an RDF triple where the subject or the object is a variable.
An example is (?videoSegment 1 takenAt ?timeInterval 1). A graph pattern is a set
of triple patterns. A stream pattern has two elements: the set of data elements
and their semantics. It is a pair of the form (V S, GP) such that
– V S is a set of variables and exemplars representing the data elements in a

typical SDO in the stream.
– GP is a graph pattern describing the semantics of the data elements.
A PE is described as a 2-tuple of the form (〈ISR〉 , 〈OSD〉) where

– 〈ISR〉 is a set of input stream requirements, where each input stream re-
quirement is represented as a stream-pattern.

– 〈OSD〉 is a set of output stream descriptions, where each output stream
description is represented as a stream-pattern.

There is a subtle difference between our use of variables and exemplars. Vari-
ables (like ?VideoSegment 1) represent the elements in an input stream pattern,
and they may be carried forward to the output stream pattern. Exemplars (like

Image 1)represent those elements that are newly created by the PE in the out-
put stream pattern.

We have developed a language for representing the semantic descriptions of
PEs and data sources called SGCDL (Semantic Graph-based Component De-
scription Language). The language is based on OWL and allows importing vari-
ous domain ontologies and using terms defined in these ontologies for describing
PEs and sources. Due to space limit, we do not go into details in this paper.

4 Semantic Composition of Applications

Our model of PEs and data sources makes them amenable to composition using
AI planning. The input and output stream-patterns act as preconditions and

182 E. Bouillet et al.

effects of the PE. A data source is considered to have a single effect, correspond-
ing to the stream it produces. The problem now becomes composing PEs and
data sources in a DAG-based processing graph that can produce a stream which
matches the inquiry goal.

Before we go into the details of the composition, we first specify the conditions
for connecting a set of streams to a PE as input, and determining the description
of the output streams of the PE.

4.1 Connecting a Stream to a PE

A stream can be connected to a PE if the stream-pattern describing the PE’s in-
put requirements can be matched to the description of the stream. The matching
process involves finding a substitution of all the variables in the stream pattern
such that it can be inferred from the stream. Definitions in the domain ontology
can be used in the inference process.

Let us first define the notion of a substitution of variables. A substitution func-
tion (θ : V → RDFT) is defined from the set of variables (V) to the set of RDF
terms (RDFT). For example, mappings defined in a possible definition of θ in
the example PE include : θ(?videoSegment 1) = VideoSegment 1, θ(?timeInterval 1)
= TimeInterval 1 and θ(?subject) = BwayAt42nd.

The result of replacing a variable, v, is represented by θ(v). The result of
replacing all the variables in a graph pattern, GP , is written as θ(GP).

Consider a stream-pattern, SP (V S, GP) described by a set of variables, V S
and a graph pattern, GP . Also, consider a stream, S(D, G), with a set of data
elements, D, and a semantic graph, G, describing the elements. We define SP
to be matched by S, based on an ontology, O, if and only if there exists a
substitution, θ, defined on all the variables in GP , such that following conditions
hold:

– S ⊇ θ(V S), i.e. the stream contains at least those elements that the pattern
says it must contain.

– G ∪ O |= θ(GP) where O is the common ontology and θ(GP) is a graph
obtained by substituting all variables in GP . |= is an entailment relation
defined between RDF graphs, i.e. it defines a logical reasoning framework
by which it is possible to determine whether the set of facts in the left hand
side (i.e. G ∪ O) can be used to infer the set of facts in the right hand side
(i.e. θ(GP)).

One way of looking at the above definition is that the stream should be more
specific than the stream pattern. The stream should have at least as much data
and as much semantic information as described in the pattern.

The use of reasoning allows matching streams to stream patterns even if they
use different terms or graph structures. The exact logical reasoning that can be
performed using OWL is some subset of description logics (DL), e.g. based on
RDFS, OWL-Lite, OWL-DLP, OWL-DL [5], etc. At the minimum, the reasoning
can involve determining a graph-embedding relationship, i.e. can the substituted

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 183

graph pattern, θ(GP), be embedded in the graph G. More sophisticated reason-
ing mechanisms allow inferring additional facts from G, which can then be used
to determining the same graph-embedding relationship. Our matching system
uses DLP reasoning [6], which allows making inferences based on subclass and
subproperty relationships, symmetric, transitive and inverse property definitions,
domain and range definitions, value restrictions, etc.

An example of this process is shown in Fig 6. Here, the stream produced by
VideoCameraBway-42nd Data Source is matched to the stream-pattern describing
the input requirements of the VideoImageSampler PE. The variables ?VideoSeg-
ment 1 and ?TimeInterval 1 are mapped to the exemplars VideoSegment 1 and

TimeInterval 1 respectively. The dashed arrows show the variable substitutions.
In order to make the match, the system must perform DL reasoning based on
subclass and inverse property relationships defined in the domain ontology. For
example, the triple VideoSegment 1 videoOf BwayAt42nd is inferred, since videoOf
is declared to be an inverse property of hasVideoSeg in the ontology. Also, the
triple VideoSegment 1 type VideoSegment is inferred, since TrafficVideoSegment is
declared to be a subclass of VideoSegment. Once the inferences are done, it is
clear to see that the substituted graph pattern can be embedded into the graph
describing the stream produced by the camera; hence a match is obtained.

4.2 Automatic Composition of Applications

The goal of a composition process is to produce a processing graph that generates
streams that satisfy some high-level information need. This high-level informa-
tion need, or inquiry, is represented as a semantic stream pattern that describes
the kind of data elements and their semantics that some user or application is
interested in. This stream pattern becomes a goal for our planner. The stream
pattern is represented in a syntax that is similar to SPARQL [7], a semantic
query language for RDF. An example goal for real-time traffic congestion levels
at the Broadway-42’nd St intersection is

PRODUCE ?congestionLevel, ?time
WHERE (?congestionLevel type CongestionLevel) , (?time type Time),

(?congestionLevel ofLocation BwayAt42nd) , (?congestionLevel atTime ?time)

Note that this stream pattern does not contain any reference to the actual
data elements, or their formats, in which the congestion level and time may
be represented. This means that users can frame information needs without
knowing the exact formats (e.g. Java classes) for different messages. They can
describe the information need in terms of the semantics without having to know
the syntax of the final messages.

In previous sections, we defined the conditions under which two PEs can be
connected to each other, based on the matching between the output streams
and input stream patterns. At a high level, the planner works by checking if a
set of streams can be given as input to a PE. If so, it generates new streams
corresponding to the outputs of the PE. It performs this process recursively
and keeps generating new streams until it produces one that matches the goal

184 E. Bouillet et al.

pattern, or until no new unique streams can be produced, or the plan size exceeds
a pre-specified maximum size.

We have developed a planner that employs a two-phase approach to generate
plans. In the first phase, which occurs offline, it does pre-reasoning on the out-
put descriptions of different PEs to generate additional facts about the streams
produced by these PEs. The exact flavor of reasoning performed is OWL-DLP
(Description Logic Programs), which is known to be decidable, complete and to
take polynomial time.

The original and the inferred facts about components are translated into a
language called SPPL (Stream Processing Planning Language) [8]. SPPL is a
variant of PDDL (Planning Domain Definition Language) and is specialized for
describing stream-based planning tasks. It models the state of the world as a
set of streams and different predicates are interpreted only in the context of a
stream. The SPPL descriptions of different components are persisted and re-used
for multiple queries.

The second phase is triggered whenever an information request is submitted
to the system. During this phase, the planner translates the query into an SPPL
planning goal. It then calls SPPL solver [8] to produce a plan consisting of ac-
tions that correspond to components. The plan is constructed by recursively
connecting components to one another based on their descriptions until a goal
stream is produced. In our implementation, this plan is then deployed in the
System S stream processing system [2]. The main reason for the two-phase plan-
ning process is to achieve scalability in the presence of possibly time consuming
reasoning.

5 Experiments

In this section we measure the automatic composition capability with an ap-
plication domain we call Realtime Traffic Services (RTS). Applications in RTS
provide vehicle routing services based on the analysis of real-time data obtained
from sensors. The target deployment testbed used in our experiments consists
of four 4-way 3GHz Intel Xeon(TM) machines and five 2-way 2.4GHz AMD
Opteron (TM) 250 machines, running the Linux Suse 9.3 operating system and
interconnected with 1Gbs network cards via a Cisco Catalyst 6509 switch. The
planner was running on a Pentium M 2Ghz laptop with 2GB of RAM.

Figure 7 shows a screenshot of a tool that visualizes processing graphs de-
ployed on the System S infrastructure. PEs are grouped by host, and represented
with a distinct color for each inquiry. Semioval PEs represent the source (left
semioval) and the sink PEs (right semioval) which interface the RTS stream
processing application with external data sources and consumers. The figure de-
picts the processing graph for a route-update inquiry (i.e. an inquiry for the
best route from the current location to the final destination). As described in
previous sections, this processing graph is automatically composed by planner to
satisfy a set of results prescribed by the inquiry. The automatic placement of the
PEs to their respective hosts is coordinated by a separate resource management

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 185

CDB

0

1

6

2

3

7

4

5

VRD VRR

VLOC
EVL

VDST PCG LDB

b0605e0

b0610e0 b0603e0 b0601e0

b0607e0

Fig. 7. The flow graph for Route Update Service that takes as input the vehicle posi-
tions and destinations from source PEs 2 and 3 respectively, and outputs a best route
(PE 7), and generates a list of locations to monitor(PE 1)

component not described in this paper. The PEs of the resulting graph are the
analytic modules that receive the streaming data from the current vehicle loca-
tion (source PE 2) and destination (source PE 3), extract the GPS coordinates of
the vehicle location (PE 4), generate the K best potential travel corridors using
information from a map database(PE 5), receive updates on traffic conditions
in the relevant locations (PE 0), and decide on routes based on vehicle size (PE
6). The two main results of this inquiry are route updates for the vehicles (sink
PE 7) and updates to a list of currently relevant locations (cached in PE 1) for
which updates about traffic and other conditions are required.

The RTS scenario contained descriptions of 19 PEs and 6 sources, described
using 246 OWL classes, 156 OWL properties and 385 OWL individuals. In this
ontology we specified on average 13 triple patterns to describe a PE input, and
23 triple patterns to describe a PE output, and each PE description used an
average of 7 variables and 2 exemplars. The offline phase of the planner took
42.51 seconds. The planning times (in seconds) for several inquiries are presented
in the table below, together with graph size (number of PEs and sensors):

Inquiry Time Graph Size
Get Best Route Updates from current locn (Fig. 7) 2.51 8
Get Traffic Conditions Update near current location 2.32 12
Get Weather Conditions Update near current location 2.15 12
Get All Conditions Update near current location 2.5 18
Get Conditions and Best Route from current location 2.33 19

The results show that the response time of the planner is consistently around
2.5 seconds, which is acceptable for an end-user submitting the inquiry.

186 E. Bouillet et al.

6 Related Work

One closely related work is Semantic Streams [9], which allows users to pose
queries based on the semantics of sensor data. It uses a Prolog-based language
and defines logic rules that describe the semantics, such as the type and location
of sensor data sources, and input/output of inference units (equivalent to PEs).
While that model allows a highly expressive query language, scalability remains
an open question, since Prolog logic programs can be undecidable. Our model
uses OWL, based on description logics, which is known to be decidable. The
computational advantage of OWL combined with the use of scalable planning
algorithms allows our middleware to construct processing graphs quickly even
when there are a large number of PEs and data sources. The choice of OWL
as the representation medium also allows utilizing the large number of existing
ontologies that have been developed in the Semantic Web. Data sources and
PEs described using these terms and relations will be easier to inter-operate
than those that are developed without any such shared, common knowledge.

Programming models for individual sensor networks have received much at-
tention. TinyDB [10] proposes a SQL based query interface to extract data from
sensor networks. Welsh et al. [11] describe “abstract regions” to support the pro-
gramming of a collection of related sensors. Although a non-exhaustive list, the
above mostly deal with programming within individual sensor networks. They
are not designed for applications that utilize data from many sensor networks
and apply complex processing on the data.

Other efforts have focused on how to utilize data from large numbers of hetero-
geneous sensors and sensor networks. Hourglass [12] proposes an Internet based
infrastructure to inter-connect geographically diverse sensor networks, where ap-
plications collect and process data from them. Medusa [13] propose architecture
and systems for distributed data processing applications that take data from
many geographically distributed sensor networks. They do not use a semantic
approach, nor do they address the problem of automatic construction of appli-
cations from declarative, semantic queries.

Various stream query languages and stream processing architectures have been
proposed. Aurora [14] lets human users create a network of stream operators
to process incoming data. TelegraphCQ [15] proposes a declarative language
for continuous queries that uses relational operations and expressive windowing
constructs. These systems process structured data using relational and sliding
window operators. In contrast, our system supports complex processing of un-
structured data, such as speech-to-text and image recognition. It is highly exten-
sible and supports processing beyond relational and sliding window operators.

Prior work on composition by planning in Grid and Web Services includes
[16,17]. The major difference of our work from web service composition is the
emphasis on the semantics of the data. Semantic web service models like OWL-S
only associate concepts in an ontology with inputs and outputs, while our model
associates more expressive RDF graphs with variables.

A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks 187

7 Conclusion

In this paper we describe a semantics-based approach to automatically constructs
applications that utilize data from heterogeneous sensors and sensor networks.
We use a semantic model to formally describe desired end results, data sources
and PEs. Given an inquiry, a planner can automatically compose relevant PEs
and data sources to form applications. We have developed a prototype and have
demonstrated its ability to flexibly construct applications in different domains
and manage semantically rich and diverse sensors and sensor networks.

The semantic model helps in describing the diverse formats and meanings of
sensor data sources, and the nature of possibly complex processing needed by
applications. It also separates processing functions from the query model. New
functions can be added by enriching the ontology with semantic descriptions
of PEs; neither the query model nor the planner are affected. As our system
continues to be applied in a wider range of application scenarios, we will continue
to evaluate and improve this promising approach.

References

1. McGuinness, D., van Harmelen, F.: Owl web ontology language overview. In: W3C
Recommendation (2004)

2. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.:
Design, implementation, and evaluation of the linear road benchmark on the stream
processing core. In: SIGMOD’06 (June 2006)

3. National Cancer Institute Center for Bioinformatics: NCI thesaurus.
http://www.mindswap.org/2003/CancerOntology/

4. Rector, A.L., Horrocks, I.R.: Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In: AAAI
(1997)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation, and Applications. In:
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.) The Description Logic Handbook, Cambridge University Press, Cambridge
(2003)

6. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining
logic programs with description logic. In: WWW’03, pp. 48–57 (2003)

7. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. In: W3C
Working Draft (2006)

8. Riabov, A., Liu, Z.: Planning for stream processing systems. In: AAAI’05 (July
2005)

9. Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for composable
semantic interpretation of sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.)
EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

10. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TinyDB: An acquisitional
query processing system for sensor networks. TODS’05 (2005)

11. Welsh, M., Mainland, G.: Programming Sensor Networks Using Abstract Regions.
In: NSDI’04 (March 2004)

http://www.mindswap.org/2003/CancerOntology/

188 E. Bouillet et al.

12. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:
Hourglass: An Infrastructure for Connecting Sensor Networks and Applications.
Technical Report TR-21-04, Harvard EECS Dept (2004)

13. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Balakr-
ishnan, H.: The Aurora and Medusa projects. Bulletin of the Technical Committe
on Data Engineering, IEEE Computer Society (March 2003)

14. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. The VLDB Journal (2003)

15. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous dataflow processing for an uncertain world. In: CIDR’03
(January 2003)

16. Gil, Y., Deelman, E., Blythe, J., Kesselman, C., Tangmurarunkit, H.: Artificial
intelligence and grids: Workflow planning and beyond. IEEE Intelligent Systems
(January 2004)

17. Pistore, M., Traverso, P.: Bertoli, P.: Automated composition of web services by
planning in asynchronous domains. In: ICAPS’05 (2005)

A Compilation Framework
for Macroprogramming Networked Sensors�

Animesh Pathak1, Luca Mottola2, Amol Bakshi1,
Viktor K. Prasanna1, and Gian Pietro Picco3

1 Ming Hsieh Department of EE-Systems, University of Southern California, USA
{animesh, amol, prasanna}@usc.edu

2 Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Italy
mottola@elet.polimi.it

3 Department of Information and Communication Technology, University of Trento, Italy
picco@dit.unitn.it

Abstract. Macroprogramming—the technique of specifying the behavior of the
system, as opposed to the constituent nodes—provides application developers
with high level abstractions that alleviate the programming burden in develop-
ing wireless sensor network (WSN) applications. However, as the semantic gap
between macroprogramming abstractions and node-level code is considerably
wider than in traditional programming, converting the high level specification
to running code is a daunting process, and a major hurdle to the acceptance of
macroprogramming.

In this paper, we propose a general compilation framework for a data-driven
macroprogramming language that allows for plugging in different modules im-
plementing various stages of compilation. We also demonstrate an actual instanti-
ation of our framework by showing an end-to-end solution for compiling macro-
programs. Our compiler provides the final code to be deployed on real nodes
as well as an estimate of the costs the running system will incur, e.g., in terms
of messages exchanged. We compared the auto-generated code against a hand-
coded version for the same application behavior to verify the outcome of our
compiler.

1 Introduction

Macroprogramming refers to a set of programming techniques whose objective is to in-
crease application developers’ productivity and allow non-expert programmers to write
distributed, sense-and-respond applications easily. Abstractions are provided to spec-
ify the high-level collaborative behavior at the system level. Most of the low-level de-
tails concerning state maintenance or message passing are intentionally hidden from
the programmer. As a result of this, macroprogramming is emerging as a viable tech-
nique for developing complex embedded applications, as demonstrated by the several
efforts [2, 11, 20] currently underway in this field.

� This work is partially supported by the European Union under the IST-004536 RUNES project
and by the National Science Foundation, USA, under grant number CCF-0430061.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 189–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 A. Pathak et al.

Fig. 1. Comparing node-centric and macro- pro-
gramming

As illustrated in Fig. 1, the ease
of design provided by macroprogram-
ming comes at a cost when compared to
traditional node-centric programming.
In the former approach, application de-
velopers reason at a high level of ab-
straction, while the process of convert-
ing the high level representation to that
of the individual nodes is delegated
to a compiler. The higher the level of
abstraction, the more work needs to
be done by the compiler. This makes
the process of generating the final run-
ning code more difficult than in the
node-level compilers currently seen in
WSNs.

In the context of macroprogram-
ming for WSNs, we define compilation

as the semantics-preserving transformation of a high level application specification into
a distributed software system collaboratively hosted by the individual nodes. In [22],
we summarized the challenges faced by the designers of compilation frameworks for
macroprogramming languages. As illustrated in Sect. 3, the process of semantics-
preserving transformation itself involves addressing challenges of correct and efficient
conversion of representation. In addition, developers should be given the ability to ex-
press performance goals for the deployed system (e.g., in terms of expected network
lifetime or latency) that the compiler should consider in optimizing the configuration of
individual nodes and the allocation of different functionality to them.

In this paper, we present the design, implementation and evaluation of a compila-
tion framework to support macroprogramming. Specifically, we focus on a data-driven
macroprogramming model called the Abstract Task Graph (ATaG) [2], whose salient
features are described in Sect. 2. We make two contributions in this paper:

– We propose a general framework for compilation used for data-driven macropro-
gramming languages like ATaG. An overview of the compilation process is given in
Sect. 3. Our framework breaks down the process of converting the high-level spec-
ification to node-level functionality into a set of independent procedures—such as
optimizing the placement of functionality on the real nodes, or predicting commu-
nication costs. These different stages are connected through well-defined interfaces,
that allow for plugging in different modules implementing the various steps of com-
pilation. Our compilation framework is described in Sect. 4.

– We demonstrate the flexibility and generality of our framework by describing an
end-to-end solution for compiling ATaG macroprograms. Our proof-of-concept
compiler, obtained by instantiating the different modules in our framework, pro-
vides the code to be deployed on each node, as well as an estimate of the message
passing costs of the same. Moreover, the resulting code can be deployed on real
world nodes as well as in a simulation environment. As described in Sect. 5, the

A Compilation Framework 191

functionality of our compiler is assessed by inspecting and comparing the auto-
generated code against a manually developed version of the same.

Compilation of macroprograms is still in its formative stages, and there is great va-
riety in both the current work and future directions in the community. A discussion of
related work is presented in Sect. 6. Section 7 concludes this paper.

2 ATaG: Abstract Task Graph

Macroprogramming of WSNs is an active area of research, with several programming
paradigms currently being investigated [2, 11, 20]. In this work, we focus on ATaG
(Abstract Task Graph) [2], a data-driven macroprogramming framework. ATaG includes
an extensible, high-level programming model to specify the application behavior, and a
corresponding node-level run-time support, called DART [1]. The compilation of ATaG
programs consists of mapping the high-level ATaG abstractions to the functionality
provided by DART. We now provide some background on these topics, as they represent
the inputs and outputs of the transformation process, respectively.

2.1 Programming Model

ATaG provides a data driven programming model and a mixed imperative-declarative
program specification. A data driven model provides natural abstractions for specifying
reactive behaviors, while declarative specifications are used to express the placement
of processing locations and the patterns of interactions.

Sampler

Temperature

[nodes-per-instance:

1@TemperatureSensor]

[periodic:10]

Cluster-Head

[region-per-instance:1/Floor]

[anydata]

local logical-hops:1(Floor)

Abstract

Task

Abstract

Data

Abstract

Channel

Instantiation

Rule

Channel

Annotations

Firing Rule

Fig. 2. ATaG program for data-gathering

The concept of abstract data
items and abstract tasks are in-
tegral to specifying applications
in ATaG. The former represents
the information generated and
communicated in the system,
while the latter is a logical en-
tity encapsulating the process-
ing of one or more data items.
The processing within a task is
expressed using an imperative
language. The flow of informa-
tion between tasks is defined by
abstract channels, which con-
nect a task to a data item when

the task produces that item, or vice versa when the task consumes it. Not that in an
ATaG program, a data item can have more than one consumers, but only one producer.

Figure 2 illustrates an example ATaG program specifying a data gathering applica-
tion [5] for building environment monitoring. Sensors within a cluster take periodic tem-
perature readings, which are then collected by the corresponding cluster-head. The for-
mer aspect is encoded in the Sampler task, while the latter is represented by Cluster-
Head. The Temperature data item is connected to both tasks using abstract channels.

192 A. Pathak et al.

Tasks are annotated with firing and instantiation rules. The former specify when the
processing in a task must be triggered. In our example, the Sampler is triggered every
10 seconds according to the periodic rule. Differently, the any-data rule requires
Cluster-Head to run when a data item is ready to be consumed on any of its incoming
channels. The instantiation rules govern the placement of tasks on real nodes, whose
characteristics (e.g., sensing device attached) are encoded using node attributes. The
nodes-per-instance:q@Device rule requires the task to be instantiated once
every q nodes equipped with a specific device. According to @TemperatureSensor,
the Sampler task in our example will be instantiated on every node equipped with a tem-
perature device. Differently, the programmer requires a single Cluster-Head to be instan-
tiated on every floor in the building. The partition-per-instance:1/Floor
construct is used for this purpose. Its semantics is to derive a system partitioning based
on the values of the node attribute provided (Floor). In this case, the programmer re-
quires only one task to be instantiated in each partition.

Abstract channels are annotated to express the interest of a task in a data item. In our
example, the Sampler task generates data items of type Temperature kept local to the
node where they have been generated. The Cluster-Head collects data not only from its
own partition (floor), but also from adjacent ones. The logical-hops:1(Floor)
annotation specifies a number of hops counted in terms of how many system partitions
can be crossed, independent of the physical connectivity. Since Temperature data items
are to be used within one partition (floor) from where they generated, they will be
delivered to cluster-heads running on the same floor as the task that produced them, as
well as adjacent floors.

2.2 Runtime System

Data delivery across logical scopes

Logical Neighborhoods

Transceiver

get() and put(), concurrent
access, reference counts

DataPool

Task code,
dependencies,

annotations

ATaGManager

UserTasknUserTask1

Sensors Actuators

...

Application level

System levelMedium access, physical layer

NetworkStack

Fig. 3. DART: Data-driven ATaG run-time system

The node-level code output by
the ATaG compiler is designed
to run atop a supporting runtime
hiding the underlying, platform-
specific details. Figure 3 depicts
the architecture of our runtime
system [1]. The functionality is
divided into a set of modules to
facilitate customization to vari-
ous deployments.

The ATaGManager stores the
declarative portion of the user-
specified ATaG program that is
relevant to the particular node.
This information includes task
annotations such as firing rule
and I/O dependencies, and the

annotations of input and output channels associated with the data items that are
produced or consumed by tasks on the node. The DataPool is responsible for managing
all instances of abstract data items produced or consumed at the node. The

A Compilation Framework 193

LogicalNeighborhoods [18, 17] module handles data delivery by implementing a ded-
icated routing scheme. In particular, the inputs to this module include the data items
and the scope specifications those are addressed to. A scope identifies, in a logical man-
ner, the nodes an item is addressed to by referring to the relevant node attributes. For
instance, a scope may specify all the nodes running the Cluster-Head tasks deployed
on first Floor as intended recipients. Finally, the NetworkStack is in charge of com-
munication with other nodes in the network, and manages the physical layer protocols.
Note that by itself, ATaG does not deal with fault tolerance. However, the runtime sys-
tem and compiler developers are free to provide the user with an implementation that
takes desired fault-tolerance requirements and support them by techniques such as task
migration.

3 Compilation of Data-Driven Macroprograms: Overview

In this section, we provide an overview of the compilation process using the application
given in Fig. 2 as example. Formally, an abstract task graph A(AT, AD, AC) consists
of a set AT of abstract tasks and a set AD of abstract data items. The set of abstract
channels AC can be divided into two subsets – the set of output channels AOC ⊆
AT × AD and a set of input channels AIC ⊆ AD × AT . In our example, the Sampler
is AT1 and Cluster-Head is AT2, while Temperature is AD1. AOC is {AT1 → AD1}
and AIC is {AD1 → AT2}. The compiler generates a set of node-level programs based
on AT and the description N of the target system.

Task
Instantiation

Composition

C-H

Channel

Floor 3

Floor 1

Floor 2

S

T

S C-H

Fig. 4. An example illustrating the compilation process of our sample program

Composition of Channels. Owing to ATaG’s purely data-driven programming model,
the developer only specifies relations between tasks and the data items they are produc-
ing (via AOC) and consuming (via AIC). While this provides a clean model to the
developer, traditional task allocation techniques work on task graphs with direct depen-
dency links between tasks. To address the problem of generating such task graphs, we
convert each path ATi → ADk → ATj to an edge ATi → ATj .

194 A. Pathak et al.

Since the channels in ATaG have logical scopes associated with them, composing
two channels into one poses its own set of challenges. The basic process of compos-
ing channels results in the (composed abstract channel) CACijk being annotated with
the union of three constraints. The first is that the node should have task ATj assigned
to it. The second(third) constraint is obtained by combining the instantiation rule of
ATi(ATj) with the annotation on the abstract channel connecting it to ADk. For in-
stance, in our example, after composition, AC121 is {(Cluster-Head is instantiated)
&& (Floor = Floor of Sampler or ±1)}. Depending on the complexity of scopes used
in the channels, the resultant constraint can be further simplified by set operations to
get a more compact constraint for the composed channel.

This task graph with composed channels is then instantiated on the given target net-
work. Figure 4 illustrates an example of a target network. The nodes are on three differ-
ent floors, and those marked with a thermometer have temperature sensors attached to
them.

ITaG: Instantiated Task Graph. The intermediate representation used for applying
task-allocation techniques is called the instantiated task graph (ITaG). It is a repre-
sentation of the target system, with the tasks assigned to each node and communicating
with each other. It consists of multiple copies of each abstract task specified in the ATaG
program, each assigned to a particular node. The (directed) edges of the ITaG connect
each task to the tasks that depend on it, i.e., the tasks that a) consume the data item
produced by it, and b) belong to the logical scope specified by the constraints in the
connecting composed channel. Formally, the ITaG I(IT, IC) consists of a set IT of
instantiated tasks and a set IC of instantiated channels. For each task ATi in the ATaG
from which I is instantiated, there are f(ATi, N) elements in IT , where f maps the
abstract task to the number of times it is instantiated in N . IC ⊆ IT × IT connects the
instantiated version of the tasks. The ITaG I can also be represented as a graph G(V, E),
where V = IT and E = IC. Additionally, each ITj in the ITaG has a label indicating
which node in N it is to be deployed on. This overlay of communicating tasks over the
target deployment allows us to use modified versions of classical techniques meant for
analysing task graphs.

In our example, since there are seven nodes with attached temperature sensors,
f(AT1, N) = 7. Similarly, f(AT2, N) = 3, since the Cluster-Head task is to be in-
stantiated once on each of the three floors. The figure shows one allocation of the tasks
in IT , with arrows representing the instantiated channels in IC (we have showed chan-
nels leading to only one instance of AT2 for clarity). Note that the although the ITaG
notation captures the information stored in the abstract task graph (including the instan-
tiation rules of the tasks and the scopes of the connecting channels) it does not capture
the firing rules associated with each task. The compiler’s task involves incorporating the
firing rule information while making decisions about allocating the tasks on the nodes.

In summary, the compiler is responsible for generating an efficient task placement,
ensuring that the composed channels are consistent with the semantics specified by the
application developer in the abstract channels, and configuring the runtime system mod-
ules. An added complexity in the compilation process is brought by the large space of
optimizations possible in the process to meet the user-specified performance goals (e.g.
energy efficiency). Note that although tasks are assigned fixed locations at the end of

A Compilation Framework 195

the compilation process, task migration can happen later if the the underlying system
supports it. Even in such situations, a good initial task placement by a compiler using
global knowledge can go a long way in creating efficient systems. In the following sec-
tion, we describe how the components of the compilation framework work to produce
the outputs from the inputs, using the ITaG notation internally.

4 Compilation Framework

ATaG is designed to enable the addition of domain-specific constructs, and customize
the abstractions offered depending on the application requirements. This requires a flex-
ible and extensible approach to the compilation problem. Ideally, the system designer
should be given the ability to add new language constructs by implementing the re-
quired mappings without modifying any of the pre-existing compilation mechanisms.
For instance, creating a new instantiation rule should not require modifications to the
algorithms used to map tasks to nodes using an existing rule.

To address this issue, we first identified the different steps involved in the compila-
tion of ATaG programs by factoring out orthogonal concerns and mechanisms. Next,

COMPILER

Imperative

Part

Parser

Imperative Code

Generator

ITaG Creator
[creates instances of tasks,

to be allocated later]

Network Description

System Linker

[customizes runtime

modules and creates

output files]

Cost Esimates
Assigned Tasks and

Customized Runtime Modules

Task Firing Model

[based on the

imperative code]

Task

Allocation

Module

Declarative

Part

Common

Templates

Channel

Composer

From Libraries Macroprogram From Developer From System Specification

For Deployment on Nodes For Feedback to Developer

Energy Model

Estimator

Fault Model

Comm. Model

Fig. 5. The ATaG compilation framework

196 A. Pathak et al.

considering the decomposition obtained, we designed a modular compilation frame-
work, upon which we based the construction of our ATaG compiler. In this section, we
first illustrate the input and output of our framework (illustrated in Fig. 5), and then
proceed to the description of the different modules implementing the compilation itself.

4.1 Compilation Input and Output

The information provided at the beginning of a compilation effort are:

ATaG declarative specification: consisting of the abstract task graph itself, i.e., the set
of abstract tasks and abstract data items, connected by abstract channels.

ATaG imperative code: namely, the description of the actions taken when each task is
fired, expressed in an imperative language.

DART run-time templates: including both the node-level code later customized by the
compiler, and generic supporting mechanisms, e.g., for routing messages.

Network description: containing information on the target deployment scenario, e.g.,
number, location and attributes of nodes. The attributes may contain information about
the logical region the node is in (e.g., floor number), and the sensors or actuators at-
tached to it. The need for a separate network description is dictated by ATaG’s charac-
teristic of being deployment agnostic. Since ATaG programs do not assume any specific
target deployment, the program can be easily re-deployed if the target changes. More-
over, the network description does not necessarily include information on node connec-
tivity. Depending on the constructs employed in the ATaG program, it may be sufficient
to provide the list of target nodes along with the corresponding attributes exported.

The above input to the compilation framework is used to derive: (i) the files to be de-
ployed on the real nodes, sorted according to the node identifier, and (ii) cost estimates
to provide feedback to the application developer. Note that the actual nature of the cost
estimates returned can vary depending on the developer needs. The costs returned may
simply represent a measure of the communication overhead involved, e.g., in terms of
messages exchanged per minute on a system-wide scale. Alternatively, finer-grained
information may be computed, such as the expected per-node lifetime.

4.2 Compilation Modules

We encapsulated the compilation stages we identified in separated modules, and de-
fined generic interfaces between them so as to minimize inter-module dependencies.
Our current prototype implementation has 2677 lines of non-commented Java code.
Still referring to Fig. 5, we now describe these different modules, also pointing out the
implementations we have realized so far.

Parser. The parser converts text files containing the declarative part of the program to an
internal representation that is then used by the other modules. This process also involves
a syntax check where errors such as duplicate task/data names and the existence of more
than one producer task for one data item are identified and reported to the programmer.

In our current implementation, the declarative part of the ATaG program is specified
using XML. This will allow an easy integration of tools for the automated generation

A Compilation Framework 197

of XML specifications from graphical representations. Our parser module is a simple
XML parser that performs the aforementioned checks, assigns unique IDs to tasks and
data items, and populates an internal data structure with the information.

Imperative Code Generator. Based on the parser output, the imperative code generator
creates a set of files containing the basic declaration of the variables associated with
each task and data items. The imperative part of the code provided by the programmer
can then be plugged into these templates.

In our prototype implementation, the imperative part of an ATaG program is ex-
pressed using Java. As such, our current code generator creates Java files with unique
numerical constants for each abstract task and data item corresponding to their id. Then,
it creates a separate class for each abstract task with basic functionality filled in (e.g., a
thread instance with a loop for periodic tasks).

Channel Composer. Looking at the declarative part of the ATaG program returned by
the parser, this module performs the composition of channels to and from each data item
to form edges of the ITaG, as described in Sect. 3.

Depending on the actual channel annotations supported, our prototype implemen-
tation may perform a range of operations, from a simple concatenation to complex
operations that also consider the instantiation rules of the producer/consumer tasks.

ITaG Creator. Based on the network description and the output of the channel transla-
tor, the ITaG creator first computes the number of distinct target regions for each task,
i.e., the set of candidate nodes for hosting a given task. For instance, tasks instantiated
with nodes-per-instance:x as instantiation rule have the entire system as target
region. For tasks assigned by partition-per-instance:x/PLabel, each set
of nodes with the same value for PLabel is a target region. The ITaG creator then in-
stantiates as many copies of the task as the product of the number of target regions and
the number of instances per target region required in the ATaG program. Note that, at
this stage, tasks are instantiated but not yet assigned to nodes. That is done by the task
allocator module, discussed next.

Our implementation of this module performs the above operations using the network
description read from a text file containing basic information on the nodes, e.g., their
identifier, and set of attributes describing their characteristics, such as sensing devices
installed.

Task Allocation Module. As such, the allocation module constitutes the core of the
compilation process, since its job is to output a mapping from the set of instanti-
ated tasks to the set of nodes. Note the task instantiation rules can be characterized
as either fixed location (e.g., nodes-per-instance:1) or variable location (e.g.,
nodes-per-instance:3), depending on whether there is a unique way of instan-
tiating the copies of a task given the network description. In this respect, an extremely
large problem space exists depending on the annotations used, metrics to be optimized,
and properties of the network. To perform its job, the allocation module relies on two
further modules—the estimator and the task firing model–described next.

In our implementation, this module performs task allocation in two passes. In the
first pass, it assigns all the tasks with fixed locations. In the second pass, it assigns vari-

198 A. Pathak et al.

able location tasks. For the latter, we currently employ a simple randomized assignment
policy, with each node in the target region having an equal probability of hosting the
instances of the task. However, due to the generality of our framework, more sophis-
ticated mechanisms can be plugged in to achieve performance goals specified by the
application designer. This is among our immediate research goals.

Estimator. Taking as inputs the network description and the task placement returned
by the allocation module, the estimator computes the cost metric returned at the end of
the compilation process. Our framework gives great flexibility in instantiating this mod-
ule, as its interface is designed to be generic w.r.t. the nature of information required.
This allows application developers to explore the trade-off between the quality of the
estimate obtained, and the time required to obtain it. For instance, during the early de-
sign stages it is usually helpful to have a quick estimate of the communication costs, so
that many alternative solutions can be explored. In this case, a simple but fast estima-
tion algorithm can be employed that does not account for message losses. Conversely,
when the application developer is to fine-tune the application, an actual simulation of
the deployed application can be run within the estimator.

In our prototype system, we implemented both ends of the spectrum. Specifically,
we realized a naive estimator returning communication costs as if all the tasks pro-
duced data when fired and the underlying routing mechanisms were able to identify
the optimal message routes. On the other hand, we also implemented a wrapper around
SWANS/Jist [3]: a simulator able to run unmodified Java code on top of a simulated
network. This plug-and-play capability highlights the power of our framework.

Task Firing Model. It would appear that if we know the exact paths taken by the data
items, we can precisely estimate the cost of running a given task allocation. However,
not all instantiated tasks produce data when they fire. For instance, although a Temper-
ature Sampler task may produce a Temperature data item whenever it fires, an Alarm
task may or may not produce an alarm depending on whether or not the temperature of
the region is high enough. The task firing model’s function is to assign probabilities to
the firing of various tasks in the program. Although this module is not mandatory for a
working compiler, various approaches can be used to obtain the needed information -
ranging from the developer providing profiling data obtained from previous runs of the
system, to static code analysis techniques [4, 6].

System Linker. At the end of the whole process, the linker module combines the in-
formation generated by the various paths of the compilation into the actual code to be
deployed on the real nodes. More specifically, it configures the ATaGManager and Dat-
aPool modules in the node-level run-time depending on the task and data items handled
at each node, and merges the imperative code provided by the application developer
with the templates generated by the imperative code generator.

In our implementation, the output of this module is a set of Java packages for each
node. Note that these files are not binaries. They still need to be compiled in the classical
sense, but that can be done by any node-level compiler designed for the target platform.

A Compilation Framework 199

AvgQueueLength

RampSignal

Calculator

RampSignal

[partition-per-instance:

1/HighwaySector]

[anydata]

RampSignal

Displayer

[nodes-per-instance:

1@rampSignalActuator]

[anydata]

AvgSpeed

SpeedLimit

Calculator

SpeedLimit

domain

SpeedLimit

Displayer

[nodes-per-instance:

1@speedLimitActuator]

[anydata]

local

logical-hops: 1

(HighwaySector)

RampSampler

VehiclePresence

domain

AvgQueueLength

Calculator

local

SpeedSampler

RawSpeed

AvgSpeed

Calculator

local local

[nodes-per-instance:

1@presenceSensor]

[periodic:10]

[nodes-per-instance:

1@speedSensor]

[periodic:10]

domainlocal

[partition-per-instance:

1/HighwaySector]

[anydata]

[partition-per-instance:

1/HighwaySector]

[anydata]

[partition-per-instance:

1/HighwaySector]

[anydata]

logical-hops: 1

(HighwaySector)

logical-hops: 1

(HighwaySector)

logical-hops: 1

(HighwaySector)

domain local

Fig. 6. An ATaG program for highway traffic management

5 Demonstration

Humidity Sampler

Humidity

Collector

Action

domain

HVAC Controller

local
local

domain

Temperature

Sampler

Temperature

local

domain

[nodes-per-instance:

1@temperatureSensor]

[periodic:10]

[nodes-per-instance:

1@humiditySensor]

[periodic:10]

[partition-per-instance:

1/floor]

[anydata]

[nodes-per-instance:

1@hvacActuator]

[anydata]

Fig. 7. An ATaG program for building environment man-
agement

To demonstrate the effective-
ness of our prototype compiler,
we consider two non-trivial ap-
plications, and report on the
functionality of the code gener-
ated, as well as the performance
of the compilation process.

The first application, illus-
trated in Fig. 6, describes a
highway traffic management
system. In this case, two differ-

ent sub-goals must be achieved - regulating the speed of vehicles on the highway by
controlling speed limit displays, and controlling the access to the highway by means
of red/green signals on the ramps. The highway is divided into sectors, and sensors
are deployed on the highway lanes and ramps to sense the speed and presence of ve-
hicles, respectively. The sensed data goes through a multi-stage process where it is
first aggregated w.r.t. a single sector to derive an average measure (AvgSpeedCalculator
and AvgQueueLengthCalculator tasks), and then delivered to tasks deciding the actions
taken in adjacent highway sectors (SpeedLimitCalculator and RampSignalCalculator
tasks). Note the latter is expressed using the logical-hops construct relative to the
HighwaySector attribute. Finally, data items describing the actions to perform are
delivered to dedicated tasks instantiated on nodes equipped with the corresponding de-
vice, i.e., speed limit displays for the SpeedLimitDisplayer, and ramp signals for the
RampSignalDisplayer.

The second application, depicted in Fig. 7, targets a building environment man-
agement system. Essentially, the processing is similar to the cluster-based data ag-
gregation of Fig. 2, but now gathering data from two different types of sensors. The

200 A. Pathak et al.

@TemperatureSensor and @HumiditySensor constructs are used to distin-
guish nodes with different types of sensing devices. Additionally, the cluster-head also
outputs data items representing actions to perform on the environment. These items
are input to an additional task that actually operates the heating, ventilation, and air
conditioner (HVAC) devices in the building. As for this, the programmer requires the
task to be instantiated on nodes with HVAC devices installed by means of the
@hvacActuator construct.

Code Functionality. We hand-coded the logic for both applications to perform simu-
lation studies on the underlying routing mechanisms [16]. The hand-written code also
allowed us to verify the functionality of our compiler, by comparing the automatically
generated code with the one we used in the aforementioned studies. Indeed, by com-
paring the simulation logs obtained using the SWANS/Jist [3] simulator, we confirmed
that the compiler-generated code is functionally equivalent to the hand-written version.
The specific code samples can be found at [21].

Building Traffic

Abstract Tasks 4 8
nodes-per-instance:x@PLabel 3 4
partition-per-instance:x/PLabel 1 4

Abstract Data Items 3 6

Abstract Channels 6 14
local 3 6
domain 3 4
logical-hops:1(PLabel) 0 4

Fig. 8. Sample applications

Settings for Performance Studies. We look at
the time and memory taken to compile the above
ATaG programs. Since our task firing model as-
sumes that all tasks produce data when fired, the
specific imperative code of the tasks does not in-
fluence the complexity of compilation. Rather,
the compiler’s performance is mainly dictated by
the declarative part of an ATaG program and the
characteristics of the deployment environment.
More specifically, we recognized the following

factors are pivotal in determining the time/memory taken to compile:

1. the number of abstract tasks, data items, and channels,

2. the nature of instantiation rules and channel interests, and

3. the number of nodes specified in the network description.

The complexity of the compilation task comes from different sources. The effort in
composing channels is dependent on the actual channel annotations used, as well as the
number of channels themselves. The ITaG creation stage becomes more complex as the
complexity of the network grows. Note that this includes the number of logical regions
the network can be divided into, as well as the variation in the attributes of the nodes.
The size of the problem addressed by the task allocation module depends both on the
network size as well as the constraints used in the program. For instance, placing a task
whose instantiation rule is in the form partition-per-instance:x/PLabel
requires more processing than placing a task with nodes-per-instance:1. All
this in turn affects the performance of the system linker as it customizes the run-time on
each node. Figure 8 reports the values of these factors seen in our sample applications.

In our tests, the compilation framework has been instantiated with the prototype im-
plementations we described in Sect. 4 for each module. In particular, we have chosen to
employ the naive estimator and an always-firing task firing model. For each test we per-
formed, we repeated the compilation process 500 times to account for fluctuations due

A Compilation Framework 201

 2000

 4000

 6000

 8000

 10000

 12000

 50 100 150 200 250 300

A
vg

 ti
m

e
to

 c
om

pi
le

 (
m

s)

Nodes

Traffic Application
Building Application

(a) Time taken to compile.

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

M
ax

 m
em

or
y

co
ns

um
pt

io
n

(M
b)

Nodes

Traffic Application
Building Application

(b) Maximum memory consumed during
compilation.

Fig. 9. Compiler performance

to concurrent processes. The experiments were on a Pentium IV HT 3.2 Ghz running
Gentoo Linux 2.16.15, using the DJProf [7] profiler.

Performance Results. Figure 9 illustrates the performance of our compiler as a func-
tion of the number of target nodes. As expected, the time taken to compile an ATaG
program grows quadratically as the number of nodes increases. This is due to the naive
estimator we used, that computes the all-to-all shortest path with an algorithm whose
time complexity is quadratic w.r.t. the number of vertices. However, fairly large in-
stances can be compiled in reasonable time. For instance, slightly more than ten seconds
are needed to compile the traffic application for a target system with > 250 nodes.

In addition, the memory consumed during the compilation process exhibits a linear
increase with respect to the number of nodes in the deployed system. The source of this
behavior is in the data structures we employed in the ITaG creator and allocation mod-
ules, that allocate a fixed amount of data for each target node. The memory consumed
is always well within the limits of standard desktop PCs (< 100 MB).

In exchange for the above costs in term of memory and time, the framework buys the
developer ease-of-use in implementing the application using ATaG macroprograms. To
reassert this fact, we note that looking at the number of Java classes compiled to deploy
our traffic application on a single node, it turns out only 15 out of a total of 51 classes
are the direct result of the developer’s effort. The others are the implementation of the
DART run-time system. Furthermore, considering the actual number of lines of non-
commented code, only about 12% of the imperative code is hand-written by developers,
whereas the rest is either part of the run-time support, or automatically generated.

6 Discussion

Initial programmming of WSNs was done by the nesC [8] language and the tinyOS op-
erating system [12], and helped a wide research community build and test applications
and system components for networked sensing [9, 13, 14, 23]. Over time, tools such as
SNACK [10] were developed to support the programmers of such systems, and sen-
sor nodes supporting more traditional programming languages such as Java have also

202 A. Pathak et al.

emerged [24]. However, the compilers of all these languages are essentially node-level
compilers, not very different from the common C compiler used on larger machines.

Various macroprogramming approaches have been proposed recently to alleviate
the programming burden for WSN application developers [11, 20]. Since we are not
aware of published work specifically detailing their compilation process, we compare
our work with the issues we expect would be addressed by similar systems for these lan-
guages based on existing literature. Kairos [11] is an imperative, control driven macro-
programming language where the application designer can write a single program in a
Python-like language with additional keywords to express parallelism. A ‘centralized’
program describes the activities at all nodes in the system and is translated into node-
level binaries by a dedicated compiler. Since the program is written in an imperative
form, and whether the action will be performed at a particular node or not is decided by
conditions mentioned in the macroprogram itself, the issues faced by the compiler are
very different from ours. For example, there is no channel composition to be done and
no specific tasks to be allocated.

Regiment [20] is a functional programming language, with support for region-based
functions like filtering, aggregation and function-mapping. The Regiment primitives
operate on a model of the sensor network as a set of continuous data streams. In [19],
the authors introduced the TML intermediate language to represent the actions being
performed at individual nodes. The authors state that Regiment programs can be seen as
data flow graphs, with primitives such as afold combining functions and data on actual
nodes to produce data. Although the functional programming approach of Regiment is
very different from the data-driven approach of ATaG, the above similarity (ATaG tasks
combine data produced at other nodes to produce more data) might lead to some re-use
of our ideas in the compilation of Regiment macroprograms.

EnviroSuite [15] is an object-based programming system that introduces the environ-
mentally immersive paradigm. Its abstractions revolve directly around elements of the
environment as opposed to sensor network constructs, such as regions, neighborhoods,
or sensor groups. Object instances float across the network following (geographically)
the elements they represent. The EnviroSuite Compiler (EIPLC) is essentially a transla-
tor that takes EnviroSuite code as input and outputs desired environmental monitoring
applications in nesC, which then can be compiled by a standard nesC compiler and
uploaded to the motes.

This paper does not claim to completely solve the problem of compilation of macro-
programs for WSN applications. Our main focus is to present a clear set of subtasks
involved in the process, and the interrelationships of the modules implementing them.
We believe that this will contribute towards the achievement of two goals. By clearly
identifying the modules, we can help researchers in the community attack the particu-
lar subtasks involved in compilation. Clearly, more efficient techniques are required to
provide the functionalities of the Estimator, Task Firing Model, and the Task Allocation
module. Another issue that remains to be addressed is the possibility of timing conflicts
among the tasks that are instantiated on a node, which is part of our future work. Fur-
ther, by presenting a proof of concept implementation of the compiler, domain experts
can begin to use the ATaG macroprogramming framework and provide us feedback
on the language, the compiler as well as the runtime system. Although our current

A Compilation Framework 203

implementation runs on a simulator, the nature of the SWANS/Jist system is such that
the same code can be run on actual nodes. We indend to present a demo of our approach
on SunSPOT [24] nodes in the near future.

7 Concluding Remarks

In this paper, we presented a general compilation framework for a data-driven macro-
programming language for sensor networks. We demonstrated the feasibility of our
approach by developing a compiler that can convert macroprograms written in ATaG
into a running sensor system. Our experiments indicate that the time taken to compile
the macroprogram depends closely on the complexity of both the macroprogram and
that of the target sensor system.

Our compilation framework currently assumes a static network structure, which
greatly limits the class of applications that we can address using this approach. Even in
those applications, issues such as faults cannot be addressed by the current approach.
Our immediate future work will involve exploring on-line task migration algorithms
that can continually work for optimizing the task allocation, in addition to efficient al-
gorithms for ascertaining good initial task placements.

References

1. Bakshi, A., Pathak, A., Prasanna, V.K.: System-level support for macroprogramming of net-
worked sensing applications. In: Int. Conf. on Pervasive Systems and Computing (PSC)
(2005)

2. Bakshi, A., Prasanna, V.K., Reich, J., Larner, D.: The abstract task graph: A methodology
for architecture-independent programming of networked sensor systems. In: Workshop on
End-to-end Sense-and-respond Systems (EESR) (June 2005)

3. Barr, R., Haas, Z.J., van Renesse, R.: Jist: an efficient approach to simulation using virtual
machines. Softw. Pract. Exper. 35(6) (2005)

4. Bernat, G., Burns, A., Wellings, A.: Portable worst-case execution time analysis using java
byte code. In: Proc. of the 12nd Euromicro Conf. on Real-Time Systems (2000)

5. Choi, W., Shah, P., Das, S.: A framework for energy-saving data gathering using two-phase
clustering in wireless sensor networks. In: Proc. of the 1st Int. Conf. on Mobile and Ubiqui-
tous Systems: Networking and Services (MOBIQUITOUS) (2004)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S.: Robby, and H. Zheng.
Bandera: extracting finite-state models from java source code. In: Proc. of the 22nd Int. Conf.
on Software Engineering (ICSE) (2000)

7. DJProf Java Profiler, http://www.mcs.vuw.ac.nz/∼djp/djprof/
8. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language:

A holistic approach to networked embedded systems. In: Proceedings of Programming Lan-
guage Design and Implementation (PLDI) (2003)

9. Habitat Monitoring on the Great Duck Island, www.greatisland.net
10. Greenstein, B., Kohler, E., Estrin, D.: A sensor network application construction kit

(SNACK). In: 2nd ACM Conference on Embedded Networked Sensor Systems (2004)
11. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor networks

using Kairos. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005.
LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

http://www.mcs.vuw.ac.nz/~djp/djprof/
www.greatisland.net

204 A. Pathak et al.

12. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. SIGOPS Oper. Syst. Rev. 34(5), 93–104 (2000)

13. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In:
Proc. ACM/IEEE MobiCom (August 2000)

14. Krishnamachari, B.: Networking Wireless Sensors. Cambridge University Press, Cambridge
(2006)

15. Luo, L., Abdelzaher, T.F., He, T., Stankovic, J.A.: Envirosuite: An environmentally im-
mersive programming framework for sensor networks. Trans. on Embedded Computing
Sys. 5(3), 543–576 (2006)

16. Mottola, L., Pathak, A., Bakshi, A., Prasanna, V.K., Picco, G.: Enabling Scoping in Sensor
Network Macroprogramming. Technical report. Submitted for publication, (2006) Available
at http://indus.usc.edu/atag

17. Mottola, L., Picco, G.P.: Logical Neighborhoods: A programming abstraction for wireless
sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006.
LNCS, vol. 4026, pp. 150–168. Springer, Heidelberg (2006)

18. Mottola, L., Picco, G.P.: Programming wireless sensor networks with logical neighborhoods.
In: Proc. of the 1st Int. Conf. on Integrated Internet Ad hoc and Sensor Networks (InterSense)
(2006)

19. Newton, R., Arvind, Welsh, M.: Building up to macroprogramming: An intermediate lan-
guage for sensor networks. In: Proc. of the 4th Int. Conf. on Information Processing in Sensor
Networks (IPSN) (2005)

20. Newton, R., Welsh, M.: Region streams: Functional macroprogramming for sensor networks.
In: Proc of the 1st Int. Workshop on Data Management for Sensor Networks (DMSN) (2004)

21. Pathak, A., Mottola, L., Bakshi, A., Prasanna, V.K., Picco, G.P.: Compiling macroprograms
using the ATaG compilation framework Technical report, University of Southern California
(2007), http://indus.usc.edu/atag

22. Pathak, A., Prasanna, V.K.: Issues in Designing a Compilation Framework for Macropro-
grammed Networked Sensor Systems. In: Proc. of the the 1st Int. Conf. on Integrated Internet
Ad hoc and Sensor Networks (InterSense) (2006)

23. Rahimi, M., Hansen, M., Kaiser, W., Sukhatme, G., Estrin, D.: Adaptive sampling for envi-
ronmental field estimation using robotic sensors. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (August 2005)

24. Small Programmable Object Technology (Sun SPOT),
http://www.sunspotworld.com

http://indus.usc.edu/atag
http://indus.usc.edu/atag
http://www.sunspotworld.com

Passive Inspection of Sensor Networks�

Matthias Ringwald1, Kay Römer1, and Andrea Vitaletti2

1 Institute for Pervasive Computing, ETH Zurich, Switzerland
2 Department of Informatics, University of Rome “La Sapienza”, Italy

{mringwal,roemer}@inf.ethz.ch, andrea.vitaletti@dis.uniroma1.it

Abstract. Deployment of sensor networks in real-world settings is a labor-inten-
sive and cumbersome task: environmental influences often trigger problems that
are difficult to track down due to limited visibility of the network state. In this
paper we present a framework for passive inspection (i.e., no instrumentation of
sensor nodes required) of deployed sensor networks and show how this frame-
work can be used to inspect data gathering applications. The basic approach is
to temporarily install a distributed network sniffer alongside the inspected sensor
network, with overheard messages being analyzed by a data stream processor and
network state being displayed in a graphical user interface. Our tool can be flex-
ibly applied to different sensor network operating systems and protocol stacks,
and can deal well with incomplete information.

1 Introduction

Deployment of sensor networks in real-world settings is typically a labor-intensive and
cumbersome task [1, 2, 3, 4, 5, 6, 7, 8, 9]. While simulation and lab testbeds are helpful
tools to test an application prior to deployment, they fail to provide realistic environ-
mental models (e.g., regarding radio signal propagation, sensor stimuli, chemical/me-
chanical strain on sensor nodes). Hence, environmental effects often trigger bugs or
degrade performance in a way that could not be observed during pre-deployment test-
ing. To track down such problems, a developer needs to inspect the state of network and
nodes. While this is easily possible during simulation and experiments on lab testbeds
(wired backchannel from every node), access to network and node states is very con-
strained after deployment.

Current practice to inspect a deployed sensor network requires active instrumenta-
tion of sensor nodes with monitoring software and monitoring traffic is sent in-band
with the sensor network traffic to the sink (e.g., [6, 10, 11]). Unfortunately, this ap-
proach has several limitations. Firstly, problems in the sensor network (e.g., partitions,
message loss) also affect the monitoring mechanism, thus reducing the desired benefit.
Secondly, scarce sensor network resources (energy, cpu cycles, memory, network band-
width) are used for inspection. In Sympathy [6], for example, up to 30% of the network
bandwidth is used for monitoring traffic. Thirdly, the monitoring infrastructure is tightly
interwoven with the application. Hence, adding/removing instrumentation may change

� The work presented in this paper was partially supported by the by the Swiss National Science
Foundation under grant number 5005-67322 (NCCR-MICS).

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 205–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 M. Ringwald, K. Römer, and A. Vitaletti

the application behavior in subtle ways, causing probe effects. Also, it is non-trivial
to adopt the instrumentation mechanism to different applications. For example, [6, 10]
assume a certain tree routing protocol being used by the application and reuse that pro-
tocol for delivering monitoring traffic.

In contrast to the above, we propose a passive approach for sensor network inspec-
tion by overhearing and analyzing sensor network traffic to infer the existence and lo-
cation of typical problems encountered during deployment. To overhear network traf-
fic, a so-called deployment support network (DSN) [12] is used: a wireless network
that is temporarily installed alongside the actual sensor network during the deployment
process. The DSN may be removed as soon as initial problems have been fixed and
the sensor network is operational. Each DSN node provides two different radio front-
ends. The first radio is used to overhear the traffic of the sensor network, while the
second radio is used to form a robust and high-bandwidth network among the DSN
nodes to reliably collect overheard packets. A data stream framework performs online
analysis of the resulting packet stream to infer and report problems soon after their
occurrence.

This approach removes the above limitations of active inspection: no instrumenta-
tion of sensor nodes is required, sensor network resources are not used. The inspec-
tion mechanism is completely separated from the application, can thus be more easily
adopted to different applications, and can be added and removed without altering sen-
sor network behavior. Online analysis (as opposed to long periods of data collection
followed by offline analysis) contributes to a more effective deployment process, as it
allows an engineer to go out and study affected nodes while a problem is still present.
Also, problems can be fixed in an incremental fashion as they occur, thus reducing the
chance for complex aftereffects. Besides these advantages, we need to address a number
of challenges:

Incomplete information. The DSN may fail to overhear some packets and messages
might not contain all information that is needed to infer a problem. To support ro-
bust problem detection nonetheless, we provide appropriate loss-tolerant data stream
operators.

Flexibility. There is no established protocol stack for sensor networks – a large variety
of radio configurations, MAC, routing, and application layer protocols are in use. To
support this open protocol space, we provide a packet capturer that works with a large
variety of MAC protocols and radio configurations, as well as a flexible packet decoder.

Reliability The DSN should provide reliable wireless communication. We use Blue-
tooth for this purpose, which has been designed as a cable replacement, employing
frequency hopping and other techniques to minimize loss.

In the first part of this paper we present a concrete instance of the above approach
called SNIF (Sensor Network Inspection Framework) which is – as the name suggests
– intended as a widely applicable framework for passive inspection. The second part
of the paper contains an extensive case study of how SNIF can be applied to so-called
data gathering applications. In particular, our case study can detect similar problems as
approaches for active inspection in [6, 10].

Passive Inspection of Sensor Networks 207

2 SNIF

SNIF is a general framework for passive inspection of multi-hop sensor networks to
detect problems related to individual nodes (e.g., reboot, death), wireless links, paths
(e.g., routing failures, loops), or global problems (e.g., partitions). SNIF consists of a de-
ployment support network (DSN) that acts as a distributed network sniffer. Each of the
DSN nodes implements the receiver part of the sensor network protocol stack, namely
a receive-only physical layer and media access. All overheard packets are routed to the
SNIF sink, which executes a data stream processor to analyze packet streams for prob-
lems. The results of this analysis are displayed by a user front-end. Below we give an
overview of these components. More details can be found in a technical report [13].

2.1 Deployment Support Network (DSN)

To overhear the traffic of multi-hop networks, multiple radios are needed, forming a
distributed network sniffer. We use a so-called deployment support network for this
purpose, a wireless network of DSN nodes, each of which provides two radios. The
first radio (DSN radio) is used to form a wireless network among the deployment sup-
port nodes, while the second radio (WSN radio) is used to overhear the traffic of the
sensor network. Both radios should be free of interference (e.g., operate in different fre-
quency bands). Also, the DSN radio should support the formation of a robust network
with negligible message loss and high bandwidth. Since the data stream processor needs
to examine temporal relationships between packets overheard by different DSN nodes,
internal time synchronization of DSN nodes is necessary. The DSN is installed along-
side the actual sensor network and may be removed as soon as deployment is finished
and the sensor network works as expected. Thus, the lifetime of the DSN is typically
much shorter than the lifetime of the sensor network and energy efficiency is not that
much of an issue.

Our current implementation of a DSN is based on the BTnode Rev. 3 [14], which
provides two radio front-ends: a Zeevo ZV 4002 Bluetooth 1.2 radio which is used as
the DSN radio, and a Chipcon CC 1000 (e.g., also used on MICA2) which is used as
the WSN radio. Using a scatternet formation algorithm, the DSN nodes form a robust
Bluetooth scatternet (see [12] for details). A laptop computer with Bluetooth acts as the
SNIF sink that connects to a nearby DSN node. This DSN node thereupon acts as the
DSN sink and forms the root of an overlay tree spanning the whole DSN. The SNIF sink
can send data to DSN nodes down the tree while DSN nodes send overheard packets
up the tree to the sink. Time synchronization exploits the fact that Bluetooth uses a
TDMA MAC protocol and thus performs clock synchronization internally, providing an
interface to read the Bluetooth clock and its offset to the clocks of network neighbors.
We use this interface to compute the clock offset of each DSN node to the DSN sink.
Bluetooth provides an accuracy of 1.25 milliseconds per hop.

One might argue that the deployment of the DSN may be as difficult and error-
prone as deploying the sensor network itself. However, as the lifetime of the DSN is
short (in the order of days), energy and resource constraints are not a primary issue
here. This enables us to use more reliable networking technologies such as Bluetooth.
In fact, Bluetooth has been designed as a cable replacement and employs techniques

208 M. Ringwald, K. Römer, and A. Vitaletti

such as frequency hopping and forward error correction to provide highly reliable data
transmission.

2.2 Physical Layer and Medium Access

DSN nodes need a receive-only implementation of the physical (PHY) and MAC lay-
ers in order to overhear sensor network traffic. Due to the lack of a standard protocol
stack, many variants of PHY and MAC are in use in sensor networks. Hence, we need
a flexible implementation that can be easily configured for the sensor network under
inspection.

Our generic PHY implementation supports configurable carrier frequency, baud rate,
and checksumming details. We assume that the sensor network uses a single frequency
for communication (which is the case with current implementations) such that a single-
channel radio is sufficient to overhear WSN traffic.

Regarding MAC, we exploit the fact that – regardless of the specific MAC protocol
used – a radio packet always has to be preceded by a preamble and a start-of-packet
(SOP) delimiter to synchronize sender and receiver. In our generic MAC implementa-
tion, every DSN node has its WSN radio turned to receive mode all the time, looking
for a preamble followed by the SOP delimiter in the received stream of bits. Once an
SOP has been found, payload data and a CRC follow. This way, DSN nodes can receive
packets independent of the actual MAC layer used.

Fig. 1 shows an excerpt of a sample configuration file for inspecting a TinyOS 1.x
application running on MICA2 motes. The first five lines set the carrier frequency of
the WSN radio to 868.000 Mhz and a data rate of 19200 bits/second, and instruct the
packet sniffer to check for a start-of-packet sequence of 0xcc33. The 16 bit CRC-CCITT
polynomial x16 + x12 + x5 + 1 (0x1021) is used as checksum algorithm.

1 // PHY+MAC parameters
2 cc . freq = 868000000; cc .baud =19200;
3 cc .sop = 0xcc33 ; cc . crc = 0x1021;
4 // encoding : endianness + alignment
5 enc. endianness = ” little ” ; enc.alignment = 1;
6 // type definitions and constants
7 typedef uint16 t mote id t ;
8 typedef uint8 t quality t ;
9 struct link quality t {

10 mote id t id ;
11 quality t quality ;
12 };

13 const int LADV = 2; // LinkAdvertisement packet
14 default . packet = ”TOS Msg”; // default packet type
15 struct TOS Msg {
16 uint16 t addr;
17 uint8 t type , group , length ;
18 int8 t data [length]; // variable payload size
19 uint16 t crc ;
20 };
21 struct LinkAdv : TOS Msg.data (type == LADV) {
22 mote id t id ;
23 struct link quality t links []; // var . size
24 };

Fig. 1. A SNIF configuration file

2.3 Packet Decoder

Again, since no standard protocols exist for sensor networks, we need a flexible mech-
anism to decode overheard packets. Since most programming environments for sen-
sor nodes are based on the C programming language or a dialect of it (e.g., nesC for
TinyOS), it is common to specify message contents as (nested) C structs in the source
code of the sensor network application. Our packet decoder uses an annotated version

Passive Inspection of Sensor Networks 209

of such C structs as a description of the packet contents. This way, the user can copy
and paste packet descriptions from the source code.

The configuration of the packet decoder consists of some global parameters (such
as byte order and alignment), type definitions, and one or more C structs. One of these
structs is indicated as the default packet layout. Note that such a struct can contain
nested other structs, effectively implementing a discriminated union.

Consider Fig. 1 for an example, which describes link advertisement packets used
by the Multihop routing service implemented in ESS [15]. Line 14 defines the struct
TOS Msg as the default packet layout. The LinkAdv PDU used by ESS, is encapsulated
in the field TOS Msg.data, but only if the TOS Msg.type is equal to LADV. Arrays
of variable size are supported, where the size is either contained in the packet (e.g., for
TOS Msg.data), or inferred from the packet size (e.g., for LinkAdv.links).

At startup of SNIF, the configuration file is parsed and the default packet type is
investigated. If the default packet type is of fixed size, the packet size is computed.
Otherwise, size and position of the packet length indicator (e.g., TOS Msg.length in
the example) is computed. This information, along with the parameters for the physical
layer are then broadcast to all DSN nodes, allowing them to correctly receive WSN
traffic. All overheard WSN packets are then annotated with reception time and routed
to the SNIF sink.

2.4 Data Stream Processor

The DSN outputs a stream of overheard packets that needs to be analyzed to detect
problems in the WSN. To enable an efficient deployment process, this analysis should
be performed online, allowing an engineer to go out and study and fix affected nodes
while the problem is still present.

Given these preconditions, we decided for a data stream processor to perform online
analysis of packet streams. Here, a data stream is an unbounded sequence of records.
A data stream processor provides three basic abstractions: sources that produce data
streams, sinks that consume data streams, and operators that modify data streams. Sinks
and operators can subscribe to sources and operators, such that a data stream output by
the subscriber acts as input for the subscriber. That is, sources, operators, and sinks form
a directed operator graph with data streams flowing from sources through operators
towards sinks. Mainly motivated by practical considerations (Java as implementation
language, stability, open-source availability) we chose the PIPES data stream processor
[16] for use with SNIF.

In SNIF, we model the DSN as a data stream source. An operator graph (being ex-
ecuted on the SNIF sink) processes this data stream to detect indicators for problems,
and sink nodes act as an interface to the user. A data stream record in SNIF is a list
of attribute-value pairs with two special attributes holding record type and time stamp.
The DSN produces records of type Packet with attributes holding the contents of an
overheard packet. The syntax of the latter attribute names follows C syntax for access-
ing a field of a structure (e.g., TOS Msg.addr to access the source address of a packet
in Fig. 1).

The data stream processor provides a number of basic operators to manipulate data
streams, such as Mapper to rename record attributes, Union to merge multiple data

210 M. Ringwald, K. Römer, and A. Vitaletti

streams into one where records are sorted by increasing time stamps, or Filter to drop
records that do not match a given predicate. TimeWindowAggregator groups records
according to a given attribute, removes duplicates, and computes aggregates over a time
window. ArrayIterator provides access to array elements by creating N copies of each
input record holding an array, where in the i-th output copy the array is replaced with
element i of the array with size N .

Besides these generic operators, SNIF provides several data stream sources. The
output of DSNSource consists of the packets overheard by the DSN, with records being
sorted by increasing time stamp and duplicate packets (resulting from two or more
DSN nodes overhearing the same sensor node) being removed. EmSource provides a
similar interface to the EmStar [17] sensor network simulator, but is otherwise identical
to DSNSource.

A typical application of SNIF is to infer the current state of inspected sensor nodes
(e.g., node dead, node has no neighbors, etc.). To infer the state of a node, typically
multiple data streams must be considered (e.g., a stream of periodic beacon packets to
decide if a node is dead, a stream of neighborhood announcement packets to decide if a
node has any neighbors). To this end, SNIF provides an operator StateDetector which
groups records by type and node and stores the last record in each group. Whenever a
group changes, an evaluation based on a configurable decision tree is invoked to decide
on the node state. We will refer to the above operators in Sect. 3.4.

2.5 User Interface

To display problems in the sensor net-

Fig. 2. An instance of SNIF’s user interface

work that have been detected by the data
stream processor, SNIF provides a con-
figurable user interface, which allows to
display a real-time view of the network
topology graph, where nodes and links
can be annotated with application-specific
information (e.g., state of a node, packet
loss of a link) using a simple API. Also,
logging and later replay of execution tra-
ces is supported. Fig. 2 shows an instance
of this user interface for a typical data gathering application as discussed in the next
section.

3 Case Study: Data Gathering Applications

Almost all existing non-trivial deployments are data gathering applications (e.g., [7,
9, 18]), where nodes send raw sensor readings at regular intervals along a spanning
tree across multiple hops to a sink. In this case study we will therefore consider how
SNIF can be applied to this application class. We first characterize the application in
more detail and define the problems we want to detect. We then describe application-
specific data stream operators to detect these problems and how they are used to form
an operator graph. Finally, we evaluate the resulting inspection tool.

Passive Inspection of Sensor Networks 211

3.1 Application Model

Two prominent implementations of data gathering applications are the Extensible Sens-
ing System (ESS) [15] using beacon-based multi-hop routing for data collection, and
Surge using MintRoute [19] for data collection. Both implement a similar multi-hop
tree routing scheme as described below. We will use ESS as an example throughout the
paper, but our approach can be readily applied to other, similar implementations.

In ESS, all nodes broadcast beacon messages at regular intervals. To discover neigh-
bors, nodes overhear these messages and estimate the quality of incoming links from
neighbors based on message loss. Nodes then broadcast link advertisement messages at
regular intervals, containing a list of neighbors and link quality estimates. Overhearing
these messages, nodes compute the bidirectional link quality to decide on a good set of
neighbors. To construct a spanning tree of the network with the sink at the root, nodes
broadcast path advertisement messages, containing the quality of their current path to
the sink. Nodes overhearing these messages can then select the neighbor with the best
path as their parent and broadcast an according path advertisement message. All this
is executed continuously to adapt neighbors and paths to changing network conditions.
Finally, data messages are sent from nodes to the sink along the edges of the spanning
tree across multiple hops.

In ESS, beacons are sent every 10 seconds, path advertisements and link advertise-
ments every 80 seconds, data message are generated every 30 seconds. All messages
except data messages are broadcast messages and contain per-hop source address. Data
messages contain the address of the originator of the sensor data and the per-hop des-
tination address, but not the per-hop source address. In addition, beacon messages and
data messages contain a sequence number.

3.2 Problems and Indicators

In [13] we studied existing deployments to identify common problems and passive in-
dicators that allow to infer the existence of a problem from overheard network traffic.
Below we summarize the problems that are considered in our case study and give pas-
sive indicators for their detection. Note the similarity to problems that can be detected
by tools for active inspection [6, 10].

Node death (fail stop). An affected node will not send any messages.

Node reboot. After reboot the sequence number contained in beacon messages will be
reset.

Isolated node. The node is not listed as a neighbor in any link advertisement messages
send by other nodes.

Node has no parent. The node fails to send path advertisement messages.

No path from node to sink. Data messages sent by the node are not forwarded to the
sink.

Node’s path to sink loops. A data message originating from the node is sent twice to
the same destination by different senders. Note that this is a special case of “no path
from node to sink”.

212 M. Ringwald, K. Römer, and A. Vitaletti

Node partitioned from sink. A node on the path from the node to the sink died and
there is no alternate path available. Note that this is a special case of “no path from node
to sink”.

Although the above indicators are straightforward from a conceptual point of view,
incomplete information makes their implementation less obvious as discussed in the
following section.

3.3 Application-Specific Operators

This section presents application-specific operators that assist in detecting the problems
described in Sect. 3.2. The primary challenge here is to deal with incomplete informa-
tion due to i) the DSN failing to overhear packets, and due to ii) information that would
be needed to detect a problem not being explicitly included in messages.

on receive beacon(src , seq , t):
if (exists n[src]) {

if (seq < n[src]. seq) {
if (n[src]. seq < maxSeq− C)

emit reboot (src , t);
else if (t − n[src]. t <

(seq− n[src]. seq) % maxSeq ∗ n[src]. ival)
emit reboot (src , t);

}
n[src]. ival ←min (n[src]. ival ,

(t − n[src]. t) / (seq− n[src]. seq));
} else

n[src]. ival ←∞;
n[src]. seq ← seq;
n[src]. t ← t;

Fig. 3. SeqReset operator

on receive data (dst , seq , orig , t):
if (exists p[seq| orig]) {

if (p[seq| orig]. dst = dst)
emit retransmission (dst , seq , orig , t);

src ← p[seq|orig]. dst ;
p[seq| orig]. dst ← dst;
} else {

src ← orig;
p[seq| orig]. dst ← dst;
}
emit data (src , dst , seq , orig , t);

Fig. 4. PacketTracer operator

SeqReset. This operator detects node reboots exploiting the fact that the sequence
number contained in beacon messages will be reset after reboot. The main challenge
here is to tell apart a wrap-around of the sequence number from reboot in case of lost
beacon messages. The algorithm in Fig. 3 maintains a data structure n that holds for
each node i the last sequence number n[i].seq, last time stamp n[i].t, and minimum
interval n[i].ival between successive beacons. Whenever a beacon with source address
src, sequence number seq, and time stamp t is received, the algorithm checks if seq is
smaller than the last sequence number n[src].seq seen for this node. If the last sequence
number is far apart from maximum sequence number maxSeq (parameter C must be se-
lected such that loss of C consecutive beacon messages is highly unlikely), then src has
rebooted. Otherwise, we apply an additional check to distinguish reboots from wrap-
arounds with lost messages. In case of a wrap-around, the time between the last and
current beacon messages t - n[src].t must be greater than or equal to the minimum bea-
con interval n[src].ival times the number of beacon messages that were lost plus one
(seq - n[src].seq) % maxSeq.

PacketTracer. To reconstruct the multi-hop path of a message through the network, we
need to know source and destinations addresses of each message. Unfortunately, data

Passive Inspection of Sensor Networks 213

messages do not contain per-hop source addresses (as message receipt is not acknowl-
edged). Also, messages not overheard by the DSN result in “gaps” in the multi-hop path.
PacketTracer infers a source address for each packet, making sure that there are no gaps
in the multi-hop path. The algorithm in Fig. 4 exploits the fact that each multi-hop mes-
sage contains the address of the originator orig, a sequence number seq, and per-hop
destination address dst. The operator maintains a data structure p that contains the last
destination address p[seq|orig].dst for each multi-hop message uniquely identified by
the concatenation seq|orig of sequence number and originator address. If an entry for
packet seq|orig doesn’t exist yet, then the sender is set to the originator of the packet,
otherwise the sender is set to the destination of the previous packet. If no messages
are lost, then this approach obtains correct sender addresses. Otherwise, packets may
span multiple hops, resulting in a multi-hop path without gaps. The following operators
rely on this property. PacketTracer uses a timeout-based garbage collector to reclaim
memory for past multi-hop packets (not shown).

on receive data (src , dst , t):
if (dst ∈ n[src].desc) {

emit routingloop (src , dst , t);
remove dst from n[src]. desc;
}
desc ← (src , t) ∪ n[src].desc;
foreach (dn , dt) ∈ desc {

if (dst = sink) {
if (dn �∈ n[sink].desc)

emit goodpath (dn , t);
else if (dt > n[sink]. desc[dn])

emit goodpath (dn , t);
}
n[dst]. desc ← n[dst].desc ∪ (dn, max (n[dst]. desc[dn], nt));
}

Fig. 5. PathAnalyzer operator

on receive data (src , dst):
n[dst]. nb ← n[dst].nb ∪ src;
reset timeout (dst , src);

on timeout (dst , src):
remove src from n[dst]. nb;

on receive nodestate (src , state):
if (state = ‘‘dead’’) n[src]. nb ←∅;

periodically :
DFS (n, sink);
foreach unvisited node nn

emit partitioned (nn);

Fig. 6. TopologyAnalyzer

PathAnalyzer. This operator checks if a node has a good path to the sink and also
detects routing loops. Here, a good path between a node and the sink exists if a sequence
of packets p1, ..., pn with increasing time stamps has been observed, such that the source
address of p1 equals the address of the node, the destination address of pn is the sink,
and the destination address of pi equals the source address of pi+1. The algorithm in
Fig. 5 maintains a set n[i].desc of routing tree descendants for each node i, where each
descendent is a pair (j, tj) of a node j and time stamp tj, meaning that j had a good path to
i at time tj according to the above definition. When a data message with source address
src (obtained by PacketTracer), destination address dst, and time stamp t is received,
we first check if dst is among src’s descendants, which indicates a routing loop. Then
we add src and all of src’s descendants to dst’s descendants, updating the time stamps
accordingly. Whenever a new descendant is added to the sink or the time stamp of an
existing descendent of the sink is incremented, this indicates a good path from this
descendent to the sink.

TopologyAnalyzer. This operator detects network partitions between a node and the
sink caused by dead nodes in cases where PathAnalyzer does not find a good path to

214 M. Ringwald, K. Römer, and A. Vitaletti

sink for this node. The algorithm in Fig. 6 maintains an approximate set of downstream
neighbors n[i].nb for each node i. When a data packet with source address src and
destination address dst is received, src is added to dst’s neighbors and a (user-defined)
timeout is activated to remove this neighbor unless another packet with same src and dst
is received before the timeout expires. TopologyAnalyzer is also subscribed to a data
stream of records holding node states (see Sect. 3.4 for details). Whenever such a node
state record is received indicating death of node src, the neighbor set of src is emptied.
Periodically, TopologyAnalyzer performs a depth-first search on the graph given by
n[].nb starting at the sink and marking all visited nodes. All nodes that have not been
visited are reported as partitioned.

3.4 Operator Graph

Our inspection tool will compute the state of each node, which is either “node ok” or
one of the problems described in Sect. 3.2. In this section we outline the data stream
operator graph that computes these states. Eventually, this graph will generate a record
describing a node’s current state whenever the state of the node changes.

The node state is derived using

Covered ?

Is a neighbor ?

no

Heard any packets ?

yes

Has a route ?

yes

Node dead

no

Sequence number reset ?

yesno

Has neighbors ?

no

Node Rebooted

yes

Has a parent ?

yes

No neighbours

no

yes

Network partition ?

no

no

Node OK

yes

Network partition ?

Loops ?

Routing failure

no

Routing loop

yes

no

Network partition (no route)

yes

No parent

no

Network partition (no parent)

yes

Fig. 7. Node state decision tree

the binary decision tree depicted in
Fig 7 which is similar to the one
used by Sympathy [6]. The leaves of
this tree represent possible states of
a node. The decision tree is imple-
mented using the StateDetector op-
erator described in Sect. 2.4. Each
decision in the tree requires an op-
erator graph that extracts the re-
quired information from the stream
of observed packets. Below we de-
scribe how each of these decisions
is implemented with an operator
graph. Note that the individual op-
erator graphs described below par-
tially overlap. These common sub-
graphs are instantiated only once.

Covered? This test examines
whether a sensor node can be
observed with sufficient quality
by the DSN by examining the
percentage of beacon messages that
have been received from this node.
To implement this test, DSNSource
is filtered for beacon messages. The
stream of beacon messages is then fed to a TimeWindowAggregator to compute the
fraction of beacon messages that have been received. The test succeeds for a node if
the fraction for this node is above a given threshold.

Passive Inspection of Sensor Networks 215

Heard any packets? This test succeeds if any packet from a sensor node could be
overheard. Since data messages do not contain the per-hop source address, DSNSource
is filtered for data packets and PacketTracer is applied to reconstruct the source address.
Also, DSNSource is filtered for the remaining packet types (beacon, link and path ad-
vertisements) that do already contain the per-hop source address. The resulting data
streams are merged with the Union operator to obtain a stream of all packets contain-
ing source addresses. This stream is then fed to a TimeWindowAggregator to count the
number of packets per node using the count aggregation function.

Sequence number reset? This test succeeds is the node rebooted. To implement this
test, DSNSource is filtered for beacon packets and SeqReset is applied to the resulting
data stream.

Is a neighbor? This test checks whether a sensor node is listed as a neighbor of any
other node in the network. DSNSource is filtered for link advertisement packets. Since
each link advertisement contains an array of neighbors, the ArrayIterator operator is
used to create one record for each node being listed as a neighbor. Using TimeWin-
dowAggregator with the count aggregation function we obtain the number of times a
node is listed as a neighbor.

Has any neighbors? This test examines whether a node has any neighbors. DSN-
Source is filtered for link advertisement packets containing at least one neighbor. Using
TimeWindowAggregator, the number of such advertisements per node is computed. The
test succeeds for a node if at least one non-empty link advertisement was heard from
this node.

Has a parent? This test examines whether a node has a parent in the tree. DSNSource
is filtered for path advertisement packets. Using TimeWindowAggregator, the number
of such advertisements per node is computed. The test succeeds for a node if at least
one path advertisement was heard from this node.

Has a route? This test checks whether a node recently had a routing path to the sink.
DSNSource is filtered for data messages. PacketTracer is applied to reconstruct the
source address. PathAnalyzer is applied and its output filtered for good route reports.
Using TimeWindowAggregator, the number of good route reports per node is counted.

Loops? This test checks whether the path from a node to the sink recently had any
loops. DSNSource is filtered for data messages. PacketTracer is applied to reconstruct
the source address. PathAnalyzer is applied and its output filtered for routing loop re-
ports. Using TimeWindowAggregator, the number of routing loop reports per node is
counted. The test succeeds for a node if a routing loop was reported at least twice for
this node to accomodate infrequent route changes.

Network partition? This test checks if a bad path from a node to the sink was caused
by a network partition. DSNSource is filtered for data messages. PacketTracer is ap-
plied to reconstruct the source address. TopologyAnalyzer is applied to detect parti-
tions. TopologyAnalyzer is also subscribed to the output of StateDetector in order to
obtain node death events. The test succeeds for a node if the last record received from
TopologyAnalyzer says that this node is partitioned.

216 M. Ringwald, K. Römer, and A. Vitaletti

In the above operator graphs, the time windows for TimeWindowAggregator are set
to W times the interval of the packets they consider. For example, the time window
in Has a parent? is set to W× 80 seconds, since path advertisement messages are
considered which are sent every 80 seconds. That is, W is a global parameter and we
will study its performance impact in Sect. 3.5.

The structure of the decision tree is motivated by the desire to find and report the
root cause of a failure. For example, a dead node (root cause) also has a routing prob-
lem (consecutive fault). Here, we want node death to be reported, but not the routing
problem. Hence, in the decision tree the checks to detect node death are located above
the checks to detect a routing problem.

In addition to the above operator graph, we introduce several data stream sinks (not
shown) to display relevant information in the graphical user interface as shown in Fig. 2.
For example, node color indicates state (green: ok, gray: not covered by DSN, yellow:
warning, red: severe problem), detailed node state can displayed by selecting nodes.
Thin arcs indicate what a node believes are its neighbors, thick arcs indicate the paths
of multi-hop data messages.

3.5 Evaluation

To evaluate our case study, we used the same experimental setup as described in [6],
where the Extensible Sensing System (ESS) [15] is executed in the EmStar emulator
[17]. The reason for choosing EmStar instead of the real DSN as a data source for
evaluation is the ease of injecting failures in a reproducible way with EmStar.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

meter

m
et

er

2
4
5
6

7
8
9

10
11

12
13
14

15
16

1718

21

2425

27

31
33

35

Sink

Network partition

Fig. 8. Experiment setup: WSN (2-27) and
DSN (31-35)

Time Window Factor W
Packet loss [in %]

6

6

66

6

1

1
1

3
5

5

0

0
0

00
0

0
0

0

9
7 8 0

0

2

2

2

4

4

4

4

8

8

Fig. 9. Number of false reports as a function
of packet loss and time window factor W

As depicted in Fig. 8, we consider a network of 21 nodes forming a multi-hop topol-
ogy with a diameter of 7 hops. Node 2 acts as the sink. We added three DSN nodes
(nodes 31, 33, and 35 marked with squares in Fig. 8). The link dump files of the DSN
nodes generated by EmStar were used as input to the inspection tool. Since some sen-
sor nodes could be overheard by more than one DSN node, the DSN received 1.3 ± 0.5
copies of each sensor network message during the experiments, while 4% of the beacon
messages were lost (i.e., not overheard by any DSN node).

Passive Inspection of Sensor Networks 217

Accuracy and Latency. We study the accuracy (number and type of false error reports)
and latency (time between failure injection and report) of our inspection tool. These
metrics mainly depend on two parameters: the size of time windows used in the operator
graph (i.e., the value of the time window factor W) and the amount of packet loss (i.e.,
fraction of sensor network messages that were not overheard by DSN nodes).

As most decisions regarding node state are based on packets received during a fixed
time window, increasing W should improve accuracy (as operators then have more
packets to base their decision on) and increase latency linearly (as more packets need to
be collected before a decision is made). Increasing packet loss should degrade accuracy
(as operators with fixed time windows then have less packets to base their decision on)
and decrease latency (e.g., since node death is reported when no packets are received
from a node during a time window, loss of the last packets sent by a node before death
will decrease latency).

In general, the latency to detect a problem is determined by the path of decisions
leading to this problem in the binary decision tree depicted in Fig. 7. For example, the
decision Network partition? leading to state Network partition (no parent) can only be
made when the previous decision Has a parent? has been made with a result of no.
That is, the latency for detecting a given problem is a function of the maximum latency
of the decisions in the decision tree on the path from the root to the leaf denoting this
problem. In turn, the latency of a decision is determined by the size of time window(s)
of the associated operator graph.

In order to assess the impact of W and packet loss on accuracy and latency, we
ran a set of experiments injecting three types of faults into the network: node failure,
network partition, and no data. The duration of each experiment was 30 minutes with
faults being injected randomly between 10 and 15 minutes after experiment begin. In
addition to the (small) packet loss of the DSN, we introduced additional packet loss by
uniformly dropping a given fraction of the overheard packets. We report averages and
standard deviation over multiple runs.

To guide the selection of W for a given amount of packet loss, we ran a first ex-
periment without injecting any faults, varying both W and packet loss, counting the
number of (false) error reports for each parameter choice. The averaged results over 10
runs are depicted in Fig. 9. The flat area of the graph shows feasible values for W given
a certain packet loss. For a packet loss of 30% (a common value in single-hop sensor
networks [7]), no errors were reported for W ≥ 7, motivating our choice of W = 8 to
study the impact of message loss in more detail as depicted in Fig. 10 top. Similarly, we
chose a packet loss of 30% for a more detailed study of the impact of W as depicted in
Fig. 10 bottom.

In the first experiment, we performed 40 runs and injected a single node failure per
run, such that all nodes but the sink failed twice. All node crashes were correctly de-
tected and no false errors were reported. The latency of the reports is mainly determined
by the size of the time window used to implement the Heard any packets? test which is
W× 10s. For W = 8 and a beacon period of 10 seconds, we expect the latency to be
between 70 and 80 seconds, which is confirmed by the experiments. Increasing packet
loss does not have a significant impact on latency. The number of false positives is neg-
ligible until 30% of packet loss and raises significantly with more than 50% as depicted

218 M. Ringwald, K. Römer, and A. Vitaletti

Fig. 10. Reporting latency and number of false reports as a function of packet loss for W =8 (top)
and as a function of time window factor W for 30% packet loss (bottom)

in Fig. 10 top. We analyzed the generated error reports and observed that for up to 70%
of packet loss, we only observed no neighbor and no parent reports. These reports are
caused by missing link and path advertisements, respectively, which are rarely sent (ev-
ery 80s). For higher packet loss, we found node dead reports for working nodes. We
never observed any false negatives. When varying W , we find (as expected) a linear
increase of latency and an improvement of accuracy as depicted in Fig. 10 bottom.

In the second experiment we made nodes 4-16 fail at random times to partition nodes
17-27 from the remainder of the network. We would expect a network partition error for
nodes 17-27. We report the latency until the first node was classified as partitioned. As
explained above, the latency of partition detection is bounded by the latencies of preced-
ing decisions in the decision tree, namely Has a parent? and Has a route?, which both
use a time window of W× 80 seconds. As Has a route? basically tracks multi-hop data
packets which are sent often (every 30s by all nodes), it reacts shortly before 640 sec-
onds. The Has a parent? fails, if no path announcements were observed during the time
window. As explained above, increasing packet loss results in reduced detection latency.

In the third experiment, we injected faults into the Multihop routing component of
single nodes such that an affected node stops sending data messages, while still broad-
casting beacons and advertisements. We would expect a no route error for the affected
node and all other nodes whose paths contain the former. We report the time until the
affected node is marked with no route. In this experiment, the latency is determined
by the window size of the Has a route? test which is set to W× 80 seconds. As most
nodes in the network forward packets for other nodes and data packets are sent every

Passive Inspection of Sensor Networks 219

30 seconds, the DSN should observe data packets until the fault is injected and the av-
erage latency should be close to the window size. The average of 633 ± 24 seconds
for W = 8 and no packet loss confirms this. Again, in Fig. 10 bottom, the accuracy
improves and latency increases linearly with W as expected.

SNIF Performance. We also studied the performance overhead of SNIF itself. During
one 30 minute experiment run without any fault injections, the DSN collected 261 kB of
data, resulting in an average data rate of 1.2 kbps including duplicate packets. Note that
this equals about 0.3% of the effective Bluetooth 1.2 bandwidth of 400 kbps. SNIF was
executing on a 2 GHz PC using Java 1.5. The total cpu time for processing the above
amount of data was about 13 seconds, which equals about 0.7% of the experiment
duration of 30 minutes.

A Bug in ESS. In the course of our experiments, we encountered a bug in ESS Mul-
tihop. At one point we decided to upgrade to a new version of EmStar that fixed a bug
with collision handling. After the upgrade, we suddenly observed a large number of no
parent error reports without injecting any faults. As SNIF was still receiving close to
100% of all beacon packets and link advertisements, we concluded that this problems
was caused solely by the path advertisement component. By examining the source code
of Multihop, we learned that nodes react to receipt of a path advertisement message by
updating their parent selection and broadcasting their updated path advertisement im-
mediately without any delay. Here, the original path advertisement broadcast results in
an implicit synchronization of all receivers, such that the secondary path advertisements
collide with high probability without being retransmitted. By adding a random jitter, we
were able to fix this problem.

4 Related Work

Complementary to SNIF is work on active debugging of sensor networks, notably Sym-
pathy [6] and Memento [10]. Both systems require active instrumentation of sensor nodes
and introduce monitoring protocols in-band with the actual sensor network traffic. Also,
both tools support a fixed set of problems, while SNIF provides an extensible framework.
Tools for sensor network management such as NUCLEUS [11] provide read/write access
to various parameters of a sensor node that may be helpful to detect problems. However,
this approach also requires active instrumentation of the sensor network.

Also complementary to SNIF is work on simulators (e.g., SENS [20]), emulators
(e.g., TOSSIM [21]), and testbeds (e.g., MoteLab [22]) as they support development
and test of sensor networks before deployment in the field. In particular, testbeds typ-
ically provide a wired backchannel from each node, such that sensor nodes can be
instrumented to send status information to an observer. EmStar [17] integrates simu-
lation, emulation, and testbed concepts into a common framework where some nodes
physically exist in a testbed or in the real world, while the majority of nodes is being
emulated or simulated. Physical nodes need instrumentation and a wired backchannel.
In [23], a deployment support network is used to provide a wireless backchannel to de-
ployed sensor nodes. However, sensor nodes need to be physically wired to DSN nodes
(requiring as many DSN nodes as there are sensor nodes) and sensor node software
must be instrumented.

220 M. Ringwald, K. Römer, and A. Vitaletti

Passive observation by means of packet sniffing has also been applied to wireless
(and wired) LANs [24]. However, sensor networks differ substantially from wireless
LANs. While typical wireless LANs are single-hop networks that can be observed with
one or few sniffers, sensor networks are typically multi-hop networks. Also, many of
the problems encountered during deployment of sensor networks are not present in
WLANs. Very recently, two systems for passive analysis of WLANs have been pro-
posed that use an approach similar to ours, namely WIT [25] and JIGSAW [26]. WIT
follows an offline approach, merging redundant traces of network traffic collected by
distributed sniffers. Using a detailed model of the 802.11 MAC, WIT then infers which
packets have actually been received by the respective destination nodes and derives
different network performance metrics. JIGSAW uses a similar approach to collect and
merge traces, but then focuses on online inference of link-layer and transport-layer con-
nections and their characteristics, also using a detailed model of the 802.11 MAC. In
contrast, our approach is largely independent of the actual MAC used. Also, we focus
on detecting a different set of problems as discussed in Sect. 3.2.

In the more general context of management and debugging of distributed systems, a
large body of related work exists. Due to space constraints, we limit our discussion to
very closely rated work. One such class of closely related work is performance debug-
ging of distributed systems (e.g., [27,28]) where message traces are used to reconstruct
causality paths and their latencies. While in principle applicable to sensor networks,
these approaches are narrowly focused on a very specific problem and analysis is per-
formed offline. In contrast, we provide a framework for online traffic analysis. A num-
ber of data stream management systems have been specifically developed for network
traffic analysis (e.g., [29], [30]). However, we found it difficult if not impossible to
express stateful SNIF operators using the SQL variants of these systems.

5 Conclusions

We presented a framework for passive inspection of deployed sensor networks, con-
sisting of a distributed network sniffer, data stream processor, and user interface. The
key advantage of this framework is that sensor networks need not be instrumented for
inspection. The framework has been specifically designed to support different proto-
col stacks and operating systems. We showed how this framework can be applied to
data gathering applications, demonstrating the our approach can detect typical prob-
lems encountered during deployment timely and accurately even in case of incomplete
information. Using this tool, we found a bug in the ESS application. SNIF has been
fully implemented and demonstrated at EWSN 2007 [31].

References

1. Buonadonna, P., Gay, D., Hellerstein, J.M., Hong, W., Madden, S.: Task: Sensor network in
a box. In: EWSN 2005 (2005)

2. Greenstein, B., Kohler, E., Estrin, D.: A sensor network application construction kit (snack).
In: SenSys 2004 (2004)

3. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: WSNA 2002 (2002)

Passive Inspection of Sensor Networks 221

4. Padhy, P., Martinez, K., Riddoch, A., Ong, H.L.R., Hart, J.K.: Glacial environment monitor-
ing using sensor networks. In: REALWSN 2005 (2005)

5. Polastre, J., Szewczyk, R., Mainwaring, A., Culler, D., Anderson, J.: Analysis of wireless
sensor networks for habitat monitoring. In: Raghavendra, C.S., Sivalingam, K.M., Znati, T.
(eds.) Wireless Sensor Networks, Kluwer Academic Publishers, Dordrecht (2004)

6. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympathy for the
sensor network debugger. In: SenSys 2005 (2005)

7. Szewcyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large
scale habitat monitoring application. In: SenSys 2004 (2004)

8. Tateson, J., Roadknight, C., Gonzalez, A., Fitz, S., Boyd, N., Vincent, C., Marshall, I.: Real
world issues in deploying a wireless sensor network for oceanography. In: REALWSN 2005
(2005)

9. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T.,
Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: SenSys 2005 (2005)

10. Rost, S., Balakrishnan, H.: Memento: A Health Monitoring System for Wireless Sensor Net-
works. In: SECON 2006 (2006)

11. Tolle, G., Culler, D.: Design of an application-cooperative management system for wireless
sensor networks. In: EWSN 2005 (2005)

12. Beutel, J., Dyer, M., Meier, L., Thiele, L.: Scalable topology control for deployment-sensor
networks. In: IPSN 2005 (2005)

13. Ringwald, M., Römer, K., Vialetti, A.: Snif: Sensor network inspection framework. Technical
Report 535, ETH Zurich, Zurich, Switzerland (2006)

14. BTnodes: A distributed environment for prototyping ad hoc networks,
http://www.btnode.ethz.ch

15. Guy, R., Greenstein, B., Hicks, J., Kapur, R., Ramanathan, N., Schoellhammer, T.,
Stathopoulos, T., Weeks, K., Chang, K., Girod, L., Estrin, D.: Experiences with the extensible
sensing system ess. Technical Report 61, CENS 2006 (2006)

16. Cammert, M., Heinz, C., Krämer, J., Markowetz, A., Seeger, B.: Pipes: A multi-threaded
publish-subscribe architecture for continuous queries over streaming data sources. Technical
report, University of Marburg, Germany (2003)

17. Girod, L., Elson, J., Cerpa, A., Stathapopoulos, T., Ramananthan, N., Estrin, D.: EmStar: A
software environment for developing and deploying wireless sensor networks. In: USENIX
2004 (2004)

18. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: Experiences from a pilot
sensor network deployment in precision agriculture. In: WPDRTS 2006 (2006)

19. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing
in sensor networks. In: SenSys 2003 (2003)

20. Sundresh, S., Kim, W., Agha, G.: SENS: A Sensor, Environment and Network Simulator. In:
Annual Simulation Symposium (2004)

21. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: SenSys 2003 (2003)

22. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network testbed.
In: IPSN 2005 (2005)

23. Dyer, M., Beutel, J., Kalt, T., Oehen, P., Thiele, L., Martin, K., Blum, P.: Deployment support
network - a toolkit for the development of wsns. In: EWSN 2007 (2007)

24. Henderson, T., Kotz, D.: Measuring wireless LANs. In: Shorey, R., Ananda, A.L., Chan,
M.C., Ooi, W.T. (eds.) Mobile, Wireless, and Sensor Networks, Wiley, Chichester (2006)

25. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the mac-level behavior of
wireless networks. In: SIGCOMM 2006 (2006)

26. Cheng, Y.C., Bellardo, J., Benkö, P., Snoeren, A.C., Voelker, G.M., Savage, S.: Jigsaw: Solv-
ing the puzzle of enterprise 802.11 analysis. In: SIGCOMM 2006 (2006)

http://www.btnode.ethz.ch

222 M. Ringwald, K. Römer, and A. Vitaletti

27. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Performance
debugging for distributed systems of black boxes. In: SOSP 2003 (2003)

28. Barham, P.T., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extraction and
workload modelling. In: ODSI 2004 (2004)

29. Cranor, C., Johnson, T., Spatcheck, O., Shkapenyuk, V.: Gigascope: A Stream Database for
Network Applications. In: SIGMOD 2003 (2003)

30. Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network
Traffic. In: USENIX 1998 (1998)

31. Ringwald, M., Cortesi, M., Römer, K., Vialetti, A.: Demo abstract: Passive inspection of
deployed sensor networks with snif. In: EWSN 2007 (2007)

Separating the Wheat from the Chaff:
Practical Anomaly Detection Schemes in Ecological

Applications of Distributed Sensor Networks

Luı́s M.A. Bettencourt1, Aric A. Hagberg1, and Levi B. Larkey2

1 Mathematical Modeling and Analysis, Theoretical Division
Los Alamos National Laboratory, Los Alamos, NM 87545

2 Modeling, Algorithms, and Informatics, Computer and Computational Sciences Division
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. We develop a practical, distributed algorithm to detect events, iden-
tify measurement errors, and infer missing readings in ecological applications of
wireless sensor networks. To address issues of non-stationarity in environmental
data streams, each sensor-processor learns statistical distributions of differences
between its readings and those of its neighbors, as well as between its current
and previous measurements. Scalar physical quantities such as air temperature,
soil moisture, and light flux naturally display a large degree of spatiotemporal co-
herence, which gives a spectrum of fluctuations between adjacent or consecutive
measurements with small variances. This feature permits stable estimation over
a small state space. The resulting probability distributions of differences, esti-
mated online in real time, are then used in statistical significance tests to identify
rare events. Utilizing the spatio-temporal distributed nature of the measurements
across the network, these events are classified as single mode failures - usually
corresponding to measurement errors at a single sensor - or common mode events.
The event structure also allows the network to automatically attribute potential
measurement errors to specific sensors and to correct them in real time via a
combination of current measurements at neighboring nodes and the statistics of
differences between them. Compared to methods that use Bayesian classifica-
tion of raw data streams at each sensor, this algorithm is more storage-efficient,
learns faster, and is more robust in the face of non-stationary phenomena. Field
results from a wireless sensor network (Sensor Web) deployed at Sevilleta Na-
tional Wildlife Refuge are presented.

1 Introduction

Wireless sensor networks consist of multiple sensor-processor nodes that communicate
with each other using radio frequencies. Sensor nodes, at present and in the envisioned
future, are simple devices that operate within limitations in local memory storage and
processing. These constraints, although by no means fundamental, are often the result
of the practical considerations of producing devices that are inexpensive, small, and
autonomous. In addition, sensor operations, and their communication in particular, are
also limited by battery capacity or by the ability to harvest power, e.g. through solar
panels.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 223–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

Networks of distributed sensors are a promising technology because they can sense
environments—natural and human made—over an unprecedented range of spatial and
temporal scales [1, 2]. The large number of nodes required to cover large areas, over
long times, places practical constraints on their individual cost. The drive for low-cost
sensors and the need for unattended operation, frequently in harsh environments, re-
quires simple and robust devices. Even the most robust devices, however, are subject
to operational faults. Under these circumstances it is crucial that isolated errors in in-
dividual components do not jeopardize the operation of the whole network. Thus, an
important issue for this emerging technology is data quality assurance and robustness
of operation under point failures [3, 4, 5].

A general approach for robustness to point failures is to create partial functional re-
dundancy among nodes in a sensor network. In some distributed sensor applications this
emerges naturally because neighboring nodes measure local environments that are tem-
porally and/or spatially correlated [6, 7]. Then, measurements at adjacent sensors, and
at the same sensor over time, although potentially stochastic and non-stationary, display
significant amounts of mutual information. Hence data quality can be assured through
state co-inference between multiple, partially redundant and correlated readings from
neighboring nodes, or from the same node at consecutive times [8, 9].

This paper presents a practical, distributed algorithm for detecting measurement
anomalies - corresponding to both point failures and common mode events - and for
estimating erroneous or missing data in ecological applications of wireless sensor net-
works. The algorithm has been designed for ecological sensing at the Sevilleta Long
Term Ecological Research (LTER) site by a Sensor Web developed at NASA JPL [10,2,
11]. Because it is designed to work under current technological constraints on memory
and processing, the algorithm is intentionally simple and easy to implement. Process-
ing can be performed locally on each node and requires only communication between
proximal sensors. Such local, distributed algorithms are desirable for wireless sensor
networks, where minimizing the amount of wireless communication is a necessary op-
erational constraint [12].

The remainder of the paper is organized as follows. First, we describe related work
on ecological applications of distributed sensor networks, and associated requirements
for autonomous operation with emphasis on sensor measurement error detection and
correction. We review related approaches in other contexts that use the distributed na-
ture of the network for practical state co-inference, learning, and quality assurance and
the performance and implementation requirements of direct Bayesian classifiers. Next,
we describe the characteristics of the method, which performs automatic inference and
prediction at a given sensor based on the distributions of differences of its measure-
ments in time and in space relative to its neighbors. Finally we give several illustrations
of the method’s application to real data streams from a Sensor Web deployed at the
Sevilleta LTER site, summarize our results, and discuss the outlook for future work.

2 Related Work

Ecological and habitat monitoring are natural applications for wireless sensor networks
since the data often must be collected from remote areas that have little or no

Separating the Wheat from the Chaff 225

communication infrastructure and from sensing systems that are often distributed over
large geographic areas. Among other advances, wireless sensor networks permit better
sensor placement, unhindered by wires, and may use on-board computational power to
processing running statistics, perform hypothesis testing and even operate the experi-
ments themselves [8, 13].

Present deployments are still far from fulfilling this promise, but have been invalu-
able in providing experience and highlighting the difficulties that arise from measur-
ing data streams in the physical world [14, 15, 16]. Most of these problems arise from
sensors and networks operating unattended in harsh, real-world conditions, with inade-
quate error identification and correction capabilities, and without sufficient algorithms
to automatically quantify and actively reduce uncertainty [8, 13].

Several algorithms have recently been proposed that utilize statistical models to se-
lectively acquire and summarize data in distributed sensor networks [17, 18]. Because
of common climatic drivers, environmental signals at neighboring sensors are usually
spatially and temporally correlated. Some methods explicitly explore the correlated na-
ture of raw signals to reconstruct missing or erroneous readings [19]. Environmental
data streams pose the additional challenge that signals are non-stationary, driven by di-
urnal and seasonal cycles, and by climatic events that never quite repeat. These features
are typical of other sensing problems measuring physical and/or social environments.
Here we propose an approach based on difference techniques, similar to those found
in image [20] and signal processing [21], to factor out common drivers and capture
the statistics of correlations between neighboring sensors. We show that this approach,
complemented with the use of statistical tests to detect anomalous measurements, nat-
urally leads to the identification of events with different structure, that can correspond
to point sensor failures, or common mode events. The common mode anomalies may
be erroneous or result from real spatio-temporally coherent events. In this way, missing
or erroneous measurements at a sensor can also be automatically inferred via the joint
consideration of neighboring readings and learned difference probability distributions.

Because of these general properties of environmental data streams, the straightfor-
ward application of standard statistical learning methods to environmental data streams
must be performed with care. For example, Bayesian classifier methods [22] are a pow-
erful way to perform sequential estimation, and are therefore a natural formalism for
devising learning algorithms in distributed sensor networks. However, the direct imple-
mentation of such methods tends to run into the practical limitations of these simple
devices. A recent proposal for context-aware sensors based on Bayesian classifiers uses
statistical correlations between sensor readings to detect outliers and approximate miss-
ing readings [23]. We briefly review this method in the next section in order to provide
context to the conceptual differences of our approach.

3 Bayesian Classifier Method

Assume that sensor measurements take values in the interval [l,u], and let R= {r1, ...,rm}
be a disjoint cover of this interval. Each subinterval in R is considered a discrete class,
with average precision (u− l)/m. Each node has its own classifier, consisting of the state

226 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

of that node’s previous reading, h, and of the measurements from two (indistinguishable)
nearby sensors, denoted as n ∈ {(ri,r j) ∈ R × R, i ≤ j}.

By Bayes’ theorem, the conditional probability of a reading ri, given the previous
value h at that sensor and readings n from two nearby neighbors, is

P(ri|h,n) =
P(h,n|ri)P(ri)

P(h,n)
. (1)

In addition, to reduce the state space for inference, it is assumed in [23] that the neigh-
bor’s spatial measurements and the temporal information contained in the previous
reading are conditionally independent,1 given the reading of the sensor at the present
time, yielding the “Naive Bayes” classifier

P(ri|h,n) =
P(h|ri)P(n|ri)P(ri)

P(h)P(n)
. (2)

The output of the classifier is inferred using the method of maximum a posteriori
(MAP) estimation [24], and is given by

argmax
ri∈R

P(ri|h,n) = argmax
ri∈R

P(h|ri)P(n|ri)P(ri)
P(h)P(n)

= argmax
ri∈R

P(h|ri)P(n|ri)P(ri) , (3)

where the denominator can be omitted from the optimization because it does not depend
on ri.

This method is exhaustive and powerful in classifying all possible states of the sys-
tem and learning their likelihood, but runs into practical implementation problems. To
see this, consider that each node must learn the parameters of its classifier online. To
learn P(ri), a node keeps a count of the number of times ri occurs for each of m pos-
sible values. To learn P(h|ri), a node also keeps a count of the number of times h and
ri occur together for each of m2 possible combinations. Similarly, to estimate P(n|ri),
a node must keep a tally of the number of instances n and ri occur together, for each
of (m3 + m2)/2 possible states. Finally, to compute probabilities for outlier detection,
a node learns P(n) online by keeping a count of the number of times n occurs for
each of (m2 + m)/2 values. P(h) is given by P(ri) where ri = h and a node must also
keep a count of the total number of instances observed. Thus the total number of states
stored is m3/2+2m2+3m/2+1. This expression was obtained by considering the mea-
surements of a node relative to two neighbors. For k > 2 neighbors, the corresponding
expression scales with leading exponent k + 1.

The size of the state space required for inference is important for two reasons. First,
nodes typically have limited storage capacity, which in turn limits precision. Consider
the example of covering a range of 100 degrees with 1 degree precision. Then a classifier
would have to store 520,151 counts, or roughly 2 megabytes. Secondly, the amount of
learning data required to populate the state space is prohibitive in many cases. In the
same example at least 5 million learning instances would be necessary for estimation
(taken here to be roughly an order of magnitude greater than the size of the state space).

1 We note that these assumptions do not apply to ecological environmental data under most
circumstances.

Separating the Wheat from the Chaff 227

To put this into perspective, consider that a node taking a reading every five minutes
(e.g., [2]) would require about 47 years to populate its state space.

The issue of learning is even more critical in cases involving non-stationary phe-
nomena because the learning rate cannot be slower than the rate at which parameters
evolve. For example, in the case of outdoor air temperature, conditions change through-
out the day as the sun rises, moves across the sky (e.g., placing sensors in and out of
shadows), and sets. In addition, conditions also change with season and from year to
year, such that combinations of data that occur frequently during a hot summer appear
rarely during a cold winter, and will differ to the next summer. Thus an important dis-
criminating criterion for any data quality assurance method is that it must operate on a
timescale commensurate with that of any non-stationary phenomena being measured.
For ecological sensing this time scale is typically less than a few hours.

4 A Method Based on the Statistics of Differences Between Sensor
Measurements

We now propose a method for performing automatic event detection and data quality
assurance, in which each node learns statistical distributions of differences between its
readings and those of its neighbor’s, and also between its own measurements at dif-
ferent times. Such distributions, together with current measurements are then used to
identify anomalous measurements and to infer missing values. The inference of statis-
tical distributions for measurement differences helps bypass issues of non-stationarity
in environmental data streams, and leads, in general, to smaller ranges of statistical
variables and better sampling for smaller datasets.

The crucial assumption required for the method to work is that the observed phenom-
ena are spatiotemporally coherent, so that the measurements at neighboring sensors,
and at the same sensor over time, display a large amount of mutual information. This
is true of ecological applications, where typical node-to-node spacings are in the range
of 100-200 meters or less. Moreover, environmental variables such as air temperature,
relative humidity, light flux, soil temperature, and soil moisture display a substantial
amount of temporal correlation as a result of common climatic drivers. It is assumed
below that measurements at different sensors are performed at time intervals which are
much smaller than the temporal correlation time of acquired signals, which we mea-
sured to be of order 1 hour. This is a characteristic of Sensor Web measurements, which
are synchronous across the entire network and measurements can be taken every few
minutes. An additional final assumption of the method is that the probability density of
the differences has a peak near the mean and tails that taper as differences deviate away
from it (e.g., see Fig. 1). That is, the method assumes that the probability of observing
a difference decreases with the distance between that difference and the mean of all ob-
served differences. This is not a strong assumption and could easily be relaxed in more
complex circumstances if judged necessary.

Under these circumstances spatial and temporal measurement differences display
a (much more) stationary distribution when compared to individual sensor readings.
This permits more stable estimation of the statistics of differences over a much
smaller state space. The estimation of differences between sensors placed at different

228 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

micro-environments, or between those and experimental controls can also capture quan-
tities of direct ecological interest [13], e.g. by comparing control plots to treatments.

To set the context and notation for the method presented below consider then a node
with k neighbors. Let φ be the node’s reading, φ0 be its previous measurement, and
φi, i = 1, ...,k, be the readings of its neighbors. At each new measurement the node
computes the difference between its current reading and its previous measurement and
between its reading and each of its neighbor’s di = φ −φi, i = 0, ...,k. Given knowledge
of the distribution of differences each new observation can be tested for errors. The
probability of observing a difference d as or more extreme than di is its p-value, pi

pi = min [P(d ≤ di),P(d ≥ di)] , (4)

where the probability P may refer to temporal differences i = 0 or differences with
neighbor i > 0. For example, consider the distribution shown in Fig. 1, in which 88
percent of differences fall between −2 and 3, with 7 percent of differences less than or
equal to −2, and 5 percent greater than or equal to 3. If di = −2, then P(d ≤ −2) = 0.07
and P(d ≥ −2) = 0.93. Thus pi = min[0.07,0.93] = 0.07. Similarly, if di = 3, then
P(d ≤ 3) = 0.95 and P(d ≥ 3) = 0.05. Thus pi = min[0.95,0.05] = 0.05. The value
of pi in each instance is compared to a chosen significance level α . The measurement
is flagged as anomalous if pi < α . We discuss how the combination of such p-tests
between a sensor and all its neighbors identifies types of events below.

-2 3
Difference

Pr
ob

ab
ili

ty
D

en
si

ty

0.07

0.88

0.05

Fig. 1. An example of a probability density distribution illustrating the likelihood of observing
an extreme difference. In this example, 88% of differences are between −2 and 3, with 7% of
differences less than or equal to −2, and 5% greater than or equal to 3.

4.1 Statistical Inference

Each probability distribution P(d) is learned from observed differences. There are sev-
eral standard ways to implement this estimation, depending on the degree of prior
knowledge. If the distributions are known to be well described by particular class of
functions, then learning consists of estimating corresponding parameters. Filters, which
specify sequential rules for parameter estimation, can then usually be constructed and
optimized in order to minimize memory storage. If no parametric representation is ade-
quate standard methods to construct non parametric distributions, in terms of frequency
histograms, are employed.

Separating the Wheat from the Chaff 229

Parametric estimation. If the distributions of differences are well fit by known distri-
butions, estimation can be cast in terms of computation of distribution parameters from
data. From the point of view of minimizing storage, estimation should be performed
sequentially, so that only distribution parameters and current measurements are kept
in memory at each single time. This can be achieved via the construction of filters to
update estimators for distribution parameters [25].

Because distributions of differences of environmental variables are usually character-
ized by a small variance it is suggestive that, for sufficient number of observations, their
shape may be well described by Gaussians. For a normal distribution P(d) is defined
by its mean and variance, which may be computed via standard maximal likelihood
(unbiased) standard estimators, from t measurements as

μi,t =
1
t

t

∑
k=1

di,k, σ2
t =

1
t − 1

t

∑
k=1

(di,k − μi,t)2, (5)

which can be written using sequential updates as

μi,t =
(t − 1)μi,t−1 + di,t

t
≡ μi,t−1 + Kt (di,t − μi,t−1) , (6)

σ2
i,t =

1
t − 1

[

(t − 2)σ2
i,t−1 +

t
t − 1

(di,t − μi,t)
2
]

≡ 1
1 − Kt

[

(1 − 2Kt)σ2
i,t−1 +

Kt

1 − Kt
(di,t − μi,t)2

]

, (7)

where t indexes times when differences are observed (for simplicity, assumed here to
be synchronous across the network), and μi,0 = σ2

i,0 = σ2
i,1 = 0. Kt is usually referred to

as the gain factor in the context of filters. In the familiar case of t observations which
are equally weighted the maximum likelihood estimator implies that Kt = 1/t.

Because our observations are correlated, we use the functional freedom introduced
by Kt to optimize inference of missing or erroneous values. (Similar procedures can be
applied to parameters of other distributions.) By varying the gain factor Kt we obtain
the best estimator for the distribution parameters under the joint constraints of a lim-
ited number of samples and non-stationary data. The limit as Kt → 0 corresponds to no
update of the distribution resulting from the current reading. Even if perfect a priori
knowledge of the parameters is given at some time, this eventually fails because of the
non-stationarity of environmental data streams. As a consequence, the error between
actual and predicted data must increase, eventually, as Kt → 0. On the other extreme,
when K → 1, only the current measurement is used in predicting the distribution. This
fails because of the standard estimation problem that a small sample of realizations
generates imprecise parameter determinations. This reasoning indicates that there is an
intermediate value for Kt that minimizes the error between actual and inferred measure-
ments. We illustrate these features in the next section with data from the Sensor Web
deployed at the Sevilleta LTER site.

Estimation of non-parametric distributions. When the distributions are not known to
belong to a particular class, non-parametric estimation is still straightforward, although
resulting in larger memory requirements [26].

230 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

Here we perform the estimation of the probability density for differences as a
simple frequency histogram by dividing the interval of possible differences, [ld ,ud],
into m subintervals, dictated in most cases by the corresponding sensor resolution.
In this sense discretization of measurements is unavoidable in practice and the non-
parametric estimation introduces no further approximation. We should nevertheless
keep in mind that binning of data to construct frequency histograms is usually accept-
able only when the underlying distribution P(d) is approximately constant over the bin
size [26]. As discussed below (see Fig. 3) the sensor precision may suffice to satisfy
this criterion Figs. 3 (b)-(d), or have single bins with considerable excess of observa-
tions [Fig. 3 (a)].

The average precision, (ud − ld)/m achieved in the estimation of differences, is gen-
erally much higher than that of the Bayesian classifier, (u− l)/m, because ud − ld is typ-
ically much less than u− l. For example, while temperature readings may range from 0
to 100 degrees, differences between temperature readings at neighboring sensors may
only vary between −5 and 5 degrees. Thus using 100 subintervals yields an average
precision of 0.1 degrees for this method versus 1 degree for the Bayesian classifier.

Sample size and memory requirements. The advantage of using a parametric es-
timation, whenever it is applicable, is that a node is not required to store previously
observed differences; only the current estimates for the distribution parameters and the
number of utilized instances are required. For a normal distribution this is μi and σ2

i for
differences in time and differences in space relative to each neighbor, and also t. Thus
the total storage required in this case is 2(k + 1) floating point numbers and an integer,
roughly 24 bytes for a node with two neighbors. In addition, the mean and variance can
be approximated from as little as 10 observed differences. Other distributions which
may be relevant in sensing problems such as Laplace, Poisson, or negative binomial,
require similar or smaller estimation effort and memory storage.

To approximate P(d) without parametric assumptions, as a frequency histogram, a
node keeps a count of the number of times observed differences fall in each subinterval.
The probability P(d ≤ di) is the sum of counts for subintervals overlapping (−∞,di],
normalized by the sum of all counts. Therefore, in the non-parametric case, a node
needs to store m(k + 1) integers or roughly 4m(k + 1) bytes. For example, to cover
a range of differences spanning 10 degrees with one degree precision, a node with 2
neighbors would have to store 30 states or roughly 120 bytes, whereas the Bayesian
classifier would have to store roughly 2 megabytes. In addition, the amount of learning
data required to populate the counts is much smaller than for the Bayesian classifier.
For example, to cover a range of differences spanning 10 degrees with 1 degree preci-
sion would require about 100 observations (roughly an order of magnitude greater than
the size of the state space), versus about 5 million learning instances for the Bayesian
classifier. In terms of learning time for a node taking a reading every five minutes, this
method would require about 9 hours, versus 47 years for the Bayesian classifier. In
some cases, a number of measurements commensurate with the size of the state space
may suffice, resulting in learning times an order of magnitude below these numbers;
however, the ratio between the learning times for each method would be the same.

Separating the Wheat from the Chaff 231

4.2 Statistical Anomalies: Error and Event Detection

The estimated distributions of differences enable the acceptance or rejection of new
measurements based on their likelihood. We adopt a simple p-value test, as described
above, to determine if a new measurement difference is significant. If the new difference
fails the significance test it is flagged as anomalous. Table 4.2 illustrates how different
event types are encoded in the structure of these tests between a reference node l and
the ensemble of its neighbors. We consider three characteristic situations.

First, for a standard measurement all observed differences at all nodes are significant.
We refer to this situation as a global significance consensus because all tests agree and
are significant. In this situation readings should be accepted and used to update statis-
tics. Next, if there is a single point failure at sensor l then it will observe a global failure
consensus, indicating an anomaly in time, relative to its earlier reading, and to each of
its neighbors. In this situation sensor l identifies its measurement as anomalous, and
may discard it. Furthermore, and assuming no other point failures for simplicity, each
of the neighbors of l observes that each of its observed differences is significant, except
for that to sensor l. This allows them to identify an error at l and produce their estimate
of l’s correct reading. We return to this point below. Finally, if there is a common mode
event across the network, an anomaly may be detected for temporal differences but a
spatial significance consensus will still be observed. Each sensor observers this same
structure of p-value tests. This type of event may indicate a common mode failure or a
real event, such as rain. Such discrimination may be identifiable through the considera-
tion of correlations across different types of sensors (air temperature, relative humidity,
soil moisture) but lies beyond the scope of this work. Ambiguous events may also take

Table 1. Determination of event types from combined p-value tests

Event type Pod l Neighboring Pods

Standard measurement p0 > α , pi�=0 > α p0 > 0, p j �=0 > α
Point failure p0 < α , pi�=0 < α p j=l < α , p j �=l > α

Common event p0 < α , pi�=0 > α p0 < α , p j �=0 > α

place, where a fraction of all differences may fail significance tests, but not be easily
classifiable as a single point failure or common mode event.

It may be desirable to combine various combinations of p-value tests in time and
in space to each sensor’s neighbor into a single significance test, that e.g. identifies
consensus. The combination of multiple p-value tests into a single significance test
has a long history in statistics going back to the work of Tippett and Fisher in the early
1930s [27]. Fisher’s method is still probably the most widely used procedure. It assumes
that the pi are independent and uniformly distributed and so the combination

− 2
k

∑
i=1

ln(pi) , (8)

is distributed as a χ2
2k distribution with 2k degrees of freedom. The significance of the

joint p-value tests is then computed as the probability of obtaining a value as or more

232 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

extreme than that of expression (8) for a χ2
2k distribution. Because this method of com-

bining likelihood tests involves the geometric average of the pi it is biased towards
lower values of pi and is not a good identifier of global or spatial consensus which, as
indicated in Table 4.2, are the salient features of our expected events [27].

Several combinations of the set pi which avoid these biases and are good identifiers
of consensus have been proposed to address this issue. Among these, the z-transform
test and the sum of p-values are the most widely used [28]. The z-transform test aver-
ages normal variables z each corresponding to a pi and evaluates the significance level
of this combination for a Gaussian distribution. Although the z-transform method is
feasible, a much simpler method is the consideration of the sum

p =
1
k

k

∑
i=0

pi, (9)

which can be compared to a desired significance level, typically of order α . This is the
procedure we adopt below, guided essentially by simplicity. We emphasize, however,
that many subtleties arise when taking into account the possible dependence of the
several tests, which conditions the distribution of the variable combining the pi, and
consequently the nature of its significance test and choice of significance level as a
function of those for individual tests. We intend to study these issues in future work
with expanded datasets.

As a final remark, we note that if it is practical to perform the temporal and spatial
(relative to neighboring sensors) significance tests independently, then a simple hierar-
chical structure for event classification becomes apparent. A temporal anomaly p0 < α
indicates an event. The event can be a point failure at the present sensor if there is also
a spatial failure consensus, or a common mode if there is a spatial significance consen-
sus. If no spatial consensus of either type is present the event is ambiguous and may be
flagged for further study and possible creation of a new event class.

4.3 Inference of Missing Readings

As mentioned above the structure of temporal and spatial anomalies in the statistics of
differences between a node and its neighbors allow a sensor to identify an error in its
own measurement (global failure consensus) and its neighbors to identify the offending
sensor and supply it with their estimation of its probable correct reading.

The most natural estimator of a sensor’s missing or incorrect reading by neighbor i
is simply

φ̂ (i) = φi + di, (10)

where di is drawn from the distribution of differences between the two nodes. Averaging
over di and over all neighbors leads to

φ̂av =
1
k

k

∑
i=0

(φi + μi), (11)

where φ̂ is the reading estimate and μi is the mean difference relative to the ith neigh-
bor, or if i = 0, φ0 is the previous reading and μ0 is the mean difference between the

Separating the Wheat from the Chaff 233

current and previous measurements. A weighted average based on a measure of mutual
information (e.g. smaller variance) between the nodes could also be adopted, but we
use the simplest scheme here. In the case where the distribution class is known, μi is a
stored value. If instead the distribution class is not known, the mean difference can be
approximated by the usual maximum likelihood estimator

μi =
1
m

m

∑
j=1

c jm j, (12)

where c j is the count for the jth subinterval and m j is the midpoint of the jth subinterval.

5 Application to Ecological Data from Sevilleta LTER Site

In this section, we test the method using ecological data collected by a Sensor Web,
developed at NASA/JPL [11,2], deployed at the Sevilleta LTER site. A Sensor Web is a
spatially distributed macro instrument, where every component sensor node (or “pod”)
shares its readings, at each measurement cycle, with all other pods in the system. The
Sensor Web is designed to maintain synchronicity among all component pods which
makes it ideal for the type of correlated statistical analysis proposed in the previous
section.

Fig. 2. Aerial photograph showing the Sensor Web layout at the Sevilleta LTER site. Fourteen
sensor pods are distributed over a range of a few hundred meters to measure microclimate effects
of the surrounding arid land plants. At regular time intervals the pods transmit data wirelessly to
nearby pods. Sensor measurements eventually reach pod 0 where they are recorded.

The Sensor Web was initially deployed at the Sevilleta LTER site in 2003 as part of an
ongoing effort to measure canopy microclimate effects of three arid land plant species:
Juniperus monosperma (one-seeded juniper), Larrea tridentata (creosote bush), and
Prosopis glandulosa var. torreyana (honey mesquite) [13]. The deployed Sensor Web

234 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

consists of 14 sensor pods (see Fig. 2) which measure temperature, humidity, light flux,
soil temperature, and soil moisture and transmit the data wirelessly to nearby pods.

The method for inferring missing readings, presented in the previous section, was
tested by comparing inferred values to actual measurements. In this example, see Figs. 2
and 3, we selected an environmental variable (air temperature), a pod (pod 5), a set of
neighbors (pods 8, 9, 11, 12, and 13), and a period of time (the first 2 days of July,
2005). We used the parametric version of the method [Equations (6) and (7)] because
the distributions of differences are approximately normal (e.g., see Fig. 3). Figure 4(a)
shows the inferred and actual readings for pod 5. The average error over the time period
was 0.717 degrees Celsius.

0.0

0.4

0.8

1.2

Pr
ob

ab
ili

ty (a) Air temperature

pod 5 - pod 5 (-5 min)

0.0

0.4

0.8

1.2

Pr
ob

ab
ili

ty (b) Air temperature

pod 5 - pod 12

0.0

0.4

0.8

1.2

Pr
ob

ab
ili

ty (c) Deep soil temperature

pod 5 - pod 12

−6 −4 −2 0 2 4 6
Difference (oC)

0.0

0.4

0.8

1.2

Pr
ob

ab
ili

ty (d) Shallow soil temperature

pod 5 - pod 12

Fig. 3. A histogram of measurement differences recorded at the Sevilleta LTER site during July
of 2004. (a) air temperature differences between pod 5 its previous reading (5 minutes earlier), (b)
synchronous air temperature differences between pod 5 and pod 12, and (c) deep and (d) shallow
soil temperature between the same two pods. The solid line shows a normal distribution with the
same mean and variance as the data.

Because nodes have different placements, corresponding to distinct micro-climates,
the distributions of differences are still weakly non-stationary. During warmer parts of
the day, the more exposed nodes are warmer, but during cooler parts of the day (e.g.
at night) the the more exposed nodes are cooler. Under these non-stationary conditions
the average measurement error can be reduced by using Eqs. (6) and (7) with the appro-
priate value of Kt that optimizes the learning rate. Figure 4(c) shows the average error

Separating the Wheat from the Chaff 235

15

25

35

45

Te
m

pe
ra

tu
re

(o C
) (a)

Inferred
Actual

Jul 01 Jul 01 Jul 01 Jul 02 Jul 02 Jul 02 Jul 02
6 12 18 0 6 12 18

Time (Hours)

0
1
2
3
4

E
rr

or
(o C

)

15

25

35

45

Te
m

pe
ra

tu
re

(o C
)

Inferred
Actual

Jul 01 Jul 01 Jul 01 Jul 02 Jul 02 Jul 02 Jul 02
6 12 18 0 6 12 18

Time (Hours)

0
1
2
3
4

E
rr

or
(o C

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
K

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
ve

ra
ge

E
rr

or
(o C

)

(c)

Fig. 4. Actual versus inferred air temperatures at sensor pod 5 for measurements taken in July
2005. The inferred measurements were computed using Eq. (11), with the average estimated via
Eq. (6) with (a) Kt = 1/t, (b) Kt = K = 0.46. (c) The average error between the actual and inferred
air temperature data as a function of the learning rate, K. The average error is computed using the
entire two-day period of measurements. The minimum average error of 0.366 degrees Celsius is
obtained for K = 0.46.

Jan ’05 Feb ’05 Mar ’05 Apr ’05
02 09 16 23 30 06 13 20 27 06 13 20 27 03 10 17

−40

−30

−20

−10

0

10

20

30

40

o C

(a)

20 Mar 21 Mar 22 Mar 23 Mar 24 Mar 25 Mar 26 Mar 27 Mar
0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

−40

−30

−20

−10

0

10

20

30

40

o C

(b)

Fig. 5. Detected anomalies (marked by circles) in the pod 13 air temperature measurements for
a period at the beginning of 2005. To detect the anomalies difference distributions for pod 13
(time difference) and pods 5, 11, 12, and 13 (space differences) were recorded for all of 2004 and
the significance was computed using the combined p-value test of Eq. (9) with α = 0.005. The
method clearly captures the anomalies, as seen in (a), including some that are within the range
of valid measurements. The two anomalies on March 23 and 24, shown in more detail in (b) are
near zero degrees which is a common nighttime low temperature during that time of year.

236 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

as a function of Kt = K, assumed constant. The minimum average error of 0.366 degrees
Celsius is achieved for K = 0.46. Figure 4(b) shows the inferred and actual readings for
pod 5, using K = 0.46.

More generally we tested the anomaly detection and event type identification scheme
on air and soil temperature measurements recorded during the first part of 2005. The dif-
ference distributions were computed from measurements of pod temperatures recorded
during 2004. With the significance level for the combined p-value tests in Eq. (9) set
to α = 0.005, the method detects measurements that appear likely to be anomalous, as
shown in Fig. 5, with no obvious false positives. Increasing α leads to the detection of
more events, which may in some cases be due to instrument noise instead of outright
failure. These effects can in principle be assessed if a model of instrument noise, and
how it couples to true physical measurements, is provided. In this case, the distributions
of differences between any two sensors may be understood in terms of the composition
of failures, instrument noise, and physical measurements. Prior knowledge, or estima-
tion, of the former may allow their subtraction from truly physical data streams. Here
we have shown that, even in the absence of this knowledge, failures and instrument
noise can be excluded from recordings and automatically corrected for at a chosen level
of significance.

To understand these effects more clearly we have also applied our procedure to syn-
thetically generated data containing diurnal and seasonal cycles, and with added small
amplitude random white noise (to simulate instrument measurement imprecision) and
larger amplitude infrequent fluctuations (to account for true sensor errors). The algo-
rithm, with suitably adjusted significance, performed flawlessly at identifying sensor
errors, over a variety of noise and failure amplitude and frequencies, provided the am-
plitude of errors is larger than the instrument noise.

6 Discussion and Outlook

We presented a practical, distributed algorithm for detecting statistical anomalies in
ecological applications of distributed sensor networks. Both point failures and common
mode events of sensors are identified and distinguished as statistical anomalies in the
spatio-temporal structure of measurements between a sensor and its neighbors. Specif-
ically, to avoid issues of non-stationarity, each sensor-processor learns the statistical
distribution of differences between its measurements and each of its neighbors, as well
as between its own measurements at consecutive times. Anomalies are detected, and
their structure identified, in terms of statistical p-value significant tests for new mea-
sured differences relative to the expectations from these distributions.

The method is intentionally simple to cope with the limited memory and processing
capabilities that characterize current sensor network technology. For this reason there
are several directions for improvement. First, the operation of differencing, aimed here
at factoring out the effects of common diurnal and seasonal drivers and reducing the
size of the estimation space, can be achieved in principle by more sophisticated and
accurate methods that are inspired by similar problems in image processing [20], signal
processing [21] or component decomposition [29]. Methods for meta-analysis [30] to

Separating the Wheat from the Chaff 237

combine a variety of statistical tests can also be constructed to take into account external
information about sensor or environmental specificities.

While these are interesting directions for future research we also emphasize that,
for the empirical environmental data streams discussed above, the methods developed
here suffice. They have the added bonus of being simple and implementable in sen-
sors with very small amounts of memory and processing. The consideration of further
constraints such as hard energy limitations, specific network and routing geometries,
etc., is not necessary for most practical ecological distributed sensing problems. Instead
the real challenge typical of ecological applications (and shared by others that measure
physical and/or social environments) is the unpredictable, non-stationary nature of data
streams and the fact that measurements tend to relate only indirectly to the hypotheses
of interest. These issues place the emphasis on methods that use the rich spatiotemporal
structure collected by networks of sensors to provide reliable statistical inference and
to identify multi-variable event structures that may allow the testing of high level hy-
potheses. We believe that differencing, broadly understood, combined with sequential
real-time estimation and meta-analysis of simultaneous statistical tests are important in-
gredients of any method concerned with automatic event detection and error correction
in distributed sensor networks.

From the practical point of view, we have also shown that the combination of these
ingredients, when compared to an alternative method based on Bayesian classifiers,
leads to algorithms that are more storage-efficient, learn faster, and are more robust to
non-stationary phenomena. In addition, the storage, processing, and communication re-
quirements are such that it can be implemented in a distributed fashion, on each of the
nodes in the network, thus reducing remote communication. Because of these qualities,
this class of algorithms can provide data quality assurance for current generation of
wireless sensor networks, such as the Sensor Web deployed at the Sevilleta LTER site.
In the process of learning distributions of differences for data quality assurance, the al-
gorithm also produces statistics that compare different microclimate environments [13],
to each other and to control experiments, which are of immediate scientific ecological
interest.

Acknowledgments

This work was supported in part by a DCI Postdoctoral Fellowship to L. B. Larkey.
We thank S. Collins and R. Brown at Sevilleta LTER, and K. Delin at NASA JPL, for
enabling and encouraging this work, and R. Nemzek at LANL for discussions. The im-
age in Fig. 2 was taken by the USDA-ARS Remote Sensing Research Unit, Subtropical
Agricultural Research Laboratory, Weslaco, TX.

References

1. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin, D.: Habitat
monitoring with sensor networks. Communications of the ACM 47(6), 34–40 (2004)

2. Delin, K.A.: Sensor Webs in the wild. In: Bulusu, N., Jha, S. (eds.) Wireless Sensor Net-
works: A Systems Perspective. Artech House (2005)

238 L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey

3. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Comput.
Syst. 8(4), 284–304 (1990)

4. Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. In: Proceedings of the Second
ACM International Workshop on Wireless Sensor Networks and Applications (September
2003)

5. Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M.: A collaborative approach to in-
place sensor calibration. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp.
301–316. Springer, Heidelberg (2003)

6. Sharma, A., Leana Golubchik, R.G.: On the prevalence of sensor faults in real world deploy-
ments. In: Proceedings of the IEEE Conference on Sensor, Mesh and Ad Hoc Communica-
tions and Networks (SECON) (June 2007)

7. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support for sensor
data cleaning. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006.
LNCS, vol. 3968, pp. 83–100. Springer, Heidelberg (2006)

8. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world with pervasive
networks. IEEE Pervasive Computing 1(1), 59–69 (2002)

9. Tulone, D., Madden, S.: An energy-efficient querying framework in sensor networks for
detecting node similarities. In: MSWiM’06 (2006)

10. Delin, K.A.: The Sensor Web: A macro-instrument for coordinated sensing. Sensors 2, 270–
285 (2002)

11. Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAuley, J.M.,
Dohm, J.M., Ip, F., Ferre, T.P.A., Rucker, D.F., Baker, V.R.: Environmental studies with the
Sensor Web: Principles and practice. Sensors 5, 103–117 (2005)

12. Meguerdichian, S., Slijepcevic, S., Karayan, V., Potkonjak, M.: Localized algorithms in wire-
less ad-hoc networks: Location discovery and sensor exposure. In: Proceedings of MobiHOC
2001, Long Beach, CA, pp. 106–116 (2001)

13. Collins, S.L., Bettencourt, L.M.A., Hagberg, A., Brown, R.F., Moore, D.I., Delin, K.A.: New
opportunities in ecological sensing using wireless sensor networks. Frontiers in Ecology 4(8),
402–407 (2006)

14. Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons from a sensor network expe-
dition. In: Karl, H., Wolisz, A., Willig, A. (eds.) Wireless Sensor Networks. LNCS, vol. 2920,
Springer, Heidelberg (2004)

15. Ramanathan, N., Balzano, L., Burt, M., Estrin, D., Harmon, T., Harvey, C., Jay, J., Kohler,
E., Rothenberg, S., Srivastava, M.: Rapid deployment with confidence:calibration and fault
detection in environmental sensor networks. Technical Report 62, CENS, UCLA (2006)

16. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield in a vol-
cano monitoring sensor network. In: Proceedings of the 7th USENIX Symposium on Oper-
ating Symposium (OSDI 2006) (2006)

17. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data
acquisition in sensor networks. In: 30th International Conference on Very Large Data Bases,
pp. 588–599 (2004)

18. Liu, K., Sayeed, A.: Asymptotically optimal decentralized type-based detection in wireless
sensor networks. In: Acoustics, Speech, and Signal Processing, IEEE International Confer-
ence (ICASSP ’04), vol. 3, pp. 873–876 (2004)

19. Gupta, H., Navda, V., Das, S.R., Chowdhary, V.: Efficient gathering of correlated data in
sensor networks. In: MobiHoc ’05: Proceedings of the 6th ACM international symposium on
Mobile ad hoc networking and computing, pp. 402–413. ACM Press, New York (2005)

20. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: A
systematic survey. IEEE Trans. on Image Proc. vol. 14(3) (2005)

21. Markou, M., Singh, S.: Novelty detection: A review - part 1: Statistical approaches. Signal
Process. 83(12), 2481–2497 (2003)

Separating the Wheat from the Chaff 239

22. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. CRC
Press, Boca Raton (2003)

23. Elnahrawy, E., Nath, B.: Context-aware sensors. In: Karl, H., Wolisz, A., Willig, A. (eds.)
Wireless Sensor Networks. LNCS, vol. 2920, pp. 77–93. Springer, Heidelberg (2004)

24. DeGroot, M.H.: Optimal Statistical Decisions. Wiley, Chichester (2004)
25. Maybeck, P.S.: Stochastic Models, Estimation, and Control. In: Mathematics in Science and

Engineering, vol. 141, Academic Press, San Diego (1979)
26. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)
27. Rice, W.R.: A consensus combined p-value test and the family-wide significance of compo-

nent tests. Biometrics 46(2), 303–308 (1990)
28. Folks, L.J.: Combination of independent tests. In: Krishnaiah, P.R., Sen, P.K. (eds.) Hand-

book of Statistics 4. Nonparametric Methods, North Holland, New York (1984)
29. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. SIGCOMM

Comput. Commun. Rev. 34(4), 219–230 (2004)
30. Hedges, L.V., Olkin, I.: Statistical Method for Meta-Analysis. Academic Press, San Diego

(1985)

Image Change Detection Using Wireless Sensor

Networks

SreeRamya Yelisetty and Kamesh R. Namuduri

Department of Electrical and Computer Engineering,Wichita State University,
Wichita, KS 67260

Abstract. Change detection in images is of great interest due to its rel-
evance in applications such as video surveillance. This paper presents the
underlying theoretical problem of image change detection using wireless
sensor network. The proposed system consists of multiple image sensors
which make local decisions independently and send them to the base
station which finally makes a global decision and declares whether a
significant change has occurred or not.

1 Introduction

One of the main applications of image change detection is video surveillance.
There is a great need for automated video surveillance system in commercial,
defence and military applications. Existing video surveillance systems need con-
tinuous human monitoring to alert if any unusual events happen in the scene that
is being monitored. In hostile environments such as a battle field, it is hard to
deploy traditional video surveillance systems due to resource constraints. There
comes the need for wireless sensor networks due to their attractive features such
as rapid deployment, self organization and fault tolerance.

A wireless sensor network consists of low cost and low energy sensors which
are deployed in a region of interest to observe a phenomenon and send the
observations to a fusion center or a base station which makes a global assessment.
The observations could be in terms of sensor readings such as light intensity,
temperature, pressure, sound intensity, images and so on. System resources such
as bandwidth and energy are very limited in a wireless sensor network. Hence it
is very essential to limit the communication between the sensors and the fusion
center as much as possible.

A wireless image sensor network consists of image sensors or cameras as nodes.
The main objective of the wireless image sensor network is to monitor and detect
changes in a given region. The image sensors capture images at fixed intervals of
time and relay them to the base station which makes the final decision. Instead
of sending raw image data from the sensors to the fusion center, the sensor nodes
are allowed to carry out simple computations. These local computations help the
sensors to carry out local decisions. The local decisions at each sensor are of the
form of “1” or “0” for a change and no change respectively. Hence by sending
binary decisions to the fusion center, the data transmission between the sensor

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 240–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Image Change Detection Using Wireless Sensor Networks 241

nodes and the base station is reduced to a great extent. The local decisions
are relayed to a fusion center which makes a final decision by aggregation. This
aggregation of decisions from all sensors and making a global decision is termed
as distributed detection or decision fusion [1], [2].

The problem of distributed and decentralized detection has been investigated
in the literature. In the papers [3], [4], the authors consider a distributed sen-
sor network which is subjected to power constraint. The local processing at the
sensors involves amplifying and forwarding the data to the fusion center. The
decision rule at the fusion center is derived using Neyman-Pearson and Bayesian
criterion. Decentralized detection under dependent observations has been studied
in [4] and decentralized detection under conditionally independent observations
has been studied in [3]. The evolution of visual sensor networks, wireless radio
technologies and embedded system platforms in the recent technology defines a
new set of applications along with few challenges. Due to their wide application
range such as video surveillance, remote sensing, tracking, face recognition and
so on, visual sensor networks have become very important in recent years. Hier-
archial networks or multi-tier systems [5] are the recent research topics in this
area. Multi-tier system deals with a network consisting of multiple tiers, where
each tier constitutes of different types of sensors. For example, a two tier system
consists of low resolution camera sensors in the lower tier and high resolution
camera sensors in the higher tier. By using this multi-tier system we can achieve
several benefits such as low cost, high reliability, high functionality and high
coverage.

In general, visual sensors relatively consume high power. In [5], the power
utilization in different types of sensors is presented. In [6], the authors have
presented different modes of operation of visual sensor networks which enhances
their life time and maximizes the probability of detecting an event. One good
example of low resolution camera sensors is a Cyclops camera [7]. The cyclops
camera is shown in Fig.1.

Fig. 1. Cyclops Camera designed jointly by Agilent Laboratories and the Center for
Embedded Network Sensing at UCLA

242 S. Yelisetty and K.R. Namuduri

There are few processing steps that need to be performed by a local sensor
prior to making a local decision. These processing steps involves the implemen-
tation of image change detection algorithms at the sensor level. Image change
detection typically requires image differencing or image ratioing etc [8]. The im-
age change can be caused due to significant reasons such as appearance and dis-
appearance of objects, motion of objects and some insignificant changes caused
due to sensor noise, camera motion, atmospheric absorption and so on [8].

In [9], the authors developed a change detection algorithm which uses image
difference with two thresholds(one low and the other high). If the pixel intensity
in the corresponding difference image, is greater than the higher threshold, then
the corresponding pixel is categorized in a change class. On the other hand, if
the difference pixel intensity is lower than the lower threshold, then the corre-
sponding pixel is categorized in an unchanged class. The remaining pixels whose
difference intensity levels are between these two thresholds are allowed for further
processing where the spatial-contextual information based on Markov random
field model is considered. In [10], the authors tested the performance of eight
different thresholding algorithms.

In this paper, we propose the underlying theoretical problem of image change
detection in a wireless sensor network. The system makes use of four thresholds
to detect local and global changes in the area being monitored. Two thresholds
defined at the sensor level help the sensor make a local decision and the remain-
ing two thresholds are defined at the system level which help the fusion center
make a global decision. The challenge is to distinguish between significant and
insignificant changes in the area being monitored.

The organization of the paper is as follows. Section II describes the processing
at each sensor and Section III describes, processing at the fusion center. Section
IV deals with performance analysis of the system followed by the results. Con-
clusions and future work are discussed in Section V.

2 Processing at Sensors

Consider a scenario of a wireless sensor network which is a collection of m image
sensors observing a particular scene. The main objective of the sensor network
is to detect significant change in the scene being monitored. Each image sensor
is allowed to take images at fixed intervals of time. Let D(xi) = |f1(xi) − f2(xi)|
represent difference pixel where xi corresponds to a pixel coordinate and f1(xi)
and f2(xi) represents the pixels at location xi in two different images taken
at times t1 and t2 respectively. Here i=1,2,..n where n corresponds to size of
the image. The processing flow at each sensor is illustrated in Fig.2. The set
of difference pixels between two different images forms a difference image. This
difference image can be considered as an instance of a random vector with each
element or pixel corresponding to an instance of a random variable. A pixel in
the difference image is considered as an active pixel if its intensity exceeds a
certain threshold, otherwise it is considered as an inactive pixel. This threshold
T1 is computed based on a binary hypothesis test which results in 1/0 decisions.

Image Change Detection Using Wireless Sensor Networks 243

Suppose δ(D(xi)) represents the decision at pixel xi, then this decision rule
can be expressed as follows,

δ(D(xi)) =
{

1, if xi is active and D(xi) > T1;
0, if xi is inactive and D(xi) < T1.

(1)

Let p(D(xi)|H0) and p(D(xi)|H1) represent the density functions of inactive
pixels(H0) and active pixels(H1) respectively. In this paper, we assume that both
the densities follow Gaussian distributions which are defined as follows,

p(D(xi)|H0) =
1

√
2πσ2

0

exp
{

−(D(xi) − μ0)2

2σ2
0

}

(2)

p(D(xi)|H1) =
1

√
2πσ2

1

exp
{

−(D(xi) − μ1)2

2σ2
1

}

(3)

where μ0, μ1 and σ2
0 , σ2

1 denote the means and variances for the corresponding
density functions respectively.

Inactive
image

Local Decision
Si =0

Active
image

Local Decision
Si =1

-
D(xi)

D(xi)>T1
1

0

>T2

1

0f1(xi)

Active

Inactive

f2(xi)

Fig. 2. Information processing flow at individual sensors. In the first stage, the dif-
ference D(xi) at each pixel in two different images of the same scene is computed
and compared with a threshold T1. If the difference is greater than T1, 1 is generated,
else 0 is generated. The next step is to count the number of “1” ’s or active pixels
and compare it with another threshold T2. If the count is greater than the T2, 1 is
generated signifying an active difference image, else 0 is generated which signifies an
inactive difference image. These local decisions Si in the form of 1/0 are transmitted
via a wireless channel to the base station.

Based on (2) and (3), likelihood ratio can be defined as shown below,

L(D(xi)) =
p(D(xi)|H1)
p(D(xi)|H0)

= e
μ1−μ0

σ2 {D(xi)−μ0+μ1
2 } (4)

assuming σ2
0 = σ2

1 = σ2.

244 S. Yelisetty and K.R. Namuduri

Now, the likelihood ratio needs to be compared with a threshold T1 to come
up with a decision rule. The selection of T1 decides whether a change at a pixel is
significant or not. The threshold can be fixed using Baye’s criterion or Neyman-
Pearson criterion or Minimax criterion. In this paper, we make use of Baye’s
criterion to compute the threshold T1 which is defined as follows,

T1 =
p(H0)(C10 − C00)
p(H1)(C01 − C11)

, (5)

where p(H0) and p(H1) are the a priori probabilities that are independent of
the observations. The elements C10, C00, C01, C11 form a cost matrix. The
elements C00 and C11 represents the costs incurred in taking correct decisions,
i.e, costs incurred in stating inactive and active pixels as inactive and active
pixels respectively. Similarly the costs C10 and C01 represents the costs incurred
in taking wrong decisions, i.e, costs incurred in stating inactive and active pixels
as active and inactive pixels respectively.

Based on (2), (3), (4) and (5), the decision rule can be simplified as follows,

δ(D(xi)) =

{
1, D(xi) � (μ0+μ1)

2 + σ2log(T1)
(μ1−μ0) ;

0, D(xi) < (μ0+μ1)
2 + σ2log(T1)

(μ1−μ0) .
(6)

Let us denote the decision rule at individual pixels xi as δ(D(xi)) = {0, 1}.
The decision statistic (D(xi)) takes the value 1 when the pixel at location xi is
an active pixel, otherwise 0 when the pixel is an inactive pixel.

The next step is to count the number of active pixels within the difference
image and compare it with another threshold T2. This threshold T2 selection
decides whether a change has occurred locally. If the number of active pixels
is greater than the threshold T2 then the difference image is considered as an
active image, otherwise it is considered as an inactive image.

Let us assume the size of the image to be n and define a statistic λ1 which
describes sum of active pixels in the difference image as given below [1], [2],

λ1 =
n∑

i=1

δ(D(xi)). (7)

Then, the probabilities for active image, inactive image, false alarm and miss
can be written as shown below [11],

Pii = P {λ1 < T2|H0} , (8)

Pai = P {λ1 ≥ T2|H1} , (9)

Pfa = P {λ1 ≥ T2|H0} , (10)

Pmiss = P {λ1 < T2|H1} . (11)

Image Change Detection Using Wireless Sensor Networks 245

It can be shown that λ1 follows a Binomial distribution. Let the probabilities
of active pixels and inactive pixels in a difference image be represented as pap

and pip respectively. Therefore for a given threshold T2, the probabilities can be
calculated as follows,

Pii =
T2∑

i=0

(
n
i

)

pi
ip(1 − pip)(n−i), (12)

Pai =
n∑

i=T2

(
n
i

)

pi
ap(1 − pap)(n−i), (13)

Pfa = 1 − Pii = 1 −
T2∑

i=0

(
n
i

)

pi
ip(1 − pip)(n−i), (14)

Pmiss = 1 − Pai = 1 −
n∑

i=T2

(
n
i

)

pi
ap(1 − pap)(n−i). (15)

When n is large enough, the probabilities in (12), (13), (14) and (15) can be
calculated by using Laplace-Demoivre approximation [12],

Pii � Q
(−T2pip√

npip(1−pip)

)
(16)

Pai � Q
(

T2−npap√
npap(1−pap)

)
(17)

Pfa � 1 − Q
(−T2pip√

npip(1−pip)

)
(18)

Pmiss � 1 − Q
(

T2−npap√
npap(1−pap)

)
(19)

The threshold T2 can be fixed in the same way as that of T1 based on Baye’s
criterion, as given below,

T2 =
p(H0)(C10 − C00)
p(H1)(C01 − C11)

, (20)

In this scenario, C00 and C11 represent the costs incurred by making correct
decisions, that means stating active and inactive images as active and inactive
images respectively. The elements C10 and C01 of the cost matrix represent the

246 S. Yelisetty and K.R. Namuduri

costs incurred by making wrong decisions, i.e, stating active image and inactive
image as inactive and active images respectively.

Based on these calculations, if the number of active pixels exceeds the thresh-
old T2, then there is a significant change in the scene and hence the corresponding
image is considered as an active image, otherwise an inactive image. This de-
cision test is a final test made at the sensor level which tells whether a local
change at the sensor has occurred or not. Let us assume the local decisions from
all the sensors as Si where i=1,2,...m. These local decisions Si’s from individual
sensors are relayed in the form of “1” or “0” to the base station through a wire-
less channel. Hence by sending binary decisions, the data transmission between
the sensor nodes and the base station is reduced to a great extent. The local
decisions Si can now be written as follows,

Si =
{

1, If λ1 ≥ T2 consider as an active image;
0, If λ1 < T2 consider as an inactive image. (21)

3 Processing at Fusion Center

Let us assume that there are m sensors deployed in the region of interest. Let
all the m sensors transmit their local decisions Si’s to the fusion center through
an additive white Gaussian channel (AWGN) as depicted in Fig.3. The fusion
center receives noisy versions Yi’s of decisions Si’s sent by the sensors. This can
be represented as,

Yi = Si + Ni, (22)

where Ni ∼ N (0, σ2
n) and i = {1, 2, ...m}. In order to detect incoming bits at

the base station, a hypothesis test similar to the one used at sensor level can be
used at the base station also.

Let p(Yi|H0) and p(Yi|H1) represent the density functions of receiving bit
“0”(H0) and receiving bit “1”(H1) respectively. In this paper, we assume that
both the densities follow Gaussian distributions [13] which are defined as follows,

p(Yi|H0) =
1

√
2πσ2

n

exp
{

−Y 2
i

2σ2
n

}

, (23)

p(Yi|H1) =
1

√
2πσ2

n

exp
{

−(Yi − 1)2

2σ2
n

}

. (24)

If p(H0|Yi) and p(H1|Yi) denote the a posteriori probabilities, we define the
decision rule that maximizes the probability of correct decision, and such a
decision can be stated as,

p(H1|Yi)
p(H0|Yi)

H1
≷

H0

1 (25)

Image Change Detection Using Wireless Sensor Networks 247

The above equation is called as maximum a posteriori (MAP) criterion. Using
Baye’s rule in (25), the decision rule can be rewritten as follows,

p(H1)p(Yi|H1)
p(H0)p(Yi|H0)

H1
≷
H0

1 (26)

or

p(Yi|H1)
p(Yi|H0)

H1
≷
H0

p(H0)
p(H1)

(27)

Sensor 1 Sensor 2 Sensor m-1 Sensor m

Fusion Center

+ +
N1 N2 Nm-1 Nm

……….
S1 SmSm-1S2

Y1

Y2 Ym-1
Ym

+ + +

Fig. 3. Information processing flow at fusion center. The local decisions from sensors
Si are relayed to the base station via a wireless channel which is prone to additive
white gaussian noise Ni. The noisy versions of the local decisions are represented by
Yi. Before the fusion center makes a global decision, MAP rule is used to detect the
incoming bits. With these detected bits, a fusion rule is computed to make a global
decision, whether a change has taken place or not.

Based on (23) and (24), the likelihood ratio can be computed as follows

L(Yi) =
p(Yi|H1)
p(Yi|H0)

= e(2Yi−1)/2σ2
n , (28)

where L(Yi) is called likelihood statistic. The MAP decision rule consists of
comparing this ratio with the constant p(H0)/p(H1) which is called decision
threshold.

T3 =
p(H0)
p(H1)

(29)

Based on (28) and (29), will lead to the formulation of a decision rule that
helps in making the final decision, that decides if a global change took place in
the scene being monitored. The effect of a binary hypothesis decision rule is to
divide the observation space into two regions R0 and R1 where, R0 = (−∞, T3)

248 S. Yelisetty and K.R. Namuduri

and R1 = (T3, ∞). If Yi ∈ R0, then a decision is made against H0 which implies
bit “0” is transmitted. Similarly if Yi ∈ R1, then a decision is made against H1,
i.e, bit “1” is transmitted.

If Yi ∈
{

R0 , 0 is transmitted,

R1 , 1 is transmitted.
(30)

Once the local decisions are detected at the fusion center, a fusion rule can be
derived which decides whether a global change has occurred or not. This is the
final decision that is made at the system level. A statistic λ2 is defined which
counts number of “1”’s received at the fusion center as follows,

λ2 =
m∑

i=1

Yi. (31)

Let us represent the probabilities for change as Pc and for no change as Pnc.
At the fusion center, we also calculate probability of false alarm denoted as Pffa

and probability of miss denoted as Pfmiss.
The probabilities for change occurrence, no change, false alarm and miss can

be written as [11],

Pnc = P {λ2 < T4|H0} , (32)

Pc = P {λ2 ≥ T4|H1} , (33)

Pffa = P {λ2 ≥ T4|H0} , (34)

Pfmiss = P {λ2 < T4|H1} . (35)

It can be shown that the sum follows Binomial distributions [1]. Let the proba-
bilities of receiving bit “1” and bit “0” at the fusion center be represented as p1

and p0 respectively. Therefore for a given threshold T4, the probabilities can be
calculated as follows,

Pnc =
T4∑

i=0

(
m
i

)

pi
0(1 − p0)(m−i), (36)

Pc =
m∑

i=T4

(
m
i

)

pi
1(1 − p1)(m−i), (37)

Pffa = 1 − Pnc = 1 −
T4∑

i=0

(
m
i

)

pi
0(1 − p0)(m−i), (38)

Image Change Detection Using Wireless Sensor Networks 249

Fig. 4. ROC curve at sensor

Fig. 5. ROC curve at fusion center

Pfmiss = 1 − Pc = 1 −
m∑

i=T4

(
m
i

)

pi
1(1 − p1)(m−i). (39)

When m is large enough, the probabilities in (36), (37), (38) and (39) can be
calculated by using Laplace-Demoivre approximation [12],

Pnc � Q
(−T4p0√

mp0(1−p0)

)
(40)

Pc � Q
(

T4−mp1√
mp1(1−p1)

)
(41)

Pffa � 1 − Q
(−T4p0√

mp0(1−p0)

)
(42)

Pfmiss � 1 − Q
(

T4−mp1√
mp1(1−p1)

)
(43)

250 S. Yelisetty and K.R. Namuduri

The threshold T4 can be fixed in the same way as that of T1 and T2 based on
Baye’s criterion, as given below,

T4 =
p(H0)(C10 − C00)
p(H1)(C01 − C11)

, (44)

In this scenario, C00 and C11 represent the costs incurred by making correct
decisions. The elements C10 and C01 of the cost matrix represent the costs in-
curred by making wrong decisions. Based on these calculations, if number of “1”
’s exceeds the threshold T4, then a global change is declared.

4 Performance Analysis and Results

The performance metrics of a decision support system include probability of
detection and probability of false alarm. In general, the performance of a de-
cision support system is analyzed by observing the Receiver Operating Curve
(ROC) characteristics. The ROC characteristics describe the system detection
probability with respect to false alarm probability.

In this section, the performance of the system at the sensor level and at the
system level is discussed. The experimental system consists of five sensors with
wireless connection to the base station. In our experiments, we have considered
four thresholds. Two thresholds defined at the sensor level help in making a
local decision and the remaining two thresholds defined at the system level help
the fusion center make a global decision. The first threshold helps in deciding
whether a pixel is active or inactive. Second threshold helps in deciding whether
a local change at the sensor has occurred or not. Third threshold defined at the
fusion center helps in detecting the bits from the sensors. The final threshold at
the fusion center helps in making a global decision to decide whether a change
has occurred or not. The set of images used for simulations are shown in Figure 6.

Fig. 6. Test images taken from cyclops camera

Image Change Detection Using Wireless Sensor Networks 251

4.1 Performance at the Sensor

The performance analysis at the sensor level is illustrated in Figure 4. In this
figure, the probability of detection is plotted against the probability of false
alarm. The data for the plot is obtained by varying T1 and setting T2 to 300.
The size of the test images is 64X64. The results shown in Figure 4 suggest that
the system is very sensitive to the threshold.

4.2 Performance at the Fusion Center

The performance analysis at the fusion center is illustrated in Figure 5. In our
experiments, the channel is considered to be additive white Gaussian (AWGN).
Five sensors are considered in the system. The threshold T4, which helps in
making the final decision for a change is varied between (1,5). The number of
detections or (1’s) from the sensors are added and compared with this threshold
T4. From Figure 5, we observe that the system is able to detect a change with a
high probability of detection and less number of false alarms.

5 Conclusions and Future Work

In this paper, we proposed a solution to image change detection problem in a
wireless sensor network which makes use of four thresholds in order to make local
and global changes in the area being monitored. It is assumed that an additive
white Gaussian noise channel corrupts the local decisions transmitted from the
sensors. In future, a system can be developed for real world applications with
more realistic models of channel noise.

Acknowledgements

This work was carried out under the Kansas Space Grant Consortium grant
funded by the Exploration Systems Mission Directorate (ESMD) program at
NASA.

References

1. Niu, R., Varshney, P.K., Moore, M., Klamer, D.: Decision fusion in a wireless sensor
network with a large number of sensors. In: Proc. 7th International. Conference on
Information Fusion, Stockholm, Sweden (June 2004)

2. Niu, R., Varshney, P.K.: Distributed detection and fusion in a large wireless sen-
sor network of random size. EURASIP Journal on Wireless Communications and
Networking

3. Jayaweera, S.K.: Decentralized detection of stochastic signals in power-constrained
sensor networks. In: IEEE Workshop on Signal Processing Advances in Wireless
Communications (SPAWC)

252 S. Yelisetty and K.R. Namuduri

4. Chamberland, J.-F., Veeravalli, V.V.: Decentralized detection in wireless sensor
networks with dependent observations. In: Proc. 2nd Intl. Conf. on Computing,
Commun. and Contrl Technologies (CCCT04)

5. Kulkarni, P., Ganesan, D., Shenoy, P.: The case for multi-tier camera sensor net-
works. In: Proceedings of the international workshop on Network and operating
systems support for digital audio and video, pp. 141–146

6. Margi, C.B., Manduchi, R., Obraczka, K.: Energy consumption tradeoffs in vi-
sual sensor networks. In: Proceedings of 24th Brazilian Symposium on Computer
Networks (SBRC 2006) (June 2006)

7. Rahimi, M., Baer, R.: Cyclops: Image sensing and interpretation in wireless sensor
networks, reference manual,
http://www.cens.ucla.edu/∼mhr/cyclops/cyclops.pdf

8. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algor-
thims: A systematic survey. IEEE Trans.on Image Processing (March 2005)

9. Bruzzone, L., Prieto, D.: Automatic analysis of the difference image for unsuper-
vised change detection. IEEE Trans. Geoscience and Remote Sensing 38, 1171–1182
(2000)

10. Paul, E.I., Rosin, L.: Evaluation of global image thresholding for change detection.
Pattern Recognition Letters 24, 2345–2356 (2003)

11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, USA (2001)
12. Papoulis, A., Pillai, S.: Probability, Random Variable and Stochastic Processes.

McGraw-Hill, New York
13. Sam, S.K., Breipohl, A.M.: Random Signals Detection, Estimation and Data Anal-

ysis. John Wiley, New York (1988)

http://www.cens.ucla.edu/~mhr/cyclops/cyclops.pdf

Near Optimal Sensor Selection in the COlumbia

RIvEr (CORIE) Observation Network for Data
Assimilation Using Genetic Algorithms

Thanh Dang1, Sergey Frolov2, Nirupama Bulusu1, Wu-chi Feng1,
and António Baptista2

1 Portland State University, Portland OR, USA
{dangtx,nbulusu,wuchi}@cs.pdx.edu

2 Oregon Health and Science University, Beaverton, OR, USA
{frolovs,baptista}@ccalmr.ogi.edu

Abstract. CORIE is a pilot environmental observation and forecasting
system (EOFS) for the Columbia River. The goal of CORIE is to charac-
terize and predict complex circulation and mixing processes in a system
encompassing the lower river, the estuary, and the near-ocean using a
multi-scale data assimilation model.

The challenge for scientists is to maintain the accuracy of their mod-
eling system while minimizing resource usage. In this paper, we first
propose a metric for characterizing the error in the CORIE data assimi-
lation model and study the impact of the number of sensors on the error
reduction. Second, we propose a genetic algorithm to compute the opti-
mal configuration of sensors that reduces the number of sensors to the
minimum required while maintaining a similar level of error in the data
assimilation model. We verify the results of our algorithm with 30 runs
of the data assimilation model. Each run uses data collected and esti-
mated over a two-day period. We can reduce the sensing resource usage
by 26.5% while achieving comparable error in data assimilation. As a
result, we can potentially save 40 thousand dollars in initial expenses
and 10 thousand dollars in maintenance expense per year.

This algorithm can be used to guide operation of the existing obser-
vation network, as well as to guide deployment of future sensor stations.
The novelty of our approach is that our problem formulation of network
configuration is influenced by the data assimilation framework which is
more meaningful to domain scientists, rather than using abstract sensing
models.

Keywords: Sensor selection, network configuration, coastal monitoring,
data assimilation, genetic algorithm.

1 Introduction

Earth and ocean sciences confront great opportunities and challenges in under-
standing the complex behaviors of large-scale physical systems with next genera-
tion sensing systems [6]. Modeling the behavior of the oceans and river estuaries

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 253–266, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 T. Dang et al.

is a challenging but important research field. In order to understand the state of
the physical process, sensors are deployed in the environment to collect data for
the modeling process. Ideally, a highly dense network of sensors will enable the
collection of fine-grained information about the physical system under observa-
tion. However, for systems that operate over a large geographical region, such a
deployment of sensors is infeasible. Hence, most of the existing large-scale sens-
ing systems only deploy a sparse network of sensors and use advanced numerical
methods in estimating and modeling the physical processes.

Figure 1 shows CORIE, an observation network that monitors the Columbia
River estuary and the Eastern North Pacific ocean. CORIE integrates a real-
time sensor network, a data management system and advanced numerical mod-
els. The goal of CORIE is to characterize and predict complex circulation and
mixing processes in a system encompassing the lower river, the estuary and the
near-ocean. The CORIE observation network includes an extensive array of 24
stations in the Columbia River estuary and the nearby coastal ocean. At each
station, variable combinations of in-situ sensors measure one or more physical
properties of water or atmosphere. Water temperature, salinity, and water levels
are measured at most stations. Profiles of velocity and acoustic backscatter are
measured at three stations.

Fig. 1. CORIE Data Assimilation Architecture. Source: The CORIE project website.

Data assimilation combines observational data with numerical data models
to produce an estimated system state for the physical process. Data assimilation
plays an important role in predicting the state of the dynamic physical process
such as estuary circulation, weather and climate changes. Unlike low-powered
wireless sensors such as the popular Crossbow motes which are tiny and cheap,
the sensor stations in ocean monitoring are usually very expensive to deploy and

Near Optimal Sensor Selection 255

operate. Such stations typically have a number of sensors between the surface
and the anchor, providing a vertical array of sensors. Measurement data from
the observation network directly impacts the accuracy of the estimated system.
Hence, finding a suitable network configuration is an important problem in de-
ploying and operating an observation network because it can help reduce the
resource usage while maintaining or improving the estimation accuracy.

In this paper, we first propose a metric for characterizing the error in the
CORIE data assimilation model and study the impact of the number of sensors
on the error reduction. Second, we propose a genetic algorithm to compute the
near optimal configuration of sensors that reduces the number of sensors to
the minimum required while maintaining a similar level of error in the data
assimilation model.

This problem is relevant to the sensor network research community because
the deployment of the existing observation network was based on an intuition of
the underlying physical process, with little knowledge about how sensor place-
ment would affect the resulting data models. Hence, a solution to the problem
will help conserve resources by using fewer sensors.

The problems in oceanography have their own distinct challenges. First, the
physical model is extremely complex. Unlike models in previous work [1, 8, 20,
11, 12], we address a complex 3D circulation and mixing processes in a system
encompassing the lower river and the estuary. This has been formally recog-
nized as a challenging task in ocean modeling [10]. Second, the computation is
very expensive due to its large state space size. For example, the state space
size of the CORIE model is 878,850. Given larger memory and computing plat-
forms, this number would increase with new resources by increasing spatial and
temporal resolution. Third, the observation model incorporates multiple sensing
modalities such as salinity, temperature, elevation, and velocities. Each sensing
modality provides different information about the observed environment. There-
fore, the solution must take into account not only the correct set of sensors but
also the correct type of sensors to ensure good estimation results. In addition, the
solution must be model independent so that it can be used in other environmen-
tal monitoring deployments provided that they use the same data assimilation
framework. Fortunately, the framework we use is a state-of-the-art data assimi-
lation and estimation system [10]. Finally, selecting an optimal sequence of sets
has already been shown to be NP-hard in many settings [1]. Therefore, we must
consider not just only polynomial class solutions but also how much time it
actually takes to converge to an acceptable result.

We present a method to partially address the problem of finding near optimal
network configuration for an observation network, which uses a data assimilation
framework based on a sigma-point Kalman filter [10]. The main contributions of
this paper are:

– We formulate the problem of optimizing network configuration based upon
data assimilation (Section 3) and apply it to an ocean modeling application.

– We propose a framework that uses genetic algorithms to partially address
the problem of selecting a suitable subset of sensors (Section 4).

256 T. Dang et al.

– We evaluate the approach on data from the CORIE observation network
(Section 5) and demonstrate that we can reduce the use of sensing resources
by 26.5% and operating expenses by $10,000 a year while maintaining a
similar level of estimation accuracy.

2 Data Assimilation Overview

This section provides a brief overview of the CORIE data assimilation framework
used in the formulation of the sensor selection problem. While we describe only
the data assimilation framework used in the CORIE project [10], we do not
imply that the problem is only applicable for this specific framework. In fact,
the problem is suitable for any situation provided that the error of the estimation
can be calculated.

2.1 CORIE Data Assimilation Framework

The complete data assimilation framework, proposed and implemented by Frolov
et al. [10], is complex and draws upon several disciplines including numerical
analysis, machine learning, and estimation theory. We provide a brief overview
of CORIE here and refer readers to [10] for more details. Figure 1 shows the
high level components of the CORIE modeling system. It integrates model and
field controls. The main purpose of CORIE is to simulate 3D circulation in the
region that lies between the Columbia River estuary and near ocean but also
extends further inland in Oregon, USA to the Eastern North Pacific. CORIE
performs multiple tasks and provides the following: short term forecasts, actual
past conditions, characteristic climatology conditions, and scenario conditions.

In order to accomplish these tasks, one of the key components is data assim-
ilation which integrates observational data from sensors into a non-linear ocean
model. The model integrates information from the CORIE network, Doppler
radar and remote sensing with forcings from the river, estuary, winds, atmo-
sphere, and ocean to predict the behavior of the underlying physical processes.
The work of Frolov et al. [10] proposes and implements a fast framework with
model surrogates for data assimilation, illustrated in Figure. 2. The data assimi-
lation framework includes two main components. The first component is off-line
learning illustrated on the left block in Figure. 2. Its main purpose is to train a
model surrogate, which is an equivalent model in the reduced space. In order to
do that, the original system state of 878,850 variables is reduced to 60 variables
using principle component analysis, a popular method for extracting patterns
and compressing data [17], based on the singular value decomposition (SVD)
algorithm. The model surrogate is trained using a recurrent neural network [15].
All training is carried out off-line using an existing database of model hindcasts
generated by the traditional circulation model [18]. The second component is
data assimilation illustrated on the right block in Figure. 2. The core of the
assimilation algorithm is the sigma-point kalman filter [19]. The filter estimates
the state of the dynamic system using the model surrogate and measurements

Near Optimal Sensor Selection 257

Fig. 2. CORIE Data assimilation framework — Reproduced with permission from
Frolov et al. [10]

from sensors. An existing framework such as data assimilation using ensemble
Kalman filter [9] is computationally very expensive, limiting its use. In contrast,
the model surrogate framework performs 1000 times faster than existing frame-
works and can significantly increase the estimation error reduction (defined in
Equation 2) on the given measurement set [10].

Clearly, this framework provides a significant contribution in improving the
estimation of the ocean model. Nevertheless, a trivial observation is that the
configuration of sensors including not only sensor location but also sensor type
plays a very important role in providing better estimation. Hence, there are two
problems:

– What is the configuration of sensors that would maximize the estimation
accuracy given an observation network?

– What is a subset of sensors to achieve or maintain a certain estimation
accuracy?

These have been proven to be hard problems [1]. In our work, we only address
a part of the latter problem, which we describe formally in the next section.

3 Problem Formulation

Network configuration refers to the number of sensors, their type and their lo-
cations. The configuration of sensors plays an important role in estimation in
general. For example, an object’s location in two dimensional space can be bet-
ter estimated from range measurements with a triplet of non-collinear sensors

258 T. Dang et al.

than with a triplet of collinear sensors. The temperature in a room can be bet-
ter characterized from sensors spread throughout the room rather than sensors
concentrated in one specific area.

Fig. 3. Number of sensors versus estimation error reduction

For example, we have run data assimilations on an increasing number of sen-
sors in CORIE network. Figure 3 shows the estimation error reduction (defined
in Equation 2) versus the number of sensors used in CORIE network. As we
can see, some sensors have more impact on error reduction than others 1. In
addition, some configurations of sensors might have lower error reduction even
though they have more sensors than other configurations. Therefore, finding a
minimum set of sensors that can provide the most information is an interesting
problem, the network configuration problem. Formally, it can be stated as the
following optimization problem:

min|S| subject to D(S) ≤ ε and S ⊆ A (1)

where A is the set of all sensor information A = {s1, s2, ..., sn} and si =
(type, x, y, z, δ) in which type is the sensor type, which can be temperature,
salinity, or elevation. (x, y, z) is the sensor’s location. δ is the standard devia-
tion in the sensor reading obtained by calibration. ε is the threshold error. D(S)
is the simplified form of the function of error reduction of the data assimilation.
In other words, it is the cost function to be optimized. D(S) can be calculated
as the estimation error reduction as follows:

error−reduction = 1 − sum[(xs−twin − xs−data).2]
sum[(xs−twin − xs−free).2]

(2)

1 We compare the error reduction in data assimilation using the observational data
relative to relying on the numerical model alone.

Near Optimal Sensor Selection 259

where xs−twin is the true system state, xs−data is the estimated system state,
xs−free is the simulated system state, i.e., the estimated system state with-
out considering sensor measurements. The notation (.).2 denotes the vector of
squared elements. We can consider sum[(xs−twin − xs−data).2] as the squared
error of the data assimilation using sensor measurements and sum[(xs−twin −
xs−free).2] as the squared error of the data assimilation without sensor mea-
surements. Hence, Equation 2 shows how much error the data assimilation can
reduce when it uses additional sensor measurements.

A similar derived optimization problem can be formulated as follows:

max|D(S)| subject to S ⊆ A and |S| = n (n ≤ |A|) (3)

to find a configuration of the network that maximizes the error reduction D(S)
of the data assimilation.

There are several parameters to be considered here. The first parameter is a
sensor’s type. Intuitively, sensors of different types may provide a better data set
for data assimilation than sensors of a single modality e.g. temperature sensors.
The second parameter is the sensor location. It is important that sensors should
be deployed in critical locations such that they together report data representing
the underlying physical process. The final parameter is the number of sensors
which is our optimization objective. Unfortunately, the complete problem is very
difficult to solve due to the fact that selecting an optimal sequence of sets is NP-
hard [1] and the behavior of function D(S) is unknown. Therefore, our work can
only address a part of the problem where the sensor locations are fixed. Hence,
the problem becomes a sensor selection problem. The next section presents our
approach to solve this problem.

4 Sensor Selection Using Genetic Algorithm

The key idea in our proposed solution is to apply genetic algorithms to search for
an acceptable sensor set. We consider genetic algorithms (GAs) for this prob-
lem because they have been applied successfully to a variety of optimization
problems, and especially for optimizing the topology and learning parameters
for artificial neural networks [15]. GAs can search for the optimal solution by
observing the behavior of the system without actually knowing how the system
works. GAs can optimize cost functions with multiple minima without numerical
gradients for the cost functions. Hence, it is well suited for our sensor selection
problem because we have little prior knowledge about the relationship between
the error reduction and the configuration of sensors. For a complete discussion
on genetic algorithms, please see [15].

The search for an appropriate configuration begins with a collection of initial
configurations. Members of the current population are used to generate the next
generation population by means of operations such as random mutation and
crossover, which are patterned after processes in biological evolution. At each
step, the configurations in the current population are evaluated by the reduc-
tion of error after data assimilation. Those with the highest error reduction are
selected probabilistically as seeds to produce the next set of configurations.

260 T. Dang et al.

4.1 Representing the Network Configuration

We employ a standard hypothesis bit-string (or chromosome) representation that
is often used in GAs. The advantage of this representation is that it can be easily
manipulated by genetic operators such as crossover and mutation.

Since we are only optimizing the number of sensors in the network, the network
configuration can be represented by an n-bit string 10111...1︸ ︷︷ ︸

n

where n is the total number of sensors in the network.
0 means that the sensor is not used.
1 means that the sensor is used in the configuration.
For example: 10101 is a configuration of a network of 5 sensors in which the

1st, 3rd, and 5th sensors are used while 2nd and 4th sensors are not used.

4.2 Fitness Function and Selection

The fitness function defines the criterion to rank the configurations for the pur-
pose of selection. In our problem settings, the most appropriate criterion is the
error reduction in data assimilation. Hence, the fitness function calculates the
error reduction in the data assimilation using that configuration.

There are several popular selection methods such as fitness proportionate
selection, tournament selection, and rank selection. Each selection method has its
own advantages and disadvantages [15]. In our approach, we use the tournament
selection method which runs a competition among a few individuals selected
randomly and select ones with the best fitness. The tournament selection method
often yields a more diverse population than other methods. Hence, a broader
range of configurations can be considered during training.

4.3 Crossover and Mutation

We use standard settings for the crossover and mutation functions. We use scat-
tered crossover as the operator instead of single point or intermediate crossover
because it maximizes the information exchange among individuals. We use the
gaussian mutation strategy because it is popular and standard in GAs.

5 Experimental Results

This section describes the experiments conducted to evaluate if GAs can produce
a good set of sensors. The hypothesis we propose and test is that the sensor
set found by a GA can save significant resources while maintaining a level of
estimation accuracy similar to the current observation network.

The metric we used is the same as the cost function in Equation 2 because
it is the optimization criterion. The evaluation of the sensor set is based on the
error reduction in the data assimilation using the data from this configuration.

error−reduction = 1 − sum[(xs−twin − xs−data).2]
sum[(xs−twin − xs−free).2]

(4)

Near Optimal Sensor Selection 261

The error−reduction lies between 0 to 1 because sum[(xs−twin−xs−data).2] is
smaller than sum[(xs−twin−xs−free).2] as the measurements are incorporated
in the estimation of xs−data. Ideally, the higher the error−reduction is, the
better the set of sensors.

Another metric that we consider is the cost of sensor equipment, deployment,
and maintenance, that we can save by reducing the number of fully operational
sensors in CORIE. We assume the costs for different sensors are the same. In
practice, this is not true. Deployment and operation costs for sensors depend on
sensor location and sensor type. However, we simplify the model to give an idea
of how much money we can save by selectively reducing the number of sensors
as follows:

cost−reduction = (eq−cost + dep−cost + mnt−cost) ∗ num−sensor (5)

where num−sensor is the number of sensors we can remove from CORIE. The
average equipment cost, eq−cost, is approximately $4,500 per sensor. The deploy-
ment cost, dep−cost, is about $500 per sensor. The maintenance cost, mnt−cost
is about $1000 per sensor. These are derived from actual costs in CORIE. We
do not take into account the cost to deploy the station and the power and com-
munication system because we can use one station for several sensors.

5.1 Experimental Design

We conduct the experiments using data from the CORIE observation network.
The network consists of 23 stations with 34 sensors deployed in the Columbia
river estuary.

Due to the fact that we never know the true state of the dynamic system, we
set up twin experiments that use the real data to estimate the true state of the
system and use this estimated true state to simulate the measurements for the
data assimilation.

0 10 20 30 40
55

60

65

70

75

80

Generation

E
rr

o
r

R
e
d
u
ct

io
n
 (

%
)

Convergence of Error Reduction

average error reduction
max error reduction
min error reduction

Fig. 4. Results: a) The error reduction converges and reaches a stable state after 10
generations. b) The error reduction of the data assimilation using 25 GA-selected sen-
sors is only 1.55% smaller than using all 34 sensors.

262 T. Dang et al.

We use a separate hindcast data xs−twin and consider it as the true state.
xs−twin is then used to simulate the observations from the sensor network. The
measurements are used as the input to the data assimilation. The output of
the data assimilation is xs−data, which is the estimated system state. On the
other hand, by using the model only, we also simulate xs−free as the simulated
system state. xs−free is obtained without data assimilation. Readers should
distinguish between the process model, which is known and used to simulate
xs−free and the error reduction model, which we have little understanding
about. The settings for GA are listed below.

– Hypothesis representation: 34-bit chromosome
– population size: 20
– crossover rate: 0.8
– crossover operator: scattered
– mutation strategy : gaussian
– selection method: tournament
– number of generation: 30
– fitness function: average error reduction of 5 runs
– runtime: 35 days

Due to limited processing capability, we do not set the threshold error reduc-
tion ε to find the configuration. Instead, we observe the best configuration after
30 generations.

5.2 Results and Analysis

The experiments finished after 35 days with the error reduction convergence.
One might wonder about the experiment run time. As we mentioned earlier,
the 3D circulation model state size is 878,850 — 8370 grid points × [(1 salin-
ity + 1 temperature + 2 velocities) × 26 levels + 1 elevation]. Although the
data assimilation is operated in the reduced space of 60 variables, the evaluation
of error reduction of individual sensing type must be done in the full space of
878,850 at each time step. Hence, one complete data assimilation alone takes
20 minutes on 2-day data. The total time to finish the GA can be estimated
as 20×30×5×0.3/24 = 37.5 days. However, this number can be significantly re-
duced by leveraging the inherent parallelism in GA. For example, the total time
can be reduced to one week if 5 machines are used for the experiment. However,
this motivates the design of a new algorithm to make GA parallelism possible.
This is not the focus of our work. However, there exist several popular ways to
accomplish it [15].

The best configuration after the 30th generation was:
1111101001111111100111100101110111.

This means that 9 sensors or 26.5% resources are not used. We verify this
configuration by the second experiment, in which we run data assimilation 30

Near Optimal Sensor Selection 263

times for 2-day data. The error reduction achieved was 75.42%. This is only
1.55% lower than that using all 34 sensors as shown in Figure 4.

If the difference in the error reduction is negligible, it means that we can save
9 sensors. According to the estimated costs for initial equipment, deployment
and maintenance, we can save around 40 thousand dollars of initial expense and
10 thousands dollars for maintenance per year.

6 Related Work

The problem of network configuration or sensor selection has attracted significant
interest in the sensor networks research community. Several papers [22] [13] [20]
[1] try to address the problem for varying classes of sensors, network scale and
the underlying physical process that the network is monitoring.

In one of the earliest works on the sensor coverage problem, Megeurdicherian
et al. [14] proposed a solution that given the knowledge of existing sensor posi-
tions uses Voronoi diagrams to compute the maximal breach paths in the sensor
field and find gaps in coverage, where additional sensors can be deployed. Sim-
ilarly, Wang et al. [21] proposed a solution to network coverage by integrating
sensing and connectivity constraints. The limitation of their work is that they use
a simple signal attenuation model for a particular sensing modality to evaluate
the utility of each sensor, rather than considering the complete data assimilation
process.

Willett et al. [22] proposed an adaptive sampling scheme called Backcasting.
They try to address a similar problem to ours, which is to minimize the number
of active sensors while maintaining high accuracy. However, they assume a dense
uniform distribution of sensors and eliminate sensors by considering the correla-
tion of the environment estimated from a fusion center. The context in coastal
modeling is slightly different w there are only a few expensive sensor stations
deployed in a very large geographical area. Hence, the assumptions are no longer
valid.

One direction in solving the sensor selection problem for target tracking tries
to use concepts from information theory [8] [13] [20]. Ertin et al. [8] and Liu et
al. [13] consider the mutual information between the predicted sensor observation
and the current target location distribution as the criterion for selecting sensors.
This approach works because mutual information actually represents the reduc-
tion in the uncertainty of one random variable to the knowledge of the other [4].
Wang et al. [20] overcome the expensive computation of mutual information by
introducing an entropy-based approach. The authors claim that the difference
between the entropy of the probability distribution of the sensor view and the
entropy of the sensing model for a true target is strongly related to the mutual
information. Hence, this information can be used to sort sensors more quickly
while still maintaining similar results. While these attempts show very interest-
ing findings, they are formulated for target tracking and localization problems. It
is unclear how the approaches can be applied to the ocean monitoring problem.
In addition, the approaches implicitly assume that a greedy selection of the set

264 T. Dang et al.

of the most informative sensors provides the most information. However, as we
observed in our data assimilation problem, this is not always the case.

The work of Krause et al. [12] and Bian et al. [1] formulate the problem as a
form of optimization with some cost function, utility function or sensing quality,
subject to constraints such as energy consumption [1] or communication cost [12].
We found that they are very close to our problem theoretically. However, their
problem context is different from ours because we do not have any constraints
on energy or communication cost. All sensor stations in CORIE are wired with
power and data cables. Another difference is that our problem addresses a very
large and complex geographical region, the Columbia river estuary. Therefore,
determining the super modular utility function [1] or predicting sensing quality
[12] is infeasible.

There are various works attempting to solve related problems such as adaptive
sampling for localized phenomena [7], and sensor deployments that differ from
our work in that they optimize certain specific criteria [16] [2] [5]. The problems
are related but different to ours. Therefore, most of their approaches are not
applicable to the problem we address.

Finally, there are attempts to use genetic algorithms to select sensor parame-
ters [3] or select noisy sensor data [11]. Our work is different in that we show that
we can use genetic algorithms combined with data assimilation for applications
in ocean observation and coastal monitoring.

7 Future Work

Genetic algorithms do not use knowledge about the relationship between sensor
configuration and monitoring precision. However, detailed investigation about
the physical process model may help in better explaining the relationship be-
tween sensor configuration and monitoring precision. We also would like to as-
sess the effectiveness of the genetic algorithm results with monthly, seasonal, and
yearly environmental changes.

As mentioned before, finding an optimal configuration of sensors is an un-
solved hard problem. As future work, we would like to investigate optimization
algorithms that take into account not only the number of sensors but also the
sensor type and sensor location to determine an optimal network configuration.
We would also like to try our framework with other modeling and sensing systems
such as atmospheric sensing besides the Columbia river estuary system to ensure
the usefulness of our approach in practice. Finally, in sparse wide-area observa-
tion networks such as CORIE, the long term data collection from static stations
is often augmented with opportunistic data collection from mobile stations. In
the CORIE project, Clatsop Community College’s M/V Forerunner serves as a
mobile station of opportunity, and several cruises have been conducted over the
years. As part of the CORIE project, we are currently investigating how to guide
the trajectory of these vehicle cruises to optimize the observation process.

Near Optimal Sensor Selection 265

8 Conclusion

CORIE is a pilot environmental observation and forecasting system for the
Columbia River. The CORIE observation network differs from low-power, dense
wireless sensor networks in one aspect - sensor stations are sparse and expensive
to deploy and maintain. The challenge for scientists is to maintain the accuracy
of their modeling system while reducing the use of expensive resources.

We showed that genetic algorithms can aid in optimizing the configuration
of the CORIE observation network. Specifically, we were able to reduce the
number of observation stations without compromising the accuracy of the state
estimate; leading to potential savings in the deployment and maintenance cost
for the observatory. The novelty of this paper is that our problem formulation of
sensor selection is influenced by the data assimilation framework which is more
meaningful to domain scientists, rather than by abstract sensing models. Our
approach and algorithm are simple and potentially generalizable to other wide
area environmental sensing systems.

Acknowledgements. We would like to thank Michael Wilkin for providing
information on the costs and operating expenses of equipment in the CORIE
project. We also would like to thank Dave Maier, Todd Leen, and Eric Wan for
useful discussions during the project. The research described in this paper was
supported by National Science Foundation grants NSF 05-14818 and 01-21475.

References

1. Bian, F., Kempe, D., Govindan, R.: Utility based sensor selection. In: Proceedings
of the Fifth International Conference on Information Processing in Sensor Networks
(IPSN 06), pp. 11–18, Nashville, Tennessee (April 2006)

2. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks
with guaranteed capacity and fault tolerance. In: Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing, pp. 309 –
319, Urbana-Champaign, Illinois (May 2005)

3. Corcoran, P., Anglesea, J., Elshaw, M.: The application of genetic algorithms to
sensor parameter selection for multisensor array configuration. Sensors and Actu-
ators A Physical 76, 57–66 (1999)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons,
New York (1991)

5. Cristescu, R., Vetterli, M.: On the optimal density for real-time data gathering
of spatio-temporal processes in sensor networks. In: Proceedings of the Fourth
International Symposium on Information Processin In Sensor Networks, pp. 159–
164, Los Angeles, California (April 2005)

6. Delaney, J.: Keynote: Next-generation earth and ocean sciences: Opportunities and
challenges. In: Proceedings of the 3rd ACM Conference on Embedded Networked
Sensor Systems (SenSys), San Diego, California (November 2005)

7. Ermis, E.B., Saligrama, V.: Adaptive statistical sampling methods for decentralized
estimation and detection of localized phenomena. In: Proceedings of the Fourth
International Symposium on Information Processing in Sensor Networks (IPSN
05), pp. 143–150, Los Angeles, California (April 2005)

266 T. Dang et al.

8. Ertin, E., Fisher, J.W., Potter, L.C.: Maximum mutual information principle for
dynamic sensor query problems. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, pp. 405–416. Springer, Heidelberg (2003)

9. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model
using monte carlo methods to forecast error statistics. Journal of Geophysical Re-
search, vol. C5(10) (1999)

10. Frolov, S., Baptista, A., Lu, Z., van der Merwe, R., Leen, T.: Fast data assimilation
with model surrogates: Application to circulation in a highly stratified estury. In:
Submission to Ocean Modeling

11. Khan, A.A., Zohdy, M.A.: A genetic algorithm for selection of noisy sensor data
in multisensor data fusion. In: Proceedings of American Control Conference, pp.
2256–2262, Albuquerque, NM (June 1997)

12. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.M.: Near-optimal sensor place-
ments: Maximizing information while minimizing communication cost. In: Pro-
ceedings of the Fifth International Conference on Information Processing in Sensor
Networks (IPSN 06), pp. 2–10, Nashville, Tennessee (April 2006)

13. Liu, J., Reich, J., Zhao, F.: Collaborative in-network processing for target tracking.
EURASIP Journal on Applied Signal Processing, vol. 4 (2002)

14. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: Proceedings of the Conference
on Computer Communications 2001 (INFOCOM 2001), pp. 1380–1387. Anchor-
age, Alaska (April 2001)

15. Michell, T.M.: Machine Learning. Mc Graw Hill, New York (1997)
16. Ray, S., Lai, W., Paschalidis, I.C.: Deployment optimization of sensornet-based

stochastic location-detection systems. In: Proceedings of the Conference on Com-
puter Communications (INFOCOM 2005), Miami, Florida (March 2005)

17. Smith. L.I.: A tutorial on principle component analysis (February 2007)
http://kybele.psych.cornell.edu/~Eedelman/Psych-465-Spring-2003/PCA-
tutoria l.pdf

18. van der Merwe, R., Leen, T., Lu, Z., Frolov, S., Baptista, A.M.: Fast neural net-
work surrogates for very high dimensional physics-based models in computational
oceanography. Neural Computation (To appear, 2007)

19. van der Merwe, R., Wan, E.A.: Sigma-point kalman filters for probabilistic inference
in dynamic state-space models. In: Proceedings of the Workshop on Advances in
Machine Learning, Montreal, Canada (June 2003)

20. Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic
for target localization. In: Proceedings of the third international symposium on In-
formation processing in sensor networks (IPSN 04), pp. 36–45, Berkeley, California,
USA (April 2004)

21. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage
and connectivity configuration in wireless sensor networks. In: Proceedings of the
1st international conference on Embedded networked sensor systems (Sensys), pp.
28–39. ACM Press, New York (2003)

22. willett, R., Martin, A., Nowak, R.: Backcasting: Adaptive sampling for sensor net-
works. In: Proceedings of the Fifth International Conference on Information Pro-
cessing in Sensor Networks (IPSN 06), pp. 36–45, Nashville, Tennessee (April 2006)

http://kybele.psych.cornell.edu/~Eedelman/Psych-465-Spring-2003/PCA-tutoria l.pdf
http://kybele.psych.cornell.edu/~Eedelman/Psych-465-Spring-2003/PCA-tutoria l.pdf

Data Salmon: A Greedy Mobile Basestation

Protocol for Efficient Data Collection in
Wireless Sensor Networks

Murat Demirbas1, Onur Soysal1, and Ali Şaman Tosun2,�

1 Dept. of Computer Science & Engineering, University at Buffalo, Suny
{demirbas, osoysal}@cse.buffalo.edu

2 Dept. of Computer Science, The University of Texas at San Antonio
tosun@cs.utsa.edu

Abstract. Our work addresses the spatiotemporally varying nature of
data traffic in environmental monitoring and surveillance applications.
By employing a network-controlled mobile basestation (MB), we present
a simple energy-efficient data collection protocol for wireless sensor net-
works (WSNs). In contrast to the existing MB-based solutions where
WSN nodes buffer data passively until visited by an MB, our protocol
maintains an always-on multihop connectivity to the MB by means of an
efficient distributed tracking mechanism. This allows the nodes to for-
ward their data in a timely fashion, avoiding latencies due to long-term
buffering. Our protocol progressively relocates the MB closer to the re-
gions that produce higher data rates and reduces the average weighted
multihop traffic, enabling energy savings. Using the convexity of the cost
function, we prove that our local and greedy protocol is in fact optimal.

1 Introduction

A wireless sensor network (WSN) consists of potentially hundreds of sensor nodes
and is deployed in an ad hoc manner for collecting data from a region of interest
over a period of time [1,2]. Even though the technology is new, WSNs received
an enthusiastic reception in the science community as WSNs enable precise and
fine-grain monitoring of a large region in real-time. Some examples of successful
large-scale deployments of WSNs to date are in the context of ecology monitoring
(monitoring of micro-climate forming in redwood forests [3]), habitat monitoring
(monitoring of nesting behavior of seabirds [4]), and military surveillance (de-
tection and classification of an intruder as a civilian, soldier, car, or SUV [5,6]).

In traditional WSN deployments (including all of the above deployments),
the data collection is achieved by using a multihop data forwarding mechanism
toward a static basestation (SB), which has the computational power to store
and process all the collected data. A major shortcoming of this approach is that
it neglects the spatiotemporal nature of data generation in the WSN. That the
WSN data generation rates are local both in time and space has been observed
� Partially supported by Center for Infrastructure Assurance and Security at UTSA.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 267–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

268 M. Demirbas, O. Soysal, and A.Ş. Tosun

Table 1. Comparison of MB protocols

Mobility Buffering Latency Energy consumed
Data mules random long-term high low

Predictable MB periodic long-term high low
MES self-controlled long-term medium low

Data salmon network-controlled short-term low medium

in several WSN deployments. Investigations of natural phenomena in forest envi-
ronments have validated spatiotemporal distribution of solar illumination, tem-
perature, and humidity [3, 7, 8]. This effect is especially prevalent in intrusion
detection applications [5, 6].

As the observed environmental phenomena changes inevitably with time, the
performance of data collection in the WSN suffer using the SB approach. In
typical WSN applications most of the time the network remains idle, and when
there is an interesting event (such as a rapid change in ambient features or
detection of an intruder), a bursty generation of traffic occurs at a region of the
network for some time. Fixing the location of the SB as the center or one corner
of the network penalizes these bursts of data generation. Multihop relaying of
this high data-rate traffic from the originating region toward the SB results in
the depletion of energy at the relaying nodes for the duration of the traffic. Also
collisions and message losses occur as this high data-rate traffic contends with
itself over multiple hops. Clustering and aggregation techniques [9, 10] help to
alleviate these contention and surge conditions, but they fail to address the root
cause of the problem.

In order to address the drawbacks of the SB approach, there has been a
flurry of work on employing a mobile basestation (MB) for data collection. The
data mules [11] work exploit random movement of MBs to opportunistically
collect data from a sparse WSN. Here, the nodes buffer all their data locally,
and upload the data only when the MB arrives within direct communication
distance. Although this approach is energy-efficient (in that the nodes do not
engage in multihop data forwarding), the tradeoff is the very high latency and
buffering costs. A similar approach is investigated in the context of predictable
movement of the MB. Here sensors are assumed to know the trajectory of the MB
and predict when the data transfer will occur accordingly. This work also shares
similar drawbacks as the data mules work: since the data rate may be varying in
time among the regions, buffer overflows may occur due to high data-rate traffic.

Mobile element scheduling (MES) work [12] considers controlled mobility of
the MB in order to reduce latency and serve the varying data-rates in the WSNs
effectively. The MES work shows that the problem of planning a path for the MB
to visit the nodes before their buffers overflow is NP-complete. Although some
heuristic based solutions are proposed to address this problem [12,13,14], these
solutions ignore the problem of communicating the status of the spatiotemporally
varying data-rates to the MB.

Data Salmon: A Greedy Mobile Basestation Protocol 269

Contributions. Our work addresses the spatiotemporally varying nature of
data traffic in environmental monitoring and surveillance applications. In con-
trast to previous MB-based solutions, we avoid indefinite buffering of data at
the sensor nodes and let them forward the data toward the MB to avoid any
latencies. In order to reduce the energy-consumption due to multihop data for-
warding, our MB protocol, namely the Data Salmon, progressively relocates the
MB to minimize the average weighted-multihop distance from the data produc-
ing nodes to the MB. To this end, our protocol directs the MB closer to the
regions that produce higher data rates so that most of the traffic arrives to
the MB via a small number of hops. Intuitively speaking our MB always tends
toward the center of mass of the network based on the data rate distribution.

Secondly, we prove that it suffices to design a local and greedy protocol to
achieve an optimal relocation of the MB, minimizing the average weighted-
multihop distance in the WSN. This proof involves showing that the cost function
is convex and a local minima is a global minima. Our Data Salmon protocol ex-
ploits this result in that at each position in the network it decides on the next
position via a simple greedy decision, using only the information available at that
node. Our protocol relocates the MB toward the edge with the largest flow.1 An-
other implication of such a greedy approach is that it is easy to parallelize the
solution via divide and conquer technique: Adding more MBs to the network is
easy since the MBs do not need to coordinate, yet each by optimizing its own
gain implicitly cooperates to achieve a desirable global behavior. We present an
extension of our Data Salmon protocol to multiple MBs along these lines.

Thirdly, our work demonstrates a synergistic cooperation of the MB and the
underlying WSN for achieving efficient and effective data collection. In our pro-
tocol, the MB uses an underlying spanning tree structure to receive the data
and to decide which direction to move on this backbone tree. In return when
the MB moves along one edge of the tree, it updates the direction of the edge to
point to its new location to ensure that a dynamic tree is always rooted at the
MB. This way it is possible to keep the MB always reachable from the backbone
tree structure, and the movement of MB also becomes relatively simple (by fol-
lowing one edge on the backbone tree). Although previous work assumed that
the data-rates in the WSN is known and fixed [12], our protocol addresses this
problem explicitly and discovers the current data-rates on-the-fly by means of
this distributed dynamic tree structure.

Finally, we simulate our Data Salmon protocol using real WSN data (collected
from an intrusion detection application) and some synthetic data. Via these
simulation results, we compare the improvements gained by using Data Salmon
over using SB under various configurations.

Applications. Since the Data Salmon protocol action for the MB is simple
and the MB is virtually controlled by the network, our protocol does not re-
quire a fully-autonomous robot to implement the MB. Thus, it is practical to
implement and deploy Data Salmon in real-world environmental monitoring and
1 Due to this greedy behavior to move toward the largest flow, we name our protocol

after the Salmon fish which swim upstream to lay eggs.

270 M. Demirbas, O. Soysal, and A.Ş. Tosun

surveillance applications using semi-autonomous MBs. A suspended cableway
infrastructure for MB mobility would provide a suitable framework for the de-
ployment of the Data Salmon protocol. For example, the Networked Infomechan-
ical Systems (NIMS) architecture [7] successfully avoids surface-based obstacles
found in natural environments by employing a horizontally mobile node sus-
pended via an aerial cable, and achieves adaptive sampling and effective solar
radiation mapping in microclimate monitoring applications. Another example
of such a system is the SkyCam platform [15], which is suitable for intrusion
detection and surveillance applications.

In our model, we have not included the energy required for moving the MB.
The reason behind our willingness to generously tradeoff the energy required for
relocating the MB with the energy gain in data collection is that it is much easier
to replenish and maintain the batteries of one MB than those of the sensor nodes
in the entire network. As it was observed through the NIMS deployment [16],
by using a solar panel attached to the mobile node it is possible to harvest an
average of 250 Watt hours of energy per day and sustain the mobility of the
node. Such an alternative energy source creates a virtual flow of energy into the
system, hence, the WSN lifetime is also elongated. Another benefit a network
controlled MB provides is the increased traffic capacity and network throughput
as mentioned in [17].

2 Model

We consider a dense, connected, multihop WSN. The sensor nodes are static
after the initial deployment. There is a distinguished MB in the network whose
current location (the node it resides on) is denoted by m.

We assume that a spanning tree structure is overlaid over the WSN during
the network initialization phase. To reduce the height of the tree, the tree root
(denoted as root) may be a node in the center of the network. By using a flooding
protocol initiated by the root it is easy to construct this backbone tree structure
[5, 6]. We denote the set of neighbors of node i on the tree as N(i), and use
d(i, m) to denote the hop distance over the tree structure between a node i and
the MB at node m. We denote the data rate generated by a node i at a given
time as wi. For a node m we define M(m), the cost of forwarding all the data
to m from the entire network, as M(m) =

∑
i wi ∗ d(i, m). Then the problem

of finding the optimal location for the MB reduces to finding a node m∗ with
minimal M(m).

3 The Data Salmon Protocol

After discussing how we maintain a dynamic tree rooted at the MB, we give our
greedy MB relocation protocol and prove its optimality.

Data Salmon: A Greedy Mobile Basestation Protocol 271

3.1 The Dynamic Tree Maintenance Protocol

Keeping the MB always reachable from the backbone tree structure is essential to
guarantee always-on data forwarding to the MB. In order to maintain a dynamic
tree that is always rooted at the MB over the static backbone tree, we adopt the
distributed arrow protocol [18].

After the backbone tree structure is set up as discussed in the Model section,
we assume that the tree edges all point to the MB initially. As the MB moves
over one of the tree edges, the arrow protocol prescribes flipping the direction of
the edge. This way the tree is always rooted at the MB. By locally updating a
tree edge, a dynamic tree rooted at MB can be thus maintained over the static
backbone tree.

Of course, embedding a tree constrains how nodes can forward the traffic to
the MB. For example, shortest path forwarding may not be achievable for some
nodes as they are constrained to follow the tree while forwarding data to the
MB. However using a backbone tree for forwarding of the traffic reduces the
tracking cost of the MB drastically: In our scheme as the MB moves only one
edge needs to be updated. Had we not used a tree backbone for data forwarding
toward the MB, the tracking of the MB would incur an expensive (nonlocal)
communication cost for updating the tracking structure as the MB relocates.
Investigating update-efficient and local tracking structures is an active topic of
research, and we give some pointers to this work in Section 5.

3.2 The Greedy Data Salmon Protocol

Our Data Salmon protocol for the MB runs on top of the dynamic tree structure,
and uses the incoming data rates from neighboring nodes for deciding which
neighbor to move the MB next. For each neighbor i of the current node m, we
denote the forwarded data rate from i with εi. Note that, εi corresponds to the
cumulative weights of all nodes in the subtree rooted at i. We denote the total
data rate in the WSN with ε, which is calculated at m as (

∑
i∈N(m) εi) + wm.

To minimize the cost function M , it is natural for the MB to move toward a
neighbor i with a lower cost function M(i). We prove in Theorem 1 that in fact
such a neighbor i is unique since the εi is at least more than half of the total
data rate ε in the WSN if and only if M(i) < M(m).

ba

A B

Fig. 1. Conceptual representation for
proof of Theorem 1

A

v0 v1 v2 vk

B1 B2 B3

Bk

Fig. 2. Visual Representation of Theo-
rem 2

272 M. Demirbas, O. Soysal, and A.Ş. Tosun

Theorem 1. Let MB be at node va, and vb ∈ N(va),
then M(vb) < M(va) ⇐⇒ εvb

> ε
2 .

Proof. Consider Figure 1, where MB is at va. If MB is moved from va to vb,
since this graph is a tree, all data generated at nodes in set A has to be forwarded
through edge (vb, va) toward vb. That is, the distance to the MB increases by
1 for all nodes in set A, and the distance decreases by 1 for all nodes in set B.
Thus, we can write the following:

M(vb) = M(va) + εA − εB (1)

Since A ∪ B contains all the nodes, the following also holds:

εA + εB = ε (2)

Case (=⇒): Using the assumption M(vb) < M(va), from (1) we can write,
εA − εB = M(vb) − M(va) < 0. So subtracting (2) from this term we can write
−2εB < −ε and thus conclude εB > ε

2 .
Case (⇐=): Using the assumption εvb

> ε
2 , from equation (2) we have

εA < ε
2 < εB. This entails M(vb) − M(va) = εA − εB < 0. So M(vb) has smaller

cost. �

Algorithm 1. MB control action at m

1: ε ← (
∑

i∈N(m) εi) + wm

2: if ∃i ∈ N(m) : εi > ε
2 then

3: move to i
4: end if
5: // else stay at m, since m is optimal

Therefore, the MB control action at node m is given as in Algorithm 1. We
prove the optimality of this protocol in the next section.

3.3 Proof of Optimality

Our optimality discussion depends on some properties of the cost function over
the backbone tree. We first show that the cost function is convex in Theorem 2,
and that the rate of increase of the cost function is non-decreasing in Theorem 3.
We use these two properties to conclude that the Data Salmon protocol is indeed
optimal over the backbone tree.

Theorem 2. Let v0 be an optimal location for MB. Consider a path v0, v1,. . .,
vk over the backbone tree. M(v0) ≤ M(v1) ≤ . . . ≤ M(vk) holds for the path.

Proof. Consider Figure 2. Since v0 is an optimal location of MB, M(v0) ≤
M(v1), and this proves the first inequality. If the MB is moved from v0 to v1,

Data Salmon: A Greedy Mobile Basestation Protocol 273

the distance increases by 1 for all nodes in set A, and the distance decreases by
1 for all nodes in the set B = ∪k

i=1Bi. So,

M(v1) = M(v0) +
∑

i∈A

wi −
∑

i∈B

wi (3)

Since we have M(v0) ≤ M(v1) we get
∑

i∈A

wi −
∑

i∈B

wi ≥ 0. (4)

If the MB is moved from v1 to v2, similarly, the distance increases by 1 for all
nodes in set A ∪ B1 and the distance decreases by 1 for all nodes in the set
B − B1. We can write M(v2) using M(v1) as follows:

M(v2) = M(v1) +
∑

i∈A∪B1

wi −
∑

i∈B−B1

wi (5)

This can be rewritten as

M(v2) = M(v1) +
∑

i∈A

wi +
∑

i∈B1

wi −
∑

i∈B

wi +
∑

i∈B1

wi

M(v2) = M(v1) +
∑

i∈A

wi −
∑

i∈B

wi + 2
∑

i∈B1

wi

Since all weights are non-negative, the last term is non-negative. First two terms
are shown to be non-negative in equation 4, so we get M(v2) ≥ M(v1). This can
be generalized to the following using the same approach:

M(vk) = M(vk−1) +
∑

i∈A

wi −
∑

i∈B

wi + 2
k−1∑

j=1

∑

i∈Bj

wi (6)

Thus, we have M(v0) ≤ M(v1) ≤ . . . ≤ M(vk). �
Since we use this result later we introduce εS, which corresponds to the sum of
weights of all members of set S, as εS =

∑
i∈S wi. Hence, equation (6) can be

rewritten as:

M(vk) = M(vk−1) + εA − εB + 2
k−1∑

j=1

εBj (7)

Theorem 2 shows that the cost function is convex, but in order to guarantee
that there are no oscillations in the MB control protocol we need to show that
the rate of increase is also non-decreasing.

Theorem 3. Let v0 be the optimal location of MB. Over the backbone tree con-
sider a path v0, v1,. . ., va,. . ., vb,. . ., vk, where 0 < a < b ≤ k.
M(va) − M(va−1) ≤ M(vb) − M(vb−1) holds for the path.

274 M. Demirbas, O. Soysal, and A.Ş. Tosun

Proof. By using equation (7), we get the following:

M(va) − M(va−1) = εA − εB + 2
a−1∑

j=1

εBj

M(vb) − M(vb−1) = εA − εB + 2
b−1∑

j=1

εBj (8)

[M(vb+1) − M(vb)] − [M(va+1) − M(va)] = 2
b−1∑

j=1

εBj − 2
a−1∑

j=1

εBj (9)

Since b > a, and all weights are non-negative, we can rewrite above as:

[M(vb+1) − M(vb)] − [M(va+1) − M(va)] = 2
b−1∑

j=a

εBj ≥ 0 �

As a corollary to these theorems, we observe that when the data rates are stable
for a sufficient enough period, the MB progressively relocates to the optimal lo-
cation in the WSN. Our corollary follows by using M(m) as the variant function.
From Theorem 2, we know that there are no local optimum points, and M(m) is
non-increasing toward the direction of the optimal location. Furthermore, Theo-
rem 3 states that equality among M(m) values is only possible between optimal
nodes, so at any suboptimal node we are guaranteed to have a neighbor with
lower cost. The decrease of M(m) is bounded below by M(m∗), so the MB
eventually reaches and comes to a rest at an optimal location m∗.

4 Simulation Results

In order to evaluate the performance of our protocol, we use real-world WSN
deployment data from the “Catch Me if You Can” project [19]. This project
implements a multiple-pursuer, multiple-evader tracking application by utilizing
the WSN to help the pursuers in protecting an asset from the evaders. Fig-
ure 3 shows the topology of the 60 nodes deployed for this project. The distance
between any neighboring nodes in the topology is 10 meters.

The Catch Me if You Can project collected data sets for over 50 experiments.
Each data set contains onsets and offsets of detection for the nodes: during
these detection periods, the sensor nodes generate detection data. In order to
simulate our Data Salmon protocol for collecting the generated detection data,
we overlay a randomly generated backbone tree over the WSN as shown in
Figure 3. This way, we calculate the approximate energy consumption for the
SB and MB approaches using the durations of detections and the distances on
the backbone tree.

The introduced locomotion model for the MB is a high-level abstraction of
the mobile platform details. We assume that the MB moves following the tree

Data Salmon: A Greedy Mobile Basestation Protocol 275

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • ⊕ • • • • • • •

• • • • • • • • • • • • • • •

Fig. 3. The topology of sensors in Catch Me if You Can experiments. Dots denote the
sensors. Embedded random backbone tree on the topology is shown by arrows and the
root is indicated with a plus.

edges, with constant speed. The MB only makes decisions at nodes, so it can
not change direction during transitions between nodes.

We developed a Java application named SalmonSim2 to interpret and emulate
the data sets from the Catch Me if You Can experiments. The Java application
uses constant time steps to measure the performance. During these time steps,
the MB is simulated and the events from experiment logs are emulated. The
Java application also provides a user interface to visualize the progress of the
MB running the Data Salmon protocol. Using this simulator, we compare the
performance of the SB positioned in the root of the tree with the MB using the
Data Salmon protocol. For the comparisons, we use the same cost metric defined
in the Section 3.

-50

-40

-30

-20

-10

0

10

20

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (seconds)

C
o

s
t

D
if
fe

re
n

c
e

(a)

0

5000

10000

15000

20000

25000

0 250 500 750 1000 1250 1500 1750 2000

Time (seconds)

T
o
ta

l
C

o
s
t

SB

MB

(b)

Fig. 4. (a) Difference between costs of SB and MB at any given time in a reference
data set. (b) Total costs of SB and MB in a reference data set.

We first compare the performance of the Data Salmon protocol with the SB
using data from a reference data set. Figure 4(a) shows the instantaneous cost
difference between the SB and the MB approaches. In the figure, the areas below
the y = 0 baseline show that the MB may become disadvantageous (albeit,
briefly) due to some abrupt changes in data rate. Since the cost difference stay
above the y = 0 baseline most of the time, we observe that the cost of MB is less
2 An applet version of the simulator is available in
http://www.cse.buffalo.edu/∼osoysal/salmonSim/.

http://www.cse.buffalo.edu/~osoysal/salmonSim/

276 M. Demirbas, O. Soysal, and A.Ş. Tosun

0

2000

4000

6000

8000

10000

12000

0 0.2 0.4 0.6 0.8 1

Average Speed (m/second)

T
o
ta

l
c
o
s
t

SB

MB

(a)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.5 1 1.5 2

Speed of Region of Interest (m/seconds)

To
ta

l C
os

t

SB
MB

(b)

Fig. 5. (a) Total cost with respect to varying MB speed (b) Total cost with respect to
varying region of interest speed

than that of SB. The cumulative of these differences, which gives us the total
energy costs of each approach, are graphed in Figure 4(b).

Secondly, we investigate the effect of the MB speed. For chosen speed values
the average of total cost for all data sets is shown in Figure 5(a). This graph
shows that even with low speeds the MB approach can outperform the SB.

Since the emulation dataset does not lend itself well for controlling the data
generation, we devised a second set of experiments using a synthetic data set.
We chose the value of a normal distribution function, to represent the region
of interest(ROI). The nodes have a threshold value to determine whether they
should send messages or not depending on their interest level. Interest level of
nodes correspond to the value of a normal distribution function at their position.
We simulate the change in region of interest by moving the mean of a normal
distribution function randomly. We start from a random point and choose an-
other random point for mean. The mean is moved at a constant speed toward
this random point until it reaches there. Then we choose another random point
and repeat this process until the end of simulations.

We first investigate the speed of ROI by fixing the speed of MB to 0.4
m/second and varying the speed of ROI to obtain Figure 5(b). The graph shows
that MB performs better than SB when the ROI moves up to two times faster
than MB. After this point, MB cannot keep up with the sudden changes in ROI
and falls beyond the SB case. Still the difference in performance is much less
than the cases where ROI moves slowly.

We also replicated the experiments in Figure 4(a), Figure 4(b) and Figure 5(a)
and obtained similar results. Synthetic results are more regular than regular data
set which can be explained by the effect of the normal function used in modeling
activation.

The Data Salmon protocol banks on the spatio-temporal nature of the data
in WSNs. Through our experiments, we have seen that even for the rare cases
this locality assumption does not hold, our protocol performs at least as good
as the SB approach most of the time. For example, if the data rate is uniform
throughout the network, our Data Salmon protocol fixes the location of the

Data Salmon: A Greedy Mobile Basestation Protocol 277

MB in an optimal location in the center of the WSN and acts more like an
SB approach. The Data Salmon performs worse than the SB approach only in
extremely pathological cases, where an adversary lures the MB toward one corner
of the network only to follow it up with a large but short-lived surge of data
from the opposite corner.

5 Discussion

Fault-tolerance. The backbone tree structure we use does not provide any
redundancy to the face of node failures. When one node goes down, the result is
a partitioned network. Fortunately, there has been a lot of work on self-stabilizing
tree maintenance protocols [20,21,22] that enable the tree to recover itself upon
node failure or corruption of the pointer structure at the nodes. (This is, of
course, provided that the network is not physically partitioned.)

After the backbone tree is fixed as discussed above, we also need to con-
sider the recovery of the distributed-arrow protocol. In [23], it is shown that by
adding some self-stabilizing actions, it is possible to achieve self-stabilization of
the distributed arrow protocol in a local and efficient way. Finally, when the
underlying static tree and the distributed-arrow protocol stabilizes, the Data
Salmon protocol stabilize trivially by virtue of being stateless.

Another issue for fault-tolerance is the collision-free collection of data packets.
Since the tree structure is commonly used for data collection, there has been
several work on collision-avoidance protocols for tree structures [24, 25].

Load-balancing. The static backbone tree imposes a strain on the static root
and core of the tree as there is always considerable amount of traffic routed
through the core toward the MB. Improving load-balancing in the network and
reducing the hot-spot in the core would help elongate the network lifetime. Exist-
ing work in reducing uneven energy consumption in WSNs by using a MB [26,27]
show that the optimum movement strategy for the MB is to follow the periph-
ery of the network when the deployment area is circular. However, since these
work assume uniform data generation by the sensor nodes every time unit, and
reducing the average weighted multihop in the face of varying traffic is not a
goal, these work are inapplicable in our context.

Modifying the backbone tree as the MB relocates may help reduce hot-spots
in the tree. It is important to keep such modifications to be as localized around
the MB as possible in order not to introduce excessive communication, hence,
excessive energy-consumption into the WSN. A relatively local tree reconfigura-
tion algorithm for bounded-length (4-5 hops) trees is presented in [28]. However,
local reconfigurations alone are insufficient for maintaining a globally desirable
tracking tree structure, and in the worst case local modifications may—over
time—result in pathological cases where the height of the tree can be several
orders of magnitude larger than the diameter of the network.

278 M. Demirbas, O. Soysal, and A.Ş. Tosun

Relaxing the backbone tree structure by replacing it with a more permissive
and load-balanced topology, such as a grid topology, may alleviate the hot-spot
issue, as this allows multiple forwarding paths between any two points in the
structure. Unfortunately, such a replacement introduces the problem of efficient
tracking of the MB over the structure. Except for simple structures, such as a
linear topology or a tree structure—as in our case—, designing update-efficient
and local tracking protocols is a challenging problem. A tracking protocol for grid
topology is investigated in [29] and several tracking protocols for more general
network topologies are proposed in the literature [21,30]. However, when adopt-
ing such an approach, it is unclear whether the overhead involved in tracking
would be commensurate with the gains achieved from using a MB.

Multiple MB extension. An implication of our greedy protocol is that it is
easy to parallelize the solution via divide and conquer: Adding more MBs to the
network is easy since the MBs do not need to coordinate, yet each by optimizing
its own gain implicitly cooperates to achieve a desirable global behavior. As a
demonstration of this claim, we present a simple scheme to extend our Data
Salmon protocol to support multiple MBs. This scheme is based on the observa-
tion that when there are multiple MBs on the backbone tree, the arrow protocol
maintains a dynamic directed acyclic graph (DAG) structure with multiple sinks
instead of a tree structure with one root. A DAG structure implies that some
nodes in the backbone tree now have multiple outgoing edges. Our modifica-
tion, then, is to divide the incoming traffic at a node in an equal manner among
the outgoing edges of the node. The MBs decide on their relocation in a local,
greedy manner as before and, as before, an edge direction is reversed when a MB
traverses the edge. This simple protocol leaves it solely to the discretion of the
MBs to sort out how to share the network traffic and is not optimal. Devising
optimal solutions for the multiple MB case is part of our ongoing work.

6 Concluding Remarks

We presented a simple, low-latency, and energy-efficient protocol for data col-
lection in WSNs using a network controlled MB. In contrast to the existing
MB-based solutions where WSN nodes buffer data passively until visited by an
MB, our protocol overlays a spanning backbone tree and maintains an always-on
multihop connectivity to the MB by employing the distributed-arrow tracking
protocol on top of this tree. This enables the nodes to forward their data to the
MB anytime, in a timely, and efficient fashion avoiding latencies due to long-term
buffering. Our protocol achieves energy-efficiency for the WSN by greedily relo-
cating the MB toward the direction of the tree that produce higher data rates
and, hence, reducing the average weighted multihop traffic. Using the convexity
of the cost function in this problem, we were able to prove that our local greedy
protocol also optimizes the network-wide energy-efficiency metrics. An implica-
tion of this local, greedy, and optimal protocol is that it is easy to parallelize the
data collection by adding more MBs to the WSN.

Data Salmon: A Greedy Mobile Basestation Protocol 279

Devising and proving optimal solutions for the multiple MB case is part of
our ongoing work. In future work we will focus on relaxing the underlying static
backbone tree structure by replacing it with a less restrictive variant, such as
a grid structure. Another extension we will pursue for alleviating the hot-spots
problem is the inclusion of the energy constraints and the remaining lifetime of
nodes (in addition to the data rates) for the calculation of the cost function.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 38, 393–422 (2002)

2. Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In Mobile Computing and Networking,
pp. 263–270 (1999)

3. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,
S., Gay, D., Hong, W., Dawson, T., Culler, D.: A macroscope in the redwoods.
In: Proceedings of the Third ACM Conference on Embedded Networked Sensor
Systems, pp. 51–63 (2005)

4. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM Int. Workshop on Wireless Sensor
Networks and Applications, pp. 88–97 (2002)

5. Arora, A., et al.: A line in the sand: A wireless sensor network for target detection,
classification, and tracking. Computer Networks (Elsevier) 46(5), 605–634 (2004)

6. Arora, A., et al.: Exscal: Elements of an extreme scale wireless sensor network.
In: 11th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 102–108 (2005)

7. Batalin, M., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G., Kaiser, W.,
Hansen, M., Pottie, G., Srivastava, M., Estrin, D.: Call and response: experiments
in sampling the environment. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pp. 25–38 (2004)

8. Yu, Y., Ganesan, D., Girod, L., Estrin, D., Govindan, R.: Synthetic data generation
to support irregular sampling in sensor networks. In: Geo Sensor Networks, Taylor
and Francis Publishers (October 2003)

9. Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on
routing with compression in wireless sensor networks. In: Proceedings of the third
int. symposium on Information processing in sensor networks, pp. 28–35 (2004)

10. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems, pp. 575–578 (2002)

11. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier archi-
tecture for sparse sensor networks. In: Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, pp. 30–41 (2003)

12. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile element scheduling
for efficient data collection in wireless sensor networks with dynamic deadlines. In:
Proceedings of the 25th IEEE International Real-Time Systems Symposium, pp.
296–305 (2004)

13. Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile
element scheduling in wireless sensor networks. In: IEEE SECON, pp. 386–395
(2005)

280 M. Demirbas, O. Soysal, and A.Ş. Tosun

14. Zhao, W., Ammar, M.: Message ferrying: Proactive routing in highly-partitioned
wireless ad hoc networks. In: Proceedings of the The Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems, pp. 308–314 (2003)

15. Cone, L.L.: Skycam: An aerial robotic camera system. Byte. 10, 122–132 (1985)
16. Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L.,

Yu, Y., Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Net-
worked infomechanical systems: a mobile embedded networked sensor platform. In
Information Processing in Sensor Networks, pp. 376–381 (2005)

17. Kansal, A., Rahimi, M., Estrin, D., Kaiser, W.J., Pottie, G., Srivastava, M.: Con-
trolled mobility for sustainable wireless sensor networks. In Sensor and Ad Hoc
Communications and Networks, pp. 1–6 (2004)

18. Demmer, M.J., Herlihy, M.: The arrow distributed directory protocol. In: Proceed-
ings of the 12th International Symposium on Distributed Computing, pp. 119–133
(1998)

19. Cao, H., Ertin, E., Kulathumani, V., Sridharan, M., Arora, A.: Differential games
in large-scale sensor-actuator networks. In: Proceedings of the fifth international
conference on Information processing in sensor networks, pp. 77–84 (2006)

20. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
21. Demirbas, M., Arora, A., Gouda, M.: Pursuer-evader tracking in sensor networks.

In: Sensor Network Operations, IEEE Press, New York (2006)
22. Chen, N., Huang, S.: A self-stabilizing algorithm for constructing spanning trees.

Information Processing Letters (IPL) 39, 147–151 (1991)
23. Herlihy, M., Tirthapura, S.: Self-stabilizing distributed queueing. In: Proceedings

of 15th International Symposium on Distributed Computing, pp. 209–219 (October
2001)

24. Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor
networks. In: Proceedings of the 7th annual international conference on Mobile
computing and networking, pp. 221–235 (2001)

25. Kulkarni, S.S., Arumugam, M.: Ss-tdma: A self-stabilizing mac for sensor networks.
In: Sensor Network Operations, IEEE Press, Los Alamitos (2005)

26. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy-efficient schemes
for wireless sensor networks with multiple mobile base stations. In: Proceedings of
IEEE GLOBECOM, pp. 377–381 (2003)

27. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting sink mobility for
maximizing sensor networks lifetime. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, pp. 287a–287a (2005)

28. Zhang, W., Cao, G.: Dctc: Dynamic convoy tree-based collaboration for target
tracking in sensor networks. IEEE Transactions on Wireless Communication 3(5),
1689–1701 (2004)

29. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination model
for large-scale wireless sensor networks. In: Proceedings of the 8th annual interna-
tional conference on Mobile computing and networking, pp. 148–159 (2002)

30. Demirbas, M., Arora, A., Nolte, T., Lynch, N.: A hierarchy-based fault-local sta-
bilizing algorithm for tracking in sensor networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 299–315. Springer, Heidelberg (2005)

SDIP3: Structured and Dynamic Information

Push and Pull Protocols for
Distributed Sensor Networks

Ying Zhang and Qingfeng Huang

Palo Alto Research Center Inc.,
3333 Coyote Hill Rd,

Palo Alto, CA 94304, USA
{yzhang,qhuang}@parc.com

http://www.parc.com/yzhang,
http://www.parc.com/qhuang

Abstract. We propose and study a class of structured and dynamic
information push and pull protocols for wireless sensor networks. For
structured information dissemination, our study focuses on the impact
of various information demand characteristics on dissemination along
some type of backbone structures. Our exploration of dynamic informa-
tion push and pull focuses on finding optimal strategies in a distributed
manner without prior knowledge of information demand characteristics
and/or with heterogeneous query distributions. Our theoretical analysis
uses a simple grid structure, but the protocol is applicable to arbitrary
network topologies. A distributed traffic information system is used as
the context of study and the simulation study uses a microscopic traffic
simulator to demonstrate some of the ideas discussed in the paper.

Keywords: Distributed algorithms for collaborative information pro-
cessing, Communication and processing primitives.

1 Introduction

The goal of this work is to advance the understanding of optimal information
push and pull strategies for wireless sensor networks, with and without the
knowledge about the spatial and temporal characteristics of information demand.
Since data gathering and provision are sensor networks’ main functions, efficient
information gathering protocols and information dissemination/query/discovery
protocols ([1] [2] [3] [4] [5]) are essential in building efficient sensor network ap-
plications. In this paper we focus on distributed information dissemination and
discovery protocols.

This work is directly motivated by the following work and observations:

– Oftentimes query interest and frequency of an application exhibits location-
varying characteristics. For instance, in an intelligent transportation system
scenario, a vehicle could be more interested in traffic information on its

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 281–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.parc.com/yzhang,
http://www.parc.com/qhuang

282 Y. Zhang and Q. Huang

potential paths to the destination and a piece of information about traffic
jam could be queried more frequently from those roads closer by than those
further away.

– Previous work [2][6] have shown that knowledge about query frequency and
data event frequency can be used to create efficient push-pull balanced in-
formation discovery and dissemination protocols. However, in these earlier
work, query frequency is uniform or homogeneous across nodes/space;

– If the non-uniform spatial distribution of information demand is known, one
maybe able to further optimize push-pull strategies;

– When good estimation about spatial distribution of query frequency does
not exist a priori, information dissemination structure should try to adapt
to ongoing event and query distribution patterns for improved efficiency.

As a result, our investigation starts from exploring how to use potential knowl-
edge about spatial distribution of information demand, and investigating what
to do when such information is not available.

The contributions of this paper include:

– A class of structured information push-pull protocols for applications that
have spatially non-uniform information demand;

– Theoretical results for the performance of these protocols regarding optimal
push-pull balance, given a variety of spatial distribution of query frequencies;

– A distributed dynamic push-and-pull protocol for scenarios where good es-
timation about spatial distribution of query frequency is not known a priori,
and/or the query distribution is heterogeneous.

Comparing to related work in information dissemination area, we address
the optimization perspective with the consideration of query frequency and dis-
tribution which is rather unique to our knowledge. Much related research on
distributed query efficiency [6] [7] has been done in the last couple of years, in-
cluding “comb-needle”[2], DIM [3], GHT [4] and DIMENSIONS [8]. However, all
these related work only explicitly or implicitly focused spatially uniform queries.
The same if true for another related line of work points to potential of reducing
dissemination/query cost by taking into account application semantics [5,9,10]
and the study of fundamental scaling laws on energy-efficient storage and query-
ing such as [11]. Moreover, related work on tracking (STALK [12], LLS [13])
explored multi-resolution structures; and recent work on distance-sensitive in-
formation services ([14], Trail [15], Glance [16]) studied optimal structures for
information dissemination. However, none of them has considered query distri-
bution or frequencies either.

The rest of this paper is organized as follows. Section 2 provides the prob-
lem formulation. Section 3 presents some theoretical results on a grid structure.
Section 4 describes the dynamic information push and pull protocols. Section 5
focuses on the traffic network application with simulation validation, followed
by conclusions in Section 6.

SDIP3: Structured and Dynamic Information 283

2 Problem Formulation

Systematic analysis of the push-pull strategies relies on the underlying system,
protocol, event generation and demand distribution models. In this section we
define these models in our study.

2.1 System Model

We consider two topologies in our model of the distributed information system: a
information relevance network topology and a communication network topology. In
the example of distributed traffic information system, we represent each road seg-
ment as a node in the information relevance network, node X has a directed link
to node Y if and only if the segment represented by Y is connected to the segment
represented by X in the road traffic topology. Each node in the communication
network represent a communication interface node and a link between two nodes
represent their ability to communicate directly. Fig. 1 shows an example of a road
configuration with traffic sensors distributed on road segments. Fig. 2 only shows
one intersection in Fig. 1 with detailed road connectivity, which determines the
connectivity in the corresponding information relevance network. L(i, j) is a no-
tation for a node in the information network, representing the road segment from
point i to point j. L(i, j) → L(j, k) if there is legal turn at j. The example of com-
munication network is shown on the right of Fig. 1 where an arrow from node i
to node j indicates that node j can hear from node i. Note that although node 33
has no road connection to node 47, it can communicate with it.

Fig. 1. A traffic information network, circles indicate locations of sensor nodes

284 Y. Zhang and Q. Huang

Fig. 2. Left: Traffic/road network abstraction; Right: Communication structure

For simplicity, in this paper we assume both the information network and the
communication network are fixed.

2.2 Push and Pull Model

Our structured information dissemination strategy combines pro-active push and
reactive pull. The push and pull model is formally defined as follows.

Push. The structured information push model is specified by: 〈m, R〉 where
topological constraint R defines the recipient set of the pro-active information
push, m is a message that can be further defined as a 4-tuple: m = 〈si, i, t, τ〉
where

– si is the ID of the information source,
– i is the information of that source,
– t is the time that the information is obtained,
– τ is the expiration time. When τ = ∞, it is event driven, i.e., it will not be

expired until the next publication.

One simple example constraint of R is the maximum “distance” the information
should be pushed. Interestingly, for a traffic network, a meaningful distance may
be represented by time, e.g., T seconds away (given current, historical or nominal
vehicle speed information on relevant roads) to the source road segment.

More complicated constraint for R could represent fine grain topological struc-
tures that we may call “push backbone”. Fig. 3 is an example of such push back-
bones. In this example, the source of information is located at the center, the
structure is sparser when further away from the source. As one can see later,
this kind of multi-resolution push structure would help increase the efficiency
of information dissemination when information demand density have a distance
varying distribution.

A push process can be carried out as follows. For simplicity in description,
let us assume that the nodes within constraint R of a source are directly or

SDIP3: Structured and Dynamic Information 285

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

Structure type: diamond

Fig. 3. A multi-resolution diamond structure

transitively connected to the source. Each node use a list to keep track of the
most recent updates it has heard about. When a node n receives a new piece of
information 〈si, i, t, τ, R〉, it checks its constraints in R: if R is not satisfied, or
it is expired (i.e., t + τ is smaller than the current time), then the message is
dropped, otherwise rebroadcast 〈si, i, t, τ, R〉 and:

– if si does not exist in the list, add the entry with 〈si, i, t, τ〉,
– if si exists in the list with smaller t, update the entry with 〈si, i, t, τ〉.

Note that as we assume the recipient set R and the source are self-connected
without other relay nodes, this simple implementation guarantees that all re-
cipients within the expiration time bound will receive the information. If the
communication links are not reliable, one can increase the thickness of the lines
in the structure [2] to achieve the desired level of reliability. Note that in this
implementation, nodes not in R may also overhear the information, in that case
they shall stored the information in their lists as well if memory is less expensive
than communication cost.

In our cost model, we assume each transmission costs one unit. When R is
connected, the cost of dissemination is bounded by the number of nodes in R,
i.e., each node in R transmits at most once. If a routing tree such as a connected
minimum dominating set tree is built a priori, the number of transmissions can
be less than the number of nodes in R, since leaf nodes do not need to transmit.
For simplicity in our analysis, we assume the cost of dissemination be the number
of nodes in R.

Pull. The query we are concerned with is specified by a triple: 〈nq, si, c〉 where

– nq is the ID of the node generating the query,
– si is the source of the information that is queried,

286 Y. Zhang and Q. Huang

– c is a constraint on the information of interest on the respective source, (e.g,
how “fresh” the information needs to be).

If we assume every node has the knowledge of the dissemination structure R,
the most efficient way is to passing the query along the shortest hop-count to
the structure. In this case, the cost of a query is twice of that hop-count since
a query goes a round trip from the node to the structure. If the structure is
not completely known, one may pass a query along a ”needle” that may hit
the structure within certain hop-counts, and the cost of a query is proportional
to the length of the needle. If the structure is completely unknown, a limited
broadcast within certain distance is another choice. In this case, the cost of a
query is the total number of nodes in the broadcast region. In this paper, we
focus on the first case, however, similar analysis can be easily carried out for
other cases.

The in-network query processing is carried out as follows. When a network
node receives a query 〈n, si, c〉, it checks to see if it has relevant data about
source si that satisfies the constraint c in the source list. If the information
does not exist locally, the query will be forwarded towards the backbone. Along
the way to its destination, as soon as the query hits a node that has the piece
of information, a reply 〈si, i, min(t, t + τ), 0〉, where t is the current time, is
generated and propagated along the shortest path from this node to the origin
of the query. Each node that receives or overhears the reply will update its source
list with the information.

2.3 Event and Demand Distribution Models

We assume source si have event generation frequency fi. The information de-
mand frequency for si may be specified by a function fq : X → R+, where X is
a set of locations relative to the source of information si, R+ is the set of non-
negative real numbers, and the value fq(x̄) represents query frequency about
information si from location x̄. For simplicity, we start from a omni-directional
version where query frequency is only related to the information distance from
the query node to the source, i.e., fq = fq(|x̄|). We will use three types of fre-
quency models:

– uniform: the frequencies at every location are a constant, i.e., fq(d) = fq;
– linear: the frequencies are decreasing linearly with respect to the distance,

i.e., fq(d) = fq(1 − kd) where k > 0 is a constant;
– power: the frequencies are inversely related to the distance, i.e., fq(d) =

fq/dα, where α > 0 is a constant.

All three forms can be written as fq(d) = fqq(d) where fq is a constant, and q(d)
is a function of d.

2.4 Formulation of the Optimization Problem

Our objective is, given the knowledge about the demand distribution and event
generation frequency, find a push backbone structure R that minimize the overall

SDIP3: Structured and Dynamic Information 287

communication cost. Let Cpush(R) be the cost of propagating one data packet
from the source node on R; let Cpull(R, x̄) be the query cost for a node located
at x̄ to find out the information from R. Note that this query cost depends on
the push backbone structure R. The denser the push structure, the smaller the
average query cost. With these definitions, the total push-pull cost rate (number
of data packet per second) related to information si can be expressed as follows:

Cost(R) = fiCpush(R) +
∫

X

Cpull(R, x̄)fq(x̄)dx̄ (1)

The optimization problem can be formally expressed as: find an optimal push
structure Ropt which minimizes the cost Cost(R), i.e.

Ropt = min argRCost(R) (2)

Since there is no obvious way to express in analytical form for the “structure” R,
in this paper, we take the approach of exploring the optimal parameters within
a specific class of structures.

3 Theoretical Analysis

In this section, we will do some preliminary analysis of the structures described
in the previous section, and find out the closed-form solutions of the optimal
parameters for the structures, with respect to three different demand distribution
models: uniform, linear and power, using the following two structures. Let
x̄ = (x, y):

– disk: the only constraint of this structure is the push scope Ri, i.e., d ≤ Ri

where d = |x| + |y| for a grid network;
– diamond (Fig. 3): let r be the size of the base diamond, b+ = sign(x +

y)�r�logr |x+y|��, b− = sign(x − y)�r�logr |x−y|��, c+ = �r�logr |x+y|�+1�, and
c− = �r�logr |x−y|�+1�, the diamond structure can be represented by:

|b+ − (x + y)| ≤ 1 ∧ |x + y| ≤ c+ ∨|b− − (x − y)| ≤ 1 ∧ |x − y| ≤ c−.

Let the information generation and query frequencies be fi and fq, respec-
tively. Let fq(d) = fqq(d). Let Ri and Rq be the push and pull scopes, respec-
tively. Cpush is equal to the total number of nodes in R. Cpull(R, x̄) is the number
of transmissions of a query at x̄, which is twice of the distance from x̄ to the
structure R. Given R is omni-directional, we have Cpull(R, x̄) = Cpull(d) where
d = |x̄|. The total cost for information push is Cpush = fiCpush and the total
cost of information pull is Cpull = fqCp where Cp = Σ

Rq

d=0q(d)Cpull(d)4d. Here
4d is the number of nodes at distance d for a grid network. For each case, we es-
timate Cpush and Cpull and then find the optimal parameter by solving equation
∂(Cpull+Cpush)

∂p = 0 where p is a parameter of the structure R.

288 Y. Zhang and Q. Huang

3.1 Optimal Push Scopes for Disk Structures

For a disk structure with push scope Ri, it is easy to see that the total number
of nodes in R is about Cpush = 2R2

i , and Cpull(d) = 0 if d ≤ Ri and Cpull(d) =
2(d − Ri) otherwise, where the factor 2 comes from the fact that query is a
process involving a round trip.

Uniform (q(d) = 1)

Cp =
Rq∑

d=Ri

2(d − Ri)4d = 8
Rq∑

d=Ri

d(d − Ri) ∼ 8((R3
q − R3

i)/3 − Ri(R2
q − R2

i)/2)

Let ∂(Cpull+Cpush)
∂Ri

= 0, we have an optimal push and pull balance scope condition,
by fiRi = fq(R2

q − R2
i) We can see that if fq or fq/fi approaches 0, Ri should

approach 0, i.e., no push is needed. On the other hand, if fi or fi/fq approaches
0, Ri → Rq, i.e., push as far as the query scope.

Linear (q(d) = 1 − d/Rq)

Cp =
Rq∑

d=Ri

2(d − Ri)4d(1 − d/Rq) = 8
Rq∑

d=Ri

d(d − Ri) −
Rq∑

d=Ri

d2(d − Ri)/Rq

∼ 8((R3
q − R3

i)/3 − Ri(R2
q − R2

i)/2) − 8((R4
q − R4

i)/4 − Ri(R3
q − R3

i)/3)/Rq

Let ∂(Cpull+Cpush)
∂Ri

= 0, we have an optimal push and pull balance scope condition,

by fiRi = fq(R2
q −R2

i)− 2fq

3Rq
(R3

q −R3
i) It is easy to see that Rlinear

i < Runiform
i .

Power (q(d) = 1/d)

Cp =
Rq∑

d=Ri

2(d − Ri)4d/d = 8
Rq∑

d=Ri

(d − Ri) ∼ 8((R2
q + R2

i)/2 − RiRq)

Let ∂(Cpull+Cpush)
∂Ri

= 0, we have an optimal push and pull balance scope condition,

by fiRi = 2fq(Rq − Ri) i.e. Ri = Rq

1+fi/(2fq) . It is easy to see that Rpower
i <

Runiform
i .

3.2 Optimal Diamond Size

In this case, we assume the push scope is as far as the query scope, i.e., R =
Ri = Rq, and find out the optimal spacing parameter given a diamond structure
(Fig. 3). Note that the line thickness can vary; in most cases, it has to be at
least 2 for guarantee the connectivity of the structure. In the analysis below, we

SDIP3: Structured and Dynamic Information 289

use β for the line thickness in the structure. Given the the base diamond size r,
the cost of push for each dissemination is

Cpush = β

�logrR�∑

k=0

4rk ∼ β4R/(r − 1)

Here we use r�logrR� ∼ R to simplify the analysis. The spacing between two lines
at distance d is r�logrd�+1 − r�logrd� ∼ (r −1)d. The average pull cost for a query
Cpull(d) is about 2(L/4) = L/2 where L = (r − 1)d. Note that for this structure
the pull cost is increasing with respect to the distance.

Uniform (q(d) = 1)

Cp =
d=R∑

d=0

4d(r − 1)d/2 ∼ 2
3
R3(r − 1)

∂(Cpull+Cpush)
∂(r−1) = 0, yields an optimal diamond size, by 6βfi = fqR

2(r − 1)2, i.e.

r − 1 =
√

6βfi/fq

R .

Linear (q(d) = 1 − d/R)

Cp =
d=R∑

d=0

2d2(r − 1)(1 − d/R) ∼ 2
3
R3(r − 1) − 1

2
R3(r − 1) ∼ 1

6
R3(r − 1)

∂(Cpull+Cpush)
∂(r−1) = 0, yields 24βfi = fqR

2(r − 1)2, i.e., r − 1 = 2
√

6βfi/fq

R .

Power (q(d) = 1/d)

Cp =
d=R∑

d=0

2d2(r − 1)/d ∼ R2(r − 1)

∂(Cpull+Cpush)
∂(r−1) = 0, yields 4βfi = fqR(r − 1)2, i.e., r − 1 = 2

√

β
fi/fq

R .

It is easy to see that rlinear ∼ 2runiform and rpower ∼
√

R
6 rlinear .

3.3 Push Scope Verification

We use load factor as a performance metric, which is the total amount of pushes
and pulls for a piece of information, normalized by n(fq + fi) where n is the
number of nodes involved.

In the study, we assume the pull scope to be 150 hop-count to a source in
a grid network. Let fi = 1 without lose of generality, and set fq 0.01 and 0.05

290 Y. Zhang and Q. Huang

for uniform, and 0.05 and 0.1 for linear, and 0.1 and 0.2 for power models,
respectively.

The load factor is computed using Eq. 1, where Cpush(R) is the number of
nodes in R and Cpull(R, x̄) is 2h where h is the minimum hop-count from x̄ to
structure R.

Fig. 4 show the load factors using the disk structure, for uniform and power
query models, respectively.

0 50 100 150
0

5

10

15

20

25

30

35

Push scope

Lo
ad

 fa
ct

or

distribution = uniform

f
q
 = 0.01

f
q
 = 0.05

0 50 100 150
0.5

1

1.5

2

2.5

3

3.5

4

Push scope

Lo
ad

 fa
ct

or

distribution = power

f
q
 = 0.1

f
q
 = 0.2

Fig. 4. Load factors for (Left) the uniform and (Right) the power query models

From the theoretical analysis, we know fiRi = fq(R2
q − R2

i) for the uniform
query model. Given fi = 1 and fq = 0.05, and Rq = 150, we obtain Ri = 108
which is consistent to the left curve in Fig. 4. Similarly, for fq = 0.2, we have
optimal Ri = Rq/(1 + fi/(2fq)) = 43 for the power model, which is consistent
to the right curve in Fig. 4.

4 Dynamic Balancing of Push and Pull

In the previous section, we see that the average-case optimal values of a in-
formation push structure depends on two key factors: the rate of information
generation and the rate of request for the information. Once one collects the
historical information regarding these two rates in the information network, one
can determine the average-case optimal push parameters for expected rates of
information generation and request.

This average-case optimality can be further improved by capturing and re-
sponding to the fluctuations in the information generation and request rates in
real-time. We propose a distributed dynamic optimization scheme called micro-
balancing to achieve this goal. Given the recipient set R, the micro-balancing
scheme reactively changes R to minimize the total cost of information sharing.
The rest of this section describes this mechanism. Such a scheme can be also ap-
plied to cases where the query distribution is not omni-directional or unknown
at all.

SDIP3: Structured and Dynamic Information 291

4.1 Boundary States

We use two boolean values to denote the boundary of push dissemination. As-
sume the push structure forms a spanning tree rooted at the source. A node in
the structure is in state 1 if it needs to forward the information and in state 0 if
it does not need to forward the information. The set of nodes in state 1 is called
active nodes. A node in the structure is in boundary state 0 if it is in 0 but its
parent is 1. A node in the structure is in boundary state 1 if it is in 1 but all its
children in the structure are in 0.

For micro-balancing, the push boundary can be changed dynamically accord-
ing to the push and pull rates. To obtain the push and pull rates, nodes in both
boundary states count the number of push events and the number of queries. Let
Nq be the number of different queries a node receives, and Np be the number of
different “pushed” information a node receives. It is called information-dominate
if Np

Nq
> 2+σ and query-dominate if Np

Nq
< 2−σ where σ is a small value parame-

ter for the purpose of reducing the oscillation in state-change condition boundary
to reduce potential protocol overhead. The insight that leads to the inequality
is a simple one: a query and a reply need two uses of the wireless medium and
a push only need one local broadcast. To make the switch between these two
conditions more stable for small Nq and Np, we compute the inequalities only
after Nq + Np > Δ for some constant Δ.

4.2 Boundary State Transition

The rules for state transition are as follows:

– 0 → 1: if it becomes query-dominate,
– 1 → 0: if it becomes information-dominate

Whenever a node in the boundary state changes its state, its neighbor’s state
will be changed. For example, if a node changes to state 1, all its children become
boundary state 0; if a node changes to 0, its parent may be a boundary node 1.
When a node enters the boundary state, both Np and Nq are reset to 0. It is
easy to see that the state transition guarantees that the set of active nodes are
connected.

Note that micro-balancing will not change the push structure, but it changes
the active nodes in the structure, forming a more efficient push structure that is
optimal for an unpredictable query model.

The push operation is the same as before except each node at the structure
need to check if it is active or not. Only active nodes participate in the push.

5 Application: Distributed Traffic Information Networks

5.1 Traffic Network Simulations

We have implemented and simulated the push-pull protocols using a commercial
on-the-shelf microscopic traffic simulator Paramics [17]. Fig. 1 shows a traffic

292 Y. Zhang and Q. Huang

network in Paramics Simulator (demo5 in Paramics software distribution) that
we use for testing our protocol. The area of the network is 1466.6m × 1102.3m.
This network has 58 intersections and 118 road segments. Our protocol and
event/query generations model are implemented as a plug-in to the simulator.
We assume each road segment generate some events with probability pe at every
second, and each car at a road segment with a probability pq queries another road
segment that it may travel within a time bound Tq. Parameters pe and pq are
used to control the event and query frequencies. The communication range is set
to be 300m. The simulation data are collected within a time window [10s, 1010s].
We record the total number of transmissions for pull and push at each node. The
performance metrics is the total number of transmissions, i.e., the sum of pushes
and pulls over the whole network.

A shortest path routing table is built up at the initialization stage for query
propagation. For the static push protocol, any piece of new information will
travel up to nodes that are within Ti seconds away from the source along the
road network, where Ti is a parameter set at initialization. For the dynamic push,
we set σ be 0.1 and Δ be 5. Since the network is small, we set Tq = 100 which
effectively includes all the links when querying at any node. We also assume
information to be event-driven, i.e., τ = ∞. And query constraint c is a timeout
that equals to the travel time to the location of the information. Note that in
this simulation, we did not use linear or power query models since the size of
the traffic network is too small. A larger size simulation will be conducted in the
future.

Our implementation also includes visualization of communication. In Fig. 1,
for example, colors of circles indicate push/pull ratios, where red is pull domi-
nated and blue is push dominated.

5.2 Simulation Results

The purpose of the simulation is to verify our theoretical analysis about push
and pull scope, and show the effectiveness of the dynamic push and pull protocol.
Three cases are studied:

I. Information dominate (pe = 0.01, pq = 0.03): in this case push scope should
be small;

II. Query dominate (pe = 0.001, pq = 0.3): in this case push scope should be as
large as pull scope;

III. Neither (pe = 0.01, pq = 0.3): in this case push scope should be somewhere
in the middle.

First we test the optimal scopes for the static push protocol. We set the push
scope to be small Ti = 5, median Ti = 15, and large Ti = 30, for each case.
A total of nine sets of data are collected and compared. Figure 5 Left shows
the results. We observe that number of pushes increases and number of pulls
decreases with the increase of the push scope, and for case I, push scope small
is most effective, for case II, push scope large is most effective, and for case III
the ideal push scope is somewhere in the middle.

SDIP3: Structured and Dynamic Information 293

0

5000

10000

15000

I

n
u

m
b

er
 o

f
p

ac
ke

ts

0

5000

10000

15000

II

n
u

m
b

er
 o

f
p

ac
ke

ts

small median large
0

5000

10000

15000

III

n
u

m
b

er
 o

f
p

ac
ke

ts

push
pull

static dynamic
0

2000

4000

6000

8000

10000

12000

14000

nu
m

be
r

of
 p

ac
ke

ts

I

static dynamic
0

2000

4000

6000

8000

10000

12000

14000
II

static dynamic
0

2000

4000

6000

8000

10000

12000

14000
III

push
pull
change

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

time (seconds)

nu
m

be
r

of
 p

ac
ke

ts

I static
I dynamic
II static
II dynamic
IIII static
III dynamic

Fig. 5. Left: Number of transmissions for three cases and three push scope settings,
Right: Static vs. dynamic push strategies

We also tested the effectiveness of the dynamic push protocol. We set the
initial push scope Ti = 15 for each case, then collect data for both static and
dynamic push strategies. A total of six sets of data are collected and compared.
Figure 5 Right shows the results. Note that in addition to pushes and pulls, the
dynamic protocol introduces the extra state change cost, each of which costs one
transmission.

We observe that in all these cases the dynamic protocol reduces the total cost
by about 50%. There are two reasons that the dynamic protocol outperforms the
static one: (1) when the pull frequencies are unknown, the dynamic protocol can
adjust to the push scope to balance the demands and changes, and (2) when the
pull frequencies are not uniformly distributed over all directions, the dynamic
protocol can adjust the push scope locally at different directions.

6 Conclusions

In this paper we proposed a class of the structured information push and pull
protocols. We first analyzed these protocols using various query models and
then presented dynamic micro-balancing strategies when the query models are
unknown. We also applied this class of protocols to the distributed traffic infor-
mation system and demonstrated the benefit of push-pull micro-balancing.

References

1. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scal-
able and robust communication paradigm for sensor networks. In: Pro-
ceedings of the Fifth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pp. 56–67 (2000) [Online]. Available
citeseer.ist.psu.edu/intanagonwiwat00directed.html

citeseer.ist.psu.edu/intanagonwiwat00directed.html

294 Y. Zhang and Q. Huang

2. Liu, X., Huang, Q., Zhang, Y.: Combs, needles, haystacks: balancing push and
pull for discovery in large-scale sensor networks. In: SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pp. 122–133.
ACM Press, New York (2004)

3. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in
sensor networks. In: Proceedings of the first international conference on Embedded
networked sensor systems, pp. 63–75. ACM Press, New York (2003)

4. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.:
Data-centric storage in sensornets with GHT, a geographic hash table. Mob. Netw.
Appl. 8(4), 427–442 (2003)

5. Krishnamachari, B., Heidemann, J.: Application-specific modelling of information
routing in sensor networks. In: Proceedings of the IEEE International on Perfor-
mance, Computing, and Communications Conference, pp. 717–722. IEEE, Phoenix,
Arizona, USA (2004)

6. Kapadia, S., Krishnamachari, B.: Comparative analysis of push-pull query strate-
gies for wireless sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J.,
Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, Springer, Heidelberg (2006)

7. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acqui-
sitional query processor for sensor networks. In: Proceedings of the 2003 ACM
SIGMOD international conference on on Management of data, pp. 491–502. ACM
Press, New York (2003)

8. Ganesan, D., Estrin, D., Heidemann, J.: DIMENSIONS: Why do we need a new
data handling architecture for sensor networks? In: Proceedings of the First Work-
shop on Hot Topics In Networks (HotNets-I), Princeton, NJ (October 2002)

9. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to
application requirements. In: Proceedings of the first international conference on
Embedded networked sensor systems, pp. 218–229. ACM Press, New York (2003)

10. Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor
networks. Elsevier Journal of Ad Hoc Networks (2003)

11. Ahn, J., Krishnamachari, B.: Fundamental scaling laws for energy-efficient storage
and querying in wireless sensor networks. In: Proceedings of International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc) (May 2006)

12. Demirbas, M., Arora, A., Nolte, T., Lynch
13. Abraham, I., Dolev, D., Malkhi, D.: Lls: a locality aware location service for mo-

bile ad hoc networks. In: Workshop on Discrete Algothrithms and Methods for
MOBILE Computing and Communications (2004)

14. Funke, S., Guibas, L.J., Nguyen, A., Wang, Y.: Distance-sensitive routing and in-
formation brokerage in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes,
J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 234–251. Springer, Heidelberg
(2006)

15. Kulathumani, V., Arora, A., Demirbas, M., Sridharan, M
16. Demirbas, M., Arora, A., Kulathumani, V
17. Paramics website. [Online]. Available: http://www.paramics-online.com/

http://www.paramics-online.com/

Efficient Computation of Minimum

Exposure Paths in a Sensor Network Field

Hristo N. Djidjev1,�

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. The exposure of a path p is a measure of the likelihood that
an object traveling along p is detected by a network of sensors and it is
formally defined as an integral over all points x of p of the sensibility (the
strength of the signal coming from x) times the element of path length.
The minimum exposure path (MEP) problem is, given a pair of points
x and y inside a sensor field, find a path between x and y of a minimum
exposure. In this paper we introduce the first rigorous treatment of the
problem, designing an approximation algorithm for the MEP problem
with guaranteed performance characteristics. Given a convex polygon P
of size n with O(n) sensors inside it and any real number ε > 0, our
algorithm finds a path in P whose exposure is within an 1 + ε factor of
the exposure of the MEP, in time O(n/ε2ψ), where ψ is a topological
characteristic of the field. We also describe a framework for a faster
implementation of our algorithm, which reduces the time by a factor of
approximately Θ(1/ε), by keeping the same approximation ratio.

1 Introduction

Wireless sensor networks have been attracting the interest of computer scientists
and engineers recently due to their potential to impact our everyday lives and
because of their numerous applications in areas such as health care, national
security, inventory tracking, surveillance, and environmental monitoring.

One of the fundamental issues in sensor networks is related to analyzing the
coverage, or how well a network of sensors monitors the physical space for an
intrusion. The coverage is a measure of the quality of service (QoS) of the sensing
function and has been studied by several authors (see [5] for a recent survey of
results). The concept of coverage was introduced by Gage [7], who studied it in
relation to multi-robot systems. He defined three classes of coverage problems:
blanket coverage (also known as area coverage), where the goal is to achieve
a static arrangement of sensing elements that maximizes the detection rate of
targets appearing in the region, sweep coverage, where the goal is to move a
number of sensors across the region as to maximize the probability of detecting
a target, and barrier coverage, where the objective is to protect the region from
undetected penetration.

� This work has been supported by the Department of Energy under contract W-705-
ENG-36.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 295–308, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

296 H.N. Djidjev

The first model proposed for the barrier coverage problem is due to
Meguerdichian et al. [12], who defined the maximum breach path problem as
a problem of the following type: given a sensor field with known locations of
the sensors, find a path such that the distance from any point on the path to
the closest sensor is maximized. Meguerdichian et al. solve the maximum breach
path problem by using the fact that there is always a maximum breach path that
goes along the edges of the Voronoi diagram [4] computed for the set of sensor
locations. This concept was further developed by Meguerdichian et al. [11] and
by Veltri et al. [14], who define the exposure of a path p as an integral over all
points x of p of the ability of sensing (detecting) x, which ability is given as a
function that depends on the distance between x and the closest sensor, as well
as the sensing time.

The minimum exposure path (MEP) problem is, given a sensor field and a pair
of points x and y inside it, find a path between x and y of a minimum exposure.
Meguerdichian et al. [11] give an exact formula for computing the MEP between
two points at equal distances from the sensor in a single-sensor field and a sens-
ing function γ/d(s, x), where γ is a constant and d(s, x) is the Euclidean distance
between the sensor location s and the point x on the path. Although there is no
formal proof published, the MEP problem is believed to be unsolvable in the case
of multi-sensor fields. In order to solve it approximately, in [11] the region is cov-
ered by an k×k grid of points, each point is connected by edges to l other points
following a given pattern, edge weights are assigned equal to the approximated
exposures computed using numerical integration techniques, and finally a single
pair shortest path problem is solved on the resulting graph. There is no analysis
in [11] of how closely the path constructed by their algorithm approximates the
MEP or of the time complexity of the algorithm, although it is easy to see that
the size of the graph they construct is Ω(k2l) and that it is dependent on the
area of the region and is independent of the number of the sensors. Veltri et al.
[14] find a partial solution to the problem of exactly computing the exposure
between two points in a single-sensor field and describe, for the case of many-
sensor fields, a heuristic message-passing distributed algorithm that allows the
sensor network to estimate a minimum exposure without knowing the network
topology. Distributed algorithms for coverage problems were also studied by Li
et al. in [10], for the problem of finding a path with maximum observability, and
by Huang et al. in [9], who consider a dynamic version of the maximum breach
and maximum observability path problems, where the topology of the sensor
network may change due to new sensors being inserted, relocated, or deleted
from the network.

In this paper we describe an approximation algorithm for solving the MEP
problem. Our algorithm takes as input a description of a sensor field consisting
of n sensors positioned inside an O(n) vertex simple polygon P , two points x
and y in P , and any number ε > 0. It returns a path between x and y in P
whose exposure is within 1+ε factor of the exposure of the MEP. The algorithm
is based on an analysis of the properties of MEPs and on a discretization of the
region by constructing a Voronoi diagram and defining additional points and

Efficient Computation of Minimum Exposure Paths 297

edges. Then a shortest path problem is solved on the resulting graph and the
resulting shortest path is used as an approximation to the MEP. The time of the
algorithm is O(n/ε2ψ), where ψ is a topological characteristic of the field. We
also describe a faster version of the algorithm that improves the computation
time by a factor of roughly Θ(1/ε).

The main contributions of this paper are the following: (i) We find an exact
solution for the MEP problem in a single-sensor field – the previous solution [14]
was valid only in special cases; (ii) We develop the first approximation algorithm
for the MEP problem in a multi-sensor field with theoretically guaranteed run-
ning time and approximation ratio; (iii) We develop a theoretical framework that
can be applied for designing approximation algorithms for related minimum ex-
posure and coverage problems; (iv) Our algorithm is much faster and uses much
less memory than the previous algorithms [11], [14] since the latter create a 2-D
mesh of points covering the entire region, while we only place additional points
on the edges.

The paper is organized as follows. In Section 2 we formally introduce the
MEP problem and give some definition. In Section 3 we study MEPs in sensor
fields of a single sensor and in Section 4 we study the multiple-sensor case. In
Section 5 we describe our approximation algorithms for computing a minimum
exposure path and in the last section we conclude with a list of open problems
and ongoing work.

2 Preliminaries and Problem Formulation

We consider a connected region P in the plane of bounded aspect ratio, e.g.,
such that the ratio of the square root of the area of P and the perimeter of P is
bounded. We have n identical sensors located at points l1, . . . , ln in P monitoring
for a target in P . Each target emits a signal that the sensors try to detect. The
strength of that signal diminishes with the distance traveled. The probability
that a target will be detected depends also on parameters such as the energy
emitted by the target, the nature of the signal, the sensitivity of the sensors,
and the noise in the environment. Adopting a widely used sensibility model
[8,11,14,6], we assume that the signal energy of a target at point x detected by
a single sensor at point l is

S(l, x) =
γ

d(l, x)μ
, (1)

where d(l, x) is the Euclidian distance between l and x and γ and μ are con-
stants. Depending on the technology and the environment, the value of μ, called
sensibility exponent, is typically between 1 and 5.

A sensor field F is defined as a 3-tuple F = (P, L, S), where P is a connected
region in the plane, L = {l1, . . . , ln} is the set of sensor locations, and the
function S, called sensibility of F , is defined by (1).

For the case of multiple sensors, the notion of sensor field intensity for a given
point x in the sensor field F has been introduced in [11] in order to measure

298 H.N. Djidjev

the likelihood that a target on x will be detected by any of the sensors. There
are two basic variations of the model. In the all-sensor intensity model, the
intensity at point x, denoted by IA(F, x), is defined as a sum of the sensibilities
of individual sensors, e.g., IA(F, x) =

∑n
i=1 S(li, x). The all sensor intensity

model reflects more accurately the capability of the sensors to detect a target,
but it has also a number of weaknesses: (i) it assumes that all sensors are active
during most of the time, which would be energy inefficient; (ii) it presents greater
communication and data fusion challenges; (iii) the collection of data from weak
sources increases the total noise-to-signal ratio.

In the closest-sensor field intensity model the intensity at a point x, denoted
by IC(F, x), is defined as IC(F, x) = S(li, x), where li is the closest sensor to x.

Let p be a path given as p = {p(t) ∈ P | t ∈ [t1, t2]}, where [t1, t2] is a given
interval and p(t) is a continuous function differentiable everywhere in [t1, t2]
except for a finite number of point. The exposure of p with regard to intensity
model I and field F is defined [14,11] as

exp(p, I, F) =
∫ t2

t1

I(F, p(t))
∣
∣
∣
∣
dp(t)
dt

∣
∣
∣
∣ dt , (2)

where I(F, x) is either IA(F, x) or IC(F, x) and |dp(t)/dt| is the element of arc
length. In the rest of this paper we assume that I(F, x) = IC(F, x). The definition
of exposure accounts for the fact that the probability for a target traveling at a
constant speed along the path p to be detected by a sensor is proportional to the
intensity of the field along p and the length of the path. A minimum exposure
path MEP(x, y, F) between x and y is defined as a path between x and y in P
with a minimum exposure.

The minimum exposure path problem is, given a sensor field F = (P, L, S) and
a pair of points x and y, find MEP(x, y, F). In order to simplify the notations,
we use exp(p) or exp(p, S) instead of exp(p, I, F) and MEP(x, y) instead of
MEP(x, y, F), when P , L, F , and/or I are clear from the context.

We end this section with several definitions from graph theory. A graph G is a
pair of two sets denoted by V (G) and E(G), where V (G) is the set of the vertices
and E(G) is the set of the edges of G, where each edge is a pair (v, w) of vertices.
A path p in G is a sequence v0, . . . , vk of vertices, where (vi−1, vi) ∈ E(G) for
i = 1, . . . , k. If k = 0 then p is a null path. If there are weights associated with
the edges of G, then the length of p is defined as the sum of the weights of all
edges (vi−1, vi). Given two vertices v, w ∈ V (G), the distance between v and w
is the minimum length of any path between v and w (infinity, if there is no such
path). The shortest path problem is, given v and w, find a shortest path between
v and w.

3 Single-Sensor Fields

Next, we will study the MEP problem in the case of a single sensor. Without
loss of generality, in the rest of this paper we assume that γ = 1, where γ is the

Efficient Computation of Minimum Exposure Paths 299

constant from (1). (Changing γ scales the exposures of all paths by the same
factor and hence preserves the minimum exposure paths.)

Case A: Unrestricted region. We will start by considering the case of an
unbounded region, e.g., where P is the entire plane. We use polar coordinates
to represent each point q as a pair (ρ, α), where ρ is the distance between q and
the origin O (which we choose to be the sensor location) and α ∈ [0, 2π) is the
angle between the polar axis and −→

Oq. The exposure of a path p with endpoints
x(ρ0, 0) and y(ρα, α) in polar coordinates given as p = {(ρ(θ), θ) | θ ∈ [0, α]} can
be written as

exp(p, d−μ−1) =
∫ α

0

ρ(θ)−μ−1
√

ρ(θ)2 + ρ′(θ)2 dθ. (3)

Using the Beltrami identity [15], we can find that if ρ is a nonnegative function
defined in the interval [0, α] that minimizes the integral (3), then

ρ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ0(
ρα

ρ0
)

θ
α if μ = 0; (4)

(
ρμ
0 sin(μα − μθ) + ρμ

α sin(μθ)
sin(μα)

)1/μ

if μ �= 0. (5)

Formulas (4)–(5) were derived in [14] using the Euler-Lagrange differential equa-
tion, but were not analyzed whether they correspond to a minimum of (3).
But since (4)-(5) are only necessary conditions, one needs to additionally check
whether a function ρ satisfying (4) or (5) for a particular set of values for μ, ρ0,
ρα, and α is a minimum or an inflexion point. (Clearly, ρ from (4) or (5) can
not be a maximum since (3) is unbounded from above for μ ≥ 0 – it tends to
infinity when ρ → 0.) Consider the following two cases.
Case 1: μ = 0. Let φM be the set of all nonnegative continuous functions defined
in (0, α] and upper bounded by M . The integral (3) is unbounded from above
(for any μ ≤ 0) as it tends to infinity when ρ → ∞. Therefore, for some M
sufficiently large, the exact lower bound of (3) for all functions in (0, α] will be
the same as the exact lower bound of (3) restricted to the set of functions from
φM . But φM is a compact set and, hence, the exact lower bound over φM (and
therefore over all functions in (0, α]) is reached for some function ρ̃ from φM .
Since there is a unique function satisfying the necessary condition (4), then ρ̃
should be the function defined by (4). Hence (4) does define a MEP between x
and y (it is not an inflexion point).

In order to compute the exposure of that path, substitute the expressions for
ρ from (4) into the exposure expression (3), resulting in

minExp(x, y, d−1) =
∫ α

0

√

1 +
ln2(ρα/ρ0)

α2
dθ =

√

α2 + ln2(ρα/ρ0) . (6)

Case 2: μ > 0. In this case the function (5) may or may not represent a minimum,
depending on the values of α, ρ0, and ρα. For instance, if α = π/μ, the path

300 H.N. Djidjev

α
− infinite MEP

− DEP in PP
xy

α
O

Fig. 1. A MEP in an infinite region may
be infinite. In a polygon, such a path is
projected into a DEP.

h1

l
α

1

z1

2z

h2
2h

p
i

i

h

p

Fig. 2. Illustration to the
proof of Lemma 7

given by (5) is not defined. If ρ0 = ρa and α → (π/μ)+, ρ is unbounded from
above and hence ρ would not define an optimal path for α close enough to π/μ.
If ρ0 = ρa and α → (π/μ)−, ρ is unbounded from below (and, in particular,
gets negative values). In these cases (5) does not correspond to a solution of
the optimization problem and the minimum of (3) is not reached for any (finite)
function ρ. However, as we show next, a MEP always exists if the region P is
bounded.

Case B: Minimum exposure paths in a polygonal region P . Intuitively,
if we consider paths in the entire plane in the case where (5) corresponds to an
inflexion point, the MEP from x to y will follow the ray from x in the direction−→
Ox to infinity, then move along an infinite circle to align with the line yO (the
exposure along that semicircle will be zero), and finally move in the direction of−→
yO to point y (Figure 1). Although this path is of infinite length, its exposure if
finite; the exposure of the path is minExp1(x, y, d−μ−1) = (ρ−μ

0 + ρ−μ
α)/μ.

In a polygonal region, the portion of the path described above that is outside
P is replaced by the path of lower exposure among the two paths along the
boundary of P connecting the same endpoints. We will refer to the latter path as
the direct escape path (DEP). As a DEP in P is a chain of straightline segments,
we will need a formula for the exposure along a single such segment. If the
segment xy belongs to a line containing point O, then the exposure along the
DEP p between the points x(ρ1, 0) and y(ρ2, 0), 0 < ρ1 ≤ ρ2, which we denote
by minExp1, can be computed by the formula

minExp1(x, y, d−μ−1) = exp(p, d−μ−1) =

⎧
⎨

⎩

ln ρ2 − ln ρ1 if μ = 0 (7)
1
μ

(ρ−μ
1 − ρ−μ

2) if μ > 0. (8)

Otherwise, the exposure minExp1(x, y, d−μ−1) along the segment (DEP) p be-
tween points x(ρ0, 0) and y such that � Oyx = π/2 and � xOy = α is

Efficient Computation of Minimum Exposure Paths 301

exp(p, d−μ−1) =

⎧
⎪⎨

⎪⎩

ln(sec α + tan α) if μ = 0

ρ−μ
0 2F1

(
1
2
,
μ + 1

2
;
3
2
; − tan2 α

)

tan(α) if μ > 0, (9)

where 2F1 is the Gaussian hypergeometric function [1]. A segment xy for which
� Oyx �= π/2 can always be represented as a sum or a difference of segments of
the above type.

Next, the exposure of the path p defined by (5) is

minExp2(x, y, d−μ−1) =
sin(μα)(tan(μα − c2) + tan c2)

μ
√

ρ2μ
0 + ρ2μ

α − 2ρμ
0ρμ

α cos(μα)
, (10)

where tan(c2) = ρμ
α−ρμ

0 cos(μα)

ρμ
0 sin(μα)

.

Finally, the minimum exposure between x and y is determined as

minExp(x, y, d−μ) = min{minExp1(x, y, d−μ), minExp2(x, y, d−μ)}.

The path corresponding to the smaller of the two exposures is the MEP.

4 Multiple-Sensor Fields

Here we consider the case of a sensor field F = (P, L, S) with an arbitrary
number n of sensors, where L = {l1, . . . , ln} is the set of the locations of the
sensors and P is a convex polygon of size O(n) that contains all points li.

We construct a Voronoi diagram Vor(L) for L in P , which is a tessellation of
P into n convex polygons C1, . . . , Cn, which we call cells of Vor(L), such that
Ci is the set of all points that are closer to li than to any other point from L.
The Voronoi diagram can be constructed in O(n log n) time. (See [4] for more
information about Voronoi diagrams.) Denote by V (Ci) and E(Ci) the sets of
the vertices and the edges of Ci, respectively.

Next we analyze the structure of the MEP between any two points x and y
from P . First we consider the case where x and y belong to the same cell Ci.

Lemma 1. Define sensor fields F1 = (Ci, L, S) and F2 = (P ′, L, S), where
|L| = 1 and P ′ is the entire plane and let x and y be points from Ci. Then

(a) the minimum exposure path p = MEP(x, y, F1) either contains a point from
the boundary of Ci, or p = MEP(x, y, F2);

(b) the intersection between p and any edge of P is either empty or a single
segment.

Proof. (a) If p is disjoint with the boundary of Ci, then p is a stationary point
for (3) and hence it can be determined by the method discussed in Section 3
Case A.

302 H.N. Djidjev

(b) Assume that claim (b) does not hold. Then there will exist a subpath
p′ of p that joins a pair of points x1, x2 on an edge of Ci and whose interior is
entirely inside Ci. Then, by (a), p′ = MEP(x1, x2, F2). Consider the path p′′ with
endpoints x1, x2 that is symmetrical to p′ with respect to the line x1x2. Then
p′′ will have a smaller intensity and the same element of arc length compared to
p′ and hence, by (2), a smaller exposure, which is a contradiction. �	

Next we consider the case where x and y can belong to different cells of Vor(L).

Lemma 2. Given two points x ∈ Ci and y ∈ Cj, i �= j, MEP(x, y, F) consists
of a sequence of subpath each of them of one of the following types:

(i) a MEP from x to a point on an edge of Ci or from a point on an edge of
Cj to y;

(ii) a MEP between points belonging to two different edges of the same cell of
Vor(L);

(iii) a segment on an edge of Vor(L).

Proof. Follows from the discussion in Section 3 and Lemma 1. �	

5 An Approximation Algorithm for Constructing MEPs

Next we describe and analyze an algorithm that computes an approximation of
the MEP between a pair of points x and y. In the algorithm, we first discretize the
region by triangulating it and creating a set S of additional points called Steiner
points (SPs) on the edges of the triangulation. This is similar to the discretization
schemes used for solving shortest path problems on weighted polyhedral surfaces,
e.g., [3]. Then we define a graph with a vertex set {x} ∪ {y} ∪ Vor(L) ∪ S and
an edge between any pair of vertices belonging to the same triangle. We define
a weight on each edge (v, w) equal to the exposure either along the minimum
exposure path between v and w in the triangle containing v and w, if v and
w belong to different edges, or along the edge containing v and w, otherwise
(see Lemma 2). Then the algorithm finds the shortest path in the resulting
graph between x and y using a modification of Dijkstra’s algorithm. Next we
describe the steps in more detail and analyze the accuracy and the efficiency of
the algorithm.

5.1 Defining Steiner Points

First we will define ”empty” regions around each sensor location li that will
contain no SPs. The rationale is to limit the number of SPs we have to define
in each Voronoi cell Ci, because the number of SPs needed to achieve a given
approximation ratio increases when the distance to li decreases. We need the
following properties.

Efficient Computation of Minimum Exposure Paths 303

Lemma 3. Let F1 and F2 be fields with sensibility exponents μ1 = 0 and μ2 >
μ1, respectively. Given two points x1(r, α1) and x2(r, α2) belonging to cell Ci ∈
Vor(L), let

p1 = MEP(x1, x2, F1) = {(ρ1(θ), θ) | θ ∈ [0, α]}
and

p2 = MEP(x1, x2, F2) = {(ρ2(θ), θ) | θ ∈ [0, α]}.

Then ρ1(θ) ≤ ρ2(θ) for all θ ∈ (α1, α2).

Let F be a field with a scalability exponent μ ≥ 0, and let di =min{d(li, z) | z ∈
E(Ci)}. Define a circle κi with center li and radius di.

Lemma 4. Any MEP in F with both endpoints on E(Ci) contains no points
from the inside of κi.

Proof. Suppose p is a MEP for a sensor field with sensibility exponent μ that
contains a point from the inside of κi. Then p contains a subpath p1 with end-
points, say, a and b on κi and the rest of p1 in the interior of κi. Consider the
following two cases:

(i) μ = 0. By (4), the portion p′1 on κi between a and b, being a minimum
exposure path, has a smaller exposure than p1. Replacing p1 by p′1 in p results
in a path with a smaller exposure than p, a contradiction.

(ii) μ > 0. Combine the proof of case (i) with Lemma 3. �	

Next we define S, the set of Steiner points for Vor(L). For each Ci ∈ Vor(L),
triangulate Ci by adding straightline segments joining li to each vertex of V (Ci).
Let Ti be the resulting set of triangles for Ci, let T be the resulting triangulation
of Vor(L), and let t ∈ Ti for some i. Let li, a, b be the vertices of t and d(li, a) ≥
d(li, b). Call (li, a) and (li, b) new edges and call (a, b) an old edge. Let l = d(li, a)
and let ε > 0. Define a set of Steiner points s0, s1, . . . , sλ on the segment lix such
that

d(li, s0) = di, d(li, sj−1) < d(li, sj), d(sj−1, sj) = εd(li, sj−1), (11)

for j = 1, . . . , λ, where λ is chosen such that d(li, sλ) ≤ l < d(li, sλ+1). (We used
Lemma 4 for justifying the definition of s0.) In a similar way we define SPs on
the segment liy. For the segment xy we define the SPs s′0, . . . , s′λ′ such that

s′0 = a, s′λ′ = b, d(li, s′j−1) < d(li, s′j), d(s′j−1, s
′
j) = εl for j = 1, . . . , λ′ − 1,

and d(s′λ′−1, s
′
λ′) ≤ εl.

Lemma 5. The number of SPs on the segments of the triangle t is O(ln(l/d)/ε).

Proof. From (11), d(li, sj) = (1+ε)jd. Since d(li, sλ) ≤ l, then (1+ε)λd ≤ l and

λ ≤ log1+ε(l/d) =
ln(l/d)

ln(1 + ε)
= O(ln(l/d)/ε).

Hence each of the segments lix and liy contains O(ln(l/d)/ε) SPs. The segment
xy contains �d(x, y)/(εl)� SPs, which number is O(1/ε), since d(x, y) < 2l. �	

304 H.N. Djidjev

5.2 Description and Analysis of the Algorithm

Next we define a weighted graph Gε = (Vε, Eε) called approximation graph
with vertex set Vor(L) ∪ S ∪ {x, y} and an edge between any pair of vertices
corresponding to either points on different edges of the same triangle of T or to
the same new edge. Add also edges joining vertices x and y to the SPs from the
triangles containing x and y, respectively. Assign a weight wt(v, w) on each edge
(v, w) corresponding to the exposure along the minimum exposure path between
v and w in the triangle containing v and w, if v and w belong to different edges,
or along the segment containing v and w, otherwise.

Let Q denote the area of the region P and let q denote the minimum distance
between any two points of L.

Lemma 6. Gε has O(n/ε ln(Q/q)) vertices and O(n/ε2 ln2(Q/q)) edges.

Proof. By Lemma 5 each triangle contains O(ln(l/d)/ε) = O(ln(
√

Q/q)/ε) SPs,
as P has a bounded aspect ratio. Since |Vor(L)| = O(n), then the total number
of triangles is O(n). The lemma follows. �	

Given Gε, we compute an approximate minimum exposure path between x and
y as a shortest path pε in Gε between x and y. That shortest path can be
computed using Dijkstra’s shortest path algorithm [2] in O(mε +nε log nε) time,
where nε = |V (Gε)| and mε = |E(Gε)|.

Next we analyze how closely pε approximates the MEP. For each path p in
Gε let wt(p) denote the sum of the weights of the edges of p.

Lemma 7. For any ε > 0 there exists a path p in Gε between vertices x and y
such that wt(p) ≤ (1 + O(ε/α̌)) exp(MEP(x, y)), where α̌ is the minimum angle
of T .

Proof. Assume x and y belong to the interior of different triangles of T and
let Δx and Δy be the triangles containing x and y, respectively. According to
Lemma 2, MEP(x, y) consists of a sequence of subpaths p1, . . . , pλ in P , where
p1 and pλ are MEPs between x or y and a point from Δx or Δy, respectively, and
each of the other paths is either a MEP between points belonging to different
edges of a triangle, or is a subsegment of an edge of T . We will construct a
sequence p′1, . . . , p

′
λ of paths in Gε whose concatenation results in a path from x

to y and such that wt(p′i) ≤ (1 + O(ε/α̌))exp(pi) for any 1 ≤ i ≤ λ, which will
imply to validity of the lemma. (If x or y is on an edge of the triangulation, then
the corresponding paths p′1 or p′λ′ will be null paths.)

Choose any i ∈ [1, λ] and consider the case where pi connects points belonging
to different new edges (l, z1) and (l, z2) of a triangle Δ, where l ∈ L (Figure 2).
(The proofs for the other cases are similar.) Let h1 and h2 be the source and the
target of pi and let h′1 and h′2 be the Steiner points on the segments h1z1 and h2z2

that are closest to h1 and h2, respectively. Denote d(li, hj) = ηj and d(li, h′j) = η′j
for j = 1, 2. By (11) η′j ≤ (1+ε)ηj for j = 1, 2. Define a polar coordinate system
with origin l and polar axis lz1. Let α = � z1lz2. Let pi = {(ρ(θ), θ) | θ ∈ [0, α]}.

Efficient Computation of Minimum Exposure Paths 305

We will define a path p̄i = {(ρ(θ), θ) | θ ∈ [0, α]} with source (h′1, 0) and target
(h′2, α) that will be a ”scaled up” version of pi. More precisely, our goal is to
define a function k(θ) such that the path defined by the function ρ(θ) = k(θ)ρ(θ)
will have exposure at most 1 + O(ε/α̌) times the exposure of pi. We will show
that it suffices that the following conditions are satisfied:

(i) ρ(0) = η′1 and ρ(α) = η′2;

(ii) ρ−μ = (1 + O(ε))ρ−μ;

(iii)

√

1 +
(

ρ′

ρ

)2

≤ (1 + O(ε/α̌))

√

1 +
(

ρ′

ρ

)2

We will prove that the function k(θ) = α−θ
α

η′
1

η1
+ θ

α
η′
2

η2
satisfies those conditions.

A direct substitution shows that condition (i) is satisfied. Furthermore,

k(θ) ≤ α − θ

α
(1 + ε) +

θ

α
(1 + ε) = 1 + ε

and hence ρ/ρ ≤ 1 + ε and (ii) holds. Property (iii) follows from the previous
inequality k(θ) ≤ 1 + ε and from

k′(θ) =
(

η′2
η2

− η′1
η1

)
1
α

= O(ε/α̌).

By Properties (ii) and (iii)

exp(p̄i) =
∫ α

0

ρ̄−μ

√

1 +
(

ρ′

ρ

)2

dθ =
∫ α

0

(1 + O(ε/α̌))ρ−μ

√

1 +
(

ρ′

ρ

)2

dθ

= (1 + O(ε/α̌))exp(pi).

Since by (i) p′i and p̄i are paths with the same source and target h′1 and h′2,

wt(p′i) = exp(MEP (h′1, h
′
2)) ≤ exp(p̄i) ≤ (1 + O(ε/α̌))exp(pi). (12)

To complete the proof, we add together the inequalities (12) for i = 1, . . . , λ. �	

Combining Lemma 7 with our analysis of the time complexity, we get the fol-
lowing theorem.

Theorem 1. Given a convex polygon P of bounded aspect ratio, a sensor field
F = (P, L, S) with nonnegative sensibility exponent, two points x and y from
P , and any ε > 0, a path p in P between x and y such that exp(p) ≤ (1 +
ε) exp(popt) can be found in O(n/ε2 ln2(ψ)α̌2) time, where popt = MEP(x, y, F),
n = max{|L|, |P |}, ψ denotes the ratio of the area of P and the minimum dis-
tance between any two points of L, and α̌ is the minimum angle of the triangu-
lation of Vor(L).

Note that although the justification of Theorem 1 is relatively complex, the
implementation of the corresponding algorithm requires only running a shortest
path algorithm on Gε.

306 H.N. Djidjev

5.3 Improving the Running Time

The graph Gε has a relatively high number of edges compared to the number of
its vertices. This is due to the fact that in each triangle of T the number of the
edges is roughly proportional to the square of the number of the Steiner points.
On the other hand, the set of all shortest paths in Gε has a structure that allows
an efficient implementations of Dijkstra’s shortest path algorithm that considers
only a fraction of the edges of Gε.

We will describe the idea of the algorithm BUSHWHACK [13] designed for
solving shortest path problems for Euclidean-like distances and show how it can
be modified in order to work in our case. The goal is to reduce the number of the
edges considered to be roughly proportional to the number of the SPs (within
a logarithmic factor). We will only consider here the case μ = 0, where μ is the
sensibility exponent from (1). The algorithm for arbitrary values of μ is similar,
but needs a more complicated analysis because of the lack of simple analogue of
the exposure formula (6).

The BUSHWHACK algorithm is based on Dijkstra’s algorithm, which divides
the vertices of the graph into two subsets: U , containing vertices to which the
exact distances dGε(x, s) from the source x have already been computed, and
V \ U , containing vertices to which approximate distances from x have been
assigned based on paths restricted to contain vertices from U only. At each
iteration a vertex s ∈ V \ U with a minimum current distance from x is moved
to U and the distances to the neighbors of s in V \ U are updated.

In order to introduce the BUSHWHACK modification to Dijkstra’s algorithm,
consider any triangle Δ ∈ T . If e is an edge of Δ, we denote by V (e) the set of
the vertices of Gε that correspond to SPs from e. For any two edges e and e′

from Δ and vertex v on e that is not on e′ we define the set I(v, e, e′) consisting
of all vertices z from e′ such that

dGε(x, v) + wt(v, z) ≤ dGε(x, v′) + wt(v′, z)

for any vertex v′ from e. The sets I(v, e, e′) can be used to reduce the number of
the edges in Δ considered by Dijkstra’s algorithm, since for any vertex z from
I(v, e, e′) there is a shortest paths from x to z that does not contain any vertex
from V (e) \ {v}. Hence all edges connecting a vertex from V (e) \ {v} to a vertex
from I(v, e, e′) can be ignored in the shortest paths computation.

In fact, the sets I(v, e, e′) are dynamic and are updated each time when a
new vertex from V (e) is added to U . In order to ensure that these sets can
be maintained efficiently, we need to prove that the following two properties
hold. Let π(v, w) denote the path in P resulting from replacing each edge of the
shortest path in Gε between v and w with the corresponding minimum exposure
path and let d′(v, w) denote the exposure of π(v, w) (which is also equal to the
distance between v and w in Gε).

Lemma 8. Let π1 = π(x, y1) and π2 = π(x, y2). Let, for i = 1, 2, πi intersects
the edges of a triangle Δ of T at vertices zi1 and zi2, respectively (Figure 1),
where all vertices zij, 1 ≤ i, j ≤ 2, are distinct. Then the segments z11z12 and
z21z22 do not intersect.

Efficient Computation of Minimum Exposure Paths 307

Lemma 8 implies that each set I(v, e, e′) consists of consecutive points on e′,
i.e., no vertex of V (e) \ I(v, e, e′) is between two vertices from I(v, e, e′) on e′.
Hence I(v, e, e′) can be identified with an interval (e.g., a pair of points) on e′.
The next lemma can be used to compute and maintain such intervals efficiently
(in O(log |V (e′)|) time).

A segment s is called monotonic [13] with respect to a point z, if the expo-
sure from z to points of s is either monotonically increasing or monotonically
decreasing along s.

Lemma 9. If s is a segment belonging to a line containing the sensor location
li, then s can be divided into two monotonic segments with respect to any point
z in O(1) time.

Proof. The point z′ such that d(O, z′) = d(O, z) divides s into monotonic seg-
ments, if z is not on s. If z is on s, then s itself is monotonic. �	
The proof of an analogue of Lemma 9 for the case where the line containing s
does not contain li is more complex. Instead of proving such lemma, we notice
that we can use other properties to define the set I(v, e, e′) in the case where e′

is a segment of V (L) and v does not belong to e′. We consider the following two
cases for v.

(i) v = x. In this case we define I(v, e, e′) = e′ since U = {v}.
(ii) v �= x. Note that v can not be either of the endpoints of e as by assumption v

is not on e′ and v can not be a sensor location li as by construction L∩S = ∅
(see (11)). Then v is an internal point of e. Denote by v∗ the predecessor
of v on the shortest path from x to v. That vertex must have already been
determined by the algorithm since v ∈ U . Then v is the closest SP to the
intersection point between e and a MEP determined by formulas (4)–(5)
from v∗ to a point on e′. Then I(v, e, e′) can be determined as the smallest
segment on e′ whose endpoints are SPs and which contains the intersection
point of e′ and the MEP determined by v and v∗.

Further details on the data structures and the analysis of BUSHWHACK al-
gorithm can be found in [13]. We established the following result, which is an
improvement of Theorem 1 for the case μ = 0 by a factor of roughly Θ(1/ε).

Theorem 2. Given a polygon P of bounded aspect ratio, a sensor field F =
(P, L, S) with zero sensibility exponent, two points x and y from P , and any
ε > 0, a path p between x and y in P such that exp(p) ≤ (1+ ε) exp(popt) can be
found in O(m log m) time, where popt = MEP(x, y, F), n = max{|L|, |P |}, m =
O(n/ε ln(ψ)α̌), ψ denotes the ratio of the area of P and the minimum distance
between any two points of L, and α̌ is the minimum angle of the triangulation
of Vor(L).

6 Conclusion

In this paper we developed the theoretic framework for designing approximation
algorithms for solving minimum exposure path problems for sensor networks.

308 H.N. Djidjev

There are several interesting problems not discussed here that will be subject
of our ongoing and future work. These include removing the dependence of the
running time of Theorem 2 on α̌. Although such a dependence is characteristic
for such type of problems, e.g., [3], we will show in the full version of this paper
that it can be removed in our case. We also plan to use our MEP algorithms for
solving placement problems for sensor networks.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover Publications, New York (1964)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and
applications. Prentice-Hall, Englewood Cliffs (1993)

3. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest
paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)

4. Aurenhammer, F.: Voronoi diagrams —- surrvey of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

5. Cardei, M., Wu, J.: Coverage in wireless sensor networks. In: Ilyas, M., Mahgoub,
I. (eds.) Handbook of Sensor Networks, CRC Press, Boca Raton (2004)

6. Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.K.: Sensor de-
ployment strategy for detection of targets traversing a region. ACM Mobile Net-
works and Applications 8(4), 453–461 (2003)

7. Gage, D.W.: Command control for many-robot systems. Unmanned Systems Mag-
azine 10(4), 28–34 (1992)

8. Hata, M.: Empirical formula for propagation loss in land mobile radio services.
IEEE Transactions on Vehicular Technology 29(3), 317–325 (1980)

9. Huang, H., Richa, A.W., Segal, M.: Dynamic coverage in ad-hoc sensor networks.
Mobile Networks and Applications 10(1-2), 9–17 (2005)

10. Li, X.-Y., Wan, P.-J., Frieder, O.: Coverage in wireless ad hoc sensor networks.
IEEE Transactions on Computers 52(6), 753–763 (2003)

11. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in wire-
less sensor networks: theory and practical solutions. Wireless Networks 8(5), 443–
454 (2002)

12. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: INFOCOM, pp. 1380–1387 (2001)

13. Sun, Z., Reif, J.H.: Bushwhack: An approximation algorithm for minimal paths
through pseudo-euclidean spaces. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 160–171. Springer, Heidelberg (2001)

14. Veltri, G., Huang, Q., Qu, G., Potkonjak, M.: Minimal and maximal exposure path
algorithms for wireless embedded sensor networks. In: SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems, pp. 40–50.
ACM Press, New York (2003)

15. Weinstock, R.: Calculus of Variations, with Applications to Physics and Engineer-
ing. Dover Publications, New York (1974)

Energy Efficient Intrusion Detection

in Camera Sensor Networks

Primoz Skraba1 and Leonidas Guibas2

1 Department of Electrical Engineering
Stanford University, Stanford, CA 94305

primoz@stanford.edu
2 Department of Computer Science

Stanford University, Stanford, CA 94305
guibas@stanford.edu

Abstract. The problem we address in this paper is how to detect an
intruder moving through a polygonal space that is equipped with a cam-
era sensor network. We propose a probabilistic sensor tasking algorithm
in which cameras sense the environment independently of one another,
thus reducing the communication overhead. Since constant monitoring
is prohibitively expensive with complex sensors such as cameras, the
amount of sensing done is also minimized. To be effective, a minimum
detection probability must be guaranteed by the system over all possible
paths through the space. The straightforward approach of enumerating
all such paths is intractable, since there is generally an infinite number of
potential paths. Using a geometric decomposition of the space, we lower-
bound the detection probability over all paths using a small number of
linear constraints. The camera tasking is computed for set of example
layouts and shows large performance gains with our probabilistic scheme
over both constant monitoring as well as over a deterministic heuristic.

1 Introduction

Until recently, research in wireless sensor networks (WSN) has focused primarily
on low cost, low bandwidth sensors. With dropping costs and advances in imaging
technology, there is now increasing interest in camera sensor networks. Several
platforms have already been developed for image/video acquisition in a sensor
network setting [17, 13]. Cameras provide a higher level of sensor information,
but also use more of the limited resources available to a wireless sensor node
and so present a new set of challenges. If used continuously, cameras consume
too much energy to operate on battery power. While applications such as target
tracking usually require constant monitoring, it is unlikely that all areas being
monitored will see continuous activity over time. We can achieve significant
energy savings if we reduce the amount of sensing a camera node must do,
with the goal of first detecting the target(s). Detection can provide a wake-
up mechanism for more expensive higher level services such as tracking [16, 2],
identity management [24], and occupancy reasoning [27].

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 309–323, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

310 P. Skraba and L. Guibas

Exhibition Hall

Fig. 1. An exhibition hall with two entrances/exits, allowing for several possible paths
through it

In this paper we propose an energy efficient approach to detection in camera
sensor networks. Our approach provides two benefits. First, after the initial setup
is complete, no communication between nodes is required. The amount of sensing
done is also minimized, while still providing guarantees on detection quality.
Minimizing the use of the cameras is important since they consume as much
energy as communication [18]. The algorithm itself is simple: at each time step,
a camera independently decides to sense a frame with an assigned probability.
These are set so that probabilistic guarantees on detection can be made.

Consider the scenario of tracking people with a camera sensor network in an
exhibition hall with the floor plan in Figure 1. In the evening, the building is
empty and the network should no longer monitor continuously because there is
no one to track. When a person is detected, the network can wake up and begin
tracking once again. One possible solution is to have the cameras continuously
monitor only the entrances. This either assumes that the cameras have been
specifically deployed for the purpose of detection or the cameras which face the
entrances will be overused and may soon run out of energy. In this paper, we
assume that the cameras are spread out to cover most of the space (as they would
be deployed for monitoring or tracking). Surveillance and tracking are canonical
applications of camera sensor networks, often aimed at detecting an adverserial
intruder. The objective of the intruder is to move between sets of points called
sources and destinations. Sources can be thought of as entrances into a space and
destinations as secure areas (e.g. a bank vault). Although the intruder model is
natural in security applications, the idea of focusing on paths between certain
points in space is more general. For example in building monitoring, a destination
may be a particular office or all points of a certain distance from the entrance,
limiting how far an intruder may travel before being detected.

First we present related work and introduce the models used for the cameras
and the space. After introducing the necessary geometric preprocessing of the
camera layout, the problem of tasking the cameras subject to a global detection

Energy Efficient Intrusion Detection in Camera Sensor Networks 311

probability constraint is posed in the framework of convex optimization. A de-
terministic algorithm with a detection probability of 1 is presented for compar-
ison. Finally, analysis of the performance and validation of the algorithms are
presented.

2 Related Work

In WSNs, work in tasking sensors has primarily addressed maintaining a min-
imum level of coverage over the entire space of the network. This is usually
referred to as the k-coverage problem. Several centralized and distributed algo-
rithms have been proposed for uniform [1, 15, 12] or differentiated coverage [26].
These all, however, assume a local sensor coverage model1. For camera sensor
networks, a deployment algorithm which meets coverage constraints over a space
was recently proposed in [10]. These types of coverage problems are all closely
related the classical Art Gallery Problem and its many variants. For further
details, the reader is directed to [21].

In [20, 25, 19], algorithms for finding maximal exposure and maximal breach
paths through a sensor network with local sensors are described. The maximal
exposure path is a path which the intruder is exposed to the most sensors. More
relevant is the maximal breach path, which is the path of minimal exposure
through a sensor network. This work again assumes constant sensing and finds
the path through the network which maximally distances itself from all the sen-
sors. The idea of barrier coverage was proposed recently in [14]. Barrier coverage
refers to when active sensors form a barrier so that an intruder cannot pass
through the network undetected. Results on the probability of random sampling
needed to achieve a barrier in the network were given. However, the analysis was
done for dense random networks equipped with local sensors and the barriers are
static. Energy conservation through limiting the sensing to a small part of the
network was also considered in [11, 23]. In [11], the activation pattern follows a
user-defined path through the sensor network as a sentry. In [23], the activation
pattern is a sweep across the network. Both schemes assume a simple topology
and do not handle sensing holes.

Our work incorporates many similar ideas to the ones mentioned above. How-
ever, to the best of our knowledge, there is no prior work on providing energy
efficient detection in a non-local camera sensor network.

3 Model

The detection area is modeled as a two dimensional polygonal space. It need not
be convex or simple, as seen in the Exhibition Hall example in Figure 1. The
space may have occlusions as well as regions not covered by any cameras. Sources
and destinations are modeled as points in the space. These may be entrances or
1 A local sensors refers to a sensor that can only detect things close to itself. The

circular or Gaussian sensor model fall into this category.

312 P. Skraba and L. Guibas

(a) (b) (c)

Fig. 2. Examples of visibility regions for cameras: (a) shows the simplest case where
two constraint edges suffice, (b) shows an occlusion from one side, where an additional
constraint edge is needed and (c) shows an occlusion in the middle of the camera field
of view, where two additional constraint edges are needed

“areas of interest.” A point may be a source in one setting and a destination in
another. The camera’s views are modeled by simple two dimensional cones. It
is assumed that detection is uniform with probability 1 inside the cone and 0
outside. More complicated models of camera coverage such as a limited depth
of view and varying probability of detection can be incorporated with minimal
changes to the framework. Time is divided into discrete steps called frames. For
energy consumption, we assume that taking a shot within a frame by a camera
has a fixed cost. This implies that minimizing the energy used by the node to
sense is equivalent to minimizing the probability that it senses during a frame.
A shortcoming of this model is that it ignores the energy lost when the node is
powering the camera up and powering it down. In future work, these costs will
be accounted for.

We assume that the cameras know their locations, orientations, and have
been properly calibrated. This could be done using structure from motion and
automatic registration. The specific problem of camera calibration has been ad-
dressed in [8, 9, 22]. Furthermore, we assume that the cameras know the layout of
the space in which they are deployed. This could be done by manually uploading
a floorplan or learning it automatically with a scanning device [3]. There are no
constraints on placement of the cameras or their viewing angles. The locations
of sources and destinations along with their corresponding detection constraints
are user-defined parameters and assumed to be known.

4 Geometric Preprocessing

The first step is to understand how the cameras cover the space. Beginning with
the empty polygonal space, the two edges which make up a camera cone are
placed into the space as constraint edges. In the presence of occlusions additional
constraint edges are needed to define the boundary of the visibility cone of the
camera. Some examples of where additional constraints are needed are shown
in Figure 2. To find all the constraint edges, we implement the rotational sweep
algorithm described in [10].

The constraint edges of all the camera cones decompose the space into polygo-
nal faces. Each face is characterized by its neighboring faces and the combination

Energy Efficient Intrusion Detection in Camera Sensor Networks 313

(a) (b) (c)

Fig. 3. (a) The coverage of 4 cameras facing each other in a rectangular space. The
brighter the color the higher the coverage. (b) The distance cost function over the
space from a point in the lower righthand corner, where the cost is 1 if the space is
covered by a camera and 0 otherwise. Note the distortion due to the uncovered areas
in the corners. (c) The cost function where the cost of traveling through the face is
proportional to the distance times the number of cameras which see the face.

of cameras which see it. The computation of the arrangement of the visibility
cones from the polygonal space and camera constraint edges is a well-studied
problem in computational geometry with known efficient solutions [7]. To sim-
plify the implementation, we compute the polygonal faces using the constrained
Delaunay triangulation of the space and the camera constraint edges. The faces
are reconstructed by joining adjacent triangles which are seen by the same com-
bination of cameras.

From this decomposition, we extract the spatial adjacency graph (SAG). The
SAG is an undirected graph G(v, e) where each vertex represents a face in the
space and two vertices are adjacent if the corresponding faces are adjacent. Two
faces are adjacent if an intruder can move between the faces without entering
any other face or equivalently, that the faces share a common vertex.

5 Tasking the Cameras

The algorithm tasks the cameras so that whichever path from the source to
the destination the intruder chooses, there is high probability that he will be
detected. First a simplified intruder motion model is considered. The results are
then extended to a more general and realistic motion model.

5.1 Assigning Probabilities in a Graph

Consider any path the intruder can traverse through the space. The continuous
path can be mapped to the SAG by marking the corresponding nodes for each
face the path crosses. We first assume that at each time step, the intruder may
only move one hop in the SAG. Under this simple motion model, each time slot
can be considered an independent trial.

314 P. Skraba and L. Guibas

Given a path P = {v1, v2, . . . , vn} the probability of evasion2 is

PE =
∏

vi∈P
p(vi) , (1)

where p(vi) is the probability that node vi is not covered. Taking the logarithm
of Equation 1, we get

log(PE) =
∑

vi∈P
log(p(vi)) . (2)

Setting the cost of a node vi to log(p(vi)), the cost of path P is defined as sum
of the node costs along the path.

The probability that a node is covered depends on which cameras see the
corresponding face and the probability with which they are on. If the set of
cameras which cover node vi is denoted by C(vi), node vi is uncovered if and
only if the entire set of cameras C(vi) are off. The cost of a node is then given
by

log(p(vi)) =
∑

cj∈C(vi)

log(1 − p(cj)) , (3)

where p(cj) is the probability that camera cj is on. Note that if a node is not
covered by any cameras, its cost is 0 and negative otherwise.

Making the change of variables

x(cj) = − log(1 − p(cj)) ,

ε = − log(PE)

and substituting into Equation 2, ε becomes a linear function of camera weights
x(ci) along a given path. To ensure that PE is suitably small, we need to ensure
that no path of cost less than ε exists.

This is a difficult problem because the total cost of the path depends on
the individual weights assigned to the cameras. One way to ensure that there
is no path of cost less than ε is to enumerated all paths between the source
and destination. With all the paths as constraints, we can optimize the weight
vector x(ci) over any convex cost function using standard tools from convex
optimization [4]. For example, to minimize the maximum amount of time any
camera is on, we minimize ||x||∞. Although this is an LP, the number of paths
grows exponentially with the number of nodes in G. To reduce the number of
constraints, we apply the following lemma:

Lemma 1. If the cost of a node is set to 1
d , where d is the shortest distance

from the source to the destination through the node, then the total cost of the
path cannot be less than 1.

Proof. Since the length of the shortest path is d and the cost of each along the
path step is at least 1

d , it follows that the cost of any path is at least 1.

2 That is, the probability that the intruder will not be detected.

Energy Efficient Intrusion Detection in Camera Sensor Networks 315

Using this lower bound, we can provide a constraint for each node individually
rather than along paths. If we set the cost of the node vi to ε

d(vi)
where d(vi) is

path length from vi to the source plus the path length from vi to the destination,
then by Lemma 1, no path from the source to the destination will have a cost
less than ε. The constraint for each node becomes

∑

cj∈C(vi)

log(1 − p(cj)) ≥ ε

d(vi)
, ∀i . (4)

The number of constraints is reduced from the number of paths to the number
of nodes.

5.2 Assigning Probabilities in Continuous Space

Only assuming an upper bound on the speed of the intruder, we extend the
results to the continuous domain. Given the framerates of the cameras, we use
the maximum speed of the intruder to convert distance from standard units
to frames. For example, if the frame rate of the camera is 15 frames/sec and
the maximum speed of the intruder is 3 m/s then the conversion factor is 5
frames/m. The cost of P is the probability of evasion travelling along that path
at the maximum speed. If P is within the visual field of a camera for a length
of n frames and the probability of a camera taking a frame is p, the probability
of evasion along P is (1 − p)n.

To determine the probability of each camera taking a frame, we need to be
able to find the distance between two points in a polygonal space. An efficient
algorithm is known from computational geometry/robot motion planning. We
briefly outline the algorithm, but refer the reader to Chapter 15 of [7] for further
details. The algorithm first constructs the visibility graph for a space S. The
visibility graph consists of nodes representing the vertices of polygonal obstacles
in S. An edge connects two vertices if the vertices are visible to one another
(i.e. a straight line between the vertices does not intersect any obstacle). The
weight of the edge is set as its Euclidean length. To find the shortest distance
between two points, we place the points into the visibility graph and add the
appropriate edges in the same way (to all visible vertices). Dijkstra’s algorithm
is used to compute the shortest path through the graph — exactly the shortest
path through the space.

There may be regions of space not covered by any cameras which should not
contribute to the computed distance as they have a cost of 0. These “holes” act
as shortcuts through the space. To account for the holes, the visibility graph
must be augmented. In addition to the vertices of the obstacles, there must be
a vertex in the visibility graph for each uncovered face. Edges are added if the
uncovered face is visible from a vertex. The weight of the edge is the shortest
distance from the vertex to the polygon representing the uncovered face. In this
augmented visibility graph, the shortest distance returned by Dijkstra will be
correct. By comparing Figure 3(a) and Figure 3(b), we see that the distortion
introduced by holes can be significant.

316 P. Skraba and L. Guibas

The camera probabilities must be set such that no path from the source to the
destination has a smaller cost than ε. Unlike in the graph case where paths could
be enumerated, in the continuous space there are an infinite number of paths.
By extending Lemma 1 to the continuous case, we show that one constraint per
face is sufficient to guarantee the minimum cost over all paths. The key idea is
to find a shortest path passing through each face. A path is considered to pass
through a face if it intersects or touches any part of the boundary of that face
(i.e. it does not have to enter the face). Now we can state the following theorem.

Theorem 1. For a path through the space from a source to a destination, its
length is defined as the distance the path traverses through covered faces. The
length does not increase when the path travels through uncovered faces or equiv-
alently each uncovered face is mapped to a point. If the cost of each covered face
is set to ε

d , where d is the length (as defined above) of the shortest path from
the source to the destination passing through the face, then all paths through the
space will have a cost of at least ε.

Proof. First note that by definition, any uncovered face has a fixed cost of 0.
Therefore, if an uncovered path exists from the source to the destination then
the minimum cost from source to destination is 0 and an intruder can traverse
the path without being detected with probability 1. Consider a face and the
point in the face lying on the shortest path from the source to the destination
through the face. In general, neither the point nor the path are unique, however
since the value is unique, since it is defined as the minimum. If the shortest total
path length is d then we set the cost of the face to ε

d . By Lemma 1, all other
faces that the path goes through must have equal or greater cost. Therefore, the
total cost of the path will be at least ε. By similar argument, any other path
through the face will have an equal or higher cost, because all sections of the
path will have an equal or higher cost.

Since the cost in each face is split between several cameras, all the faces must
be sampled. Each face represents a combination of cameras and we do not know
a priori which combination of constraints will be active. However, by finding the
minimum length path through every face, all possible combinations of cameras
that occur in the space are enumerated. If a path of cost lower than ε and larger
than 0 existed, it would imply that the path crosses a face where the above
constraint is not met. Since the constraint for each face is enumerated, this is a
contradiction.

5.3 Algorithm

Given a space and camera positions, we find the decomposition of space into
faces. Each face is marked with the combination of cameras which see it. Here
we only consider the case of one source and one destination but the algorithm
extends to multiple sources and destinations. For each face i, we sample the
boundary and use the visibility graph algorithm to find the smallest distance
from the source to the destination through the face, di, by computing the shortest

Energy Efficient Intrusion Detection in Camera Sensor Networks 317

distance to the source and the destination from each point along the boundary
of the face. Defining the vector ai, where aij = 1 if camera j sees face i and 0
otherwise. The optimization problem can be written as

minimize f(x) ,

subject to aT
i x >

ε

di
∀i , and

x > 0

where f(x) can be any convex function. Then we change x(ci) back to p(ci) by

p(ci) = 1 − e−x(ci) (5)

to obtain the vector of camera probabilities.

5.4 Special Case

The special case where we assign one probability to all the cameras can be solved
exactly rather than using the constraint at each face. Minimizing this probability
is equivalent to minimizing the ∞-norm of the probability vector. The optimal
probability can be found if the minimum exposure path with all cameras on is
known. The cost of a path through a face is the length of the path through the
face multiplied by the number of cameras which see the face, which is the total
number of potential frames which the intruder will be exposed to while inside
the face. Since each face can have a different cost, the visibility graph cannot be
used for computing the minimum exposure path. To find the minimum exposure
path, we discretize the space into a grid with 8 neighbors per node. The incoming
edge into each node is assigned a cost of the number of cameras which see the
node. Then Dijkstra’s algorithm is applied to the grid graph to find the minimum
cost path from the source to the destination. This gives a good approximation of
the true minimum cost. It is simple to show that the discretization error is less
than 8% if the source and destination are reasonably far apart compared to the
distance between grid points. The distance function with all the cameras on for
a simple case is shown in Figure 3(c) where the minimum cost path will clearly
need not be the Euclidean shortest path.

The minimum cost is equivalent to the total number of potential frames which
will be taken along the path. The required probability is set so that the minimum
exposure cost has at least a cost of ε. All the camera probabilities are then set
to this value. This method only works because the relative weighting of the faces
do not change. Changing the relative costs of the faces results in a more difficult
version of setting the node weights of the graph in section 5.1, since there is an
uncountable number of paths.

6 Deterministic Algorithm

We present a simple heuristic for deterministically detecting intruders as a bench-
mark to compare the performance of our randomized strategy with. The idea

318 P. Skraba and L. Guibas

is similar to the algorithm presented in [23]. We try to sweep the space using
the cameras while maintaining a barrier between the uncleared or contaminated
areas and the destination. By maintaining a barrier, we prevent the intruder
from getting closer to the destination and the cleared area from becoming re-
contaminated. If we can grow this area, we will eventually clear the entire space.

The deterministic approach has some inherent drawbacks. First, it requires
synchronization between the nodes, resulting in communication overhead. Sec-
ondly, regions which are not covered by any cameras can never be cleared. This
implies that there must always be a separating sweep from the destination to
the first hole in coverage, since a potential intruder may hide in it. For the pur-
poses of this comparison, we ignore both issues and compare the deterministic
heuristic with the random scheme. The algorithm consists of two parts. First, a
schedule of faces which must be turned on at a given time is computed. Then a
set of cameras are found which cover the required faces.

To find a set of faces which maintain a barrier and increase the cleared region,
we return to the SAG described in Section 4. The sweep begins at the destination,
so we mark the appropriate face in the SAG as the choice at time 0. At time
1, all of its adjacent faces are marked to be on. This fulfills both criteria of
maintaining a barrier with uncleared regions and expanding the cleared area.
In general, if the chosen set of faces at time t is S(t), then S(t + 1) will be all
the adjacent faces of the faces in S(t) which have not yet been cleared. This is
repeated until the source is reached. For the purposes of comparison, we sweep
the entire region before repeating the sweep beginning at the initial face.

The second part of the algorithm requires us to choose a set of cameras at
each time instance. For each time instance, we must solve the minimal hitting
set problem. Each face has a set of cameras which see it. The set of faces to be
covered at time t form a collection of sets of cameras. We must choose a set
of cameras which cover all the sets in the collection. Since, we are solving this
problem many times, cameras are chosen using the following method. At t = 0,
all cameras are assigned a weight of 0. First, all the cameras in the collection are
sorted in increasing order according to their weight. From the minimum weight,
we find the camera which appears in the most sets (i.e. sees the most faces). This
camera is chosen and its weight is increased by 1. It is removed from the list and
the procedure is repeated until all the sets are removed. The re-weighting gives
preference to cameras which have been chosen fewer times.

7 Simulation Experiments

In this section, we investigate the performance of the algorithm through sim-
ulations. The geometric preprocessing was implemented in CGAL [5] and the
optimization was done using the CVX [6] package in MATLAB. The four lay-
outs shown in Figure 4(a)-(d) were tested. Layout 1 and 2 are rectangular rooms
with differing camera layouts. Layout 1 corresponds to a real camera deploy-
ment of 16 webcams. Layout 2 has 14 cameras placed more evenly around the
room. Layouts 3 and 4 are larger with multiple occlusions. Although there are

Energy Efficient Intrusion Detection in Camera Sensor Networks 319

more cameras in the latter layouts (31 and 17 respectively), the coverage is
not as dense as in the first two cases. The extent of the coverage is shown in
Figure 4(e)-(h) where more densely covered areas are lighter in color. For each
layout, we compare the results in terms of load balancing between cameras and
the total amount of energy spent.

The results summarized in Table 1 were obtained by setting the probability of
evasion to 0.01. We compare optimizing the 2-norm and the ∞-norm by bounding
the detection probability on individual faces (||p||2(1); ||p||∞||(1)), the special
case of solving for one parameter (||p||∞(2)) and the deterministic algorithm. The
first three columns show the the 2-norm, the 2-norm normalized by the number
of cameras, and the ∞-norm of the probability vector respectively. With the
probability vector set to the solution, the maximum probability of evasion along
the minimum exposure path was computed and is shown in the fourth column
of the table. The exception is the deterministic scheme which has a probability
of evasion of 0. In all 4 layouts, the deterministic scheme used the cameras much
more than any of the probabilistic schemes, illustrating the price of setting PE

to 0.
In Layouts 1 and 2, locally enforcing the minimum detection probability at

each face results in overcoverage. The resulting maximum PE was at least an
order of magnitude smaller than the desired 0.01. At the same time the total
energy used (||p||2) is at most twice the amount used in the optimal single
parameter case. In Layout 3, the performance of the three probabilistic schemes
is comparable. The overcoverage is minimal because most of the area is sparsely
covered and most of the paths are of similar length. Layout 4 is lies somewhere
between. The maximum PE is still an order of magnitude smaller than the single
parameter case, but all other values are comparable.

These results show that the optimization technique provides very good per-
formance giving quite low probabilities of evasion with each camera taking only
a small number of frames. Unfortunately, the approximation in the local enforce-
ment of constraints using Theorem 1, makes it difficult to set the true probability
of evasion to a desired value. This means that some experimentation is necessary
if we do not want overcoverage in the network. The effect of the optimization on
coverage be seen in Figure 4(i)-(l). This shows the cost of paths from the source
to the destination over the space when the probabilities are set to the 2-norm
solution for Layouts 2 and 3. For Layout 2, the coverage becomes much more
uniform than in the case of one parameter, while Layout 3 exhibits almost no
change.

The notion of load balancing is important because it prevents certain cameras
from being overused. A good metric of load balancing is obtained by comparing
the average value of the probability vector to its ∞-norm. The average value is
given by ||p||2/N in Table 1. The single parameter case obviously has a ratio
of 1 in all cases. The other algorithms did nearly as well. For method (1), the
maximum was always less than twice the average. Given a particular layout it
may not be desirable to achieve perfect load balancing as there may be some
cameras which inherently need to do more sensing than others. The deterministic

320 P. Skraba and L. Guibas

(a) Layout 1 (b) Layout 2 (c) Layout 3 (d) Layout 4

(e) L. 1 (f) L. 2 (g) L. 3 (h) L. 4

(i) L. 2(1) (j) L. 2 (2) (k) L. 3 (1) (l) L. 3 (2)

Fig. 4. (a)-(d) 4 example layouts. (e)-(h) Coverage maps for the 4 layouts. The lighter
the color of a point, the more cameras cover that point. (i) The minimum total cost from
the source to the destination for layout 2 with all the cameras set to one probability.
The darkest region is the minimum cost path. (j) The minimum total cost path with
the prob. from the approx. optimizaion (k) and (l) The same for layout 3.

algorithm also performed well. However, when there were disjoint faces covered
by one camera, it was impossible prevent turning one camera on multiple times.

8 Conclusions and Further Work

We have presented an algorithm for detection where cameras take frames with
an assigned probability rather than continuously monitor the space. The camera
probabilities can be optimized over a desired convex cost function with relatively
few constraints. Once the probabilities are set, no further coordination is required
between the nodes. Experimentation shows that although each camera samples
infrequently and independently, global guarantees are made on the detection
probability.

From the experimentation, we see that locally enforcing the probability of
evasion at each face results in overcoverage. Whether it is feasible to efficiently
encode the minimum cost over all paths when cameras have variable probabilities
is an open question. Furthermore, we assumed that the main energy cost in

Energy Efficient Intrusion Detection in Camera Sensor Networks 321

Table 1. Results for the 4 layouts. (1) refers to the approximate technique; (2) refers
to the optimal ∞-norm value; Det.is the deterministic algorithm

Layout Method ||p||2 ||p||2/N ||p||∞ Max PE

||p||2(1) 0.0608 0.0152 0.0262 0.0005
||p||∞(1) 0.0785 0.0196 0.0262 0.00002

1 ||p||∞(2) 0.0320 0.0080 0.008 0.01
Det. 0.0675 0.2166 0.4545 -

||p||2(1) 0.0512 0.0137 0.0193 0.001
||p||∞(1) 0.0646 0.0173 0.0193 0.00012

2 ||p||∞(2) 0.0344 0.0092 0.0092 0.01
Det. 1.387 0.3707 0.3722 -

||p||2(1) 0.1921 0.0345 0.0357 0.0094
||p||∞(1) 0.1947 0.0353 0.0353 0.0093

3 ||p||∞(2) 0.1954 0.0351 0.0351 0.01
Det. 1.400 0.3501 0.3510 -

||p||2(1) 0.0817 0.0198 0.0228 0.0009
||p||∞(1) 0.0871 0.0211 0.0228 0.0008

4 ||p||∞(2) 0.0614 0.0149 0.0149 0.01
Det. 0.7717 0.1038 0.5729 -

acquiring frames was in actually sampling the frame. Taking the cost of powering
on and off into account introduces correlation between the detection probabilities
over time complicating the problem significantly.

Acknowledgement. The authors wish to acknowledge support by NSF grants
CNS-0435111, CNS-0626151, ARO grant W911NF-06-1-0275, and the DoD Mul-
tidisciplinary University Research Initiative (MURI) program administered by
ONR under Grant N00014-00-1-0637.

References

[1] Abrams, Z., Goel, A., Plotkin, S.: Set k-cover algorithms for energy efficient mon-
itoring in wireless sensor networks. In: IPSN ’04: Proceedings of the third inter-
national symposium on Information processing in sensor networks, pp. 424–432.
ACM Press, New York (2004)

[2] Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mit-
tal, V., Cao, H., Demirbas, M., Gouda, M., Choi, Y., Herman, T., Kulkarni, S.,
Arumugam, U., Nesterenko, M., Vora, A., Miyashita, M.: A line in the sand: a
wireless sensor network for target detection, classification, and tracking. Comput.
Networks 46(5), 605–634 (2004)

[3] Biber, P., Fleck, S., Wand, M., Staneke, D., Strasser, W.: First experiences with
a mobile platform for flexible 3d model aquisition in indoor and outdoor environ-
ments - the waglele. In: 3D-ARCH’2005: 3D Virtual Reconstruction and Visual-
ization of Complex Architectures (2005)

[4] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

322 P. Skraba and L. Guibas

[5] Cgal: Computational geometry algorithms library. http://www.cgal.org
[6] Cvx: Matlab software for disciplined convex programming.

http://http://www.stanford.edu/∼boyd/cvx/
[7] de Berg, M., van Kreveld, M., Overmars, M., Schwartzkopf, O.: Computational

Geometry - Algorithms and Applications. Springer, Heidelberg (2000)
[8] Devarajan, D., Radke, R.J., Chung, H.: Distributed metric calibration of ad hoc

camera networks. ACM Trans. Sen. Netw. 2(3), 380–403 (2006)
[9] Devarajan, D., Radke, R.J., Chung, H.: Distributed metric calibration of ad hoc

camera networks. ACM Trans. Sen. Netw. 2(3), 380–403 (2006)
[10] Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and

floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3),
156–169 (2006)

[11] Gui, C., Mohapatra, P.: Virtual patrol: a new power conservation design for
surveillance using sensor networks. In: IPSN ’05: Proceedings of the 4th inter-
national symposium on Information processing in sensor networks, Piscataway,
NJ, USA, p. 33. IEEE Press, New York (2005)

[12] Huang, C.-F., Tseng, Y.-C.: The coverage problem in a wireless sensor network.
In: WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless
sensor networks and applications, pp. 115–121. ACM Press, New York (2003)

[13] Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor
network. In: MULTIMEDIA ’05: Proceedings of the 13th annual ACM interna-
tional conference on Multimedia, pp. 229–238. ACM Press, New York (2005)

[14] Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Santosh
Kumar, T.H. (ed.) MobiCom ’05: Proceedings of the 11th annual international
conference on Mobile computing and networking, pp. 284–298. ACM Press, New
York (2005)

[15] Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor net-
work. In: Santosh Kumar, T.H. (ed.) MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and networking, pp. 144–158. ACM
Press, New York (2004)

[16] Li, D., Wong, K., Hu, Y., Sayeed, A.: Detection, classification, and tracking of
targets. IEEE Signal Processing Magazine 19(2), 17–30 (2002)

[17] Margi, C.B., Lu, X., Zhang, G., Stanek, G., Manduchi, R., Obraczka, K.:
Meerkats: A power-aware, self-managing wireless camera network for wide area
monitoring. In: Workshop on Distributed Smart Cameras (DSC-06) (October
2006)

[18] Margi, C.B., Petkov, V., Obraczka, K., Manduchi, R.: Characterizing energy con-
sumption in a visual sensor network testbed. In: 2nd International IEEE/Create-
Net Conference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (March 2006)

[19] Megerian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Worst and best-
case coverage in sensor networks. IEEE Transactions on Mobile Computing 4(1),
84–92 (2005)

[20] Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in
wireless sensor networks: theory and practical solutions. Wirel. Netw. 8(5), 443–
454 (2002)

[21] O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Ox-
ford (1987)

[22] Rekletis, I.M., Dudek, G.: Automated calibration of a camera sensor network.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
401–406, Edmonton Alberta, Canada (August 2-6, 2005)

http://www.cgal.org
http://http://www.stanford.edu/~boyd/cvx/

Energy Efficient Intrusion Detection in Camera Sensor Networks 323

[23] Ren, S., Li, Q., Wang, H., Zhang, X.: Design and analysis of wave sensing schedul-
ing protocols for object-tracking applications. In: Prasanna, V.K., Iyengar, S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg
(2005)

[24] Shin, J., Guibas, L., Zhao, F.: A distributed algorithm for managing multi-target
identities in wireless ad-hoc sensor networks. In: Zhao, F., Guibas, L.J. (eds.)
IPSN 2003. LNCS, vol. 2634, pp. 223–238. Springer, Heidelberg (2003)

[25] Veltri, G., Huang, Q., Qu, G., Potkonjak, M.: Minimal and maximal exposure path
algorithms for wireless embedded sensor networks. In: SenSys ’03: Proceedings
of the 1st international conference on Embedded networked sensor systems, pp.
40–50. ACM Press, New York (2003)

[26] Yan, T., He, T., Stankovic, J.A.: Differentiated surveillance for sensor networks.
In: SenSys ’03: Proceedings of the 1st international conference on Embedded net-
worked sensor systems, pp. 51–62. ACM Press, New York (2003)

[27] Yang, D., Gonzalez-Banos, H., Guibas, L.: Counting people in crowds with a
real-time network of image sensors. In: Proc. IEEE ICCV (2003)

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 324–337, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Leveraging Redundancy in Sampling-Interpolation
Applications for Sensor Networks

Periklis Liaskovits and Curt Schurgers

University of California San Diego, Electrical and Computer Engineering Department
{pliaskov, curts}@ucsd.edu

Abstract. An important class of sensor network applications aims at estimating
the spatiotemporal behavior of a physical phenomenon, such as temperature
variations over an area of interest. These networks thereby essentially act as a
distributed sampling system. However, unlike in the event detection class of
sensor networks, the notion of sensing range is largely meaningless in this case.
As a result, existing techniques to exploit sensing redundancy for event
detection, which rely on the existence of such sensing range, become unusable.
Instead, this paper presents a new method to exploit redundancy for the
sampling class of applications, which adaptively selects the smallest set of
reporting sensors to act as sampling points. By projecting the sensor space onto
an equivalent Hilbert space, this method ensures sufficiently accurate sampling
and interpolation, without a priori knowledge of the statistical structure of the
physical process. Results are presented using synthetic sensor data and show
significant reductions in the number of active sensors.

Keywords: Sensor networks, spatial monitoring, sampling, sensor selection,
sensing topology management, energy efficiency, Hilbert space.

1 Introduction

Large scale networks of wireless micro-sensors enjoy increasing popularity in two
broad and very distinct classes of applications: event detection and continuous
spatiotemporal sampling. In event detection, the goal of the network is to notify the
user when particular events take place, such as the presence of an intruder or the start
of a fire. A sensor reading such as an elevated temperature indicates for example that
a hot object is nearby. A node is often characterized as having a sensing range, which
is a measure for the distance over which an event can be detected reliably [1], [2]. The
overall goal in terms of network-wide reliable coverage is to ensure that each point in
space is covered by a minimum number of sensors [1], [2], [3].

By contrast, in spatiotemporal sampling the sensor reading is a single sample, a
point value in time and space. The goal of the network is now to create a continuous
map of the physical phenomenon, by interpolating the values of the field where no
sensor readings exist. As such, there is no concept of a sensing range. Example
applications in this class include monitoring humidity and soil decomposition
variations in agricultural fields, or building the temperature map inside a warehouse to
optimize air-flow. This paper focuses on this sampling-interpolation class of sensor

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 325

network applications and more specifically on how to leverage a dense deployment to
increase the overall system lifetime.

It is envisioned that as individual nodes become cheaper, sensor networks will
often be over-deployed to compensate for unknown environment and non-exact
deployment. As a result, more sensor nodes are present than strictly necessary, which
boils down to effective over-sampling in sampling-interpolation type applications.
This redundancy can be leveraged to increase the network lifetime, by only having the
strictly required set of nodes send their readings, while the others remain in a sleep
state. In general, putting nodes in a low-power sleep state has been recognized as one
of the most effective means to ensure energy efficient network operation [4].

However, simply finding the minimum required set of nodes is not sufficient by
itself. To create a functional sensing topology management scheme, multiple such sets
should be found, which are as disjoint as possible [1], [5], [6]. At each point in time
only one of them is made active while the others are in a low-power sleep state, and
this functionality is rotated amongst the sets. Existing work in sensing topology
management has focused mainly on the class of event detection applications, which
are characterized by a sensing range. Disjoint sets of sensors are found based on a k-
coverage criterion, where each point in the field must be covered by at least k sensors
to ensure sufficient detection probability [7].

However, k-coverage is unusable for the sampling-interpolation class of sensor
network applications, as sensing range is meaningless here. Instead, a different
strategy is needed to select sensor sets based on a sampling and reconstruction
criterion instead. Such a criterion will rely heavily on the spatiotemporal
characteristics of the underlying physical phenomenon, which are typically unknown
before deployment, rather than on a property of the sensor. Suitable sensing topology
management extends far beyond the application of known sampling theory alone, and
indeed provides some unique challenges. First, topology management operates on an
already-deployed network. As such, the goal cannot be to find the optimal sampling
locations, i.e. positions of sensors, [11] but is restricted to the positions of the already-
deployed sensor nodes. Second, it is not sufficient to find just the one minimum set of
sensors, but instead the objective is creating multiple equivalent sets to rotate
between. Third, the statistical properties of the underlying physical phenomenon to be
sensed are typically unknown a priori and therefore have to be learned, preferably
with minimal overhead.

To tackle this problem of sensing topology management for sampling-style
applications, we will introduce a powerful mathematical tool, namely the use of a
finite-dimensional Hilbert space. Its unique strength is that it allows a joint
representation of both the sensor network topology and the physical process to be
sensed, within the same framework. Sensor locations map onto vectors in this Hilbert
space, and inner products between them are defined by the correlation structure of the
sensed physical process. Consequently, we will be able to prove that the sensing
topology management problem is a hard combinatorial problem. The same Hilbert
space representation will allow us to devise practical algorithms for creating sets of
sensors, while being able to reconstruct the phenomenon within predefined accuracy
bounds and without a priori knowledge of the physical process statistics. We will
evaluate our approach on synthetic data illustrating that a significant reduction in
active sensors can be achieved.

326 P. Liaskovits and C. Schurgers

2 Overview and Fundamentals

In this paper, we study the problem of sensing topology management without prior
knowledge of the data statistics. We assume a sensor network consisting of N sensor
nodes (also referred to as ‘nodes’ or ‘sensors’) spread over a 2-D observation area of
size F in a uniformly random fashion; there is no redeployment or addition of sensors.
Deployed sensors are indexed 1 through N. The setup and definitions we will use are
illustrated in Figure 1, and will be detailed in the remainder of this subsection.

At discrete time instants ti, a subset of the sensors measures the value of a physical

quantity of interest (e.g. temperature, humidity). A realization of the spatial process is
denoted as Si(x), where vector x represents 2-D coordinates in the observation field F.

At each time instant, the boolean vector mi, of length N, indicates if a sensor is
active (1) or not (0). The number of non-zero elements of mi is denoted as |mi|. As a
convention, we will reserve subscript i = 0 for the situation where all sensors are
active. Therefore, m0 is the set of all available sensors in the network and |m0|= N. The
coordinate matrix Xi consists of the locations of the active sensors, where each of the
non-zero rows Xi

k (with k = 1.. N) corresponds to one sensor (see also Figure 1). The
all-zero rows are never used in what follows, rather they serve to keep indices of
sensors the same across sets. As before, by convention X0 lists the coordinates of all
available sensors. Throughput this paper, we assume that sensor locations are known
within reasonable accuracy, by running a localization service in the network. In
addition, nodes are time synchronized at a coarse level, such that they sample at
roughly the same time ti.

Based on the sensor data reported by the active sensors, a spatial map of the
phenomenon is reconstructed. More specifically, we consider point reconstruction that
is linear on the measured values. This is an assumption widely employed by existing

)(xS)(ˆ x,miS

(12, 5) (38, 6)
(40, 31) (51, 37) (13, 26)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3751

638

3140

2613

512

5
0

4
0

3
0

2
0

1
0

X
X
X
X
X

0X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00

638

00

2613

512

0

0
4

2

1

i

i

i

i

X

X

X

X

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
1
0
1
1

im

3=im

time ti

5== 0mN

F

Fig. 1. Example process and reconstruction

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 327

literature [8], [9], [10], [11], and covers a broad range of interpolation techniques.
Formally, the reconstruction Ŝ(mi, x) of the phenomenon Si(x) is written as:

 (1)

Here Si(Xi

k) is the value of the spatial process at the location Xi
k, or equivalently the

sensor value of node k at Xi. The coefficient functions gk(x,Xi) depend on the specific
reconstruction scheme used. To evaluate the performance of this reconstruction, we
utilize the distortion metric defined in equation (2). This represents the expected
distortion over the field of observation, with respect to all possible realizations of the
spatial process:

(2)

The distortion defined in equation (2) is associated with a particular active set of
sensors mi. As explained in the introduction, if multiple disjoint sets can be found,
only one of them needs to be active at each point in time. The sensor nodes belonging
to the other sets can remain in an energy-efficient sleep state. This is illustrated in
Figure 2. In this example, there are three sets, and rotating the sensing functionality
between them can roughly result in a three-fold increase in network lifetime.

The overall goal of our sensing topology management scheme is therefore to divide
the sensors in as many disjoint sets as possible, while still meeting a desired
distortion bound for each set.

We will refer to the sequence of sensor selections, i.e. sets, over time as a
monitoring schedule. To devise this schedule, we assume that the statistical properties
of the process are not known a priori, but instead have to be learned after network
deployment. As a result, we propose a two-phase strategy:

1. During the learning phase, all N sensors report their data, where in addition to
interpolation itself (i.e. the monitoring application is already operational), the
goal is to estimate relevant statistical properties of the process. This learning
phase could extend over multiple time instants ti.

)()()(ˆ
1

k
ii

N

k
iki SgS XXx,x,m ⋅=∑

=

∫ −=
F

m xxxm dSSE
F

DE ii
]))(),(ˆ[(

1
][2

Set 1: nodes {1, 3, 10}

1
2

4 5

3

6

7

10 9

8

Set 2: nodes {2, 5, 6, 8} Set 3: nodes {4, 7, 9}

Fig. 2. Monitoring schedule: rotating sets of active sensors

328 P. Liaskovits and C. Schurgers

2. During the monitoring phase, only sensors from an active set report and these
sets are rotated over time. How such sets are found is the main subject of the
rest of this paper.

3 Hilbert Space Representation

To find the sets of active sensors, we will develop a methodology that maps the
problem into an equivalent Hilbert space. We observe that the readings S(Xi

k) at a

particular sensor k can be viewed as a random variable (∀ i). Furthermore, the
completed span {S(Xi

k)}k=1…N of these random variables, i.e. all their possible linear
combinations and limits of Cauchy sequences thereof, form a Hilbert space [12]. A
Hilbert space is essentially a set of elements, indiscriminately referred to as points or
vectors, with appropriate operations defined on them. These operations are linear
addition, scalar multiplication, inner product and the norm of an element.

Specifically, the inner product and norm in this space are defined as (the complex
conjugate is denoted by *):

 (3)

(4)

The inner product serves as a measure of similarity between values measured by
different sensors, and captures the effect of the locations of the sensors. It is
equivalent to evaluation of an underlying spatial correlation function R(·,·) at these
locations, which in general describes a process that is neither isotropic nor stationary
but only bounded over the observation field.

All linear combinations of elements of a Hilbert space belong to this space.
Therefore, as defined in equation (1), the reconstruction Ŝ(m0, x) for any point x
(when all sensors report, i.e. mi = m0) belongs to this Hilbert space.

A useful property of a Hilbert space, more specifically of its inner product, is that
of ‘approximation through orthogonal projection’ [12]. Consider a Hilbert space H0,
and a subspace of it H1 which is defined by a basis {ξk}k=1…Q. In terms of minimizing
the squared norm of the error, the best approximation of an element η ∈ H0 by an
element η1 ∈ H1 will be the orthogonal projection of η onto H1. In addition, the
approximation error induced by this orthogonal projection is given by (5) (assuming
that η is not exactly orthogonal to H1):

 (5)

As a final remark, we note that the power of the Hilbert space approach is the

following: it transforms working with a collection of correlated random variables, into
manipulating a set of deterministic vectors where all relevant statistical information is

),()]()([)(),(* p
l

k
i

p
l

k
il

k
i RSSESS XXXXXX p =⋅>=<

]|)([|)(),()(22 k
i

k
i

k
i

k
i SESSS XXXX >==<

2

1

2

2

122

1

,

),(
min

∑

∑

=

=

⋅><

><
−=−

Q

k
kk

Q

k
k

ξξη

ξη
ηηη

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 329

captured in the inner product. It therefore has the potential of being a useful tool in
sensor network processing even beyond the specific problem we consider in this
paper.

3.1 Primary Subspace

We can now translate the sensor set selection process into this Hilbert space
representation. In this case, the Hilbert space, which we denote as HS, is the space
consisting of all random variables S(x) across the whole observation field, i.e. x ∈ F.
Each subset of sensors {S(Xi

k)}k=1…N defines a subspace HXi. In our notation of section
3, this corresponds to {ξk} = {S(Xi

k)}, H1 = HXi, H0 = HS and η is S(x) for a particular
x. Optimal reconstruction as defined in (1) and (2), essentially means that we want to
represent each random variable S(x) as a linear combination of vectors {S(Xi

k)},
optimally with respect to mean squared error. Hence, in view of (4), orthogonal
projection provides the best possible performance of a set of sensors {S(Xi

k)} in terms
of representing all elements of HS, i.e. the random spatial phenomenon of interest.
The expected squared error, which we defined as our distortion metric, can then be
evaluated directly through equation (5). However, this requires knowing the inner
product of η = S(x), x ∈ F, with the sensor vectors. From (3), we see that this is
equivalent to knowing the continuous spatial correlation function:

 (6)

Although it is possible to estimate the continuous correlation function [11], this is
ultimately a costly and intricate procedure that also does not lend itself to providing
distortion guarantees. Instead, we will restrict η to elements of a subspace of HS,
namely that spanned by all deployed sensors HX0. We refer to HX0 as the primary
subspace. It is generated by {S(X0

k)}k=1…N and is therefore of dimension at most N
(we have in fact proved that for Poisson sensor deployments it is exactly N, see next
section). Essentially, we assume that the initial number of sensors is large enough so
that HX0 is a close approximation to HS, or in other words that they can capture
enough details of the underlying physical phenomenon in the first place. The
distortion metric is thus defined in relation to the maximum information we could
extract with our initial deployment. Formally, it means that equation (1) is
transformed into:

 (7)

The set {S(X0

k)}k=1…N is a set of vectors spanning the primary subspace, and any
reconstruction Ŝ(mi, x) is a linear combination of these vectors. Therefore, to evaluate
orthogonal projection in equation (5), we ultimately require only the inner products
between all sensor vectors. Again, as in (3), these inner products correspond to
covariances, which can be estimated as (assuming ergodicity in time):

 (8)

)()]()([)(),(* k
i

k
i

k
i RSSESS Xx,XxXx =⋅>=<

∫ −=
F

m xxmxm dSSE
F

DE ii
])),(ˆ),(ˆ[(

1
][2

0

∑
Θ

=

⋅⋅
−Θ

=≈
1

000000)()(
1

1
)(ˆ)(

q

l
q

k
q

lk
kl

lk SSRR XXX,XX,X

330 P. Liaskovits and C. Schurgers

These empirical covariances
klR̂ are calculated during the learning phase (see section

2), which requires process realizations from Θ time instants. When put in matrix
form,

klR̂ can be thought of as an empirical Grammian matrix for projection onto the

primary subspace. When estimating distortion in our subsequent algorithms, we will
similarly approximate equation (7) with a time average over W instants:

 (9)

4 Sensor Selection

In the Hilbert space framework, introduced in the previous section, each individual
sensor can be thought of as a vector in the primary subspace. Consequently, the
sensing topology management problem of selecting disjoint sets of sensors translates
into creating sets of vectors instead. The goal is to maximize the number of sets that
can be found (or equivalently, minimize the average number of vectors in each set),
while ensuring that each one can provide a sufficiently accurate reconstruction in
terms of expected distortion.

As a first step in tackling this problem, we consider a more basic variant, namely
that of finding just a single minimal set: Given an initial set of sensors, find the
minimal subset which yields an interpolated reconstruction that has an expected
distortion of at most D0.

Finding multiple sets, is a generalization of this problem and hence
computationally at least as hard. Furthermore, our algorithm will be built on a good
understanding of solutions for the single set selection problem.

The basic single-set problem is related to the issue of sparse signal approximation
with general dictionaries, which has been studied in signal processing literature. The
term ‘dictionary’ refers to a set of non-orthogonal vectors used for representation in a
Hilbert space, without necessarily forming a basis for that space. A known problem in
a V-dimensional Hilbert space is how to select the best vectors out of a redundant
dictionary of size P ≥ V to approximate an element of that Hilbert space. This requires
enumerating all possible subsets of vectors, an operation of which the cost is
exponential in P [13], [14]. In the case of a general dictionary, the resulting
computation is provably NP-hard [13].

In our scenario, the dimension of the primary subspace HX0 is at most N. The set of
N vectors that correspond to the initially deployed sensors {S(X0

k)}k=1…N is therefore
a redundant dictionary for this space. A dictionary of size N effectively means that the
computational cost for optimal sensor selection grows exponentially with the size of
the network N. For our particular case we have also proved a stronger result: that for
Poisson deployments, the vectors {S(X0

k)}k=1…N are linearly independent on the
average. Linear independence means that the dimension of HX0 is N, i.e. the dictionary
{S(X0

k)}k=1…N is also a basis for the space, rendering optimization over any redundant
dictionary for this space exponentially hard with the size of the network. More
specifically, we have proven the following lemma (proof can be found in a longer
journal version of this paper):

∫ ∑
=

−⋅=
F

m xxmxm dSS
WF

DE
W

q
qiqi

1

2
0)),(ˆ),(ˆ(

11
][ˆ

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 331

Lemma 1: For a deployment where the positions of the sensors form a Poisson point
process with constant rate β and the monitored random process S(x) is wide sense
stationary, vectors {S(X0

k)}k=1..N are linearly independent on the average.

Since the single-set problem is therefore hard, the same will hold for the extended
problem of finding multiple sets. As a result, we have to resort to heuristic algorithms
to perform the selection of multiple active sets of sensors. However, the Hilbert space
representation provides a powerful framework to build these heuristics, as will be
presented in the next subsection.

Finally, we remark that the methods that have been developed to solve the problem
of sparse signal approximation with general non-orthogonal dictionaries, such as
convex minimization of the

1
 norm or some variant of matching pursuit, are not

applicable to our single-set or multiple-set selection problem. The reason is that they
deal with approximating deterministic signals that are given beforehand rather than
random processes.

5.1 Greedy Algorithm

Based on the expressive power of the Hilbert space representation, we present a class
of greedy heuristics to tackle the problem of vector selection.

As an initial step towards identifying a minimal descriptive subset, we consider
first the set of all available vectors (sensors). Then, one vector at a time is removed
from this set, guided by a score function. It would be appealing to remove the vector
whose absence will ‘hurt’ us the least when trying to describe any element of the
primary subspace with the remaining vectors. Since, by definition, all elements of the
primary subspace are linear combinations of the initial set of vectors, intuitively, a
‘good’ vector to remove would be the one that can be best described by a linear
combination of the remaining vectors. A measure of this is readily given by equation
(5), where {ξk} are the remaining vectors and η is the candidate vector for removal.
The greedy removal thus selects the candidate vector η for which equation (5) is
minimized.

The basis of our algorithms is essentially quantifying ‘collinearity’ or
‘orthogonality’ between a given candidate vector and an existing set of vectors. This
can be done by means of equation (5): if for instance the projection error of a
candidate vector onto a set of existing vectors is maximal among all such vectors,
then we know that the descriptive power of the set will maximally grow if we add the
candidate to it.

The algorithm for finding multiple sets of sensors resulting in adequate
reconstruction (or, equivalently, multiple approximate bases for the primary subspace)
proceeds as follows. It is not known a priori how many sets can be possibly created.
Instead, we start creating the first set by selecting vectors until the distortion criterion
is met. Next, the second set will be selected from the remaining vectors, and so forth.
Consider, in general, a situation where we are in the process of creating the jth set. At
this point, the primary subspace can be considered as being partitioned in three
subspaces: (1) the space HU of vectors in sets 1 through j-1; (2) the space HA of
vectors already selected in set j; (3) the space HR of vectors not yet selected for any of
the sets.

332 P. Liaskovits and C. Schurgers

Our algorithm considers all candidate vectors η from those not yet belonging to any
set. Similar to the greedy removal explained above, for each one of them, it computes
the error by orthogonal projection in both of the spaces HA and HR (always excluding
the vector η):

 (10)

Based on these two metrics, the ‘score’ C(η) of the vector η is calculated as:

 (11)

The vector η with the maximum score amongst all candidates is then added to the

jth set. The parameter α (0 ≤ α ≤ 1) allows us to tweak the behavior of the algorithm.
Intuitively, the effect of α can be understood as follows:

• If α = 1: The vector is added that is ‘most orthogonal’ to vectors already in HA,
i.e. approximating it by vectors already in the set induces maximal error. This
maximally expands the span (i.e. the descriptive value) of the set.

• If α = 0: The vector is added that is maximally contracting HR, i.e. the
descriptive value of remaining vectors. It adds the vector that leaves the least
amount of information uncaptured.

As a result, the first term in (11), essentially controls how fast the descriptive value
of the current set of sensors grows in the primary subspace. On the other hand, the
second term partially compensates for situations where the first term favors sensors
that are too far apart in the field (and their vectors are likely to be nearly orthogonal),
by favoring sensors that also have good descriptive value for the rest of the field.

The detailed set selection algorithm is presented in Figure 3. The strength of this
algorithm is that it only utilizes covariance information between vectors instead of
over the entire field, through Hilbert space inner products. Note that when the
algorithm terminates, there may be some remaining sensors that were not assigned to
any active sets (since they could not form a set by themselves that satisfies the
distortion target). In this case, they are distributed in a round robin fashion among
existing sets in such a way that each set is assigned the sensor that maximally expands
it.

Our complete sensing topology management approach is built upon the greedy
algorithm of Figure 3. As explained in section 2, it consists of two phases:

1. During the learning phase, all sensors report their values for Θ time instants.
This allows us to calculate the empirical covariance matrix

klR̂ from (8). The set

selection algorithm of Figure 3 takes this matrix as input, and generates the
disjoint sets. It estimates distortion through (9) and bounds it by the given target
distortion objective D.

2

min)(∑ ⋅−=
κ

κξηη kA cE

2

min)(∑ ⋅−=
κ

κκ ζηη dER

}{ kA spanH ξ=

}{ kR spanH ζ=

)()1()()(ηαηαη RA EEC ⋅−+⋅=

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 333

2. During the monitoring phase, only one set is activated at a time. The actual
scheduling of the different sets can be periodic round robin or based on when
the current active set fails.

5 Evaluation

In order to explore the performance of our solution, we tested it on a wide range of
synthetic data. A purely simulated evaluation setting has the major advantage that it
gives us access to the ground truth, i.e. the spatial process itself. As a result, we can
evaluate distortion of interpolation-based reconstruction with a set of sensors as
compared to the actual monitored process. The spatial process was generated by

Fig. 3. Greedy set construction algorithm

1 Input: vectors
Nk

kS ...10)} =(X{ ,
knR̂ ,

WqqS ...10)},(ˆ{ =xm , D

2 Output: sets of vectors mi: ||...1)}
ik

k
iS m(X{ =

3 begin

4 m0 ← ∪
N

k

kS
1

0)(
=

X , i = 1

5 repeat
6 mi ← ∅
7 repeat
8 if (mi == ∅) select first available vector into mi
9 else
10 foreach candidate vector S(X)

11 k0 ← index of S(X) in ∪
N

k

kS
1

0)(
=

X

12 S(X*)←

))
ˆˆˆ

))ˆ((

ˆ()1(

)
ˆˆˆ

))ˆ((
ˆ((maxarg

0

0

0

0

00

0

0

0

00

i i

00

i

0

00
0

m m

2

m

2

m m

2

m

2

m)(

∑ ∑

∑

∑ ∑

∑

≠
∈

≠
∈

≠
∈

∈ ∈

∈

∈

⋅⋅
−⋅−+

⋅⋅
−⋅

kk
k

kn
n

knnkkk

kk
k

kk

kk

k n
knnkkk

k
kk

kk
XS

RRR

R

R

RRR

R

R

α

α

13 mi ← mi ∪ S(X*)
14 m0 ← m0 \ S(X*)
15 until (DDE ≤][ˆ

1m
)

16 i ← i + 1
17 until ((m0 == ∅) or (DDE >][ˆ

0m
))

18 end

334 P. Liaskovits and C. Schurgers

feeding zero mean uniform white noise into a sharp symmetric 2-D low-pass spatial
filter. This filter is chosen such that 2-D Nyquist sampling would require a grid of 100
sensors.

For our algorithm, we used a learning phase of Θ = 250 time instants. The
reconstruction performance of the final disjoint sets of sensors is evaluated against
250 additional process realizations. Note that these 250 test realizations are only
meant to evaluate reconstruction distortion and do not correspond to how many time
instants the network physically monitors for; this would normally be much larger. The
distortion estimation, given by equation (9), and used in line 15 of Figure 3, requires
averaging over W realizations. This is a computationally expensive operation which
must be repeated for each sensor added, and choosing W presents a tradeoff between
estimation performance and computation cost. We found that W = 50 presented a
good compromise.

Data interpolation was performed using a standard Delaunay triangulation
algorithm provided by Matlab. Interpolation thus achieved was not optimal, but
provided reasonable accuracy nonetheless, in the sense that omission of a small
number of sensors resulted in very small changes in distortion.

We considered a Poisson-based random deployment with N = 1000, 500 and 250
nodes. This allowed us to evaluate the impact of the level of initial over-deployment
on our algorithm. For each of the aforementioned values of N, the distortion target D
was set to 0.03 (this value was chosen so that the ratio of distortion versus spatial
variance of the process was approximately 0.5). Results are reported for α = 0.5.
Other values of α (e.g. α = 1) have also been investigated; in any case, performance
did not appear to depend strongly on the specific value chosen. Table 1 shows the
number of sets that where obtained for each of the three options in initial number of
sensors N.

N Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

1000 159 159 158 158 158 208

500 164 163 173 - - -

250 125 125 - - - -

As observed in Table 1, for a specific value of N the later sets (higher sequence
number) contain more sensors. This is expected as fewer candidate sensors remain at
this stage of the algorithm. Across different N, the number of sensors per set is
roughly similar, again as is expected, and a larger initial deployment results in more
equivalent sets that are found. However, we note that as N decreases initially (e.g.
from N = 1000 to N = 500), slightly more nodes are needed in each set. This can be
explained by the fact that with coarser initial sampling, fewer options are available. If
N decreases further (e.g. from N = 500 to N = 250), the set size is reduced, caused by
the fact that the primary subspace is a less accurate approximation of HS. In general,
the performance is better the higher the initial value of N, not only in terms of number
of sets, but also in terms of distortion (as will be seen in Figure 4).

Table 1. Sets devised by Algorithm 1

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 335

There is no existing solution to actually compare the performance of our algorithm
against. However, we have examined two reasonable alternate approaches, both based
on the algorithm of Figure 3, to serve as a basis for comparison:

1. Random selection: At each step of the algorithm, the sensor that is added to the
set is selected at random among all remaining ones. Stop when the distortion
criterion (line 15 of the algorithm) is satisfied.

2. Distance-based selection: At each step of the algorithm, add the sensor that is
furthest away from all sensors currently in the set.

The sets resulting from the random and distance-based selection are shown in
Table 2. The distance-based selection yielded fewer sets, with a distortion
performance similar or inferior to our algorithm, and is therefore not considered
further in this paper. The unsatisfactory performance is caused by the fact that a lot of
boundary sensors are chosen in the first set, resulting in more total number of sensors
in that set, while at the same time causing a shortage of them in later sets.

 Random Distance-based

N Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2

1000 214 204 214 184 184 600 400

500 170 170 160 - - 330 170

250 125 125 - - - 168 82

Random selection performed significantly better. However, for higher values of N
(i.e. N = 1000), it resulted in fewer sets than our proposed approach, see Table 2. This
would result in reduced system lifetime. On the other hand, for the cases in which it
selects the same number of sets (i.e. N = 500 and N =250), the actual distortion
performance is degraded, as will be shown in Figure 4. In addition, our algorithm is
generic in terms of the underlying spatial process, which can be non-stationary in
space. This is not the case for random selection (or distance-based selection), where
uniform spatial characteristics are essentially a best-case scenario.

Figure 4 shows the instantaneous distortion for one run, for each value of N both
for our algorithm and random selection. The sets were activated in a sequential
manner, as before, with vertical lines indicating points of switching between sets.
Realizations up to 50 correspond to the distortion during the learning phase, where all
sensors in the network are reporting. This is done to give an idea of the performance
of the initial deployment. For N = 250 this distortion is very close to the chosen target.
This essentially means that the primary subspace is a coarser approximation of the
true field, resulting in degraded correlation and distortion estimation performance.
This explained the reduced performance of the sets for N = 250 in Figure 4. For N =
500 and N = 1000 the lower initial distortion, however, can be traded off effectively
for multiple reporting sets.

We also notice in Figure 4 that, in general, the performance of sets with higher
sequence number, i.e. those selected in later stages of the algorithm, is slightly

Table 2. Sets devised by alternate heuristics

336 P. Liaskovits and C. Schurgers

degraded compared to the earlier sets. Since sets are selected sequentially, regions
may exist which are crucial for reconstruction and where earlier sets dominate,
because ‘they were there first’. An implicit assumption of our algorithm is that the
space defined by the yet-unselected sensors (i.e. HR) is adequate to accurately
describe the monitored phenomenon. In a network of finite size, this is not always the
case. By contrast, for the denser deployments N = 1000 and N = 500 this limitation is
largely alleviated for most sets, as Figure 4 shows. In practical applications, we could
therefore designate the first sets as ‘working sets’, while the later ones serve as
‘emergency sets’. Overall, the results shown in Figure 4 indicate that our algorithm
succeeds in finding good disjoint sets to meet a specified target distortion. By having
only one of them active at each point in time, desired sampling-interpolation
performance can still be achieved. In general, by using sets in a sequential activation,
the network can remain active for a longer duration of time.

Fig. 4. Instantaneous distortion for synthetic data

D D

D

test realizations test realizations

test realizations

N = 1000

Algorithm 1

N = 500

Algorithm 1

N = 250

Algorithm 1

N = 250

Random

D

D

test realizations test realizations

N = 500

Random

D

test realizations

N = 1000

Random

 Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks 337

6 Conclusion

In this paper, we have tackled the problem of sensing topology management for
applications where the user is interested in an interpolated reconstruction of a physical
process. In this case, the sensor network essentially behaves as a distributed sampling
system, where notions such as sensing range or k-coverage are meaningless. We have
proven that an optimal solution is a hard combinatorial problem, and presented an
efficient heuristic algorithm to devise disjoint sets of sensors. All these results were
obtained by mapping the network onto a Hilbert space representation. This powerful
technique transforms a problem dealing with random variables into that of a
deterministic vector space where relevant statistical information is captured in the
inner product. The Hilbert space representation also enables the application of other
important algebraic tools (e.g. sparse principal component analysis) to sensor
networks, and therefore might find applications beyond the scope of the specific
problem we have tackled in this paper.

References

1. Slijepcevic, S., Potkonjak, M.: Power Efficient Organization of Wireless Sensor Networks.
ICC (2001)

2. Cărbunar, B., Grama, A., Vitek, J., Cărbunar, O.: Coverage Preserving Redundancy
Elimination in Sensor Networks. SECON (2004)

3. Huang, C.-F., Tseng, Y.-C.: The Coverage Problem in a Wireless Sensor Network. WSNA
(2003)

4. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-Aware Wireless
MicroSensor Networks. IEEE Signal Processing Magazine (March 2002)

5. Koushanfar, F., Taft, N., Potkonjak, M.: Sleeping Coordination for Comprehensive
Sensing Using Isotonic Regression and Domatic Partitions. INFOCOM (2006)

6. Liaskovitis, P., Schurgers, C.: A Distortion-Aware Scheduling Approach for Wireless
Sensor Networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS
2006. LNCS, vol. 4026, Springer, Heidelberg (2006)

7. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated Coverage and
Connectivity Configuration in Wireless Sensor Networks. SenSys (2003)

8. Vuran, M.C., Akyildiz, I.F.: Spatial Correlation-based Collaborative Medium Access
Control in Wireless Sensor Networks. In: IEEE/ACM Transactions on Networking, (April
2006)

9. Perillo, M., Ignjatovic, Z., Heinzelman, W.: An Energy Conservation Method for Wireless
Sensor Networks Employing a Blue Noise Spatial Sampling Technique. IPSN (2004)

10. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed Regression: An
Efficient Framework for Modeling Sensor Network Data. IPSN (2004)

11. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near Optimal Sensor Placements:
Maximizing Information while Minimizing Communication Cost. IPSN (2006)

12. Cramer, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes: Sample
Function Properties and Their Applications. Wiley, Chichester (1967)

13. Davis, G., Mallat, S., Avellaneda, M.: Adaptive Greedy Approximations. Journal of
Constructive Approximation (1997)

14. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization. PNAS (2003)

A Fully Polynomial Approximation Algorithm

for Collaborative Relaying in Sensor Networks
Under Finite Rate Constraints�

Rajgopal Kannan1, Shuangqing Wei2, Vasu Chakravarthy3,
and Murali Rangaswamy4

1 Dept of CS, Louisiana State University, Baton Rouge, LA 70803
2 Department of ECE, Louisiana State University, Baton Rouge, LA 70803

3 Air Force Research Laboratories, Wright-Patterson AFB, Dayton, OH 45433
4 Air Force Research Laboratories, Hanscom AFB, MA 01731

www.csc.lsu.edu/∼rkannan, www.ece.lsu.edu/∼swei

Abstract. We take an algorithmic approach to a well-known commu-
nication channel problem and develop several algorithms for solving it.
Specifically, we develop power control algorithms for sensor networks
with collaborative relaying under bandwidth constraints, via quantiza-
tion of finite rate (bandwidth limited) feedback channels. We first con-
sider the power allocation problem under collaborative relaying where
the tradeoff between minimizing ones own energy expenditure and the
energy for relaying is considered under the constraints of packet out-
age probability and bandwidth constrained (finite rate) feedback. Then
we develop bandwidth constrained quantization algorithms (due to the
finite rate feedback) that seek the optimal way of quantizing channel
quality and power values in order to minimize the total average trans-
mission power and satisfy the given probability of outage. We develop two
kinds of quantization protocols and associated quantization algorithms.
For separate source-relay quantization, we reduce the problem to the
well-known k-median problem [1] on line graphs and show a a simple
O((KJ)2N) polynomial time algorithm, where log2 KJ is the quantiza-
tion bandwidth and N is the size of the discretized parameter space.
For joint quantization, we first develop a simple 2-factor approximation
of complexity O(KJN + N log N). Then, for ε > 0, we develop a fully
polynomial approximation scheme (FPAS) that approximates the opti-
mal quantization cost to within an 1 + ε-factor. The running time of the
FPAS is polynomial in 1/ε, size of the input N and also ln F , where F
is the maximum available transmit power.

1 Introduction

Energy efficiency is an important consideration in wireless sensor networks.
One technique for minimizing transmission energy in a cluster is collaborative
� This work was supported by NSF grants IIS-0329738, ITR-0312632 and by AFRL

under contract #F33615-02-D-1283 (sub #05-2D1005.001). The opinions expressed
herein are those of the individual authors and independent of the sponsoring agencies.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 338–353, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 339

relaying. Nodes can select partners to act as relays for forwarding their data
to the clusterhead or sink. Relaying exploits cooperative diversity, the fact that
sometimes the relay-clusterhead channel quality is significantly better than the
direct source-clusterhead. Thus if the relay is able to receive and decode the
source message, even if there are errors (packet outage) between the source and
clusterhead, the relay can correctly transmit the packet to the destination.

Cooperative diversities under relaying can be exploited to further improve
reliability and energy efficiency by using Channel State Information (CSI) [2,3].
Communication channel quality is estimated and fed-back to the nodes in order
to decide the metrics of relaying. The preceding cited works share a common
feature in that they assume a set of relay nodes is already selected and the
issue is to determine power allocations across all transmitting nodes without
considering data originating from relay nodes themselves. No consideration is
given toward the relay’s own needs other than its function as a relay.

In our model, we assume that source sensor and relay sensor both have their
own data to transmit to the clusterhead along with an individual quality of
service requirement, e.g. outage probability Pout as a good approximation for
frame error rate (FER). We do not consider partner selection protocols but
assume a relay has been apriori selected. Each node divides its entire energy
budget into two parts. One is for transmitting its own data, the other is devoted
to relaying information. As a partner relationship is established between two
nodes such that each of them helps the other forward/relay information, we are
interested in a fundamental energy tradeoff question: What power allocation
policy should be adopted by each node in order to minimize its own total energy
consumption while meeting the outage probability constraints and complying
with its obligation as a relay.

In [2,3], perfect CSI at each node is assumed available to the source and
relay nodes. However perfect CSI can only be available under the assumption
of unlimited feedback channel capacity in order for the receiver to transmit
back the measurements to its transmitter without any error. Adaptive signaling
under the finite rate feedback constraint has attracted considerable attentions
lately because of its more practical implications compared with the perfect CSI
assumption [4] (and references therein).

Not much work has been done yet for adaptive signaling schemes in sensor
networks with relay channels under the finite rate feedback constraint. In [5],
the power control problem is tackled for relay channels with finite rate feedback.
However, only amplify-and-forward relaying is considered, in which the issue of
availability of CSI for the source-relay link is relatively easier to address than
the decode-and-forward case. In addition, the majority of work in the literature
on finite rate feedback problems approach the resulting quantization problems
directly by finding out the optimal quantization regions of fading vectors, as well
as associated power allocation functions [4].

In this paper, we take an algorithmic approach to collaborative relaying under
finite rate feedback by using the technique of discretization of variables (in our
case channel fading coefficients). We first briefly present results obtained in [6]

340 R. Kannan et al.

where we optimize the total average power expenditure of both relay and source
nodes under the assumption that nodes have perfect CSI in a network of two
transmitting sensors and one clusterhead. Based on the power control strategies
developed in [6] for decode-and-forward relaying, we develop bandwidth con-
strained quantization algorithms (due to the finite rate feedback) that seek the
optimal way of quantizing channel quality and power values in order to minimize
the total average transmission power and satisfy the given probability of outage.

We develop two kinds of quantization protocols and associated quantization
algorithms. First we consider separate source and receiver quantization, where
the clusterhead splits its available quantization bandwidth for feedback, indepen-
dently between the source and relay node. We reduce this quantization problem
to the well-known k-median problem [1] on line graphs and show a a simple
O(NKJ(KJ + log N)) polynomial time algorithm, where log KJ is the quanti-
zation bandwidth and N is the size of the discretized parameter space. Then we
consider joint quantization. Here the base station can exploit the joint proba-
bility distributions of source and relay channels and power values and use the
entire quantization bandwidth to jointly feedback both the source and relay.
Unfortunately, the joint quantization problem is NP-hard by reduction from the
k-median problem, which has itself been a subject of study for several decades
(problem ND51 in [1]). Therefore, we develop a simple 2-factor approximation
of complexity O(N(KJ +log N)). Then, for ε > 0, we develop a fully polynomial
approximation scheme (FPAS) that approximates the optimal quantization cost
to within an 1 + ε-factor. The running time of the FPAS is polynomial in 1/ε,
size of the input N and also lnF , where F is the maximum available transmit
power.

The paper is organized as follows. We first present the system model in Sec-
tion 2. Power control strategies with perfect CSI are then provided in Section 3.
When finite rate feedback constraint is imposed, the independent and joint quan-
tization algorithms for source and relay nodes are given in the next two Sections.

2 System Model

To illustrate the major idea of power control across relay nodes, we first consider
a simple model in which there are two nodes N1 and N2 transmitting to a com-
mon receiver ND with help from each other. Narrow-band quasi-static fading
channel is assumed, where channel fading coefficients remain fixed during the
transmission of a whole packet, but are independent from node to node. The
complex channel coefficient hi,j captures the effects of both pathloss and the
quasi-static fading on transmissions from node Ni to node Nj , where i ∈ {1, 2},
and j ∈ {2, 1, D}. Statistically, hi,j are modeled as zero mean, mutually indepen-
dent proper complex Gaussian random variables with variances: E|hi,j |2 = 2σ2

i,j .
We first assume a non-causal system model in which amplitudes |hi,j | are avail-
able to all transmitters and receivers at the beginning of transmissions. In a
quasi-static fading channel, CSI can be obtained by exploiting training sequences
sent by transmitters.

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 341

Consider a time-division (TD) multiple access scheme in which an entire time
period is divided into 4 slots [7, Fig. 2]. A repetition coding-based decode-and-
forward strategy (R-DF)is assumed at Nj , j = 1, 2, where relay node transmits
the same codeword as what source sends if its decoding is successful. The co-
operative communication protocol can be described as follows: Based on the
available CSI, N1 can determine whether relaying from N2 is needed or not, as
explained in the power control algorithms below. If such collaboration is sought,
N1 transmits as a source to ND in the first slot and then in the second slot N2

forwards its decoded messages to the destination. If N2 is not asked for relaying,
N1 transmits in the first 2 slots of on its own. Over the last two slots, N1 and
N2 exchange their roles as a source and relay.

The mathematical characterization of the whole process is:

Y1,D[k] = h1,DS1[k] + W1,D[k], Y1,2[k] = h1,2S1[k] + W1,2[k]

for k ∈ [0, N/4]; and
Y2,R[k] = h2,DS̃1[k] + W2,R[k]

for k ∈ (N/4, N/2], if relay N2 is needed and decoding is successful. The figure N
is the total number of degrees of freedom available over the entire transmission
period, and Wi,j are independent complex white Gaussian noise with two-sided
power spectral density N0 = 1. For R-DF schemes, S̃j[k] are scaled versions
of the transmitted Gaussian codewords Sj [k]. Over the last two slots, similar
models can be set up for node 2 based on symmetry over k ∈ (N/2, N].

Given CSI on |hi,j |, transmission powers over various periods are denoted
as: E|S1[k]|2 = P1,D, k ∈ [0, N/4] and E|S̃1[k]|2 = P2,R, k ∈ (N/4, N/2] if
N2 is needed and decoding is successful; E|S1[k]|2 = P1,D, k ∈ [0, N/2] and
E|S̃1[k]|2 = 0, k ∈ [0, N/2], if N2 is not needed. Similarly, we define E|S2[k]|2 =
P2,D, k ∈ (N/2, 3

4N] and E|S̃2[k]|2 = P1,R, k ∈ (3
4N, N] if N1 is needed and

decoding is successful; E|S2[k]|2 = P2,D, k ∈ (N/2, N] and E|S̃2[k]|2 = 0, k ∈
(N/2, N] if N1 is not needed.

3 Total Energy Minimization for Collaborative Relaying
with Perfect CSI

Under the constraint that each sensor node has an outage probability no greater
than Pj,out, i.e. Pr [Ij < Rj] ≤ Pj,out, where Ij is the mutual information of
the overall link for transmitting node j ∈ {1, 2}’s information, our objective is
to investigate power control policies under which the total energy of these two
nodes is minimized in a complete collaborative manner. This Collaborative
Relaying problem can be formulated as below:

min
2∑

j=1

E [Pj,D + Pj,R] , subject to Pr [Ik < Rk] ≤ Pk,out, for k = 1, 2. (1)

342 R. Kannan et al.

Under the collaborative relaying approach, the optimal power allocation pol-
icy [Pi,D, Pj,R] to solving problem (1) can be characterized by the following
Theorem [6].

Theorem 1. The optimal power allocation vector [Pi,D, Pj,R] depends on chan-
nel strength ratios captured by |hi,D|/|hj,D| and |hi,D|/|hi,j| for i �= j and
i, j ∈ {1, 2}. The resulting solutions are:

Pi,D = P̂i,D, Pj,R = P̂j,R if hi,j are in the set

Ai =
�

|hi,j | :
|hi,D|2
|hi,j |2

<
2

2Ri + 1
and

|hi,D|2
|hi,j |2

+
|hi,D|2
|hj,D|2

�
1 − |hi,D|2

|hi,j |2

�
≤ 2

2Ri + 1

�
(2)

and P̂i,D + P̂j,R ≤ s∗i . Otherwise if hi,j ∈ Ac
i , the complimentary set of Ai,

and 2P̃i,D ≤ s∗i , the solution is Pi,D = P̃i,D, Pj,R = 0. For all other cases,
transmission powers are all set to zero Pi,D = Pj,R = 0. Transmission power
functions are defined as follows:

P̃i,D
Δ
= (2Ri − 1)(|hi,D|2), P̂i,D

Δ
= (22Ri − 1)(|hi,j |2), P̂i,R

Δ
=

22Rj − 1

|hi,D|2

�
1 − |hj,D|2

|hj,i|2

�
.

(3)

The thresholds s∗i , i = 1, 2 are determined by solving the following equations to
meet outage probability constraints:

1 − Pi,out = Pr
{

2P̃i,D < s∗i , for
(

|hi,D|2
|hi,j |2

,
|hi,D|2
|hj,D|2

)

∈ Ac
i

}

+Pr
{

P̂i,D + P̂j,R < s∗i , for
(

|hi,D|2
|hi,j |2

,
|hi,D|2
|hj,D|2

)

∈ Ai

}

.

4 Optimal Quantization for Optimal Collaborative
Relaying

In the previous section, we assumed the availability of perfect CSI at each sensor
node in order to develop an optimal power control algorithm for collaborative
relaying. However, in reality, perfect CSI is not possible since bandwidth lim-
itations prevent the full exchange of precise channel information between the
source, relay and base-station1. This motivates the idea of developing power con-
trol algorithms for sensor networks with relaying under bandwidth constraints,
specifically via quantization of finite rate (bandwidth limited) feedback channels.

In this paper, we develop optimal quantization algorithms for optimal sensor
relaying by selecting appropriate quantization parameters and quantized values.
1 Imperfect CSI can also arise due to measurement errors and the time lag between

channel state measurements and actual transmission. In this paper, we do not con-
sider measurement errors and also assume slowly time-varying channel parameters.

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 343

Quantized information received at the source and relay nodes is then mapped
to corresponding transmit powers. The overall objective of the quantization al-
gorithm is to minimize the expected sum of source and relay transmit powers,
as in the previous section. For the quantization algorithms, we need to consider
the power consumed by source and relay to satisfy the outage probability of
the source only during the first two mini-slots (the first half of the collabora-
tive relaying process). The algorithm can then be separately applied to develop
quantization for the source-relay pairs during the second half of the collaborative
process (when source and relay switch roles).

4.1 Quantization Protocol

The proposed quantization algorithms are associated with a specific protocol
for exchanging quantized information between the participants. We describe our
protocol below. Quantized information is exchanged between the participants in
four sequential steps as follows: In the first step, prior to data transmission, the
source node broadcasts a training sequence to the base station as well as the
relay. The clusterhead/basestation uses the training sequence to determine h1,D

while the relay node simultaneously determines h1,2. In the second step, the relay
node broadcasts another training sequence along with the quantized value of
measured h1,2 using the quantization algorithm QRB (described subsequently)
to the clusterhead and the source. This is used by the clusterhead to determine
h2,D. At this point, the clusterhead has perfect h1,D and h2,D measurements
and quantized h1,2, while the relay and source have measured and quantized
h1,2 values, respectively. Next, in the third step of the quantization protocol,
using either joint or separate quantization algorithms (described subsequently)
the station broadcasts quantized values to the source and relay. This value is
sufficient for the source and relay to determine their respective transmit power
levels for data transmission and relaying.

All algorithms can be implemented at all three nodes, so each node is aware
of the mapping from quantization to power levels without separate information.
Also each node is aware of the mapping for the other nodes. We also note as
a characteristic of the algorithms that power values are not quantized through
rounding, rather a set of feasible transmit power values is derived and there is a
mapping from channel space to this power space.

4.2 Preliminaries

We develop the proposed quantization algorithms by discretizing the parameter
space. For notational simplicity, let h denote any of the channel fading param-
eters h1,2, h1,D and h2,D. Let γ > 0 be an (arbitrary) discretization unit such
that the range of each h is divided into M discrete and contiguous intervals
Ij = [hj , hj+1), where hj = jγ and j = 0, 1, . . .M − 1. Each interval is of length
γ, except the last interval [hM−1, ∞), which extends to infinity. The channel
fading variables h are exponentially distributed and hence we can choose as a
design parameter a maximum value, after which h is very small.

344 R. Kannan et al.

First, assume that the range of the source-relay fading coefficient is restricted,
i.e., it is known that h1,2 ∈ [ha, hb), where ha = kγ, hb = lγ, l > k. Now
consider the discretized {h1,D, h2,D} space as divided into N = M2 blocks each
of dimension γ × γ. Let bu,t denote the (u, t)th block in this space and let Hu,t

be the apriori probability that the h1,D, h2,D channel fading coefficients fall into
bu,t where Hu,t = Pr.{uγ ≤ h1,D < (u + 1)γ} · Pr.{tγ ≤ h2,D < (t + 1)γ}.

Also let Pu,t = (P s
u,t, P

r
u,t) denote the minimum (source,relay) transmit power

vector such that data can be collaboratively transmitted without outage if chan-
nel quality falls anywhere within block bj. We define,

(
P s

u,t = max{P1,D}, P r
u,t = max{P2,D}

)
∀(h1,D, h2,D) ∈ bu,t, ∀h1,2 ∈ [ha, hb)

(4)
where P1,D and P2,D are obtained using Theorem 1. Note that P s

u,t = 0 (P r
u,t = 0,

resp.) if the block is one of those for which we require outage (non-cooperation
from the relay, resp.) i.e the channel configuration corresponding to the given
block falls under the threshold s∗1 (s∗2, resp.). Hu,t and Pu,t can be obtained in
O(1) time for each block bu,t.

Consider the N blocks in the discretized h1,D, h2,D space. We state that a
block bi,j s-covers (r-covers, resp.) block bk,l if P s

i,j ≥ P s
k,l (P r

i,j ≥ P r
k,l, resp.).

Consider a block that is s-covered as well as r-covered. If the source transmits
at the source power of the s-covering block and the relay transmits at the relay
power of the r-covering block, then we are guaranteed there will be no outage if
the realized (actual) channel fading coefficients happen to fall within the covered
block. Note that if the source and relay powers of a block are both zero, then
we want the block to be in outage and there is no need to cover the block.

5 QBS and QBR: Independent Basestation-Source and
Basestation-Relay Quantization Algorithms

We assume the total downlink quantization bandwidth (from clusterhead to
source and relay) is kJ , i.e. the clusterhead has kJ bits available to transmit
the results of quantizations QBS and QBR to the source and relay. Under in-
dependent quantization, the clusterhead, after measuring the exact h1,D, h2,D

values, transmits independent quantization information to the source and relay,
such that the realized block (under measured h values) will be s-covered by the
corresponding source power and and r-covered by the corresponding relay power.

Let ks and kr denote the choices for separate quantization bandwidths to
source and relay respectively, where ks + kr = kJ . Let KJ = 2kJ , Ks = 2ks and
Kr = 2kr .

The cost of the optimal independent quantization scheme OptIQ is given by

CostOptIQ = min
ks+kr=kJ

(QBS(ks) + QBR(kr)) (5)

We show that optimal independent quantization algorithms can be obtained
through simple reductions from the k-median problem, whose running time is

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 345

polynomial in the discretization parameter N . As we show below, the running
time of QBS(ks) and QBR(kr) are O(NKs + N log N) and O(NKr + N log N)
respectively. Thus from Eq.5, the cost of the optimal independent quantization
algorithm is O(NKJ(KJ + log N)). We describe QBS(ks) and QBR(kr) below.

5.1 Algorithm QBS(ks)

First, QRB quantizes h1,2 and this encoded value is sent to the base station,
which must implement either joint or separate quantization. Thus the quantiza-
tion of the {h1,D, h2,D} space is conditioned on the received quantized value
of h1,2, i.e. for every code of h1,2, there is a particular quantization in the
{h1,D, h2,D} space. This quantization must be designed to minimize the source
and relay power consumption. Since the optimal result also depends on the
quantization of h1,2, we must find the optimal quantization of h1,2 for which
the optimal quantization of the {h1,D, h2,D} gives the minimal power consump-
tion. QRB achieves this optimal recursive quantization as described in the last
section.

Let Ks = 2ks , i.e. the {h1,D, h2,D} space must be encoded by the clusterhead
into Ks levels, given the restricted h1,2 space. The objective of algorithm QBS is
to find a set Fs of Ks blocks (equivalently Ks power levels) such that all blocks
are s-covered and the expected transmission power of the source required to sat-
isfy the outage probability over the entire {h1,D, h2,D} space and restricted h1,2

channel space is minimized. QBS can be expressed as the following minimization
problem:

QBS : argmin
Fs

{
∑

u,t

Hu,t min
bi,j∈Fs|bi,js−coversbu,t

P s
i,j} (6)

We can now relate QBS to the k-median problem. The general k-median
problem on a graph G can be formulated as finding the optimal set F of vertices
(medians) that satisfies

kcostG = argmin
F

{
∑

u∈G

wu min
v∈F

duv} (7)

where |F | ≤ k, wu is the weight of vertex u and duv is the minimum distance
between u, v in G. While the k-median problem is known to be NP-hard in the
general case, (ref. problem ND51 in [1]), it is solvable in polynomial time for
trees [8,9,10] and lines (paths) [11,12,13,14]. In this case, QBS can be easily
reduced to an instance of k-median on paths by using the fact that the s-cover
relationship is transitive.

The reduction is as follows: Sort the N blocks in non-decreasing order of source
power P s

u,t. Construct the directed path G∗ whose vertices are the elements
of the sorted list in order. The directed edge cost between adjacent vertices
vi = bu,t and vi+1 = bk,l is set to ci,i+1 = P s

k,l −P s
u,t while vertex vi is assigned a

weight wvi = Hu,t. After running the k-median algorithm on G∗ (with k = Ks),
the source power values of the k selected median nodes are mapped to the Ks

quantization levels under QBS i.e the qth quantization level corresponds to the

346 R. Kannan et al.

power value of the qth vertex in the k-median solution. Since QBS is implemented
at both the source and clusterhead, the power-level to quantization mapping is
apriori available to the source and it can transmit at the appropriate level when
the the quantized level is fed-back by the clusterhead.

The cost of quantization algorithm QBS is obtained as:

costQBS = kcostG∗ +
∑

u,t

Hu,tP
s
u,t (8)

Since s-cover is transitive, the block represented by each vertex in G∗, s-covers
all the blocks represented by vertices to its left. If vi is selected to be one of the
k-medians, then its contribution towards being a median for vj is (P s

i − P s
j)Hj

while its contribution to being an s-cover for vj is P s
i Hj . For any set of k-medians

from G∗, the difference in cost from QBS is the constant
∑

j P s
j Hj and thus there

is a one-to-one correspondence between the optimal solution to k-median on G∗

and the optimal quantization QBS. Thus we have,

Theorem 2. QBS is an optimal quantization of the source channel.

We note that k-median on a path can be implemented in O(kn) time [8] Hence
the time complexity of QBS is O(NKs + N log N). A slightly weaker O(KsN

2)
algorithm for QBS, based on dynamic programming, is presented in [15].

5.2 Algorithm QBR(kr)

Algorithm QBR(kr) is identical to QBS(ks) with s-cover replaced by r-cover
and all P s values replaced by P r.

6 Joint Source/Relay Quantization

We now consider the case when the clusterhead devotes the entire downlink
quantization bandwidth to jointly quantize the source and relay transmit pow-
ers. Intuitively, this approach should prove more efficient in terms of total power
minimization as the clusterhead can consider quantization over the joint proba-
bility distribution of transmit powers and channel fadings, as opposed to treating
them independently. Unfortunately the related optimization problem is no longer
polynomial. It can be shown that joint quantization is NP-hard by reduction from
the general k-median problem. Therefore we consider bounded approximations.

The k-median problem has been the subject of study for several decades.
There has been much work on developing efficient heuristics and approximation
algorithms [16,8], particularly on trees and line graphs, as cited earlier. For some
more general cases, a constant factor approximation was presented in [16] for
graphs with a Euclidean distance metric (a 6-factor approximation). Here, we
first present a simple 2-factor approximation that exploits the much simpler
structure of joint quantization (as opposed to general k-median) and is easy
to implement. Then we develop a (1 + ε)-FPAS for joint quantization that can
approximate the quantized total power to within an arbitrarily close ε factor.

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 347

For both algorithms, we assume that the total downlink bandwidth for joint
quantization is kJ , with KJ = 2kJ . As before, the relay first transmits a quan-
tized value corresponding to a range of h1,2. Thus both algorithms quantize the
{h1,D, h2,D} space into KJ values, given the restricted h1,2 space. Each quan-
tized value corresponds to a (source,relay) power level pair. After measuring
channel quality, the clusterhead broadcasts the corresponding quantized value
to the source and relay nodes. Subsequent data transmission is accomplished
using the corresponding source and relay power levels. Note that the nodes are
each aware of the others power requirements since the algorithm is implemented
at both nodes. This is necessary since if the relay power is 0 (no relaying), the
source can transmit at the required level during both slots.

6.1 2-Factor Approximation for Joint Quantization

Consider an arbitrary block bu,t. For notational simplicity, we drop the dual
subscripts u, t and use bj to denote the block. The minimum total power required
to transmit this block without outage is given by Pj = P s

j + P r
j . Hj denotes the

source-clusterhead and relay-clusterhead channel fading coefficient probability
of bj. We use P and H to denote this set of minimum total powers (per block)
and channel fading probabilities over all blocks.

QJ1, the 2-approximation algorithm for joint quantization of source and relay
powers is defined as follows: For each block bj , replace (P s

j , P r
j) with (P s′

j , P r′

j) =
(max(P s

j , P r
j), max(P s

j , P r
j)). Let P ′j = P s′

j + P r′

j and sort the blocks in non-
decreasing order of P ′j . Construct the line graph G∗(P ′) on the vertices corre-
sponding to this sorted list, similar to algorithm QBS, and run the k-median
algorithm (with k = KJ) on G∗. Let FJ (with |FJ | = KJ) denote the subset
of blocks corresponding to vertices returned by the k-median algorithm. Each
block in FJ corresponds to a quantization level q, 0 ≤ q ≤ KJ − 1. The cor-
responding source and relay transmit powers are max(P s

i , P r
i), where bi is the

block corresponding to quantization level q. In this case, the source and relay
transmit powers are identical, thus they will transmit at the same power when
a given quantization level is fedback from the clusterhead.

Theorem 3. QJ1 is a 2-approximation to the optimal joint quantization algo-
rithm.

Proof. Let costQJ∗ denote the cost of the optimal joint quantization algorithm
for the given set of blocks. QJ∗ finds a subset of KJ blocks such that all N
blocks in the set are s- as well as r-covered by the source and relay power
values represented by these KJ blocks and the average total power of the blocks
minimally meets the outage probability requirements. Let costG∗(P) denote the
cost of the optimal k-median algorithm (with k = KJ) on directed line graph
G∗ using power values P and constructed as in the previous section.

We first note that costQJ∗ ≥ kcostG∗(P) +
∑

j HjPj . Clearly, equality is met
when P r

j = 0 for all blocks. Further, every solution to QJ∗ is a solution to k-
median on G∗(P). If bj was a selected block in QJ∗, then Pj > Pi for all blocks

348 R. Kannan et al.

bi that are simultaneously s-covered and r- covered by bj. Thus in G∗(P), vertex
vj would be to the right of all such vertices vi. vj can therefore be a median for
these vertices. However the converse is not true and G∗(P) need not correspond
to a feasible quantization. The block corresponding to a median in G∗ need not
be a solution to QJ∗, since Pj > Pi does not imply that bj can simultaneously
s-cover and r-cover bi. Hence costQJ∗ is larger than the right hand side in these
cases.

Let costP denote the sum kcostG∗(P) +
∑

j HjPj for any set of powers P .
Now consider the system of blocks with (P s

j , P r
j) replaced with (P s′′

j , P r′′

j) =
(
P s

j + P r
j , P s

j + P r
j

)
. Let P ′′j = P s′′

j + P r′′

j i.e P ′′j = 2Pj . Clearly, costP” =
2costP ≤ 2costQJ∗ , from the discussion above. Note that every solution to k-
median on G∗(P ′′) can be converted to a lower cost feasible solution for k-median
on G∗(P ′) since P ′′j ≥ P ′j for all blocks bj . Thus costP ′ ≤ costP ′′ . Putting the
two observations together, we get costP ′ ≤ 2costQJ∗ and hence QJ1 is a 2-
approximation.

6.2 Fully Polynomial Approximation Scheme

For the (1 + ε)-FPAS (labeled QJ2), we transform the problem from the
(h1,D, h2,D) channel space to a covering problem in the 2-dimensional power
space as follows: Each block bt in the (h1,D, h2,D) channel space is character-
ized by the vector (P s

t , P r
t) in the power space, 1 ≤ t ≤ N . Let P s = {P s

t }t

and P r = {P r
t }t represent the set of source and relay powers. Without loss of

generality, we assume that |P s| = |P r| = N . We construct an N × N grid of
cells C = (P s × P r), where cell cij represents source power P s

i ∈ P s and relay
power P r

j ∈ P r, 1 ≤ i, j ≤ N . As before, the total power of cij is represented by
Pij = P s

i +P r
j while Hij denotes the channel probability of cij , where Hij = Hk if

cij corresponds to some block bk, 1 ≤ k ≤ N . Note that cij need not correspond
to an actual block and in this case Hij = 0.

We define s- and r-covering as before. For this problem we are interested
only in joint s- and r-covering. The cells jointly covered by cij are defined by the
rectangle with left bottom endpoint at the origin and top right corner at (P s

i , P r
j).

However for the algorithm, we prefer to express the joint covering relationship
as a directed graph G with 2N − 1 levels numbered from 2 to 2N . Level 2N
consists of only one node cNN with incoming edges from parents cN−1,N and
cN,N−1 in level 2N−2. In general, node cij is located in level i + j and has two
outgoing edges to its two children in level i + j + 1 (ci+1,j and ci,j+1) and two
incoming edges from its two children in level i + j − 1 (ci−1,j and ci,j−1). The
nodes in level i + j are listed left to right in the order c1,i+j−1, . . . , ci+j−1,1.

We use Hij to represent the cumulative channel probability of all cells that
are jointly covered by cij , where Hij =

∑i
k=1

∑j
l=1 Hkl. Henceforth, we drop the

dual subscript and use vt to refer a generic node cij in G. We will also slightly
abuse the notation and let Ha denote the set of nodes covered by a as well as
the cumulative channel probability of these nodes. Thus for example, Ha\Hb

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 349

denotes the nodes covered by a and not b as well as the cumulative value of their
channel probabilities.

It can be seen that solving the k-median problem on directed graph G will
also lead to a solution to the joint quantization problem. Recent results show
that k-median can be solved in polynomial time on a directed tree [10]. However
G is not a directed tree (removing the directions on edges leads to cycles) and
this result cannot be applied. Instead we are able to develop an FPAS for this
problem.

Let r-set Lr = (v1, v2, . . . , vr) denote an ordered list of r nodes from G. The
nodes in an r-set are ordered by increasing levels. For nodes in the same level,
we impose a left to right ordering. Note that the ordering ensures P1 ≤ P2 ≤
. . . ≤ Pr. Let QC(Lr) denote the quantization cost if all nodes from Lr (and
only Lr) were chosen to represent quantization power levels. The total power
required for transmitting each cell in the (h1,D, h2,D) space is the power level of
its nearest ancestor in G belonging to Lr. Thus we have

QC(Lr) =
r∑

i=1

Pi

(

Hi\
(

i−1⋃

k=1

Hk

))

(9)

Define H(Lr) =
⋃r

k=1 Hk. H(Lr) represents the cumulative channel proba-
bility of nodes covered by Lr. Let ST

r = {L1
r, L

2
r, . . . , L

T
r } denote an ordered list

of T distinct r-sets arranged in non-decreasing order of cost QC(Li
r), 1 ≤ i ≤ T .

Each r-set represents a potential sub-solution (with r levels) to the overall KJ

level quantization problem. However, we would like to reduce the number of
potential sub-solutions without losing essential information. Thus we prune the
list by retaining only those potential solutions with a specific channel quality
property.

Let δ > 0 be an arbitrary parameter. The operation Pruner,δ(ST
r) returns the

reduced list S
n(r)
r of size n(r) and is defined as follows:

Algorithm Pruner,δ(Sk
r)

1. Initialize i ←− 1, j ←− 1, S
n(r)
r ←− φ.

2. tempH ←− H(Li
r).

3. While (QC(Lj
r) ≤ (1 + δ)QC(Li

r)) and (j ≤ k)
if (H(Lj

r) ≥ tempH)
{tempH ←− H(Lj

r); x ←− j; j + +}
Endif
Endwhile

4. S ←− S
⋃

Lx
r .

5. While (QC(Lj
r) ≤ (1 + δ)QC(Lx

r)) and (H(Lj
r) ≤ H(Lx

r)) {j ++}
6. i ←− j. If j ≤ k Go to Step 2.

Lemma 1. For every Lj
r ∈ ST

r , there exists an Lx
r ∈ S

n(r)
r , such that either (

QC(Lj
r)/(1 + δ) ≤ QC(Lx

r) or (1 + δ)QC(Lj
r) ≥ QC(Lx

r)) and H(Lx
r) > H(Lj

r).

350 R. Kannan et al.

Proof. Step 3 ensures that a representative Lx
r is found that has the highest H

among all Lj
r’s with j ≤ x and QC(Lx

r) ≤ (1 + δ)QC(Lj
r). Once Lx

r is found,
step 5 ensures that we keep eliminating all Lj

r’s within a δ-neighborhood of Lx
r

that have smaller H values, i.e QC(Lj
r) ≤ (1 + δ)QC(Lx

r) and H(Lj
r) ≤ H(Lx

r).

Lemma 1 indicates a key requirement for the overall algorithm. By selecting the
particular r-set with maximum H within each δ-neighborhood, we are minimiz-
ing the future cost of covering similar costing r-sets while potentially paying a
factor of (1 + δ) extra current cost.

We now define the key iterative step to be used in algorithm QJ2. Consider an
arbitrary r-set Lr = (v1, v2, . . . , vr). Let vr correspond to actual node uj ∈ G. We
define the operation Creater+1 that creates new r+1 sets from Lr by considering
Lr

⋃
uk, ∀k, k = j + 1, j +2 New nodes are considered in increasing order as

per our ordering convention. Thus the last node to be considered corresponds to
cell cNN . let R = N2, the size of graph G. Then for each Lr, we create R − j
new r + 1 sets.

QC(Lr+1) can be calculated in O(R) time as follows: Assume all nodes covered
by Lr are marked. Then Huk

\HLr can be calculated and marked by breadth-first
traversal of G starting from uk in the reverse direction of arrows.

Finally, QC(LKJ) is created by adding to each list in QC(LKJ−1) the lowest
possible node in G such that all nodes are covered.

Algorithm QJ2 is now defined below. We assume some arbitrary node ui as
the first member of the KJ quantization and proceed as follows:

Algorithm QJ2(ui, ε)

1. L1
1 ←− (ui), S1

1 ←− (L1
1), n(1) ←− 1, δ ←− ε

2KJ
.

2. For r = 1 to KJ − 1
(a) ST

r+1 ←− Creater+1(S
n(r)
r) ;

(b) Sort ST
r+1 by Quantization Costs QC(Li

r+1)’s ;
(c) S

n(r+1)
r+1 ←− Pruner+1,δ(ST

r+1) ;
3. Cost(QJ2)←− QC(L1

KJ
). Return L1

KJ
.

The minimum cost algorithm is given by QJ2 = mini QJ2(ui). We now analyze
the complexity and correctness of QJ2.

Theorem 4. For 0 < ε < 1, QJ2(ε) is a FPAS for the joint quantization prob-
lem.

Proof. We need to show that (a) the solution returned is within a factor of 1+ ε
of the optimal solution and (b) the running time is polynomial in 1/ε.

For the first part, we have to show that our policy of selecting the r-set with
the largest H within a δ-neighborhood is not suboptimal, i.e it does not create
solutions with a cost that exceeds a 1+ ε factor of the optimal solution. Assume
some Lq

r−1 is optimal for the inductive hypothesis. Some L1
1 is certainly optimal

as we run R instances of the algorithm starting at each node. Let Lx
r be the

r-set chosen during the rth stage of pruning and let Ly
r be the optimal choice in

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 351

the same δ-neighborhood, which was not chosen because of Lx
r . Let vx and vy

be the two nodes that created the respective r-sets from Lq
r−1.

Let A = Hvx\HLq
r−1

and B = Hvy\HLq
r−1

be the marginal H contributions of
the nodes. APx and BPy are the marginal costs of adding vx and vy respectively
to Lq

r−1. Also let A1 = A
⋃

HLq
r−1

and B1 = B
⋃

HLq
r−1

Since Lx
r was chosen over Ly

r , we know from lemma 1 that A1 ≥ B1 and also
APx ≤ (1 + δ)BPy. Now let ut be a node that is added during step r + 1. We
consider two cases:

First, let ut be the terminal node, i.e after ut all nodes in G are covered. The
cost of Lx

r

⋃
ut and Ly

r

⋃
ut are given by

C1 = QC(Lq
r−1) + APx + Pt(Ht\A1) (10)

C2 = QC(Lq
r−1) + BPy + Pt(Ht\B1), (11)

respectively. ¿From the above observations on A, B, A1, B1, we have Ht\A1 ≤
Ht\B1 and thus C1 ≤ (1 + δ)C2 < (1 + ε)C2 since δ = ε/2KJ .

Suppose ut is a non-terminal node. We argue that there always exists another
vertex uw to be added in future whose cost will be within a 1 + ε factor by
going with Lx

r instead of Ly
r . Suppose now Ht\A > Ht\B even though A > B.

Thus ut has a larger overlap with B. Clearly the Quantization Cost of Ly
r

⋃
ut

can be unboundedly smaller than the cost of Lx
r

⋃
ut. Now consider another

additional node uw that is added later than ut such that A and B are both
covered. uw exists since ut is non-terminal and A and B have to be covered
before the algorithm terminates. By definition, Pw ≥ Pt. Consider the costs of
Lx

r

⋃
ut

⋃
uw and Ly

r

⋃
ut

⋃
uw given by

C1 = QC(Lq
r−1) + APx + Pt(Ht\A1) + Pw(Hw\(Ht

⋃
A1)) (12)

C2 = QC(Lq
r−1) + BPy + Pt(Ht\B1) + Pw(Hw\(Ht

⋃
B1)), (13)

respectively. Now using the fact that Pw ≥ Pt and A1 ≥ B1, we can see that
again C1 ≤ (1+δ)C2 < (1+ ε)C2 as desired. Hence we have shown that choosing
the Lx

r representative as defined in the algorithm is not suboptimal by larger
than a 1 + δ factor at each stage.

Since at each stage we are no more than a 1+ δ factor from the optimal, after
KJ stages, we will be within a factor

(1 + δ)KJ = (1 +
ε

2KJ
)KJ ≤ (1 + ε) (14)

For the second part, we need to show that the running time is polynomial in
1/ε. Algorithm Prune takes clearly takes time O(T) assuming all costs and H
values are known. Let F = QC(LT

r), i.e F is the maximum quantization cost in
ST

r . Note that F ≤ Pmax, the maximum allowed transmission power for source
and relay. This is usually imposed as a practical limitation. Now the size n(r)
of the pruned list can be determined as follows: Let S

n(r)
r = {L1

r, . . . , L
n(r)
r }.

352 R. Kannan et al.

By lemma 1, we have QC(Li
r) > (1 + δ)QC(Li−1

r and H(Li
r) > H(Li−1

r . Since
successive elements in S

n(r)
r differ by at least a (1 + δ) factor, we get

n(r) ≤ 2 + log1+δ F = 2 +
ln F

ln 1 + δ
≤ 2+

2 lnF

δ
= O(

KJ ln F

ε
) (15)

The time complexity of QJ2(ε) can now be determined as follows. The
Creater+1 operation of step 2 takes O(|n(r)|R2) = O(KJ ln FR2/ε) time since
O(R) nodes are separately added to each existing list and each addition takes
O(R). The size T of the new r + 1-list ST

r+1 is O(|n(r)|R) and so sorting takes
O(|n(r)|R log(|n(r)|R)) time. Finally, the pruning operation takes O(|n(r)|R)
time. Hence the overall complexity is dominated by the first step which is
O(KJ ln FR2/ε). Since the algorithm is called O(R) times (one for each ui),
the total complexity is O(KJ ln FR3/ε) which is polynomial in 1/ε, KJ and F .

7 Relay to Clusterhead Quantization Algorithm QRB

Finally, we describe the Quantization between relay and base station. Let kb be
the relay to clusterhead quantization bandwidth and Kb = 2kb . If the clusterhead
is a more powerful node than an ordinary sensory, then Kb << {Ks, Kr}. Let
QRB(k, tγ) represent the optimal cost of quantizing the range of h1,2 represented
by 0 < h1,2 < tγ into k levels, 1 ≤ t ≤ M . In the case of independent clusterhead
to source/relay quantization, QRB can be specified by the following dynamic
program.

QRBk,tγ = min
1≤r<t

{QRBk−1,rγ + OptIQrγ,tγ
KJ

} (16)

where the second term is a call to the independent quantization algorithm with
restricted h1,2 and total bandwidth parameters as described. The boundary con-
ditions are evaluated at QRB1,tγ1 for 1 ≤ t ≤ N1, using the recursive calls and
the fact that QRB0,tγ1 = 0. QRB is calculated in a bottom-up manner with
increasing t and k.

8 Conclusions

In this paper, we address the problem of developing power control algorithms
for sensor networks with collaborative relaying under bandwidth constraints,
via quantization of finite rate feedback channels. We develop a system model
using channel fading parameters as the metric and are able to develop power
control policies that minimize aggregate source and relay power. Perfect Channel
State Information is not available due to bandwidth constraints and thus we
focused on developing quantization algorithms. We develop two quantization
protocols: independent quantization and joint quantization of source and relay
channels by the clusterhead. Our proposed quantization problem is related to the
k-median problem. Independent quantization can be reduced to k-median on line
graphs and hence easily solved in polynomial time. However joint quantization

A Fully Polynomial Approximation Algorithm for Collaborative Relaying 353

is NP-hard and therefore we are forced to develop approximations. We show an
easy to implement 2-factor approximation and then develop a Fully Polynomial
Approximation Scheme that can approach the optimal to within a (1+ ε) factor.
In future work, we will work on further simplification of the FPAS.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

2. Lin, Z., Erkip, E., Stefanov, A.: Cooperative regions and partner choice in coded
cooperative systems. IEEE Transactions on Communications 4(54), 760 (2006)

3. Nosratinia, A., Hunter, T.E.: Grouping and partnership selection in cooperative
wireless networks. IEEE J. Select. Areas Commun. 25(2), 1–10 (2007)

4. Love, D.J.L., Heath Jr, R.W., Strohmer, T.: Grassmannian beamforming for
multiple-input multiple-output wireless systems. IEEE Trans. Inform. The-
ory 49(10), 2735–2747 (2003)

5. Ahmed, N., Khojastepour, M.A., Sabharwal, A., Aazhang, B.: Outage mini-
mization with limited feedback for the fading relay channel. IEEE Trans. Com-
mun. 54(4), 659–669 (2006)

6. Wei, S., Kannan, R.: Strategic versus collaborative power control in relay fading
channels. In: IEEE International Symposium on Information Theory (ISIT), Seattle
(July 2006)

7. Laneman, J., Tse, D., Wornel, G.: Cooperative diversity in wireless networks: ef-
ficient protocols and outage behavior. IEEE Trans. Inform. Theory 50, 3062–3080
(2004)

8. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
Part II: The p-medians. SIAM J. Appl. Math. 37, 539–560 (1979)

9. Tamir, A.: An o(pn) algorithm for p-median and related problems on tree graphsi.
Operation Research Letters 19, 59–64 (1996)

10. Benkoczi, R., Bhattacharya, B., Chrobak, M.L.L.: Faster algorithms for k-medians
in trees. Extended Abstract.

11. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Operation Research Letters 10, 395–402 (1991)

12. Auletta, V., Parente, D., Persiano, G.: Placing resources on a growing line. J.
Algorithms 26(1), 87–100 (1998)

13. Li, B., Golin, M.J., Italiano, G.F., Deng, X.: On the optimal placement of web
proxies in the internet. In: Proc. of IEEE INFOCOM (1999)

14. Woeginger, G.: Monge strikes again: optimal placement of web proxies in the in-
ternet. Operation Research Letters 27, 93–96 (2000)

15. Kannan, R., Wei, S., Deng, G., Chakravarthy, V., Rangaswamy, M.: Energy efficient
relaying via channel quantization in wireless networks. In: 41st Annual Conference
on Information Sciences and Systems (CISS 07), JHU (March 2007)

16. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation
algorithm for the k -median problem (extended abstract). In: ACM Symposium on
Theory of Computing, pp. 1–10 (1999)

A Connectivity Based Partition Approach for

Node Scheduling in Sensor Networks

Yong Ding, Chen Wang, and Li Xiao

Department of Computer Science and Engineering,
Michigan State University

{dingyong, wangchen, lxiao}@cse.msu.edu

Abstract. This paper presents a Connectivity based Partition Approach
(CPA) to reduce the energy consumption of a sensor network by sleep
scheduling among sensor nodes. CPA partitions sensors into groups such
that a connected backbone network can be maintained by keeping only
one arbitrary node from each group in active status while putting oth-
ers to sleep. Nodes within each group swap between active and sleeping
status occasionally to balance the energy consumption. Unlike previous
approaches that partition nodes geographically, CPA is based on the mea-
sured connectivity between pairwise nodes and does not depend on nodes’
locations. In this paper, we formulate node scheduling as a constrained op-
timal graph partition problem, and propose CPA as a distributed heuris-
tic partition algorithm. CPA can ensure k-vertex connectivity of the back-
bone network for its partition so as to achieve the trade-off between saving
energy and preserving network communication quality. Moreover, simu-
lation results show that CPA outperforms other approaches in complex
environments where the ideal radio propagation model does not hold.

1 Introduction

Wireless sensor networks consist of a large number of small battery powered
nodes that need to operate in unattended status for months. In order to sus-
tain sensors to run for a long period of time with limited energy capacity, it is
critical to save energy in sensor operations. Since wireless communication con-
sumes the majority of energy among all the sensors’ activities, reducing power
consumption in communication is the most effective approach to prolong sen-
sors’ lifetime. Two strategies are usually used to minimize energy dissipation in
sensor communication: i) adjust the radio transmission power of each node; or
ii) schedule the wireless interfaces of sensor nodes to rotate between active and
sleeping status.

Several approaches have been proposed to reduce the energy consumption of a
sensor network by minimizing sensors’ transmission power while maintaining the
network connectivity [1] [2] [3]. However, the major energy of a sensor network
is often consumed by idle listening instead of packet transmission and reception
under light traffic or in a dense network. It has been broadly observed that the
energy consumption of a wireless interface cannot be ignored even when it is in

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 354–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Connectivity Based Partition Approach 355

the listening mode [4] [5]. Therefore, energy can be further saved by reducing
the time spent in idle listening of sensor nodes.

In this paper, we adopt the sleep scheduling approach to reduce the energy
consumption without causing dramatic data delivery delay in a dense sensor net-
work. Since only a small portion of the sensors are involved in packet transmis-
sion and reception in a dense sensor network where broadcast is not frequently
initiated, it will be most effective to save energy by turning off the wireless inter-
faces of those redundant sensors that only operate in listening status. Therefore,
we can divide the sensor nodes into groups such that nodes in each group are
equivalent with regard to data delivery. At each time, one node is selected from
each group to operate in active radio mode (listening, transmitting, receiving),
while other nodes put themselves into sleeping mode by turning off their wire-
less interfaces. No matter which node is selected from each group, all the active
nodes need to form a connected backbone network. In addition, the roles of ac-
tive nodes and sleeping nodes need to be swapped once a while to balance the
power consumption among all the nodes, which prolongs the network’s lifetime.

GAF [6] [7] partitions the nodes based on their geographic locations. It divides
the deployed area into multiple equal-size squared cells so that nodes in the same
cell form a group. By assuming an ideal radio propagation model and choosing
appropriate side length of cells according to the radio transmission range, it
ensures that a connected backbone network can be formed as long as at least
one node in each cell remains in active mode. However, this geographic partition
suffers from several drawbacks besides its dependence on the localization infras-
tructure. GAF uses fixed cells in its partition, which consequently guarantees
a backbone network with vertex connectivity of 4. Thus, it lacks the flexibility
to provide different partitions that can ensure different connectivity levels of
the backbone networks. Moreover, GAF depends on the assumption of an ideal
radio propagation model, which does not always hold due to radio’s irregular
transmission pattern and multipath effect. Thus, it is often invalid to judge the
connectivity between pairwise nodes simply based on the distance calculated
from their locations.

Motivated by these limitations of GAF, we propose a Connectivity based
Partition Approach (CPA), which divides nodes based on their measured con-
nectivity instead of guessing connectivity by their positions. In comparison with
GAF, our approach has more flexibility in that it can generate partitions while
ensuring k-connectivity of the backbone network. In addition, as CPA is based
on measured connectivity, it can ensure the connectivity between nodes of neigh-
boring groups in the partition even under an un-ideal radio propagation model,
which makes it more adaptive to complex environments compared with GAF. To
illustrate the basic idea of CPA, we introduce the motivation and give a formal
problem description in Section 2. The detailed description of the algorithm is
discussed in Section 3. In Section 4, we evaluate our proposed approach by com-
paring it with the GAF approach. Previous studies are summarized in Section 5
and we conclude our work in Section 6.

356 Y. Ding, C. Wang, and L. Xiao

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

11

12

(a) Connectivity graph

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1

2

3

4

5

6

7

8

9

10

11

12

(b) GAF partition

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1
2

3

4

5

6

7

8
9

10

11

12

(c) A valid partition

Fig. 1. GAF under Irregular Radio Propagation Models

2 Overview

In this section, we first analyze several limitations of GAF that motivate us
to partition the nodes based on their measured connectivity rather than their
locations. After that, a formal description is given for the problem of partitioning
nodes based on their connectivity graph in a large sensor network. Our solution
is given in the next section.

2.1 Motivation

Although turning off nodes can reduce the energy consumption dramatically, the
change of network graph property may affect the communication performance
and therefore incur more power dissipation. Vertex connectivity is a useful met-
ric to evaluate the communication quality of the backbone network with regard
to node failure and congestion. GAF actually provides a 4-connected backbone
network for a large sensor network. It guarantees that each active node is con-
nected with at least four active nodes in its four neighboring grids respectively
in the backbone network. However, GAF lacks the flexibility to provide back-
bone networks with different vertex connectivity under different requirements.
If the nodes are relatively more robust and the traffic rate is not high, a back-
bone network with lower connectivity is desired to achieve more energy saving
by maintaining fewer active nodes. On the other hand, a backbone network with
higher connectivity can cope with higher node failure and traffic rate. There-
fore, a more flexible algorithm is desired to partition the nodes into groups of
appropriate size.

Another problem with GAF is that it may not work well under irregular radio
propagation models. To illustrate this, we use DOI (Degree of Irregularity) [8] as
a radio propagation model. This model assumes an upper and lower bound on
signal propagation range. The parameter DOI is defined as the maximum radio
range variation per unit degree change in the direction of radio propagation.
The DOI model used in our example is shown in Fig. 6(b). The upper bound is
the maximum radio transmission radius R, the lower bound is half of the upper
bound, and DOI is set to 0.1.

A Connectivity Based Partition Approach 357

We deploy 12 sensor nodes with maximum radio transmission radius of
√

5
uniformly into a 2 × 2 area as shown in Fig. 1(a). Each edge between pairwise
sensors represents a symmetric link between them based on the DOI model.
In Fig. 1(b), the deployed area is divided into 2 × 2 grids, each of which owns
3 nodes according to GAF. However, there is a possibility that the backbone
graph is disconnected. As the case shown in Fig. 1(b), nodes 1, 4, 9, and 10 are
selected from each grid to become active nodes, but they form a disconnected
backbone network. The partition of GAF is invalid because the connectivity
between nodes in neighboring grids is no longer ensured under the irregular radio
model. On the other hand, Fig. 1(c) shows a valid partition. It consists of 6 groups
where the nodes in each group are mutually connected. Each edge between two
groups means that any node from one group is connected with any node in the
other group. It is obvious that the backbone formed by selecting one node from
each group is always connected. This partition is valid because it is based on
the measured connectivity between nodes instead of guessing connectivity from
nodes’ locations.

In this paper, we will study how to flexibly partition the nodes based on
their measured connectivity. Before presenting our algorithm, a formal problem
description is given in the following.

2.2 Problem Formulation

To reduce the energy consumption of communication in sensor networks, we can
divide sensor nodes into groups such that only one node in each group keeps
active at each snapshot while others are put into sleeping mode. The partition
must satisfy the following constraints:

– Any node is within one hop away from all the other nodes in the same group.
Under such a constraint, each node can be covered by the communication
backbone, that is, each node is either in the backbone network if it is an
active node or directly connected to the backbone network otherwise.

– The backbone network formed by active nodes at each snapshot must satisfy
some connectivity properties such that it does not suffer significant loss of
communication quality as compared with the original network.

– The analysis in [9] shows that for those sensor applications where data are
collected by a sink, the sensors closer to the sink always deplete their energy
faster under uniform distribution of nodes, no matter what sleep scheduling
is used. However, some mobility assisted approaches, such as [10] and [11],
can help achieve uniform energy consumption in sensor networks. Therefore,
in order to better evaluate the sleep scheduling algorithm, we assume the
uniform energy consumption for sensor nodes in this paper. In order for all
the groups to remain alive together as long as possible, the energy needs to
be evenly distributed among groups.

– A smaller number of groups is preferred without degrading the communica-
tion quality of the original network, because more energy conservation can
be achieved by decreasing the number of active nodes at each time.

358 Y. Ding, C. Wang, and L. Xiao

By referring to some terms in graph partition problems [12], we can formalize
the problem as below.

Let G(V, E) be the connectivity graph of the original sensor network, where
each vertex in V corresponds to a sensor node and each edge in E represents a
symmetric communication link between the two nodes.

Definition 1. We can partition G into k parts A1, A2, ..., Ak, where Ai is com-
pletely adjacent. In other words, G is partitioned into k cliques. We can encode
this partition by a symmetric k-by-k matrix M in which the diagonal entry Mi,i

is 1 representing each part as a clique, and off-diagonal entry Mi,j is 0, 1, or
2, if Ai and Aj are completely non-adjacent, have arbitrary connections, or are
completely adjacent, respectively. This partition is called an M-partition.

Let G’ denote the backbone graph formed by selecting one arbitrary active node
from each part of the M-Partition. If Mi,j is 2, then the active nodes from Ai and
Aj are guaranteed to be connected; if Mi,j is 0, they are disconnected; otherwise,
they will be either connected or disconnected.

Definition 2. Let H be the graph induced by an M-partition P in which each
part in P is mapped to a vertex in H and each 2-value entry in P is mapped to
the corresponding edge in H. We call H the 2-induced graph of P.

We are interested in H because it reflects the minimum connectivity property
of G’ at each snapshot. In H, if two vertices are adjacent, any arbitrary node
in the corresponding part of one vertex is connected with any arbitrary node in
the corresponding part of the other vertex. In other words, E(H) is a subset of
E(G’). As a result, suppose κ(H) = k, then we have κ(G′) ≥ k, where κ denotes
the vertex connectivity of the corresponding graph.

Let l be a label on V of the original network graph G(V, E) where l(v) (v ∈ V)
is the energy amount in the sensor node v, then the total energy of the sensor
network is Etotal =

∑
v∈V l(v). We can also derive another label g on the M-

partition P of G, which represents the total energy amount in each part, that is,
g(A) =

∑
v∈A l(v) for each A ∈ P .

Problem Description. Given a graph G(V, E), which represents the original sen-
sor network, and a label l on V, which represents the energy in each sensor node,
find a smallest-size M-partition P* of G such that i) κ(H) ≥ k, where H is the
2-induced graph of P* and k is the minimum vertex connectivity required by
the backbone network. ii) (1− δ)Etotal

N ≤ g(Ai) ≤ (1+ δ)Etotal

N for each Ai ∈ P*,
where N is the cardinality of P* and 0 ≤ δ < 1 is the unbalanced factor.

As each part in the partition P* is a clique, each node is one hop away from
all the other nodes in the same part. The connectivity property of the backbone
network can be guaranteed by the first constraint of the problem, and the bal-
anced energy distribution can be satisfied by the second constraint. Moreover,
the optimization nature of this problem requires the most efficient partition in
energy-saving.

A Connectivity Based Partition Approach 359

c

d

e
f

g
a b

c

d

e
f

g

 (a) two groups a and b about to merge (b) the two groups have been merged

completely
adjacent

have arbitrary
connection

Fig. 2. CPA Group Merging Process

3 CPA Design

The formulated problem is NP hard [12]. In this section, we propose a Connec-
tivity based Partition Approach (CPA) to approximate a good partition for this
problem, which is a heuristic distributed algorithm, where only local computa-
tion is involved. CPA is a distributed iterative process. It starts from the initial
partition where each node forms a unique group. CPA continuously merges two
groups into a larger one until further merging will break the constraints of the
problem.

In CPA, there are two kinds of nodes in each group: ordinary nodes and a head
node. Each kind of node maintains its node ID and associated group information
including its group ID, IDs of other group members, and ID of the head node in
its group. One head node is selected from each group to maintain some additional
information on the connectivity between its group and the neighboring groups
in the current M-partition. Let Nl(Ai) be the set of neighboring groups that are
connected with group Ai through l -value edges in the current M-partition, i.e.,
Nl(Ai) = {Aj | Mi,j = l}. Thus, each head node of group i will store N1(Ai)
and N2(Ai), which are the set of neighboring groups having arbitrary connection
with group i and completely adjacent with group i respectively.

CPA starts from the initial partition of one node in each group. Let Ai denote
the group formed by node vi. Consequently, vi acts as the head node and stores
group connectivity information N1(Ai) and N2(Ai), where N2(Ai) is the set of
groups Aj whose node vj is connected with node vi, and N1(Ai) is empty because
any two groups are either completely adjacent or completely non-adjacent in the
initial partition. CPA goes through a group merging process iteratively before it
gets to the final partition.

3.1 Group Merging

In the group merging process, head nodes of each two completely adjacent groups
exchange group connectivity information to decide whether their groups should
merge. Only completely adjacent groups can merge so that the new group is also
a clique. Suppose Ai and Aj are two completely adjacent groups in the current

360 Y. Ding, C. Wang, and L. Xiao

M-partition. Let Aij be the new group obtained by merging Ai and Aj . The
group merging process first updates the group information in each node of Aij ,
and keeps only one head node to maintain the group connectivity information in
Aij . Then, the new group and the neighboring groups of Ai and Aj update their
group connectivity information based on the following rules. i) For each group
A′ ∈ N2(Ai) ∩ N2(Aj), Aij and A′ are completely adjacent (edge value of 2). ii)
For each group A′ ∈ N0(Ai) ∩ N0(Aj), Aij and A′ are completely non-adjacent
(edge value of 0). iii) Otherwise, Aij and A′ have arbitrary connections (edge
value of 1). Therefore, an updated M-partition is formed. Fig. 2 illustrates the
process of merging two groups into a larger group. In Fig. 2(a), a and b are two
completely adjacent groups, that is, any node in a is connected with any node
in b. When the two groups merge as shown in Fig. 2(b), as groups c, e, f are
completely adjacent to both a and b, each of them is completely adjacent to
the new merged group. On the other hand, groups d and g only have arbitrary
connection with the new group, which are illustrated by the dashed lines in the
figure, because d is not completely adjacent with b and g is not completely
adjacent with a.

Contentions may occur when multiple neighboring groups want to merge si-
multaneously. We resolve this by imposing a randomized backoff delay on the
time when the two groups announce their willingness to merge. If no contention
is observed at the end of the delay, the two groups about to merge will announce
their decision to all of their neighboring groups. Otherwise, they will reevaluate
the backoff delay based on the updates from other group merges.

The goodness of the final partition depends on the sequence of group merge.
We consider several factors for deciding which two groups are preferred to be
merged first in the current partition in order to arrive at a good partition even-
tually. These factors can be reflected as a utility function in the randomized
backoff delay so that higher priority groups will announce their intentions to
merge with a shorter time of delay.

– For any two groups Ai and Aj in the current partition, let P = |N2(Ai) ∩
N2(Aj)| and Q = |N2(Ai) ∪ N2(Aj)|, then C = P/Q indicates the level of
equivalence between Ai and Aj . The two groups with higher C value will
be given higher priority in the group merging process. Specifically, at the
starting phase of the algorithm, where each node constitutes a single group,
nodes with exactly the same set of neighbors will be merged first, because
these nodes are exactly equivalent with regard to data routing.

– Let g(Ai) denote the energy in group Ai. We want the total energy to be
evenly distributed in each group so as to maximize the network’s lifetime.
For any two groups Ai and Aj , let D = [g(Ai) + g(Aj)]/Etotal where Etotal

is the total energy of all the sensor nodes in the network, then we will give
pairwise groups with lower D value higher priority in the group merging
process.

Therefore, each two completely adjacent groups can be assigned with a utility
value U = k1(1 − C) + k2D, where k1 and k2 are coefficients. The backoff delay
for each pair of groups is set to be proportional to U + R, where R is a random

A Connectivity Based Partition Approach 361

value uniformly distributed in [0, 1], which is used to resolve contentions among
pairwise groups with the same utility value. As a result, the appropriate assign-
ment of backoff delay enables pairwise groups with lower utility value to merge
first as well as resolving contentions in the group merging process.

In M-partition, we refer ”2-degree of Ai” to the number of groups that are
completely adjacent to Ai. Each group keeps track of its 2-degree value during the
group merging process, which is used to decide whether pairwise groups should
be merged. If a group merge may cause the 2-degree of some group to drop
below k, then these two groups will give up their intention to merge. The group
merging process will be terminated when no groups can be merged. By Penrose’s
theorem [13], we can guarantee the k-connectivity of the backbone graph by
ensuring the minimum degree of k in the 2-induced graph of M-partition when
the sensor network can be modeled as a random geometric graph. Under the
irregular radio propagation model where the sensor network cannot be concisely
modeled as a random geometric graph, we will show by simulation that a k-
connected backbone network can still be formed with high probability.

3.2 Load Balancing Energy Usage in Groups

As all the nodes in the network are equally important, running a node in active
status until its energy is depleted is not an appropriate energy usage strategy.
In order to prolong the lifetime of each node, the nodes in each group need to
switch between active and sleeping status periodically so that all nodes remain
alive together for as long as possible.

Assume all the nodes in each group can be synchronized. In order to elect
an active node, each group member broadcasts a message to the whole group
stating its willingness to become active. Each node waits for a certain time delay
before its announcement. The earliest announcement will suppress the others so
that the corresponding node will become the active node in the group. The time
delay for each node is set to be inversely proportional to its residual energy.
Therefore, the node with maximum residual energy will be selected. Then, the
selected active node informs other nodes of the time it will remain active, after
which all the nodes need to reselect an active node again within the group.

4 Performance Evaluation

We evaluate our schemes in a 10×10 square area where 500 sensors are uniformly
deployed. The simulation is based on the energy consumption model observed in
[4], that is, the ratio of energy consumed in listening, receiving, and transmitting
status is 1:1.2:1.7. The initial energy level of each node is set to 500, which means
the node will remain alive for 500 units of time in the listening status. According
to the assumption in Section 2.2 that the energy consumption is uniform over
all the sensor nodes with the mobility assisted approaches helping collect data,
we simulate the energy consumption in the sensor network by an equivalent
scenario. In each time slice, we randomly select 20 traffic nodes, which send and

362 Y. Ding, C. Wang, and L. Xiao

receive packets between each other. In addition, we use load balanced energy
aware routing [14] in the backbone network. One slight modification we make is
that we use the total residual energy of the group to denote the residual energy
of the corresponding active node in the load balanced route decision.

We perform the simulation in MATLAB. The energy consumption is calcu-
lated based on the changing status of each node and the energy consumption
ratio for each status. In our evaluation of the sensor network’s lifetime, we do
not take the energy consumed in the partition process into consideration, be-
cause it runs only once at the deployment phase of the sensor network so that it
only consumes a trivial portion of the network’s total energy. In this section, we
evaluate CPA in comparison with GAF under both the ideal radio transmission
model and the irregular radio transmission models.

Table 1. Partitions of GAF and CPA

Partition Approach CPA
(min-
deg=2)

CPA
(min-
deg=3)

CPA
(min-
deg=4)

GAF CPA
(min-
deg=5)

CPA
(min-
deg=6)

Number of Groups 71 84 91 100 106 116

Average Group Size 7.0 6.0 5.5 5.0 4.7 4.3

Standard Deviation
of Group Size

0.92 0.77 0.79 0.73 0.67 0.63

4.1 Under Ideal Radio Propagation Model

In the ideal radio propagation model, the radio transmission range is the same
in different directions. In our simulation, the radio transmission radius R is set
to

√
5. GAF uses square cells with length of R/

√
5 = 1 to partition the deployed

area, thus all the nodes are divided into 100 groups. We also run CPA, which
is based on the connectivity between nodes instead of their locations under the
same experiment setting. CPA is executed with different values for parameter
mindeg, which controls the minimum degree of the 2-induced graph of the final
partition. CPA guarantees that the backbone network generated based on this
partition will be mindeg-connected.

The partition results are shown in Table 1. For CPA, the number of groups
increases with the parameter mindeg, because more active nodes are needed each
time in order to ensure higher connectivity of the backbone network. GAF en-
sures that each node is connected with at least four nodes in its four neighboring
cells in the backbone network. Therefore, we can regard GAF as comparable to
CPA(mindeg=4). As shown in the table, CPA(mindeg=4) partitions the nodes
into 91 groups, which is fewer than GAF. This indicates that CPA can identify
redundant nodes more sufficiently than GAF. As discussed in previous sections,
it is preferable to have the total energy evenly distributed in the groups so as to
prevent the early death of some groups, which may disrupt the connectivity of
the backbone network. We assume that each node has the same initial energy
when deployed, so the standard deviation of group size can be an indication

A Connectivity Based Partition Approach 363

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Simulation Time

F
ra

ct
io

n
of

 S
ur

vi
ve

d
N

od
es

GAF
mindeg=2
mindeg=3
mindeg=4
mindeg=5
mindeg=6

Fig. 3. Network Lifetime under Ideal Ra-
dio Propagation Model

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Simulation Time

F
ra

ct
io

n
of

 R
em

ai
ni

ng
 E

ne
rg

y GAF
mindeg=2
mindeg=3
mindeg=4
mindeg=5
mindeg=6

Fig. 4. Energy Consumption under Ideal
Radio Propagation Model

of how evenly the total energy is distributed in the groups. Table 1 shows the
standard deviation of group size for each partition result. It shows that our ap-
proach can divide energy as evenly in groups as GAF under random uniform
distribution of nodes.

We then evaluate the lifetime of the network when the partition results are
applied. Each group keeps only one active node each time to form a backbone
network. The nodes in each group balance the energy usage by reselecting the ac-
tive node periodically, which may change the topology of the backbone network.
We refer to lifetime as the time when the backbone network formed by active
nodes turns out to be disconnected. If no sleeping schedule scheme is used, that
is, all nodes keep active until death, the network lifetime will be less than 500.
Fig. 3 illustrates the network lifetime where different partitions are adopted. As
shown in the figure, the fraction of surviving nodes decreases with time, and the
simulation stops when the backbone network becomes disconnected. The par-
tition of CPA(mindeg=2) achieves the longest network lifetime (around 3000),
because it keeps the fewest number of active nodes each time. The network
lifetime decreases for partitions of CPA with higher mindeg values which can,
however, ensure better connectivity of the backbone network. We can also ob-
serve from the figure that the partition of CPA(mindeg=4) has longer network
lifetime than the partition of GAF, even though they ensure the same level of
connectivity. Fig. 4 illustrates the energy consumption of the whole network with
regard to time. The energy consumption rate is relatively constant because the
traffic nodes generate traffic at a constant speed and the number of active nodes
remains constant each time as well.

Although lowering node density reduces the energy consumption of the net-
work, the topology change may affect the network’s communication quality. For
example, if a packet goes through a much longer path in the backbone network
than it does in the original network, longer data transfer delay will be experi-
enced. Fig. 5 shows the ratio of the average routing path length in the backbone
network and the original network for different partitions. The ratio decreases
for CPA with higher mindeg because its partition ensures higher connectivity.
As can be seen, the ratio is quite low (below 1.3) for all the partitions listed in

364 Y. Ding, C. Wang, and L. Xiao

1 2 3 4 5 6
0.8

0.9

1

1.1

1.2

1.3

MINDEG

R
at

io
 o

f R
ou

te
 L

en
gt

h

CPA
GAF

Fig. 5. Comparison of the Impact
on Route Length under GAF and
CPA

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) DOI = 0.05
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(b) DOI = 0.10

Fig. 6. Irregular Radio Propagation Model

the figure, which means the node scheduling based on these partitions does not
dramatically increase packet delivery delay.

4.2 Under Irregular Radio Propagation Model

In order to evaluate the performance of CPA in comparison with GAF under
complex environments, we choose the DOI model [8]. This model assumes an
upper and lower bound on the signal propagation range. The parameter DOI
is defined as the maximum radio range variation per unit degree change in the
direction of radio propagation. In our simulation of radio irregularity, we set
the upper bound to

√
5 and lower bound to half of upper bound. Fig. 6 shows

two examples of radio propagation range in different directions where the DOI
value is set to 0.05 and 0.10 respectively. The higher the DOI value, the more
irregularity in the radio propagation range.

GAF cannot adapt to different levels of irregularity in the radio propagation
model, because it is based on the sensors’ locations and consequently cannot
detect the irregularity level. Unlike GAF, CPA partitions sensors based on their
measured connectivity, which enables it to obtain appropriate partition sizes
under different levels of radio irregularity. Fig.7 shows the partition sizes of CPA
with different mindeg under irregular radio with different DOI values. We can
observe from the figure that the partition size increases with the DOI value.
As the communication between sensors is more seriously influenced by higher
irregularity in the radio propagation model, more active nodes are needed to
maintain the same level of connectivity in the backbone network, leading to
larger partition size.

We perform simulations to study the network lifetime under GAF and CPA
(mindeg = 2 or 4). For GAF, we use the same partition for different DOI values,
that is, 100 groups with cell length of 1, because GAF is unaware of the radio
irregularity. We run the simulation multiple times for each partition, and the
comparison of average lifetime is shown in Fig. 8. Our simulation finds that the
lifetime for GAF is not stable through repeated simulations. As the connectivity
between neighboring cells is no longer guaranteed by GAF under the irregular
radio propagation model, there is a possibility that the backbone network formed

A Connectivity Based Partition Approach 365

0 0.02 0.04 0.06 0.08 0.1

100

150

200

250

300

DOI value

N
um

be
r

of
 g

ro
up

s
mindeg=2
mindeg=3
mindeg=4
mindeg=5
mindeg=6

Fig. 7. Partition Sizes under Irregular
Radio Propagation Model

0 0.02 0.04 0.06 0.08 0.1
0

500

1000

1500

2000

2500

DOI value

Li
fe

 T
im

e

mindeg=2
mindeg=4
GAF

Fig. 8. Network Lifetime under Irregular
Radio Propagation Model

by randomly selecting an active node from each group is disconnected. The higher
the radio irregularity, the higher the probability of a disconnected backbone
network. As illustrated in the figure, when DOI is close to 0.1, the GAF partition
cannot even work. In contrast, CPA works well under different conditions. The
lifetime for CPA decreases with the radio irregularity level, because more active
nodes are needed to maintain the same connectivity of the backbone network,
and thus more energy is consumed per time unit. On the other hand, GAF
does work if it divides the deployed area by cells with side length of 0.5 so
that any nodes in two neighboring cells are within

√
5/2, the lower bound of

radio transmission range in DOI model. However, this results in 400 groups with
an average group size of 1.25. Apparently, this partition can only prolong the
network’s lifetime for a very small portion.

5 Related Work

Energy in sensor networks can be saved by adjusting the radio transmit power
of each node. Several topology control algorithms [1] [2] [3] have been proposed
to reduce energy consumption by selecting adequate node transmit power while
maintaining network connectivity.

[15] [16] [17] select the set of active nodes for routing purposes based on
the idea of approximating a minimum connected dominating set (MCDS). [18]
further discusses how to balance energy dissipation in the cluster heads of the
CDS. Deb and Nath [19] proposed a node scheduling approach that can adapt to
the trade-off between energy conservation and data delivery quality. Although
CDS approaches save energy by decreasing the number of active nodes, they are
not efficient at balancing energy consumption among nodes so as to maximize
the network lifetime.

To reduce the energy waste in idle listening, duty cycling has been proposed
in [20] and [21], where the wireless interface of each node follows a periodic cycle
of active/sleep states. Although duty cycling is energy-efficient, it increases the
delay of data delivery, because the intermediate node has to wait for the next-
hop node to wake up to receive the packet. [22] analyzes the bounds of data
delivery delay by using completely decentralized duty cycling. In [23], the authors

366 Y. Ding, C. Wang, and L. Xiao

formulate the problem of assigning duty cycle to each node while minimizing the
end-to-end communication delay.

Node scheduling algorithms that maintain a connected dominating set and
balance energy usage by switching node status have been studied in [4] and
[6]. These approaches cope with the idle listening problem without causing dra-
matical data delivery delay. Span [4] aims at reducing energy consumption of
a wireless network without significantly diminishing its capacity or connectiv-
ity. In Span, each node makes a local decision on whether to sleep or join the
backbone as a coordinator by periodically checking the status of its neighbors.
Unlike Span, GAF [6] divides nodes into groups such that a communication
backbone is formed by selecting an arbitrary active node from each group while
keeping others in sleeping mode. Compared with Span, GAF imposes less over-
head on switching node status, because only nodes within each group need to
communicate with each other for load balance purposes.

Our proposed CPA schedules nodes based on partitioning. Different from
GAF, CPA is based on the measured connectivity between nodes instead of
their locations. Besides preserving GAF’s advantage in efficient load balancing
of energy dissipation, it aims at ensuring k-vertex connectivity of the backbone
network, and better adaptivity for unideal radio propagation. CEC [7] divides
nodes into clusters based on measured connectivity similarly, but it cannot ef-
ficiently switch node status within each group like GAF and CPA. Instead, it
needs to re-form clusters to balance energy consumption among nodes.

6 Conclusion

In this paper, we propose to partition the nodes based on their measured connec-
tivity instead of geographic locations. We formulate it as a constrained optimal
graph partition problem, and present CPA, a distributed heuristic algorithm,
to approximate a good partition. CPA outperforms other partition approaches
in two aspects. First, CPA can guarantee k-vertex connectivity of the backbone
network under ideal radio propagation models, which balances the trade-off be-
tween saving energy and preserving the network’s communication quality. In ad-
dition, simulation results show that CPA can also ensure k-vertex connectivity
of the backbone network with high probability under irregular radio propagation
models. Therefore, CPA has better adaptivity to complex environments.

Acknowledgement

This work was supported in part by the US National Science Foundation under
grants CCF-0514078, CNS-0549006, and CNS 0551464.

References

1. Ramanathan, R., Hain, R.: Topology control of multihop wireless networks using
transmit power adjustment. In: INFOCOM (2000)

2. Wattenhofer, R., Li, L., Bahl, P., Wang, Y.-M.: Distributed topology control for
wireless multihop ad-hoc networks. In: INFOCOM (2001)

A Connectivity Based Partition Approach 367

3. Li, N., Hou, J.C.: Flss: A fault-tolerant topology control algorithm for wireless
networks. In: MobiCom (2004)

4. Chen, B., J. K., B. H., M. R.: Span: An energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks. In: Mobicom (2001)

5. Stemm, M., Katz, R.H.: Measuring and reducing energy consumption of network
interfaces in hand-held devices. In: IEICE Transactions on Communications (1997)

6. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed Energy Conservation for
Ad Hoc Routing. In: MobiCom (2001)

7. Xu, Y., et al.: Topology control protocols to conserve energy in wireless ad hoc
networks. tech. rep. (2003)

8. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.F.: Range-free
localization schemes in large scale sensor networks. In: MobiCom (2003)

9. Subramanian, R., Fekri, F.: Sleeping scheduling and lifetime maximization in sensor
networks: Fundamental limits and optimal solutions. In: IPSN (2006)

10. Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless
sensor networks. In: InfoCom (2005)

11. Wang, W., Srinivasan, V., Chua, K.-C.: Using mobile relays to prolong the lifetime
of wireless sensor networks. In: MobiCom (2005)

12. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems.
In: ACM STOC (1999)

13. Penrose, M.D.: On k-connectivity for a geometric random graph. In: Wiley Random
Structures and Algorithms (1999)

14. Sankar, A., Liu, Z.: Maximum lifetime routing in wireless ad-hoc networks. In:
INFOCOM (2004)

15. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected
dominating sets. In: ICC (1997)

16. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
In: European Symposium on Algorithms (1996)

17. Banerjee, S., Khuller, S.: A clustering scheme for hierarchical control in multi-hop
wireless networks. In: INFOCOM (2001)

18. Wu, J., Dai, F., Gao, M., Stojmenovic, I.: On calculating power-aware connected
dominating sets for efficient routing in ad hoc wireless networks. Journal of Com-
munications and Networks (2002)

19. Deb, B., Nath, B.: On the node-scheduling approach to topology control in ad hoc
networks. In: MobiHoc (2005)

20. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks. In: InfoCom (2002)

21. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wire-
less sensor networks. In: Sensys (2003)

22. Dousse, O., Mannersalo, P., Thiran, P.: Latency of wireless sensor networks with
uncoordinated power saving mechanisms. In: MobiHoc (2004)

23. Gang Lu, B.K.A.G., Sadagopan, N.: Delay efficient sleep scheduling in wireless
sensor networks. In: InfoCom (2005)

Energy-Efficient Data Acquisition Using a

Distributed and Self-organizing Scheduling
Algorithm for Wireless Sensor Networks

Supriyo Chatterjea1, Tim Nieberg2, Yang Zhang1, and Paul Havinga1

1 Department of Computer Science, University of Twente,
P.O. Box 217 7500AE, Enschede, The Netherlands

{supriyo,zhangy,havinga}@cs.utwente.nl
2 Research Institute for Discrete Mathematics, University of Bonn,

Lennestr. 2, 53113 Bonn, Germany
nieberg@or.uni-bonn.de

Abstract. Wireless sensor networks are often densely deployed for envi-
ronmental monitoring applications. Collecting raw data from these net-
works can lead to excessive energy consumption. Thus using the spatial
and temporal correlations that exist between adjacent nodes we appoint
a few as representative nodes that perform in-network aggregation. This
reduces the total number of transmissions. Our distributed scheduling al-
gorithm autonomously assigns a particular node to perform aggregation
and reassigns schedules when network topology changes. These topology
changes are detected using cross-layer information from the underlying
MAC layer. We also present theoretical performance estimates and upper
bounds of our algorithm and evaluate it by implementing the algorithm
on actual sensor nodes, demonstrating an energy-saving of up to 80%
compared to raw data collection.

1 Introduction

Densely deployed wireless sensor networks (WSNs) allow environmental monitor-
ing at extremely high spatial and temporal resolutions. However, extracting the
raw data from such networks can have problems, e.g. batteries may get drained
rapidly due to excessive operation of the transceiver or data quality may deteri-
orate due to dropped packets caused by network congestion (Figure 1(a)).

To solve the above problems, we exploit the high degree of spatial corre-
lation that exists between the sensor readings of adjacent nodes in a densely
deployed network. Thus, instead of every node transmitting individual readings,
we appoint a subset of nodes, referred to as correlating nodes that transmit the
messages representative of all the remaining nodes at any given point in time.
Every correlating node initially transmits information to the sink, indicating the
correlation of its readings with its adjacent neighbors. Subsequently, it continues
transmitting its own readings until a change in correlation is detected, in which
case, it transmits an updated correlation message. The sink then estimates the

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 368–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Energy-Efficient Data Acquisition 369

N1 works out how it
is correlated with its

neighbours:

N2
N3
N4
N5
N6
N7

+1.7 C
+1.5 C
-0.2 C
+0.4 C
-1.9 C
-1.2 C

°
°
°
°
°
°

N1

N7

N6

N5

N2
N3N4

Sink node

(a) Collecting raw data
without aggregation

Step 1 Step 2
N1 (correlating node)
transmits the correlation
information, followed by its
own sensor readings. The
sink node can then
compute the readings of
the neighboring sensors
using the correlation
information.

(b) Taking advantage of
correlations of sensor readings

N7

N6

N5

N2
N3N4

N1

N7

N6

N5

N2
N3N4

N1

Representation of sensor readings at the sink node:
Actual readings: N1
Estimated readings: N2, N3, N4, N5, N6, N7

Fig. 1. Advantage of using correlation information (b) instead of transmitting raw
data (a)

Table 1. List of contributions

No. Contribution
1 We present a distributed scheduling algorithm that enables every node to autonomously

choose schedules based only on locally available information.
2 Although we assume our network is static, we prove that our algorithm possesses self-

stabilizing properties that allow it to recover within a finite time regardless of any dis-
turbances in the network such as topology changes or communication errors. We present
theoretical upper bounds for message transmissions and network stabilization times when
topology changes occur.

3 We illustrate how our algorithm takes advantage of cross-layer information to improve
energy-efficiency and adapt quickly to topology changes.

4 We present theoretical performance estimates and upper bounds for the performance of our
algorithm. We evaluate the algorithm by presenting results based on an implementation on
actual sensor nodes and present results indicating energy-savings of up to 80% compared
to raw data collection.

readings of the adjacent neighbors of the correlating node by combining the cur-
rent readings of the correlating node with the previously transmitted correlation
information as shown in Figure 1(b). We present a completely distributed and
self-organizing scheduling algorithm that (i) prevents two adjacent nodes acting
as correlating nodes simultaneously, (ii) increases the robustness and accuracy
of the readings by giving every node a chance at some point to act as a corre-
lating node. This ensures that no node is always represented only by estimated
readings. Our contributions are stated in Table 1.

2 An Overview of the DOSA Approach

The primary objective of DOSA is to help decide when a particular node should
act as a correlating node and thus represent the sensor readings of its 1st order
neighbors. During the correlating node’s schedule, the node initially transmits
correlation information to the sink node followed by its own sensor readings. All
the 1st order neighbors do not transmit their sensor readings to the sink during
this period. Since DOSA is intended to solve a scheduling problem, we make
use of a distributed graph coloring algorithm to assign schedules to individual

370 S. Chatterjea et al.

nodes. From a graph theoretic point of view, since no two adjacent nodes can
act as correlating nodes simultaneously, all the nodes chosen by DOSA to be
correlating nodes need to form an independent set. Additionally, the correlating
nodes for a particular instant of time need to form a dominating set since every
non-correlating node must be joined to at least one correlating node by some
edge. Also note that the subset of nodes that is both independent and dominating
is known as a maximal independent set. A maximal independent set cannot be
extended further by the addition of any other nodes from the graph. These
requirements help define the constraints outlined in Section 5 that DOSA follows
in order to perform its task.

To hasten the rate of assigning schedules to the nodes, DOSA utilizes the
information provided by the underlying MAC protocol, LMAC [8,12]. Instead
of coloring all the nodes from scratch, DOSA meets its requirements by build-
ing up on the colors already assigned by LMAC. An added advantage of this
form of cross-layer optimization is that a lesser number of messages need to be
transmitted for all the schedules to be assigned properly as we make use of infor-
mation that already exists. Furthermore, DOSA’s dependence on LMAC makes
it more reactive to changes in topology as any changes in neighborhood detected
by LMAC are immediately filtered to DOSA. As the operation of DOSA is
completely dependent on LMAC, we first give a brief overview of LMAC and
then proceed to present the operation of DOSA.

3 LMAC: A Lightweight Medium Access Control
Protocol

LMAC is a TDMA-based medium access control protocol designed for WSNs.
Time in LMAC is divided into frames, each of which is further divided into a
fixed number of time slots. Every node chooses its own slot using a distributed
algorithm that uses only locally available information. A node is allowed to
pick any slot as long as it is not owned by any other node within its two-hop
neighborhood.

A time slot consists of two sections, the Control Message (CM) and the Data
Message (DM). The CM, which contains control information and has a fixed
length, is broadcast by a node to its neighbors during its own time slot once
every frame irrespective of whether the node has any data to send. The CM
contains a table which indicates the slots that are occupied by itself and its one-
hop neighbors and other control information. Every node maintains a Neighbor
Table that stores the information about its one-hop neighbors, e.g. ID, occupied
slot, number of hops to sink node, etc. Thus a node can automatically work out
its degree from its Neighbor Table. Occupied slots are marked with a 1 where as
unoccupied ones are marked with a 0. A node joining the network first listens
out for the CMs of all its neighbors and then picks one of the slots that is marked
as unoccupied by performing an OR-operation. The DM contains higher layer
protocol messages. The length of the DM can vary depending on the amount of
data that a node needs to send. It does however, have a maximum length.

Energy-Efficient Data Acquisition 371

4 Preliminaries for Self-stabilization

The self-stabilization approach is essential for DOSA to initialize during start-
up and recover from topology changes due to addition and removal of nodes and
also to formalize the self-organizing properties of the algorithm. It also allows a
system that has entered an illegal state (due to occurrence of transient faults)
to converge back to a legitimate state within a finite time and with no external
intervention. We now look at the preliminaries of self-stabilization and refer the
reader to [5] for more details on the subject.

All nodes in the network are assumed to have unique IDs and knowledge of
their adjacent neighbors. Each node has a state specified by its local variables.
The state of the entire system called the global state or configuration is the
union of the local states of all the nodes. The objective of the system is to reach
a desirable global final state called a legitimate state. The state of a system can
either be legitimate or illegitimate. We use S to denote the set of all possible
states. We denote the set of all legitimate states by L such that L ⊆ S. We define
R ∈ S × S such that (si, sj) ∈ R. An execution of e is a maximal sequence of
states, e = si, si+1, ...sj such that ∀i ≥ 1, si ∈ S, and si is reached from si−1 by
executing a particular rule. A system can be considered to be self-stabilizing if
the following two conditions hold:

– Closure: If s ∈ L and s → s′ then s′ ∈ L. Therefore the closure property
means that when a system is in a legitimate state, the following state is
always a legitimate state as well regardless of the rule executed.

– Convergence: Starting from any configuration s ∈ S, every execution
reaches L within a finite number of transitions.

5 DOSA: A Distributed and Self-organizing Scheduling
Algorithm

DOSA uses a distributed graph coloring approach to decide when a particular
node should be a correlating node. Every color owned by a node represents a
particular frame of time during which a node is required to act as a correlating
node. In conventional graph coloring approaches, colors are assigned to vertices
such that adjacent vertices are assigned different colors and the number of colors
used is minimized. While DOSA’s graph coloring approach also ensures that
adjacent nodes in the network do not own the same colors it differs in the sense
that each node is allowed to own multiple colors, i.e. a node can have multiple
schedules. Moreover, the number of colors used in DOSA is fixed and is equal
to the number of slots that are assigned to an LMAC frame.

Before we proceed, we first state certain definitions that are used through out
the rest of this paper. We model the network topology as an undirected graph G
where G = (V, E). V represents the vertices or nodes in the network while two
nodes are connected by an edge in E if they are within radio transmission range
of each other. K represents the set of colors used to color all the nodes. So |K|

372 S. Chatterjea et al.

is equal to the number of slots per frame in LMAC. Also, we denote the closed
neighborhood of a node v ∈ V by Γ (v) i.e. Γ (v) := {u ∈ V |(u, v) ∈ E} ∪ {v}.

Using the graph-theoretic distance dG(u, v), that denotes the number of edges
on a shortest path in G between vertices u and v, we can define the rth neigh-
borhood of v as Γr(v) := {u ∈ V |dG(u, v) ≤ r}. Similarly, we define the open
neighborhood of a node v by Γ ′(v) where, Γ ′(v) := {u ∈ V |(u, v) ∈ E}. Given
that Γ ′(v) denotes the open neighborhood of node v, we refer to Cv as the set
of colors owned by node v. Then for Cv it holds that 0 < |Cv| < (|K| − |Γ ′(v)|).

Given that a node-induced subgraph is a subset of the nodes of a graph G
together with edges whose endpoints are both in this subset, we define a com-
ponent as a node induced subgraph of a subset of nodes. Furthermore, we call
two components independent if they are not connected by an edge.

Before describing the details of the operation of DOSA, we first state the
constraints derived from the requirements stated in Section 2, which define its
behavior. The following two constraints must be met when two nodes u and v
are adjacent to each other:

Constraint 1: Cv ∩ Cu = ∅
In other words, two adjacent nodes cannot own the same colors. This is because
two adjacent nodes should not be assigned as correlating nodes in the same time
instant.

Constraint 2: CΓ (v) = K
All colors should be present within the one-hop neighborhood of node v, i.e. if
node v does not own a particular color itself, the color must be present in one
of its neighboring nodes that is one hop away. This ensures that every node’s
readings will be represented at the sink node for every time instant either directly
or through a correlated reading.

Lemma 1. The combination of constraints 1 and 2 ensures that at any time
slot, ci, all nodes owning the color ci, which correspond to that time slot, form
a maximal independent set on G.

Proof. At any time instant according to Constraint 1, two adjacent nodes will
never own the color ci, thus resulting in an independent set I. Constraint 2
ensures that in the closed neighborhood of every node v ∈ V , every color is
present. This clearly results in a maximal independent set.

5.1 Dependency of DOSA on LMAC

As mentioned in Section 3, LMAC assigns a slot to every node in the network.
DOSA begins its distributed coloring scheme by considering the initial slot as-
signment phase in LMAC as an input. Slot assignments in LMAC correspond
to partial color assignments in DOSA. Thus while LMAC assigns every node
with a single color, DOSA assigns the remaining colors that ensure the ad-
herence to the constraints 1 and 2 given in the previous section. We can then

Energy-Efficient Data Acquisition 373

state that, Cv = CvLMAC ∪ CvDOSA , where CvLMAC refers to the color corre-
sponding to the LMAC slot owned by node v and CvDOSA refers to the colors
assigned to node v by DOSA. Similarly, the colors owned by the nodes adjacent
to node v, CΓ ′(v), are also made up of LMAC and DOSA colors. Thus we can
state, CΓ ′(v) = CΓ ′(v)LMAC

∪ CΓ ′(v)DOSA . The dependency of DOSA on LMAC
allows nodes to adapt autonomously and immediately to changes in network
topology. For example, the addition or removal of a node results in the change
being reflected in the LMAC Neighbor Tables of all other neighboring nodes
within range. DOSA detects changes in LMAC’s Neighbor Table and performs
a re-assignment of schedules if any of the neighboring nodes do not meet the
constraints mentioned above. Utilizing such cross-layer information from LMAC
ensures that DOSA does not spend additional resources trying to detect topol-
ogy changes itself.

5.2 General Operation of DOSA

DOSA uses a greedy approach to assign colors to nodes. Coloring is performed
using two types of colors: LMAC Colors and DOSA Colors. LMAC Colors refer
to the colors that have been assigned by LMAC - due to the slot assignment.
DOSA Colors refer to the additional colors that are assigned by DOSA to
ensure that constraints 1 and 2 are met. This occurs after the LMAC colors
have been assigned. DOSA does not have any control over the LMAC Color of a
node as it depends purely on the slot assignment performed by LMAC. In fact,
such control is also not required. Therefore, in the following, we refer to DOSA
Colors simply as colors unless otherwise indicated.

Colors are acquired based on a calculated priority. A node computes its prior-
ity within its one-hop neighborhood based on its degree and node ID. The higher
the degree of a node, the higher its priority. If two neighboring nodes have the
same degree, priority is calculated based on the unique node ID; the node with
the larger node ID will have the higher priority.

Once all nodes have acquired their LMAC slots, a BeginSecondPhase message
is injected into the network through the sink node requesting the nodes to begin
the DOSA coloring phase. At this stage, every node receiving the BeginSecond-
Phase message only has an LMAC Color and does not satisfy the constraints
mentioned earlier. Thus these nodes mark themselves as Unsatisfied. A node
only attains the Satisfied status when it satisfies the two constraints mentioned
in Section 5. Upon receiving the BeginSecondPhase message, a node broadcasts
the NodeStatus message. This message contains information about the node’s
status (i.e. Satisfied/Unsatisfied) and the list of colors owned. The ColorsOwned
field is a string of |K| bits where every color owned by a node is marked with a
1. The rest of the bits are marked with a 0. Initially, a node only marks its own
LMAC Color as 1 due to the initial LMAC slot assignment. A neighboring node
that receives the NodeStatus message then performs coloring using DOSA as
outlined in Algorithm 1. Note that the NodeStatus message is the only message
that is used for the operation of DOSA.

374 S. Chatterjea et al.

Algorithm 1. DOSA - Normal Initialization
Input: NodeStatusMSG(SatisfiedStatus(TRUE/FALSE), ColoursOwned)
Output: NodeStatusMSG(SatisfiedStatus(TRUE), ColoursOwned)/ NIL
1: Update(LocalInfoTable, v)
2: if LocalInfoTable contains entries from ALL adjacent nodes then
3: if SatisfiedStatus(v)=FALSE then
4: Compute Priority(v)
5: if Priority(v)=Highest then
6: Cv ← K\CΓ ′(v)

7: ColorsOwned← Cv

8: SatisfiedStatus← TRUE
9: Update(LocalInfoTable, v)

10: Broadcast NodeStatusMSG(Degree, SatisfiedStatus, ColoursOwned)
11: end if
12: end if

13: end if

We now briefly describe the operation of DOSA outlined in Algorithm 1. Upon
receiving a NodeStatus message, a node first updates its LocalInfoTable (Line
1). This table stores all the information contained in the NodeStatus messages
that are received from all the adjacent nodes. Once a node receives NodeSta-
tus messages from all its immediate neighbors (Line 2), and if its status is
Unsatisfied(Line 3), the node proceeds to compute its priority. Priority com-
putes the priority of a node only among its unsatisfied neighbors (Line 4), i.e. as
time progresses and more nodes attain the Satisfied status, Priority needs
to consider a smaller number of neighboring nodes. The highest priority is given
to the node with the largest degree among its adjacent Unsatisfied neighbors.
If more than one node has the same degree, then the highest priority is given to
the Unsatisfied node with the largest NodeID.

The node that has the highest priority among all its immediate unsatisfied
neighbors, acquires all the colors that are not owned by any of its adjacent
neighbors (Line 7). As the node has then satisfied both constraints of DOSA,
it switches to the Satisfied state, updates its own LocalInfoTable and informs
all its neighbors through a broadcast operation (Lines 8-10). Note that this
technique corresponds to a highest degree greedy approach.

Figure 2 provides a step-by-step example of how the DOSA algorithm assigns
colors to the nodes in a network. We make the assumption in the example that
LMAC uses 16 slots.

Correctness of DOSA. In this section we illustrate how DOSA is able to
successfully carry out initialization within a finite time given any arbitrary net-
work. We initially assume that no transmission errors occur throughout the
initialization phase but subsequently describe how such issues are handled in
Section 5.2.

In order for DOSA to operate properly, it is absolutely imperative that ev-
ery node always has up-to-date state information of its immediate neighbors. If
a node n experiences a certain change in state (e.g. change from Satisfied to
Unsatisfied) and fails to inform an adjacent neighbor of the change, this neigh-
bor node might execute certain inappropriate steps based on its outdated state

Energy-Efficient Data Acquisition 375

S5

S15

S10

S7

S6

S4

S7

S1

S3

N9 N5

N2

N8

N3

N13

N11

N6

N14

Step 1: LMAC assigns slots to
all the nodes in the network

S5

S15

S10

S7

S6

S4

S7

S1

S3

N9 N5

N2

N8

N3

N13

N11

N6

N14

Step 2: N2 and N14 have the highest
priority among all the unsatisfied nodes

1,2,4,6,8,9,

11,12,13,14,16

1,2,3,5, ,8,9,

11,12,13,14,15,16

6

S5

S15

S10

S7

S6

S4

S7

S1

S3

N9 N5

N2

N8

N3

N13

N11

N6

N14

Step 3: N9 and N13 have the highest
priority among all the unsatisfied nodes

1,2,4,6,8,9,

11,12,13,14,16

3,7,10

3,5,7

1,2,3,5, ,8,9,

11,12,13,14,15,16

6

S5

S15

S10

S7

S6

S4

S7

S1

S3

N9 N5

N2

N8

N3

N13

N11

N6

N14

Step 4: N3, N5, N6 and N8 have the
highest priority among all the unsatisfied
nodes

1,2,4,6,8,9,

11,12,13,14,16

3,7,10 15

3,5,7

4,10

4, 10

5,15

1,2,3,5, ,8,9,

11,12,13,14,15,16

6

S5

S15

S10

S7

S6

S4

S7

S1

S3

N9 N5

N2

N8

N3

N13

N11

N6

N14

Step 5: N11 has the highest priority
among all the unsatisfied nodes; DOSA
coloring is complete - all nodes are
satisfied

1,2,4,6,8,9,

11,12,13,14,16

3,7,10 15

3,5,7

4,10

4, 10

5,15

4, ,107

1,2,3,5, ,8,9,

11,12,13,14,15,16

6

S7

N13
3,5,7

Key:

Assumption:

Slot assigned by LMAC

LMAC uses 16 slots.
Thus | | = 16.K

Node ID
DOSA Colors

LMAC Color

Fig. 2. A step-by-step example of how DOSA colors are assigned

information of n. This error may prevent DOSA from stabilizing within a finite
time. Thus it is essential for DOSA to possess the cache coherence property [7].

Let each node v ∈ V in the sensor network have a variable, Cv indicating
the colors owned by node v. For each (u, v) ∈ E, let u have a variable ♦uCv

which denotes a cached version of Cv. We can call a system cache coherent if
∀u, v : (u, v) ∈ E : ♦uCv = Cv [7]. This means that whenever v assigns a value
to Cv, node v also broadcasts the new value to all its neighbors. The moment
a node u receives an updated value of Cv, it instantaneously (and atomically)
updates ♦uCv.

If we consider the operation of LMAC alone, the cache coherency property
does not hold. Let us consider the case where two adjacent nodes v and u own
the slots i and j respectively where j > i. Suppose v first broadcasts its updated
state information to u during its own slot i. Now consider the case where the state
of v changes in slot l where i < l < j. In this case, v will be unable to broadcast
its newly updated status to u as the earliest time when it can transmit will be
in slot i+n where n is the number of slots in a single frame, i.e. v would have to
wait one entire frame. This delay in transmission prevents the cache coherence
property from existing. Nevertheless, for DOSA we have the following lemma:

Lemma 2. Assuming no errors occur, nodes executing the DOSA algorithm on
top of the LMAC protocol are all cache coherent.

Proof. In order to ensure cache coherence, DOSA carries out pre-transmission
state information processing or PSIP. PSIP ensures that while a node updates

376 S. Chatterjea et al.

its cache information the moment it receives updated state information from any
adjacent neighbor, the node blocks any processing of the information in its cache
until the point just before it transmits during its own slot. This effectively means
that a node broadcasts any updated state change the moment it is detected and
a node cannot experience a change in state at any time other than during its own
slot. Thus while LMAC alone does not support cache coherence, PSIP guarantees
that the state information used by DOSA is always cache coherent.

There are a few properties that DOSA possesses that ensure that it stabilizes
within a finite time: (i)Cache coherence (Shown in Lemma 2), (ii)Closure prop-
erty, (iii)Convergence property. We describe the convergence and closure prop-
erties in greater detail below.

Lemma 3. DOSA demonstrates both the convergence and closure properties.

Proof. Recall from Section 4 that S denotes the set of all possible states. Let
M ∈ S (i.e. S\M = L) denote the set of all illegitimate states. In DOSA, we
consider all the nodes in the network that are not in the Satisfied state to
belong to the set M. Similarly, L represents all the nodes that have acquired
the Satisfied state. DOSA’s prioritization scheme, which is based on the com-
bination of degree and ID of a node implies that a node can always compute a
unique priority. This ensures that as long as |M| > 0, in every atomic step, at
least one node is enabled and thus attains the Satisfied state, i.e. if n ∈ M,
|M| = i and |L| = j in step r, then at step r + 1, n ∈ L, |M| = i − k and
|L| = j + k where k > 0. Thus over a finite number of steps, all nodes in M
eventually converge towards L.

Furthermore, as we assume that no communication errors or topology changes
occur during the initialization process, a node that acquires the Satisfied state,
remains in that state forever, regardless of the messages received. This is syn-
onymous to the closure property.

Lemma 4. Assuming no transmission errors or topology changes occur, given
that d is the number of nodes in G′max, which is the largest independent compo-
nent in G, the time taken for all nodes in G to attain the Satisfied state, ts
(in frames) in DOSA during the initialization is such that d + 1 ≤ ts ≤ 2d − 1.

Lemma 5. During the initialization of DOSA, every node in the network trans-
mits a total of 3 messages.

We refer the reader to [2] for the proof of the above two lemmas.

Handling Message Corruption. Up to now, we have assumed that all com-
munication is error free. However, DOSA does take certain steps to ensure that it
continues to operate normally even when transmission errors or topology changes
occur. Due to lack of space, we refer the reader to [2] for further details.

Energy-Efficient Data Acquisition 377

6 Performance of DOSA

The effectiveness of DOSA can be evaluated by observing the number of corre-
lating nodes at any point of time and comparing it against the case of raw data
collection where every node will be involved in transmitting raw sensor readings.
The cardinality of the maximal independent set can vary greatly depending on
the set of chosen nodes. This results in varying degrees of energy efficiency since
a larger cardinality means lower efficiency as compared to raw data collection.

This then leads us to the following question: Given a particular graph, what
is the maximum cardinality of the maximal independent set formed by DOSA?
This would give us an estimation or bound on the worst case performance of
DOSA. Since computing the maximum maximal independent set of a given
graph is NP-hard [4], we take a ”covering” approach to give a bound on the
worst case performance of DOSA.

x

y

r

r

45

Area of one square = 2r
2

r

2

Fig. 3. Estimating the cardinality of the maximum maximal independent set generated
by DOSA

Lemma 6. The worst case performance of DOSA can be guaranteed to result
in a savings of at least (2nr2

xy − 1) × 100% compared to raw data collection when
n nodes are uniformly distributed in an area of dimensions x× y and every node
has a circular transmission radius of r.

Proof. Let us divide the area x × y into m squares where, m = xy
2r2 . Since the

nodes are assumed to be randomly distributed, we may reasonably assume that
nodes are present in all m squares, Figure 3. Note that this results in a worst-case
estimation. Furthermore, we assume that exactly one node in every square forms
part of a maximal independent set. We immediately see that it is not possible to
have more than one node which is part of the maximal independent set in a single
square as these ‘extra’ nodes would be in range of the first chosen node. Thus
this consequently implies that the cardinality of the maximal independent set
would be m. It would be impossible to increase the size any further by adding
any more nodes. We can then conclude that the maximum cardinality of the
maximal independent set created by DOSA is m. Thus the percentage savings
of DOSA compared to the collection of raw data would then be, n−m

m × 100.
This can then be simplified to (2nr2

xy − 1) × 100%.

378 S. Chatterjea et al.

Network density, μ can be defined as follows: μ = nπr2

xy . Using the above equa-
tions, we can then state |I| ≤ nπ

2μ where I is any independent set also including
the one computed by DOSA. However, network density is approximately equal
to average connectivity, i.e. nπ

2μ ≈ nπ
2(ρ−1) where ρ is the average connectivity. This

result is used to plot the graph in Figure 5(a) which estimates the cardinality of
DOSA as the average connectivity is varied.

6.1 Coping with a Dead Node

DOSA ensures that a node is able to reorganize the scheduling algorithm within
a finite time autonomously the moment a neighboring node disappears from
the network by retrieving cross-layer information from the underlying LMAC
protocol, i.e. the death of a node triggers an update in the LMAC Neighbor
Table.

The death of a node leads to the disappearance of the colors that were owned
by the dead node. This can lead to two possible scenarios. Firstly, it may be
possible that one or more neighbors of the dead node still satisfy constraints 1
and 2 as the colors that have disappeared with the dead node are also present
in its neighboring nodes. In this case, the Satisfied neighboring nodes con-
tinue to maintain their existing schedules and do not transmit any messages.
Note however, that while their color assignments are invariant, the degree of the
neighbors of the dead node reduces by one. It is important that nodes that are
one hop away from the neighbor of the dead node are informed about this change
of degree as this information would be required in case any schedules need to be
reassigned in the future due to certain network perturbations. However, as our
design takes advantage of cross-layer information from LMAC, explicit message
transmissions are not required to relay information regarding a change of degree
of a node. This information is instead automatically disseminated through the
periodic broadcast of the CM section of the LMAC protocol. Recall that the
Occupied Slot list in the CM section can also be used to deduce the degree of a
node.

In the second scenario, the death of a node may result in one or more neigh-
boring nodes ending up with certain missing colors. As these nodes no longer
satisfy constraints 1 and 2, the nodes switch to the Unsatisfied state and
broadcast this change in status to their immediate one-hop neighborhood. A
node then waits for one frame to see if any of the neighboring nodes are also
in the Unsatisfied state. After waiting one frame, the node with the missing
color(s) acquires all the colors it lacks if it has the highest priority among all
the unsatisfied nodes. This whole process is described in Algorithm 2. If a node
lacks a color but does not have the highest priority, it continues to wait until all
its higher priority unsatisfied neighbors have become satisfied. In other words
the node continues to execute Algorithm 1 every time it receives a NodeStatus
message until it finally acquires the Satisfied state.

In order to explain the timing bounds of DOSA when a node dies, we use
the same argument as in the proof of Lemma 4. We can extend this lemma in
Lemma 7. (Refer to [2] for the proofs of Lemmas 7 - 9.)

Energy-Efficient Data Acquisition 379

Algorithm 2. DOSA - Coping with the loss of a node
Input: LMAC Neighbor Table indicates at least one missing node
Output: NodeStatusMSG(SatisfiedStatus(FALSE & TRUE), ColoursOwned)/NIL
1: Update(LocalInfoTable, v)
2: if MissingColours(v) = TRUE (i.e. SatisfiedStatus(v)=FALSE) then
3: Broadcast NodeStatusMSG(Degree,SatisfiedStatus(FALSE), ColoursOwned)
4: WAIT one frame
5: Compute Priority(v)
6: if Priority(v)=Highest then
7: Cv ← K\CΓ ′(v)

8: ColorsOwned← Cv

9: SatisfiedStatus← TRUE
10: Update(LocalInfoTable, v)
11: Broadcast NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
12: end if

13: end if

Lemma 7. When a node v with x neighbors dies, the maximum time taken
for all nodes to converge towards the Satisfied state is x + 1 frames where
x ≤ |K| − 1.

Lemma 8. When a node v with x neighbors dies, the maximum possible number
of messages that may be transmitted is 2x where x ≤ |K| − 1.

Lemma 9. When a node v dies, only its first order neighbors may be affected,
i.e. may switch from the Satisfied to the Unsatisfied state.

6.2 Coping with a New Node

When a node dies, DOSA executes one fixed set of steps to ensure that the
scheduling scheme stabilizes within a finite time. In the node addition operation
however, the set of steps taken by DOSA depends on the events that occur when
a new node v is added to the network. For example, the node v may detect an
LMAC collision or may cause colliding or missing colors in neighboring nodes or
may even cause a combination of these events. Different permutations and com-
binations of these events can cause the network to react in a multitude of ways.
This makes it impractical to analyze the performance bounds of every particular
sequence of events that causes the network to react in a certain manner. Instead,
we categorize all the permutations and combinations of events in terms of how
far the network disturbance propagates when a node v is added to the network.

For example, depending on the combination of events, nodes that are either
2 or 3 hops away from node v may become Unsatisfied. (Refer to [2] for a
detailed description of all possible events.) However, the addition of a node does
not cause a domino effect in DOSA as explained in the following lemma. We
refer the reader to [2] for the proof.

Lemma 10. When a node v is added, all nodes beyond the 3rd order neighbor-
hood of v can be guaranteed to be unaffected (i.e. they remain in the Satisfied
state).

380 S. Chatterjea et al.

STEP 1:
STEP 2:

STEP 3:

STEP 4:

STEP 5:

Node acquires an LMAC slot.
Node detects node and adds it to its

LMAC Neighbor table. Node then unicasts a
message indicating its own

status.
Node waits to receive

messages from all its neighbors. It then acquires
colors depending on its computed priority.

Node gives up the colors which are
colliding with node .

Node detects missing colors and
broadcasts message.

After one frame, it either acquires the appropriate
colors and switches to the status, or

waits until all its higher priority neighbors have
turned . (Algorithm 2)

n

v n

v

NodeStatus

n NodeStatus

v

n

w

NodeStatus

to node n

Unsatisfied

Satisfied

Satisfied

t
i
m

e

w v n

STEP 1

STEP 3

STEP 5

STEP 2

STEP 4

CM

NSM(Satisfied)

NSM(Satisfied)NSM(Satisfied)

NSM(Unsatisfied)

NSM(Satisfied)

NSM(Satisfied)

}At least one frame later

Fig. 4. Timing diagram for addition of a new node, n (Node v is adjacent to n and
node w is 2 hops from n)

Algorithm 3. DOSA - Coping with a new node
Input: NodeStatusMSG(SatisfiedStatus(TRUE), ColoursOwned)
Output: NodeStatusMSG(SatisfiedStatus(TRUE), ColoursOwned)
1: Update(LocalInfoTable,n)
2: if LocalInfoTable contains entries from ALL adjacent nodes then
3: Compute Priority(n)
4: if Priority(n)=Highest then
5: Cn ← K\CΓ ′

LMAC
(n)

6: else
7: Cn ← K\CΓ ′(n)

8: end if
9: Update(LocalInfoTable,n)

10: Broadcast NodeStatusMSG(SatisfiedStatus(TRUE), ColoursOwned)

11: end if

While theoretically the addition of a node can cause a network disturbance to
propagate 3 hops, our earlier simulation results (based on 10,000 node additions
over 100 randomly deployed topologies) indicate that in around 92% of the cases,
the network disturbance is restricted to within the second order neighborhood of
the newly added node [2]. In 8% of the cases, none of the neighbors are affected.
Third order neighbors are only affected in less than 1% of the cases.

Irrespective of the sequence of events that occur, DOSA always executes a
few common steps when a new node joins the network. The next set of steps
depends on how far the network disturbance will propagate. We first explain the
initial common steps below.

When a new node, n is added to the network, LMAC ensures that the node
occupies a slot that is not used by any other nodes within 2 hops of n, Figure 4,
Step 1. Node n then begins broadcasting its CM section. Neighboring nodes
then detect the new node and add its entry into their LMAC Neighbor Table,
Figure 4, Step 2. We explain the remaining steps taken by DOSA by referring
to a neighboring node of node n as node v. It is also explained in Algorithm 3.

The moment v, which is already in the Satisfied state, detects a new node,
n, it unicasts a NodeStatus message to node n, Figure 4, Step 2. Node n then
waits to receive NodeStatus messages from all its adjacent neighbors, Figure 4,

Energy-Efficient Data Acquisition 381

Table 2. Upper bounds for time and message transmission when a node is added

No effect (Group 1, 8%) 1st order (Group 2, 46%)
Event type - Color collision

Max. time (Frames) ≤ 1 ≤ 1
Max Msgs Tx = |Γ ′

1(v)| + 1 ≤ 2|Γ ′
1(v)| + 1

2nd order
Event type Color collision (Group 3, <1%) Missing color (Group 4, 46%)

Max. time (Frames) ≤ 2 2 + |Γ ′
2 \ Γ ′

1|
Max Msgs Tx ≤ 2|Γ ′

1(v)| + 1 + |Γ ′
2 \ Γ ′

1| ≤ 2|Γ ′
1(v)| + 1 + 2|Γ ′

2 \ Γ ′
1|

3rd order
Event type Missing color (Group 5, <1%)

Max. time (Frames) 3 + |Γ ′
3 \ Γ ′

2|
Max Msgs Tx ≤ 2|Γ ′

1(v)| + 1 + 2|Γ ′
2 \ Γ ′

1| + 2|Γ ′
3 \ Γ ′

2|

Step 3. By this stage, n would know about the existence of all its adjacent
neighbors as any existing LMAC collisions would have already been resolved.

From this point onwards, the actions taken by DOSA are dependent on the
sequence of events that occur. Once n has received NodeStatus messages from all
its adjacent neighbors, it checks if it has the highest priority within its immediate
neighborhood. If n finds that it has the highest priority, it acquires all colors
except the LMAC colors of the adjacent neighboring nodes. This helps to ensure
that over time, even if the network topology changes, the cardinality of the
maximal independent set continues to be low.

However, if node n realizes that it does not have the highest priority, it simply
acquires all the colors that it is presently lacking. As node n has now satisfied
constraints 1 and 2, it broadcasts a NodeStatus message indicating that it is
Satisfied.

At this stage, a neighboring node v, that receives the NodeStatus message
from n may detect that some of its colors are colliding with n. This would mean
that Constraint 1 is not being met. Thus node v gives up the colliding colors,
attains the Satisfied state, updates its own LocalInfoTable and informs all its
neighbors through a broadcast operation, Figure 4, Step 4.

As v has given up certain colors, it could be possible that a node w, that
is adjacent to v but not to n (i.e. w is 2 hops away from n), may become
Unsatisfied (due to the NodeStatus message transmitted in Step 4 of Figure 4).
Node w can then resolve the situation by executing Algorithm 2 which allows it
to recover when certain colors are found to be missing, Figure 4, Step 5.

Next we present the upper bounds of DOSA in terms of time taken to stabilize
the network and number of message transmissions when a new node is added.
Since the addition of a node can result in the occurrence of several events, we
breakdown the analysis into 5 possible groups, based on the depth of propagation
of the network disturbance as shown in Table 2. Note that these 5 groups
encompass all the possible sequence of events that can happen due to the addition
of a new node, e.g. colliding LMAC slots, new node acquiring the highest priority,
etc.

We refrain from explaining the derivations for the theoretical upper bound
times for network stabilization shown in Table 2 as they have been derived using
the same arguments presented earlier in Lemma 4. However, in order to present

382 S. Chatterjea et al.

Table 3. Rules describing number of message transmissions

No. Description of rule
1 When a node that has already acquired DOSA colors detects a new neighbor node, v, it

unicasts one NodeStatus message to node v.
2 A new node, v broadcasts one NodeStatus message once it has acquired its LMAC slot,

resolved all LMAC collisions amongst its neighbors and has received NodeStatus messages
from all its neighbors.

3 A node, that acquires a new LMAC color that is not listed in its existing list of DOSA
colors broadcasts one NodeStatus message.

4 A node that experiences a color collision event transmits one NodeStatus message.
5 A node that experiences a missing color event transmits two NodeStatus messages - the

first to indicate that the node is Unsatisfied due to the missing color(s) and the second to
indicate the node is Satisfied after it has acquired the appropriate colors.

a more concise explanation, we present the theoretical upper bounds for the
number of message transmissions using a set of 5 rules listed in Table 3. We
refer the reader to [2] for an example on how these rules can be used to work
out the upper bounds in Table 2.

7 Details of Implementation and Results

We evaluate the performance of DOSA by implementing the algorithm on 25
Ambient 2.0 μNodes [1]. While the footprint of LMAC and the AmbientRT
operating system [1] is 2782 bytes, DOSA only takes up 869 bytes. All 25 nodes
including the sink are within transmission range of each other, i.e. they form a
complete graph. However, testing DOSA ideally requires a multihop network.
As it is impractical to test a large number of different multihop topologies, we
generate the topologies randomly and broadcast this information from the sink
to the entire network. On receiving this information, each node uses it to create
a virtual set of neighbors which is obviously a subset of the actual neighbors.
This results in a multihop topology. While LMAC uses the actual neighbors
to perform slot allocation, DOSA uses the virtual set of neighbors to operate.
We generate topologies for 5 different average connectivities ranging from 5 to 9.
For each average connectivity, we create 50 random topologies and each topology
consists of 25 nodes. Thus we have 250 topologies in total.

Our tests are designed to investigate the performance of DOSA in terms of
(i) energy savings compared to collecting raw data and (ii) network stabilization
times and message transmissions when a node is removed or added to the net-
work. We have already computed the upper bounds for stabilization times and
message transmissions. We now perform experiments to investigate how often
and to what proportion these upper bounds are reached in reality.

Figure 5(a) shows that even at high cardinalities, i.e. low average connectivity
the number of correlating nodes is not greater than 32% which results in 68%
energy savings when compared to collecting raw data. As the average connectiv-
ity of the network increases, the cardinality reduces producing savings of up to
80% when the connectivity rises to 9. The difference between the estimate and
the actual results can be attributed to boundary effects.

Energy-Efficient Data Acquisition 383

4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

Average connectivity

Approximate
cardinality

(a)

N
o

.
o

f
c
o

rr
e

la
ti
n

g
n

o
d

e
s

a
t

a
p
a

rt
ic

u
la

r
in

s
ta

n
t

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

No of neighbors of dead node

A
v
e

ra
g

e
ti
m

e
ta

k
e

n
fo

r
n

e
tw

o
rk

to
s
ta

b
ili

z
e

Average time

Maximum time

Theoretical upper bound

(c)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

No. of neighbors of dead node

N
o

.
o

f
m

e
s
s
a

g
e

s
tr

a
n

s
m

it
te

d
in

o
rd

e
r

to
s
ta

b
ili

z
e

n
e

tw
o

rk

Average no. of messages
transmitted

Theoretical upper bound

(a) Impact of average connectivity on the
number of correlating nodes at a particular
instant

(b) Time taken for a network to stabilize once
a node dies

(c) Number of messages transmitted in order
to stabilize the network once a node dies

(d)

0 2 4 6 8 10

x 10
4Total no. of messages transmitted

With cross-layer optimization

Without cross-layer optimization

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

No. of 1st hop neighbors of new node

T
im

e
ta

k
e
n

fo
r

n
e
tw

o
rk

to
s
ta

b
ili

z
e

(F
ra

m
e
s
)

(e)

Average time

Theoretical upper bound

(f)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

o
f

fr
e

q
u

e
n

c
y

(C
o

u
n

t
in

a
b

in
/T

o
ta

l
n

u
m

b
e

r
o

f
o

b
s
e

rv
a

ti
o

n
s
)

Percentage of upper bound for
number of messages transmitted

(d) Number of messages transmitted
over 1200 node deletions with and
without cross-layer deletions

(g)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

o
f

fr
e

q
u

e
n

c
y,

(C
o

u
n

t
in

a
b

in
/T

o
ta

l
n

o
.

o
f

o
b

s
e

rv
a

ti
o

n
s
)

Percentage of upper bound for maximum
time for network stabilization

P
e

rc
e

n
ta

g
e

o
f

fr
e

q
u

e
n

c
y,

(C
o

u
n

t
in

a
b

in
/T

o
ta

l
n

o
.

o
f

o
b

s
e

rv
a

ti
o

n
s
)

(h)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Percentage of upper bound for
number of messages transmitted

(e) Time taken for a network to stabilize once
a node has been added to the network

(f) How often the upper bound of the number
of messages transmitted for the "1st order
color collision" event is reached when a new
node is added

(g) How often the upper bound of the time
taken for network stabilization for the "2nd
order missing color" event is reached when a
new node is added

(h) How often the upper bound of the number
of messages transmitted for the "2nd order
missing color" event is reached when a new
node is added

P
e

rc
e

n
ta

g
e

o
f

fr
e

q
u

e
n

c
y,

(C
o

u
n

t
in

a
b

in
/T

o
ta

l
n

o
.

o
f

o
b

s
e

rv
a

ti
o

n
s
)

Fig. 5. Implementation results of DOSA

According to Figure 5(b) the average stabilization times, maximum stabiliza-
tion times and the theoretical upper bound increase with the number of neighbors
of the dead node. However, the rate of increase of the average and maximum
times decreases as the number of neighbors of the dead node increases. This
is because the probability of having a large number of nodes arranged in an
increasing manner (refer to [2] for more details) reduces as the number of neigh-
bors increases. Thus a higher density network may not necessarily mean a longer
recovery time when a node is removed. In fact, according to the results, when
a node with 12 neighbors dies, the average recovery time is around 23% of the
theoretical upper bound.

As explained earlier, in the worst case, when a node dies causing all its neigh-
bors to become Unsatisfied, every single neighbor will need to transmit two
messages (as indicated in Lemma 8). However, in random network topologies, as
shown in Figure 5(c) the average number of messages transmitted when a node
dies is only around 30% of the maximum theoretical upper bound. Figure 5(d)

384 S. Chatterjea et al.

shows that the number of messages transmitted over 1200 node deletions is sig-
nificantly lower when cross-layer information is used. Instead of each neighbor
of the dead node transmitting a NodeStatus message, regardless of their status,
use of cross-layer information causes only the Unsatisfied nodes to transmit
messages leading to overall message transmission savings of up to 42%.

Our earlier simulation results in [2] indicate that ”1st order color collision”
and ”2nd order missing color” events (Table 2) occur in 92% of all the 10,000
simulation runs while ”No effect” occurs in 8% of the cases. The other events
occur in less than 1% of the cases. We present the implementation results only
for the more significant ”1st order color collision” and ”2nd order missing color”
events. Figure 5(e) shows that regardless of the number of 1st order neighbors a
new node has, the network stabilization time remains within 1 frame coinciding
with the bounds stated in Table 2. Figure 5(f) shows that only in 1% of all 1st

order color collision cases the number of messages transmitted when a new node
is added was around 90-100% of the upper bound for message transmissions. In
around 80% of the cases the number of messages transmitted was around 50-70%
of the upper bound. Figure 5(g) shows that around 92% of time, the network
stabilization time when the 2nd order nodes experience a missing color event,
was less than 40% of the upper bound. Figure 5(h) shows that in nearly 90%
of cases, the number of messages transmitted was less than 70% of the upper
bound. Notice that the results in Figure 5(f) tend closer to the upper bound than
those presented in Figure 5(h). This is because while the results in Figure 5(f)
only require the 1st order nodes to be affected, the results in Figure 5(h) involve
both the 1st and 2nd order nodes. Naturally the probability of affecting nodes
both in the 1st and 2nd order nodes is lower than affecting nodes in only the 1st

order.

8 Related Work

Extensive literature can be found describing various energy-efficient data extrac-
tion techniques for WSNs. The approach presented in [13] takes advantage of
spatially correlated sensor readings but it is primarily designed for event-based
queries. They also assume that individual nodes are location aware which is not
required in DOSA. Unlike DOSA which is designed for multihop networks, the
strategies proposed in [9,6] are not scalable as they require all nodes in the WSN
to be in direct transmission range of the base station. Ken [3] takes advantage
of spatial and temporal correlations and works in a multihop environment, but
does not mention any details of how to cope with topology changes. Though
PAQ [11] takes advantage of spatial correlations between adjacent nodes, non-
clusterheads are always represented at the sink only by estimated readings unlike
DOSA which gives every node a chance to act as a correlating node. SAF [10]
reduces energy consumption by sending trends instead of individual readings.
However, it forms clusters off-line and thus fails to take advantage of correlations
between adjacent nodes. In the event of a sudden trend change, SAF requires all
the affected nodes to transmit model updates to the sink while DOSA causes

Energy-Efficient Data Acquisition 385

only the affected correlating nodes to transmit a model update. SAF and PAQ
also do not take advantage of any cross-layer optimizations using the MAC or
mention any theoretical bounds on possible energy savings.

9 Conclusion and Future Work

We have presented a distributed and self-organizing scheduling algorithm for
energy-efficient data acquisition, that takes advantage of spatial correlations of
sensor readings of adjacent nodes and cross-layer information from the MAC
protocol to result in up to 80% energy savings when compared to conventional
raw data collection. We present theoretical performance bounds and also show
results based on an actual implementation on sensor nodes to support our claim.
We are currently working on strategies to identify correlations and keep corre-
lation models updated.

References

1. Ambient systems (2006) http://www.ambient-systems.net/ambient/index.htm
2. Chatterjea, S., Nieberg, T., Meratnia, N., Havinga, P.J.M.: A distributed and self-

organizing scheduling algorithm for energy-efficient data aggregation in wireless
sensor networks. Technical Report TR-CTIT-07-10, Enschede (February 2007)

3. Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate data collection
in sensor networks using probabilistic models. In: ICDE, p. 48 (2006)

4. Crescenzi, P., Kann, V.: A compendium of np optimization problems: Maximum
independent set (2005)
http://www.nada.kth.se/viggo/wwwcompendium/node34.html

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific

protocol architecture for wireless microsensor networks. Wireless Communications,
IEEE Transactions on 1(4), 660–670 (2002)

7. Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003.
LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

8. Hoesel, L.v. Havinga, P.: A lightweight medium access protocol (lmac) for wireless
sensor networks: Reducing preamble transmissions and transceiver state switches.
In: INSS, Tokyo, Japan (June 2004)

9. Liu, C., Wu, K., Pei, J.: An energy efficient data collection framework for wireless
sensor networks by exploiting spatiotemporal correlation. IEEE Transactions on
Parallel and Distributed Systems (To appear)

10. Tulone, D., Madden, S.: An energy-efficient querying framework in sensor networks
for detecting node similarities. In: MSWiM, pp. 191–300 (2006)

11. Tulone, D., Madden, S.: Paq: Time series forecasting for approximate query an-
swering in sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

12. van Hoesel, L.F.W., Havinga, P.J.M.: Design aspects of an energy-efficient,
lightweight medium access control protocol for wireless sensor networks. Technical
Report TR-CTIT-06-47, Enschede (July 2006)

13. Vuran, M.C., Akan, B., Akyildiz, I.F.: Spatio-temporal correlation: theory and
applications for wireless sensor networks. Comput. Networks 45(3), 245–259 (2004)

http://www.ambient-systems.net/ambient/index.htm
http://www.nada.kth.se/ viggo/wwwcompendium/node34.html

An Adaptive Scheduling Protocol for Multi-scale Sensor
Network Architecture�

Santashil PalChaudhuri1 and David B. Johnson2

1 Aruba Networks, Sunnyvale, CA
2 Department of Computer Science, Rice University, Houston, TX

Abstract. In self-organizing networks of battery-powered wireless sensors that
can sense, process, and communicate, energy is the most crucial and scarce re-
source. However, since sensor network applications generally exhibit specific
limited behaviors, there is both a need and an opportunity for adapting the net-
work architecture to match the application in order to optimize resource utiliza-
tion. Many applications–such as large-scale collaborative sensing, distributed sig-
nal processing, and distributed data assimilation–require sensor data to be avail-
able at multiple resolutions, or allow fidelity to be traded-off for energy efficiency.
We believe that cross-layering and application-specific adaptability are the pri-
mary design principles needed to build sensor networking protocols. In previous
work, we proposed an adaptive cross-layered self-organizing hierarchical data
service under COMPASS architecture, that enables multi-scale collaboration and
communication. In this paper we propose a time division multiplexing medium
scheduling protocol tailored for this hierarchical data service, to take advantage
of the communication and routing characteristics to achieve close to optimal la-
tency and energy usage. We present an analytical proof on the bounds achieved
by the protocol and analyze the performance via detailed simulations.

1 Introduction

Sensor networking has emerged as a promising tool for monitoring and actuating the
devices of the physical world. It employs self-organizing networks of battery-powered
wireless sensors that can sense, process, and communicate. Such networks can be rapidly
deployed at low cost, enabling large-scale, on-demand monitoring and tracking over a
wide area. The sensors can be deployed where it is difficult or resource-intensive to mon-
itor the environment otherwise. Typical deployment examples are natural or man-made
crises like severe weather, wild-fires, earthquakes, volcanic activities, chemical, biologi-
cal or nuclear agents, and structural and habitat monitoring. In general, the sensors mea-
sure physical quantities at different spatial and temporal levels, supporting in-network
signal processing and data assimilation. Queried results are next communicated with one

� This work was supported in part by NSF under grants CNS-0520280, CNS-0435425,
CNS-0338856, and CNS-0325971; and by a gift from Schlumberger. The views and conclu-
sions contained here are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either express or implied, of NSF, Schlumberger,
Aruba Networks, Rice University, or the U.S. Government or any of its agencies.

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 386–403, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 387

or more data sinks. Finally, based on the prevailing result, the sink nodes perform the
desired computation to monitor and actuate the physical devices.

In this paper, we propose the design of an adaptive cross-layered scheduling service
for a hierarchical network architecture providing for multi-scale collaboration. Energy
and communication bandwidth are two of the most crucial and scarce resources in a
sensor network. Also, sensor network applications generally exhibit application spe-
cific characteristics. Consequently, there is both a need and an opportunity for adapting
the network architecture to match the applications. The objective is to minimize the re-
source consumption while extending the life of the network. There are specific require-
ments and limitations of sensor networks, which make their architecture and protocols
both challenging and significantly different from that of traditional network architec-
tures.

1.1 Motivating Application

The motivation to undertake this research came from the industrial need of sensor net-
work architecture for real life applications. Deployment of sensor networks to monitor
the ultra-clean environment for Intel fabrication plant [1] is a glaring example. The
fabrication plants use some of the most delicate equipments to produce hundreds of
thousands of chips daily. The fab process requires an ultra-clean environment with con-
trolled temperature and humidity. This critical environment is maintained by a com-
plicated cooling system composed of a diversity of pumps and coolers, amongst other
machines, with multiple moving components. The breakdown of any of this equipment
has a critical impact on the production line and results in significant losses. Today, Intel
technicians manually carry around sensors to monitor abnormal vibrations in the equip-
ment, which can detect worn bearings, failing compressors, and defective chillers. This
vibration data is fed to an application which uses Fourier analysis to compare against
expected profiles. When the analysis detects a variation in vibration outside the normal
range, the affected equipment is scheduled for maintenance during normal down time.

Automation of this process makes it less dependent on human frailties—fatigue,
oversight, and error—as well as enables more frequent monitoring for failures with
rapid deterioration characteristics. Recently, Intel deployed a sensor network for gath-
ering requisite operational data in an efficient way.

Real life deployment of proposed scheme demands robustness and optimization in
many critical areas. Challenges in such a system include clustering together nodes of
interest, providing communication paradigms for ease of application development, and
efficient scheduling of communication between the battery-powered nodes. Optimiza-
tions possible include the following: (1) Temperature and vibration are monitored at
different scales, and the reading of coarse granularity is reported frequently. Finer gran-
ularity readings of different scales are reported less frequently to conserve energy. For
uni-dimensional data, like temperature or humidity, simple operations like computing
the maximum or average suffice in the hierarchy of sensors. For multi-dimensional data,
like vibration data, more complex compression algorithms can be utilized to reduce the
data for communication. (2) In case of anomalous data, finer resolution sensor readings

388 S. PalChaudhuri and D.B. Johnson

are necessary to localize the area from which the anomaly was generated. Automatic
alarms, with exact location and nature of the problem, are triggered for the operator,
who then schedules immediate maintenance of the equipment.

1.2 COMPASS Overview

Many applications, such as large-scale collaborative sensing, distributed signal process-
ing, and distributed data assimilation require the sensor data to be available at multiple
resolutions, or allow fidelity to be traded-off for energy efficiency. The COMPASS ar-
chitecture [2] we proposed enables scalability, localization and resolution-tuning, as
well as provides communication abstractions to simplify application design. A few il-
lustrations of applications that take advantage of this multi-scale approach include the
following:

– Multi-resolution Data Extraction: A monitoring application requires variable res-
olution of sampled data. It requires higher resolution during operation at specific
times of day or during periods of large variation, but lower resolution at other times.
Also, a finite energy budget might be specified, and the resolution has to conform
to this budget while providing the best possible resolution.

– Requisite Resolution Drilling: An application may demand relatively higher reso-
lution data from a specific region. For example, the specific region might be a high
security area thereby requiring closer monitoring, or the region might be deemed
to be of greater interest because of the inherent nature of low-resolution data ema-
nating from it. The specific region might actually have a fire, or may be generated
due to malfunctioning sensors generating anomalous data.

The sensed data are the measured quantities governed by laws of physics. Conse-
quently, there exists considerable temporal and spatial locality of measured data. For ex-
ample, a sensor measuring temperature will have a high correlation with that of nearby
sensors, as well as with its values sensed at earlier times. A simple hierarchical struc-
ture supporting multi-resolution will not be able to exploit such correlation effectively.
A network hierarchy aligned to the communication flow can lead to operational effi-
ciency in respect of volume and frequency of data to be transmitted. In this background
we proposed a self-organizing, self-adapting sensor network architecture based on the
specific requirements of an application.

The proposed architecture takes advantage of the fact that sensor network applica-
tions exhibit specific sets of behavior, compared to completely generalized network ap-
plications. The communication pattern in respect of source-destination pairs, as well as
duration and periodicity, is known a priori in many applications. As opposed to multi-
hop forwarding in ad hoc networks, the fusion of forwarded data in a sensor network
opens the possibility of reduced communication, achieving higher efficiency of energy
management. Hence, there exists opportunities to adapt the network protocols to meet
the application requirements. Such adaptations require cross-layer optimizations in the
networking stack, which goes beyond the strict protocol layering.

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 389

2 Adaptive Scheduling Service

This paper presents the design and evaluation of a scheduling protocol tailored for a
multi-scale architecture. This energy efficient scheme enforces a tight bound on la-
tency. It exploits the characteristics of sensor networks—periodic communication, lim-
ited communication abstractions, and known fusion function properties. To the best of
our knowledge, scheduling based on information dependency of this type has not been
attempted earlier. This scheduling takes into account the data flow as well as the ag-
gregation performed at each hop. The scheduling protocol is adaptive: it is driven by
the application demand and optimized for energy usage. Since no one single schedul-
ing protocol is well-suited for all sensor applications [3], the network services need
to adapt to the application-specific requirements. We design the scheduling protocol
for data monitoring applications like that in the Intel fabrication plant noted earlier.
Although the scheduling protocol has been optimized for such an application, it can
support any generalized communication paradigm.

In the following sections, we present the background followed by a survey the related
work. Next, we provide the design of the protocol, analyze its bounds, and report the
simulation results.

2.1 Design Principles

In this section, we explore the design space for the scheduling protocol. The scheduling
is a way to allow contending nodes to share a common channel by allocating non-
conflicting time slots. The alternate to such a scheduling approach is contention-based
access.

In shared-medium networks, one of the fundamental tasks of a medium access con-
trol (MAC) protocol is to avoid collisions between two interfering nodes. The protocol
allocates the channel to the nodes efficiently, so that each node can communicate within
a bounded waiting time and with as little overhead as possible. Some of the important
attributes for traditional MAC protocols are fairness, latency, throughput, and band-
width utilization. In contrast, the important attributes of a MAC protocol for WASN are
energy efficiency and scalability towards size and topology change. The major sources
of energy waste as elaborated by Ye et al. [4] are:

– Collisions: A collision results in corruption of a packet and subsequent retransmis-
sion, leading to increased energy consumption and latency.

– Idle listening and overhearing: Listening for packets addressed to this node or
destined for other nodes wastes energy. Idle listening consumes significant energy
comparable to actually receiving a packet.

– Control packet overhead: Increased control overhead consumes extra energy for
transmitting and receiving these control packets.

The prior MAC protocols proposed [5,4] for WASN have identified and addressed
many of the WASN environment requirements. However, the inherent advantages that
can be derived from the specific characteristics of WASN have not been fully exploited.
The following properties of WASN applications can be exploited for the MAC protocol
design:

390 S. PalChaudhuri and D.B. Johnson

– Many sensor network applications have communication requirements that are peri-
odic and known beforehand such as collecting temperature statistics at regular inter-
vals. This periodic nature can be used to schedule the medium access by the nodes
and thus minimize collisions. This can also aid the radio interfaces sleep/wake-up
decisions and thereby decrease the idle listening and overhearing.

– A contention-based medium access scheme will also be necessary to support event-
driven applications, such as intrusion or fire detection. The forwarding node can
be woken up in time to process event-driven data by making it application-aware.
Real-time constraints can be communicated from the application to adapt the MAC
protocol to meet its deadlines.

– Frequently, sensor network applications are used for data gathering or monitoring,
which implies that those communication flows are destined towards the sink. This
single-destination communication characteristic can be taken advantage of in the
MAC protocol to build efficient transmission schedules.

– In-network processing is used in sensor networks to reduce communication require-
ments. Knowledge of the aggregation characteristics can help determine a bound on
the traffic requirements of each node.

The MAC protocol should have two modes to support the two different communica-
tion requirements of sensor applications, namely periodic and event-driven. The need
to support these two kinds of modes was recently proposed in the IEEE standard for
low-power sensors [6]. The relative proportion of the two modes in a frame can be dy-
namically determined by the applications, depending on the application’s current needs.

Periodic Contention-Free Period: Medium access in this mode is of the class of Spa-
tial Time Division Multiple Access (STDMA) [7] protocols. The application’s deter-
ministic traffic distribution during the periodic communication can be used to compute
an efficient slot allocation policy. The length of each slot should be large enough to send
a complete data packet of fixed a size.

Event-Driven Contention Access Period: During this mode, a sensor will be in sleep-
mode except when necessary to communicate. The mode is based on IEEE 802.11
protocol [8] with carrier sense and RTS-CTS.

3 Related Work

There is a significant body of research that addresses the problem of providing access
to the medium for next-hop communication. These protocols can be categorized as
contention-based and schedule-based.

3.1 Contention-Based Protocols

IEEE 802.11 [8] is the best-known example of a contention-based MAC protocol. It
uses a carrier sense multiple access technique combined with a handshake mechanism
to access the channel and avoid collisions. A key limitation of IEEE 802.11 is that
the nodes stay in idle mode for a long time, and hence this protocol is not suitable for

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 391

energy-constrained nodes. A simple Power Save Mode (PSM) is specified in order to re-
duce the energy consumption. Nodes are time-synchronized and awake at the beginning
of a certain multiple of a beacon interval (called the Listening Interval and depends on
the client configuration). It stays awake for a certain fixed period, and during this time,
packets are exchanged to inform the nodes of buffered traffic. The nodes for which
traffic is destined will remain awake after the fixed interval to receive the packets.

El-Hoiydi [9] proposed a low-level carrier sense technique that effectively duty cy-
cles the radio. The basic idea is to shift the cost of data transfer from the receiver to
the transmitter by increasing the length of the preamble. This leads to greater energy
efficiency, as the number of receivers is more numerous than the number of transmitters
in a broadcast network. In a recent implementation of this idea in the B-MAC proco-
tol [10] as part of TinyOS, this preamble length is exposed as a parameter to the upper
layers, so the application can select the optimal trade-off between energy savings and
performance.

To reduce the overhead of periodic waking up and listening for incoming packets,
there have been a number of proposals addressing this issue. The PAMAS protocol [11]
was one of the first power-saving protocols that allows nodes to sleep when there is
ongoing transmission in the neighborhood, leading to increased energy savings. S-
MAC [4] adds a fixed slot structure and does duty cycling within each slot. At the
beginning of each slot, nodes wake up and contend for the channel. The duty cycle can
be directly controlled by the application for energy-performance trade-off, but the duty
cycle must be fixed a priori. T-MAC [5] introduced an adaptive duty-cycle to automat-
ically adjust to traffic fluctuations inherent in many applications.

All of the above techniques are useful for energy optimization when the traffic pattern
is unknown. However, for situations when traffic pattern and routing path are known a
priori, it makes sense to take advantage of this information for additional optimization.

3.2 Schedule-Based Protocols

Schedule-based MAC protocols are attractive because they are collision-free and there
is no idle-listening. In this class of protocols, a slot is allocated for one node per neigh-
borhood uniquely. This collision-free slot is used by that node for transmissions to any
or all of it’s neighbors. Thus two nodes cannot be assigned the same slot if one station
is within the range of the other, or if two stations have common neighbors. The objec-
tive of these schedule-based protocols is to allow communication without interference,
while maximizing the number of parallel transmissions.

Over the years, a substantial number of algorithms [12,7,13] have been published in
an effort to solve the collision-free scheduling problem in multi-hop wireless networks.
As the optimal scheduling is an NP-hard problem, all of these algorithms provide ap-
proximate solutions. These mostly centralized protocols are not optimized for sensor
networks that have several unique characteristics compared to typical multi-hop ad hoc
networks.

Bluetooth scheduling [14] is a closely related field of work. It enables formation of
multi-hop networks using a combination of piconets, called scatternets. Each piconet
has a master and up to seven slaves. Bluetooth does not use a global slot synchroniza-
tion mechanism. Each link is individually synchronized by a reference provided by the

392 S. PalChaudhuri and D.B. Johnson

master in the link. Therefore, for multi-hop forwarding, slots are wasted as nodes need
to switch time references. Various techniques have been proposed to address this time
reference alignment problem. However, global synchronization is frequently required
by the applications themselves in sensor networks, so it is reasonable to assume the
existence of such a mechanism. Also, the master-slave structure in bluetooth is only
one-hop and hence cannot be directly applicable to schedule the multi-hop trees formed
by our proposed multi-scale architecture.

For multi-hop sensor networks, the TRAMA protocol [15] is one of the first propos-
als and is based on the NAMA protocol [16]. The nodes periodically awake to exchange
broadcasts to learn the two-hop neighborhood. Using this knowledge, nodes reserve
slots in the future for backlogged traffic. The protocol uses a hash function for detect-
ing priority among contending neighbors. This leads to priority chaining whereby nodes
can get higher priority in one neighborhood and lower in another, causing inefficient
scheduling. TRAMA tries to schedule packets hop-by-hop instead of flows, leading to
higher end-to-end latency.

Sichitiu’s work [17] is the closest to ours with regard to the fact that it tries to sched-
ule flows end-to-end. It dynamically sends a SETUP packet to schedule new flows. If
this packet is received without collision by the receiver, this slot is scheduled for this
pair of neighbors. This receiver then uses the same mechanism for forwarding the packet
over the next hop towards the data sink, thereby creating a scheduled flow for the whole
path. This approach is similar to the one we use for scheduling flows in our inter-cluster
scheduling. However, our intra-cluster protocol takes advantage of the fact that sensed
data are processed at each hop in many typical sensor network deployments, leading
to better compression and lesser number of slots necessary. In Sichitiu’s protocol, each
flow is individually scheduled, leading to higher latency in data sensing applications.

3.3 Graph Coloring

The scheduling problem can be directly mapped to the graph coloring problem. Min-
imum graph coloring is a well-known NP-hard problem and has been researched for
several decades in order to find solutions closest to the optimal. In the graph, a valid
distance-2 coloring assigns different colors to any pair of nodes between which there is
a path length of at most 2; this is very similar to producing a conflict-free schedule. A
good background work based on this is provided by Marathe et al. [18]. However, graph
coloring corresponds only to the 2-hop conflict-free property necessary for scheduling.
In our scheduling protocol, we have additional constraints on slot allocation due to
which previous graph coloring techniques cannot be directly applied. These constraints
are elaborated in the next section.

4 Medium Access Scheduling in a Hierarchy

This section describes the design of the medium access protocol for a hierarchically
clustered network. This medium access protocol is specifically designed for supporting
the communication abstractions supported in this architecture. There is a Conflict Free
Period (CFP) for periodic a priori known traffic, and a Contention-based Access Period

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 393

(CAP) for nodes to send event-driven traffic, and to introduce new periodic traffic. A
TDMA-style protocol is designed for the CFP, and we leverage the existing literature
on energy-efficient CSMA protocols [19,4,5] for the CAP.

A time frame in the protocol is shown in Figure 1. Interval L1 interval corresponds
to communication amongst nodes within the first-level cluster. A near optimal protocol
proposed to schedule intra-cluster communication is the main contribution in this chap-
ter, and is elaborated in Section 4.1. Interval Li for i > 1, is the time interval during
which communication takes place between cluster-heads at level i. The intervals for
communicating among different levels are separated so as minimize the perturbation
at higher levels when localized change takes place in lower-level schedules. The total
length of this CFP period is kept as small as possible for two reasons: (1) the CFP pe-
riod gives the lower bound on the real-time responsiveness of the system; and (2) the
nodes need to stay awake only during part the CFP period.

i

CFP

L L L L1 2 3L 4 iS

CFP = Collision Free Period

Frame

CAP

S = Synchronization

CAP = Contention Access Period
iL = Level slots

Fig. 1. Frame diagram

We make the following assumptions in the design of the protocol:

– Wireless links used for sending or receiving packets are bi-directional. This as-
sumption is typical for most MAC protocols.

– The interference range is the same as the range for transmission and reception. The
interference range depends on a variety of factors and cannot be represented easily
as a function of the transmission range. Most collision-free scheduling work on the
approximation of equality between transmission and interference range.
This assumption can be relaxed using techniques such as RID [20], where instead
of 2-hop communication to reach interfering nodes, multi-hop forwarding is used
to reach the interfering nodes. My theory of conflict-free slot allocation proposed
in this design requires the ability to ascertain and communicate with interfering
nodes. Thus, our protocol can be adapted to use RID in future, as RID provides
these.

– A clock synchronization facility [21] exists.

This new scheduling protocol is designed specifically for multi-scale data retrieval
applications, where data flows from the sensors to the sink. This is the common case
usually encountered in a typical sensor network application.

394 S. PalChaudhuri and D.B. Johnson

Algorithm 1. Centralized Algorithm for Intra-Cluster Scheduling
Require: k slots necessary per node known; Depends on fusion function and number of children

1: Traverse tree in Depth First order from cluster root
2: Finish order of the visit forms a topological sort to give a partial order
3: For each visited node, assign a minimum possible slot number s, with the following con-

straints
4: repeat
5: s > max (slot number allocated to any child)
6: s �= slot already allocated to any node within 2 hops
7: until k consecutive slots are found

4.1 Intra-cluster Scheduling

Protocol. The chief design goal of this scheduling protocol is to allocate spatially
conflict-free slots for each node within a cluster. A tree-like hierarchy within each
lowest-level cluster has already been created by the routing protocol. The other design
goals of this protocol are as follows:

1. Partial order: As the data flows upwards from the children to their parent, the par-
ents are allocated slots subsequent to the allocated slots of their children. This prop-
erty allows data from the lowest level sensor to flow to the top-level sink within one
frame, thereby decreasing the latency for data gathering per epoch. This induces a
partial ordering of the nodes to be maintained by the scheduling scheme.

2. Contiguous allocation: The slots allocated to the children of a node should be
close together, such that the parent can wake up for one contiguous time to receive
data packets from its children, and can then switch off the radio to save power. As
switching between on and off state consumes time and energy, contiguous alloca-
tion is beneficial. This entails a scheduling policy in which the slots of siblings
needs to be grouped together.

3. Fusion characteristics: The fusion function characteristics at each node are known
a priori, such as through the Information Exchange Service (IES) [22]. Fusion func-
tion characteristics are analyzed by the scheduling protocol to determine the num-
ber of slots to be allocated at each level. For example, for a fusion function such
as average sensed value, the parent needs to average its own value with the value
received from each of its children and then send it upwards in a single slot. The
number of slots to be allocated to a node per frame also depends on the application-
determined periodic rate, which can also be known through the IES. Therefore, a
node might have multiple slots allocated, as deemed necessary by the fusion func-
tion.

We first describe a base centralized scheduling scheme, that allocates conflict-free
slots and later generalize it to a distributed scheduling scheme. The centralized scheme
is shown in Algorithm 1, Within the lowest level cluster, a cluster-head coordinates
the traffic out of that cluster. It does a Depth-First Search (DFS) of the tree rooted
at itself, and sorts the nodes according to the finish order (of a DFS visit) to give a

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 395

post-order traversal of the nodes within the cluster. The post-order traversal has the
desirable property that the parent has a finish order immediately after the finish order
of its children in the tree. The slot times are assigned according to that given by the
topological sort, thereby providing the desired partial order. This algorithm produces a
collision-free slot allocation within a single cluster. However, this centralized scheme
has the following three problems: (1) It assumes a complete graph knowledge. (2) It
leads to a very inefficient slot allocation, with no concurrent communication at all. This
produces a large CFP, which is detrimental for real-time response. This is shown in
Figure 2, where 7 slots are used for 7 nodes. In the figure, the lines show the parent-
child relationship in the cluster and the dotted lines show that that nodes at the two ends
of that line are within range of each other. (3) Inter-cluster interference is not accounted
for.

We next describe a distributed token-passing protocol to compact the slot allocation
and meet all the other design goals. This algorithm is formally described in Algorithm 3.
The algorithm requires each node to know its 2-hop neighborhood, the cluster it belongs
to, and its parent and children. The cluster root generates a token packet and passes the
token around in DFS order. The node holding the token allocates a slot for itself when
the token comes back to it after traversing all its children. The allocated slot is put
inside the token, and hence the token contains the allocated slots of all the nodes it has
traversed. As the siblings need to be allocated slots as close to each other as possible, a
slot is chosen according to this condition. There is a trade-off possible between choosing
closer slots to minimize the number of transitions, or choosing the minimum possible
slot to minimize the total number of slots needed for CFP.

Choosing the next child to visit in the DFS can be random (which we call the Base
algorithm) or based on some graph property. Based on observation from Figure 4 and
experimental comparison with a few other techniques, we order the children based on
their degree and choose the next child to visit based on that order. The other techniques
we compared with are: ordering based on the number of children each node has, and
ordering based on the number of nodes in the subtree rooted at the node. The intuitive
reason is to allocate the lesser slots to the nodes in a dense area, thereby leading to less
conflict allocating slots in the less dense areas. We call this version of the algorithm the
Degree algorithm.

Analysis. This problem can be mapped to a graph coloring problem as follows. The
network is taken as a graph (G), and a graph G2 is produced. G2 has the same vertex set
as G, and all the pairs of vertices which are 2-edge reachable in G have an edge in G2.
Thus, G2 gives the interference graph similar to our node scheduling problem. Coloring
a graph is an NP-hard problem even in a centralized setting, and many approximate
coloring solutions have been proposed in the graph theory literature. However, due to
the constraints on slot allocation induced by the partial ordering, none of these solutions
can be directly applied for our scheduling scenario. The graph being that of a wireless
network, it is an Unit Disk Graph (UDG) having special properties. In a UDG, a link
between two nodes exists if the distance between the nodes is less than the radio range.
The competitive ratio is the ratio between the chromaticity given by the approximate
algorithm and the optimal solution.

396 S. PalChaudhuri and D.B. Johnson

Algorithm 2. Distributed Protocol for Intra-Cluster Scheduling
Require: k slots necessary per node known; Depends on fusion function and number of children
Require: Each node knows its 2-hop neighborhood
Require: Each node knows the cluster to which it belongs
Require: Each node knows its parent and its children
1: For all token packets overheard, a node remembers slots its neighbor is sending or receiving
2: while All children of a node not visited do
3: Send token to one of the children not visited. The child to visit next next depends on the

heuristic chosen.
4: Wait until token comes back
5: Then remember the slot allocation of the child
6: end while
7: All nodes in the subtree rooted at the node has been visited
8: For each visited node, assign a possible slot number s, with the following constraints
9: repeat

10: s > maximum (slot number allocated to any child)
11: s �= slot already allocated in token packet
12: s �= slot overheard being allocated by another node in 1-hop neighborhood
13: Assign the k slots close to slots already allocated by it’s siblings
14: until k consecutive slots are found
15: Append the node id, its chosen sending slot, and its send mode (parent or all) to the token
16: Append the node id and receiving slots to the token
17: Send token to its parent with flag stating SUBTREE DONE
18: while Token not received from parent with flag SUBTREE DONE do
19: Wait
20: end while
21: Broadcast the final token packet locally

Lower bound on optimality: We show using a sub-graph, which we believe is the
worst-case for our algorithm, that the bound of this competitive ratio is 1.2 for our Base
algorithm. Figure 3 and Figure 4 show the nodes in a cluster labled A through H. They
form a tree hierarchy denoted via the lines. The dotted lines show two nodes within
range of each other. The numbers beside the nodes shows the slot that the node has
been allocated. Comparing the worst case slot allocation in Figure 3 with the optimal
slot allocation for the same graph in Figure 4, we get the 1.2 ratio. So, if the adver-
sary chooses the graph as well as the ordering of DFS visits in the base algorithm, our
protocol cannot expect an optimality lesser than that value.

Upper bound on optimality: Employing the properties of an UDG, an upper bound
of 6 has been also established for the competitive ratio for the base algorithm. This is
based on the observation that there can be at most 5 neighbors of a node which are not
connected to each other. If in a naive approach our algorithm gives different color to all
of its neighbors, it can at most be 6 times as bad, as there will be a clique in the size of
degree 6.

This small constant bound on the competitive ratio is a good indication of the op-
timality of our proposed solution. The time and cost for the scheduling protocol are
both O(N) where N is the number of nodes in the smallest level cluster. The clustering

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 397

Algorithm 3. Distributed Protocol for Intra-Cluster Scheduling
Require: k slots necessary per node known; Depends on fusion function and number of children
Require: Each node knows its 2-hop neighborhood
Require: Each node knows the cluster to which it belongs
Require: Each node knows its parent and its children
1: For all token packets overheard, a node remembers slots its neighbor is sending or receiving
2: while All children of a node not visited do
3: Send token to one of the children not visited. The child to visit next next depends on the

heuristic chosen.
4: Wait until token comes back
5: Then remember the slot allocation of the child
6: end while
7: All nodes in the subtree rooted at the node has been visited
8: For each visited node, assign a possible slot number s, with the following constraints
9: repeat

10: s > maximum (slot number allocated to any child)
11: s �= slot already allocated in token packet
12: s �= slot overheard being allocated by another node in 1-hop neighborhood
13: Assign the k slots close to slots already allocated by it’s siblings
14: until k consecutive slots are found
15: Append the node id, its chosen sending slot, and its send mode (parent or all) to the token
16: Append the node id and receiving slots to the token
17: Send token to its parent with flag stating SUBTREE DONE
18: while Token not received from parent with flag SUBTREE DONE do
19: Wait
20: end while
21: Broadcast the final token packet locally

hierarchy ensures that the number of nodes in a cluster is constant, subject to the con-
stant node density. So, the algorithm is both constant in time and cost with the number
of nodes in the network.

We have also proved the upper and lower bounds on the number of slots used in the
graph.

Theorem 1. The upper bound on the number of slots used is Δ2 + h, where Δ is the
maximum node degree and h is the height of the tree.

Proof. Δ2 implies the 2-hop neighborhood of a node. As We allocate the nodes in
conflict-free 2-hop neighborhood, the whole neighborhood can always be colored using
the same number of colors as there are nodes. Hence, the whole graph can be colored
using the number of colors in the maximum degree of any node. For uniform random
distribution of nodes, we take Δ as the average degree.

The h factor comes in as one slot increases for each level of the tree. The parent needs
to be strictly one slot more than its children.

398 S. PalChaudhuri and D.B. Johnson

61 2 3

A

B C

D E F G H

5

4 7

Fig. 2. Centralized slot alloca-
tion in a subgraph

6

1 2 3

A

B C

D E F G H

5 1

4

Fig. 3. Possible slot allocation
in a worst-case subgraph

H

1 2 3 1 2

4 5

A

B C

D E F G

Fig. 4. Optimal slot allocation
in a worst-case subgraph

Theorem 2. The lower bound on the number of slots used is Δ + h, where Δ is the
maximum node degree and h is the height of the tree.

Proof. As a 2-hop neighborhood is to be made conflict-free of every node, the range
of connectivity of nodes becomes 2 × r, where r is the range of the node. So, within a
circle of r radius, all nodes are within 2-hops of each other and hence form a clique—a
fully connected graph. So, atleast Δ colors are needed to color this clique.

As before, the h factor comes in as one slot increases for each level of the tree. The
parent needs to be strictly one slot more than its children.

4.2 Inter-cluster Scheduling

Inter-cluster scheduling occurs after the data has reached the cluster-heads at the low-
est level cluster. Each level of communication is separated into time, and hence does
not conflict with each other. This is shown in Figure 1, where the CFP is divided into
multiple periods for each level.

For inter-cluster communication between peers, the medium access protocol utilizes
knowledge of the routing path. Beacons transmitted by cluster-heads at all levels of the
hierarchy by the routing protocol specifies the routing path for communication between
peers at different levels. A packet reserving the channel is sent for the periodic traffic
along the routing path specified by the beacons. Each node in the path allocates slots in
a conflict-free fashion such that two different peer-paths do not conflict in time, while
ensuring maximum parallelism in the communication paths.

5 Evaluation

To evaluate the performance of this proposed protocol, we measure the latency of data
gathering and associated energy savings. As we utilize extra cross-layer information,
which no previous approach has used before, we compare against the optimal solution.

We used a simulator to randomly generate graphs, construct a tree in the way de-
scribed in the routing protocol, and then implement the scheduling protocol. The simu-
lator helped in the validation and experimentation with a number of different heuristics
to select the best one. Each of the points was generated as an average of 50 runs.

Finding the optimal solution for scheduling was the primary reason we used a graph
simulator, as using a traditional simulator with full simulation of physical and medium

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 399

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

no
de

 y
 c

oo
rd

in
at

es

node x coordinates

node positions
sink position

Fig. 5. Uniform random distribution of 100
nodes with average degree of 8

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r

of
 1

-h
op

 n
ei

gh
bo

rs

Number of nodes

Average Degree = 6
Average Degree = 8

Average Degree = 10

Fig. 6. Number of 1-hop neighbors with num-
ber of nodes, for different degree

access later would have been too slow to generate the optimal solution. We imple-
mented simulated annealing technique to get the optimal solution needing exponential
complexity. Up to 10 million runs were necessary for finding each point on the optimal
graphs.

The data gathering latency is directly related to the total number of slots needed to
cover the entire network × the duration of each slot. Hence, we show the number of
total slots as a measure of latency. The energy savings come from the amount of time
(or slots) each node has to remain in active mode to receive or transmit data or idle.
This is also calculated as the average number of slots each node has to remain awake.

Figure 5 shows a random uniform distribution of 100 nodes with an average degree
of 8, and range of 100. This corresponds to a square with side as 626.6. The node closest
to the center is chosen as the sink node. All graphs have the number of nodes varying
from 10 to 1000, and average degree of 6, 8 and 10.

As the analytical upper and lower bounds depend on the 1-hop and 2-hop neighbors,
the neighborhood degrees are plotted with increasing number of nodes. Figure 6 shows
the plot for degree of 6, 8 and 10. The plots approach those values with increasing
number of nodes, but are lesser because of edge effects which lower the average.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r

of
 2

-h
op

 n
ei

gh
bo

rs

Number of nodes

Average Degree = 6
Average Degree = 8

Average Degree = 10

Fig. 7. Number of 2-hop neighbors with num-
ber of nodes, for different degree

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 d

ep
th

 o
f t

he
 tr

ee

Number of nodes

Average Degree = 6
Average Degree = 8

Average Degree = 10

Fig. 8. Height of tree with number of nodes,
for different degree

400 S. PalChaudhuri and D.B. Johnson

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 s

lo
ts

 n
ee

de
d

Number of nodes

Average Degree = 6
Average Degree = 8

Average Degree = 10

Fig. 9. Latency with number of nodes, for dif-
ferent degree

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 n
um

be
r

of
 s

lo
ts

 a
w

ak
e

Number of nodes

Average Degree = 6
Average Degree = 8

Average Degree = 10

Fig. 10. Average number of slots in which each
node is awake, for different degree

Figure 7 is similarly a plot of the number of 2-hop neighbors for a degree of 6, 8 and
10. The number of nodes is proportional to the area for a given uniform density. If one
takes the ratio of the area of two circles, with twice the radius in one from the other, it
will have a value of 4. But, in the graph the value is about 2.5 times the 1-hop neighbor
value. Other than edge effects, another factor which reduces it is the density of nodes.
The ratio of 4 will be reached only in a very dense topology where a 2-hop route covers
all the area of a circle with twice the radius.

The analytical bounds also depends on the depth of the tree formed. Hence, the
depth of the tree formed for increasing number of nodes is shown in Figure 8. The
height increases logarithmically as has been analytically shown before. The curve for
degree 6 leads to poor connectivity and frequently forms disconnected graph, specially
at larger number of nodes. It also leads to large depths due to long circuitous paths
because of lack of density. That is the reason for the depth curve not being smooth like
the curves for other degrees. For 500 nodes, average degree of 10 leads to height of
about 12. Figure 9 shows the latency for gathering data from every sensor up to the
sink node. It is given in terms of slots, where each slot takes the duration equivalent
to the transmission of the largest data packet. The number of slots necessary increases
logarithmically with n, thereby scaling to a large number. For 500 nodes in a cluster,
about 33 slots are needed for degree equal to 10.

The average number of slots each node needs to be awake for is presented next in
Figure 10. For 500 nodes, this value is about 3.2. The number of slots idle or trans-
mitting or receiving is inversely proportional to the lifetime of the node. The average
number of slots awake increases very slowly with increasing number of nodes, also
pointing to the scalability of the system. Assuming 500 byte payload and 100 Kbps
radio, approximate slot size would be 5 ms. So, on an average each node needs to be
awake for 5 × 3.2 = 16 ms. So, if data monitoring frequency is 1 event per second, a
node has to be awake only 1.6% of the time.

Figure 11 shows the analytical bounds proved earlier, as well as result from running
experiments to find the optimal solution. The upper bound as well as lower bound is
strictly met by the optimal graph.

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 401

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 s

lo
ts

 n
ee

de
d

Number of nodes

Experimental Optimal
Analytical Lower Bound (Δ+h)

Analytical Uppper Bound (Δ2+h)

Fig. 11. Analytical bounds on optimality

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 s

lo
ts

 n
ee

de
d

Number of nodes

Optimal Algorithm Latency
Base Algorithm Latency

Degree Algorithm Latency

Fig. 12. Comparison of the latency for differ-
ent algorithms

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 s

lo
ts

 n
ee

de
d

Number of nodes

Empirical Latency (2*Δ+h)
Degree Algorithm Latency

Fig. 13. Empirical and experimental latency

 1.05

 1.1

 1.15

 1.2

 0 200 400 600 800 1000

O
pt

im
al

ity
 o

f A
lg

or
ith

m

Number of nodes

Base Algorithm
Degree Algorithm
Analytical Bound

Fig. 14. Normalized optimality of algorithm

Figure 12 compares the latency of the base and the degree algorithm with that of
the optimal. Normalized optimality if shown in Figure 14. The optimality reduces and
stabilizes at 1.05 for Degree algorithm, and 1.1 for Base Algorithm. We analytically
found a bound of 1.2 for the base algorithm on a worst-case graph. A value of 2×Δ+h is
empirically plotted and it is seen that it closely follows the experimental optimal for the
degree algorithm. This total number of slots gives the chromatic number of the graph,
and there does not exist any polynomial solution to this. However, this empirically
observed formula seems to match closely with the experimental results.

These results show that the scheduling protocol is very close to optimal scheduling
in terms of total latency of data gathering, as well as in terms of energy efficiency.

6 Conclusions and Future Work

Apart from enabling multi-resolution collaboration, a clustering hierarchy allows the
network to scale to a very large number of sensors. Our architecture design adapts to
the communication and collaboration requirements of the application, reducing commu-
nication energy and bandwidth usage. This work highlights the need for and possibility

402 S. PalChaudhuri and D.B. Johnson

of adapting a scheduling protocol to suit the application requirements. By making the
protocol adaptable to the application needs dynamically, the new protocol will allow
exploiting the application-specific requirements.

We have not addressed sensor network reliability or QoS requirements. These are
important aspects that deserve attention. Abstractions with tunable parameters through
which the application can control the trade-off between resource usage and accuracy
and reliability can be developed. Abstract Regions currently provides a tuning inter-
face, but it requires the application to specify low-level parameters such as number of
retransmissions. The tunable parameter needs to be at a higher level, which will enable
the application to set goals, that will be automatically translated by the networking layer
into the low-level parameters.

Making the routing and scheduling adapt without application aid can be another
future direction of work. Instead of explicit communication from the application as is
done in this paper, information flow can be learned. Thereafter, the adaption is done
based on this learning.

References

1. Chhabra, J., Kushalnagar, N., Metzler, B., Sampson, A.: Sensor networks in intel fabrica-
tion plants. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, ACM Press, New York (2004)

2. PalChaudhuri, S., Kumar, R., Baraniuk, R., Johnson, D.: Design of adaptive overlays for
multi-scale communication in sensor networks. In: Prasanna, V.K., Iyengar, S., Spirakis, P.G.,
Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)

3. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to application
requirements. In: SenSys ’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, pp. 218–229. ACM Press, New York (2003)

4. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor net-
works. In: Proceedings of the IEEE Infocom, New York, NY, USA, USC/Information Sci-
ences Institute, IEEE, pp. 1567–1576 (June 2002)

5. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless sen-
sor networks. In: Proceedings of the first international conference on Embedded networked
sensor systems, pp. 171–180. ACM Press, New York (2003)

6. IEEE Computer Society LAN MAN Standards Committee: Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), IEEE Std 802.15.4. The Institute of Electrical and Electronics En-
gineers, New York (2003)

7. Nelson, R., Kleinrock, L.: Spatial-TDMA: A collision-free multihop channel access control.
IEEE Transactions on Computers 33, 934–944 (1985)

8. IEEE Computer Society LAN MAN Standards Committee: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997. The Insti-
tute of Electrical and Electronics Engineers, New York (1997)

9. El-Hoiydi, A.: Aloha with Preamble Sampling for Sporadic Traffic in Ad-hoc Wireless Sen-
sor. In: Proceedings of IEEE International Conference on Communications (ICC), New York,
USA (2002)

10. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor net-
works. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded net-
worked sensor systems, pp. 95–107. ACM Press, New York (2004)

An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture 403

11. Singh, S., Raghavendra, C.: PAMAS: Power Aware Multi-Access Protocol with Signalling
for Ad Hoc Networks. SIGCOMM Computer Communication Review, vol. 28(3) (July 1998)

12. Chou, A.M., Li, V.: Slot allocation strategies for TDMA protocols in multihop packet radio
networks. In: Proceedings of INFOCOM 1992, pp. 710–716 (1992)

13. Chlamtac, I., Farago, A.: Making transmission schedules immune to topology changes in
multi-hop packet radio networks. IEEE/ACM Trans. Netw. 2(1), 23–29 (1994)

14. Salonidis, T., Tassiulas, L.: Asynchronous TDMA ad hoc networks: Scheduling and Perfor-
mance. In: Proceedings of European Transactions in Telecommunications (ETT) (2004)

15. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free
medium access control for wireless sensor networks. In: Sensys ’03: Proceedings of the first
international conference on Embedded networked sensor systems, pp. 181–192. ACM Press,
New York (2003)

16. Bao, L., Garcia-Luna-Aceves, J.J.: A new approach to channel access scheduling for ad hoc
networks. In: MobiCom ’01: Proceedings of the 7th annual international conference on Mo-
bile computing and networking, pp. 210–221. ACM Press, New York (2001)

17. Sichitiu, M.: Cross-Layer Scheduling for Power Efficiency in Wireless Sensor Networks. In:
Proceedings of INFOCOM 2004 (2004)

18. Marathe, M., Breu, H., Ravi, H., Rosenkrantz, D.: Simple heuristics for unit disk graphs.
Networks 25, 59–68 (1995)

19. Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor networks.
In Mobile Computing and Networking, pp. 221–235 (2001)

20. Zhou, G., He, T., Stankovic, J.A., Abdelzaher, T.F.: Rid: Radio interference detection in
wireless sensor networks. In: Proceedings of IEEE Infocom (2005)

21. PalChaudhuri, S., Saha, A., Johnson, D.B.: Adaptive clock synchronization in sensor net-
works. In: Proceeding of the Information Processing in Sensor Networks(IPSN), Berkeley,
CA (April 2004)

22. Kumar, R., PalChaudhuri, S., Ramachandran, U.: System support for cross-layering in sensor
network stack. In: Proceedings of the International Conference on Mobile Ad Hoc and Sensor
Networks, Hong Kong, China (December 2006)

Minimum-Energy Broadcast with Few Senders�

Stefan Funke, Sören Laue, and Rouven Naujoks

Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{funke,soeren,naujoks}@mpi-inf.mpg.de

Abstract. Broadcasting a message from a given source node to all other
nodes is a fundamental task during the operation of a wireless network. In
many application scenarios the network nodes have only a limited energy
supply, hence minimizing the energy consumption of any communication
task prolongs the lifetime of the network. During a broadcast operation
using intermediate nodes to relay messages within the network might
decrease the overall energy consumption since the cost of transmitting a
message grows super-linearly with the distance. On the other hand using
too many intermediate nodes during a broadcast operation increases both
latency as well as the chances that some transmission could not properly
received (e.g. due to interference).

In this paper we consider a constrained broadcast operation, where a
source node wants to send a message to all other nodes in the network
but at most k nodes are allowed to participate actively, i.e. transmit the
message. Restricting the number of transmitting nodes helps in reducing
interference, latency and increasing reliability of the broadcast operation,
of course at the cost of a slightly higher energy consumption. For the case
of network nodes embedded in the Euclidean plane we provide a (1+ ε)-
approximation algorithm which runs in time linear in n and polynomial
in 1/ε but with an exponential dependence on k. As an alternative we
therefore also provide an O(1)-approximation whose running time is lin-
ear in n and polynomial in k. The existence of a (1 + ε)-approximation
algorithm is in stark contrast to the unconstrained broadcast problem
where even in the Euclidean plane no algorithm with approximation fac-
tor better than 6 is known so far.

1 Introduction

In contrast to wired or cellular networks, ad hoc wireless networks a priori are
unstructured in a sense that they lack a predetermined interconnectivity. An ad
hoc wireless network is built of a set of radio stations P , each of which consists of
a receiver as well as a transmission unit. A radio station v can send a message by
setting its transmission range r(v) and then by starting the transmission process.
All other radio stations at distance at most r(v) from v will be able to receive
� This work was supported by the Max Planck Center for Visual Computing and

Communication (MPC-VCC) funded by the German Federal Ministry of Education
and Research (FKZ 01IMC01).

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 404–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimum-Energy Broadcast with Few Senders 405

v’s message (we are ignoring interference for now). For transmitting a message
across a transmission range r(v), the power consumption of v’s transmission
unit is proportional to r(v)α, where α is the transmission power gradient. In the
idealistic setting of empty space, α = 2, but it may vary from 2 to more than 6
depending on the environment conditions of the location of the network. Given
some transmission range assignment r : P → R≥0 for all nodes in the network,
we can derive the so-called communication graph G(r) := G(P, E). G(P, E) is a
directed graph with vertex set P which has a directed edge (p, q) iff r(p) ≥ |pq|,
where |pq| denotes the Euclidean distance between p and q. The cost of the
transmission range assignment r is

cost(r) :=
∑

v∈P

r(v)α

Numerous optimization problems can now be considered by looking for the min-
imum cost transmission range assignment r such that the respective communi-
cation graph G satisfies some property Π , see [5] for an overview. One classic
property Π is defined as follows: Given a specific source node s we want the
communication graph G to contain a directed spanning tree rooted at s. This
problem is called the energy-minimal broadcast problem (EMBC), since the re-
spective transmission range assignment allows the source node s to distribute a
message over the whole network at minimum total energy cost.

It is known, that if the points are located in the Euclidean plane, the minimum
spanning tree (MST) of the point set induces a transmission range assignment
which has cost at most a factor of 6 above the optimum solution [1]. On the other
hand, there are point sets where the MST-based solution is a factor 6 worse than
the optimal solution, so the bound of 6 is tight [15].

One problem that is particularly prominent for the MST–based solution is the
fact that in the resulting transmission range assignment a very large fraction of
the network nodes are transmitting (i.e. have non-zero transmission range). In
the MST-based range assignment, at least n/6 nodes are actually senders during
the broadcast operation (since the maximum degree of the minimum spanning
tree of a set of points in the Euclidean plane is bounded by 6). This raises several
critical issues: (a) The more network nodes are transmitting in the process of
one broadcast operation, the more likely it is that some nodes in the network
experience interference due to several nearby nodes transmitting at the same
time (unless special precautions are taken that interference does not occur). (b)
Every retransmission of a message implies a certain delay which is necessary to
setup the transmission unit etc; that is, the more senders are involved in the
broadcast operation, the higher the latency. This effect is even amplified by the
previous problem if due to interference messages have to be resent. (c) Network
nodes are not 100% reliable; if for example the probability for a network node
to operate properly is 99.9%, the probability for a network broadcast to fail, i.e.
not all nodes receiving the message, is 1 − 0.999(n/6), which for a network of
n = 3000 nodes is around 40%! This suggests to look for broadcast operations in
the network that use only very few sending nodes. Of course, this comes at the

406 S. Funke, S. Laue, and R. Naujoks

cost of an increased total power consumption, but the behaviour with respect to
the critical issues (a) to (c) can be drastically improved.

In this paper we suggest the following restricted broadcast operation: Given
a specific source node s we want to find a transmission range assignment r of
minimum total cost such that the respective communication graph G contains a
directed spanning tree rooted at s and at most k nodes have a non-zero
transmission range assigned. We call this problem the k-set energy-minimal
broadcast (k-SEMBC) problem. Allowing only a small number k of sending nodes
during the broadcast operation has several advantages: (a) The k transmissions
can be easily scheduled in k different time slots, hence avoiding any interference
at all. (b) The latency is obviously bounded by O(k). (c) In the above scenario
the probability of a broadcast operation to fail is 1−0.999k, which e.g. for k = 10
is 1%.

Of course, the best behaviour in terms of interference, latency and reliability
can be achieved by having the source node s transmit its message directly to
all nodes in the network. Assume w.l.o.g. that by scaling the maximum distance
of another node in the network to s is 1, this operation would cost one unit
of power. Consider the scenario in Figure 1; here we have the n radio stations
equally distributed on a segment of length 1. As mentioned above, the direct
broadcast from s incurs a power cost of 1α = 1. In case of an unbounded number
of allowed sending nodes, essentially every node just forwards the message to the
next node to the right. The total power consumption of this broadcast (which
involves n − 1 sending nodes) is (1

n−1)α · (n − 1) = (1
n−1)α−1. That is the power

savings compared to the direct transmission is a factor of about nα−1, using n−1
sending nodes, though, which implies the above issues w.r.t. interference, latency,
and reliability. If, on the other hand, we allow only k sending nodes, we could in
the ideal case select k−1 stations at about equal distance from each other on the
segment and incur a cost of (1

k)α · k = (1
k)α−1. This simple example illustrates

the (maximum) potential energy savings due to the use of intermediate stations
when compared to a direct transmission from the source node s. In practice,
though, the experienced energy savings are far from such high factors, and also
the loss in energy efficiency when allowing only k stations to send compared
to the unrestricted case is far less pronounced. In general, the advantage of
using intermediate stations for a broadcast operation is greater if the nodes are
distributed along 1-dimensional patterns and curves; for a very dense uniform
distribution of the nodes e.g. within square, the direct transmission from the
source is almost optimal (for α = 2, for α > 2 the gain of using intermediate
stations grows). Unfortunately, the MST-based algorithm will always create a
transmission range assignment where at least n/6 nodes are sending, even if
there exist equally good or even better assignments with few sending nodes.

1.1 Our Contribution

In this paper we consider the k-set minimum energy broadcast problem from an
analytical point of view. We show that somewhat surprisingly for any network of
n radio stations there exists a subset S of the stations whose size is independent

Minimum-Energy Broadcast with Few Senders 407

1

n Points

Fig. 1. Energy savings by using intermediate radio stations

of n and which preserves all the important characteristics of S with respect
to a energy efficient k-set broadcast. We call S a synopsis or core-set of the
network topology w.r.t. the k-SEMBC. We will show that using a synopsis of
size |S| = O((k/ε)2), any solution of the k-SEMBC for S translates to a solution
for k-SEMBC for the original set P at a cost at most a (1 + ε) factor away and
vice versa. Since the size of this synopsis is independent of the network size, we
can run even a brute-force algorithm to compute the optimum k-set broadcast.
The running time of this algorithm is linear in n but still exponential in k. So
we also present an O(1)-approximation algorithm whose running time is linear
in n but polynomial in k. We want to emphasize that the focus of this paper
is to examine the fundamental structure of the k-SEMBC problem rather than
provide practical algorithms for direct use in a wireless network. Though we
believe that with some engineering effort variants of our algorithms can be made
practical, we have not conducted simulations yet to show practicability of our
approaches.

1.2 Related Work

The EMBC problem is known to be NP-hard ([6,5]), For arbitrary, non-metric
distance functions the problem can also not be approximated better than a log-
factor unless P = NP [14]. For the Euclidean setting in the plane, [6] and [15]
have shown a lower bound of 6 for the approximation ratio of the MST-based
solution. In a sequence of papers the upper bound for this solution was low-
ered from in several steps (e.g. [6,15,8]) to finally match its lower bound of 6
(Ambühl, [1]). While all these papers focused on analytical worst-case bounds
for the algorithm performance, simulation studies e.g. in [7] show that the actual
performance in ”real-world” networks is much better. There has also been work
on more restricted broadcast operations in the spirit of k-SEMBC. In [2] the
authors consider a bounded-hop broadcast operation where the resulting com-
munication graph has to contain a spanning tree rooted at the source node s
of depth at most h. They show how to compute an optimal h-hop broadcast
range assignment for h = 2 in time O(n7). For h > 2 they show how to obtain

408 S. Funke, S. Laue, and R. Naujoks

a (1 + ε)-approximation in time O(nO(μ)) where μ = (h2/ε)2
h

, that is, their
running time is triply exponential in the number of hops h and this shows up
in the exponent of n. In [9] Funke and Laue show how to obtain a (1 + ε) ap-
proximation for the h-hop broadcast problem in time doubly exponential in h.
Their approach is also based on a synopsis of the network, but in contrast to
this paper they require a synopsis S that has size exponential in h. We note that
bounded-hop broadcasts address the issue of latency since a message will arrive
at any network node after at most h intermediate stations, still the reliability
and interference problems remain as potentially very many network nodes might
actively participate in the broadcast. General surveys of algorithmic range as-
signment problems can be found in [5,16,12]. Closely related in particular to the
O(1)-approximation algorithm that we will present is the work by Bilò et al.
[4]. They consider the problem of covering a set of n points in the plane using
at most k disks such that the sum of the areas of the disks is minimized. They
provide a (1 + ε)-approximation to this problem in time O(nα2/ε2). They do not
address the problem of enforcing connectivity which is part of the k-SEMBC
problem.

1.3 Outline

Section 2 recaps a known complexity result for the the unconstrained broadcast
problem EMBC and sketches a simple folklore-brute-force algorithm to solve the
k-SEMBC problem. Section 3 contains the core contributions of our paper; we
show how to extract a small synopsis of the network topology (Section 3.1) and
how to use that to obtain a (1 + ε)-approximation algorithm. In Section 3.2 we
show how a faster algorithm obtains an O(1)-approximation. Finally, in Section
4 we point out directions for future research.

2 Preliminaries

The unconstrained broadcast problem EMBC is known to be NP-hard and
for non-metric distance functions even not well approximable ([6,14]. Since the
unconstrained broadcast problem is a special case of the k-set broadcast problem
with k = n these hardness results carry over to the k-set broadcast problem, if
k is not treated as a constant. If k is regarded a constant, the problem can be
solved in polynomial time as we will see in the following.

2.1 A Naive, Brute-Force Algorithm

The k-set broadcast problem can be solved in a brute force manner. Essentially,
one can try out all

(
n

k−1

)
different subsets for the k−1 active senders apart from

the source s. For each of those (and the source node s), one then assigns all
possible n−1 ranges. In total we have then O(nk−1(n−1)k) = O(n2k) potential
power assignments. For each of those we can check in O(n2) time whether it is
a valid k-set broadcast.

Minimum-Energy Broadcast with Few Senders 409

That is, overall we have the following corollary:

Corollary 1. For n points we can compute the optimal k-set broadcast in time
O(n2k+2).

For most practical applications, we expect k to be a small constant, but unfor-
tunately not small enough that this naive algorithm can be applied to networks
of not too small size (e.g. several thousand nodes). In the following Section we
lower our expectations and aim for approximate solutions to the k-set broadcast
problem. This allows for more efficient algorithms as we will see.

3 Algorithms

3.1 Small Synopsis of the Network Topology

We say a range assignment r is valid if the induced communication graph G(r)

contains a directed spanning tree reaching all nodes p ∈ P and rooted at s, and
at most k nodes have non-zero transmission range assigned; otherwise we call r
invalid.

Definition 1. Let P be a set of n points, s ∈ P a designated source node.
Consider another set S of points (not necessarily a subset of P). If for any valid
range assignment r : P → R≥0 there exists a valid range assignment r′ : S →
R≥0 such that cost(r′) ≤ (1 + ε) · cost(r) and for any valid range assignment
r′ : S → R≥0 there exists a valid range assignment r : P → R≥0 such that
cost(r) ≤ (1 + ε) · cost(r′) then S is called (1 + ε)-synopsis for (P, s).

A (1+ε)-synopsis for a problem instance (P, s) can hence be viewed as a problem
sketch of the original problem. If we can show that a (1+ε)-synopsis of small size
(independent of n) exists, solving the k-SEMBC problem on this problem sketch
immediately leads to an (1 + ε)2-approximate solution to the original problem.
The former can be even done using a brute force algorithm. Of course, the
transformation from range assignment r′ for the synopsis S to range assignment
r for the input point set P has to be practical in order to derive a solution for
the original problem. We will see that this can be done in linear time.

The definition of a synopsis can be seen as a generalization of core-sets de-
fined in previous papers. For example, the term core-set has been defined for
k-median [11] or minimum enclosing disk [13]. However, in the case of the k-
SEMBC problem we have to consider two more issues. The first is feasibility.
While any solution to the k-median problem is feasible not every solution is
feasible for the k-SEMBC problem. The second issue is monotonicity. For the
problem of the smallest enclosing disk the optimal solution does not increase if
we remove points from the input. We do not have this property here. An optimal
solution can increase or decrease if we remove input points. Hence, the above
definition of a (1+ ε)-synopsis can be seen as a generalization of core-sets to any
optimization problem.

We will now show that we can find a small synopsis to the original problem. We
assume that the maximum distance from the source node s to another node is 1.

410 S. Funke, S. Laue, and R. Naujoks

Lemma 1. For any k-SEMBC instance there exists a (1 + ε)α-synopsis of size
O(k2

ε2).

Proof. We place a grid of grid width Δ = 1√
2

ε
k on the plane. Notice, that the

grid has to cover an area of radius 1 around the source only because the furthest
distance from node s to any other node is 1. Hence its size is O(k2

ε2). Now we
assign each point in P to its closest grid point. Let S be the set of grid points
that had at least one point from P snapped to it.

It remains to show that S is indeed a (1+ ε)α-synopsis. We can transform any
given valid range assignment r for P into a valid range assignment r′ for S. We
define the range assignment r′ for S as

r′(p′) = max
p was snapped to p′

r(p) +
√

2Δ.

Since each point p is at most 1√
2
Δ away from its closest grid point p′ we certainly

have a valid range assignment for S. It is easy to see that the cost of r′ for S is
not much larger than the cost of r for P . We have:

∑

p′∈S

(r′(p′))α =
∑

p′∈S

(max
p was snapped to p′

r(p) +
√

2Δ)α

≤
∑

p′∈S

(max
p was snapped to p′

r(p) +
ε

k
)α

≤
∑

p∈P

(r(p) +
ε

k
)α.

The relative error satisfies

cost(r′)
cost(r)

≤
∑

p∈P (r(p) + ε
k)α

∑
p∈P (r(p))α

.

Notice, that
∑

p∈P r(p) ≥ 1 and r is positive for at most k points p. Hence, the
above expression is maximized when r(p) = 1

k for all points p that are assigned
a positive value. Thus

cost(r′)
cost(r)

≤
k · (1

k + ε
k)α

k · (1
k)α

= (1 + ε)α.

On the other hand we can transform any given valid range assignment r′ for
S into a valid range assignment r for P as follows. We select for each grid point
g ∈ S one representative gP from P that was snapped to it. For the grid point to
which s (the source) was snapped we select s as the representative. If we define
the range assignment r for P as r(gP) = r′(g) +

√
2Δ and r(p) = 0 if p does

not belong to the chosen representatives, then r is a valid range assignment for
P because every point is moved by the snapping by at most Δ/

√
2. Using the

same reasoning as above we can show that cost(r) ≤ (1+ ε)α cost(r′). Hence, we
have shown that S is indeed a (1 + ε)α-synopsis.

Minimum-Energy Broadcast with Few Senders 411

Once we have solved the k-SEMBC problem for the (1 + ε)α-synopsis S we can
easily transform the obtained solution to a (1 + ε)2α-approximate solution to
the original problem. Let us now concentrate on solving the k-SEMBC problem
for the synopsis S. Since we were able to reduce the problem size to a constant
independent of n, we can employ a brute-force strategy to compute an optimal
solution for the reduced problem (S, s).

When looking for an optimal, energy-minimal solution for S, it is obvious
that each node needs to consider only |S| different ranges. Hence, naively there

are at most
(

k2

ε2

k

)

·
(

k2

ε2

)k

different range assignments to consider at all. We

enumerate all these assignments and for each of them we check whether the
range assignment is valid; this can be done in time |S|. Of all the valid range
assignments we return the one of minimal cost.

Assuming the floor function a (1 + ε)α-synopsis S for an instance of the k-
SEMBC problem for a set of n radio nodes in the plane can be constructed in
linear time. Hence we obtain the following theorem:

Theorem 1. A (1 + ε)2α-approximate solution to the k-SEMBC problem on n

points in the plane can be computed in time O(n +
(

k
ε

)4k
).

A simple observation allows us to improve the running time slightly. Since even-
tually we are only interested in an approximate solution to the problem, we are
also happy with only approximating the optimum solution for the synopsis S.
Such an approximation for S can be found more efficiently by not considering all
possible at most |S| ranges for each grid point. Instead we consider as admissible
ranges only 0 and ε

k · (1 + ε)i for i ≥ 0. That is, the number of different ranges
a node can attain is at most 1 + log1+ε

k
ε ≤ 2

ε · log k
ε for ε ≤ 1. This comes at

a cost of a (1 + ε) factor by which each individual assigned range might exceed
the optimum. The running time of the algorithm improves, though, which leads
to our main result in this section:

Theorem 2. A (1 + ε)3α-approximate solution to the k-SEMBC problem on n

points in the plane can be computed in time O

(

n +
(

k2 log k
ε

ε3

)k
)

.

Obviously, a (1 + ψ)-approximate solution can be obtained by choosing ε =
θ(ψ/α).

3.2 Faster O(1)-Approximations

We now show how to compute a constant approximation for the k-set broadcast
problem. The idea is to first cluster the points into k clusters. Then we ensure
connectivity of these point sets by increasing their cluster sizes. As clustering we
define the k-disk cover problem:

Definition 2 (k-disk cover problem (k-DCP)). Given a set P of n points
in the Euclidean plane R

2, find a subset C ⊆ P of cardinality at most k and

412 S. Funke, S. Laue, and R. Naujoks

radii rv ≥ 0 associated with each element v ∈ C such that
∑

v∈C rα
v is minimized

and all points in P are covered by the disks Drv
v := {x ∈ R

2 | |xv| ≤ rv}.

Given a k-disk cover D := (C, (rv)v∈C) for P with center points C and radii rv,
we associate with D a range assignment rD on P as follows:

∀v ∈ P : rD(v) :=

{
rv if v ∈ C

0 otherwise

By Di we denote a disk in D. Note that the k-DCP with the additional constraint
that the communication graph G(rD) is connected is exactly the k-set broadcast
problem and that an instance of one problem is an instance of the other. Thus,
the cost of an optimal solution for an instance I of the k-DCP is a lower bound
on I for the k-set broadcast problem. Unfortunately k-DCP is NP-hard (see [4])
but it admits a PTAS as shown in [4] by Bilò et al. A direct consequence of their
results is:

Corollary 2. There exists an algorithm for the k-DCP that computes (1 + ε)-
approximate solutions in time n(α

ε)d

for a constant d.

By setting ε to 1 we obtain a 2-approximation algorithm for the k-DCP that runs
in time nc′

α for a constant c′α. Note that their algorithm can easily be modified
such that the source s is the center of one of the disks.

Our approximation algorithm works as follows: First we compute an approx-
imate k-disk cover D := (C, (rv)v∈C) over P . Then we determine for the center
points in C an approximate broadcast with range assignment rB by using an
MST based algorithm (see [1]) that has an approximation guarantee of 6. Now
we construct a range assignment rA for P in the following way:

∀v ∈ P : rA(v) :=

{
max{rv, rB(v)} if v ∈ C

0 otherwise

Note that G(rA) is connected and therefor induces a valid k-set broadcast
since only k stations are sending. We still have to show that we have computed
an approximate solution:

Theorem 3. cost(rA) ≤ 36cα · cost(ropt), where ropt is the range assignment of
an optimal k-set broadcast and cα is a constant depending only on α.

Proof. The proof idea is as follows: Assuming knowledge about an optimal range
assignment ropt for the k-set broadcast we transform the range assignment rD

into r′D such that

a) r′D is a valid k-set broadcast
b) the sending nodes in r′D are exactly the center points of D and
c) r′D is a constant factor approximation of ropt.

Minimum-Energy Broadcast with Few Senders 413

Di

Bi D′
iri

r′
i

c

Fig. 2. Proof illustration for the constant factor approximation algorithm

If we know that such a broadcast r′D exists, we can simply compute an optimal
broadcast rB over the center points of D. Then we know that cost(rB) ≤ cost(r′D)
and rB must also be a constant factor approximation of ropt.

Consider now the communication tree T which is defined as a subtree of
G(ropt) spanning P . The idea of the construction of r′D is to replace the inner
nodes of T (i.e. the sending stations of ropt) by increasing the radii of the disks
in C appropriately so that r′D is valid.

We increase the nonzero values of rD in the following way: with each of the
inner nodes Bi of T we associate arbitrarily one disk Di in which Bi is contained.
Note that there must be at least one such disk for each Bi since the disks cover
P . We now update rD in a breath first search manner on T starting from source
node s (see figure 2):

Given an inner node Bi of T if all children of Bi in T lie in the associated
disk Di then all of them can be reached from node Ci without increasing ri. The
interesting case is if there are children of Bi that are not contained in Di but
contained in a disk D′i whose center is not covered so far. Assume that there is
exactly one such child c. We then set the radius of Di to ri + r′i + ropt(Bi). If
there is more than one such child, let c be the one that maximizes r′i so that each
child of Bi and the centers of the disks in which the children of Bi are contained
in can be reached by Di. Note that it can happen that two different inner nodes
Bi and Bj are associated with the same disk Dk, so that Dk is updated more
than once in the process. In such a case we update Dk only if rk is increasing.
Now let us assume that for a disk Di the last update involved disk D′k then we
call disk D′k the target disk of D′k.

By induction G(rD) is connected after these updates. furthermore note that
the sending stations are still exactly the center points of D. Let D∗ ⊆ D be the
set of disks that are updated and let Bi be the node in T in the update step for

414 S. Funke, S. Laue, and R. Naujoks

disk Di ∈ D∗. Summing over all disks, the total cost of the broadcast is therefor
bounded by:

∑

Di∈D\D∗

rα
i

︸ ︷︷ ︸
≤cost(D)≤2 cost(ropt)

+
∑

Di∈D∗

(ri + r′i + ropt(Bi))α

︸ ︷︷ ︸
(∗∗)

Before we bound the second term, note that a disk appears as a target disk
only once in the process of updating the disk radii since once its center point is
covered it is never considered as a target disk again. Thus each r′i in the above
sum can also appear only once. Thus,

(∗∗) ≤ cα

[∑

Di∈D∗

rα
i +

∑

Di∈D∗

r′i
α +

∑

Di∈D∗

ropt(Bi)α
]

≤ cα

[
2

∑

Di∈D

rα
i

︸ ︷︷ ︸
≤4 cost(ropt)

+
∑

Di∈D

ropt(Bi)α

︸ ︷︷ ︸
=cost(ropt)

]

≤ 5 · cα · cost(ropt)

where the constant cα can be bounded by 3α−1. Thus there exists a broadcast
over the center points C with total cost upper bounded by

2 cost(ropt) + 5 · cα · cost(ropt)
≤ 6 · cα · cost(ropt)

Since we use a 6-approximate broadcast, the algorithm has an approximation
ratio of 36cα.

Theorem 4. There exists a constant factor approximation algorithm for the k-
set broadcast problem over n points in the Euclidean plane that runs in O(nc′

α).

The theorem can be further improved by using the results of the previous section.
By setting ε to 1 we obtain a synopsis of size k2. Using theorem 4 we obtain
directly a constant factor approximation algorithm whose running time is only
linear in n and polynomial in k:

Theorem 5. There exists a constant factor approximation algorithm for the k-
set broadcast problem over n points in the Euclidean plane that runs in time
linear in n and polynomial in k, i.e. in O(n + k2·c′

α).

4 Future Work

4.1 Simple, Distributed Algorithms with Good Performance

In the introduction we have pointed out why we believe that a broadcast oper-
ation with a bounded number of senders can be of great benefit for the efficient

Minimum-Energy Broadcast with Few Senders 415

operation of a wireless network. The main part of the paper considered the
k-SEMBC problem from a purely analytical point of view, though. The most
important research direction to follow in the near future is to design simple and
distributed algorithms for the k-SEMBC problem. One possible idea could be to
construct distributedly a low-weight k-disk-cover of the network and then con-
nect the components in some way such that the overall cost does not increase
by too much – very much in the spirit of our O(1)-approximation algorithm. We
also plan to look at the k-SEMBC problem from a more empirical point of view.
Several heuristic solutions could be thought of and examined using extensive
simulations on different network deployments.

4.2 Extension to Metrics of Bounded Doubling Dimension

While actual network deployments often are in a planar setting, the experienced
metric for several reasons is typically not exactly of the Euclidean type (due to
obstacles, interference etc.), but often in some sense ’close’ as it still retains some
correlation between geographic distance and distance in the metric. One way to
measure similarity between metrics is the so called doubling dimension [10]. It
remains to examine whether our algorithms also work on metrics of bounded
doubling dimension.

4.3 (1 + ε)-Approximation with Running Time Polynomial in k
(and 1/ε) ?

One major drawback of the (1+ ε)-approximation algorithm presented is that it
still requires time exponential in the number of senders k. It is unclear whether
this exponential dependence could be removed. One idea might be to use the
approach by Arora ([3]) based on a shifted dissection which was already used
successfully to obtain fast approximation algorithms for geometric problems.
This might induce an exponential dependence on 1/ε, though.

References

1. Ambühl, C.: An optimal bound for the mst algorithm to compute energy-efficient
broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidel-
berg (2005)

2. Ambühl, C., Clementi, A.E.F., Di Ianni, M., Lev-Tov, N., Monti, A., Peleg, D.,
Rossi, G., Silvestri, R.: Efficient algorithms for low-energy bounded-hop broadcast
in ad-hoc wireless networks. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS,
vol. 2996, Springer, Heidelberg (2004)

3. Arora, S.: Approximation schemes for geometric np-hard problems: A survey. In:
Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001: Foundations of Soft-
ware Technology and Theoretical Computer Science. LNCS, vol. 2245, Springer,
Heidelberg (2001)

416 S. Funke, S. Laue, and R. Naujoks

4. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, Springer, Heidelberg (2005)

5. Clementi, A., Huiban, G., Penna, P., Rossi, G., Verhoeven, Y.: Some recent the-
oretical advances and open questions on energy consumption in ad-hoc wireless
networks. In: Proc. 3rd Workshop on Approximation and Randomization Algo-
rithms in Communication Networks (ARACNE), pp. 23–38 (2002)

6. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity
of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg
(2001)

7. Clementi, A.E.F., Huiban, G., Rossi, G., Verhoeven, Y.C., Penna, P.: On the ap-
proximation ratio of the mst-based heuristic for the energy-efficient broadcast prob-
lem in static ad-hoc radio networks. In : IPDPS, p. 222 (2003)

8. Flammini, M., Navarra, A., Klasing, R., Pérennes, S.: Improved approximation
results for the minimum energy broadcasting problem. In: DIALM-POMC, pp.
85–91 (2004)

9. Funke, S., Laue, S.: Bounded-hop energy-efficient broadcast in low-dimensional
metrics via coresets. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 272–283. Springer, Heidelberg (2007)

10. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: FOCS, pp. 534–543 (2003)

11. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and
their applications. In: STOC, pp. 291–300 (2004)

12. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. Theor. Comput. Sci. 243(1-2), 289–305 (2000)

13. Kumar, P., Mitchell, J.B., Yildirim, E.A.: Approximate minimum enclosing balls
in high dimensions using core-sets. J. Exp. Algorithmics, vol. 8(1.1) (2003)

14. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner
trees and connected dominating sets. Information and Computation 150, 57–74
(1999)

15. Wan, P.-J., Calinescu, G., Li, X., Frieder, O.: Minimum-energy broadcast routing
in static ad hoc wireless networks. In: INFOCOM, pp. 1162–1171 (2001)

16. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: INFOCOM, pp.
585–594 (2000)

Author Index

Abdelzaher, Tarek 142

Bakshi, Amol 189
Baptista, António 253
Baryshnikov, Yuliy 82
Bettencourt, Lúıs M.A. 223
Bhattacharya, Sangeeta 158
Blum, Philipp 64
Bouillet, Eric 174
Bulusu, Nirupama 253

Chakravarthy, Vasu 338
Chatterjea, Supriyo 368

Dang, Thanh 253
Demirbas, Murat 267
Ding, Yong 354
Djidjev, Hristo N. 295

Feblowitz, Mark 174
Feng, Wu-chi 253
Fok, Chien-Liang 158
Ford, James 96
Frank, Christian 124
Frolov, Sergey 253
Funke, Stefan 404

Guibas, Leonidas 309

Hagberg, Aric A. 223
Havinga, Paul 368
Huang, Chengdu 142
Huang, Qingfeng 281

Johnson, David B. 386

Kannan, Rajgopal 338
Khan, Mohammad Maifi Hasan 142

Langendoen, Koen 64
Larkey, Levi B. 223
Laue, Sören 404
Le, Zhengyi 96
Li, Xiang-Yang 110
Liaskovits, Periklis 324
Liu, Donggang 21
Liu, Zhen 174
Lu, Chenyang 158
Luo, Liqian 142

Makedon, Fillia 96
Meier, Andreas 64
Moaveni-Nejad, Kousha 110
Mottola, Luca 189

Namuduri, Kamesh R. 240
Naujoks, Rouven 404
Nieberg, Tim 368

Ouyang, Yi 96

PalChaudhuri, Santashil 386
Pathak, Animesh 189
Picco, Gian Pietro 189
Prasanna, Viktor K. 189

Qureshi, Faisal 1

Ranganathan, Anand 174
Rangaswamy, Murali 338
Riabov, Anton 174
Ringwald, Matthias 205
Roman, Gruia-Catalin 158
Römer, Kay 124, 205

Schurgers, Curt 324
Skraba, Primoz 309
Song, Wen-Zhan 110
Soysal, Onur 267
Strasser, Mario 64

Tan, Jian 82
Terzopoulos, Demetri 1
Tosun, Ali Şaman 267

Vitaletti, Andrea 205

Wang, Chen 36, 50, 354
Wang, WeiZhao 110
Wei, Shuangqing 338

Xiao, Li 36, 50, 354
Xu, Yurong 96

Ye, Fan 174
Yelisetty, SreeRamya 240

Zeng, Guokai 36
Zhang, Yang 368
Zhang, Ying 281

	Title
	Preface
	Organization
	Table of Contents
	Distributed Coalition Formation in Visual Sensor Networks: A Virtual Vision Approach
	Introduction
	Virtual Vision
	Distributed Control in Camera Sensor Networks
	Overview

	Related Work
	Camera Nodes
	Local Vision Routines
	Camera Node Behaviors

	Sensor Network Model
	Coalition Formation
	Conflict Resolution
	Node Failures and Communication Errors

	Video Surveillance
	Computing Camera Node Relevance
	Surveillance Tasks

	Results
	Discussion

	Conclusion

	Efficient and Distributed Access Control for Sensor Networks
	Introduction
	System Models and Assumptions
	Efficient and Distributed Access Control
	The Baseline Approach
	Enabling Privilege Delegation
	Enabling Efficient Broadcast Query

	Simulation Evaluation
	Related Work
	Conclusion and Open Problems

	Optimizing End to End Routing Performance in Wireless Sensor Networks
	Introduction
	Spatial Complexity of Wireless Channels
	Greedy Forwarding Based on ETX-Distance
	Underlying Wireless Channel Evaluation
	Virtual Distance Based Greedy Forwarding

	ETX Embedding
	Sample a Wireless Sensor Network with Beacons
	Performance Evaluation
	Evaluate the ETX-Embedding in TOSSIM

	Related Work
	Conclusion

	Improving Event-to-Sink Throughput in Wireless Sensor Networks
	Introduction
	Preliminary
	Packet Reliability v.s. Event Throughput
	Hop-by-Hop Recovery Based on Time Out Mechanism
	Hop-by-Hop Recovery Based on Out-of-Sequence Mechanism

	Sink Centric Transport Protocol
	Packet Loss Detection and Notification
	Packet Retransmission

	Performance Evaluation
	Impact of Packet Inject Rate
	Impact of the Hop Distances

	Related Work
	Conclusion

	Dwarf: Delay-aWAre Robust Forwarding for Energy-Constrained Wireless Sensor Networks
	Introduction
	Related Work
	Requirements and Assumptions
	Alarm-System Scenario
	MAC Protocol
	Definitions

	Algorithms
	Alarm Forwarding
	Node Status Observation
	Startup

	Evaluation
	Analytical
	Simulation

	Conclusions

	Localization for Anchoritic Sensor Networks
	Introduction
	Motivation
	Related Work

	Our Approach
	Description
	Theoretic Framework

	Random Field Models
	Boolean Model
	Large Clouds
	Random Walkers

	Engineering Ramifications
	Experimental Results
	Reconstruction of the Sensor Locations

	Proof of Theorem 1

	Mobile Anchor-Free Localization for Wireless Sensor Networks
	Introduction
	Related Work
	Mobile Geographic Distributed Localization (MGDL)
	Overview of MGDL Algorithm
	Measurement Procedure
	Local Map Computation
	Transformation Procedure
	Mobile Measurement Techniques
	ReTransformation Procedure

	Simulation Result
	Simulation Configuration
	Localization Accuracy
	Node Density
	Node Speed
	Communication Overhead

	Summary
	References

	Optimal Cluster Association in Two-Tiered Wireless Sensor Networks
	Introduction
	Homogeneous Small Sensors
	Homogeneous Application Nodes
	Heterogeneous Application Nodes

	Heterogeneous Small Sensors
	Performance Studies
	Conclusion

	Distributed Facility Location Algorithms for Flexible Configuration of Wireless Sensor Networks
	Introduction
	Preliminaries
	Related Work
	Centralized Algorithms
	One-Hop Approximation
	Multi-hop Approximation
	Experimental Results
	Scalability
	Network Dynamics

	Conclusion and Outlook

	SNTS: Sensor Network Troubleshooting Suite
	Introduction
	Related Work
	Scope of the Fault Diagnosis Tool
	System Architecture
	Data Collection Component
	Data Analysis Component
	Interface

	Case Study: EnviroTrack
	Failure of the Tracking Protocol
	Failure Diagnosis Scenario
	Interpretation of the Rules
	Effect of Parameter Tuning

	Discussion
	Conclusion

	Design and Implementation of a Flexible Location Directory Service for Tiered Sensor Networks
	Introduction
	Services
	Design
	Architecture
	Location Information Maintenance
	Query Processing
	Cost Benefits over a Centralized Directory Approach

	Implementation
	Experimental Results
	Single Sensor Network
	Multiple Sensor Networks

	Related Work
	Conclusion

	A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks
	Introduction
	System Overview
	Semantic Model of Data Sources and PEs
	Descriptions of Data Sources
	Descriptions of PEs

	Semantic Composition of Applications
	Connecting a Stream to a PE
	Automatic Composition of Applications

	Experiments
	Related Work
	Conclusion

	A Compilation Framework for Macroprogramming Networked Sensors
	Introduction
	ATaG: Abstract Task Graph
	Programming Model
	Runtime System

	Compilation of Data-Driven Macroprograms: Overview
	Compilation Framework
	Compilation Input and Output
	Compilation Modules

	Demonstration
	Discussion
	Concluding Remarks

	Passive Inspection of Sensor Networks
	Introduction
	SNIF
	Deployment Support Network (DSN)
	Physical Layer and Medium Access
	Packet Decoder
	Data Stream Processor
	User Interface

	Case Study: Data Gathering Applications
	Application Model
	Problems and Indicators
	Application-Specific Operators
	Operator Graph
	Evaluation

	Related Work
	Conclusions

	Separating theWheat from the Chaff: Practical Anomaly Detection Schemes in Ecological Applications of Distributed Sensor Networks
	Introduction
	Related Work
	Bayesian Classifier Method
	A Method Based on the Statistics of Differences Between Sensor Measurements
	Statistical Inference
	Statistical Anomalies: Error and Event Detection
	Inference of Missing Readings

	Application to Ecological Data from Sevilleta LTER Site
	Discussion and Outlook

	Image Change Detection Using Wireless Sensor Networks
	Introduction
	Processing at Sensors
	Processing at Fusion Center
	Performance Analysis and Results
	Performance at the Sensor
	Performance at the Fusion Center

	Conclusions and Future Work

	Near Optimal Sensor Selection in the COlumbia RIvEr (CORIE) Observation Network for Data Assimilation Using Genetic Algorithms
	Introduction
	Data Assimilation Overview
	CORIE Data Assimilation Framework

	Problem Formulation
	Sensor Selection Using Genetic Algorithm
	Representing the Network Configuration
	Fitness Function and Selection
	Crossover and Mutation

	Experimental Results
	Experimental Design
	Results and Analysis

	Related Work
	Future Work
	Conclusion

	Data Salmon: A Greedy Mobile Basestation Protocol for Efficient Data Collection in Wireless Sensor Networks
	Introduction
	Model
	The Data Salmon Protocol
	The Dynamic Tree Maintenance Protocol
	The Greedy Data Salmon Protocol
	Proof of Optimality

	Simulation Results
	Discussion
	Concluding Remarks

	SDIP3: Structured and Dynamic Information Push and Pull Protocols for Distributed Sensor Networks
	Introduction
	Problem Formulation
	System Model
	Push and Pull Model
	Event and Demand Distribution Models
	Formulation of the Optimization Problem

	Theoretical Analysis
	Optimal Push Scopes for Disk Structures
	Optimal Diamond Size
	Push Scope Verification

	Dynamic Balancing of Push and Pull
	Boundary States
	Boundary State Transition

	Application: Distributed Traffic Information Networks
	Traffic Network Simulations
	Simulation Results

	Conclusions

	Efficient Computation of Minimum Exposure Paths in a Sensor Network Field
	Introduction
	Preliminaries and Problem Formulation
	Single-Sensor Fields
	Multiple-Sensor Fields
	An Approximation Algorithm for Constructing MEPs
	Defining Steiner Points
	Description and Analysis of the Algorithm
	Improving the Running Time

	Conclusion

	Energy Efficient Intrusion Detection in Camera Sensor Networks
	Introduction
	Related Work
	Model
	Geometric Preprocessing
	Tasking the Cameras
	Assigning Probabilities in a Graph
	Assigning Probabilities in Continuous Space
	Algorithm
	Special Case

	Deterministic Algorithm
	Simulation Experiments
	Conclusions and Further Work

	Leveraging Redundancy in Sampling-Interpolation Applications for Sensor Networks
	Introduction
	Overview and Fundamentals
	Hilbert Space Representation
	Primary Subspace

	Sensor Selection
	Greedy Algorithm

	Evaluation
	Conclusion
	References

	A Fully Polynomial Approximation Algorithm for Collaborative Relaying in Sensor Networks Under Finite Rate Constraints
	Introduction
	System Model
	Total Energy Minimization for Collaborative Relaying with Perfect CSI
	Optimal Quantization for Optimal Collaborative Relaying
	Quantization Protocol
	Preliminaries

	QBS and QBR: Independent Basestation-Source and Basestation-Relay Quantization Algorithms
	Algorithm $QBS(k_s)$
	Algorithm $QBR(k_r)$

	Joint Source/Relay Quantization
	2-Factor Approximation for Joint Quantization
	Fully Polynomial Approximation Scheme

	Relay to Clusterhead Quantization Algorithm QRB
	Conclusions

	A Connectivity Based Partition Approach for Node Scheduling in Sensor Networks
	Introduction
	Overview
	Motivation
	Problem Formulation

	CPA Design
	Group Merging
	Load Balancing Energy Usage in Groups

	Performance Evaluation
	Under Ideal Radio Propagation Model
	Under Irregular Radio Propagation Model

	Related Work
	Conclusion

	Energy-Efficient Data Acquisition Using a Distributed and Self-organizing Scheduling Algorithm for Wireless Sensor Networks
	Introduction
	An Overview of the $DOSA$ Approach
	LMAC: A Lightweight Medium Access Control Protocol
	Preliminaries for Self-stabilization
	$DOSA:$ A Distributed and Self-organizing Scheduling Algorithm
	Dependency of $DOSA$ on LMAC
	General Operation of $DOSA$

	Performance of $DOSA$
	Coping with a Dead Node
	Coping with a New Node

	Details of Implementation and Results
	Related Work
	Conclusion and Future Work

	An Adaptive Scheduling Protocol for Multi-scale Sensor Network Architecture
	Introduction
	Motivating Application
	COMPASS Overview

	Adaptive Scheduling Service
	Design Principles

	Related Work
	Contention-Based Protocols
	Schedule-Based Protocols
	Graph Coloring

	Medium Access Scheduling in a Hierarchy
	Intra-cluster Scheduling
	Inter-cluster Scheduling

	Evaluation
	Conclusions and Future Work

	Minimum-Energy Broadcast with Few Senders
	Introduction
	Our Contribution
	Related Work
	Outline

	Preliminaries
	A Naive, Brute-Force Algorithm

	Algorithms
	Small Synopsis of the Network Topology
	Faster $O(1)$-Approximations

	Future Work
	Simple, Distributed Algorithms with Good Performance
	Extension to Metrics of Bounded Doubling Dimension
	$(1+\epsilon)$-Approximation with Running Time Polynomial in k (and $1/\epsilon$) ?

	Author Index

