Feature-Weighted User Model for Recommender
Systems*

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos

Aristotle University, Department of Informatics, Thessaloniki 54124, Greece
{symeon, alex, manolopo}@csd.auth.gr

Abstract. Recommender systems are gaining widespread acceptance
in e-commerce applications to confront the “information overload” prob-
lem. Collaborative Filtering (CF) is a successful recommendation tech-
nique, which is based on past ratings of users with similar preferences.
In contrast, Content-Based filtering (CB) assumes that each user oper-
ates independently. As a result, it exploits only information derived from
document or item features. Both approaches have been extensively com-
bined to improve the recommendation procedure. Most of these systems
are hybrid: they run CF on the results of CB and vice versa. CF exploits
information from the users and their ratings. CB exploits information
from items and their features. In this paper, we construct a feature-
weighted user profile to disclose the duality between users and features.
Exploiting the correlation between users and features we reveal the real
reasons of their rating behavior. We perform experimental comparison
of the proposed method against the well-known CF, CB and a hybrid al-
gorithm with a real data set. Our results show significant improvements,
in terms of effectiveness.

1 Introduction

Recommender systems are gaining widespread acceptance in e-commerce and
other world wide web applications to confront the “information overload” prob-
lem. It is recognized that user modeling plays the main role in the success of these
systems [2]. A robust user model should handle several real life problems such
as, the sparsity of data, the over-specialization, the shallow analysis of content,
the unwillingness of users to fill in their profile and so on.

Collaborative Filtering (CF) and memory-based (nearest-neighbor) algorithms
in particular, are successful recommendation techniques. They are based on past
ratings of users with similar preferences, to provide recommendations [5]. How-
ever, this technique introduces certain shortcomings. If a new item appears in
the database, there is no way to be recommended before it is rated. On the other
hand, if a user’s taste is unusual, he can not find neighbors, and gets inaccurate
recommendations.

In contrast, Content-Based filtering (CB) assumes that each user operates in-
dependently. As a result, CB exploits only information derived from document or

* This paper is supported by a national GSRT PABET-NE project.

C. Conati, K. McCoy, and G. Paliouras (Eds.): UM 2007, LNAI 4511, pp. 97-[I06] 2007.
© Springer-Verlag Berlin Heidelberg 2007

98 P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos

item features (e.g., terms or attributes). A pure content-based system faces the
problem of over-specialization [2], where a user is restricted to seeing items simi-
lar to those already rated. It also suffers from possible shallow analysis of content.

Recently, CB and CF have been combined to improve the recommendation
procedure. Most of these hybrid systems are process-oriented: they run CF on
the results of CB and vice versa. CF exploits information from the users and their
ratings. CB exploits information from items and their features. However being
hybrid systems, they miss the interaction between user ratings and item features.
In this paper, we construct a feature-weighted user profile to disclose the duality
between users and features. Moreover, exploiting the correlation between users
and features we reveal the actual reasons of their rating behavior. For instance,
in a movie recommender system, a user prefers a movie for various reasons, such
as the actors, the director or the genre of the movie. All these features affect
differently the choice of each user. Our approach correlates user ratings with
item features bringing to surface the actual reasons of user preferences.

Our contribution is summarized as follows: (i) We construct a novel feature-
weighted user model, which discloses the duality between users and features, (ii)
based on Information Retrieval, we include the Term Frequency Inverse Document
Frequency (TFIDF) weighting scheme in CF, (iii) we propose a new top-N gen-
eration list algorithm based on features frequency and (iv) we perform extensive
experimental results with the internet movies database (imdb) and MoviesLens
data sets, which demonstrate the superiority of the proposed approach.

The rest of this paper is organized as follows: Section [2] summarizes the re-
lated work, whereas Section [3l contains the analysis of the examined factors. The
proposed approach is described in Section @l Experimental results are given in
Section [l Finally, Section [d concludes this paper.

2 Related Work

In 1994, the GroupLens system [5] implemented a CF algorithm based on com-
mon users preferences. Nowadays, this algorithm is known as user-based CF,
because it employs users’ similarities for the formation of the neighborhood of
nearest users. In 2001, another CF algorithm was proposed. It is based on the
items’ similarities for neighborhood generation [7]. This algorithm is denoted
as item-based or item-item CF, because it employs items’ similarities for the
formation of the neighborhood of nearest users.

The content-based approach has been studied in the information retrieval (IR)
community. It assumes that each user operates independently. It exploits only
information derived from documents or item features (eg. terms or attributes).
There are two basic subproblems in designing a content filtering system: (i) It
is the user profile construction and (ii) the document representation. In 1994,
Yan et al. [§] implemented a simple content-based filtering system for internet
news articles (SIFT).

There have been several attempts to combine CB with CF. The Fab System [2],
measures similarity between users after first computing a profile for each user.
This process reverses the CinemaScreen System [6] which runs CB on the results

Feature-Weighted User Model for Recommender Systems 99

of CF. Melville et al. [4] used a content-based predictor to enhance existing user
data, and then to provide personalized suggestions though collaborative filtering.
Finally, Xin Jin et al. [3] proposed a Web recommendation system in which collab-
orative and content features are integrated under the maximum entropy principle.

All the aforementioned approaches are hybrid: they either run CF on the
results of CB or vice versa. CF considers the dependency between user ratings,
but misses the dependency between item features. CB considers the latter, but
not the former. Since hybrid approaches run CB and CF separately, they miss the
existed dependency between user ratings and item features. Our model, discloses
the duality between user ratings and item features, to reveal the actual reasons
of their rating behavior. Moreover, we introduce a scheme to weight features,
according to their impact on users preferences. Thus, similarity between users is
measured with respect to the dominant features in their profiles.

3 Examined Factors

In this section, we provide details for the examined factors that are involved in
CF algorithms. Table [[] summarizes the symbols that are used in the sequel.

Table 1. Symbols and definitions

Symbol Definition Symbol Definition
k number of nearest neighbors N size of recommendation list
P- threshold for positive ratings F, set of features correlated with user u
U domain of all users W (u,f) the correlation of user u on feature f
F domain of all features R(u,i) the rating of user u on item ¢
T domain of all items the weighted user-feature matrix

w,v some users
some items
some features

the user-item ratings matrix
the user-feature matrix
the item-feature matrix

R vli=vIRS

S~ .

Neighborhood size: The number, k, of nearest neighbors used for the neigh-
borhood formation is important because it can affect substantially the system’s
accuracy. In most related works, & has been examined in the range of values
between 10 and 100. The optimum k depends on the data characteristics (e.g.,
sparsity). Therefore, CF and CB algorithms should be evaluated against varying
k, in order to tune it.

Positive rating threshold: It is evident that recommendations should be “pos-
itive”, as it is not success to recommend an item that will be rated with, e.g., 1 in
1-5 scale. Thus, “negatively” rated items should not contribute to the increase of
accuracy. We use arating-threshold, P;, to recommended items whose rating is not
less than this value. If we do not use a P, value, then the results become misleading.

Train/Test data size: There is a clear dependence between the training set’s
size and the accuracy of CF and CB algorithms [7]. Therefore, these algorithms
should be evaluated against varying training data sizes.

100 P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos

Recommendation list’s size: The size, N, of the recommendation list corre-
sponds to a tradeoff: With increasing N, the absolute number of relevant items
(i.e., recall) is expected to increase, but their ratio to the total size of the rec-
ommendation list (i.e., precision) is expected to decrease. In related work [7],
N usually takes values between 10 and 50.

Evaluation Metrics: Several metrics have been used for the evaluation of CF
and CB algorithms. We focus on widely accepted metrics from information re-
trieval. For a test user that receives a top-N recommendation list, let R denote
the number of relevant recommended items (the items of the top-N list that are
rated higher than P, by the test user). We define the following:

— Precision is the ratio of R to N.
— Recallis the ratio of R to the total number of relevant items for the test user
(all items rated higher than P, by him).

Notice that with the previous definitions, when an item in the top-N list is
not rated at all by the test user, we consider it as irrelevant and it counts
negatively to precision (as we divide by N). In the following we also use
F1 = 2 - recall - precision/(recall + precision). F; is used because it combines
both the previous metrics.

4 Proposed Methodology

The outline of our approach consists of four steps:

1. The content-based user profile construction step: It constructs a content-
based user profile from both collaborative and content features.

2. The feature-weighting step: We quantify the affect of each feature inside the
user’s profile(find important intra-user features) and among the users (find
important inter-users features).

3. The formation of user’s neighborhood algorithm: To provide recommenda-
tions, we create the user’s neighborhood, calculating the similarity between
each user.

4. The top-N list generation algorithm: We provide for each test user a Top-N
recommendation list based on the most frequent features in his neighborhood.

In the following, we analyze each step in detail. To ease the discussion, we will use
the running example illustrated in Figure[Ih, where I; ¢ are items and U;_4 are
users. The null (not rated) cells are presented with dash. Moreover, in Figure[Ib,
for each item we have four features that describe its characteristics.

4.1 The Content-Based User Profile Construction

We construct a feature profile for a user from both user ratings and item features.
In particular, for a user u who rated positively (above P;) some items, we build
a feature profile to find his favorite features.

In particular, matrix R(u,i) denotes the ratings of user v on each item i. We
use a boolean matrix F', where F'(i,f) element is one, if item ¢ contains feature

Feature-Weighted User Model for Recommender Systems 101

]11213141516 F1F2F3F4 F1F2F3F4
U - 4 - -5 - I 0 1 00 Uy 2 2 10
Uz - 3 -4 - - L1 100 Uz 1.2 00
Us - - - - -4 0 1 10 Us 0 0 0 1
U5 -3 - - - L0100 Us 02 10
Is 1 1 10
Is 0O 0 0 1
(a) (b) (c)

Fig.1. (a) User-Item matrix R, (b) Boolean Item-Feature matrix F (c) User-Feature
matrix P

f and zero otherwise. In our running example, matrices R and F are illustrated
in Figures [Tk and [b, respectively. For a user u, his profile is constructed with
matrix P(u,f), with elements given as follows:

Plu,fy= Y F(if) (1)

VR(u,i)> Py

Therefore, P(u,f) denotes the correlation between user u and feature f. Notice
that we use only the positively rated items ¢ (i.e., R(u,i)> P;) by user u.

In our running example (with P, = 2), we construct the P matrix by com-
bining information from R and F' matrices. As we can see in Figure [[k, the new
matrix P reveals a strong similarity (same feature preferences) between users Uy
and Uy. This similarity could not be derived from the corresponding user ratings
in the R matrix.

4.2 The Feature-Weighting of the User Profile

Let U be the domain of all users and F,, the set of features that are correlated
with user u, i.e., F, ={f € F | P(u,f)> 0}. Henceforth, user u and feature f
are correlated when P (u,f)> 0.

We will weight the features of matrix P, in order to find (i) those features
which better describe user u (describe the F,, set) and (ii) those features which
better distinguish him from the others (distinguishing him from the remain-
ing users in the U domain). The first set of features provides quantification of
intra-user similarity, while the second set of features provides quantification of
inter-user dissimilarity.

In our model, motivated from the information retrieval field and the TFIDF
scheme [I], intra-user similarity is quantified by measuring the frequency of each
feature f for a user u. Henceforth, this factor is referred as Feature Frequency
(F'F) factor. Furthermore, inter-user dissimilarity is quantified by measuring the
inverse of the frequency of a feature f among all users. Henceforth, this factor
is referred as Inverse User Frequency(IUF') factor.

Thus, Feature Frequency FF(u,f) is the number of times feature f occurs in
the profile of user w. In our model, it holds that F'F(u,f)=P(u,f). The User

102 P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos

Frequency UF(f) is the number of users in which feature f occurs at least once.
Finally, the Inverse User Frequency IUF(f) can be calculated from UF(f) as
follows:

|

UR(f) @)

In Equation 2] |i/| is the total number of users. The Inverse User Frequency of
a feature is low, if it occurs in many users’ profiles, whereas it is high, if the
feature occurs in few users profiles. Finally, the new weighted value of feature f
for user u is calculated as following;:

IUF(f) =log

W(u, f) = FF(u, f) « IUF(f) 3)

This feature weighting scheme represents that a feature f is an important index-
ing element for user w, if it occurs frequently in it. On the other hand, features
which occur in many users’ profiles are rated as less important indexing elements
due to the low inverse user frequency.

In our running example, the matrix P of Figure [Ik is transformed into the
matrix W in Figure Zh. As it can be noticed in matrix P, features Fy and Fy for
user U; have the same value, equal to two. In contrast, in matrix W, the same
features are weighted differently (0.60 and 0.24). It is obvious now that feature
Fy for user Uy is an important discriminating feature, whereas this could not be
noticed in matrix P.

F F, F; Fj Ui U UsUs

U1 0.60 0.24 0.30 - Ui - 096 0 1

U2030024 0 - U2096 - 0 1

Us - - - 060 Us 0 0 - 0

Us 0 024030 - Us 1 1 0 -
(a) (b)

Fig. 2. (a) weighted User-Feature matrix W (b) User-User similarity matrix

4.3 The User’s Neighborhood Formation

To provide recommendations, we need to find similar users. In our model, as
it is expressed by equation Hl we apply cosine similarity in the weighted user-
feature W matrix. We adapt cosine similarity to take into account only the set of
features, that are correlated with both users. Thus, in our model the similarity
between two users is measured as follows:

> W(u, Y)W (v, f)

sim(u,v) = e X =FuNFe. (4)
Do W) [> W)
viex vfex

In our running example, we create a user-user matrix according to equation [4]
where we can find the neighbors of each user (those which have the higher value,

Feature-Weighted User Model for Recommender Systems 103

are the nearest ones). In Figure[Zb, we can see that the nearest neighbor of user
U, is Uy with similarity 1, and U; follows with similarity value 0.96.

4.4 The Top-N List Generation

The most often used technique for the generation of the top-N list, is the one that
counts the frequency of each positively rated item inside the found neighborhood,
and recommends the N most frequent ones. Our approach differentiates from this
technique by exploiting the item features. In particular, for each feature f inside
the found neighborhood, we add its frequency. Then, based on the features that
an item consists of, we count its weight in the neighborhood. Our method, takes
into account the fact that, each user has his own reasons for rating an item.

In our running example, assuming that we recommend a top — 1 list for Us
(with k=2 nearest neighbors), we work as follows:

1. We get the nearest neighbors of Us: {Uy, Uy}

2. We get the items in the neighborhood: {I1, I3, I5}

3. We get the features of each item: Ill {FQ}, 132 {F27 Fg}, I5I {F’l7 F27 Fg}

4. We find their frequency in the neighborhood: fr(Fy)=1, fr(Fs)=3, fr(Fs)=2

5. For each item, we add its features frequency finding its weight in the
neighborhood: w(I;) = 3, w(I3) = 5, w(ls) = 6.

Thus, I5 is recommended, meaning that it consists of features that are
prevalent in the feature profiles of Us’s neighbors.

5 Performance Study

In this section, we study the performance of our feature-weighted user model
against the well-known CF, CB and a hybrid algorithm, by means of a thor-
ough experimental evaluation. For the experiments, the Featured-W eighted User
Model is denoted as FWUM, the collaborative filtering algorithm as CF and
the content-based algorithm as CB. Finally, as representative of the hybrid al-
gorithms, we have implemented a state-of-the-art algorithm, the Cinemascreen
Recommender Agent [6], denoted as CFCB. Factors that are treated as param-
eters, are the following: the neighborhood size (k, default value 10), the size of
the recommendation list (IV, default value 20) and the size of train set (default
value 75%). The metrics we use are recall, precision, and F;. P, threshold is set
to 3. Finally, we consider the division between not hidden and hidden data. For
each transaction of a test user we keep the 75% as hidden data (the data we
want to predict) and use the rest 25% as not hidden data (the data for modeling
new users).

The extraction of the content features has been done through the well-known
internet movie database (imdb). We downloaded the plain imdb database (ftp.fu-
berlin.de - October 2006) and selected 4 different classes of features (genres,
actors, directors, keywords). In the imdb database there are 28 different movie
genres (Action, Film-Noir, Western etc.), 32882 different keywords referring to

104 P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos

movie characteristics, 121821 directors and 1182476 actors and actresses (a movie
can be classified to more genres or keywords). We joined the aforementioned
data with one real data set that has been used as benchmark in prior work.
In particular, we used the 100K MovieLens [5] data set with 100,000 ratings
assigned by 943 users on 1,682 movies. The range of ratings is between 1(bad)-
5(excellent) of the numerical scale. The joining process lead to 23 different genres,
9847 keywords, 1050 directors and 2640 different actors and actresses (we selected
only the 3 most paid actors or actresses for each movie). Finally, notice that we
have validated the presented results with other real data sets (Movielens 1M and
EachMovie). Due to lack of space, these results will be presented in a extended
version of this work.

5.1 Comparative Results for CF Algorithms

Firstly, we compare the two main CF algorithms, denoted as user-based (UB)
and item-based (IB) algorithms. The basic difference between these two CF
algorithms is that, the former constructs a user-user similarity matrix while
the latter, builds an item-item similarity matrix. Both of them, exploit the user
ratings information(user-item R matrix). FigureBldemonstrates that item-based
CF compares favorably against user-based CF for small values of k. For large
values of k, both algorithms converge, but never exceed the limit of 40% in terms
of precision. The reason is that as the k values increase, both algorithms tend to
recommend the most popular items. In the sequel, we will use the IB algorithm
as a representative of CF algorithms.

- UB O IB ——ACTOR —O—DIRECTOR - O- GENRE ‘-®-KEYWORD
45 - 20 4

40 -] B
i . N3 3 [3 [2
35 1 16 3
o 14 ;;79::#b=:o——oz:£::qﬁ::g::f::i

30 - 512 e
25 | - 1 e
. 10 - 0
20 o g0
S 89 0@
15 o 1 O O
[

10 4

precision

10‘20‘30‘40‘50]‘(50‘70‘80‘90‘100‘ 10‘20‘30‘40‘50‘60‘70‘80‘90‘100‘
k
(a) (b)
Fig. 3. Comparison in terms of precision between (a) CF algorithms (b) CB classes of
features

5.2 Comparative Results of Feature Classes for CB Algorithm

As it is already discussed, we have extracted 4 different classes of features
from the imdb database. We test them using the pure content-based CB al-
gorithm to reveal the most effective in terms of accuracy. Pure CB algorithm
exploits information derived only from document or item features. Thus, we

Feature-Weighted User Model for Recommender Systems 105

create an item-item similarity matrix based on cosine similarity applied on fea-
tures of items (by exploiting information only from the item-feature F matrix).
In Figure Bb, we see results in terms of precision for the four different classes
of extracted features. As it is shown, the best performance is attained for the
“keyword” class of content features.

5.3 Comparative Results for CF, CB, CFCB and FWUM
Algorithms

We test the FWUM algorithm against CF, CB and CFCB algorithms using the
best options as they have resulted from the previous measurements. In Figures[Zh
and @b, we see results for precision and recall. FWUM presents the best per-
formance in terms of precision (above 60%) and recall(above 20%). The reason
is two-fold:(i) the sparsity has been downsized through the features and (ii) the
applied weighting-schema reveals the actual user preferences.

precision

70 -
60
50 4
40 4
30 4
20 4
10+

[-0-CF --8-CB —— CFCB —+— FWUM

’/‘/7477*77F e L G—

Recall

25

20

154

104

[-O-CF --8-CB ——CFCB —— FWUM

// - a o

Fig. 4. Comparison between CF, CB and CFCB with FWUM in terms of (a) precision
(b) recall

5.4 Examination of Additional Factors

Recommendation list’s size: We examine the impact of N. The results of
our experiments are depicted in Figures Bh and Bb. As expected, with increasing
N, recall increases and precision decreases. Notice that the FWUM outperforms
CF, CB and CFCB in all cases. The relative differences between the algorithms
are coherent with those in our previous measurements.

Training/Test data size: Now we test the impact of the size of the training
set. The results for the F; metric are given in Figure Bk. As expected, when
the training set is small, performance downgrades for all algorithms. Similar to
the previous measurements, in all cases FWUM algorithm is better than CF,
CB and CFCB cases and low training set sizes do not affect determinatively the
FWUM accuracy.

106 P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos

1~ CF -@-CB - CFCB —- FWUM| -CF -#-CB - CFCB —+-FWNB —-CF -#-CB —0-CFCB —- FWUM|

35

3 3

/

Recall

30

ek e

Precision
)

154
-

10

15
-
o
-
-
=y
&

=
B
o

10 20 30 40 50 10 20 30 40 50 15 30 5 60 5
N N training set size (perc.)

(a) (b) (c)

Fig. 5. Comparison vs.: (a) N precision, (b) N recall, (c) training set size

6 Conclusions

We proposed a feature-weighted user model for recommender systems. We per-
form experimental comparison of our method against well known CF, CB and a
hybrid algorithm with a real data set. Our approach shows significant improve-
ments in accuracy of recommendations over existing algorithms. The reason is
that our approach reveals the favorite features of a user and recommends those
items that are composed of these features. Summarizing the aforementioned
conclusions, our feature-weighted user model is a promising approach for getting
more robust recommender systems. In our future work, we will consider the fu-
sion of different classes of features in a multivariate user model for getting more
precise recommendations.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press
/ Addison-Wesley (1999)

2. Balabanovic, M., Y, S.: Fab: Content-based, collaborative recommendation. ACM
Communications 40(3), 6672 (1997)

3. Jin, X., Zhou, Y., Mobasher, B.: A maximum entropy web recommendation system:
Combining collaborative and content features. In: Proc. ACM SIGKDD Conf., pp.
612-617 (2005)

4. Melville, P., Mooney, R.J., Nagarajan, R.: In: Proc. AAAI conf. In Content-Boosted
Collaborative Filtering for improved Recommendations, pp. 187-192 (2002)

5. Resnick, P., Tacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering on netnews. In: Proc. Conf. Computer Sup-
ported Collaborative Work, pp. 175-186 (1994)

6. Salter, J., Antonopoulos, N.: Cinemascreen recommender agent: Combining collabo-
rative and content-based filtering. Intelligent Systems Magazine 21(1), 35-41 (2006)

7. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: [tem-based collaborative filtering
recommendation algorithms. In: Proc. WWW Conf., pp. 285-295 (2001)

8. Yan, W.T., Molina, H.G.: Sift: A tool for wide-area information dissemination. In:
Proc. UNSENIX Conf., pp. 177-186 (1995)

	Feature-Weighted User Model for Recommender Systems
	Introduction
	Related Work
	Examined Factors
	Proposed Methodology
	The Content-Based User Profile Construction
	The Feature-Weighting of the User Profile
	The User's Neighborhood Formation
	The Top-N List Generation

	Performance Study
	Comparative Results for CF Algorithms
	Comparative Results of Feature Classes for CB Algorithm
	Comparative Results for CF, CB, CFCB and FWUM Algorithms
	Examination of Additional Factors

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

