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Abstract. In 2005 Budaghyan, Carlet and Pott constructed the first
APN polynomials EA-inequivalent to power functions by applying CCZ-
equivalence to the Gold APN functions. It is a natural question whether
it is possible to construct APN polynomials EA-inequivalent to power
functions by using only EA-equivalence and inverse transformation on a
power APN mapping: this would be the simplest method to construct
APN polynomials EA-inequivalent to power functions. In the present
paper we prove that the answer to this question is positive. By this
method we construct a class of APN polynomials EA-inequivalent to
power functions. On the other hand it is shown that the APN polynomi-
als constructed by Budaghyan, Carlet and Pott cannot be obtained by
the introduced method.
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1 Introduction

A function F : Fm
2 → Fm

2 is called almost perfect nonlinear (APN) if, for every
a �= 0 and every b in Fm

2 , the equation F (x) + F (x + a) = b admits at most two
solutions (it is also called differentially 2-uniform). Vectorial Boolean functions
used as S-boxes in block ciphers must have low differential uniformity to allow
high resistance to the differential cryptanalysis (see [2,30]). In this sense APN
functions are optimal. The notion of APN function is closely connected to the
notion of almost bent (AB) function. A function F : Fm

2 → Fm
2 is called AB if

the minimum Hamming distance between all the Boolean functions v · F , v ∈
Fm

2 \{0}, and all affine Boolean functions on Fm
2 is maximal. AB functions exist

for m odd only and oppose an optimum resistance to the linear cryptanalysis
(see [28,15]). Besides, every AB function is APN [15], and in the m odd case,
any quadratic function is APN if and only if it is AB [14].

The APN and AB properties are preserved by some transformations of func-
tions [14,30]. If F is an APN (resp. AB) function, A1, A2 are affine permutations
and A is affine then the function F ′ = A1 ◦ F ◦ A2 + A is also APN (resp. AB);
the functions F and F ′ are called extended affine equivalent (EA-equivalent).
Another case is the inverse transformation, that is, the inverse of any APN
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(resp. AB) permutation is APN (resp. AB). Until recently, the only known con-
structions of APN and AB functions were EA-equivalent to power functions
F (x) = xd over finite fields (F2m being identified with Fm

2 ). Table 1 gives all
known values of exponents d (up to multiplication by a power of 2 modulo 2m−1,
and up to taking the inverse when a function is a permutation) such that the
power function xd over F2m is APN. For m odd the Gold, Kasami, Welch and
Niho APN functions from Table 1 are also AB (for the proofs of AB property
see [11,12,23,24,26,30]).

Table 1. Known APN power functions xd on F2m

Functions Exponents d Conditions Proven in
Gold 2i + 1 gcd(i, m) = 1 [23,30]

Kasami 22i − 2i + 1 gcd(i, m) = 1 [25,26]
Welch 2t + 3 m = 2t + 1 [20]
Niho 2t + 2

t
2 − 1, t even m = 2t + 1 [19]

2t + 2
3t+1

2 − 1, t odd
Inverse 22t − 1 m = 2t + 1 [1,30]

Dobbertin 24t + 23t + 22t + 2t − 1 m = 5t [21]

In [14], Carlet, Charpin and Zinoviev introduced an equivalence relation of
functions, more recently called CCZ-equivalence, which corresponds to the affine
equivalence of the graphs of functions and preserves APN and AB properties.
EA-equivalence is a particular case of CCZ-equivalence and any permutation is
CCZ-equivalent to its inverse [14]. In [8,9], it is proven that CCZ-equivalence
is more general, and applying CCZ-equivalence to the Gold mappings classes
of APN functions EA-inequivalent to power functions are constructed. These
classes are presented in Table 2. When m is odd, these functions are also AB.

Table 2. Known APN functions EA-inequivalent to power functions on F2m

Functions Conditions Alg. degree
m ≥ 4

x2i+1 + (x2i

+ x + tr(1) + 1)tr(x2i+1 + x tr(1)) gcd(i, m) = 1 3

[x + tr(m,3)(x2(2i+1) + x4(2i+1)) m divisible by 6 4
+tr(x)tr(m,3)(x2i+1 + x22i(2i+1))]2

i+1 gcd(i, m) = 1

x2i+1 + tr(m,n)(x2i+1) + x2i

tr(m,n)(x) + x tr(m,n)(x)2
i

m �= n

+[tr(m,n)(x)2
i+1 + tr(m,n)(x2i+1) + tr(m,n)(x)]

1
2i+1 m divisible by n n + 2

×(x2i

+ tr(m,n)(x)2
i

+ 1) + [tr(m,n)(x)2
i+1 gcd(2i, m) = 1

+tr(m,n)(x2i+1) + tr(m,n)(x)]
2i

2i+1 (x + tr(m,n)(x))
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These new results on CCZ-equivalence have solved several problems (see
[8,9]) and have also raised some interesting questions. One of these questions
is whether the known classes of APN power functions are CCZ-inequivalent.
Partly the answer is given in [6]: it is proven that in general the Gold func-
tions are CCZ-inequivalent to the Kasami and Welch functions, and that for
different parameters 1 ≤ i, j ≤ m−1

2 the Gold functions x2i+1 and x2j+1 are
CCZ-inequivalent. Another interesting question is the existence of APN polyno-
mials CCZ-inequivalent to power functions. Different methods for constructing
quadratic APN polynomials CCZ-inequivalent to power functions have been pro-
posed in [3,4,17,22,29], and infinite classes of such functions are constructed in
[3,4,5,6,7]. In the present paper we consider the natural question whether it is
possible to construct APN polynomials EA-inequivalent to power functions by
applying only EA-equivalence and the inverse transformation on a power APN
function. We prove that the answer is positive and construct a class of AB func-
tions EA-inequivalent to power mappings by applying this method to the Gold
AB functions. It should be mentioned that the functions from Table 2 cannot
be obtained by this method. It can be illustrated, for instance, by the fact that
for m = 5 the functions from Table 2 and for m even the Gold functions are
EA-inequivalent to permutations [8,9,31], therefore, the inverse transformation
cannot be applied in these cases and the method fails.

2 Preliminaries

Let Fm
2 be the m-dimensional vector space over the field F2. Any function F from

Fm
2 to itself can be uniquely represented as a polynomial on m variables with

coefficients in Fm
2 , whose degree with respect to each coordinate is at most 1:

F (x1, . . . , xm) =
∑

u∈Fm
2

c(u)
( m∏

i=1

xui

i

)
, c(u) ∈ Fm

2 .

This representation is called the algebraic normal form of F and its degree d◦(F )
the algebraic degree of the function F .

Besides, the field F2m can be identified with Fm
2 as a vector space. Then,

viewed as a function from this field to itself, F has a unique representation as a
univariate polynomial over F2m of degree smaller than 2m:

F (x) =
2m−1∑

i=0

cix
i, ci ∈ F2m .

For any k, 0 ≤ k ≤ 2m − 1, the number w2(k) of the nonzero coefficients ks ∈
{0, 1} in the binary expansion

∑m−1
s=0 2sks of k is called the 2-weight of k. The

algebraic degree of F is equal to the maximum 2-weight of the exponents i of
the polynomial F (x) such that ci �= 0, that is, d◦(F ) = max0≤i≤m−1,ci �=0 w2(i)
(see [14]).
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A function F : Fm
2 → Fm

2 is linear if and only if F (x) is a linearized polynomial
over F2m , that is,

m−1∑

i=0

cix
2i

, ci ∈ F2m .

The sum of a linear function and a constant is called an affine function.
Let F be a function from F2m to itself and A1, A2 : F2m → F2m be affine

permutations. The functions F and A1 ◦F ◦A2 are then called affine equivalent.
Affine equivalent functions have the same algebraic degree (i.e. the algebraic
degree is affine invariant).

As recalled in the Introduction, we say that the functions F and F ′ are ex-
tended affine equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine permutations
A1, A2 and an affine function A. If F is not affine, then F and F ′ have again
the same algebraic degree.

Two mappings F and F ′ from F2m to itself are called Carlet-Charpin-Zinoviev
equivalent (CCZ-equivalent) if the graphs of F and F ′, that is, the subsets GF =
{(x, F (x)) | x ∈ F2m} and GF ′ = {(x, F ′(x)) | x ∈ F2m} of F2m ×F2m , are affine
equivalent. Hence, F and F ′ are CCZ-equivalent if and only if there exists an
affine automorphism L = (L1, L2) of F2m × F2m such that

y = F (x) ⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a
permutation too (see [6]). As shown in [14], EA-equivalence is a particular case
of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

For a function F : F2m → F2m and any elements a, b ∈ F2m we denote

δF (a, b) = |{x ∈ Fm
2 : F (x + a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F∗
2m ,b∈F2m δF (a, b) ≤ δ.

Note that δ ≥ 2 for any function over F2m . Differentially 2-uniform mappings
are called almost perfect nonlinear.

For any function F : F2m → F2m we denote

λF (a, b) =
∑

x∈F2m

(−1)tr(bF (x)+ax), a, b ∈ F2m ,

where tr(x) = x + x2 + x4 + · · · + x2m−1
is the trace function from F2m into F2.

The set ΛF = {λF (a, b) : a, b ∈ F2m , b �= 0} is called the Walsh spectrum of the
function F and the multiset {|λF (a, b)| : a, b ∈ F2n , b �= 0} is called the extended
Walsh spectrum of F . The value

NL(F ) = 2m−1 − 1
2

max
a∈F2m ,b∈F∗

2m

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F
satisfies the inequality

NL(F ) ≤ 2m−1 − 2
m−1

2

([15,32]) and in case of equality F is called almost bent or maximum nonlinear.
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Obviously, AB functions exist only for n odd. It is proven in [15] that every AB
function is APN and its Walsh spectrum equals {0, ±2

m+1
2 }. If m is odd, every

APN mapping which is quadratic (that is, whose algebraic degree equals 2) is AB
[14], but this is not true for nonquadratic cases: the Dobbertin and the inverse
APN functions are not AB (see [12,14]). When m is even, the inverse function
x2m−2 is a differentially 4-uniform permutation [30] and has the best known non-
linearity [27], that is 2m−1 − 2

m
2 (see [12,18]). This function has been chosen as

the basic S-box, with m = 8, in the Advanced Encryption Standard (AES), see
[16]. A comprehensive survey on APN and AB functions can be found in [13].

It is shown in [14] that, if F and G are CCZ-equivalent, then F is APN
(resp. AB) if and only if G is APN (resp. AB). More generally, CCZ-equivalent
functions have the same differential uniformity and the same extended Walsh
spectrum (see [8]). Further invariants for CCZ-equivalence can be found in [22]
(see also [17]) in terms of group algebras.

3 The New Construction

In this section we show that it is possible to construct APN polynomials
EA-inequivalent to power functions by applying only EA-equivalence and the in-
verse transformation on a power APN function. The inverse transformation and
EA-equivalence are simple transformations of functions which preserve APN and
AB properties. However, applying each of them separately on power mappings it
is obviously impossible to construct polynomials EA-inequivalent to power func-
tions. Therefore, our approach for constructingAPN polynomialsEA-inequivalent
to power mappings is the simplest. We shall illustrate this method on the Gold AB
functions and in order to do it we need the following result from [8,9].

Proposition 1. ([8,9]) Let F : F2m → F2m , F (x) = L(x2i+1) + L′(x), where
gcd(i, m) = 1 and L, L′ are linear. Then F is a permutation if and only if,
for every u �= 0 in F2m and every v such that tr(v) = tr(1), the condition
L(u2i+1v) �= L′(u) holds.

Further we use the following notations for any divisor n of m

tr(m,n)(x) = x + x2n

+ x22n

. . . + x2n(m/n−1)
,

trn(x) = x + x2 + · · · + x2n−1
.

Theorem 1. Let m ≥ 9 be odd and divisible by 3. Then the function

F ′(x) =
(
x

1
2i+1 + tr(m,3)(x + x22i

)
)−1

,

with 1 ≤ i ≤ m, gcd(i, m) = 1, is an AB permutation over F2m . The function F ′

is EA-inequivalent to the Gold functions and to their inverses, that is, to x2j+1

and x
1

2j+1 for any 1 ≤ j ≤ m.

Proof. To prove that the function F ′ is an AB permutation we only need to show
that the function F1(x) = x

1
2i+1 + tr(m,3)(x + x22i

) is a permutation. Since the
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function x2i+1 is a permutation when m is odd and gcd(i, m) = 1 then F1 is a
permutation if and only if the function F (x) = F1(x2i+1) = x + tr(m,3)(x2i+1 +
x22s(2i+1)), with s = i mod 3, is a permutation.

By Proposition 1 the function F is a permutation if for every v ∈ F2m such
that tr(v) = 1 and every u ∈ F∗

2m the condition tr(m,3)(u2i+1v + (u2i+1v)2
2s

) �=
u holds. Obviously, if u /∈ F∗

23 then tr(m,3)(u2i+1v + (u2i+1v)2
2s

) �= u. For
any u ∈ F∗

23 the condition tr(m,3)(u2i+1v + (u2i+1v)2
2s

) �= u is equivalent to
u2i+1tr(m,3)(v) + (u2i+1tr(m,3)(v))2

2s �= u. Therefore, F is a permutation if for
every u, w ∈ F∗

23 , tr3(w) = 1 the condition u2i+1w+(u2i+1w)2
2s �= u is satisfied.

Then F is a permutation if x + x2i+1 + x22s(2i+1) is a permutation on F23 and
that was easily checked by a computer.

We have d◦(x2i+1) = 2 and it is proven in [30] that d◦(x
1

2i+1 ) = m+1
2 . We

show below that d◦(F ′) = 4 for m ≥ 9. Since the function F ′ has algebraic degree
different from 2 and m+1

2 then it is EA-inequivalent to the Gold functions and
to their inverses.

Since F ′(x) = F−1
1 (x) = [F (x

1
2i+1 )]−1 = [F−1(x)]2

i+1 then to get the rep-
resentation of the function F ′ we need the representation of the function F−1.
The following computations are helpful to show that F−1 = F ◦ F .

tr(m,3)[(x + tr(m,3)(x2i+1 + x22s(2i+1)))2
i+1]

= tr(m,3)(x2i+1) + tr(m,3)(x2s

)tr(m,3)(x2i+1 + x22s(2i+1))

+tr(m,3)(x)tr(m,3)(x2i+1 + x2s(2i+1))

+tr(m,3)(x2i+1 + x22s(2i+1))tr(m,3)(x2i+1 + x2s(2i+1)),

since

tr(m,3)((x2i+1 + x22s(2i+1))2
i

) = tr(m,3)((x2i+1 + x22s(2i+1))2
s

)

= tr(m,3)(x2s(2i+1) + x23s(2i+1)) = tr(m,3)(x2s(2i+1) + x2i+1).

Then

tr(m,3)[(x+tr(m,3)(x
2i+1+x22s(2i+1)))2

i+1+(x+tr(m,3)(x
2i+1+x22s(2i+1)))2

2s(2i+1)]

= tr(m,3)(x
2i+1 + x22s(2i+1)) + tr(m,3)(x

2s

)tr(m,3)(x
2i+1 + x22s(2i+1))

+tr(m,3)(x)tr(m,3)(x
22s(2i+1) + x2s(2i+1)) + tr(m,3)(x)tr(m,3)(x

2i+1 + x2s(2i+1))

+tr(m,3)(x
22s

)tr(m,3)(x
22s(2i+1) + x(2i+1))

+tr(m,3)(x
2i+1 + x22s(2i+1))tr(m,3)(x

2i+1 + x2s(2i+1))

+tr(m,3)(x
22s(2i+1) + x2s(2i+1))tr(m,3)(x

22s(2i+1) + x(2i+1))

= tr(m,3)(x
2i+1 + x22s(2i+1)) + tr(m,3)(x + x2s

+ x22s

)tr(m,3)(x
2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2 = tr(m,3)(x

2i+1 + x22s(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2
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and

F ◦ F (x) = x + trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2

and, since trm(tr(m,3)(x2i+1 + x22s(2i+1))) = 0,

(F ◦ F ) ◦ F (x) = x + tr(m,3)(x
2i+1 + x22s(2i+1)) + trm(x)[tr(m,3)(x

2i+1 + x22s(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2]

+[tr(m,3)(x
2i+1 + x22s(2i+1)) + trm(x)tr(m,3)(x

2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2]2 = x + tr(m,3)(x

2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2 + (tr(m,3)(x

2i+1 + x22s(2i+1)))4

= x + tr3(tr(m,3)(x
2i+1 + x22s(2i+1))) = x + trm(x2i+1 + x22s(2i+1))) = x.

Therefore,

F −1(x)=F ◦ F (x)=x+trm(x)tr(m,3)(x
2i+1+x22s(2i+1))+(tr(m,3)(x

2i+1+x22s(2i+1)))2.

Thus, we have

F ′(x) = [F −1(x)]2
i+1 = [x + trm(x)tr(m,3)(x

2i+1 + x22s(2i+1)) + (tr(m,3)(x
2i+1

+x22s(2i+1)))2]2
i+1 = x2i+1 + trm(x)(tr(m,3)(x

2i+1 + x22s(2i+1)))2
s+1

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2(2

s+1) + x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s

+ x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1))

+x (tr(m,3)(x
2(2i+1) + x22s+1(2i+1)))2

s

+ trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+2

+trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1+1 = x2i+1 + (tr(m,3)(x
2i+1

+x22s(2i+1)))2(2
s+1) + x2i

trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)tr(m,3)(x
2i+1 + x2s(2i+1)) + x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1))

+x tr(m,3)(x
2(2i+1) + x2s+1(2i+1)) + trm(x)[(tr(m,3)(x

2i+1 + x22s(2i+1)))2
s+1

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+2 + (tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1+1].

The only item in this sum which can give algebraic degree greater than 4 is the
last item. We have

(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1 + (tr(m,3)(x2i+1 + x22s(2i+1)))2

s+2

+(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1+1 = (tr(m,3)(x2i+1 + x22s(2i+1)))2

s+1

+(tr(m,3)(x2i+1 + x22s(2i+1)))4(2
s+1) + (tr(m,3)(x2i+1 + x22s(2i+1)))2

2s

,

since

2s + 2 =
{

4 if s = 1
6 if s = 2 ,
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4(2s + 1) =
{

12 = 5 (mod 23 − 1) if s = 1
20 = 6 (mod 23 − 1) if s = 2 ,

2s+1 + 1 =
{

5 if s = 1
9 = 2 (mod 23 − 1) if s = 2 ,

22s =
{

4 if s = 1
16 = 2 (mod 23 − 1) if s = 2 .

On the other hand,

(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1 = tr(m,3)(x
2i+1 + x22s(2i+1))

×tr(m,3)(x
2i+1 + x2s(2i+1)) = tr(m,3)(x

2i+1)2 + (tr(m,3)(x
2i+1))2

2s+1

+(tr(m,3)(x
2i+1))2

s+1 + (tr(m,3)(x
2i+1))2

2s+2s

= (tr(m,3)(x
2i+1))6 + (tr(m,3)(x

2i+1))5 + (tr(m,3)(x
2i+1))3 + (tr(m,3)(x

2i+1))2. (1)

Using (1) we get

(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1 + (tr(m,3)(x2i+1 + x22s(2i+1)))4(2

s+1)

+ (tr(m,3)(x2i+1 + x22s(2i+1)))2
2s

= (tr(m,3)(x2i+1))6

+ (tr(m,3)(x2i+1))5 + (tr(m,3)(x2i+1))3 + (tr(m,3)(x2i+1))2

+ [(tr(m,3)(x2i+1))3 + (tr(m,3)(x2i+1))6 + (tr(m,3)(x2i+1))5

+ tr(m,3)(x2i+1)] + (tr(m,3)(x2i+1))2 + (tr(m,3)(x2i+1))4

= tr(m,3)(x2i+1) + (tr(m,3)(x2i+1))4. (2)

Hence, applying (1) and (2) we get

F ′(x) = x2i+1 + [(tr(m,3)(x
2i+1))6 + (tr(m,3)(x

2i+1))5 + (tr(m,3)(x
2i+1))3

+(tr(m,3)(x
2i+1))2]2 + x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)tr(m,3)(x
2i+1 + x2s(2i+1)) + x2i

tr(m,3)(x
2(2i+1)

+x22s+1(2i+1)) + x tr(m,3)(x
2(2i+1) + x2s+1(2i+1))

+trm(x)[tr(m,3)(x
2i+1) + (tr(m,3)(x

2i+1))4] = x2i+1 + (tr(m,3)(x
2i+1))6

+(tr(m,3)(x
2i+1))5 + (tr(m,3)(x

2i+1))3 + (tr(m,3)(x
2i+1))4

+x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + x trm(x)tr(m,3)(x

2i+1 + x2s(2i+1))

+x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1)) + x tr(m,3)(x

2(2i+1) + x2s+1(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x4(2i+1)).

Below we consider all items in the sum presenting the function F ′ which may
give the algebraic degree 4:
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[(tr(m,3)(x2i+1))6 + (tr(m,3)(x2i+1))5 + (tr(m,3)(x2i+1))3]

+[x2i

trm(x)(tr(m,3)(x2i+1 + x22s(2i+1)) + x trm(x)(tr(m,3)(x2i+1 + x2s(2i+1))].

For simplicity we take i = 1. Obviously, all the items in the second bracket of
the algebraic degree 4 have the form x2j+2k+2l+2r

, where r < l < k < j ≤ m−1,
r ≤ 1. Therefore, if we find an item of algebraic degree 4 in the first bracket of
the form x2j+2k+2l+2r

, where 2 ≤ r < l < k < j ≤ m−1, which does not cancel,
then this item does not vanish in the whole sum.

We have

tr(m,3)(x3) = x2+1 + x24+23
+ · · · + x2m−5+2m−6

+ x2m−2+2m−3

=

m
3 −1∑

k=0

x23k+1+23k

,

(tr(m,3)(x3))2 = x22+2 + x25+24
+ · · · + x2m−4+2m−5

+ x2m−1+2m−2

=

m
3 −1∑

k=0

x23k+2+23k+1
,

(tr(m,3)(x3))4 = x23+22
+ x26+25

+ · · · + x2m−3+2m−4
+ x2m+2m−1

=

m
3 −2∑

k=0

x23k+3+23k+2
+ x2m−1+1,

(tr(m,3)(x3))3 = (tr(m,3)(x3))2tr(m,3)(x3)=

m
3 −1∑

i,k=0

x23k+1+23k+23i+2+23i+1
, (3)

(tr(m,3)(x3))5 =

m
3 −2∑

j=0

m
3 −1∑

k=0

x23j+3+23j+2+23k+1+23k

+

m
3 −1∑

k=0

x2m−1+1+23k+1+23k

, (4)

(tr(m,3)(x3))6 =

m
3 −2∑

j=0

m
3 −1∑

k=0

x23j+3+23j+2+23k+2+23k+1
+

m
3 −1∑

k=0

x2m−1+1+23k+2+23k+1
.

(5)

Note that all exponents of weight 4 in (3)-(5) are smaller than 2m. If m ≥ 9 then
it is obvious that the item x26+25+24+23

does not vanish in (4) and it definitely
differs from all items in (3) and (5).

Hence, the function F ′ has the algebraic degree 4 when m ≥ 9 and that
completes the proof of the theorem. 	


It is proven in [6] that the Gold functions are CCZ-inequivalent to the Welch
function for all m ≥ 9. Therefore, the function F ′ of Theorem 1 is CCZ-
inequivalent to the Welch function. Further, the inverse and the Dobbertin
APN functions are not AB (see [12,14]) and, therefore, the AB function F ′ is
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CCZ-inequivalent to them. The algebraic degree of the Kasami function x4i−2i+1,
2 ≤ i ≤ m−1

2 , gcd(i, m) = 1, is equal to i + 1. Thus, its algebraic degree equals
4 if and only if i = 3. Since the function F ′ is defined only for m divisible by
3 then for i = 3 we would have gcd(i, m) �= 1. On the other hand, if Gold and
Kasami functions are CCZ-equivalent then it follows from the proof of Theo-
rem 5 of [6] that the Gold function is EA-equivalent to the inverse of the Kasami
function which must be quadratic in this case. Thus, if F ′ was EA-equivalent to
the inverse of a Kasami function then F ′ would be quadratic. Hence, F ′ cannot
be EA-equivalent to the Kasami functions or to their inverses.

Proposition 2. The function of Theorem 1 is EA-inequivalent to the Welch,
Kasami, inverse, Dobbertin functions and to their inverses.

For m = 2t + 1 the Niho function has the algebraic degree t + 1 if t is odd and
the algebraic degree (t + 2)/2 if t is even. Therefore, its algebraic degree equals
4 if and only if m = 7, 13.

Proposition 3. The function of Theorem 1 is EA-inequivalent to the Niho
function.

We do not have a general proof of EA-inequivalence of F ′ and the inverse of
the Niho function but for m = 9 the Niho function coincides with the Welch
functions and therefore its inverse cannot be EA-equivalent to the function F ′.

Corollary 1. For m = 9 the function of Theorem 1 is EA-inequivalent to any
power function.

When m is odd and divisible by 3 the APN functions from Table 2 have algebraic
degrees different from 4. Thus we get the following proposition.

Proposition 4. The function of Theorem 1 is EA-inequivalent to any APN
function from Table 2.
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