


Lecture Notes in Computer Science 4547
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Claude Carlet Berk Sunar (Eds.)

Arithmetic
of Finite Fields

First International Workshop, WAIFI 2007
Madrid, Spain, June 2007
Proceedings

13



Volume Editors

Claude Carlet
Université Paris 8, Département de mathématiques
2, rue de la Liberté; 93526 - SAINT-DENIS Cedex 02, France
E-mail: claude.carlet@inria.fr

Berk Sunar
Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609, USA
E-mail: sunar@wpi.edu

Library of Congress Control Number: 2007928526

CR Subject Classification (1998): E.4, I.1, E.3, G.2, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73073-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73073-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12077106 06/3180 5 4 3 2 1 0



Preface

These are the proceedings of WAIFI 2007. The conference was held in Madrid,
Spain, during June 21–22, 2007. We are very grateful to the Program Committee
members and to the external reviewers for their hard work! The conference
received 94 submissions out of which 27 were finally selected for presentation.
Each paper was refereed by at least two reviewers, and at least by three in the
case of papers (co)-authored by Program Committee members. All final decisions
were taken only after a clear position was clarified through additional reviews
and comments. The Committee also invited Harald Niederreiter and Richard E.
Blahut to speak on topics of their choice and we thank them for having accepted.

Special compliments go out to José L. Imaña, the general Co-chair and local
organizer of WAIFI 2007, who brought the workshop to beautiful Madrid, Spain.
WAIFI 2007 was organized by the department Computer Architecture of Facul-
tad de Informática of the Universidad Complutense, in Madrid. We also would
like to thank the General Co-chair Çetin K. Koç for his guidance. Finally, we
would like to thank the Steering Committee for providing us with this wonderful
opportunity.

The submission and selection of papers were done using the iChair software,
developed at EPFL by Thomas Baignères and Matthieu Finiasz. Many thanks
for their kind assistance! We also thank Gunnar Gaubatz for his precious help
in this matter.

June 2007 Claude Carlet
Berk Sunar



Organization

Steering Committee

Jean-Pierre Deschamps University Rovira i Virgili, Spain
José L. Imaña Complutense University of Madrid, Spain
Çetin K. Koç Oregon State University, USA
Christof Paar Ruhr University of Bochum, Germany
Jean-Jacques Quisquater Université Katholique de Louvain, Belgium
Berk Sunar Worcester Polytechnic Institute, USA
Gustavo Sutter Autonomous University of Madrid, Spain

Executive Committee

General Co-chairs
José L. Imaña Complutense University of Madrid, Spain
Çetin K. Koç Oregon State University, USA

Program Co-chairs
Claude Carlet University of Paris 8, France
Berk Sunar Worcester Polytechnic Institute, USA

Financial, Local Arrangements Chairs
Luis Piñuel Complutense University of Madrid, Spain
Manuel Prieto Complutense University of Madrid, Spain

Publicity Chair
Gustavo Sutter Autonomous University of Madrid, Spain

Program Committee

Jean-Claude Bajard CNRS-LIRMM in Montpellier, France
Ian F. Blake University of Toronto, Canada
Marc Daumas CNRS-LIRMM in Perpignan, France
Jean-Pierre Deschamps University Rovira i Virgili, Spain
Josep Domingo-Ferrer University Rovira i Virgili, Spain
Philippe Gaborit University of Limoges, France
Joachim von zur Gathen B-IT, University of Bonn, Germany
Pierrick Gaudry LORIA-INRIA, France
Guang Gong University of Waterloo, Canada
Jorge Guajardo Philips Research, Netherlands
Anwar Hasan University of Waterloo, Canada



VIII Organization

Çetin K. Koç Oregon State University, USA
Tanja Lange Technische Universiteit Eindhoven, Netherlands
Julio López UNICAMP, Brazil
Gary Mullen Pennsylvania State University, USA
Harald Niederreiter National University of Singapore, Singapore
Ferruh Ozbudak Middle East Technical University, Turkey
Erkay Savaş Sabanci University, Turkey
Igor Shparlinski Macquarie University, Australia
Horacio Tapia-Recillas UAM-Iztapalapa, D.F., Mexico
Apostol Vourdas University of Bradford, UK

Referees

O. Ahmadi
J. Aragonés
R.M. Avanzi
O. Barenys
I. Barenys
L. Batina
D.J. Bernstein
P. Birkner
M. Cenk
J. Chung
V. Daza
C. Ding
A. Doğanaksoy
N. Ebeid
N. El Mrabet
H. Fan

M. Finiasz
D. Freeman
T. Güdü
C. Güneri
K. Gupta
G. Hanrot
F. Hess
K. Horadam
L. Imbert
S. Jiang
T. Kerins
D. Kohel
G. Kömürcü
G. Kyureghyan
G. Leander
J. Lutz

A. Mart́ınez-Ballesté
N. Méloni
Y. Nawaz
C. Negre
T.B. Pedersen
M.N. Plasencia
D. Pointcheval
T. Plantard
C. Ritzenthaler
G. Saldamli
Z. Saygı
F. Sebe
B. Schoenmakers
A. Tisserand
F. Vercauteren
W. Willems

Sponsoring Institutions

Real Sociedad Matemática Española, Spain.
Ministerio de Educación y Ciencia, Spain.
Facultad de Informática de la Universidad Complutense de Madrid, Spain.
ArTeCs: Architecture and Technology of Computing Systems Group,

Universidad Complutense de Madrid, Spain.
Universidad Complutense de Madrid, Spain.



Table of Contents

Structures in Finite Fields

Explicit Factorizations of Cyclotomic and Dickson Polynomials over
Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Robert W. Fitzgerald and Joseph L. Yucas

Some Notes on d-Form Functions with Difference-Balanced Property . . . 11
Tongjiang Yan, Xiaoni Du, Enjian Bai, and Guozhen Xiao

A Note on Modular Forms on Finite Upper Half Planes . . . . . . . . . . . . . . . 18
Yoshinori Hamahata

Efficient Implementation and Architectures

A Coprocessor for the Final Exponentiation of the ηT Pairing in
Characteristic Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Jean-Luc Beuchat, Nicolas Brisebarre, Masaaki Shirase,
Tsuyoshi Takagi, and Eiji Okamoto

VLSI Implementation of a Functional Unit to Accelerate ECC and AES
on 32-Bit Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Stefan Tillich and Johann Großschädl

Efficient Multiplication Using Type 2 Optimal Normal Bases . . . . . . . . . . 55
Joachim von zur Gathen, Amin Shokrollahi, and Jamshid Shokrollahi

Efficient Finite Field Arithmetic

Effects of Optimizations for Software Implementations of Small Binary
Field Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Roberto Avanzi and Nicolas Thériault

Software Implementation of Arithmetic in F3m . . . . . . . . . . . . . . . . . . . . . . . 85
Omran Ahmadi, Darrel Hankerson, and Alfred Menezes

Complexity Reduction of Constant Matrix Computations over the
Binary Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Oscar Gustafsson and Mikael Olofsson

Towards Optimal Toom-Cook Multiplication for Univariate and
Multivariate Polynomials in Characteristic 2 and 0 . . . . . . . . . . . . . . . . . . . 116

Marco Bodrato



X Table of Contents

Classification and Construction of Mappings over
Finite Fields

A Construction of Differentially 4-Uniform Functions from
Commutative Semifields of Characteristic 2 . . . . . . . . . . . . . . . . . . . . . . . . . 134

Nobuo Nakagawa and Satoshi Yoshiara

Complete Mapping Polynomials over Finite Field F16 . . . . . . . . . . . . . . . . . 147
Yuan Yuan, Yan Tong, and Huanguo Zhang

On the Classification of 4 Bit S-Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
G. Leander and A. Poschmann

The Simplest Method for Constructing APN Polynomials
EA-Inequivalent to Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Lilya Budaghyan

Curve Algebra

New Point Addition Formulae for ECC Applications . . . . . . . . . . . . . . . . . . 189
Nicolas Meloni

Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Stefan Erickson, Michael J. Jacobson Jr., Ning Shang,
Shuo Shen, and Andreas Stein

The Quadratic Extension Extractor for (Hyper)Elliptic Curves in Odd
Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Reza Rezaeian Farashahi and Ruud Pellikaan

Cryptography

On Kabatianskii-Krouk-Smeets Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Pierre-Louis Cayrel, Ayoub Otmani, and Damien Vergnaud

Self-certified Signatures Based on Discrete Logarithms . . . . . . . . . . . . . . . . 252
Zuhua Shao

Attacking the Filter Generator over GF (2m) . . . . . . . . . . . . . . . . . . . . . . . . 264
Sondre Rønjom and Tor Helleseth

Codes

Cyclic Additive and Quantum Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . 276
Jürgen Bierbrauer



Table of Contents XI

Determining the Number of One-Weight Cyclic Codes When Length
and Dimension Are Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Gerardo Vega

Error Correcting Codes from Quasi-Hadamard Matrices . . . . . . . . . . . . . . . 294
V. Álvarez, J.A. Armario, M.D. Frau, E. Martin, and A. Osuna

Fast Computations of Gröbner Bases and Blind Recognitions of
Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Peizhong Lu and Yan Zou

Discrete Structures

A Twin for Euler’s φ Function in F2[X ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

Discrete Phase-Space Structures and Mutually Unbiased Bases . . . . . . . . 333
A.B. Klimov, J.L. Romero, G. Björk, and L.L. Sánchez-Soto

Some Novel Results of p-Adic Component of Primitive Sequences over
Z/(pd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Yuewen Tang and Dongyang Long

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355



Explicit Factorizations of Cyclotomic and

Dickson Polynomials over Finite Fields

Robert W. Fitzgerald and Joseph L. Yucas

Southern Illinois University Carbondale

Abstract. We give, over a finite field Fq, explicit factorizations into a
product of irreducible polynomials, of the cyclotomic polynomials of or-
der 3 · 2n, the Dickson polynomials of the first kind of order 3 · 2n and
the Dickson polynomials of the second kind of order 3 · 2n − 1.

Keywords: finite field, cyclotomic polynomial, Dickson polynomial.

1 Introduction

Explicit factorizations, into a product of irreducible polynomials, over Fq of the
cyclotomic polynomials Q2n(x) are given in [4] when q ≡ 1 (mod 4). The case
q ≡ 3 (mod 4) is done in [5]. Here we give factorizations of Q2nr(x) where r
is prime and q ≡ ±1 (mod r). In particular, this covers Q2n3(x) for all Fq of
characteristic not 2, 3. We apply this to get explicit factorizations of the first
and second kind Dickson polynomials of order 2n3 and 2n3− 1 respectively.

Explicit factorizations of certain Dickson polynomials have been used to com-
pute Brewer sums [1]. But our basic motivation is curiosity, to see what factors
arise. Of interest then is how the generalized Dickson polynomials Dn(x, b) arise
in the factors of the cyclotomic polynomials and how the Dickson polynomials
of the first kind appear in the factors of both kinds of Dickson polynomials.

Let q be a power of an odd prime and let v2(k) denote the highest power of 2
dividing k. We will only consider the case where r is prime and q ≡ ±1 (mod r).
We recall the general form of the factors of cyclotomic polynomials in this case
(see [4] 3.35 and 2.47).

Proposition 1. Let L = v2(q2 − 1), and work over Fq.

1. Suppose q ≡ 1 (mod r). Then:
(a) For 0 ≤ n ≤ v2(q − 1), Q2nr(x) is a product of linear factors.
(b) For v2(q − 1) < n ≤ L, Q2nr(x) is a product of irreducible quadratic

polynomials.
(c) For n > L, Q2nr(x) =

∏
fi(x2n−L

), where Q2Lr(x) =
∏
fi(x).

2. Suppose q ≡ −1 (mod r). Then:
(a) For 0 ≤ n ≤ L, Q2nr(x) is a product of irreducible quadratic factors.
(b) For n > L, Q2nr(x) =

∏
fi(x2n−L

), where Q2Lr(x) =
∏
fi(x).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 R.W. Fitzgerald and J.L. Yucas

2 Factors of Cyclotomic Polynomials

As before, L = v2(q2 − 1) and r = 2s + 1 be a prime. Let Ω(k) denote the
primitive kth roots of unity in Fq2 .

We will often use the following, which is equation 7.10 in [4]. For m ≥ 0

D2m(x, c) = Dm(x2 − 2c, c2).

Lemma 1. Suppose q ≡ −1 (mod r). Let N denote the norm Fq2 → Fq.

1. If q ≡ 3 (mod 4) and ρ ∈ Ω(2n), for n ≤ L, then

N(ρ) =

{
1, if 2 ≤ n < L

−1, if n = L.

2. If ω ∈ Ω(r) then N(ω) = 1.
3. If α ∈ Fq2 and N(α) = a then α+ a/α ∈ Fq.

Proof. (1) Since q−1 ≡ 2 (mod 4), L−1 is the highest power of 2 dividing q+1.
Let ρ ∈ Ω(2L). Now N(ρ) = ρq+1 so that N(ρ)2 = ρ2(q+1) = 1 and N(ρ) = ±1.
If N(ρ) = 1 then ρq+1 = 1 and 2L = o(ρ) divides q + 1, a contradiction. Hence
N(ρ) = −1. If ω ∈ Ω(2n) for n < L, then ω is an even power of ρ and so
N(ω) = 1.

(2) N(ω)r = N(ωr) = 1 and, as r is prime, the only rth root of unity in Fq is
1. So N(ω) = 1.

(3) We have ααq = a so that α+ a/α = tr(α) ∈ Fq. ��

Theorem 1. 1. Suppose q ≡ −1 (mod r) and q ≡ 3 (mod 4).
(a) Qr(x) =

∏
a∈S1

(x2 − ax + 1) and Q2r(x) =
∏

a∈S1
(x2 + ax + 1), where

S1 is the set of roots of 1 +
∑s

i=1Di(x, 1)
(b) For 2 ≤ n < L, Q2nr(x) =

∏
a∈Sn

(x2 + ax + 1), where Sn is the set of
roots of 1 +

∑s
i=1(−1)sD2n−1i(x, 1).

(c) For n ≥ L, Q2nr(x) =
∏

b∈TL
(x2n−L+1

+ bx2n−L −1), where TL is the set
of roots of 1 +

∑s
i=1(−1)sD2L−1i(x,−1).

2. Suppose q ≡ −1 (mod r) and q ≡ 1 (mod 4).
(a) Qr(x) =

∏
a∈S1

(x2 − ax+ 1) and Q2r(x) =
∏

a∈S1
(x2 + ax+ 1).

(b) For 2 ≤ n ≤ L,

Q2nr(x) =
∏

ρ∈Ω(2n−1)

∏

b∈T (ρ)

(x2 + bx+ ρ),

where T (ρ) is the set of roots in Fq of 1 +
∑s

i=1(−1)iD2n−1i(x, ρ).
(c) For n > L, Q2nr(x) =

∏
ρ∈Ω(2L−1)

∏
b∈T (ρ)(x

2n−L+1
+ bx2n−L

+ ρ).
3. Suppose q ≡ 1 (mod r) and q ≡ 3 (mod 4).

(a) Qr(x) =
∏

(x − ω), Q2r(x) =
∏

(x + ω) and Q4r(x) =
∏

(x2 + ω), with
each product over Ω(r).



Explicit Factorizations of Cyclotomic and Dickson Polynomials 3

(b) For 3 ≤ n < L,

Q2nr(x) =
∏

ω∈Ω(r)

∏

c∈Un

(x2 + cωx+ ω2)

where Un is the set of roots in Fq of D2n−2(x, 1).
(c) For n ≥ L,

Q2nr(x) =
∏

ω∈Ω(r)

∏

d∈VL

(x2n−L+1
+ dωx− ω2)

where VL is the set of roots in Fq of D2L−2(x,−1).
4. Suppose q ≡ 1 (mod r) and q ≡ 1 (mod 4).

(a) Qr(x) =
∏

ω∈Ω(r)(x− ω).
(b) For 1 ≤ n < L,

Q2nr(x) =
∏

ω∈Ω(r)

∏

ρ∈Ω(2n)

(x+ ωρ)

(c) For n ≥ L,

Q2nr(x) =
∏

ω∈Ω(r)

∏

ρ∈Ω(2L−1)

(x2n−L+1
+ ωρ).

Proof. (1) If ω ∈ Ω(r) then N(ω) = 1 and ω + 1/ω ∈ Fq by Lemma 1. So

Qr(x) =
∏

ω∈Ω(r)

(x − ω) =
∏

(x2 − ax+ 1),

is a factorization over Fq, where a runs over all distinct ω+ω−1. The quadratic
factors are irreducible by Corollary 1. Also,

1 +
s∑

i=1

Di(a, 1) = 1 +
s∑

i=1

(ωi + ω−i)

= ω−s

( 2s∑

j=0

ωj

)

= 0.

As deg(1 +
∑
Di(x, 1)) = s, the a are all of the roots. Further,

Q2r(x) = Qr(−x) =
∏

(x2 + ax+ 1),

which completes the proof of (1)(a).
For (1)(b), the case n = 2 can be checked directly. So suppose 3 ≤ n < L.

Note that a2 = ρω + (ρω)−1 as ρ−1 = −ρ. Let ρn ∈ Ω(2n) and set an =
ρρnω + (ρρnω)−1. We claim that an ∈ Fq and that a2

n = 2 − an−1 (with an−1



4 R.W. Fitzgerald and J.L. Yucas

defined via a different choice of ω). Namely, N(ρρnω) = 1 as n < L and so
an ∈ Fq. And

a2
n = ρ2ρ2

nω
2 + (ρ2ρ2

nω
2)−1 + 2

= −ρn−1ω
2 − (ρn−1ω

2)−1 + 2 = 2− an−1.

Then inductively,

Q2nr(x) =
∏

(x4 + an−1x
2 + 1) =

∏
(x2 + anx+ 1)(x2 − anx+ 1),

where again the quadratic factors are irreducible over Fq. Lastly, again by in-
duction, the an are roots of

1 +
s∑

i=1

(−1)iD2n−2i(−(x2 − 2), 1) = 1 +
s∑

i=1

(−1)iD2n−1i(x, 1).

This has degree 2n−1s and there are 2n−1s = 1
2 degQ2nr(x) many an’s. So the

an’s are all of the roots of the above polynomial.
We finish the proof of (1) by checking the case n = L (the cases n > L

then follow from Corollary 1). Now N(ρρLω) = −1 by Lemma 1, so that b =
ρρLω − (ρρLω)−1 ∈ Fq. And b2 = −aL−1 − 2. Hence

x4 + aL−1x
2 + 1 = (x2 + bx− 1)(x2 − bx− 1)

is an irreducible factorization over Fq. Lastly, b is a root of

1 +
s∑

i=1

(−1)iD2L−2i(−(x2 + 2), 1) = 1 +
s∑

i=1

(−1)iD2L−1i(x,−1).

As before, the b’s are all of the roots.
(2) First note that L = v2(q − 1) + 1 so that Ω(2n) ⊂ Fq for n < L. The

factorization of Qr(x) and Q2r(x) is the same as in (1). For (2)(b), again the
case n = 2 can be checked directly. For 2 < n < L we work by induction. Set
bn = ρn(ω + ω−1), for ρn ∈ Ω(2n). Then bn ∈ Fq and b2n = bn−1 + 2ρn−1. Note
that the set of bn−1’s is closed under multiplication by −1. Hence we need only
check that

x4 − an−1x
2 + ρn−1 = (x2 + bnx+ ρn)(x2 − bnx+ ρn).

Further, bn is a root of

1 +
s∑

i=1

(−1)iD2n−2i(x2 − 2ρn−1, ρn−2) = 1 +
s∑

i=1

(−1)iD2n−1i(x, ρn−1).

Set δρn−1(x) = 1 +
∑s

i=1(−1)iD2n−1i(x, ρn−1). Fix a ρn−1 and pick a ρn with
ρ2

n = ρn−1. To complete the proof of (2)(b) we need to check that the bn’s are
all of the roots of δρn−1(x) in Fq.



Explicit Factorizations of Cyclotomic and Dickson Polynomials 5

For n = 2, deg δρ1 = 2s which is the number of b2’s so δρ1 has no other roots.
Inductively assume that

δρn−1(x) =
∏

(x − bn) · h(x),

where h(x) is a product of non-linear factors. Then

δρn(x) = δrhon−1(x
2 − 2ρn) =

∏
(x2 − 2ρn − bn) · h(x2 − 2ρn).

Now x2 − 2ρn − bn splits in Fq iff 2ρn + bn is a square in Fq. The bn’s in T (ρn)
are ±ρn(ω+ω−1). And 2ρn + ρn(ω+ω−1) = ρn(ωr +ω−r)2 is a square (in fact,
the square of a bn+1) while 2ρn−ρn(ω+ω−1) = −ρn(ωr−ω−r)2 is not a square
(as ωr − ω−r /∈ F 2

q ). Hence the roots of δρn in Fq are precisely the bn+1’s.
(2)(c) The case n = L must be done separately as ρL /∈ Fq. Set bL = ρρL(ω−

ω−1). As in the proof of (a), (ω − ω−1)2 ∈ Fq \ F 2
q . And ρL−1 ∈ Fq \ F 2

q . Hence
ρL−1(ω−ω−1)2 ∈ F 2

q and its square root, bL, is in Fq. Also b2L = −bL−1+2ρL−1.
Then

x4 + bL−1x
2 + ρL−2 = (x2 + bLx+ ρL−1)(x2 − bLx+ ρL−1),

giving the desired factorization. Further, bL−1 = −b2L + 2ρL−1 so that bL is a
root of

1 +
s∑

i=1

(−1)iD2L−2i(−(x2 − 2ρL−1), ρL−2) = 1 +
s∑

i=1

(−1)iD2L−1i(x, ρL−1).

As before, these are all of the roots in Fq. Finally, the cases n > L follow from
Corollary 1.

(3) As q ≡ 1 (mod r), we have Ω(r) ⊂ Fq. The factorizations for Qr and Q2r

are clear and that of Q4r follows from Corollary 1. We do the case n = 3 < L
(the case n = 3 = L will follow from the case n = L to be done later). Let
ρ3 ∈ Ω(23). Then ρ3 ∈ Fq2 \ Fq, N(ρ3) = 1 as n < L, and c3 = ρ3 + ρ−1

3 ∈ Fq.
Also c23 = ρ+ ρ−1 + 2 = 2. A typical factor of Q4r can be written as x2 +ω4 and
we have

x4 + ω4 = (x2 + c2ωx+ ω2)(x2 − c2ωx+ ω2),

giving the desired factorization of Q23r(x). Note that c3 = ±
√

2, the roots of
D2(x, 1) = x2 − 2.

Now suppose 3 < n < L and work inductively. We have N(ρn) = 1 so that
cn = ρn + ρ−1

n ∈ Fq. And c2n = cn−1 + 2. A typical factor of Q2n−1r(x) can be
written as x2 − cn−1ω

2x+ ω4 and we have

x4 − cn−1ω
2x2 + ω4 = (x2 + cnωx+ ω2)(x2 − cnωx+ ω2),

giving the desired factorization. Further, cn is a root of D2n−3(x2 − 2, 1) =
D2n−2(x, 1). A counting argument shows the cn’s are all of the roots.

Next suppose n = L. We have N(ρL) = −1 so that cL = ρL − ρ−1
L ∈ Fq. And

c2L = cL−1 − 2. Then

x4 − cL−1ω
2x2 + ω4 = (x2 + cLωx− ω2)(x2 − cLωx− ω2),



6 R.W. Fitzgerald and J.L. Yucas

giving the desired factorization. Further, The cL’s are all of the roots of
D2L−3(x2 + 2, 1) = D2L−2(x,−1). The cases n > L follow from Corollary 1.

(4) Note that L = v2(q − 1) + 1. Hence here Ω(r), Ω(2n) ⊂ Fq, for n < L.
The factorizations of Q2nr(x) for n < L are clear and the rest follows from
Corollary 1. ��

3 Cyclotomic Polynomials in the Case r = 3

We work out the case r = 3 (so that all Fq not of characteristic 2, 3 are covered).
By way of comparison,we first recall the result for r = 1. L continues to denote
v2(q2 − 1).

Proposition 2. The following are factorizations.

1. If q ≡ 1 (mod 4) then
(a) For 1 ≤ n < L, Q2n(x) =

∏
(x + a), where a runs over all primitive 2n

roots of unity.
(b) For n ≥ L, Q2n(x) =

∏
(x2n−L+1

+ a), where a runs over all primitive
2L−1 roots of unity.

2. If q ≡ 3 (mod 4) then
(a) For 2 ≤ n < L, Q2n(x) =

∏
(x2 + ux+ 1) where u runs over all roots of

D2n−2(x, 1).
(b) For n ≥ L, Q2n(x) =

∏
(x2n−L+1

+ vx2n−L − 1), where v runs over all
roots of D2L−2(x,−1).

Proof. Statement (1) is from [4]. Statement (2) is by Meyn [5]. ��

Proposition 3. The following are factorizations.

1. If q ≡ 1 (mod 12) then let u, v ∈ Fq be the primitive cube roots of unity.
(a) Q3(x) = (x− u)(x− v).
(b) For 1 ≤ n < L, Q2n3(x) =

∏
(x + uρ)(x+ vρ), where ρ ∈ Ω(2n).

(c) For n ≥ L, Q2n3(x) =
∏

(x2n−L+1
+uρ)(x2n−L+1

+vρ), where ρ ∈ Ω(2L).
2. If q ≡ 5 (mod 12) then

(a) Q3(x) = x2 + x+ 1 and Q6(x) = x2 − x+ 1 are irreducible.
(b) For 2 ≤ n ≤ L, Q2n3(x) =

∏
(x2+cx+ρn−1), where ρn−1 ∈ Ω(2n−1) and

for each ρn−1, the c’s run over all the solutions to
D2n−1(x, ρn−1) = 1.

(c) For n > L, Q2n3(x) =
∏

(x2n−L+1
+ cx2n−L

+ ρL−1), with ρL−1 and c as
before.

3. If q ≡ 7 (mod 12) then again let u, v ∈ Fq be the primitive cube roots of
unity.
(a) Q3(x) = (x − u)(x − v), Q6(x) = (x + u)(x + v) and Q12(x) + (x2 +

u)(x2 + v).
(b) For 3 ≤ n < L, Q2n3(x) =

∏
(x2 + cux+ v)(x2 + cvx+ u), where c runs

over the roots of D2n−2(x, 1).



Explicit Factorizations of Cyclotomic and Dickson Polynomials 7

(c) For n ≥ L, Q2n3(x) =
∏

(x2n−L+1
+dux2n−L−v)(x2n−L+1

+dvx2n−L−u),
where d runs over the roots of D2L−2(x,−1).

4. If q ≡ 11 (mod 12) then
(a) Q3(x) = x2 + x+ 1 and Q6(x) = x2 − x+ 1 are irreducible.
(b) For 2 ≤ n < L, Q2n3(x) =

∏
(x2 + ax + 1), where the a’s run over all

solutions to D2n−1(x, 1) = 1.
(c) For n ≥ L, Q2n3(x) =

∏
(x2n−L+1

+ bx2n−L − 1), where the b’s run over
all solutions to D2L−1(x,−1) = 1.

4 Factors of Dickson Polynomials

The results here for the Dickson polynomials of the first kind are a re-formulation
of results in [2]. The results for the Dickson polynomials of the second kind are
new. We have included the first kind results to illustrate how the approach taken
here covers the two kinds simultaneously.

Recall that the factorization of xt + 1 is

xt + 1 =
∏

d|t

t/d odd

Q2d(x).

The following generalization is standard.

Proposition 4.
w−1∑

i=0

xit =
∏

d|t,1�=s|w
(s,t/d)=1

Qds(x).

We review the transformations of [2]. Let Pn be the collection of all polynomials
over a field F of degree n and let Sn denote the family of all self-reciprocal
polynomials over F of degree n. Define

Φ : Pn → S2n by
f(x) �→ xnf(x+ x−1),

where n = deg f .
A self-reciprocal polynomial b(x) of degree 2n can be written as

b(x) =
n−1∑

i=0

bi(x2n−i + xi) + bnx
n.

Define

Ψ : S2n → Pn by

b(x) �→
n−1∑

i=0

biDn−i(x) + bn.



8 R.W. Fitzgerald and J.L. Yucas

Φ and Ψ are multiplicative inverses (this was proved only for finite fields in [2],
Theorem 3, and for arbritrary fields in [3], Theorem 6.1). We write Dn(x) for
Dn(x, 1) and En(x) for the nth order Dickson polynomial of the second kind.

Proposition 5. Write n = 2km with m odd. Then:

Φ(Dn(x)) =
∏

e|m
Q2k+2e(x)

Φ(En−1(x)) =
∏

e|m

k+1∏

i=0

Q2ie(x),

where we exclude e = 1, i = 0, 1 from the second equation.

Proof. Note that by Waring’s identity

Φ(Dn(x)) = xnDn(x+ x−1) = x2n + 1.

Take t = 2n and w = 2 (and so s = 2) in Lemma 4 to get the result. Similarly,

Φ(En−1(x)) = xn−1En−1(x+ x−1) = (x2n − 1)/(x2 − 1).

Take t = 2 and w = n in Lemma 4 to get the result. ��

Corollary 1. Write n = 2km, with m odd. The factorizations over Q are:

Dn(x) =
∏

e|m
Ψ(Q2k+2e(x))

En−1 =
∏

e|m

k+1∏

i=0

Ψ(Q2ie(x)),

where we again exclude e = 1, i = 0, 1 from the second equation.

Proof. This follows from Proposition 5 and the properties of Φ, Ψ since each
Qr(x), r > 1 is irreducible over Q and self-reciprocal. ��

5 Dickson Polynomials in the Case r = 3

We return to the case of finite fields Fq. We use the explicit factorizations of
cyclotomic polynomials to get explicit factorizations of the Dickson polynomials
of order 2nr, via Proposition 1. We begin with the case r = 1, where the factor-
izations of Q2n(x) were known but the results for Dickson polynomials are new.

Proposition 6. Set L = v2(q2 − 1).

1. For 1 ≤ n ≤ L − 3, D2n(x) splits in Fq. For n ≥ L − 2, we have the
factorization

D2n(x) =
∏

(D2n−L+3(x) + a),

where a runs over all roots of D2L−3(x).



Explicit Factorizations of Cyclotomic and Dickson Polynomials 9

2. For 1 ≤ n ≤ L − 2, E2n−1(x) splits in Fq. For n ≥ L − 1, we have the
factorization

E2n−1(x) =
L−3∏

i=0

(x + ai) ·
n−L+2∏

i=1

(D2i(x) + aL−3),

where ai runs over all the roots of D2i(x).

We note that, when L = 3, the statement (1) means that D2n(x) is irreducible
over Fq for n ≥ 1.

Theorem 2. Set L = v2(q2 − 1).

1. Suppose q ≡ ±1 (mod 12). For 0 ≤ n ≤ L − 3, D2n3(x) splits in Fq. For
n ≥ L− 2, we have the factorization

D2n3(x) =
∏

(D2n−L+3(x) + a),

where a runs over all the roots of D2L−33(x).
2. Suppose q ≡ ±5 (mod 12). The following are factorizations.

(a) For 0 ≤ n ≤ L− 3,

D2n3(x) =
∏

(D1(x) + a)(D2(x) + aD1(x) + (a2 − 1)),

where a runs over all the roots of D2n(x).
(b) For n ≥ L− 2,

D2n3(x) =
∏

(D2n−L+3(x) + b)(D2n−L+3(x) + uD2n−L+2(x) + (b+ 3)),

where b runs over roots of D2L−3(x) and u2 = 3b+ 6.

Proof. The proof is a tedious computation. Take each factor of the appropriate
cyclotomic polynomial, pair it with its reciprocal and then apply Ψ . We note
that in Case 2, 3 /∈ F ∗2

q . And b + 2 /∈ F ∗2
q since otherwise

√
b+ 2 is a root in

Fq of D2L−3(x2 − 2) = D2L−2(x), contradicting Proposition 6. Thus 3b + 6 has
square roots u in Fq. ��

The factorizations of E2n3−1(x) follow from the previous result and the following
identity:

Corollary 2. For n ≥ 1

E2n3−1(x) = (x2 − 1)
n−1∏

i=0

D2i3(x).



10 R.W. Fitzgerald and J.L. Yucas

Proof. We use induction. For n = 1, Proposition 5 gives,

E2n3−1(x) = E5(x) = Ψ(Q4)Ψ(Q3)Ψ(Q6)Ψ(Q12).

ThenQ3 = x2+x+1 so Ψ(Q3) = x+1,Q6 = x2−x+1 so Ψ(Q6) = x−1 and,using
Proposition 5 again, Ψ(Q4)Ψ(Q12) = D3. So E2n3−1(x) = (x2 − 1)D2n−13(x).

Proposition 5 gives:

E2n+13−1(x) = E2n3−1Ψ(Q2n+2)Ψ(Q2n+23)
= E2n3−1D2n3,

which gives the result by induction. ��

References

1. Alaca, Ş.: Congruences for Brewer sums. Finite Fields Appl. 13, 1–19 (2007)
2. Fitzgerald, R.W., Yucas, J.L.: Factors of Dickson polynomials over finite fields.

Finite Fields Appl. 11, 724–737 (2005)
3. Fitzgerald, R.W., Yucas, J.L.: A generalization of Dickson polynomials via linear

fractional transformations. Int. J. Math. Comput. Sci. 1, 391–416 (2006)
4. Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and Its

Applications, 2nd edn., vol. 20, Cambridge University Press, Cambridge (1997)
5. Meyn, H.: Factorization of the cyclotomic polynomial x2n

+1 over finite fields. Finite
Fields Appl. 2, 439–442 (1996)



Some Notes on d-Form Functions with

Difference-Balanced Property�

Tongjiang Yan1,2, Xiaoni Du2,4, Enjian Bai3, and Guozhen Xiao2

1 Math. and Comp. Sci., China Univ. of Petro., Dongying 257061, China
2 P.O.Box 119, Key Lab.on ISN, Xidian Univ., Xi’an 710071, China
3 Inform. Sci. and Tech., Donghua Univ., Shanghai 201620, China

4 Math. and Inform. Sci, Northwest Normal Univ., Lanzhou 730070, China
yantoji@163.com

Abstract. The relation between a cyclic relative difference set and a
cyclic difference set is considered. Both the sets are with Singer parame-
ters and can be constructed from a difference-balanced d-form function.
Although neither of the inversions of Klapper A.′s and No J. S.′s main
theorems is true, we prove that a difference-balanced d-form function can
be obtained by the cyclic relative difference set and the cyclic difference
set introduced by these two main theorems respectively.

Keywords: Cyclic difference sets, cyclic relative difference sets, d-form
functions, difference-balanced.

1 Introduction and Preliminaries

In this paper, we use the following notation: q: power of prime p; m,n: positive
integers such that n > 2,m | n; d: positive integer relatively prime to q; Fq, Fqm ,
Fqn : finite fields with q, qm, and qn elements, respectively; α: a primitive element
of Fqn ; β = αT : a primitive element of Fqm , where T = qn−1

qm−1 . F ∗
qn = Fqn \{0, 1}.

A function f(x) on Fqn over Fq is said to be balanced if the element 0 appears
one less time than each nonzero element in Fq in the list f(α0), f(α1), f(α2), . . . ,
f(αqn−2). A function f(x) is said to be difference-balanced if f(xz) − f(x) is
balanced for any z ∈ Fqn \ {0}. By replacing x by αt, a function f(x) can be
considered as a q-ary sequence f(αt) of period qn − 1. Hence, for convenience,
we will use the expression “a sequence f(αt) of period qn − 1” interchangeably
with “a function f(αt)” (or f(x)) from Fqn to Fq ([13]).

Let f(x) be a function on Fqn over Fq. Define

D
(m)
f = {x|f(x) = m,x ∈ F∗

qn}.

Then F∗
qn = ∪m∈FqD

(m)
f .

� Project supported by the National Natural Science Foundations of China
(No.60473028) and (No.60503009).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 11–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



12 T. Yan et al.

Let G be a multiplicative group of order uv and let N be a normal subgroup
of order u. A subset D of k elements of the group G is called a (v, u, k, λ) relative
difference set(RDS) in G relative to N if the set of k(k − 1) elements given by

{d1d
−1
2 | d1 
= d2, d1, d2 ∈ D}.

contains every nonidentity element of G \N exactly λ times and no element in
N ([1,3]). Thus, the parameters of relative difference sets satisfy the following
equation: k(k−1) = u(v−1)λ. If u = 1, D becomes a (v, k, λ) difference set(DS).
If G is a cyclic group, a relative difference set (a difference set) in it is called a
cyclic relative difference set(CRDS)(a cyclic difference set(CDS)).

If A and B are finite groups and g(x) is a function from A to B, for arbitrary
z ∈ A and a, b ∈ B, define nz(a, b) =| {x | f(xz) = a, f(x) = b} |. By the
definitions of DS and RDS, it follows that

Lemma 1. For each z ∈ A \ {1}, nz(a, a) is fixed if and only if the set {x |
f(x) = a} is a CDS of the finite group A.

The concept of relative difference set was defined by Elliott J. E. H., Butson, A.
T. ([2,7]). Two cyclic relative difference sets D1 and D2 are equivalent if there
exists an integer e, gcd(e;uv) = 1, such that De

1 = D2g for some g ∈ G, where
De

1 = {de | d ∈ D1} and D2g = {dg | d ∈ D2} ([14]).
Every cyclic difference set with Singer parameters is a projection of its cor-

responding cyclic relative difference set ([3,17]), which are equivalent to the
sequences with two-level autocorrelation property ([4,5,10]). Cyclic relative dif-
ference sets and cyclic differences sets with Singer parameters are useful for con-
structions of optical orthogonal codes ([6]), difference families, and Hadamard
matrices ([15,16]).

In 1995, Klapper A. introduced the d-form function on Fqn over Fq which is
defined as f(xy) = ydf(x) for any x ∈ Fqn and y ∈ Fq([11]). Any homogeneous
polynomial function on Fqn over Fq is a d-form function. If f1(x) and f2(x) both
are d-form functions, so is af1(x) + bf2(x), where a, b ∈ Fq.

In 2004, No, J. S. ([13]) introduced a method of constructing cyclic differ-
ence sets with Singer parameters from a d-form function on Fq with difference-
balanced property as in the following theorem.

Theorem 1. ([13]) Let α be a primitive element in Fqn . If f(x) is a d-form
function on F∗

qn over Fq with difference-balanced property, where d is relatively
prime to qn − 1. then the set integers defined by

Z
(00)
f = {t | f(αt) = 0, 0 ≤ t < qn − 1

q − 1
}

forms a cyclic difference set with Singer parameters ( qn−1
q−1 ,

qn−1−1
q−1 , qn−2−1

q−1 ) in
the additive group of the residue ring Z qn−1

q−1
.

Using this method, some new cyclic difference sets with Singer parameters were
constructed from Helleseth Kumar Martinsen (HKM) sequences for p = 3 ([9])
and HG sequences ([8]).



Some Notes on d-Form Functions with Difference-Balanced Property 13

Also this method was modified by Chandler D., Xiang Q.([3]) to construct
new cyclic relative difference sets with parameters ( q3k−1

q−1 , q− 1; q3k − 1; q3k − 2)
for q = 3e from HKM sequences.

Kim S. H., No J. S., Chung H. and Helleseth T.([14]) generalized Chandler
and Xiang’s construction of cyclic relative difference sets from HKM sequences
to a common d− form function on Fqn with difference-balanced property. Their
main result is in the following theorem.

Theorem 2. ([14]) Let q be a prime power and n a positive integer. Let α be
a primitive element in Fqn . If f(x) is a d-form function on F∗

qn over Fq with
difference-balanced property, where d is relatively prime to qn − 1. Then the set

D
(1)
f = {x | f(x) = 1, x ∈ Fqn}

is a cyclic relative difference set with parameters ( qn−1
q−1 , q − 1; qn − 1; qn − 2) in

the multiplicative group Fqn relative to its normal subgroup Fq.

It is well-known that there exists a natural function from the quotient group
F∗

qn/F∗
q to Fq, which is induced by the function f(x). We denote this function

to be f̃(x), namely f̃(x) = f(x), where x = xF∗
q .

Define D(00)
f = {αt|f̃(αt) = 0, 0 ≤ t < qn − 1

q − 1
} and D(00)

f = {αt|αt ∈ D(00)
f }.

ThenD(00)
f = αZ

(00)
f ⊂ D(0)

f andD(00)
f = αZ

(00)
f . Since the multiplicative quotient

group F∗
qn/F∗

q is isomorphic to the additive group of the residue ring Z qn−1
q−1

, and

D
(00)
f corresponds to Z(00)

f by this isomorphism, then Theorem 1 can also be
expressed by the following theorem.

Theorem 1′. Under the same condition with Theorem 1, the set

D
(00)
f = {αt|f̃(αt) = 0, 0 ≤ t < qn − 1

q − 1
}

is a cyclic difference set with the Singer parameters (
qn − 1
q − 1

,
qn−1 − 1
q − 1

,
qn−2 − 1
q − 1

)

in the quotient group F∗
qn/F∗

q .

This paper contributes to the relation between the sets Z(00)
f and D(1)

f .

2 Properties of d-Form Functions

Lemma 2. Assume f(x) be a d-form function on Fqn over Fq. Then f(x) sat-
isfies the following:

(1) f(0) = 0.
(2) If there exists m ∈ F∗

q such f(m) = 0, then we have f(y) = 0 for each

y ∈ Fq, namely Fq ⊂ D(0)
f .



14 T. Yan et al.

(3) Assume gcd(d, q − 1) = 1 and there exists m ∈ F∗
q such that f(m) 
= 0,

then, for y1, y2 ∈ Fq, f(y1) = f(y2)⇒ y1 = y2, namely y1 
= y2 ⇔ y1, y2 are not
in a same D(m)

f .

Proof. (1) Since f(x) is a d-form function on Fqn over Fq, then

f(0) = f(00) = 0df(0) = 0.

(2) If there exists m ∈ F∗
q such that f(m) = 0, then, for each y ∈ Fq,

f(y) = f(ym−1m) = (ym−1)df(m) = 0.

(3) From (2) of this lemma, if there exists m ∈ F∗
q such that f(m) 
= 0, then,

for each y ∈ F∗
q , f(y) 
= 0. It follows that f(1) 
= 0. Assume f(y1) = f(y2) = 0,

from (1) of this lemma, if y1y2 = 0, then y1 = y2 = 0; if y1y2 
= 0, then

f(y1) = f(y2)⇔ yd
1f(1) = yd

2f(1)⇔ (yd
1 − yd

2)f(1) = 0.

Since f(1) 
= 0, then yd
1 − yd

2 = 0. And from gcd(d, q − 1) = 1, we have y1 = y2.

And we have

Lemma 3. For each m ∈ F∗
q , D

(md)
f = mD

(1)
f , and | D(md)

f |=| D(1)
f |.

Proof. Since f(x) is a d-form function, then

D
(md)
f = {x|f(x) = md, x ∈ F∗

qn} = {x|(m−d)f(x) = 1, x ∈ F∗
qn}

= {x|f(m−1x) = 1, x ∈ F∗
qn} = {my|f(y) = 1, y ∈ F∗

qn}

= m{y|f(y) = 1, y ∈ F∗
qn} = mD

(1)
f .

It follows that | D(md)
f |=| D(1)

f |.

Lemma 4. Assume m1,m2 ∈ Fq.
(1) m1D

(1)
f = m2D

(1)
f ⇐⇒ md

1 = md
2.

(2) If gcd(d, q − 1) = 1, then

m1D
(1)
f = m2D

(1)
f ⇐⇒ m1 = m2;m1 
= m2 ⇐⇒ m1D

(1)
f ∩m2D

(1)
f = ∅.

Proof. (1)From Lemma 3, m1D
(1)
f = m2D

(1)
f ⇐⇒ D

(md
1)

f = D
(md

2)
f ⇐⇒ md

1 =
md

2.
(2)If gcd(d, q − 1) = 1, since

md
1 = md

2 ⇐⇒ (m1m
−1
2 )d = 1⇐⇒ m1m

−1
2 = 1⇐⇒ m1 = m2,

then m1D
(1)
f = m2D

(1)
f ⇐⇒ m1 = m2. For arbitrary m1,m2 ∈ F∗

q , m1D
(1)
f 
=

m2D
(1)
f . And by Lemma 3, miD

(1)
f = D

(md
i )

f , i = 0, 1. It follows that D(md
1)

f 
=
D

(md
2)

f . And by the definitions of D(md
1)

f and D(md
2)

f , D(md
1)

f ∩D(md
2)

f = ∅. Then

m1D
(1)
f ∩m2D

(1)
f = ∅. The inversion is obvious.



Some Notes on d-Form Functions with Difference-Balanced Property 15

Lemma 5. If gcd(d, q − 1) = 1, then the class of sets

{mD(1)
f | m ∈ F∗

q} ∪ {D
(0)
f }

form a partition of GF(qn)∗.

Proof. By Lemma 3, D(md)
f = mD

(1)
f . Since gcd(d, q−1) = 1, then md runs over

F∗
q as m run over F∗

q . It follows that

⋃

m∈F∗
q

mD
(1)
f ∪D(0)

f = GF(qn)∗.

And from Lemma 4, the above union is a disjoint union. Thus this lemma is
proved.

Remark 1. Since the condition gcd(d, q− 1) = 1 can be obtained by gcd(d, qn −
1) = 1, then, by Lemmas 3 and 5, for each m ∈ F∗

q , there exists an element

m1 ∈ F∗
q such that D(m)

f = m1D
(1)
f . So D

(m)
f is a CRDS equivalent to D

(1)
f

under the conditions of Theorem 2.

For the sets D(00)
f and D(0)

f , we have

Lemma 6. Let f(x) be a d-form function on Fqn over Fq. Then

D
(0)
f = D

(00)
f · F∗

q .

Proof. For each mγ ∈ D(00)
f · F∗

q , where m ∈ F∗
q , γ ∈ D

(00)
f , the fact f(γ) = 0 is

obvious. Since f(x) is a d-form function on Fqn over Fq, then f(mγ) = mdf(γ) =

0, namely mγ ∈ D(0)
f . Thus D(00)

f · F∗
q ⊂ D

(0)
f . Let T =

qn − 1
q − 1

, then, for each

t : 0 ≤ t ≤ qn− 2, there exists only a representation t = t1T + t2, 0 ≤ t1 ≤ q− 2,
0 ≤ t2 ≤ T − 1. Then αt = αt1Tαt2 , where αt1T ∈ F∗

q . Thus the sequence

f(αt) = f(αt1T+t2) = αdt1T f(αt2).

So f(αt) = 0 if and only if f(αt2) = 0, namely αt2 ∈ D
(00)
f . It follows that

D
(0)
f ⊂ D(00)

f · F∗
q .

3 Main Results

Theorem 3. Let f(x) be a d-form function on Fqn over Fq, where gcd(d, q −
1) = 1. Then D(1)

f ∪D
(00)
f is a quotient group of F∗

qn with respect to subgroup F∗
q.

Proof. At first, by Lemmas 5 and 6,

(D(1)
f ∪D(00)

f ) · F∗
q = F∗

qn .



16 T. Yan et al.

Further more, for arbitrary different elements a, b in D(1)
f ∪D

(00)
f , if there exists

an element m in F∗
q such that a = mb, by the definition of D(00)

f , a, b can not

in D(00)
f simultaneously. Assume b ∈ D(1)

f might as well, then f(a) = f(mb) =
mdf(b) = md. Since gcd(d, q − 1) = 1, then md 
= 1, and md 
= 0 is obvious. It
follows that a /∈ D(1)

f ∪D
(00)
f . This contradicts to the assumption. Thus a, b can

not in a same equivalent class of the quotient group F∗
qn/F∗

q.

The following Lemma 7 is needed to prove Theorem 4.

Lemma 7. If f(x) is a d-form function on Fqn over Fq, where gcd(d, qn− 1) =
1, then, for arbitrary a, b ∈ GF(qn)∗, nz(a, b) = nz(am, bm), where m ∈ GF(q)∗.

Proof. If x0 satisfies f(xz) = a, f(x) = b, by gcd(d, qn − 1) = 1, then there exist
one and only element m0 in GF(q)∗ such that md

0 = m−1. Since f(x) is d-form,
then x0 satisfies f(xz) = a, f(x) = b if and only if m0x0 satisfies the equation
system f(xz) = am, f(x) = bm. Then the roots of the above two equation
systems are corresponding one by one. It follows that nz(a, b) = nz(am, bm).

Both inversions of Theorems 1 and 2 are not true obviously. However, consider
them simultaneously , we have the following theorem.

Theorem 4. Let f(x) be a d-form function on Fqn over Fq and gcd(d, qn−1) =
1. Then f(x)is difference-balanced if and only if

Z
(00)
f = {t|f(αt) = 0, 0 ≤ t < qn − 1

q − 1
}

is a CDS with Singer parameters (
qn − 1
q − 1

,
qn−1 − 1
q − 1

,
qn−2 − 1
q − 1

) in the

additive group of Z qn−1
q−1

and D(1)
f is a CRDS with Singer parameters (

qn − 1
q − 1

,

q − 1, qn−1, qn−2).

Proof. Sufficiency of this theorem can be proved easily by Lemmas 1 and 2.
Necessity can be proved by the following: To prove the function f(x) is difference-
balanced, we have to prove that f(xz)−f(x) is balanced for each z ∈ Fqn \{0, 1}.
Since f(x) is a d-form function, then f(xz)− f(x) is a d-form function too. And
from the fact that gcd(d, qn − 1) = 1, by Lemma 3, f(xz)− f(x) is balanced on
F∗

q for each z ∈ Fqn \ {0, 1}. Next we prove that f(xz)− f(x) takes the element
0 qn−1 − 1 times as x runs over F∗

qn once, namely
∑

a∈Fq
nz(a, a) = qn−1 − 1.

For each h, 0 ≤ h ≤ q − 2, we have α
qn−1
q−1 h ∈ Fq. Thus

f(αt+ qn−1
q−1 h) = α

qn−1
q−1 hdf(αt) = 0. (1)

Let Z(0h)
f = {t|f(αt) = 0,

qn − 1
q − 1

h ≤ t < qn − 1
q − 1

(h+1)}. Then
⋃q−2

h=0D
(0h)
f = D0.

And by the equation (1), we have | D(0h)
f |=| D(00)

f |. Since D(00)
f is a CDS



Some Notes on d-Form Functions with Difference-Balanced Property 17

with the Singer parameters (
qn − 1
q − 1

,
qn−1 − 1
q − 1

,
qn−2 − 1
q − 1

) in the additive group

of Z qn−1
q−1

, then nz(0, 0) = qn−2 − 1.

Since D(1)
f is a CRDS with the Singer parameters (

qn − 1
q − 1

, q− 1, qn−1, qn−2),

then nz(1, 1) = qn−2. By Lemma 7, for each m ∈ F∗
q , it follows that nz(1, 1) =

nz(m,m). This implies that
∑

a∈Fq
nz(a, a) = qn−2−1+qn−2(q−1) = qn−1−1.

Then we proved this theorem.

References

1. Baumert, L.D.: Cyclic Difference Sets. Lecture Notes in Mathematics, vol. 182.
Springer-Verlag, Berlin/Heidelberg/New York (1971)

2. Butson, A.T.: Relations among generalized Hadamard matrices, relative difference
sets and maximal length linear recurring sequences. Canad. J. Math. 15, 42–48
(1963)

3. Chandler, D., Xiang, Q.: Cyclic relative difference sets and their p-ranks, Des.,
Codes, Cryptogr. 30, 325–343 (2003)

4. Dillon, J.F., Dobbertin, H.: Cyclic difference sets with singer parameters. Finite
Fields Their Appl. 10, 342–389 (2004)

5. Jungnickel, D., Pott, A.: Difference sets: An introduction, in Difference Sets, Se-
quences and their Correlation Properties. In: Pott, A., Kumar, P., Helleseth, T.,
Jungnickel, D. (eds.), pp. 259–295. Kulwer, North-Holland, Amsterdam (1999)

6. Chung, F.R.K., Salehi, J.A., Wei, V.K.: Optical orthogonal codes: Design, analysis,
and applications. IEEE Trans. Inf. Theory 35(3), 595–604 (1989)

7. Elliott, J.E.H., Butson, A.T.: Relative difference sets. Illinois J. Math. 10, 517–531
(1966)

8. Helleseth, T., Gong, G.: New nonbinary sequences with ideal two-level autocorre-
lation function. IEEE Trans. Inf. Theory 48(11), 2868–2872 (2002)

9. Helleseth, T., Kumar, P.V., Martinsen, H.M.: A new family of ternary sequences
with ideal two-level autocorrelation. Des., Codes, Cryptogr. 23, 157–166 (2001)

10. Jungnickel, D.: Difference sets, in Contemporary Design Theory: A Collection of
Surveys. In: Dinitz, J., Stinson, D. (eds.), pp. 241–324. Wiley, New York (1992)

11. Klapper, A.: d-form sequence: Families of sequences with low correlation values
and large linear spans. IEEE Trans. Inf. Theory 41(2), 423–431 (1995)

12. No, J.S.: p-ary unified sequences: p-ary extended d-form sequences with ideal au-
tocorrelation property. IEEE Trans. Inf. Theory 48(9), 2540–2546 (2002)

13. No, J.S.: New cyclic difference sets with Singer parameters constructed from
d−homogeneous function. Des., Codes, Cryptogr. 33, 199–213 (2004)

14. Kim, S.H., No, J.S., Chung, H.: New cyclic relative difference sets constructed from
d−homogeneous functions with difference-balanced properties. IEEE Transactions
on Information Theory 51(3), 1155–1163 (2005)

15. Spence, E.: Hadamard matrices from relative difference sets. J. Combin. Theory 19,
287–300 (1975)

16. Yamada, M.: On a relation between a cyclic relative difference sets associated
with the quadratic extensions of a finite field and the szekeres difference sets.
Combinatorica 8, 207–216 (1988)

17. Singer, J.: A theorem in finite projective geometry and some applications to number
theory. Trans. Amer. Math. Soc. 43, 377–385 (1938)



A Note on Modular Forms on Finite Upper Half

Planes

Yoshinori Hamahata�

Department of Mathematics
Tokyo University of Science, Noda, Chiba, 278-8510, Japan

hamahata yoshinori@ma.noda.tus.ac.jp

Abstract. Finite upper half planes are finite field analogues of the
Poincaré upper half plane. We introduce modular forms of new type
on finite upper half planes, and consider related topics.

Keywords: Finite upper half planes, modular forms.

1 Introduction

Classical modular forms play an important role in every area in number theory.
Modular forms on the Poincaré upper half plane IH = {z ∈ C | Im z > 0} are
prototypes, and have been generalized in some directions. These are objects over
the field of complex numbers C.

In the mid 1980s, A. Terras defined finite upper half planes, which are defined
over finite fields as analogue of IH. She and coworkers studied special functions on
these planes ([1], [5]). The purpose of the present article is to introduce modular
forms of new type and consider related topics on finite upper half planes. In
contrast to the classical case, it seems difficult to find good examples to these
modular forms in our situation. In [1] the finite field analogues of Eisenstein
series are considered. The authors call them Eisenstein sums. In this paper, we
proceed observing examples related to them.

2 Modular Forms

In this section we briefly recall modular forms on finite upper half planes.
Let p be an odd prime. We denote IFpr (r ≥ 1) for the finite field with pr

elements. Take a nonsquare element δr ∈ IFpr and fix it. Set

Hpr = {z = x+ y
√
δr | x, y ∈ IFpr , y 
= 0}.

We call it a finite upper half plane. This plane is a finite field version of the
Poincaré upper half plane.
� Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education,

Japanese Government, No. 18540050.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 18–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Note on Modular Forms on Finite Upper Half Planes 19

Let Gpr = GL(2, IFpr ) be the general linear group over IFpr . The group
Gpr acts on Hpr by the linear fractional transformation: for z ∈ Hpr and

g =
(
a b
c d

)

∈ Gpr , define

gz =
az + b

cz + d
.

The fixed subgroup of
√
δr in Gpr is

Kpr =
{(

a bδr
b a

)

| a, b ∈ IFpr , a2 − δrb2 
= 0
}

.

It is known that the action of Gpr on Hpr is transitive. So that Hpr is expressed
as Hpr = Gpr/Kpr .

Let Γ be a subgroup of Gpr . The map m : Γ×Hpr → C× is called a multiplier
system for Γ if the condition

m(γη, z) = m(γ, ηz)m(η, z)

is satisfied for any γ, η ∈ Γ and z ∈ Hpr . For these Γ and m, the map f : Hpr →
C is called a modular form for Γ with the multiplier system m if for any γ ∈ Γ ,

f(γz) = m(γ, z)f(z)

holds. Denote by M(Γ,m) the space of modular forms of this type.
We give an example due to [1] and [3]. Let π : IFpr (

√
δr)× → C× be a

multiplicative character. For γ =
(
a b
c d

)

∈ Gpr , we put Jπ(γ, z) := π(cz + d).

Then for any γ, η ∈ Gpr , we have

Jπ(γη, z) = Jπ(γ, ηz)Jπ(η, z).

Hence Jπ : Gpr × Hpr → C× is a multiplier system for Gpr . Define m : Kpr ×
Hpr → C× by

m(k, z) =
Jπ(k, z)
Jπ(k,

√
δr)
.

We see that m is a multiplier system for Kpr . Put

Eπ,r(z) =
1
|Kpr |

∑

k∈Kpr

Jπ(k,
√
δr)

Jπ(k, z)
,

where |Kpr | is the number of elements of Kpr . We call Eπ,r the Eisenstein sum
associated to Kpr , π. This is a finite field analogue of the Eisenstein series on
the Poincaré upper half plane. It is possible to prove that Eπ,r ∈M(Kpr ,m).



20 Y. Hamahata

3 Mixed Modular Forms

Classical automorphic forms satisfy a transformation formula for a discrete sub-
group Γ of SL(2, IR). To be more specific, if f is an automorphic form of weight

k for Γ , then for z ∈ H and γ =
(
a b
c d

)

∈ Γ , we have

f(γz) = j(γ, z)kf(z).

Here we have used the notation j(γ, z) = cz+d. Let ω : H → H be a holomorphic
map that is equivariant with respect to a homomorphism χ : Γ → SL(2, IR).
Then a mixed automorphic form is a holomorphic function on H satisfying a
transformation formula

f(γz) = j(γ, z)kj(χ(γ), ω(z))lf(z)

for some nonnegative integers k and l as well as the holomorphic condition at
the cusps.

Now we define a mixed version for modular forms on Hpr . Let ω : Hpr → Hpr

be a map, and χ : Γ → Gpr a homomorphism such that χ(γ)ω(z) = ω(γz)
(γ ∈ Γ ). We call the pair (ω, χ) an equivariant pair.

Definition 1. Let Γ be a subgroup of Gpr , and m a multiplier system for Γ .
Then the map f : Hpr → C is called a mixed modular form for Γ with the
multiplier system m and the equivariant pair (ω, χ) if for any γ ∈ Γ ,

f(γz) = m(γ, z)m(χ(γ), ω(z))f(z)

is satisfied.

We denote by M(Γ,m, ω, χ) the space of mixed modular forms for Γ , m, (ω, χ).
It is easy to see the following:

(1) If ω is the identity and χ is the inclusion map, then M(Γ,m, χ, ω) =
M(Γ,m2);

(2) If f, g ∈M(Γ,m), then f(z)g(ω(z)) ∈M(Γ,m, ω, χ).
Mixed modular form is a generalization of modular form in a sense.

We here give an example for mixed modular forms. Recall thatKpr is the fixed
subgroup of

√
δr in Gpr . Let π denote a multiplicative character of IFpr (

√
δr)×,

and Jπ the multiplier system for Gpr defined in the last section. We define

Eω,χ
π,r (z) =

1
|Kpr |

∑

k∈Kpr

Jπ(k,
√
δr)Jπ(χ(k), ω(

√
δr))

Jπ(k, z)Jπ(χ(k), ω(z))
.

We call Eω,χ
π,r the mixed Eisenstein sum associated for Kpr , π, (ω, χ).

Theorem 1. Let m : Kpr ×Hpr → C× be the multiplier system for Kpr defined
by m(k, z) = Jπ(k, z)/Jπ(k,

√
δr). Then Eω,χ

π,r ∈M(Kpr ,m, ω, χ).



A Note on Modular Forms on Finite Upper Half Planes 21

Proof. Since Jπ(k, z) is a multiplier for Kpr , we have

Jπ(kk′, z) = Jπ(k, k′z)Jπ(k′, z)

for k, k′ ∈ Kpr . Similarly, we have

Jπ(χ(k)χ(k′), ω(z)) = Jπ(χ(k), χ(k′)ω(z))Jπ(χ(k′), ω(z))

for k, k′ ∈ Kpr . By this equality, we obtain

Jπ(χ(kk′), ω(z)) = Jπ(χ(k), ω(k′z))Jπ(χ(k′), ω(z))

for k, k′ ∈ Kpr . Using these equalities, we have

|Kpr |Eω,χ
π,r (k′z)=

∑

k∈K

Jπ(k,
√
δr)Jπ(χ(k), ω(

√
δr))

Jπ(k, k′z)Jπ(χ(k), ω(k′z))

=
∑

k∈K

Jπ(k,
√
δr)Jπ(k′, z)

Jπ(kk′, z)
· Jπ(χ(k), ω(

√
δr))Jπ(χ(k′), ω(z))

Jπ(χ(kk′), ω(z))

=
∑

k∈K

Jπ(kk′,
√
δr)Jπ(k′, z)

Jπ(kk′, z)Jπ(k′,
√
δr)
· Jπ(χ(kk′), ω(

√
δr))Jπ(χ(k′), ω(z))

Jπ(χ(kk′), ω(z))Jπ(χ(k′), ω(
√
δr))

=
Jπ(k′, z)Jπ(χ(k′), ω(z))

Jπ(k′,
√
δr)Jπ(χ(k′), ω(

√
δr))

∑

k∈K

Jπ(kk′, z)Jπ(χ(kk′), ω(
√
δr))

Jπ(kk′, z)Jπ(χ(kk′), ω(z))

=m(k, z)m(χ(k), ω(z))|Kpr |Eω,χ
π,r (z).

�

4 Modular Embeddings

So far we have worked on a fixed upper half plane Hpr . In what follows let us
treat some upper half planes arising from various finite fields.

Take integers s, r with s ≥ r ≥ 1. Let (Φ, φ) be a pair of maps Φ : Gpr → Gps

and φ : Hpr → Hps satisfying

(1) Φ is an injective group homomorphism;
(2) φ is an injection;
(3) φ(γz) = Φ(γ)φ(z) (γ ∈ Gpr , z ∈ Hpr ).

Then we call the pair (Φ, φ) a modular embedding from Hpr into Hps . Modular
embedding defines a pullback of modular forms. To be more precise, let Γ , Γ ′

be the subgroups of Gpr , Gps , respectively with the condition Φ(Γ ) ⊂ Γ ′. We
take a multiplier system m′ : Γ ′ ×Hps → C×. Using it, one gets the multiplier
system m : Γ ×Hpr → C× defined by (γ, z) �→ m′(Φ(γ), φ(z)). For each modular
form f ∈ M(Γ ′,m′), we find that f ◦ φ ∈ M(Γ,m). Hence we have a pullback
map

φ∗ : M(Γ ′,m′) −→M(Γ,m), f �→ f ◦ φ.



22 Y. Hamahata

We are going to give an example to a modular embedding. Suppose that p is
an odd prime number. We choose a generator δr of IF×

pr . Define some kinds of

finite upper half planes H(i)
pr (i = 1, . . . , r) by

H
(i)
pr = {x+ y

√

δpi

r | x, y ∈ IFpr , y 
= 0}.

Notice thatH(r)
pr = Hpr . We define φ : Hpr → H

(1)
pr byx+y

√
δr �→ xp+yp

√
δp
r . Let

Φ : Gpr → Gpr ,
(
a b
c d

)

�→
(
ap bp

cp dp

)

. Then the pair (Φ, φ) is a modular embedding

fromHpr into H(1)
pr . Let π′ : IFpr (

√
δp
r )× → C× be a multiplicative character, and

K̃pr the fixed subgroup of
√
δp
r in Gpr . We know that K̃pr = {

(
a bδp

r

b a

)

| a, b ∈

IFpr , a2 − b2δp
r 
= 0}. For K̃pr and π′, consider the Eisenstein sum

Ẽπ′,r =
1

|K̃pr |

∑

k′∈K̃pr

Jπ′(k′,
√
δp
r )

Jπ′(k′, z)
,

which is a modular form for K̃pr with the multiplier system m′(k, z) =
Jπ′(k, z)/Jπ′(k,

√
δp
r ). Let us pullback it by (Φ, φ). Then we have

φ∗Ẽπ′,r(z) = |Kpr |p−1Eπ,r(z)p,

where π : IFpr (
√
δr)× → C× is the multiplicative character obtained by compos-

ing π′ with the map IFpr (
√
δr)× → IFpr (

√
δp
r )×, x �→ xp. The function Eπ,r is the

Eisenstein sum forKpr with the multiplier systemm(k, z) = Jπ(k, z)/Jπ(k,
√
δr).

5 Hilbert Modular Forms

In classical case, Hilbert modular forms are modular forms of several variables
defined on the product of the Poincaré upper half plane IH. Let n be a natural
number greater than one. We take a totally real number field K of degree n. The
field K has n embeddings K ↪→ IR, x �→ x(i) (i = 1, . . . , n). Let OK be the

ring of integers ofK. We write SL2(OK) = {
(
a b
c d

)

∈ SL2(IR) | a, b, c, d ∈ OK}.

The group SL2(OK) acts on IHn as follows: for γ =
(
a b
c d

)

∈ SL2(OK), put

γ(i) =
(
a(i) b(i)

c(i) d(i)

)

(i = 1, . . . , n). For z = (z1, . . . , zn) ∈ IHn, we define

γz =
(
a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)

.

Let k be a nonnegative integer. Then the holomorphic function f : IHn → C is

called Hilbert modular form of weight k for SL2(OK) if for each γ =
(
a b
c d

)

∈

SL2(OK),



A Note on Modular Forms on Finite Upper Half Planes 23

f(γz) =
n∏

i=1

j(γ(i), zi)kf(z)

holds. Here we have used the notation j(γ(i), zi) = c(i)zi + d(i).
Now we are going to define Hilbert modular forms on Hr

pr . The field IFpr

has r automorphisms over IFp defined by x �→ x(i) = xpi

(i = 1, . . . , r). The

group Gpr = GL(2, IFpr) acts on Hr
pr as follows: for γ =

(
a b
c d

)

∈ Gpr , put

γ(i) =
(
a(i) b(i)

c(i) d(i)

)

(i = 1, . . . , n). For z = (z1, . . . , zn) ∈ Hr
pr , we define

γz =
(
a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)

.

Definition 2. Take a subgroup Γ of Gpr . Let m : Γ×Hpr → C× be a multiplier
system. If the function f : Hr

pr → C satisfies the following condition, then we
call f Hilbert modular form for Γ with the multiplier system m:

f(γz) =

(
r∏

i=1

m(γ(i), zi)

)

f(z) (γ ∈ Γ ).

We write MH(Γ,m) for the space of Hilbert modular forms for Γ , m. It should
be noted that we can define Hilbert modular form on H(1)

pr × · · · ×H(r)
pr in the

same way as the above.
The following is an example for Hilbert modular forms. We utilize the notation

in Section two. Let π : IFpr(
√
δr)× → C× be a multiplicative character, and

m : Kpr × Hpr → C× the multiplier system for Kpr defined by m(k, z) =
Jπ(k, z)/Jπ(k,

√
δr). We put

EH
π,r(z) =

1
|Kpr |

∑

k∈Kpr

r∏

i=1

Jπ(k(i),
√
δr)

Jπ(k(i), zi)
.

We call EH
π,r(z) the Hilbert-Eisenstein sum associated to Kpr , π. This sum is a

Hilbert modular form:

Theorem 2. EH
π,r ∈MH(Γ,m).

The proof can be done as that of Theorem 1. Therefore we omit it.
In the last section we have defined modular embeddings between two finite

upper half planes. Now let us introduce another type of modular embeddings.
Under the notation of the last section, let ψ : Hpr → H

(1)
pr × · · · ×H(r)

pr be the
map defined by

x+ y
√
δ1 �→ (xp + yp

√
δp
r , . . . , x

pr

+ ypr

√

δpr

r ),



24 Y. Hamahata

and Ψ : Gpr → Gpr the identity map. By definition of the action of Gpr on Hr
pr ,

we have
ψ(γz) = Ψ(γ)ψ(z) (γ ∈ Gpr ).

We call the pair (Ψ, ψ) the diagonal embedding from Hpr into H(1)
pr × · · · ×H(r)

pr .
This embedding is analogous to the diagonal embedding IH→ IHn in the classical
case. Thanks to the diagonal embedding, we can pull back each Hilbert modular
form on H(1)

pr × · · · × H(r)
pr to get a modular form of one variable. This follows

from a similar discussion to that done in the last section.

Remark 1. As the related topics, one can define mixed modular forms and mod-
ular embeddings between the products of finite upper half planes.

6 Concluding Remarks

It is clear from the above discussion that there is a shortage of good examples to
modular forms on finite upper half planes. Hence on one hand, we need to find
examples to modular forms other than Eisenstein sums. On the other hand, for
further study we should develop the theory of modular forms observing classical
modular forms.

References

1. Angel, J., Celniker, N., Poulos, S., Terras, A., Trimble, C., Velasquez, E.: Special
functions on finite upper half planes. Contemporary Math. 138, 1–26 (1992)

2. Freitag, E.: Hilbert Modular Forms. Springer-Verlag, Heidelberg (1990)
3. Harish-Chandra.: Eisenstein series over finite fields, in Collected Papers, vol. 4, pp.

8–21. Springer-Verlag, Berlin Heidelberg (1984)
4. Lee, M.H.: Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms. Lecture

Notes in Mathematics, vol. 1845. Springer, Heidelberg (2004)
5. Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathemat-

ical Society Student Texts, vol. 43. Cambridge Univ. Press, Cambridge (1999)



A Coprocessor for the Final Exponentiation of

the ηT Pairing in Characteristic Three�

Jean-Luc Beuchat1, Nicolas Brisebarre2,3, Masaaki Shirase4, Tsuyoshi Takagi4,
and Eiji Okamoto1

1 Laboratory of Cryptography and Information Security, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

2 LaMUSE, Université J. Monnet, 23, rue du Dr P. Michelon,
F-42023 Saint-Étienne Cedex 02, France

3 LIP/Arénaire (CNRS-ENS Lyon-INRIA-UCBL), ENS Lyon, 46 Allée d’Italie,
F-69364 Lyon Cedex 07, France

4 Future University-Hakodate, School of Systems Information Science,
116-2 Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan

Abstract. Since the introduction of pairings over (hyper)elliptic curves
in constructive cryptographic applications, an ever increasing number
of protocols based on pairings have appeared in the literature. Software
implementations being rather slow, the study of hardware architectures
became an active research area. Beuchat et al. proposed for instance a
coprocessor which computes the characteristic three ηT pairing, from
which the Tate pairing can easily be derived, in 33 μs on a Cyclone II
FPGA. However, a final exponentiation is required to ensure a unique
output value and the authors proposed to supplement their ηT pairing
accelerator with a coprocessor for exponentiation. Thus, the challenge
consists in designing the smallest possible piece of hardware able to
perform this task in less than 33 μs on a Cyclone II device. In this paper,
we propose a novel arithmetic operator implementing addition, cubing,
and multiplication over F397 and show that a coprocessor based on a
single such operator meets this timing constraint.

Keywords: ηT pairing, characteristic three, final exponentiation, hard-
ware accelerator, FPGA.

1 Introduction

The first introduction of Weil and Tate pairings in cryptography was due to
Menezes et al. [20] and Frey and Rück [11] who used them to attack the discrete
logarithm problem on some classes of elliptic curves defined over finite fields.
More recently, several cryptographic schemes based on those pairings have been
proposed: identity-based encryption [6], short signature [8], and efficient broad-
cast encryption [7] to mention but a few.
� This work was supported by the New Energy and Industrial Technology Development

Organization (NEDO), Japan.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 25–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



26 J.-L. Beuchat et al.

This article aims at computing the ηT pairing in characteristic three in the
case of supersingular elliptic curves over F3m . These curves are necessarily of
the form Eb : y2 = x3 − x + b, with b ∈ {−1, 1}. According to [3], curves over
fields of characteristic three often offer the best possible ratio between security
level and space requirements. Note that the ηT pairing easily relates to the
Tate pairing [2]. In the following, we assume that m = 97 and F397 is given as
F3[x]/(x97 + x12 + 2). This choice is currently a good trade-off between security
and computation time.

After previous works by Miller [21], Barreto et al. [3] and Galbraith et al. [12],
an efficient algorithm for the characteristic three was proposed by Duursma and
Lee [10]. That work was then extended by Kwon [19]. The introduction of the
ηT pairing by Barreto et al. [2] led to a reduction by a factor two of the number
of iterations compared to the approach by Duursma and Lee. Algorithm 1 sum-
marizes the scheme proposed by Barreto et al. and uses the following notation:
let � > 0 be an integer relatively prime to 3m (i.e. to 3). The set Eb(F3m)[�]
groups all the points P ∈ Eb(F3m) such that �P = O, where O is the point at
infinity. Let σ and ρ ∈ F36m which satisfy σ2 = −1 and ρ3 = ρ+ b. They help to
define the distortion map introduced in [3].

Algorithm 1. Computation of ηT pairing in characteristic three [2]
Input: P = (xp, yp) and Q = (xq, yq) ∈ Eb(F3m)[�]. The algorithm requires R0 and

R1 ∈ F36m , as well as r0 ∈ F3m for intermediate computations.
Output: ηT (P, Q)
1: if b = 1 then
2: yp ← −yp;
3: end if
4: r0 ← xp + xq + b;
5: R0 ← −ypr0 + yqσ + ypρ;
6: for i = 0 to (m − 1)/2 do
7: r0 ← xp + xq + b;
8: R1 ← −r2

0 + ypyqσ − r0ρ − ρ2;
9: R0 ← R0R1;

10: xp ← x
1/3
p ; yp ← y

1/3
p ;

11: xq ← x3
q; yq ← y3

q ;
12: end for
13: Return R0;

Algorithm 1 has the drawback of using inverse Frobenius maps (i.e. cube root
in characteristic three). In [5], Beuchat et al. proposed a modified ηT pairing al-
gorithm in characteristic three that does not require any cube root. However, to
ensure a unique output value for the ηT pairing, we have to compute RW

0 , where
W = (33m − 1)(3m + 1)(3m + 1− b3(m+1)/2) here. This operation, often referred
to as final exponentiation, requires among other things a single inversion over
F3m and multiplications over F36m (note that pairing calculation in characteristic



A Coprocessor for the Final Exponentiation of the ηT Pairing 27

two involves an inversion over F2m for final exponentiation). Pairing accelerators
described in the literature follow two distinct strategies:

– Several researchers designed coprocessors for arithmetic over F3m (or F2m)
implementing both pairing calculation and final exponentiation [17,22,23,25].
This last operation is intrinsically sequential and there is unfortunately no
parallelism at all when comes the time of inversion. It is therefore cru-
cial to embed a fast inverter to avoid impacting the overall performance
of the system. Reference [18] introduces for instance an efficient architec-
ture for Extended Euclidean Algorithm (EEA) based inversion. To our best
knowledge, the fastest coprocessor designed according to this philosophy
computes ηT (P,Q)W over the field F397 in 179μs (114μs for the pairing
calculation and 65μs for the final exponentiation) on a Virtex-II Pro 100
Field-Programmable Gate Array (FPGA) [22].

– Consider the computation of the ηT pairing (Algorithm 1) and note that two
coefficients of R1 are null and another one is equal to −1. This observation
allowed Beuchat et al. to design an optimized multiplier over F397 which is
at the heart of a pairing accelerator computing ηT (P,Q) in 33μs [5]. It is
worth noticing that the computation of the pairing requires 4849 clock cycles.
Since Fermat’s little theorem makes it possible to carry out inversion over
F3m by means of multiplications and cubings, ηT (P,Q)W could be computed
on such an accelerator. It seems however more attractive to supplement it
with dedicated hardware for final exponentiation.

The challenge consists in designing the smallest possible processor able to
compute a final exponentiation in less than 33μs on a Cyclone II device. Our
architecture is based on an innovative algorithm introduced by Shirase, Takagi,
and Okamoto in [24]. We summarize this scheme in Section 2 and describe a
novel arithmetic operator performing addition, subtraction, multiplication, and
cubing over F397 (Section 3). We show that a coprocessor based on a single such
processing element allows us to meet our timing constraint. Section 4 provides
the reader with a comparison against previously published solutions.

2 Computation of the Final Exponentiation

Algorithm 2 describes a traditional way to perform final exponentiation [5].
Ronan et al. took for instance advantage of such a scheme to design their ηT

pairing accelerator [22]. Shirase et al. proposed a novel algorithm based on the
following remark [24]: let X ∈ F36m , then X33m−1 belong to the torus T2(F33m),
a set introduced in [14]. Then they showed that the arithmetic in T2 is cheaper,
hence a significant gain in term of number of operations compared to Algorithm 2
(see Table 1). Algorithm 6 describes this final exponentiation scheme. It uses
Algorithms 3 and 5.

Algorithm 3 involves an inversion over F33m . The tower field representation
allows us to substitute this operation with 12 multiplications, 11 additions,
and an inversion over F3m (see Appendix B for details). In order to keep the



28 J.-L. Beuchat et al.

Algorithm 2. Raising ηT (P,Q) to the W -th power (b = 1) [5]
Input: ηT (P, Q) ∈ F36m . Thirteen variables ui, 0 ≤ i ≤ 6, and vi, 0 ≤ i ≤ 5 belonging

to F36m store intermediate results.
Output: ηT (P, Q)W ∈ F36m

1: u0 ← ηT (P, Q);
2: for i = 1 to 5 do
3: ui ← u3m

i−1;
4: end for
5: u1 ← u2

1;
6: u4 ← u2

4;

7: v0 ← ηT (P, Q)3
(m+1)/2

;
8: for i = 1 to 4 do
9: vi ← v3m

i−1;
10: end for
11: u6 ← v0 · v1 · u3 · u4 · u5;
12: v5 ← u0 · u1 · u2 · v3 · v4;
13: Return u0 ← u6/v5;

Algorithm 3. Computation of X33m−1

Input: X = x0 + x1σ + x2ρ + x3σρ + x4ρ
2 + x5σρ2 ∈ F∗

36m .

Output: X33m−1 ∈ T2(F33m )
1: τ0 ← (x0 + x2ρ + x4ρ

2)2;
2: τ1 ← (x1 + x3ρ + x5ρ

2)2;
3: τ2 ← (x0 + x2ρ + x4ρ

2)(x1 + x3ρ + x5ρ
2);

4: Y ← (τ0 − τ1) + τ2σ

τ0 + τ1
;

5: Return Y ;

circuit area as small as possible, we suggest to perform inversion according
to Fermat’s little theorem and Itoh and Tsujii’s work [16]. Since m = 97,
inversion requires 9 multiplications and 96 cubings over F397 (Algorithm 4,
see Appendix A for a proof of correctness). Therefore, final exponentiation
requires 87 multiplications, 390 cubings, and 477 additions over F397 (see Ap-
pendix B for details about the number of operations over F397 involved in
the final exponentiation). Array multipliers processing D coefficients of an
operand at each clock cycle are often at the heart of pairing accelerators (see
Section 3.2). In [5], authors suggest to consider D = 3 coefficients and multi-
plication over F397 involves � 973 � = 33 clock cycles. Since addition and cubing
are rather straightforward operations, they are carried out in a single clock
cycle. Therefore, considering such parameters, final exponentiation requires
477 + 390 + 33 · 87 = 3738 clock cycles. Note that additional clock cycles
are necessary to load and store intermediate results. However, this overhead
should be smaller than 10% and a coprocessor embedding a multiplier, an
adder/subtracter, as well as a cubing unit should perform this task in less
than 4200 clock cycles. It is therefore possible to supplement the ηT pairing



A Coprocessor for the Final Exponentiation of the ηT Pairing 29

Algorithm 4. Inversion over F397

Input: a ∈ F397

Output: a−1 ∈ F397

1: y0 ← a;
2: for i = 0 to 5 do
3: zi ← y32i

i ;
4: yi+1 ← yizi;
5: end for
6: z6 ← y332

6 ;
7: y7 ← y5z6;
8: y8 ← y2

7 ;
9: y9 ← y3

8 ;
10: Return y0y9;

Algorithm 5. Computation of X3m+1 in the torus T2(F33m)
Input: X ∈ T2(F33m )
Output: X3m+1 ∈ T2(F33m)
1: z0 ← x0x4, z1 ← x1x5, z2 ← x2x4, z3 ← x3x5;
2: z4 ← (x0 + x1)(x4 − x5);
3: z5 ← x1x2, z6 ← x0x3;
4: z7 ← (x0 + x1)(x2 + x3);
5: z8 ← (x2 + x3)(x4 − x5);
6: y0 ← 1 + z0 + z1 − bz2 − bz3;
7: y1 ← z1 + z4 + bz5 − z0 − bz6;
8: y2 ← z7 − z2 − z3 − z5 − z6;
9: y3 ← z3 + z8 + bz0 − z2 − bz1 − bz4;

10: y4 ← bz2 + bz3 + bz7 − bz5 − bz6;
11: y5 ← bz3 + bz8 − bz2;
12: Return Y = (y0 + y2ρ + y4ρ

2) + (y1 + y3ρ + y5ρ
2)σ;

accelerator described in [5] (4849 clock cycles) with such a simple processing
unit.

3 Hardware Implementation

This section describes the implementation of Algorithm 6 on a Cyclone II
EP2C35F672C6 FPGA whose smallest unit of configurable logic is called Logic
Element (LE). Each LE includes a 4-input Look-Up Table (LUT), carry logic,
and a programmable register. A Cyclone II EP2C35F672C6 device contains
for instance 33216 LEs. Readers who are not familiar with Cyclone II devices
should refer to [1] for further details. After studying addition, multiplication,
and cubing over F3m , we propose a novel arithmetic operator able to perform
these three operations and describe the architecture of a final exponentiation
coprocessor based on such a processing element.



30 J.-L. Beuchat et al.

Algorithm 6. Final exponentiation of ηT pairing [24]
Input: X = x0 + x1σ + x2ρ + x3σρ + x4ρ

2 + x5σρ2 ∈ F∗
36m .

Output: X(33m−1)(3m+1)(3m+1−b3(m+1)/2)

1: Y ← X33m−1 (Algorithm 3);
2: Y ← Y 3m+1 (Algorithm 5);
3: Z ← Y ;
4: for i = 0 to (m − 1)/2 do
5: Z ← Z3;
6: end for
7: Y ← Y 3m+1 (Algorithm 5);
8: if b = 1 then
9: Return Y · (z0 − z1σ + z2ρ − z3σρ + z4ρ

2 − z5σρ2);
10: else
11: Return Y Z;
12: end if

Table 1. Comparison of final exponentiation algorithms (number of operations)

Algorithm
Additions Cubings Multiplications
over F397 over F397 over F397

Algorithm 2 1022 390 243

Algorithm 6 477 390 87

3.1 Addition and Subtraction over F3m

Since they are performed component-wise, addition and subtraction over F3m

are rather straightforward operations. Each element of F3 is encoded by two bit
and addition modulo three on a Cyclone II FPGA requires two 4-input LUTs.
Negation over F3 is performed by multiplying an operand by two. Note that
the computation of the yi’s in Algorithm 5 involves the addition of up to six
operands. This motivates the design of the accumulator illustrated on Figure 1a.

3.2 Multiplication over F3m

Three families of algorithms allow one to compute a(x)b(x) mod f(x). In parallel-
serial schemes, a single coefficient of the multiplier a(x) is processed at each step.
This leads to small operands performing a multiplication in m steps. Parallel
multipliers compute a degree-(2m−2) polynomial and carry out a final modular
reduction. They achieve a higher throughput at the price of a larger circuit area.
By processing D coefficients of an operand at each clock cycle, array multipliers,
introduced by Song and Parhi in [26], offer a good trade-off between computation
time and circuit area and are at the heart of several pairing coprocessors (see
for instance [5, 13, 17, 22, 23, 25]). Among the many array multipliers described
in the literature (see for instance [15,25]), the one proposed by Shu, Kwon, and
Gaj [25] (Algorithm 7) is a good candidate for FPGA implementation when f(x)



A Coprocessor for the Final Exponentiation of the ηT Pairing 31

b(x)a(x)

s(x)

+/−

1 0 c0

c1

c2

c3

Cubing

c(x)

a(x)

Select

Load

Load

Register

a3i

reg_a

a3i+2a3i+1

x2

mod f(x) mod f(x)

x3x

mod f(x)

PPG PPG PPG

c0

c1

c2

c3

c4

(c)(b)(a)

a(x)b(x)

p(x)

Load

Shift

LoadShift register

Load

Clear

2

1 0

+/− +/−

c0

0

10

c1

c2

c3

c4

c5

c1

Fig. 1. Arithmetic operators over F3m . (a) Addition/subtraction of two operands and
accumulation. (b) Multiplication [25] (D = 3 coefficients of a(x) processed at each
clock cycle). (c) Cubing.

Algorithm 7. Multiplication over F3m [25]
Input: A degree-m monic polynomial f(x) = xm + fm−1x

m−1 + . . . + f1x + f0 and
two degree-(m − 1) polynomials a(x) and b(x). A parameter D which defines the
number of coefficients of a(x) processed at each clock cycle. The algorithm requires
a degree-(m − 1) polynomial t(x) for intermediate computations.

Output: p(x) = a(x)b(x) mod f(x)
1: p(x) ← 0;
2: for i from �m/D� − 1 downto 0 do

3: t(x) ←
D−1∑

j=0

(
aDi+jx

jb(x)
)

mod f(x);

4: p(x) ← t(x) + (xDp(x) mod f(x));
5: end for

is a trinomial [4]. Figure 1b illustrates the architecture of an operator process-
ing D = 3 coefficients at each clock cycle. It mainly consists of three Partial
Product Generators (PPG), three modulo f(x) reduction units, a multioperand
adder, and registers to store operands and intermediate results. Five bits make
it possible to control this operator.

In the following, we will focus on multiplication over F397 and assume thatD =
3 (i.e. multiplication requires 33 clock cycles). With such parameters, the first
iteration of Algorithm 7 is defined as follows: t(x) ← a96b(x) + (a97xb(x)) mod
f(x) + (a98x

2b(x)) mod f(x). To ensure a correct result, we have to guarantee
that a97 = a98 = 0. Therefore, the shift register stores a degree-98 polynomial
whose two most significant coefficients are set to zero.



32 J.-L. Beuchat et al.

3.3 Cubing over F3m

Since we set f(x) = x97 + x12 + 2, cubing over F3m is a pretty simple arithmetic
operation: a GP/PARI program provides us with a closed formula:

b0 = a93 + a89 + a0, b1 = a65 + 2a61, b2 = a33,

b3 = a94 + a90 + a1, . . . = . . . , b94 = a96 + a92 + a88,

b95 = a64 + 2a60, b96 = a32.

(1)

The most complex operation involved in cubing is therefore the addition of three
elements belonging to F3. Recall that inversion over F397 involves successive cub-
ing operations. Since storing intermediate results in memory would be too time
consuming, our cubing unit should include a feedback mechanism to efficiently
implement Algorithm 4. Furthermore, cubing over F36m requires the computa-
tion of −y3

i , where yi ∈ F3m (see Appendix B for details). These considerations
suggest the design of the operator depicted by Figure 1c.

Place-and-Route Results. These three arithmetic operators were captured
in the VHDL language and prototyped on an Altera Cyclone II EP2C35F672C6
device. Both synthesis and place-and-route steps were performed with Quartus
II 6.0 Web Edition (Table 2). A naive solution would then consist in connecting
the outputs of these operators to the memory blocks by means of a three-input
multiplexer controlled by two bits. Such an arithmetic and logic unit (ALU)
requires 3308 Logic Elements (LEs) and final exponentiation can be carried out
within 4082 clock cycles, thus meeting our timing constraint. Cubings only occur
in inversion (Algorithm 4) and in the computation of Z (step 5 of Algorithm 6).
Due to the sequential nature of these algorithms, both multiplier and adder
remain idle at that time. The same observation can be made for additions and
multiplications: most of the time, only a single arithmetic operator is processing
data. Is it therefore possible to save hardware resources by designing an operator
able to perform addition, multiplication, and cubing over F397?

Table 2. Arithmetic operators over F397 on a Cyclone II FPGA

Addition/ Multiplication
Cubing ALUsubtraction (D = 3)

Area [LEs] 970 1375 668 3308

Control [bits] 6 5 4 17

3.4 An Operator for Multiplication, Addition, and Cubing over F397

Consider again the closed formula for cubing over F3[x]/(x97 + x12 + 2) (Equa-
tion (1)). We can for instance write b1 = a65 + a61 + a61 and b2 = a33 + 0 + 0.
Let us define c0(x), c1(x), and c2(x) ∈ F397 such that:



A Coprocessor for the Final Exponentiation of the ηT Pairing 33

c0(x) = a93 + a65x+ a33x
2 + . . .+ a88x

94 + a64x
95 + a32x

96,

c1(x) = a89 + a61x+ 0 · x2 + . . .+ a92x
94 + a60x

95 + 0 · x96,

c2(x) = a0 + a61x+ 0 · x2 + . . .+ a96x
94 + a60x

95 + 0 · x96.

(2)

Then, a(x)3 = c0(x) + c1(x) + c2(x) and cubing requires the addition of three
operands as well as some wiring to compute the ci(x)’s. Remember now that our
array multiplier (Figure 1b) embeds a three-operand adder and an accumulator,
which also makes possible the implementation of addition and cubing. Further-
more, since negation over F3m consists in multiplying the operand by two, PPGs
can perform this task.

These considerations suggest the design of a three-input arithmetic operator
for addition, accumulation, cubing, and multiplication over F397 (Figure 2). In
order to compute the product a(x)b(x) mod f(x), it suffices to load a(x) in
register R0, and b(x) in registers R1 and R2. Addition and cubing are slightly
more complex and we will consider a toy example to illustrate how our operator
works. Let us assume we have to compute −a(x) + b(x) and a(x)3, where a(x),
b(x) ∈ F397 . We respectively load a(x) and b(x) in registers R2 and R1 and define
a control word stored in R0 so that d03i = 2, d03i+1 = 1, and d03i+2 = 0. We will
thus compute (2a(x)+ b(x)+0 ·a(x)) mod f(x) = (−a(x)+ b(x)) mod f(x). For
cubing, we load a(x) in both registers R1 and R2. If d03i = d03i+1 = d03i+2 = 1,
then our operator implements Equation (2) and returns a(x)3. Thus, register
R0 stores either an operand of a multiplication or a control word for up to 33
successive additions and cubings (recall that this shift register stores a degree-98
polynomial and that three coefficients are processed at each clock cycle). Place-
and-route results indicate that this processing element requires 2676 LEs instead
of 3308 LEs with the naive approach. Furthermore, this architecture allows one
to reduce the number of control bits from 17 (see Table 2) to 11.

3.5 Architecture of the Coprocessor

Figure 3 describes the architecture of our coprocessor which embeds a single
arithmetic unit performing addition, accumulation, cubing, or multiplication
over F397 . Intermediate results (194 bits) and control words for additions and
cubings (198 bits) are stored in 64 registers implemented by a dual-port RAM
(13 Cyclone II M4K memory blocks). An element of F36m returned by the ηT

pairing accelerator is sequentially loaded in the RAM. Then, a simple Finite
State Machine and a ROM generate all control signals required to perform the
final exponentiation according to Algorithm 6. Each instruction stored in the
ROM consists of four fields: a control word which specifies the functionality of
the processing element, addresses and write enable signals for both ports of the
RAM, and a counter which indicates how many times the instruction must be
repeated. Inversion over F397 involves for instance consecutive cubings (Algo-
rithm 4). This approach allows one to execute them with a single instruction.

The implementation of Algorithm 6 on this coprocessor requires 658 instruc-
tions which are executed within 4082 clock cycles. Ten control words, stored in



34 J.-L. Beuchat et al.

10: accumulation
11: multiplication

c2

c3

c0

c1

c4

c5

PPG PPG PPG

mod f(x)

x2 x3xc  (x)0 c  (x)1 c  (x)2

d03i+2d03i+1d03i

R1

00 others00 others 00 01
10

11 00
01

1011

Load

p(x)

0 10 1

SelectSelect

Load Load

Load

Shift

Wiring
only

d0(x)d1(x)d2(x)

R2 R0

0

c6

mod f(x) mod f(x)

c7c8

c9c10

00: nop
01: nop
10: accumulation
11: multiplication

00: cubing
01: addition

Fig. 2. Addition, accumulation, cubing, and multiplication over F397

the dual-port RAM, manage all additions and cubings involved in the computa-
tion of the final exponentiation.

4 Results and Comparisons

Our final exponentiation coprocessor was implemented on an Altera Cyclone II
EP2C35F672C6 FPGA. According to place-and-route tools, this architecture
requires 2787 LEs and 21 M4K memory blocks. Since the maximum frequency
is 159 MHz, an exponentiation is computed within 26μs and our timing con-
straint is fully met. It is worth noticing that the inversion over F397 based on
the EEA described in [18] occupies 3422 LEs [27] and needs 2m = 194 clock
cycles. Our approach based on Fermat’s little theorem (Algorithm 4) performs
the same operation in 394 clock cycles. Therefore, introducing specific hardware
for inversion would double the circuit area while reducing the calculation time
by only 5%.

To our best knowledge, the only ηT pairing accelerator in characteristic three
implementing final exponentiation was proposed by Ronan et al. in [22]. In order
to easily study the trade-off between calculation time and circuit area, they wrote
a C program which automatically generates a VHDL description of a processor
and its control according to the number of multipliers to be included and D. The



A Coprocessor for the Final Exponentiation of the ηT Pairing 35

c5c6c7c8c9c10c11c12c13c14c15c16c17c18c19c20c21c22c23c24c25c26c27c28c29c30

Port B Port A Processing element

Address AddressW
en

W
en

Finite State
Machine

memory blocks
Cyclone II M4K 

RAM

p(x)

Control

10 bits

31 bits

194 bits

6 bits

Select

Addr

Wen

DoneStart

6 bits

11 bits 194 bits

Counter

d2(x)
d1(x)
d0(x)

194 bits

19
8 

bi
ts

19
4 

bi
ts

Q

Q

Data
Addr
Wen

Wen
Addr
Data

P
or

t 
A

P
or

t 
B

Processing
element

ROM

memory blocks
Cyclone II M4K 

Q

Addr

1 01 0

η (P, Q)
T

c0c1c2c3c4

Fig. 3. Architecture of the coprocessor for final exponentiation

ALU also embeds an adder, a subtracter, a cubing unit, and an inversion unit.
The most attractive architecture contains three multipliers processing D = 8
coefficients at each clock cycle. It computes ηT (P,Q) in 114μs and requires 65μs
to perform final exponentiation according to Algorithm 2 on a Xilinx Virtex-II
Pro 100 FPGA (clock frequency: 70.4 MHz). This architecture requires 10000
slices of a Virtex-II Pro FPGA. Each slice of this FPGA family features two 4-
input LUTs, carry logic, wide function multiplexers, and two storage elements.
Let us assume that Xilinx design tools try to utilize both LUTs of a slice as often
as possible (i.e. area optimization). Under this hypothesis, we consider that a
slice is roughly equivalent to two LEs and our coprocessor is seven times smaller
than the one described in [22].

Recall that Algorithm 6 allows one to divide by 2.8 the number of multi-
plications over F397 (Table 1). Therefore, our coprocessor would compute final
exponentiation according to Algorithm 2 in around 26× 2.8 = 72.8μs.

The ηT pairing accelerator described in [5] returns ηT (P,Q) in 33μs using
14895 LEs and 13 memory blocks. We can therefore estimate the total area of
a coprocessor computing ηT (P,Q)W to 18000 LEs and 34 M4K memory blocks.
Thus, with roughly the same amount of configurable logic, we should achieve
five times faster ηT pairing calculation than Ronan et al.

5 Concluding Remarks

We proposed a novel arithmetic operator performing addition, accumulation,
cubing, and addition over F397 and designed a coprocessor able to compute the
final exponentiation of the ηT pairing in 26μs on a Cyclone II FPGA. Since



36 J.-L. Beuchat et al.

the calculation time of the ηT pairing accelerator described in [5] is 33μs, we
can pipeline both architectures without impacting the overall performance of
the system and our approach allows one to divide by five the calculation time
of ηT (P,Q)W compared to the best implementation reported in the open litera-
ture [22]. Since different FPGA families are involved, it is unfortunately difficult
to provide the reader with a fair area comparison. A rough estimate indicates
that our coprocessor requires the same hardware resources.

Another important result is that hardware for inversion is not necessary for the
calculation of the ηT pairing on a characteristic three elliptic curve over F397 : our
final exponentiation coprocessor meets our timing constraint with an algorithm
based on Fermat’s little theorem. Furthermore, the architecture proposed in [22]
computes ηT (P,Q)W in 15113 clock cycles. Since an inverter based on the EEA
saves only 200 clock cycles and that no other operation can be performed in
parallel, we believe it is not interesting to include dedicated hardware for this
operation.

The approach introduced in this paper to design our arithmetic operator of-
fers several further research topics we plan to study in the future. It would for
instance be interesting to implement the computation of both pairing and final
exponentiation with the coprocessor described in this paper. Such an architec-
ture could for instance be attractive for ASIC implementations. Another open
question is if our operator is able to carry out other functions (e.g. cube root)
or if this design methodology works for other irreducible polynomials and finite
fields. Finally, note that our processor always performs the same operation: at
each clock cycle, the content of the shift register is updated (load or shift op-
eration), and a sum of three partial products is computed. Pairing operations
could therefore be split into atomic blocks (side-channel atomicity [9]) and such
architectures could prevent simple side-channel attacks.

References

1. Altera.: Cyclone II Device Handbook (2006), Available from Altera’s web site
(http://altera.com)

2. Barreto, P.S.L.M., Galbraith, S.D., Ó hÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptogra-
phy 42(3), 239–271 (2007)

3. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

4. Beuchat, J.-L., Miyoshi, T., Oyama, Y., Okamoto, E.: Multiplication over Fpm

on FPGA: A survey. In: Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M.,
Cardoso, J.M.P. (eds.) Reconfigurable Computing: Architectures, Tools and Ap-
plications – Proceedings of ARC 2007. LNCS, vol. 4419, pp. 214–225. Springer,
Heidelberg (2007)

5. Beuchat, J.-L., Shirase, M., Takagi, T., Okamoto, E.: An algorithm for the ηT

pairing calculation in characteristic three and its hardware implementation. In:
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (To appear,
2007)

http://altera.com


A Coprocessor for the Final Exponentiation of the ηT Pairing 37

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

9. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity. IEEE Transactions on Comput-
ers 53(6), 760–768 (2004)

10. Duursma, I., Lee, H.S.: Tate pairing implementation for hyperelliptic curves y2 =
xp −x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

11. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comp. 62(206), 865–874 (1994)

12. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) Algorithmic Number Theory – ANTS V. LNCS,
vol. 2369, pp. 324–337. Springer, Heidelberg (2002)

13. Grabher, P., Page, D.: Hardware acceleration of the Tate Pairing in characteristic
three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411.
Springer, Heidelberg (2005)

14. Granger, R., Page, D., Stam, M.: On small characteristic algebraic tori in pairing-
based cryptography. LMS Journal of Computation and Mathematics 9, 64–85
(2006), Available from http://www.lms.ac.uk/jcm/9/lms2004-025/

15. Guajardo, J., Güneysu, T., Kumar, S., Paar, C., Pelzl, J.: Efficient hardware im-
plementation of finite fields with applications to cryptography. Acta Applicandae
Mathematicae 93 (1–3), 75–118 (2006)

16. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and Computation 78, 171–177 (1988)

17. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M.: Efficient hardware
for the Tate Pairing calculation in characteristic three. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

18. Kerins, T., Popovici, E., Marnane, W.: Algorithms and architectures for use
in FPGA implementations of identity based encryption schemes. In: Becker, J.,
Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 74–83. Springer,
Heidelberg (2004)

19. Kwon, S.: Efficient Tate pairing computation for supersingular elliptic curves over
binary fields. Cryptology ePrint Archive, Report 2004/303 (2004)

20. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curves logarithms
to logarithms in a finite field. IEEE Transactions on Information Theory 39(5),
1639–1646 (1993)

21. Miller, V.S.: Short programs for functions on curves. (1986) Unpublished
manuscript available at http://crypto.stanford.edu/miller/miller.pdf

22. Ronan, R., O’h’Eigeartaigh, C., Murphy, C., Kerins, T., Barreto, P.S.L.M.: Hard-
ware implementation of the ηT pairing in characteristic 3. Cryptology ePrint
Archive, Report 2006/371 (2006)

http://www.lms.ac.uk/jcm/9/lms2004-025/
http://crypto.stanford.edu/miller/miller.pdf


38 J.-L. Beuchat et al.

23. Ronan, R., O’h’Eigeartaigh, C., Murphy, C., Scott, M., Kerins, T., Marnane,
W.P.: An embedded processor for a pairing-based cryptosystem. In: Proceedings of
the Third International Conference on Information Technology: New Generations
(ITNG’06), IEEE Computer Society Press, Los Alamitos (2006)

24. Shirase, M., Takagi, T., Okamoto, E.: Some efficient algorithms for the final ex-
ponentiation of ηT pairing. In: 3rd Information Security Practice and Experience
Conference – ISPEC 2007. LNCS, Springer, Heidelberg (2007)

25. Shu, C., Kwon, S., Gaj, K.: FPGA accelerated Tate pairing based cryptosys-
tem over binary fields. In: Proceedings of 2006 IEEE International Conference
on Field Programmable Technology (FPT 2006), pp. 173–180. IEEE Computer
Society Press, Los Alamitos (2006)

26. Song, L., Parhi, K.K.: Low energy digit-serial/parallel finite field multipliers. Jour-
nal of VLSI Signal Processing 19(2), 149–166 (1998)

27. Vithanage, A.: Personal communication

A Proof of Correctness of Algorithm 4

Let a ∈ F397 . According to Fermat’s little theorem, a−1 = a397−2. Note that the
ternary representation of 397−2 is (22 . . . 22︸ ︷︷ ︸

96×
1)3. In order to prove the correctness

of Algorithm 4, it suffices to show that y9 = ak, where k = (22 . . . 22︸ ︷︷ ︸
96×

0)3:

z0 = y3
0 = a(10)3 , y1 = a(11)3 , z1 = y32

1 = a(1100)3 ,

y2 = a(1111)3 , z2 = y34

2 = a(11110000)3 , y3 = a(11111111)3 ,

z3 = y38

3 = a(

8×
︷︸︸︷
1...1

8×
︷︸︸︷
0...0 )3 , y4 = a(

16×
︷︸︸︷
1...1 )3 , z4 = y316

4 = a(

16×
︷︸︸︷
1...1

16×
︷︸︸︷
0...0 )3 ,

y5 = a(

32×
︷︸︸︷
1...1 )3 , z5 = y332

5 = a(

32×
︷︸︸︷
1...1

32×
︷︸︸︷
0...0 )3 , y6 = a(

64×
︷︸︸︷
1...1 )3 ,

z6 = y332

6 = a(

64×
︷︸︸︷
1...1

32×
︷︸︸︷
0...0 )3 , y7 = y5z6 = a(

96×
︷︸︸︷
1...1 )3 , y8 = y2

7 = a(

96×
︷︸︸︷
2...2 )3 ,

y9 = y3
8 = a(

96×
︷︸︸︷
2...2 0)3

Then, Algorithm 4 returns y0y9 = a(

96×
︷ ︸︸ ︷
22...221)3 = a397−2.

B Arithmetic over F32m , F33m , and F36m

This Appendix summarizes classical algorithms for arithmetic over F32m , F33m ,
and F36m . Proofs of correctness of such algorithms are for instance provided
in [17]. In order to compute the number of operations over F3m , we assume that
the ALU is able to compute aiaj , ±ai±aj and ±a3

i , where ai and aj ∈ F3m . We
consider the case where the elliptic curve is given by y2 = x3 − x+ 1 (i.e. b = 1
and ρ3 = ρ+ 1).



A Coprocessor for the Final Exponentiation of the ηT Pairing 39

Multiplication over F32m. Let A = a0+a1σ andB = b0+b1σ, where a0, a1, b0,
and b1 ∈ F3m . The product AB = (a0b0−a1b1)+((a0+a1)(b0+b1)−a0b0−a1b1)σ
requires 3 multiplications and 5 additions (or subtractions) over F3m .

Multiplication over F33m. Assume that A = a0 + a1ρ + a2ρ
2 and B = b0 +

b1ρ+ b2ρ2, where ai, bi ∈ F3m , 0 ≤ i ≤ 2. The product C = AB is then given by:
⎡

⎣
c0
c1
c2

⎤

⎦ =

⎡

⎣
(a1 + a2)(b1 + b2) + a0b0 − a1b1 − a2b2

(a0 + a1)(b0 + b1) + (a1 + a2)(b1 + b2)− a0b0 + a1b1
(a0 + a2)(b0 + b2) + a1b1 − a0b0

⎤

⎦ .

This operation requires 6 multiplications and 14 additions (or subtractions) over
F3m .

Inversion over F36m. Let A = a0 + a1ρ + a2ρ
2, where ai ∈ F3m , 0 ≤ i ≤ 2.

The inverse C of A is then given by:
⎡

⎣
c0
c1
c2

⎤

⎦ = d−1

⎡

⎣
a2
0 − (a2

1 − a2
2)− a2(a0 + a1)

−a0a1 + a2
2

a2
1 − a2

2 − a0a2

⎤

⎦ ,

where d = a2
0(a0 − a2) + a2

1(−a0 + a1) + a2
2(−(−a0 + a1) + a2). This operation

involves 12 multiplications, 11 additions (or subtractions), and 1 inversion over
F3m .

Multiplication over F36m. Let A = a0 + a1σ︸ ︷︷ ︸
ã0

+(a2 + a3σ︸ ︷︷ ︸
ã1

)ρ + (a4ρ
2 + a5σ︸ ︷︷ ︸

ã2

)ρ2

and B = b0 + b1σ︸ ︷︷ ︸
b̃0

+(b2 + b3σ︸ ︷︷ ︸
b̃1

)ρ + (b4ρ2 + b5σ︸ ︷︷ ︸
b̃2

)ρ2. The product C = AB is then

given by (6 multiplications and 14 additions over F32m):

⎡

⎣
c̃0
c̃1
c̃2

⎤

⎦ =

⎡

⎣
(ã1 + ã2)(b̃1 + b̃2) + ã0b̃0 − ã1b̃1 − ã2b̃2

(ã0 + ã1)(b̃0 + b̃1) + (ã1 + ã2)(b̃1 + b̃2)− ã0b̃0 + ã1b̃1
(ã0 + ã2)(b̃0 + b̃2) + ã1b̃1 − ã0b̃0

⎤

⎦ .

Thus, multiplication over F36m requires 18 multiplications and 58 additions (or
subtractions) over F3m .



VLSI Implementation of a Functional Unit to

Accelerate ECC and AES on 32-Bit Processors�

Stefan Tillich and Johann Großschädl

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich,Johann.Groszschaedl}@iaik.tugraz.at

Abstract. Embedded systems require efficient yet flexible implementa-
tions of cryptographic primitives with a minimal impact on the overall
cost of a device. In this paper we present the design of a functional unit
(FU) for accelerating the execution of cryptographic software on 32-bit
processors. The FU is basically a multiply-accumulate (MAC) unit able
to perform multiplications and MAC operations on integers and binary
polynomials. Polynomial arithmetic is a performance-critical building
block of numerous cryptosystems using binary extension fields, including
public-key primitives based on elliptic curves (e.g. ECDSA), symmetric
ciphers (e.g. AES or Twofish), and hash functions (e.g. Whirlpool). We
integrated the FU into the Leon2 SPARC V8 core and prototyped the
extended processor in an FPGA. All operations provided by the FU are
accessible to the programmer through custom instructions. Our results
show that the FU allows to accelerate the execution of 128-bit AES by
up to 78% compared to a conventional software implementation using
only native SPARC V8 instructions. Moreover, the custom instructions
reduce the code size by up to 87.4%. The FU increases the silicon area
of the Leon2 core by just 8,352 gates and has almost no impact on its
cycle time.

1 Introduction

The usual way to accelerate cryptographic operations in embedded devices like
smart cards is to offload the computationally heavy parts of an algorithm from
the main processor to a dedicated hardware accelerator such as a cryptographic
co-processor. However, cryptographic hardware has all the restrictions inherent
in any pure hardware implementation, most notably limited flexibility and poor
scalability in relation to software. The term scalability refers to the ability to
process operands of arbitrary size. Typical RSA hardware implementations, for
example, only support operands up to a certain size, e.g. 1024 bits, and can not
be used when the need for processing longer operands arises. The term flexibility
� The work described in this paper was supported by the Austrian Science Fund under

grant P16952-NO4 (“Instruction Set Extensions for Public-Key Cryptography”) and
by the European Commission under grant FP6-IST-033563 (project SMEPP).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 40–54, 2007.
© Springer-Verlag Berlin Heidelberg 2007



VLSI Implementation of a FU to Accelerate ECC and AES 41

means the possibility to replace a cryptographic algorithm (e.g. DES) by another
one from the same class (e.g. AES) without the need to redesign a system. While
cryptographic software can be relatively easily upgraded and/or “patched,” an
algorithm cast in silicon is fixed and can not be changed without replacing the
whole chip. However, the importance of algorithm agility becomes evident in light
of the recently discovered vulnerabilities in the SHA-1 hash algorithm. SHA-1 is
widely used in security protocols like SSL or IPSec and constitutes an integral
part of the security concepts specified by the Trusted Computing Group (TCG)
[20]. A full break of SHA-1 would be a disaster for TCG-compliant systems since
almost all trusted platform modules (TPMs) implement SHA-1 in hardware and
lack hash algorithm agility.

In recent years, a new approach for implementing cryptography in embed-
ded systems has emerged that combines the performance and energy-efficiency
of hardware with the scalability and algorithm agility of software [10]. This ap-
proach is based on the idea of extending an embedded processor by dedicated
custom instructions and/or architectural features to allow for efficient execution
of cryptographic algorithms. Instruction set extensions are well established in
the domain of multimedia and digital signal processing. Today, almost every ma-
jor processor architecture features multimedia extensions; well-known examples
are Intel’s MMX and SSE technology, AMD’s 3DNow, and the AltiVec exten-
sions to the PowerPC architecture. All these extensions boost the performance
of multimedia workloads at the expense of a slight increase in silicon area.

The idea of extending a processor’s instruction set with the goal to accelerate
performance-critical operations is applicable to cryptography as well. Software
implementations of cryptographic algorithms often spend the majority of their
execution time in a few performance-critical code sections. Typical examples
of such code sections are the inner loops of long integer arithmetic operations
needed in public-key cryptography [8]. Other examples are certain transforma-
tions used in block ciphers (e.g. SubBytes or MixColumns in AES), which can be
expensive in terms of computation time when memory constraints or the threat
of cache attacks prevent an implementation via lookup tables. Speeding up these
code sections through custom instructions can, therefore, result in a significant
performance gain. Besides execution time also the code size is reduced since a
custom instruction typically replaces several “native” instructions.

The custom instructions can be executed in an application-specific functional
unit (FU) or a conventional FU—such as the arithmetic/logic unit (ALU) or
the multiplier—augmented with application-specific functionality. A typical ex-
ample for the latter category is an integer multiplier able to execute not only
the standard multiply instructions, but also custom instructions for long integer
arithmetic [7]. Functional units are tightly coupled to the processor core and
directly controlled by the instruction stream. The operands processed in FUs
are read from the general-purpose registers and the result is written back to the
register file. Hardware acceleration through custom instructions is cost-effective
because tightly coupled FUs can utilize all resources already available in a pro-
cessor, e.g. the registers and control logic. On the other hand, loosely-coupled



42 S. Tillich and J. Großschädl

hardware accelerators like co-processors have separate registers, datapaths, and
state machines for their control. In addition, the interface between processor
and co-processor costs silicon area and may also introduce a severe performance
bottleneck due to communication and synchronization overhead [9].

In summary, instruction set extensions are a good compromise between the
performance and efficiency of cryptographic hardware and the scalability and
algorithm agility of software. Application-specific FUs require less silicon area
than co-processors, but allow to achieve significantly better performance than
“conventional” software implementations [10]. Recent research has demonstrated
that instruction set extensions can even outperform a crypto co-processor while
demanding only a fraction of the silicon area [18].

1.1 Contributions of This Work

In this paper we introduce the design and implementation of a functional unit
(FU) to accelerate the execution of both public-key and secret-key cryptography
on embedded processors. The FU is basically a multiply/accumulate (MAC) unit
consisting of a (32 × 16)-bit multiplier and a 72-bit accumulator. It is capable
to process signed and unsigned integers as well as binary polynomials, i.e. the
FU contains a so-called unified multiplier1 [15]. Besides integer and polynomial
multiplication and multiply/accumulate operations, the FU can also perform
the reduction of binary polynomials modulo an irreducible polynomial of degree
m = 8, such as needed for AES en/decryption [3,5]. The rich functionality pro-
vided by the FU facilitates efficient software implementation of a broad range
of cryptosystems, including the “traditional” public-key schemes involving long
integer arithmetic (e.g. RSA, Diffie-Hellman), elliptic curve cryptography (ECC)
[8] over both prime fields and binary extension fields, as well as the Advanced
Encryption Standard (AES) [13].

A number of unified multiplier architectures for public-key cryptography, in
particular ECC, have been published in the past [15,6]. However, the FU pre-
sented in this paper extends previous work in two important aspects. First, our
FU supports not only ECC but also the AES, in particular the MixColumns
and InvMixColumns operations. Second, we integrated the FU into the SPARC
V8-compliant Leon2 softcore [4] and prototyped the extended processor in an
FPGA, which allowed us, on the one hand, to evaluate the hardware cost and
critical path delay of the extended processor and, on the other hand, to analyze
the impact of the FU on performance and code size of AES software. All exe-
cution times reported in this paper were measured on “working silicon” in form
of an FPGA prototype.

The main component of our FU is a (32 × 16)-bit unified multiplier for sig-
ned/unsigned integers and binary polynomials. We used the unified multiplier
architecture for ECC described in [6] as starting point for our implementation.
The main contribution of this paper is the integration of support for the AES

1 The term unified means that the multiplier uses the same datapath for both integers
and binary polynomials.



VLSI Implementation of a FU to Accelerate ECC and AES 43

MixColumns and InvMixColumns operations, which require besides polynomial
multiplication also the reduction modulo an irreducible polynomial of degree
m = 8. Hence, we focus in the remainder of this paper on the implementation
of the polynomial modular reduction and refer to [6] for details concerning the
original multiplier for ECC. To the best of our knowledge, the FU introduced
in this paper is the first approach for integrating AES support into a unified
multiplier for integers and binary polynomials.

Although the focus of this paper is directed towards the AES, we point out
that the presented concepts can also be applied to other block ciphers requiring
polynomial arithmetic, e.g. Twofish, or to hash functions like Whirlpool, which
has a similar structure as AES.

2 Arithmetic in Binary Extension Fields

The finite field Fq of order q = pm with p prime can be represented in a number
of ways, whereby all these representations are isomorphic. The elements of fields
of order 2m are commonly represented as polynomials of degree up to m−1 with
coefficients in the set {0, 1}. These fields are called binary extension fields and
a concrete instance of F2m is generated by choosing an irreducible polynomial
of degree m over F2 as reduction polynomial. The arithmetic operations in F2m

are defined as polynomial operations with a reduction modulo the irreducible
polynomial. Binary extension fields have the advantage that addition has no
carry propagation. This feature allows efficient implementation of arithmetic
in these fields in hardware. Addition can be done with a bitwise exclusive OR
(XOR) and multiplication with the simple shift-and-XOR method followed by
reduction modulo the irreducible polynomial.

Binary extension fields play an important role in cryptography as they con-
stitute a basic building block of both public-key and secret-key algorithms. For
example, the NIST recommends to use binary fields as underlying algebraic
structure for the implementation of elliptic curve cryptography (ECC) [8]. The
degree m of the fields used in ECC is rather large, typically in the range be-
tween 160 and 500. The multiplication of elements of such large fields is very
costly on 32-bit processors, even if a custom instruction for multiplying binary
polynomials is available. On the other hand, the reduction of the product of two
field elements modulo an irreducible polynomial f(x) is fairly fast (in relation to
multiplication) and can be accomplished with a few shift and XOR operations
if f(x) has few non-zero coefficients, e.g. if f(x) is a trinomial [8].

Contrary to ECC schemes, the binary fields used in secret-key systems like
block ciphers are typically very small. For example, AES and Twofish rely on the
field F28 . A multiplication of two binary polynomials of degree ≤ 7 can be easily
performed in one clock cycle with the help of a custom instruction like gf2mul
[17]. However, the reduction of the product modulo an irreducible polynomial
f(x) of degree 8 is relatively slow when done in software, i.e. requires much
longer than one cycle. Therefore, it is desirable to provide hardware support for
the reduction operation modulo irreducible polynomials of small degree.



44 S. Tillich and J. Großschädl

3 Implementation Options for AES

The Advanced Encryption Standard (AES) is a block cipher with a fixed block
size of 128 bits and a variable key size of 128, 192, or 256 bits [3]. In November
2001, the NIST officially introduced the AES as successor of the Data Encryption
Standard (DES). An encryption with AES consists of an initial key addition, a
sequence of round transformations, and a (slightly different) final round trans-
formation. The round transformation for encryption is composed of the following
four steps: AddRoundKey, SubBytes, ShiftRows, and MixColumns. Decryption
is performed in a similar fashion as encryption, but uses the inverse operations
(i.e. InvSubBytes, InvShiftRows, and InvMixColumns).

The binary extension field GF(28) plays a central role in the AES algorithm
[3]. Multiplication in GF(28) is part of the MixColumns operation and inversion
in GF(28) is carried out in the SubBytes operation. The MixColumns/InvMix-
Columns operation is, in general, one of the most time-consuming parts of the
AES [5]. Software implementations on 32-bit platforms try to speed up this
operation either by using an alternate data representation [1] or by employing
large lookup tables [3]. However, the use of large tables is disadvantageous for
embedded systems since they occupy scarce memory resources, increase cache
pollution, and may open up potential vulnerabilities to cache-based side channel
attacks [14].

The MixColumns transformation of AES can be defined as multiplication in
an extension field of degree 4 over F28 [3]. Elements of this field are polynomials
of degree ≤ 3 with coefficients in F28 . The coefficient field F28 is generated by
the irreducible polynomial f(x) = x8 + x4 + x3 + x + 1 (0x11B in hexadecimal
notation). For the extension field F28 [t]/(g(t)) the irreducible polynomial g(t) is
{1}t4+{1} with {1} ∈ F28 . The multiplier operand for MixColumns and InvMix-
Columns is fixed and its coefficients in F28 have a degree of ≤ 3. A multiplication
in this extension field over F28 can be performed in three steps:

1. Multiplication of binary polynomials.
2. Reduction of product-polynomials modulo f(x).
3. Reduction of a polynomial over F28 modulo g(t).

3.1 Instruction Set Extensions

Previous work on instruction set extensions for AES was aimed at both increas-
ing performance as well as minimizing memory requirements. Nadehara et al. [12]
designed custom instructions that calculate the result of the (Inv)MixColumns
operation in a dedicated functional unit (FU). Bertoni et al. [2] proposed cus-
tom instructions to speed up AES software following the approach of [1]. Lim
and Benaissa [11] implemented a subword-parallel ALU for binary polynomials
that supports AES and ECC over GF(2m). The work of Tillich et al. focused on
reducing memory requirements [19] as well as optimizing performance [18] with
the help of custom instructions and dedicated functional units for AES. In addi-
tion, they also investigated the potential for speeding up AES using instruction
set extensions for ECC [17]. Their results show that three custom instructions



VLSI Implementation of a FU to Accelerate ECC and AES 45

originally designed for ECC (gf2mul, gf2mac, and shacr) allow to accelerate
AES by up to 25%.

4 Design of a Unified Multiplier with AES Support

Our base architecture is the unified multiply-accumulate (MAC) unit presented
in [6]. It is capable of performing unsigned and signed integer multiplication as
well as multiplication of binary polynomials. Our original implementation of the
MAC unit has been optimized for the SPARC V8 Leon2 processor and consists
of two stages. The first stage contains a unified (32× 16)-bit multiplier that
requires two cycles to produce the result of a (32× 32)-bit multiplication. The
second stage features a 72-bit unified carry-propagation adder, which adds the
product to the accumulator.

Of the three steps described in Section 3, binary polynomial multiplication
is already provided by the original multiplier from [6]. The special structure
of the reduction polynomial g(t) for step 3 allows a very simple reduction: The
higher word (i.e. 32 bits) of the multiplication result after step 2 (with reduced
coefficients) is added to the lower word. This operation can be implemented in
the second stage (i.e. the accumulator) of the unified MAC unit without much
overhead. The only remaining operation to perform is the reduction modulo
f(x) (step 2). In the following we introduce the basic ideas for integrating this
operation into the unified multiplier presented in [6].

4.1 Basic Unified Multiplier Architecture

The white blocks in Figure 1 show the structure of our baseline multiplier. All
grey blocks are added for AES MixColumns support and will be described in
detail in Section 5. The multiplier proposed in [6] employs unified radix-4 partial
product generators (PPGs) for unsigned and signed integers as well as binary
polynomials. In integer mode, the partial products are generated according to
the modified Booth recoding technique, i.e. three bits of the multiplier B are
examined at a time. On the other hand, the output of each PPG in polynomial
mode depends on exactly two bits of B. A total of �n/2�+1 partial products are
generated for an n-bit multiplier B if performing an unsigned multiplication, but
only �n/2� partial products in the case of signed multiplication or when binary
polynomials are multiplied.

The unified MAC unit described in [6] uses dual-field adders (DFAs) arranged
in an array structure to sum up the partial products. However, we decided to
implement the multiplier in form of a Wallace tree to minimize the critical path
delay. Another difference between our unified MAC unit for the SPARC V8
Leon2 core and the design from [6] is that our unit adds the multiplication
result to the accumulator in a separate stage. Therefore, our unified (32×16)-bit
multiplier has to sum up only the 9 partial products generated by the modified
Booth recoder. This is done in a Wallace-tree structure with four summation
stages using dual-field adders. The first three stages use unified carry-save adders



46 S. Tillich and J. Großschädl

A (32 bit) B (16 bit)

Booth

Encoder
PPGs

CSA Tree Stage 1

Final Adder (CPA)

P (50 bit)

CSA Tree Stage 2

CSA Tree Stage 3

PPG Input Masking

Red. Bit Addition

Red. Vec. Insertion

Red. Vec. Insertion

Red. Vec. Insertion

Nibble repl.

Fig. 1. Proposed unified (32 × 16)-bit multiplier with AES support

(CSAs) with either (3:2) or (4:2) compressors. The result of each adder is in a
redundant form, split up into a carry-vector and a sum-vector. This redundant
representation allows for addition without carry-propagation and minimizes the
contribution of these summation stages to the overall circuit delay. The fourth
and last stage consists of a unified carry-propagate adder (CPA), which produces
the final result in non-redundant representation.

4.2 Concepts for Support of AES MixColumns Multiplication

Two observations are important to be able to integrate AES MixColumns sup-
port into the basic unified multiplier:

1. For AES MixColuns/InvMixColumns the coefficients of the constant multi-
plier B have a degree of ≤ 3. At least half of the PPGs will, therefore, have
both input multiplier bits at 0 and will produce a partial product of 0 in
polynomial mode.



VLSI Implementation of a FU to Accelerate ECC and AES 47

2. As binary polynomials have no carry propagation in addition, the carry-
vectors of the carry-save summation stages will always be 0 in polynomial
mode.

When two polynomials over F28 are multiplied with the unified multiplier in
polynomial mode, the result will be incorrect. The coefficients of the polynomial
over F28 will exceed the maximum degree of 7, i.e. they will be in non-reduced
form. The coefficient bits of degree > 7 are added to the bits of the next-higher
coefficient in the partial product generators and in the subsequent summation
stage. But in order to perform a reduction of the coefficients to non-redundant
form (degree ≤ 7), it is necessary to have access to the excessive bits of each
coefficient. In the following we will denote these excessive bits as reduction bits.
The reduction bits indicate whether the irreducible polynomial f(x) must be
added to the respective coefficient with a specific offset in order to reduce the
degree of the coefficient.

The reduction bits can be isolated in separate partial products. A modification
of the PPGs can be prevented by making use of the “idle” PPGs to process the
highest three bits of every coefficient of the multiplicand A. This is achieved
with the following modifications:

– The “normal” (i.e. not “idle”) PPGs are supplied with multiplicand A where
only the lowest 5 bits of each coefficients are present (A AND 0x1F1F1F1F).

– Multiplicand A for the “idle” PPGs contains only the highest 3 bits of every
coefficient (A AND 0xE0E0E0E0) and is shifted to the right by 4 bits.

– The multiplier B has the lower nibble (4 bits) of each byte replicated in the
respective higher nibble (e.g. 0x0C0D → 0xCCDD).

These modifications entail a different generation of partial products but still
result in the same multiplication result after the summation tree. This is because
processing of the multiplicand A is spread across all PPGs (which is done by
the masking of A). The “idle” PPGs are activated through replication of the
nibbles of the multiplier B. Moreover, the “idle” PPGs produce partial products
with a higher weight than intended, which is compensated by the right-shift
of the input multiplicand A for these PPGs. Figure 2 and 3 illustrate the partial
product generation for a multiplication of a polynomial over F28 of degree 1
(16-bit multiplicand A) with a polynomial of degree 0 (8-bit multiplier B). Note
that partial product 1 in Figure 2 is split into the partial products 1 and 3 in
Figure 3. The same occurs for partial product 2, which is split into the partial
products 2 and 4. The PPG-scheme in Figure 3 yields partial products which
directly contain the reduction bits.

To determine whether the reduction polynomial needs to be added to a coeffi-
cient of the multiplication result with a specific offset, it is necessary to combine
(add) reduction bits with the same weight from different partial products. In
order to minimize delay, these few additional XOR gates are placed in parallel
to the summation tree stages. The resulting reduction bits determine the value
of the so-called reduction vectors, which are injected via the carry-vectors of the
summation tree and which reduce the coefficients to non-redundant form. More



48 S. Tillich and J. Großschädl

0

0

0

PPG 1

PPG 2

PPG 4

PPG 3

A B

reduction bits

idle 

PPGs

Fig. 2. Multiplication of polynomials over F28 with a radix-4 multiplier for binary
polynomials

PPG 1

PPG 2

PPG 4

PPG 3

A B

reduction bits

0

0

0

0

0

0

0

0

Fig. 3. Multiplication of polynomials over F28 with the modified PPG-scheme for AES
support

specifically, if a reduction bit is set, then a portion of a carry-vector (with the
correct offset) is forced to the value of the reduction polynomial f(x) (0x11B),
otherwise it is left 0. Reduction vectors for different coefficients can be injected in
the same carry-vector, as long as they do not overlap and the carry-vector is long
enough. Thus, by making use of the “idle” PPGs and the carry-vectors of the
summation tree, the multiplier can be extended to support AES MixColumns
multiplication.

5 Implementation Details

The general concepts for integrating AES MixColumns support into the unified
multiplier of [6] are described in Section 4.2. Figure 1 shows our modified multi-
plier with all additional components. PPG Input Masking and Nibble Replication
make sure that the partial products are generated in a redundant fashion where
the reduction bits are subsequently accessible. Reduction Bit Addition adds up
reduction bits of coefficients of partial products with the same weight. Reduction
Vector Insertion conditionally injects reduction polynomials for the coefficients



VLSI Implementation of a FU to Accelerate ECC and AES 49

with different offsets, depending on the reduction bits. The result P will be a
polynomial over F28 of degree 4 with fully reduced coefficients. In the following
we briefly describe the implementation of the additional components.

PPG Input Masking. The AES MixColumns mode is controlled with the
signal ff mix. This signal selects the input multiplier A for the PPGs either as
unmodified or masked (and shifted) as described in Section 4.2.

Multiplier Nibble Replication. In our implementation the multiplier B is
set by the processor in dependance on the required operation (AES MixColumns
or InvMixColumns). Nibble replication is therefore performed outside of our
multiplier. If it is to be done within the multiplier, it just requires an additional
multiplexor for the multiplier B controlled by ff mix.

Reduction Bit Addition. Reduction bits of the same weight are XORed in
parallel to the summation tree stages. For the (32 × 16)-bit case, the resulting
reduction bits have contributions from one, two, or four partial products.

Reduction Vector Insertion. For each reduction polynomial, the ff mix and
the corresponding reduction bit are combined with a logical AND. The result
is used to conditionally inject the reduction polynomial over a logical OR with
the required bit-lines of a carry-vector. Reduction bits which have contributions
from more partial products are used in later stages of the summation tree than
reduction bits which depend on less partial products.

6 Experimental Results

We integrated our functional unit into the SPARC V8-compatible Leon2 core
[4] and prototyped the extended processor in an FPGA2. For performing AES
MixColumns and InvMixColumns, four custom instructions were defined: Two
of these instructions (mcmuls, imcmuls) can be used for the MixColumns and
InvMixColumns transformation only, while the other two (mcmacs, imcmacs)
include an addition of the transformation result to the accumulator. The latter
two instructions write their result only to the accumulator registers and not to
the general-purpose register file. They require two clock cycles to produce the
result3. If the subsequent instruction does not need the multiplication result or
access to the multiply-accumulate unit, then it can be processed in parallel to
the multiply instruction, resulting in one cycle per instruction. In addition, our
new custom instructions assemble the 32-bit multiplicand for AES multiplication
from the two source register operands of the instruction (the 16 higher bits of the
first register and the 16 lower bits of the second register), in order to facilitate
the AES ShiftRows/InvShiftRows transformation.
2 The HDL source code of the extended processor, denoted Leon2-CIS, is available for

download from the ISEC project page at http://www.iaik.tugraz.at/isec.
3 Although the multiply-accumulate unit takes three cycles for the calculation, subse-

quent instructions can access the result after two cycles without a pipeline stall due
to the implementation characteristics of the accumulator registers.

http://www.iaik.tugraz.at/isec


50 S. Tillich and J. Großschädl

6.1 Silicon Area and Critical Path

The impact of our modifications on the critical path of the multiplier is very
small. One additional multiplexor delay is required to select the input for the
PPGs. The reduction bits are added in parallel to the summation tree, which
should not extend the critical path. For injection of the reduction vectors, there
is one additional OR-delay for the 2nd, 3rd and 4th summation tree stage, i.e.
in the worst case three OR-delays altogether.

We synthesized the original unified multiplier from [6] (unimul32x16) and
our proposed unified multiplier with AES support (unimul mix32x16) using a
0.13 μm standard-cell library in order to estimate the overhead in silicon area
and the impact on the critical path delay. These results were compared with
the conventional (32× 16)-bit integer multiplier that is part of the Leon2 soft-
core (intmul32x16). We also made comparisons including the enclosing unified
multiply accumulate units (unimac32x16, unimac mix32x16) and the five-stage
processor pipeline, denoted as integer unit (IU). The results are summarized in
Table 1.

Table 1. Area and delay of the functional units and the extended Leon2 core

Minimal Delay Typical Delay
FU/Component

Area (GE) Delay (ns) Area (GE) Delay (ns)

intmul32x16 7,308 2.05 5,402 2.50
unimul32x16 9,660 2.15 7,413 2.50
unimul mix32x16 9,988 2.21 8,418 2.50

unimac32x16 14,728 2.53 12,037 3.00
unimac mix32x16 16,145 2.56 12,914 3.00

Leon2 IU (intmul32x16) 27,250 2.59 17,867 4.97
Leon2 IU (unimac32x16) 38,705 2.77 24,927 5.00
Leon2 IU (unimac mix32x16) 39,306 2.85 26,219 4.99

All results in Table 1 are given for the minimal and for a typical critical
path delay. The former give an estimate of the maximum frequency with which
the processor can be clocked, while the latter allow to assess the increase in
silicon area due to our proposed modifications. Taking a Leon2 processor with
a unified MAC unit for ECC (unimac32x16) as reference, our modifications for
AES support increase the critical path by about 5% and the silicon area by less
than 1.3 kGates. The overall size of the FU with support for ECC and AES
is approximately 12.9 kGates when synthesized for a delay of 3 ns. However, it
must be considered that the “original” (32 × 16)-bit integer multiplier of the
Leon2 core has an area of about 5.4 kGates. Therefore, the extensions for ECC
and AES increase the size of the multiplier by just 7.5 kGates and the overall
size of the Leon2 core by approximately 8.35 kGates.



VLSI Implementation of a FU to Accelerate ECC and AES 51

6.2 AES Performance

In order to estimate the achievable speedup with our proposed FU, we proto-
typed the extended Leon2 on an FPGA board. We evaluated AES encryption
and decryption functions with 128-bit keys (AES-128) both for precomputed key
schedule and on-the-fly key expansion. The number of cycles was determined
with an integrated cycle counter using the timing code of the well-known AES
software implementation of Brian Gladman [5]. Note that the AES decryption
function with on-the-fly key expansion is supplied with the last round-key. The
code size for each implementation is also listed, which encompasses all required
functions as well as any necessary constants (e.g. S-box lookup table).

Table 2. AES-128 encryption and decryption: Performance and code size

Key exp. Performance Code size
Implementation

Cycles Cycles Speedup Bytes Rel. change

Encryption, Precomputed Key Schedule
No extensions (pure SW) 739 1,637 1.00 2,168 0.0%
mcmuls (C) 498 1,011 1.62 1,240 −42.8%
sbox4s & mcmuls (ASM) 316 260 6.30 460 −78.8%

Decryption, Precomputed Key Schedule
No extensions (pure SW) 739 1,955 1.00 2,520 0.0%
mcmuls (C) 316 1,299 1.51 1,572 −37.6%
sbox4s & mcmuls (ASM) 465 259 7.55 520 −79.4%

Encryption, On-the-fly Key Expansion
No extensions (pure SW) 2,239 1.00 1,636 0.0%
mcmuls (C) 1,258 1.78 1,228 −21.3%
sbox4s & mcmuls (ASM) 296 7.56 308 −81.2%

Decryption, On-the-fly Key Expansion
No extensions (pure SW) 2,434 1.00 2,504 0.0%
mcmuls (C) 1,596 1.53 1,616 −35.5%
sbox4s & mcmuls (ASM) 305 7.98 316 −87.4%

Table 2 specifies the number of clock cycles per encryption/decryption and
the code size for implementations using precomputed key schedule as well as
on-the-fly key expansion. Our baseline implementation is a C function which
uses only native SPARC V8 instructions. The mcmuls implementation refers to
a function written in C where MixColumns or InvMixColumns is realized using
our proposed functional unit. The sbox4s & mcmuls implementation is written
in assembly and uses our multiplier as well as an additional custom instruction
for performing the S-box substitution. This instruction for the S-box requires
less than 2 kGates. It is described and performance-evaluated in [18] along with
other custom instructions dedicated to AES.

The C implementations can be sped up with the proposed custom instructions
by a factor of up to 1.78. However, our extensions are designed to deliver maximal
performance in combination with the custom instruction for S-box substitution



52 S. Tillich and J. Großschädl

described in [18]. By combining these extensions, a 128-bit AES encryption can
be done in less than 300 clock cycles, which corresponds to a speed-up factor
of between 6.3 (pre-computed key schedule) and 7.98 (on-the-fly key expansion)
compared to the baseline implementation. Moreover, the custom instructions for
AES reduce the code size by up to 87.4%.

The AES performance can be further improved by reducing the latency of the
multiply-accumulate unit. With a (32× 32)-bit multiplier and integration of the
accumulation into the summation tree (as proposed in [6]), an instruction for
MixColumns/InvMixColumns could be executed in a single cycle and could also
include the subsequent AddRoundKey transformation. With such an instruction
a complete AES round could be executed in only 12 clock cycles, and a complete
AES-128 encryption or decryption in about 160 cycles (including all loads and
stores of the data and key).

6.3 Comparison with Designs Using an AES Coprocessor

Hodjat et al. [9] and Schaumont et al. [16] attached an AES coprocessor to the
Leon2 core and analyzed the effects on performance and hardware cost. The
implementation reported by Hodjat et al. used a dedicated coprocessor interface
to connect the AES hardware with the Leon2 core. Schaumont et al. transferred
data to/from the coprocessor via memory-mapped I/O. Both systems were pro-
totyped on a Xilinx Virtex-II FPGA on which the “pure” Leon2 core consumes
approximately 4,856 LUTs, leaving some 5,400 LUTs for the implementation
of the AES coprocessor. Table 3 summarizes the execution time of a 128-bit
encryption and the additional hardware cost due to the AES coprocessor. For
comparison, the corresponding performance and area figures of the extensions
proposed in this paper are also specified.

Table 3. Performance and cost of AES coprocessor vs. instruction set extensions

Reference Implementation Performance HW cost
Hodjat [9] Coprocessor (COP interface) 704 cycles 4,900 LUTs

Schaumont [16] Coprocessor (mem. mapped) 1,494 cycles 3,474 LUTs
This work ISE for MixColumns 1,011/1,299 cycles 3,194 LUTs
This work ISE for MixColumns + S-box 260 cycles 3,695 LUTs

Hodjat et al’s AES coprocessor uses about 4,900 LUTs (i.e. requires more
resources than the Leon2 core) and is able to encrypt a 128-bit block of data in 11
clock cycles. However, loading the data and key into the coprocessor, performing
the AES encryption itself, and returning the result back to the software routine
takes 704 cycles altogether [9, page 492]. Schaumont et al’s coprocessor with
the memory-mapped interface requires less hardware and is slower than the
implementation of Hodjat et al. The performance of our AES extensions lies
between the two coprocessor systems. As mentioned in Section 6.2, the custom
instruction for S-box substitution from [18] would allow to reduce the execution



VLSI Implementation of a FU to Accelerate ECC and AES 53

time of 128-bit AES encryption to 260 cycles, which is significantly faster than
the coprocessor systems. The additional hardware cost of the FU is comparable
to that of the two co-processors. However, contrary to AES coprocessors, the
FU presented in this paper supports not only the AES, but also ECC over both
prime fields and binary extension fields.

7 Summary of Results and Conclusions

In this paper we introduced a functional unit (FU) for increasing the perfor-
mance of embedded processors when executing cryptographic algorithms. The
main component of the FU is a unified multiply-accumulate (MAC) capable to
perform integer and polynomial multiplication as well as reduction modulo an
irreducible polynomial of degree 8. Due to its rich functionality and high degree
of flexibility, the FU facilitates efficient implementation of a wide range of cryp-
tosystems, including ECC and AES. When integrated into the Leon2 SPARC
V8 processor, the FU allows to execute a 128-bit AES encryption with precom-
puted key schedule in about 1,000 clock cycles. Hardware support for the S-box
operation further reduces the execution time to 260 cycles, which is more than
six times faster than a conventional software implementation on the Leon2 pro-
cessor. The hardware cost of the AES extensions is roughly 1,300 gates and the
additional area for the support of ECC and AES amounts to just 8,352 gates
altogether. These results confirm that the functional unit presented in this paper
is a flexible and cost-effective alternative to a cryptographic co-processor.

References

1. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient
software implementation of AES on 32-bit platforms. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 159–171. Springer Verlag,
Heidelberg (2003)

2. Bertoni, G., Breveglieri, L., Farina, R., Regazzoni, F.: Speeding up AES by extend-
ing a 32-bit processor instruction set. In: Proceedings of the 17th IEEE Interna-
tional Conference on Application-Specific Systems, Architectures and Processors
(ASAP 2006), pp. 275–282. IEEE Computer Society Press, Los Alamitos (2006)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Springer Verlag, Heidelberg (2002)

4. Gaisler, J.: The LEON-2 Processor User’s Manual (Version 1.0.10) (2003) Available
for download at http://www.gaisler.com/doc/leon2-1.0.10.pdf

5. Gladman, B.: Implementations of AES (Rijndael) in C/C++ and assembler. Avail-
able for download at http://fp.gladman.plus.com/cryptography technology/
rijndael/index.htm.

6. Großschädl, J., Kamendje, G.-A.: Low-power design of a functional unit for arith-
metic in finite fields GF(p) and GF(2m). In: Chae, K.-J., Yung, M. (eds.) Informa-
tion Security Applications — WISA 2003. LNCS, vol. 2908, pp. 227–243. Springer
Verlag, Heidelberg (2003)

7. Großschädl, J., Tillich, S., Szekely, A., Wurm, M.: Cryptography instruction set
extensions to the SPARC V8 architecture. Preprint, submitted for publication

http://www.gaisler.com/doc/leon2-1.0.10.pdf
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm


54 S. Tillich and J. Großschädl

8. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer Verlag, Heidelberg (2004)

9. Hodjat, A., Verbauwhede, I.: Interfacing a high speed crypto accelerator to an em-
bedded CPU. In: Proceedings of the 38th Asilomar Conference on Signals, Systems,
and Computers, vol. 1, pp. 488–492. IEEE, New York (2004)

10. Koufopavlou, O., Selimis, G., Sklavos, N., Kitsos, P.: Cryptography: Circuits and
systems approach. In: Proceedings of the 5th IEEE Symposium on Signal Pro-
cessing and Information Technology (ISSPIT 2005), December 2005, pp. 918–923.
IEEE, New York (2005)

11. Lim, W.M., Benaissa, M.: Subword parallel GF(2m) ALU: An implementation for
a cryptographic processor. In: Proceedings of the 17th IEEE Workshop on Signal
Processing Systems (SIPS 2003), pp. 63–68. IEEE, New York (2003)

12. Nadehara, K., Ikekawa, M., Kuroda, I.: Extended instructions for the AES cryp-
tography and their efficient implementation. In: Proceedings of the 18th IEEE
Workshop on Signal Processing Systems (SIPS 2004), pp. 152–157. IEEE, New
York (2004)

13. National Institute of Standards and Technology. FIPS-197: Advanced Encryp-
tion Standard (November 2001) Available online at http://www.itl.nist.gov/
fipspubs/

14. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
Technical Report CSTR-02-003, Department of Computer Science, University of
Bristol (June 2002)

15. Savaş, E., Tenca, A.F., Koç, Ç.K.: A scalable and unified multiplier architecture
for finite fields GF (p) and GF (2m). In: Paar, C., Koç, Ç.K. (eds.) CHES 2000.
LNCS, vol. 1965, pp. 277–292. Springer Verlag, Heidelberg (2000)

16. Schaumont, P., Sakiyama, K., Hodjat, A., Verbauwhede, I.: Embedded software
integration for coarse-grain reconfigurable systems. In: Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), pp.
137–142. IEEE Computer Society Press, Los Alamitos (2004)

17. Tillich, S., Großschädl, J.: Accelerating AES using instruction set extensions for
elliptic curve cryptography. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A.,
Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) Computational Science and Its
Applications — ICCSA 2005. LNCS, vol. 3481, pp. 665–675. Springer, Heidelberg
(2005)

18. Tillich, S., Großschädl, J.: Instruction set extensions for efficient AES implemen-
tation on 32-bit processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 270–284. Springer, Heidelberg (2006)

19. Tillich, S., Großschädl, J., Szekely, A.: An instruction set extension for fast and
memory-efficient AES implementation. In: Dittmann, J., Katzenbeisser, S., Uhl,
A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 11–21. Springer, Heidelberg (2005)

20. Trusted Computing Group. TCG Specification Architecture Overview (Revision
1.2) (April 2004), Available for download at
https://www.trustedcomputinggroup.org/groups/TCG 1 0 Architecture
Overview.pdf

http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
https://www.trustedcomputinggroup.org/groups/TCG_1_0_Architecture_Overv iew.pdf
https://www.trustedcomputinggroup.org/groups/TCG_1_0_Architecture_Overv iew.pdf


Efficient Multiplication Using

Type 2 Optimal Normal Bases

Joachim von zur Gathen1, Amin Shokrollahi2, and Jamshid Shokrollahi3,�

1 B-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany
gathen@bit.uni-bonn.de

2 ALGO, Station 14, Batiment BC, EPFL, 1015 Lausanne, Switzerland
amin.shokrollahi@epfl.ch

3 B-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany
current address: System Security Group, Ruhr-Universität Bochum, D-44780

Bochum, Germany
jamshid@crypto.rub.de

Abstract. In this paper we propose a new structure for multiplication
using optimal normal bases of type 2. The multiplier uses an efficient
linear transformation to convert the normal basis representations of ele-
ments of Fqn to suitable polynomials of degree at most n over Fq. These
polynomials are multiplied using any method which is suitable for the
implementation platform, then the product is converted back to the nor-
mal basis using the inverse of the above transformation. The efficiency of
the transformation arises from a special factorization of its matrix into
sparse matrices. This factorization — which resembles the FFT factoriza-
tion of the DFT matrix — allows to compute the transformation and its
inverse using O(n log n) operations in Fq, rather than O(n2) operations
needed for a general change of basis. Using this technique we can reduce
the asymptotic cost of multiplication in optimal normal bases of type 2
from 2M(n) + O(n) reported by Gao et al. (2000) to M(n) + O(n log n)
operations in Fq, where M(n) is the number of Fq-operations to multiply
two polynomials of degree n − 1 over Fq. We show that this cost is also
smaller than other proposed multipliers for n > 160, values which are
used in elliptic curve cryptography.

Keywords: Finite field arithmetic, optimal normal bases, asymptoti-
cally fast algorithms.

1 Introduction

The normal basis representation of finite fields enables easy computation of the
qth power of elements. Assuming q to be a prime power, a basis of the form
(α, αq , · · · , αqn−1

) for Fqn , as a vector space over Fq, is called a normal basis
generated by the normal element α ∈ Fqn . In this basis the qth power of an

� Partially funded by the German Research Foundation (DFG) under project RU
477/8.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 55–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



56 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

element can be computed by means of a single cyclic shift. This property makes
such bases attractive for parallel exponentiation in finite fields (see Nöcker 2001).

Naive multiplication in these bases is more expensive than in polynomial
bases, especially when using linear algebra (cf. Mullin et al. (1989)). Hence sub-
stantial effort has gone into reducing the multiplication cost. In this paper a new
method for multiplication in normal bases of type 2 is suggested. It uses an area
efficient circuit to convert the normal basis representation to polynomials and
vice versa. Any method can be used to multiply the resulting polynomials. Al-
though this structure has small area, its propagation delay is longer than other
methods and, when used in cryptography, is mostly suitable for applications
where the area is limited, like in RFIDs.

One popular normal basis multiplier is the Massey-Omura multiplier pre-
sented by Omura & Massey. The space and time costs of this multiplier increase
with the number of nonzero coefficients in the matrix representation of the en-
domorphism x → αx over Fqn , where α generates the normal basis. Mullin et
al. (1989) show that this number is at least 2n − 1 which can be achieved for
optimal normal bases. Gao & Lenstra (1992) specify exactly the finite fields for
which optimal normal bases exist. They are related to Gauss periods, and can
be grouped into optimal normal bases of type 1 and 2.

For security reasons only prime extension degrees are used in cryptography,
whereas the extension degrees of the finite fields containing an optimal normal
basis of type 1 are always composite numbers. Cryptography standards often
suggest finite fields for which the type of normal bases are small (see for ex-
ample the Digital Signature Standard (2000)) to enable designers to deploy nor-
mal bases. Applications in cryptography have stimulated research about efficient
multiplication using optimal normal bases of type 2. The best space complexity
results for the type 2 multipliers are n2 and 3n(n − 1)/2 gates of types AND
and XOR, respectively reported by Sunar & Koç (2001) and Reyhani-Masoleh
& Hasan (2002). Their suggested circuits are obtained by suitably modifying
the Massey-Omura multiplier. A classical polynomial basis multiplier, however,
requires only n2 and (n − 1)2 gates of types AND and XOR respectively for the
polynomial multiplication, followed by a modular reduction. The latter is done
using a small circuit of size of (r − 1)n, where r is the number of nonzero co-
efficients in the polynomial which is used to create the polynomial basis. It is
conjectured by von zur Gathen & Nöcker (2004) that there are usually irre-
ducible trinomials or pentanomials of degree n. The above costs and the fact
that there are asymptotically fast methods for polynomial arithmetic suggest
the use of polynomial multipliers for normal bases to make good use of both
representations. The proposed multiplier in this paper works for normal bases
but its space complexity is similar to that of polynomial multipliers. Using clas-
sical polynomial multiplication methods, it requires 2n2 + 16n log2 n gates in
F2n . With the Karatsuba algorithm, we can decrease the space asymptotically
even further down to O(nlog2 3). The usefulness of this approach in hardware
has first been demonstrated in Grabbe et al. (2003). The proposed structure can
be employed to compute the Tate-pairing in characteristic three, for example.



Efficient Multiplication Using Type 2 Optimal Normal Bases 57

Applications of optimal normal bases of type 2 for pairing-based cryptography
have been proposed by Granger et al. (2005).

The connection between polynomial and normal bases, together with its ap-
plication in achieving high performance multiplication in normal bases, has been
investigated by Gao et al. (1995, 2000). The present work can be viewed as a
conceptual continuation of the approach in those papers. They describe how
multiplication in normal basis representation by Gauss periods for Fqn can be
reduced to multiplication of two 2n-coefficient polynomials, which because of the
existing symmetries can be done by two multiplications of n-coefficient polyno-
mials: here any method, including asymptotically fast ones, can be deployed.

The multiplier of this work is based on a similar approach. For optimal normal
bases of type 2 we present an efficient transformation which changes the repre-
sentations from the normal basis to suitable polynomials. These polynomials are
multiplied using any method, such as the classical or the Karatsuba multiplier.
Using the inverse transformation circuit and an additional small circuit the result
is converted back into the normal basis representation. The heart of this method
is a factorization of the transformation matrix between the two representations
into a small product of sparse matrices. The circuit requires roughly O(n log n)
operations in Fq and resembles the circuit used for computing the Fast Fourier
Transformation (FFT). The analogy to the FFT circuit goes even further: as
with the FFT, the inverse of the transformation has a very similar circuit. It
should be noted that a general basis conversion requires O(n2) operations, as
also reported by Kaliski & Liskov (1999). Recently Fan & Hasan (2006) found
a new multiplier for normal bases with asymptotically low cost of O(nlog2 3),
which uses fast multiplication methods by Toeplitz matrices. One advantage of
our multiplier is the ability of working with any polynomial multiplication. Hence
using the Cantor multiplier, we can achieve a cost of O(n(log n)2(log logn)3).

This paper begins with a review of Gauss periods and normal bases of type 2.
Then the structure of the multiplier is introduced and the costs of each part
of the multiplier are computed. The last section compares the results with the
literature.

In this Extended Abstract most of the proofs and also some possible im-
provements for fields of characteristic 2 are omitted for lack of space. The only
exception is Lemma 1 which is a central part of this paper. But we have tried
to intuitively describe why the theorems are correct. The proofs can be found in
the full paper, or the work of Shokrollahi (2006).

2 Permuted Normal Basis

It is well known (see Wassermann (1990), Gao et al. (2000), Sunar & Koç (2001))
that a type 2 optimal normal basis for Fqn over Fq is of the form

N = (β + β−1, βq + β−q, · · · , βqn−1
+ β−qn−1

), (1)

where β is a 2n+ 1st primitive root of unity in Fq2n , and that the basis

N ′ = (β + β−1, β2 + β−2, · · · , βn + β−n),



58 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

which we call the permuted normal basis, is a permutation of N . Hence the
normal basis representation of an element a =

∑n−1
k=0 a

(N )
k (βqk

+ β−qk

) ∈ Fqn

can be written as

a =
n∑

l=1

a
(N ′)
l (βl + β−l), (2)

where (a(N ′)
l )1≤l≤n is a permutation of (a(N )

k )0≤k<n, called the permuted normal
representation of a. The a(N )

k and a(N ′)
l are elements of Fq.

3 Multiplier Structure

The structure of the multiplier is described in Figure 1. To multiply two elements
a, b ∈ Fqn given in the basis (1) we first convert their representations to the
permuted form as

a =
n∑

i=1

a
(N ′)
i (βi + β−i), and b =

n∑

i=1

b
(N ′)
i (βi + β−i).

By inserting a zero at the beginning of the representation vectors and applying
a linear mapping πn+1, which we define in Section 4, from Fn+1

q to Fq[x]≤n,
the vectors of these representations are converted to polynomials φa and φb of
degree at most n, such that their values at β + β−1 are a and b, respectively.
Then φa and φb are multiplied using an appropriate method with respect to the
polynomial degrees and implementation platform. Obviously, the value of the
resulting polynomial φc at β+β−1 is the product c = a ·b. The degree of φc is at
most 2n, and the evaluation is a linear combination of (β+β−1)i for 0 ≤ i ≤ 2n.
Using another linear mapping ν2n+1 from Fq[x]≤2n to F2n+1

q , namely the inverse
of π2n+1, φc is converted to a linear combination of the vectors 1 and βi +β−i for
1 ≤ i ≤ 2n. This is then converted to the permuted normal basis using another
linear mapping τn.

The linear mapping ν2n+1 takes a polynomial in Fq[x]≤2n, evaluates it at
β + β−1, and represents the result as a linear combination of 1 and βi + β−i,
for 1 ≤ i ≤ 2n. Since the above vectors are linearly dependent there are several
choices for ν2n+1. One way to compute the resulting linear combination is to
expand (β + β−1)j , for 1 ≤ j ≤ 2n, as a linear combination of βi + β−i, for 1 ≤
i ≤ 2n. The coefficients of these expansions are closely connected to the binomial
coefficients, that is, the entries of the Pascal triangle. The matrix representation
of ν2n+1 has a structure similar to the Pascal triangle reduced modulo p, the
characteristic of Fq. This infinite triangle has a fractal structure, which has
attracted a lot of attention and has been given various names in the literature,
among them “Sierpinski triangle” or “Sierpinski gasket” (see Wikipedia) for
p = 2. The central result of this paper is in Section 5, where we find a special
factorization for the matrix representation of ν2n+1 in an appropriate basis which
allows the mapping to be computed in O(n logn) operations. This cost is also
sufficient for πn+1.



Efficient Multiplication Using Type 2 Optimal Normal Bases 59

(a
(N)
i )1≤i≤n (b

(N)
i )1≤i≤n

(a
(N′)
i )1≤i≤n (b

(N′)
i )1≤i≤n

(ã
(N′)
i )0≤i≤n (b̃

(N′)
i )0≤i≤n

φa φb(β + β−1) = bφa(β + β−1) = a φb

φc = φa · φb

polynomial multiplication

(c̃i)0≤i≤2n
c = a · b = c̃0 +

∑ 2n
i=1 c̃i(β

i + β−i)

extended permuted representation

(c
(N′)
i )1≤i≤n

(c
(N)
i )1≤i≤n

permutation permutation

zero insertion zero insertion

linear map πn+1linear map πn+1 linear map πn+1

linear map ν2n+1

linear map τn

permutation

Fig. 1. Overview of our multiplier structure to multiply two elements a, b ∈ Fqn in the

representation (∗(N )
i )1≤i≤n with respect to the normal basis N

4 Polynomials from Normal Bases

In this paper we always represent the characteristic of Fq by p.
The most important parts of our multiplier are the converters between poly-

nomial and permuted normal representations. Since the elements (β+β−1)i, for
0 ≤ i ≤ n, and also 1 and βi + β−i, for 1 ≤ i ≤ 2n, are linearly dependent, there
are different possibilities for the maps πn+1 and ν2n+1 from Section 3. We define
our selection via matrices Pn+1 ∈ F

(n+1)×(n+1)
p and L2n+1 ∈ F

(2n+1)×(2n+1)
p .

These matrices have special factorizations which allow to multiply them by vec-
tors of appropriate length using O(n log n) operations in Fq.

To construct the polynomial representation for a and b, their permuted repre-
sentations are preceded by zero and Pn+1 is multiplied by the resulting vectors.
The structure of the inverse of Pn+1, which we denote by Ln+1, is easier to
describe. Hence we define a candidate for Ln+1. This matrix can be used to
convert from polynomial to the extended permuted normal representation, i.e.,
it satisfies

(1, β + β−1, β2 + β−2, · · · , βn + β−n)Ln+1 =
(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n).

Furthermore Ln+1 is invertible. Then we study its structure and exhibit a factor-
ization into sparse factors in Section 5, which is also used to find a factorization
for Pn.

Definition 1. For integers i, j let li,j ∈ Fp be such that (x+x−1)j =
∑

i∈Z
li,jx

i

in Fp[x], and Ln = (li,j)0≤i,j<n ∈ Fn×n
p .



60 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

Obviously li,j = 0 for |i| > |j|.

Example 1. Let q = 9, i.e., p = 3. For 0 ≤ j < 9, the powers (x + x−1)j and
hence the matrix L9 are:

j (x + x−1)j

0 1

1 x + x−1

2 x2 + 2 + x−2

3 x3 + x−3

4 x4 + x2 + x−2 + x−4

5 x5 + 2x3 + x + x−1 + 2x−3 + x−5

6 x6 + 2 + x−6

7 x7 + x5 + 2x + 2x−1 + x−5 + x−7

8 x8 + 2x6 + x4 + 2x2 + 1 + 2x−2 + x−4 + 2x−6 + x−8

L9 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 2 0 0 0 2 0 1
0 1 0 0 0 1 0 2 0
0 0 1 0 1 0 0 0 2
0 0 0 1 0 2 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Theorem 1. The matrix Ln of Definition 1 satisfies

(1, β + β−1, β2 + β−2, · · · , βn−1 + β−n+1)Ln =
(1, β + β−1, (β + β−1)2, · · · , (β + β−1)n−1), (3)

is upper triangular with 1 on the diagonal, hence nonsingular, and its entries
satisfy the relation:

(Ln)i,j =
{

0 if i > j or j − i is odd, and(
j

(j−i)/2

)
otherwise.

Definition 2. We denote the inverse of Ln by Pn = (pi,j)0≤i,j<n ∈ Fn×n
p .

5 Factorizations of the Conversion Matrices

The cost of computing the isomorphisms πn and νn of Section 3 depends on the
structure of the corresponding matrices. As in the last section, it is easier to
initially study the structure of Ln and use this information to analyze Pn. The
former study will be simplified by assuming n to be a power of p, say n = pr, and
extending the results to general n later. This simplification enables a recursive
representation of Lpr which is exhibited in Lemma 1. This recursive structure
is then used in Theorem 3 to find a factorization of Lpr into sparse matrices.
To describe the recursive structure of Lpr we define three matrices of reflection,
shifting, and factorization denoted by Θn, Ψn, and Br, respectively.

Definition 3. The entries of the reflection and shifting matrices Θn =
(θi,j)0≤i,j<n ∈ Fn×n

p and Ψn = (ψi,j)0≤i,j<n ∈ Fn×n
p , respectively, are defined

by the relations:

θi,j =
{

1 if i+ j = n,
0 otherwise, ψi,j =

{
1 if j − i = 1,
0 otherwise.



Efficient Multiplication Using Type 2 Optimal Normal Bases 61

a b

Fig. 2. (a) The matrix Θ5 and (b) the matrix Ψ5

As an example,Θ5 and Ψ5, are shown in Figure 2, where the coefficients equal to 0
and 1 are represented by empty and filled boxes, respectively. Left multiplication
by Θn reflects a matrix horizontally and shifts the result by one row downwards.
Right multiplication by Ψn shifts a matrix by one position upwards.

Definition 4. The factorization matrix Br is:

Br = Lp ⊗ Ipr−1 + (ΨpLp)⊗Θpr−1 ∈ Fpr×pr

p ,

where ⊗ is the Kronecker or tensor product operator.

Using Definitions 1 and 4 it is easy to prove the following theorem which gives
more information about the structure of Br and can be helpful for constructing
this matrix. The matrices B3 and L27 are shown in Figure 3.

Theorem 2. The matrix Br can be split into p× p blocks B(i1,j1) ∈ Fpr−1×pr−1

p

such that Br = (B(i1,j1))0≤i1,j1<p and

B(i1,j1) =

⎧
⎪⎨

⎪⎩

the zero block if i1 > j1,(
j1

(j1−i1)/2

)
Ipr−1 if i1 ≤ j1 and j1 − i1 is even, and

(
j1

(j1−i1−1)/2

)
Θpr−1 otherwise.

Lemma 1. For r ≥ 1, we have

Lpr = Br(Ip ⊗ Lpr−1). (4)

Proof. For 0 ≤ i, j < pr we compute (Lpr)i,j by writing

i = i1p
r−1 + i0, j = j1p

r−1 + j0, (5)

with 0 ≤ i1, j1 < p and 0 ≤ i0, j0 < pr−1. Since p · x = 0, we have

(x+ x−1)j = (x + x−1)j1pr−1
(x + x−1)j0 = (xpr−1

+ x−pr−1
)j1(x+ x−1)j0 =

(
∑

k1∈Z

lk1,j1x
k1pr−1

)(
∑

k0∈Z

lk0,j0x
k0) =

∑

k0,k1∈Z

lk1,j1 lk0,j0x
k1pr−1+k0 (6)



62 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

0 1 2

a b

Fig. 3. (a) the matrix B3 and (b) the matrix L27 for p = 3

where lk,j is as Definition 1 and is zero for |k| > |j|. For the coefficient of
xi = xi1pr−1+i0 , which is (Lpr)i,j , we have:

k1p
r−1 + k0 = i1p

r−1 + i0 =⇒ k0 ≡ i0 mod pr−1 =⇒
k0 = i0 + tpr−1 and k1 = i1 − t for some t ∈ Z.

(7)

In the above equation except for t = −1, 0 we have |i0 + tpr−1| ≥ |pr−1| > |j0|
which means li0+tpr−1,j0 = 0, and hence

(Lpr )i,j = li1,j1 li0,j0 + li1+1,j1 li0−pr−1,j0 , (8)

in which li1,j1 = (Lp)i1,j1 , li0,j0 = (Lpr−1)i0,j0 , and li1+1,j1 = (ΨpLp)i1,j1 accord-
ing to the definition of Ψp. The value of li0−pr−1,j0 can be replaced by lpr−1−i0,j0

because of the symmetry of the binomial coefficients. The latter can again be
replaced by (Θpr−1Lpr−1)i0,j0 , since for 0 < i0 < pr−1 the only nonzero entry in
the i0th row of Θpr−1 is in the (pr−1− i0)th column and hence (Θpr−1Lpr−1)i0,j0

is the entry in the (pr−1 − i0)th row and j0th column of Lpr−1 . For i0 = 0 the
entry (Θpr−1Lpr−1)i0,j0 is zero since there is no nonzero entry in the i0th row of
Θpr−1 , and lpr−1,j0 is also zero since j0 < pr−1. Substituting all of these into (8)
we have

(Lpr)i,j = (Lp)i1,j1(Lpr−1)i0,j0 + (ΨpLp)i1,j1(Θpr−1Lpr−1)i0,j0 (9)

which together with (5) shows that:

Lpr = Lp ⊗ Lpr−1 + (ΨpLp)⊗ (Θpr−1Lpr−1). (10)

It is straightforward, using Definition 4, to show that (10) is equivalent to (4).
��

This recursive relation resembles that for the DFT matrix in Chapter 1 of van
Loan (1992) and enables us to find a matrix factorization for Lpr in Theorem 3.
Using this factorization the map of a vector under the isomorphism νn can be
computed using O(n log n) operations as will be shown later in Section 6.



Efficient Multiplication Using Type 2 Optimal Normal Bases 63

Theorem 3. For r ≥ 1, we have

Lpr = (I1 ⊗Br)(Ip ⊗Br−1) · · · (Ipr−2 ⊗B2)(Ipr−1 ⊗B1). (11)

In order to multiply Lpr by a vector, we successively multiply the matrices in
the factorization (11) by that vector. In the next section we count the number
of operations required for the computations of the mappings πn and νn

6 Cost of Computing νn and πn

Multiplication by Lpr consists of several multiplications by Bk for different values
of k. Hence it is better to start the study by counting the required operations
for multiplying Bk by a vector in Fpk

q . The number of nonzero entries in the
matrices Lp, ψpLp, Ipk−1 , and Θpk−1 are dominated by p2/4, p2/4, pk−1, and
pk−1, respectively. Hence using Definition 4, we expect the number of operations
to multiply Bk by a vector in Fpk

q be a polynomial in p, dominated by pk+1/2.
A more accurate expression for this cost is given in Lemma 2.

Definition 5. We define μadd(k) and μmult(k) to be the number of additions
and multiplications, respectively, in Fq to multiply Bk by a vector in Fpk

q . We
define further δ by the relation

δ =
{

1 if p = 2,
0 otherwise.

Lemma 2. For k ≥ 1, we have

μadd(k) ≤ (p− 1)(2pk − p− 1)/4− δ/4,

μmult(k) ≤ (1− δ) · μadd(k).

For this estimate we use information about the structural zeros inBk−1 according
to Theorem 2, but ignore the fact that some binomial coefficients might vanish
modulo p. As an example since B1, for p = 2, is the identity matrix both μadd(1)
and μmult(1) are zero.

Using Lemma 2 and Theorem 3 we are now in the position to estimate the
cost of multiplication by Lpr .

Lemma 3. Multiplying Lpr by a vector in Fpr

q for r ≥ 1 requires at most η(r)
additions, where

η(r) = r(p − 1)pr/2− (p+ 1)(pr − 1)/4− δ(2r − 1)/4.

The number of multiplications is not larger than the number of additions.

The following theorem is an application of Lemma 3, using r = �logp(n+ 1)�.
Theorem 4. Multiplication of Ln by a vector in Fn

q can be done using O(n log n)
operations in Fq.



64 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

(a)

·
(b)

(c)

· ·

(d)

Fig. 4. (a) The matrices P6 (black) and P8 (gray), (b) their factorizations, (c) the
matrices L11 (black) and L16 (gray), and (d) their factorizations for p = 2

We observe that each Br is nonsingular since it is upper triangular and all of the
entries on the main diagonal are 1. Using (11), the matrix Ppr can be factored as:

Ppr = L−1
pr = (Ipr−1 ⊗B−1

1 )(Ipr−2 ⊗B−1
2 ) · · · (Ip ⊗B−1

r−1)(I1 ⊗B−1
r ). (12)

Studying the structure of B−1
r in terms of Θpr−1 and Ipr−1 reveals that B−1

r

does not have more nonzero entries than Br. We omit the complete proof here
for sake of brevity and refer the reader to the full paper or Section 4.6 of Shokrol-
lahi (2006).

Theorem 5. Multiplication of Pn from Definition 2 by a vector in Fn
q can be

done using O(n logn) operations in Fq.

The matrices L11 and P6 when p = 2 and their factorizations are shown in
Figure 4. We conclude this section with the following theorem. Although its
result is not concerned with normal basis multiplication directly, it emphasizes
the most important property of our multiplier. Namely a specific change of basis
in Fqn which can be done using O(n logn) instead of O(n2) operations, which is
the cost of general basis conversion in Fqn .

Theorem 6. Let N be a type 2 normal basis of Fqn over Fq generated by the
normal element β + β−1 and

P = (1, β + β−1, · · · , (β + β−1)n−1)

be the polynomial basis generated by the minimal polynomial of β + β−1. Then
the change of representation between the two bases N and P can be done using
O(n log n) operations in Fq.

7 Other Costs

There are two other operations in our multiplier, namely polynomial multiplica-
tion and conversion from the extended permuted representation to the normal
basis representation.



Efficient Multiplication Using Type 2 Optimal Normal Bases 65

The polynomial multiplication method can be selected arbitrarily among all
available methods depending on the polynomial lengths and the implementa-
tion environments. Another cost is the number of bit operations to convert from
extended permuted to the permuted representation. By multiplying the polyno-
mials of length n + 1, the product which is of length 2n + 1 is converted to a
linear combination of βi + β−i for 0 ≤ i ≤ 2n. These values should be converted
to the permuted representation, i.e., βi + β−i for 1 ≤ i ≤ n. This conversion is
done using the fact that β is a 2n + 1st root of unity. The cost for the case of
odd prime numbers is given in the next theorem.

Theorem 7. Let q be odd. Conversion from the extended permuted representa-
tion of the product in Figure 1 into the permuted basis can be done using at most
2n additions and n scalar multiplications in Fq.

When p = 2, the constant term vanishes because of Lucas’ theorem, and the
above task requires only n additions. Using the material presented herein we
can summarize the costs of our multiplier in the following theorem. Since we
can use any suitable polynomial multiplier, the cost depends on the polynomial
multiplication method used.

Theorem 8. Let Fqn be a finite field of characteristic p, which contains an
optimal normal basis of type 2 over Fq. Multiplication in this normal basis can
be done using at most

n+ 2(1− δ)n+ 2η(r1) + η(r2) + M(n+ 1)

operations in Fq, where δ is defined in Definition 5, η in Lemma 3, M(n)
is the number of Fq-operations to multiply two polynomials of degree n − 1,
r1 = �logp(n + 1)�, and r2 = �logp(2n + 1)�. For sufficiently large n the above
expression is at most

M(n+ 1) + 3n+ 2(2n+ 1)p2 logp(2n+ 1).

8 Comparison

Our multiplier is especially efficient when the extension degree n is much larger
than the size of the ground field q. One practical application of this kind is cryp-
tography in fields of characteristic 2. In this section we compare this multiplier
with some other structures from the literature for this task. The field extensions
which are discussed here are prime numbers n such that F2n contains an optimal
normal basis of type 2.

The first structures which we study here are the circuits of Sunar & Koç (2001)
and Reyhani-Masoleh & Hasan (2002). Both of these circuits require n(5n−1)/2
gates and we group them together as classical. The second circuit is from Gao
et al. (2000). The idea behind this multiplier is to consider the representation

a1(β + β−1) + · · ·+ an(βn + β−n)



66 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

as the sum of two polynomials

a1β + · · ·+ anβ
n and anβ

−n + · · ·+ a1β
−1.

To multiply two elements four polynomials of degree n should be multiplied
together. However, because of the symmetry only two multiplications are neces-
sary which also yield the other two products by mirroring the coefficients. The
cost of a multiplication using this circuit is 2M(n) + 2n, where M(n) is the cost
of multiplying two polynomials of length n. We may use for M(n) the cost of
the multiplier by von zur Gathen & Shokrollahi (2005) which is not larger than
�7.6nlog2 3� in our range.

To have a rough measure of hardware cost, we compare the circuits with
respect to both area and area-time (AT). By time we mean the depth of the
circuit implementation of a parallel multiplier in terms of the number of AND and
XOR gates. The propagation delay of the classical multiplier is 1+ �log2 n� gates.
The propagation delay of the multiplier of this chapter consists of two parts: the
first one belongs to the conversion circuits which is 2 + 2�log2 n� and the other
part corresponds to the polynomial multiplier. We compute the propagation
delay of each polynomial multiplier for that special case. The propagation delay
of the multiplier of Gao et al. (2000) is two plus the delay of each polynomial
multiplier which must again be calculated for each special case.

The area and AT parameters of these three circuits are compared with each
other and the results are shown in Figure 5. Please note that the costs of our
designs are exact values from Theorem 8. In these diagrams polynomial multipli-
cation is done using the methods of von zur Gathen and Shokrollahi (2005). As
it can be seen the area of the proposed multiplier is always better than the other
two structures. But the AT parameter is larger for small finite fields. This shows
that, as we have mentioned, this method is appropriate for applications where
only small area is available, or where the finite fields are large. Economical appli-
cations where small FPGAs should be used or RFID technology, are situations of

The classical multiplier
The multiplier of Gao et al. (2000)

The proposed multiplier

0 1000 2000 3000 4000 5000

0

5

10

15

20

n

A
re

a
×

1
0
6

(a) 0 1000 2000 3000 4000 5000

0

10

20

30

40

50

n

A
T

×
1
0
7

(b)

Fig. 5. Comparing the (a) area (as the number of two-input gates) and (b) the AT
parameter (as the product of the number of two-input gates and the delay of a single
gate) of three multipliers for binary finite fields F2n such that n is a prime smaller than
5000 and F2n contains an optimal normal basis of type 2



Efficient Multiplication Using Type 2 Optimal Normal Bases 67

this sort. The AT parameter of the proposed multiplier is O(n log3 n(log logn)3),
whereas that of the classical multiplier is O(n2 logn).

Another method which should be compared to ours is the method of Fan &
Hasan (2006). This work has been introduced to us by one of the referees and
we did not have enough time for an exact comparison. This method requires
roughly 13n1.6 gates, whereas the Karatsuba method for polynomials of length
n needs 9n1.6 gates. Hence we approximate the number of operations for this
method to be 13/9M(n) for the Karatsuba method. The delay of this method
equals the delay of the Karatsuba method. We guess the number of operations
for this method to be larger than ours for the given bound, but the area-time
parameter must be better. We again emphasize that their methods is comparable
to the Karatsuba method, whereas ours can use any asymptotically fast method
like that of Cantor with a cost of O(n log3 n(log logn)2).

9 Conclusion

This work presents a new algorithm for multiplication in finite fields using opti-
mal normal bases of type 2 which reduces the asymptotic number of operations
from 2M(n) + O(n) reported by Gao et al. (2000) to M(n) + O(n log n). The
efficiency of this multiplier arises from a fast transformation between normal
bases and suitable polynomial representation. This transformation can be done
by O(n log n) operations instead of generic O(n2) operations for the general case.
This algorithm is especially attractive for hardware implementations where area
resources are limited as also shown in comparisons with other methods from the
literature.

Acknowledgement

We thank anonymous referees for their helpful suggestions and also for pointing
to the work of Fan & Hasan (2006).

References

1. U.S. Department of Commerce / National Institute of Standards and Technol-
ogy: Digital Signature Standard (DSS) Federal Information Processings Standards
Publication 186-2 (2000)

2. Fan, H., Hasan, M.A.: Subquadratic multiplication using optimal normal bases.
Technical Report cacr2006-26, University of Waterloo, Waterloo (2006)

3. Gao, S., von zur Gathen, J., Panario, D., Shoup, V.: Algorithms for exponentiation
in finite fields. Journal of Symbolic Computation 29, 879–889 (2000)

4. Gao von, S., von zur Gathen, J., Panario, D.: Gauss periods and fast exponentiation
in finite fields. In: Baeza-Yates, R.A., Poblete, P.V., Goles, E. (eds.) LATIN 1995.
LNCS, vol. 911, pp. 311–322. Springer, Heidelberg (1995)

5. Gao, S., Lenstra Jr., H.W.: Optimal normal bases. Designs, Codes, and Cryptog-
raphy 2, 315–323 (1992)



68 J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi

6. von zur Gathen, J., Nöcker, M.: Polynomial and normal bases for finite fields.
Journal of Cryptology 18, 313–335 (2005)

7. von zur Gathen, J., Shokrollahi, J.: Efficient FPGA-based Karatsuba multipliers for
polynomials over F2. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 359–369. Springer, Heidelberg (2006)

8. Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: FPGA
designs of parallel high performance GF (2233) multipliers. In: Proc. of the IEEE
International Symposium on Circuits and Systems (ISCAS-03), Bangkok, Thai-
land, vol. II, pp. 268–271 (2003)

9. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptogaphy in characteristic three. IEEE Transactions on Com-
puters 54, 852–860 (2005)

10. Kaliski, B.S., Liskov, M.: Efficient Finite Field Basis Conversion Involving Dual
Bases. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 135–143.
Springer, Heidelberg (1999)

11. van Loan, C.: Computational Frameworks for the Fast Fourier Transform. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

12. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal
bases in GF(pn). Discrete Applied Mathematics 22, 149–161 (1989)

13. Nöcker, M.: Data structures for parallel exponentiation in finite fields. Doktorar-
beit, Universität Paderborn, Germany (2001)

14. Omura, J.K., Massey, J.L.: Computational method and apparatus for finite field
arithmetic. United States Patent vol. 4, pp. 587,627 (1986) (Date of Patent: May
6, 1986)

15. Reyhani-Masoleh, A., Hasan, M.A.: A new construction of Massey-Omura parallel
multiplier over GF (2m). IEEE Transactions on Computers 51, 511–520 (2002)

16. Shokrollahi, J.: Efficient Implementation of Elliptic Curve Cryptography on FP-
GAs. PhD thesis, Bonn University, Bonn (2006) http://hss.ulb.uni-bonn.de/
diss online/math nat fak/2007/shokrollahi jamshid/index.htm.

17. Sunar, B., Koç, Ç.K.: An efficient optimal normal basis type II multiplier. IEEE
Transactions on Computers 50, 83–87 (2001)

18. Wassermann, A.: Konstruktion von Normalbasen. Bayreuther Math. Schriften 31,
155–164 (1990)

19. Wikipedia: Sierpinski triangle. (2006), Webpage
http://en.wikipedia.org/wiki/Sierpinski triangle

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/shokrollahi_jamshid/index.htm.
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/shokrollahi_jamshid/index.htm.
http://en.wikipedia.org/wiki/Sierpinski_triangle


Effects of Optimizations for Software

Implementations of Small Binary Field
Arithmetic

Roberto Avanzi1 and Nicolas Thériault2

1 Fakultät für Mathematik, Ruhr-Universität Bochum and
the Horst Görtz Institut für IT-Sicherheit, Germany

roberto.avanzi@rub.de
2 Instituto de Matemática y F́ısica, Universidad de Talca, Chile

ntheriau@inst-mat.utalca.cl

Abstract. We describe an implementation of binary field arithmetic
written in the C programming language. Even though the implementa-
tion targets 32-bit CPUs, the results can be applied also to CPUs with
different granularity.

We begin with separate routines for each operand size in words to
minimize performance penalties that have a bigger relative impact for
shorter operands – such as those used to implement modern curve based
cryptography. We then proceed to use techniques specific to operand size
in bits for several field sizes.

This results in an implementation of field arithmetic where the curve
representing field multiplication performance closely resembles the the-
oretical quadratic bit-complexity that can be expected for small inputs.

This has important practical consequences: For instance, it will allow
us to compare the performance of the arithmetic on curves of different
genera and defined over fields of different sizes without worrying about
penalties introduced by field arithmetic and concentrating on the curve
arithmetic itself. Moreover, the cost of field inversion is very low, making
the use of affine coordinates in curve arithmetic more interesting. These
applications will be mentioned.

Keywords. Binary fields, efficient implementation, curve-based cryp-
tography.

1 Introduction

The performance of binary field arithmetic is crucial in several contexts. In many
cases, the most important operation to optimize is the multiplication, which is
based on the multiplication of polynomials over IF2. A lot of work has been
devoted to improve the speed of multiplication of binary polynomials of very
large degree, for example to break polynomial factorization records. For other
important applications such as the implementation of elliptic curve (EC) and
hyperelliptic curve (HEC) cryptography the focus is instead on relatively small

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 69–84, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



70 R. Avanzi and N. Thériault

fields, of roughly 40 to 300 bits. Only in special circumstances will larger fields
be contemplated.

One of the most celebrated advantages of using higher genus curves in place
of EC is the fact that to achieve the same level of security of the latter they need
to be defined over smaller fields. For hardware designers this is a bonus since
they can use smaller multiplication and inversion circuits, and thus higher genus
curves hold their own advantage, such as a low area-time product [22].

However, most software implementations of finite fields penalize smaller fields
more than larger ones: [1] shows that HEC in odd characteristic are often heavily
penalized with respect to EC because of many types of overheads in the field
arithmetic whose impact increases as field sizes get smaller. This is also the case
in characteristic 2, but the nature of the worst overheads and the techniques
used to address them differ.

The techniques described in this paper are thus aimed at small fields such
as those used in curve-based cryptography. They are also devised to improve
the use of basic field operations in other practical contexts, such as polynomial
factorization algorithms.

The paper is structured as follows: Section 2 describes the types of overheads
we must handle. We then look at the field multiplication (§ 3.1), sequential mul-
tiplications (§ 3.2), squaring (§ 3.3), modular inversion (§ 3.5), and modular re-
duction (§ 3.4). We conclude in Section 4 with performance results, including
timings of EC and HEC arithmetic (that will be discussed in detail in a forth-
coming paper) and their consequences.

2 Types of Overheads

We begin by introducing some notation. A field IF2n is represented using a poly-
nomial basis as the quotient ring IF2[t]/(p(t)), where p(t) is an irreducible poly-
nomial of degree n. This is the most usual representation of small fields and
their elements for software implementations (cf. [2, Ch. 11]). Field elements are
represented by binary polynomials of degree less than n. Multiplication (resp.
squaring) in IF2n , is performed by first multiplying (resp. squaring) the poly-
nomial(s) representing the input(s), and then reducing the result modulo p(t).
Let γ be the number of bits in a computer word. A field elements a occupies
s = �n/γ� words A0, A1, . . . , As−1. The γ least significant bits of the polynomial
representing a are contained in the words A0, the next γ bits in A1 and so on.

In our implementation, we address the following types of overheads:

1. Software loops to process operands, pipelining, and branch mispre-
dictions.
Algorithm 1 is the standard method for performing multiplication of two
small polynomials over GF(2). The issue of expensive branch mispredictions
at loop boundaries is addressed by full loop unrolling for all input sizes. This
is common in the long integer arithmetic underlying the implementation of
prime fields [1]. Loop unrolling is also useful in even characteristic, but it is



Effects of Optimizations for Software Implementations 71

Algorithm 1. Field multiplication [13]

INPUT: A = (As−1, . . . , A0), B = (Bs−1, . . . , B0), and a comb size w

OUTPUT: R = (R2s−1, . . . , R0) = A × B

1. for j = 0 to 2w − 1 do

2. Pj(t) ← (jw−1t
w−1 + · · · + j1t + j0)A(t) where j = (jw−1 . . . j2 j1 j0)2.

[Here the polynomial Pj(t) is at most s + 1 words long]

3. for i = 0, . . . , 2s − 1 do Ri ← 0

4. for j = �γ/w� − 1 downto 0 do

5. for i = 0 to s − 1 do

6. u ← (Bi >> jw) mod tw [mask out w bits at time]

7. for k = 0 to s do

8. Rk+i ← Rk+i ⊕ Pu[k]

9. If j 	= 0 then R ← twR [bit shift]

10. return R

used differently: see § 3.1 for more details. In all cases, loop unrolling also
helps the compiler to produce code which exploits the processor pipelines
more efficiently.

2. Architecture granularity.
Algorithm 1 requires a precomputation phase to compute the multiples of
the first input by all binary polynomials of degree less than w (Steps 1 and
2). The complexity of this stage is exponential in w, and the optimal value
of w to minimize the total number of operations is an integer of the form
O(log logn) (Theorem D, § 4.6.3 in [9] also applies to binary multiplication).
The constants vary depending on the architecture however, and in most cases
the optimal w can only be found by trial-and-error.

For large ranges of the input sizes, the value of w will remain constant. The
complexity of multiplication in these ranges is therefore roughly quadratic in
s, as a generic implementation does not distinguish between fields of sγ+ 1-
bits and (s + 1)γ-bits. This granularity introduces irregular performance
penalties. To see its effect in curve cryptography, let us consider an example.

For the same security level, we can use an EC over a field of 223 bits, or
a genus 2 curve over a field of roughly 112 bits, using respectively 7 and 4
words per field element. The expected number of field multiplications for a
group operation increases roughly quadratically with the genus1,but in this
scenario the cost of a multiplication in the smaller field (which requires 4

1 This is an average assuming a windowed scalar multiplication method, where the
most common group operation is doublings. By choosing curves of a special type,
group doublings can be implemented with quadratically many field multiplications
in the genus, even though group additions have cubic complexity. This approxima-
tion works nicely for curve of genus up to 4 (and possibly more), see for exam-
ple [11,14,15,5,3,23] and [2, Ch. 13, 14].



72 R. Avanzi and N. Thériault

words store each element) is about 1/3 of the cost of a multiplication in
the larger field (where elements are 7 words long), as 42 = 16 is 32.6% of
72 = 49. As a result, the granularity would penalize the HEC of genus two
by a factor of 1.32.

Little can be done to defeat granularity problems in the prime field case [1],
but more options are available in even characteristic (cf. § 3.1).

3. Multiplications of a single field element by a vector of field ele-
ments.
Once again, let us consider curve-based cryptography. In this context, oc-
currences of several multiplications by the same element become more com-
mon as the genus increases. It is possible to speed up these multiplications
appreciably by treating them as vector multiplications rather than sets of
independent multiplications. A similar situation occurs when multiplying
polynomials of low degree, where vector multiplications can be faster than
Karatsuba methods. The technique for doing this, described in § 3.2, is not
new, but so far its impact has not been thoroughly evaluated in the litera-
ture. Similar optimization technique do not seem to be possible in the prime
field case.

Another important difference with the prime field case lies in the relative cost
of modular reduction compared to multiprecision multiplication.

For prime fields, this relative cost increases as the operand size decreases, and
in odd characteristic HEC implementations more time is spent doing modular
reductions than in EC implementations. To decrease the total cost of reductions,
one can delay modular reductions when computing the sum of several products.
The idea is described in [17], and [1] shows that this approach also works with
the Montgomery representation of modular integers.

In even characteristic, modular reduction is much cheaper, and the additional
memory traffic caused by delaying reductions can even reduce performance. After
doing some operation counts and practical testing, we opted not to allow delayed
reductions.

This in turn raises the issue of the number of function calls, since calling the
reduction code after each multiplication increases this number.

4. Function call overheads.
Function call overheads also play a different role in even characteristic. In
fact, the code for implementing arithmetic routines is bigger than in the
prime field case. Inlining it would usually cause the code size to increase
dramatically, creating a large penalty in performance. As a result, field ad-
ditions are inlined in the main code of our programs (such as explicit formulæ
for curve arithmetic) but multiplications are not. However, we inline the re-
duction code into the special multiplication and squaring routines for each
field: the reduction code is compact and it is inlined only a few times, thus
keeping code size manageable while saving function calls.



Effects of Optimizations for Software Implementations 73

3 Implementation Techniques

3.1 Field Multiplication and Architecture Granularity

The starting point for our implementation of field multiplication is Algorithm 1,
by López and Dahab [13]. It is based on comb exponentiation, that is usually
attributed to Lim and Lee [12], but that in fact is due to Pippenger [16]. Recall
that s is the length of the inputs in computer words and γ the number of bits
per word. There are a few obvious optimizations of Algorithm 1.

If the inputs are at most sγ − w + 1 bits long, all the Pj(t)’s fit in s words. In
this case, the counter k of the loop at Step 7 will only need to go from 0 to s−1.

If operands are between sγ − w + 2 and sγ bits long, proceed as follows; Zero
the w− 1 most significant bits of A for the computations in Steps 2 and 3, thus
obtaining polynomials Pj(t) that fit in s words; Perform the computation as in
the case of shorter operands, with s − 1 as the upper bound in Step 7; Finally,
add the multiples of B(t) corresponding to the w − 1 most significant bits of
A to R before returning the result. This leads to a much faster implementation
since several memory writes in Step 2 and memory reads in Step 8 are traded
for a minimal amount of memory operations later to “adjust” the final result.

More optimizations can be applied if the field size is known in advance, such
as partial or full loop unrolling. Also, some operands (containing the most signif-
icant bits of R) are known to be zero in the first repeats of the loop bodies, hence
parts of the computation can be explicitly omitted during the first iterations.
This can be done in the full unrolling or just by splitting a loop in two or more
parts whereby one part contain less instructions that the following one.

Steps 7 and 8 could be skipped when u = 0 but inserting an “If u 
= 0”
statement before Step 7. de facto slows down the algorithm (because of frequent
branch mispredictions), so it is more efficient to allow these “multiplications by
zero”.

We considered different comb sizes and different loop splitting and unrolling
techniques for several input sizes ranging from 43 to 283 bits – the exact choice
being determined by the application described in § 4.2.

As we mentioned in the previous section, the optimal choice for the comb
size w will depend both on the field size and the architecture of the processor. It
should be noted that the choice of the comb size and the point at which Karatsuba
multiplication becomes interesting (see below) are the only optimizations that
are processor-dependent (given a fixed word size), whereas the other techniques
presented in this paper are not affected by the processor’s architecture. because
it did change with the processor

Special treatment is reserved to polynomials whose size is just a few bits more
than a multiple k of the architecture granularity. Two such cases are polynomials
of 67 and 97 bits, where the values of k are 64 and 96, respectively. We perform
scalar multiplication of the polynomials consisting of the lower k bits first, and
then handle the remaining most significant bits one by one. In other words, write
A = A′ + tk · A′′ and B = B′ + tk · B′′ with the degrees of A′, B′ smaller than
k, and perform A ·B = A′ ·B′ + tk ·A′′ ·B′ + tk ·A′ ·B′′ + t2k ·A′′ ·B′′. In some



74 R. Avanzi and N. Thériault

cases, a little regrouping such as A · B = A′ · B′ + tk · A′′ · B′ + tk · B′′ · A is
slightly more efficient. The resulting code is 10 to 15% faster than if we applied
the previous approaches to the one-word-longer multiplication.

Multiplication of polynomials whose degree is high enough is also done using
Karatubsa’s technique [7] of reducing the multiplication of two polynomials to
three multiplications of half size polynomials. After some testing, we observed
that Karatsuba multiplication performs slightly better than comb-based multi-
plication for s ≥ 6 on the PowerPC, and for s ≥ 7 on the Intel Core architecture
(the half-size multiplications are performed with the comb method), but not for
smaller sizes.

The performance of multiplication routines can be seen in Tables 1 and 2 and
Figures 1 and 2. They will be discussed in more detail in Section 4, but we can
already observe that the cost of multiplication grows quite smoothly with the
field size, and in fact it approached a curve of quadratic bit complexity (as we
might expect from theory) much better than a coarser approach that works at
the word level.

3.2 Sequential Multiplications

In certain situations, for instance in explicit formulæ for curves of genus two to
four, we find sets of multiplications with a common multiplicand. This usually
occurs as a result of polynomial arithmetic.

A natural approach to reduce average multiplication times is to keep the pre-
computations (Steps 1 and 2 of Algorithm 1) associated to the common multi-
plicand and re-use them in the next multiplications. However, this would require
extra variables in the implementation of the explicit formulæ and demand ad-
ditional memory bookkeeping. We thus opted for a slightly different approach:
we wrote routines that perform the precomputations once and then repeat Steps
3 to 10 of Algorithm 1 for each multiplication. We call this type of operation
sequential multiplication (the more common terminology of scalar multiplication
having another signification in curve based cryptography...).

An important observation is that the optimal comb size used in the multipli-
cation (on a given architecture) may vary depending on the number of multipli-
cations that are performed together. For example, for the field of 73 bits on the
PowerPC, a comb of size 3 is optimal for the single multiplication and for se-
quences of two multiplications, but for 3 to 5 multiplications the optimal comb of
size is 4. For the field of 89 bits, the optimal comb size for single multiplications
is again 3, but it already increases to 4 for the double multiplication.

If a comb method is used for 6-word fields on the PowerPC and Core architec-
tures, then 4 is the optimal comb size for single multiplications and 5 is optimal
for groups of at least 3 multiplications. However, on the PowerPC, Karatsuba
is used not only for the single multiplications, but also for the sequential ones,
where a sequential multiplication of s-word operands is turned into three se-
quential multiplications of s/2-word operands for s ≥ 6. On the Core CPU,
Karatsuba’s approach becomes more efficient for sequential multiplications only
when s ≥ 8.



Effects of Optimizations for Software Implementations 75

To keep function call overheads low, the sequential multiplication procedures
for at least 3 multiplications use input and output vectors of elements which
are adjacent in memory. This also speeds up memory accesses, taking better
advantage of the structure of modern caches.

Static precomputations have already been used for multiplications by a con-
stant parameter (coming from the curve or the field) – for example, [4] sug-
gests this in the context of square root extraction. In [8], King uses a sim-
ilar approach to reduce the number of precomputed tables in the projective
formulæ for elliptic curves, however he does not estimate the costs of several
multiplications performed by this method in comparison to the cost of one mul-
tiplication, nor does he adapt the comb size to the number of multiplications
performed.

3.3 Polynomial Squaring

Squaring is a linear operation in even characteristic: if f(t) =
∑n

i=0 eit
i where

ei ∈ IF2, then
(
f(t)
)2 =

∑n−1
i=0 eit

2i. That is, the result is obtained by inserting
a zero bit between every two adjacent bits of the input. To efficiently implement
this process, a 512-byte table is precomputed for converting 8-bits polynomials
into their expanded 16-bits counterparts [18]. In practice, this technique is faster
than King’s method [8] (which otherwise has the advantage of requiring less
memory).

3.4 Modular Reduction

We implemented two sets of routines for modular reduction.
The first consists of just one generic routine that reduces an arbitrary polyno-

mial over IF2 modulo another arbitrary polynomial over IF2. This code is in fact
rather efficient, and a reduction by means of this routine can often take less than
20% of the time of a multiplication. The approach is similar to the one taken
in SUN’s ECC contributions to OpenSSL [20] or in NTL [19]. Let the reduction
polynomial be p(t) =

∑k−1
i=0 t

ni with n0 > n1 > ... > nk−1 = 0. Its degree is n0

and its sediment is
∑k−1

i=1 t
ni . If an irreducible trinomial (k = 3) exists, we use

it, otherwise we use a pentanomial (k = 5).
The second set of routines uses fixed reduction polynomials, and is therefore

specific for each polynomial degree. The code is very compact. Here we sometimes
prefer reduction eptanomials (k = 7) to pentanomials when the reduction is
faster due to the form of the polynomial, for instance when the sediment has
lower degree and/or it factors nicely.

As an example, for degree 59 we have two good irreducible polynomials:
p1(t) = t59 +(t+1)(t5 + t3 +1) and p2(t) = t59 + t7 + t4 + t2 +1. The first C code
fragment takes a polynomial of degree up to 116 (= 2 · 58) stored in variables
r3 (most significant word), r2, r1 and r0 (least significant word), and reduces
it modulo p1(t), leaving the result in r1 and r0:



76 R. Avanzi and N. Thériault

#define bf_mod_59_6_5_4_3_1_0(r3,r2,r1,r0) do { \
r3 = ((r3) << 5) ^ ((r3) << 6); \
r1 ^= (r3) ^ ((r3) << 3) ^ ((r3) << 5); \
r3 = ((r2) << 5) ^ ((r2) << 6); \
r0 ^= (r3) ^ ((r3) << 3) ^ ((r3) << 5); \
r3 = ((r2) >> 22) ^ ((r2) >> 21); \
r1 ^= (r3) ^ ((r3) >> 2) ^ ((r3) >> 5); \
r2 = (r1) >> 27; r2 ^= (r2) << 1; \
r1 &= 0x07ffffff; r0 ^= (r2) ^ ((r2) << 3) ^ ((r2) << 5); \

} while (0)

The C code to reduce the same input modulo p2(t) is
#define bf_mod_59_7_4_2_0(r3,r2,r1,r0) do { \
r1 ^= ((r3) << 5) ^ ((r3) << 7) ^ ((r3) << 9) ^ ((r3) << 12); \
r2 ^= ((r3) >> 25) ^ ((r3) >> 23) ^ ((r3) >> 20); \
r0 ^= ((r2) << 5) ^ ((r2) << 7) ^ ((r2) << 9) ^ ((r2) << 12); \
r1 ^= ((r2) >> 27) ^ ((r2) >> 25) ^ ((r2) >> 23) ^ ((r2) >> 20); \
r2 = (r1) >> 27; r1 &= 0x07ffffff; \
r0 ^= (r2) ^ ((r2) << 2) ^ ((r2) << 4) ^ ((r2) << 7); \

} while (0)

We found the first reduction routine slightly more efficient. A similar choice
occurs at degree 107 (the eptanomial being t107 + (t6 + t2 + 1)(t+ 1)), and the
idea of factoring the “lower degree part” of the reduction polynomial is also used
for degree 109 (the polynomial is t109 + (t6 + 1)(t+ 1)).

These considerations were applied to the degrees 43, 47, 53, 59, 67, 73, 79, 83,
89, 97, 101, 107, 109, 113, 127, 131, 137, 149, 157, 163, 179, 199, 211, 233, 239,
251, 269 and 283. For degrees 47, 79, 89, 97, 113, 127, 137, 199, 233 and 239 we
used a trinomial. For degrees 59 and 107 we opted for eptanomials (cf. remarks
above), and in all other cases pentanomials were used. The time for the modular
reduction is kept between 3 and 5% of the time required for a multiplication if we
use a trinomial, and between 6 and 10% in the other cases. Reduction modulo a
trinomial is about twice fast as polynomial squaring because the latter requires
more memory accesses.

3.5 Modular Inversion

There are many algorithms for computing the inverse of a polynomial a(t) mod-
ulo another polynomial p(t), where both polynomials are defined over the field
IF2. In [6] three methods are compared:

– The Extended Euclidean Algorithm (EEA), where partial quotients are ap-
proximated by powers of t, and no polynomial division is required.

– The Almost Inverse Algorithm (AIA), a variant of the binary extended GCD
algorithm that computes a polynomial b(t) together with an integer � such
that b(t)a(t) ≡ t� mod p(t). The final result must then be adjusted.

– The Modified Almost Inverse Algorithm (MAIA), which is a variant of the
binary extended GCD algorithm which returns the correct inverse as a result.



Effects of Optimizations for Software Implementations 77

We refer to [6] for details. In agreement with [6], we find that EEA performs
consistently better than the two other methods in our context.

For inputs of up to 8 words, we always keep all words (limbs) of all multipreci-
sion operands in separate integer variables explicitly, not in indexed arrays. This
allows the compiler to allocate a register for each of these integer variables if
enough registers are provided by the architecture (such as on RISC processors).
Furthermore, it does not penalize architectures with fewer registers: the contents
of many variables containing individual words are spilled on the stack, but this
data would still be stored in memory if we used arrays.

Another advantage of the EEA is that it offers good control on the bit lengths
of the intermediate variables. We can therefore split the main loop in several
copies optimised for the different sizes of the intermediate operands, with n sec-
tions of code for inputs of n words. Since some intermediate values grow in size
as other values get shorter, we can reduce the local usage of registers, allowing
an increase in the size of the inputs before the compiler starts to produce code
that spills some data to memory. See Section 4 for inversion performance.

4 Performance Results, Comparisons, and Conclusions

We compiled and ran our code on several architectures. Due to space constraints
we present here two sets of timings taken on very different CPUs. The first set
was obtained on a 1.5 GHz PowerPC G4 (Motorola 7447) CPU, a 32-bits RISC
architecture with 32 general purpose integer registers, no level 3 cache support
and slow memory bus. The second set was taken on a 1.83 GHz Intel Core 2 Duo
(running 32-bit code on one core), an architecture with fewer registers, a better
cache system and faster memory bus.

In our C code, we declare all limbs of all intermediate operands as single 32-bit
word variables, and operate on them with logic and shift operations. The code
compiles on any 32-bits architecture supported by the gnu compiler collection
(we used gcc 4.0.1, Apple branch, build 5367, under Mac OS X 10.4.9 on both
architectures). We did not use assembler code – which would be necessary to
get satisfactory performance in long integer arithmetic – since near-optimal per-
formance can be attained for binary field arithmetic by carefully crafting the C
code. This is a known fact: the binary arithmetic of NTL [19], which is very well
known for its performance, is written in C (in fact C++), as are SUN’s ECC
contributions to OpenSSL [20].

Tables 1 and 2 contain the timings of the fundamental operations in the fields
that we considered. The operations are: single multiplication (Mul), squaring
(Sqr), multiplication of 2 to 5 different field elements by a fixed one (columns
from Mul2 to Mul5) and inversion (Inv). Modular reduction is always included.
We give the absolute times in microseconds and the relative costs compared to
a single multiplication. We also give the timings of our best generic routines for
field multiplications (more or less on-par with the NTL libraries) together with
the speedup factor gained by the field-specific routines.



78 R. Avanzi and N. Thériault

Table 1. Timings of field operations in μsec and ratios (1.5 GHz Powerpc G4)

Field Timings of optimized library Standard Mult.
Size Absolute timings Timings relative to multiplication Time Speed-
Bits Mul Sqr Mul2 Mul3 Mul4 Mul5 Inv Sqr Mul2 Mul3 Mul4 Mul5 Inv -up

43 .100 .017 .169 .227 .287 .344 .450 .169 1.693 2.271 2.874 3.451 4.505 .331 3.310
47 .087 .014 .142 .192 .243 .296 .483 .164 1.640 2.225 2.795 3.421 5.511 .338 3.885
53 .098 .018 .167 .218 .276 .337 .512 .183 1.707 2.224 2.817 3.434 5.224 .280 2.857
59 .121 .021 .210 .272 .333 .394 .531 .172 1.740 2.257 2.762 3.267 4.402 .336 2.776
67 .168 .025 .276 .348 .436 .516 .820 .148 1.647 2.073 2.598 3.077 4.886 .444 2.627
73 .190 .024 .329 .466 .572 .674 .857 .128 1.732 2.453 3.011 3.547 4.508 .521 2.742
79 .193 .019 .321 .452 .549 .649 .899 .099 1.662 2.342 2.848 3.364 4.658 .448 2.321
83 .213 .050 .387 .518 .640 .760 .922 .236 1.818 2.430 3.003 3.569 4.329 .521 2.446
89 .254 .025 .420 .538 .667 .796 .962 .100 1.653 2.119 2.627 3.136 3.790 .443 1.744

97 .311 .025 .455 .612 .761 .913 1.589 .081 1.462 1.967 2.445 2.933 5.105 .602 1.936
101 .353 .057 .552 .722 .903 1.083 1.621 .161 1.564 2.046 2.557 3.068 4.592 .695 1.969
107 .358 .058 .559 .760 .954 1.149 1.659 .162 1.560 2.122 2.665 3.209 4.633 .852 2.380
109 .371 .029 .567 .799 .998 1.201 1.692 .079 1.528 2.155 2.693 3.241 4.564 .695 1.873
113 .373 .029 .580 .783 .981 1.185 1.702 .078 1.554 2.099 2.629 3.177 4.561 .593 1.590
127 .415 .053 .674 .957 1.201 1.447 1.832 .128 1.625 2.306 2.894 3.486 4.415 .574 1.383

131 .460 .067 .763 1.046 1.329 1.605 3.664 .147 1.659 2.275 2.890 3.489 7.968 1.042 2.265
137 .625 .062 1.084 1.485 1.907 2.325 3.733 .100 1.734 2.375 3.050 3.718 5.969 .926 1.539
149 .677 .090 1.191 1.680 2.170 2.656 3.908 .133 1.760 2.482 3.206 3.924 5.773 .817 1.207
157 .774 .090 1.469 1.951 2.441 2.910 4.055 .116 1.899 2.522 3.155 3.762 5.243 1.027 1.327

163 .815 .085 1.342 1.902 2.455 3.009 5.336 .105 1.647 2.334 3.012 3.692 6.547 1.229 1.508
179 1.116 .124 2.117 2.916 3.623 4.508 5.552 .111 1.896 2.613 3.246 4.038 4.974 1.229 1.101

199 1.195 .091 2.085 2.716 3.423 4.126 12.114 .076 1.745 2.273 2.865 3.454 10.140 1.390 1.163
211 1.225 .145 2.169 2.937 3.695 4.435 12.559 .119 1.771 2.398 3.016 3.621 10.254 1.531 1.250

233 1.380 .114 2.347 3.206 4.013 4.883 14.613 .079 1.701 2.323 2.907 3.537 10.596 1.594 1.155
239 1.528 .187 2.630 3.637 4.604 5.638 14.828 .122 1.722 2.381 3.014 3.691 9.706 1.596 1.060
251 1.675 .228 2.978 4.157 5.297 6.498 15.157 .137 1.778 2.482 3.163 3.879 9.050 1.741 1.040

269 2.035 .210 3.790 5.146 6.431 7.853 20.495 .103 1.863 2.529 3.161 3.860 10.073 2.438 1.197
283 2.148 .229 3.943 5.338 6.817 8.134 20.845 .107 1.835 2.485 3.174 3.787 9.704 2.447 1.139

Table 2. Timings of field operations in μsec and ratios (1.83 GHz Intel Core 2 Duo)

Field Timings of optimized library Standard Mult.
Size Absolute timings Timings relative to multiplication Time Speed-
Bits Mul Sqr Mul2 Mul3 Mul4 Mul5 Inv Sqr Mul2 Mul3 Mul4 Mul5 Inv -up

43 .087 .017 .137 .182 .228 .260 1.381 .195 1.575 2.091 2.621 2.989 15.830 .253 2.908
47 .064 .012 .108 .153 .194 .239 1.502 .191 1.688 2.393 3.028 3.742 23.484 .211 3.297
53 .072 .025 .131 .185 .240 .294 1.623 .350 1.820 2.573 3.350 4.107 22.635 .253 3.514
59 .117 .027 .201 .279 .361 .444 1.740 .228 1.723 2.396 3.097 3.813 14.935 .285 2.436
67 .174 .027 .227 .313 .410 .502 2.386 .154 1.302 1.797 2.354 2.881 13.693 .371 2.132
73 .174 .026 .321 .473 .545 .667 2.512 .151 1.840 2.716 3.128 3.827 14.413 .377 2.167
79 .171 .025 .257 .332 .425 .511 2.649 .146 1.506 1.947 2.487 2.994 15.520 .374 2.187
83 .184 .041 .285 .350 .458 .554 2.727 .224 1.553 1.908 2.492 3.018 14.857 .371 2.016
89 .207 .028 .318 .426 .526 .619 2.813 .135 1.536 2.106 2.589 3.039 13.589 .345 1.665

97 .223 .032 .379 .531 .687 .838 3.677 .142 1.701 2.388 3.085 3.765 16.523 .405 1.816
101 .240 .039 .431 .594 .767 .945 3.760 .164 1.796 2.472 3.194 3.934 15.659 .507 2.113
107 .240 .038 .427 .620 .813 1.001 3.895 .157 1.779 2.582 3.385 4.171 16.223 .566 2.358
109 .274 .035 .505 .702 .918 1.131 3.961 .128 1.840 2.559 3.345 4.121 14.433 .473 2.111
113 .255 .047 .444 .637 .828 1.022 4.008 .183 1.741 2.496 3.245 4.005 15.708 .414 1.624
127 .305 .038 .563 .836 1.084 1.335 4.375 .124 1.848 2.745 3.560 4.385 14.365 .488 1.467

131 .366 .064 .679 .961 1.269 1.581 5.278 .174 1.855 2.624 3.466 4.316 14.413 .660 1.803
137 .384 .049 .706 .933 1.219 1.485 5.396 .129 1.837 2.426 3.172 3.863 14.039 .515 1.341
149 .413 .072 .740 1.081 1.420 1.760 5.676 .174 1.791 2.617 3.437 4.261 13.741 .647 1.567
157 .447 .072 .848 1.170 1.508 1.844 5.887 .161 1.900 2.621 3.378 4.129 13.185 .660 1.477

163 .495 .069 .942 1.358 1.787 2.221 6.855 .139 1.904 2.744 3.611 4.488 13.855 .798 1.612
179 .598 .085 1.101 1.513 1.951 2.390 7.301 .143 1.843 2.533 3.266 4.000 12.218 .798 1.334

199 .674 .067 1.211 1.975 2.128 2.604 9.542 .099 1.797 2.930 3.157 3.864 14.157 .957 1.420
211 .868 .089 1.580 2.256 2.926 3.572 10.591 .102 1.821 2.600 3.372 4.117 12.206 1.112 1.281

233 .945 .086 1.759 2.532 3.256 4.005 12.246 .091 1.860 2.678 3.444 4.236 12.954 1.047 1.080
239 1.061 .187 2.014 2.880 3.748 4.584 12.378 .176 1.898 2.715 3.533 4.321 11.668 1.131 1.066
251 1.120 .206 2.075 3.008 3.884 4.809 12.641 .184 1.853 2.686 3.468 4.294 11.287 1.260 1.116

269 1.224 .127 2.209 3.128 4.050 4.939 14.924 .104 1.805 2.556 3.309 4.036 12.195 1.667 1.362
283 1.325 .141 2.282 3.206 4.135 5.070 15.284 .106 1.722 2.420 3.120 3.826 11.535 1.625 1.316



Effects of Optimizations for Software Implementations 79

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

** * ***** **
* ** *** **

** *
* *

*
* *

*

*

*

*
*

◦
◦
◦ ◦◦

◦ ◦
◦
◦
◦
◦

◦
◦

◦

◦
◦ ◦

◦

◦

◦

◦

◦

◦ ◦

◦

◦
◦ ◦

◦

◦ ◦

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

* = ad-hoc routines for each field
◦ = generic state-of-the-art routines

= quadratic complexity

Fig. 1. Field multiplication performance on the 1.5 GHz PowerPC G4 (μsec)

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

** * ** *** ** * ** ***
*
* ** * * *

*
*

*
*

*
*

*
*

◦ ◦ ◦
◦◦

◦ ◦◦ ◦ ◦ ◦
◦
◦
◦
◦
◦

◦

◦

◦

◦ ◦ ◦

◦ ◦

◦

◦
◦
◦

◦

◦ ◦

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

* = ad-hoc routines for each field
◦ = generic state-of-the-art routines

= quadratic complexity

Fig. 2. Field multiplication performance on the 1.83 GHz Intel Core 2 Duo (μsec)

Figures 1 and 2 represent the results of the single multiplications. The timings
of our per-field ad-hoc routines are compared to those of our generic implemen-
tation. The parabola arcs represent interpolations of the form c1 · n2 + c0 bit
operations using our best performance values.



80 R. Avanzi and N. Thériault

The way we implemented inversion (§ 3.5) allows us to get extra performance
from CPUs with several registers. For several input sizes, most of the computa-
tion can take place only between registers on these processors, without accessing
external memory except to load the inputs and to store the final result – thus,
a slow memory bus or a high level one cache latency are not big problems. This
is reflected in the exceptionally low I/M ratio on the PowerPC: for inputs of up
to 6 words all the operands of the EEA fit in the registers. For longer inputs the
registers no longer suffice, the compiler must store some partial data in the main
memory (as confirmed by disassembly of the compiled code), and a “bump” in
inversion performance occurs.

The multiplication routines make extensive use of tables of precomputations,
hence they are more penalized by slow memory bus or high level one cache
latency than by register paucity. This is reflected in the fact the Intel Core 2 Duo
offers better multiplication performance than the PowerPC, especially for larger
fields, that use larger tables. Some of the deficiencies of older CISC architectures,
such as the small register set, are now mitigated by register renaming and wide-
execution units, but their impact is still noticeable. This can be seen, for example,
by the higher I/M ratio on the Intel Core 2 Duo.

The choice of trinomials, pentanomials or eptanomials is reflected in the tim-
ings. The ratio Sqr/Mul is higher when pentanomials or eptanomials are used
because the reduction is significantly slower than it would have been if an irre-
ducible trinomial of the same degree had existed. The reduction has a smaller
impact on field multiplication than on field squaring. In the case of generic rou-
tines, the variations due to the choice of polynomials are bigger, and it is easy to
recognize that the zigzagging multiplication performance curve follows the shape
of a staircase over which pentanomial-induced “wedges” are placed. Apart from
this “zigzagging”, it is difficult to find more patterns in the performance gap
between specialized routines and generic ones. It seems to remain (on average)
similar for small and larger fields, with maybe only a small linear component
in the bit size. This suggests that most of the costs we eliminated were roughly
constant, and therefore had much bigger impact on the performance of smaller
fields.

4.1 Comparisons with Other Literature

It can be difficult to compare our results with the literature, since in most cases
only a few fields were implemented and benchmarked, and usually only the larger
ones (for EC) or the smaller ones (for HEC), but not both.

Our goal was to get performance curves that would resemble the parabola
arcs expected from theory instead of the usual “broken staircases” (which can
only be shown with the implementation of several fields), and at the same time
matching or improving on the best results for individual fields that are scattered
in the literature. We wanted to show that in even characteristic the granularity
of the architecture does not play the same crucial role as in the prime field
case. when, say comparing performances of different types of curves over fields
of various sizes. For this reason we did not use vector extensions like MMX,



Effects of Optimizations for Software Implementations 81

SSE, or Altivec: these only “change the granularity”, but results would have
been similar.

In [15], two sets of implementations are reported for binary fields of 32, 40
and 47 bits, one on an ARM 7 and the other on a 1.8 GHz Pentium 4. For
the canonical trio of fields of 163, 233 and 283 bits, a few more papers [21,6,4]
are available. These timings can be seen in Table 3. The best timings in [13]
essentially agree with those in [6] for the Pentium II and are slighly slower than
those in [4] for the Sparc.

In [8], the timing for the multiplications must be adjusted by a factor of 10
so they correspond to the overall timings of the elliptic curve operations. This
is most likely due to a simple error in notation. The results as they are stated,
suitably scaled, mean that King’s code would perform a multiplication about 8
times faster than we and [6] do, but a whole scalar multiplication 20% slower.

Scaling the 47-bit field performance on the 80 Mhz ARM 7, we see that our
routines are about 6 times more efficient, even though in this case a factor at
least 2 is due to the processor architecture. The 1.8 Pentium 4 performance
from [15] would scale to about 0.1008 μsec at 3.0 GHz – our code performs a 47-
bit finite field multiplication in 0.079 μsec on a 3.0 GHz Pentium 4. Comparable
scaled performance of our code with those from [6,4], two reference papers, can
be noted (the timings of their gcc-compiled non-mmx versions are given).

Table 3. Timings in μsecs of field operations in other papers

Field [15]: ARM 7, 80 MHz [15]: Intel P4, 1.8 GHz
Size Mult. Inv. Ratio Mult. Inv. Ratio

32 2.6 26.8 10.16 0.168 1.650 9.82
40 7.3 49.2 6.73 0.413 2.519 6.04
47 7.3 77.5 10.5 0.402 3.752 9.33

Field [6]:
Intel Pentium II
400 Mhz, gcc

[4]:
Intel Pentium 3
800 Mhz, gcc

[4]:
Sparc

500 Mhz, gcc
[21]:

900 Mhz
Sparc

[21]:
1 Ghz
Intel

Size Mult. Inv. Ratio Mult. Inv. Ratio Mult. Inv. Ratio Mult. Mult.

163 3.00 30.99 10.33 1.8 12.0 6.67 1.9 16.8 8.85 2.9 2.3
233 5.07 53.22 10.49 3.0 21.9 7.3 4.0 36.8 9.2 3.1 3.2
283 6.23 70.32 11.29 5.2 4.9

4.2 Application to Curve-Based Cryptography

An implementation of EC and of HEC of genus up to four has been written.
The aim was to compare the performance of curves of different genera offering
the same security level. Therefore, under consideration of the best attacks for
each type of curve (see [2, Chs. 19, 20, 21 and 23]), we tried to find suitable
quadruplets of fields to use as fields of definition for EC and HEC of genera
2, 3 and 4 at each of the chosen security levels. Due to the irregularity of the
distribution of the primes, we had to choose security levels (expressed in bit-
equivalents for EC) that permitted us to find matches for at least three curves,
with tolerances of at most 2% (in bits) of security level between the curves in



82 R. Avanzi and N. Thériault

each level. The details of this implementation, which include several new explicit
formulæ, will be presented elsewhere.

Figure 3 shows the timings for each curve type and security level on the
1.5 GHz PowerPC G4. The scalar multiplication algorithm used is a windowed
method. Precomputation times are included in the timings. For EC, the best
choice of coordinate system proved to be mixed affine/López-Dahab coordinates.
For higher genus HEC, affine coordinates are used.

140 160 180 200 210 220 240 250 270

1

2

3

4

5

Elliptic curves , Genus 2 , Genus 3 , Genus 4 .

Fig. 3. Scalar multiplication timings (μsec) for curves of different genera at various
security levels, expressed in bit-equivalents for elliptic curves

The performance of curves of genus four is comparable to that of EC, some-
times better. Curves of genus two and three have similar performance, with genus
three winning in some cases despite the use of the Lange-Stevens genus two dou-
bling [11], and both perform better than curves of genus one and four.

We mention the fact that for curves of genus 3 and 4 the gain obtained by
using sequential multiplications is significant, often around 15% and 20% respec-
tively. On the other hand, there are no gains for EC in affine coordinates and
a very small gain using López-Dahab coordinates (less than 1%.) For curves of
genus two, the improvement is around 2%. In other words, without sequential
multiplications the relative performance of genus 3 and 4 curves would have been
much worse.

In recent literature there have been a few remarkable implementations of low
genus HEC, such as [23,15], where a 1.8 GHz Pentium 4 was used. A compar-
ison of the results must be taken with a pinch of salt, but our results seem to
represent an improvement in the performance of HEC. In [23,15] genus 2 and 3
HEC roughly match EC, while we show significant gains. Their implementation
of genus 4 HEC is about 4 times slower than EC, but our results show that
performance is close.



Effects of Optimizations for Software Implementations 83

4.3 Conclusions and Perspectives

Our implementation “smooths” the performance of binary fields as a function
of the extension degree: jumps corresponding to crossing granularity boundaries
and erratic behavior depending on modular reduction mostly disappear. The
shape of the graph of multiplication timings is quite close to the parabola arc
given by the theoretical quadratic bit-complexity. For small fields, the perfor-
mance gain due to our optimizations can be close to a factor 4 for multiplica-
tion and even around 10 for inversion, with respect to state-of-the-art generic
libraries.

Sequences of several multiplications with a common multiplicand can be im-
plemented faster by reusing the precomputations. We assess the resulting gains.
These vary wildly but we can still see that 2, 3, 4 and 5 multiplications with a
common multiplicand can be performed at roughly the cost of 1.75, 2.35, 3 and
3.65 single multiplications respectively.

This prompts the development of new explicit formulae for arithmetic on
elliptic and hyperelliptic curves that take into account these routines and ratios.
In fact, we can already report on an implementation of curve-based cryptographic
primitives that depends in a significant way on our optimized routines.

Acknowledgements. Parts of this work were done while the second author was
at the Department of Combinatorics and Optimization, University of Waterloo,
Canada, and at the Fields Institute, Toronto, Canada, and while the first author
was visiting the same two institutions.

References

1. Avanzi, R.: Aspects of hyperelliptic curves over large prime fields in software im-
plementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 148–162. Springer, Heidelberg (2004)

2. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press,
Boca Raton (2005)

3. Fan, X., Wollinger, T., Wang, Y.: Efficient Doubling on Genus 3 Curves over Binary
Fields. IACR ePrint 2005/228

4. Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving
Revisited. IEEE Trans. Computers 53(8), 1047–1059 (2004)

5. Guyot, C., Kaveh, K., Patankar, V.M.: Explicit algorithm for the arithmetic on the
hyperelliptic Jacobians of genus 3. J. Ramanujan Math. Soc. 19(2), 75–115 (2004)

6. Hankerson, D., López-Hernandez, J., Menezes, A.: Software Implementation of
Elliptic Curve Cryprography over Binary Fields. In: Paar, C., Koç, Ç.K. (eds.)
CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

7. Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata.
Soviet Physics - Doklady 7, 595–596 (1963)

8. King, B.: An Improved Implementation of Elliptic Curves over GF(2n) when Using
Projective Point Arithmetic. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001.
LNCS, vol. 2259, pp. 134–150. Springer, Heidelberg (2001)



84 R. Avanzi and N. Thériault

9. Knuth, D.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison Wesley Longman, Redwood City (1998)

10. Lange, T.: Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields
via Explicit Formulae. Cryptology ePrint Archive, Report 2002/121

11. Lange, T., Stevens, M.: Efficient doubling for genus two curves over binary fields.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 170–181.
Springer, Heidelberg (2005)

12. Lim, C., Lee, P.: More flexible exponentiation with precomputation. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

13. López, J., Dahab, R.: High-speed software multiplication in IF2m . In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

14. Pelzl, J., Wollinger, T., Guajardo, J., Paar, C.: Hyperelliptic curve cryptosystems:
closing the perfomance gap to elliptic curves (Update). IACR ePrint (2003)/026

15. Pelzl, J., Wollinger, T., Paar, C.: Low cost Security: Explicit Formulae for Genus
4 Hyperelliptic Curves. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 1–16. Springer, Heidelberg (2004)

16. Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). 17th Annual Symp. on Foundations of Comp. Sci, pp. 258–263. IEEE
Computer Society, Los Alamitos (1976)

17. Schönhage, A., Grotefeld, A.F.W., Vetter, E.: Fast Algorithms–A Multitape Turing
Machine Implementation. BI Wissenschafts-Verlag, Mannheim (1994)

18. Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange with
elliptic curve systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 43–56. Springer, Heidelberg (1995)

19. Shoup, V.: NTL: A Library for doing number theory.
URL: http://shoup.net/ntl/

20. Sun Corporation’s Elliptic Curve Cryptography contributions to OpenSSL. Avail-
able at http://research.sun.com/projects/crypto/

21. Weimerskirch, A., Stebila, D., Shantz, S.C.: Generic GF(2m) Arithmetic in Soft-
ware and its Application to ECC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP
2003. LNCS, vol. 2727, pp. 79–92. Springer, Heidelberg (2003)

22. Wollinger, T.: Software and Hardware Implementation of Hyperelliptic Curve
Cryptosystems. Ph.D. Thesis, Ruhr-Universität Bochum, Germany (2004)

23. Wollinger, T., Pelzl, J., Paar, C.: Cantor versus Harley: Optimization and Analysis
of Explicit Formulae for Hyperelliptic Curve Cryptosystems. To appear in IEEE
Transactions on Computers

Disclaimer: The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

http://research.sun.com/projects/crypto/


Software Implementation of Arithmetic in F3m

Omran Ahmadi1, Darrel Hankerson2, and Alfred Menezes3

1 Dept. of Electrical and Computer Engineering, University of Toronto
oahmadid@comm.utoronto.ca

2 Dept. of Mathematics and Statistics, Auburn University
hankedr@auburn.edu

3 Dept. of Combinatorics & Optimization, University of Waterloo
ajmeneze@uwaterloo.ca

Abstract. Fast arithmetic for characteristic three finite fields F3m is
desirable in pairing-based cryptography because there is a suitable fam-
ily of elliptic curves over F3m having embedding degree 6. In this paper
we present some structure results for Gaussian normal bases of F3m , and
use the results to devise faster multiplication algorithms. We carefully
compare multiplication in F3m using polynomial bases and Gaussian nor-
mal bases. Finally, we compare the speed of encryption and decryption
for the Boneh-Franklin and Sakai-Kasahara identity-based encryption
schemes at the 128-bit security level, in the case where supersingular
elliptic curves with embedding degrees 2, 4 and 6 are employed.

1 Introduction

Pairing-based cryptographic protocols are realized using algebraic curves of low-
embedding degree. Several families of low-embedding degree elliptic curves have
been considered, including supersingular curves with embedding degrees 2, 4, and
6, and ordinary curves with embedding degrees 2 [29], 6 [23], and 12 [5]. The
family of supersingular elliptic curves with embedding degree 6 is defined over
characteristic three finite fields F3m . Consequently, the software and hardware
implementation of arithmetic in these fields has been intensively studied in recent
years [16,25,13,20,14].

The elements of F3m can be represented using a polynomial basis or a nor-
mal basis. We present some new structure results for Gaussian normal bases of
F3m , and use these results to devise faster multiplication algorithms. Our imple-
mentation on a Pentium 4 machine shows that our fastest algorithm for normal
basis multiplication in F3239 is about 50% faster than standard Ning-Yin mul-
tiplication [24], and about 4.4 times faster than the Ning-Yin implementation
reported by Granger, Page and Stam [14]. Our experiments also suggest that
the comb method for polynomial basis multiplication [22] (perhaps combined
with shallow-depth Karatsuba-like techniques) is faster than Karatsuba multi-
plication. In particular, our implementation for polynomial basis multiplication
in F3239 is about 4.6 times faster than that reported in [14]. We conclude, as
in [14], that polynomial bases are preferred over normal bases for the software
implementation of characteristic three field arithmetic.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 85–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



86 O. Ahmadi, D. Hankerson, and A. Menezes

A recent IETF draft standard [8] for identity-based encryption (IBE) man-
dates use of supersingular elliptic curves over prime fields — these curves have
embedding degree 2. We compare the speed of encryption and decryption for the
Boneh-Franklin [7] and Sakai-Kasahara [27] identity-based encryption schemes,
when the underlying elliptic curves are supersingular and defined over a prime
field (embedding degree 2), a characteristic two finite field (embedding degree
4), and a characteristic three finite field (embedding degree 6). We focus our
attention on 1536-bit prime fields Fp, the characteristic two field F21223 , and the
characteristic three field F3509 . Each of these choices achieves the 128-bit security
level in the sense that the best attacks known on the discrete logarithm problem
in the extension fields Fp2 , F24·1223 , and F36·509 have running time approximately
2128 [21].

We acknowledge that the Barreto-Naehrig (BN) ordinary elliptic curves [5]
over 256-bit fields Fp with embedding degree 12 are ideally suited for pairing
applications at the 128-security level, and can be expected to yield faster im-
plementations than supersingular elliptic curves especially when the Ate pair-
ing algorithm [18] is employed. However, some people are reluctant to use the
BN curves because recent work by Schirokauer [28] has raised the possibility
that the special number field sieve may be effective for computing discrete log-
arithms in Fp12 . Furthermore, in some cases expensive hashing or the absence
of an efficiently-computable isomorphism ψ (cf. [12]) may be a concern. Thus it
is worthwhile to consider the relative merits of supersingular elliptic curves in
pairing-based cryptography.

The remainder of the paper is organized as follows. Methods for performing
arithmetic in F3m using a polynomial basis representation are reviewed in §2.
Our structure results for Gaussian normal bases are developed in §3. In §4, we
present our implementation results for F3m . Estimates for Boneh-Franklin and
Sakai-Kasahara IBE are given in §5. Summary conclusions appear in §6.

2 Polynomial Bases for F3m

Elements a ∈ F3m can be regarded as polynomials a = am−1x
m−1 + · · · + a0

where ai ∈ F3 and arithmetic is performed modulo an irreducible polynomial f
of degree m. We associate a with the vector of coefficients (am−1, . . . , a0).

Harrison, Page, and Smart [16] considered two coefficient representations suit-
able for implementation. Their “Type II” representation is closer to common
techniques used for binary fields. Each coefficient ai ∈ F3 is represented uniquely
in {0, 1,−1} using a pair (a0

i , a
1
i ) of bits, where ai = a0

i − a1
i and not both bits

are 1. Elements a are represented by vectors aj = (aj
m−1, . . . , a

j
0), j ∈ {0, 1}.

Addition c = a+ b is

t← (a0 ∨ b1)⊕ (a1 ∨ b0), c0 ← (a1 ∨ b1)⊕ t, c1 ← (a0 ∨ b0)⊕ t.

The seven operations involve only bitwise “or” (∨) and “exclusive-or” (⊕), and it
is easy to order the instructions to cooperate with processor pipelining. Negation
is −a = (a1, a0).



Software Implementation of Arithmetic in F3m 87

The analysis and experimental data in [16] strongly favour the Type II ap-
proach. This also has the advantage that representations are unique, and com-
mon techniques employed for multiplication in binary fields have direct ana-
logues. Hence, as in [14], we consider only this representation.

2.1 Field Multiplication

Techniques for binary field multiplication that extend directly to the represen-
tation a = (a0, a1) include table lookup and “comb” methods [22], possibly
combined with Karatsuba-like techniques to reduce the number of word-level
multiplications at the expense of more additions.

Briefly, a common case of the comb [22] calculates ab with a single table of
precomputation containing ub for polynomials u of degree less than w for some
small w (e.g., w = 4). The words of a are then “combed” w bits at a time to
select the appropriate precomputed value to add at the desired location of the
accumulator.

In binary fields, our experience and analysis suggests the comb method will
be among the fastest on common processors. We also found this to be the case
for characteristic three finite fields, contrary to the findings in [14] where the
Karatsuba-Ofman style approach was the fastest choice. Indeed, the times in
Table 1 (see §4) show that a comb method is dramatically faster on the processor
used in [14] (an Intel Pentium 4).

The comb method, while not difficult to implement, requires attention to
processor and compiler characteristics [15, Chapter 5]. It appears necessary to
code a multiplication for each field size (in number of words to hold an element).
With fields of interest in methods for elliptic curves, Karatsuba-Ofman can be
used at shallow depth to reduce the multiplication to a few comb sizes, so code
expansion can be controlled.

2.2 Cubing and Cube Roots

Since a3 = (
∑
aix

i)3 =
∑
aix

3i, cubing is an inexpensive operation when per-
formed using an expansion table to “thin” the coefficients followed by a re-
duction. This is analogous to squaring in binary fields. The cost of cube roots
depends on the reduction polynomial. Since the operation is linear, write

a1/3 =
�m/3�−1∑

i=0

a3ix
i + x1/3

(�m/3�−1∑

i=0

a3i+1x
i

)

+ x2/3

(�m/3�−1∑

i=0

a3i+2x
i

)

.

If x1/3 and x2/3 are precomputed, then a1/3 can be found using a table-lookup
method to extract coefficients from a followed by two multiplications where each
has an operand that has all nonzero coefficients in the lower third of the vector
representation. If the reduction polynomial can be chosen so that x1/3 has only
a few nonzero terms, then roots are especially inexpensive.



88 O. Ahmadi, D. Hankerson, and A. Menezes

Example 1. Consider F3[x]/(f) where f(x) = xm + fkx
k + f0 is irreducible. If

m ≡ k (mod 3), then x1/3 has 4 − (m mod 3) nonzero terms [3]. For m = 239
(of interest in [14], for example), the polynomial f(x) = xm − xk + 1 for k = 5
is irreducible and has m ≡ k ≡ 2 so that x1/3 = −x80 + x2 has just two terms.
However, [14] selected f(x) = x239 + x24 − 1, and [1] shows that x1/3 will have
� 2m−1

3k �+ � 2m−1−k
3k �+ � 2m−1−2k

3k � + j = 20 + j nonzero terms where 0 ≤ j ≤ 3
(in fact, there are 23 nonzero terms in x1/3 and 9 nonzero terms in x2/3).

There arem where no irreducible trinomial yields sparse x1/3; an almost worst
case is illustrated by m = 163 where x1/3 has m − 1 nonzero terms. However,
there is an irreducible tetranomial where x1/3 has five terms, and an irreducible
pentanomial where x1/3 has 3 terms. The case m = 509 also has no trinomial
giving a low-weight x1/3. There is a tetranomial giving a 17-term x1/3 and a
pentanomial where x1/3 has 5 terms. To minimize the combined hamming weight
of x1/3 and x2/3, a pentanomial can be chosen (e.g., x509 +x294−x215 +x79−1)
where x1/3 has 6 terms and x2/3 has 3 terms.

2.3 Inversion

Euclidean algorithm variants for inversion in binary fields adapt fairly directly
to the representation a = (a0, a1). As an alternative, the inverse can be found
by exponentiation. Although [14] remark that “one cannot use Itoh-Tsujii type
methods to reduce the cost”, in fact such methods apply. To see this, note that

a3k−1 =

{
a2(a3k−1−1)3, k odd,
(a3k/2−1)3

k/2+1 = c · c3k/2
, k even,

where c = a3k/2−1. Then a−1 = a3m−2 = a(a3m−1−1)3. Since a2 can be calculated
once, the cost of inversion by a recursive approach is �log(m−1)�+wt(m−1)+1
field multiplications (where wt is Hamming weight) along with many cubings.
The technique is most applicable when m − 1 has low weight and cubings are
extremely cheap (as in normal basis representations). In a polynomial basis, it is
expected to be more expensive than inversion based on the Euclidean algorithm,
although it has the advantage that it requires very little additional code over
multiplication (and is thus especially suitable for hardware).

3 Normal Bases

Let α generate a normal basis N for Fqm over Fq, and let αi = αqi

for 0 ≤ i ≤
m − 1. Let αiαj =

∑m−1
k=0 t

(k)
ij αk, where t(k)

ij ∈ Fq. For a ∈ Fqm let ai ∈ Fq be
defined by a =

∑m−1
i=0 aiαi and let A = (a0, . . . , am−1). Then c = ab is given

by ck =
∑

i,j aibjt
(k)
ij = ATkB

′ where the collection of matrices {Tk = (t(k)
ij )} is

known as a multiplication table for Fqm over Fq. It is known that t(k)
ij = t

(0)
i−k,j−k

and hence ck = A(k)T0B
(k)′

where A(k) denotes the left cyclic shift of the vector
A by k positions.



Software Implementation of Arithmetic in F3m 89

Let ααi =
∑m−1

j=0 tijαj , for 0 ≤ i ≤ m− 1. Then t(k)
ij = ti−j,k−j , and T = (tij)

and T0 have the same number of nonzero entries, known as the complexity CN of
the normal basis N . It is known that CN ≥ 2m− 1, and N is said to be optimal
if CN = 2m− 1.

3.1 Gauss Periods

Let k,m be such that r = mk+1 is prime and gcd(r, q) = 1. Let β be a primitive
r-th root of unity in an extension of Fq, and let γ be a primitive k-th root of
unity in Zr. The element α =

∑k−1
j=0 β

γj

is a Gauss period of type (m, k) for
Fq. In fact, α ∈ Fqm and is normal if and only if 〈qiγj〉 = Z∗

r . In this case,
every element of Z∗

r can be written uniquely as qiγj where 0 ≤ i ≤ m − 1 and
0 ≤ j ≤ k − 1 [2]. In the following, Tr : a �→

∑m−1
i=0 a3i

is the trace function of
F3m over F3.

Lemma 1. If α is a Gauss period and is normal, then Tr(α) = −1.

Proof. In the notation of this section,

Tr(α) =
m−1∑

i=0

(k−1∑

j=0

βγj

)qi

=
m−1∑

i=0

k−1∑

j=0

βγjqi

=
r−1∑

�=1

β�

since 〈qiγj〉 = Z∗
r . The last sum is (βr − 1)/(β − 1)− 1 = −1. �

Since Tr(α) =
∑m−1

i=0 αi = −1, the normal basis representation of the identity
element in F3m is the vector all of whose entries are −1.

3.2 Complexity and Structure for T When q = 3

Fix q = 3 and assume that α is a Gauss period of type (m, k) and that α is
normal. Note that m odd implies that k is even. Since our main interest is prime
m > 2, we shall henceforth assume k is even. The normal basis N generated by
α is called a Gaussian normal basis (GNB) for F3m , and is said to be of type k.

We are interested in the complexity of the multiplication and in the “struc-
ture” of the multiplication matrix T , in particular, the number of entries that are
−1. As a direct consequence, we will obtain results for T that are of practical in-
terest, including a decomposition that accelerates the multiplication significantly
when k is 2 or 4.

We define the complexity Ci of the ith row of the matrix T to be its number
of nonzero entries. Notice that by definition CN =

∑m−1
i=0 Ci. Now we may write

m−1∑

j=0

tijαj = ααi = αα3i

=
k−1∑

s=0

k−1∑

�=0

βγ�(1+γs3i) =
k−1∑

s=0

f(i, s), (1)

where f(i, s) is defined to be
∑k−1

�=0 β
γ�(1+γs3i). Since α is a Gauss period which

is normal, there is a unique pair (i, s) such that 1 + γs3i = 0, namely (i = 0,



90 O. Ahmadi, D. Hankerson, and A. Menezes

s = k/2), and then f(0, k/2) = k. If (i, s) 
= (0, k/2), then 1 + γs3i = γt3j

for some t and j, and then f(i, s) = αj . Hence, if i ≥ 1, then Ci ≤ k. These
observations lead to well-known upper bounds on CN .

Theorem 1 ([6, Theorem 5.5]). CN ≤ (m − 1)k + m = (k + 1)m − k and
CN ≤ (m− 1)k+ k− 1 = mk− 1 if k ≡ 0 (mod 3). If k = 2, then CN = 3m− 2.

The next result establishes some lower bounds on CN . Further, the number of
−1 entries in the multiplication matrix is given for some cases; this number is
of practical interest because it can affect implementation optimizations.

Theorem 2. Suppose that α is a Gauss period of type (m, k) for F3, k is an
even number, and α is normal. Let f be defined by (1). Then a lower bound on
the complexity of the Gaussian normal basis generated by α is

CN ≥

⎧
⎨

⎩

mk − 1− (k/2− 1)(k − 1), if k ≡ 0 (mod 3),
(k + 1)m− k − 1− (k/2− 1)(k − 2), if k ≡ 1 (mod 3),
(k + 1)m− k − (k/2− 1)(k − 1), if k ≡ 2 (mod 3).

Furthermore, the lower bound is achieved if and only if

(i) there are no i ≥ 1 and distinct s1, s2, s3, s4 such that f(i, s1) = · · · =
f(i, s4);

(ii) if k ≡ 0 (mod 3), then there are no distinct s1, s2, s3, s4 such that
f(0, s1) = · · · = f(0, s4); and

(iii) if k 
≡ 0 (mod 3), then there are no distinct s1, s2, s3 such that f(0, s1) =
f(0, s2) = f(0, s3).

Also if there are no i, 0 ≤ i ≤ m − 1, and distinct s1, s2, s3 such that
f(i, s1) = f(i, s2) = f(i, s3), then the number of −1 entries in the matrix T is

⎧
⎨

⎩

(k/2− 1)(k − 1), if k ≡ 0 (mod 3),
m+ (k/2− 1)(k − 1)− k + 1, if k ≡ 1 (mod 3),
(k/2− 1)(k − 2) + 1, if k ≡ 2 (mod 3).

Proof. For i = 0, . . . ,m − 1, let Ei denote the number of triples (i, s′, s′′) such
that s′ 
= s′′ and f(i, s′) = f(i, s′′). We have Ci ≥ k − Ei/2 for i ≥ 1. This is
because each f(i, s) is a basis element for every s and i ≥ 1. Moreover, if there
exist distinct s1, . . . , s� such that f(i, s1) = · · · = f(i, s�) and � ≥ 2, then the
complexity of row i is decreased by 1 if � = 2 and at most by � if � ≥ 3 while
Ei is increased by �(� − 1). Also it is easy to see that Ci = k − Ei/2 if and
only if there are no distinct s1, s2, s3, s4 such that f(i, s1) = · · · = f(i, s4). In
the following we obtain some inequalities involving C0 which, together with the
inequalities obtained for Ci, i = 1, . . . ,m− 1, will allow us to establish a lower
bound for CN .

Let i = 0. Now, if 1 ≤ s < k/2 and f(0, s) = αj , then 1 + γs = γt3j for some
t. Hence 1+γk−s = 1+γ−s = γ−s(γs +1) = γt−s3j , and so f(0, k−s) = f(0, s).
Furthermore, f(0, k/2) = k and f(0, 0) is a basis element, whence f(0, 0) 
=
f(0, k/2). We have the following three cases:



Software Implementation of Arithmetic in F3m 91

(A) If k ≡ 0 (mod 3), then we claim that C0 +E0/2 ≥ k−1. As we mentioned
above the sum (1) for i = 0 produces

f(0, 1) = f(0, k − 1), . . . , f(0, k/2− 1) = f(0, k/2 + 1), f(0, 0), f(0, k/2) = k.

If f(0, 0), f(0, 1), . . . , f(0, k/2−1) are pairwise distinct, then we have C0+E0/2 =
k− 1, and if they are not pairwise distinct then C0 will decrease while there wll
be an increase in E0. It is easy to see that the increment in E0/2 will be greater
than or equal to the decrement in C0. From this the claim follows. Also it is easy
to see that C0 + E0/2 = k − 1 if and only if there are no distinct s1, s2, s3, s4
such that f(0, s1) = · · · = f(0, s4).

(B) If k ≡ 1 (mod 3), then Tr(α) = −1 ≡ −k (mod 3). From the fact that the
trace is the sum of the basis elements and an argument similar to above we obtain
C0+E0/2 ≥ m+k/2−2. Furthermore we see that C0+E0/2 = m+k/2−2 if and
only if there are no distinct s1, s2, s3 such that f(0, s1) = f(0, s2) = f(0, s3).

(C) If k ≡ 2 (mod 3), then Tr(α) = −1 ≡ k (mod 3). Similar arguments as
above lead to C0 +E0/2 ≥ m. Again it is easily seen that C0 +E0/2 = m if and
only if there are no distinct s1, s2, s3 such that f(0, s1) = f(0, s2) = f(0, s3).

Using the inequalities we have obtained for C0, C1, . . . , Cm−1, it suffices to
compute E0 + E1 + · · · + Em−1 in order to obtain a lower bound for CN =∑m−1

i=0 Ci. This is done in the following through a double counting argument.
A triple (i, s′, s′′) for Ei exists if and only if there is some j with

1+γs′
3i ≡ γj(1+γs′′

3i) (mod r) or γs′′
3i(γs′−s′′

−γj) ≡ γj−1 (mod r).

Now γj − 1 and γs′−s′′ − γj cannot both be zero because otherwise s′ = s′′. For
a given j and s′ − s′′, there is either no solution or exactly one solution (i, s′′).
Solutions are obtained for 0 < j < k and s′ − s′′ 
∈ {0, j}, giving (k − 1)(k − 2)
triples (i, s′, s′′).

The claim about the count of −1 entries follows from the fact that
∑m−1

i=0 Ei =
(k − 1)(k − 2) and by examining the first row of the matrix T . �

Corollary 1. If k = 4, then CN = 5m− 7.

Proof. We verify that conditions (i) and (iii) of Theorem 2 are satisfied. Since
k = 4, we have f(0, 1) = f(0, 3) and E0 + · · · + Em−1 = 6. Thus there are no
i ≥ 1 and distinct s1, s2, s3 such that f(i, s1) = f(i, s2) = f(i, s3). Suppose now
that f(0, 0) = f(0, 1). Then 1 + γ0 = γ�(1 + γ) for some �. Squaring both sides
gives 4 = ±2γ, and hence 2 = ±γ. Squaring again yields 4 = γ2 = −1 which is
impossible if m > 1. Hence f(0, 0) 
= f(0, 1) and the result follows. �

The lower bound of Theorem 2 is not always met with equality when k ≥ 6.
A computer search found that the values (m, k) for which k ≤ 26 is even, m ∈
[k, 1000] is prime, a type k GNB for F3m exists, but the lower bound of Theorem 2
is not met with equality are (17, 14), (53, 20), (31, 22), and (103, 24).

The proof of Theorem 2 yields “structure” results concerning the matrix T0

that can lead to significant computational savings when k is 2 or 4. The basic



92 O. Ahmadi, D. Hankerson, and A. Menezes

idea is that T0 can be written as P+Q where the total number of nonzero entries
is essentially unchanged, but the multiplication A(�)PB(�)′

is independent of �.
The complexity of the multiplication is then essentially the number of nonzero
terms in Q.

This type of decomposition was shown in F2m for optimal normal bases of
type 1 by Hasan, Wang, and Bhargava [17]. For their case, the corresponding
T0 has 2m − 1 nonzero entries, and Q has m − 1 nonzero entries. Exploiting
the decomposition gives significant speed (and possibly storage) improvements
[26,10]. However, this decomposition is for type 1 bases, and so m is necessarily
even.

The following decomposition result is obtained for characteristic 3. For k = 2,
the multiplication complexity is essentially reduced from 3m to 2m. This result
can be applied, for example, to the Ning-Yin multiplication presented in [14].
For k = 4, the multiplication complexity is essentially reduced from 5m to 4m.

Theorem 3. Let T0 correspond to a GNB of type k for F3m with m > k. If
k = 2, then T0 = I +Q where Q has 2m− 1 nonzero entries, each of which is 1.
If k = 4, then T0 = −I +Q where Q has 4m− 4 nonzero entries, three of which
are −1.

Proof. The entries of T0 are obtained from T via t(0)i,j = ti−j,−j and hence the

diagonal entries of T0 are t(0)j,j = t0,−j .
For k = 2, we have f(0, 0) = α� for some �, and f(0, 1) = 2. Hence m − 1 of

the t0,−j entries are 1 and one entry is −1. We can thus write T0 = I +Q where
Q receives a “correction term” corresponding to the −1 entry. It is easy to see
that Q will then have 2m− 1 nonzero entries.

For k = 4, in the proof of Corollary 1 we showed that there cannot be an i with
f(i, s) constant for three distinct s. Thus from f(0, 1) = f(0, 3) and f(0, 2) = 4,
we have C0 = m− 1 where m− 2 entries are −1 and one entry is 1. The result
then follows in a fashion similar to k = 2 using the fact that CN = 5m− 7. �

A consequence of Theorem 3 is that a GNB of type 2 over F3m is essentially
optimal in the sense that the complexity of the multiplication is effectively 2m−1
(since A(�)IB(�)′

= A · B is independent of � and essentially cost-free).

4 Implementation Notes and Timings

In this section, we provide details on the implementation along with timings
on a Pentium 4, a common platform chosen for such comparisons. This proces-
sor is briefly described as 32-bit with extensions for wider operations in special
registers, and has relatively few general-purpose registers. Compared to the pre-
ceding generation Pentium III processors, the instruction pipeline is deeper and
penalties are larger for branch misprediction [19].

The implementation language was C, and only general-purpose registers were
employed. Cooperating with processor characteristics and compiler optimizing
peculiarities can be a difficult task, and our efforts in this area were modest.



Software Implementation of Arithmetic in F3m 93

In particular, the GNU C compiler can be weaker on register allocation strate-
gies, and favours scalars over structures and arrays (even when array indices
are known at compile-time). Limited effort was applied to cooperate with such
weaknesses, but the timings in Table 1 show that significant differences between
compiler performance remain.

Table 1. Timings (in μs) for field arithmetic on a 2.4 GHz Pentium 4a

Polynomial Basis Type 2 Normal Basis

add mult a3 a1/3 invert
by exp

invert
by EEA

mult
mult

Thm 3
mult

ring mapb
a3 or

a1/3
invert
by exp

F3239 = F3[x]/(x239 + x24 − 1)

gcc .05 5.0 .32 1.6c 137d 55 21.0 16.2 13.9 .04 195d

icc .04 4.2 .30 1.2c 122d 46 17.2 14.2 11.5 .02 171d

GPSe .69 23.0 1.59 19.3 159 60.9 .60 14182

F3509 = F3[x]/(x509 − x477 + x445 + x32 − 1)

gcc .09 15.5 .70 2.5f 575g 213 98.7 74.5 58.1 .07 1034g

icc .07 12.8 .66 1.7f 508g 190 74.3 58.8 52.0 .04 829g

F21223 = F2[x]/(x1223 + x255 + 1)

gcc .06 17.9
icc .06 15.6

a Compilers are GNU C (gcc) 3.3 and Intel C (icc) 6.0. Timings done under Linux/x86.
b Map to F3[x]/((xmk+1 − 1)/(x − 1)) and use a modified comb polynomial multipli-

cation [10]. Fields here have k = 2 (the type of the Gaussian normal basis).
c Sparse multiplication; x1/3 has 23 nonzero terms and x2/3 has 9 nonzero terms.
d Addition-chain with 12 multiplications.
e Timings in [14] are given for a 2.8 GHz Pentium 4 running Linux with gcc 3.3; times

here are obtained by scaling linearly to 2.4 GHz.
f Sparse multiplication; x1/3 has 6 nonzero terms and x2/3 has 3 nonzero terms.
g Addition-chain with 14 multiplications.

4.1 Field Multiplication

For polynomial multiplication, we employed a “comb” multiplier [22] suitably
modified for characteristic 3. We used width w = 3, which extracts 3 bits each
of a0 and a1 at each step. Only 27 (rather than 26 = 64) distinct values are
possible due to the representation. A lookup was performed on the 6 bits in
order to select from the table of (data-dependent) precomputation. Since half
the elements are obtained by simple negation, precomputation is less expensive
than it may appear. For fields of sufficient size, a shallow-depth Karatsuba split
was used. At smaller field sizes this need not be faster; the results vary by
platform, but typically the times are competitive with a “full comb” and the
split has the advantage of less code size and dynamic memory consumption. For
example, on the test platform, a full comb on eight 32-bit word pairs (e.g., F3239)
is 8-18% faster than a depth-1 split (giving three 4-word-pair multiplications).



94 O. Ahmadi, D. Hankerson, and A. Menezes

Normal basis multiplication uses the precomputation strategy of Ning and Yin
[24]. The basic idea is to calculate rotations required in a (data-dependent) pre-
computation phase to reduce costs in the main evaluation. For low-complexity
Gaussian normal bases, the multiplication matrix is sparse and of regular struc-
ture, and the corresponding algorithm is relatively simple to code. Granger et
al. [14] adapt the Ning and Yin algorithm directly. Our implementation appar-
ently differs in the order of evaluation in that our outer loop is on the rows of
the multiplication matrix, which reduces the number of lookups. We also give
timings for the reduced-complexity version given by Theorem 3.

The “ring mapping” approach is detailed in [10]; only an outline is given here.
For a field Fpm with a type k normal basis, there is a fast mapping φ from Fpm

to the ring Fp[x]/((xmk+1 − 1)/(x − 1)). The basic idea is to perform normal
basis multiplication by mapping into the ring and applying fast polynomial-basis
methods and then map back. A downside in this approach is the expansion by a
factor k. However, the last mk/2 coefficients for elements in φ(Fpm) are a mirror
reflection of the first mk/2 [34]. Hence, it suffices to find half the coefficients in
the ring product.

Each coefficient in φ(·) or φ−1(·) can be obtained with a shift and mask.1 The
comb multiplier is defined for only a subset of the ring. However, the expansion
in the mapping means that the method will be significantly more expensive than
polynomial multiplication in the field. In particular, precomputation is for ring
elements, and an entire ring element is “combed.” On the positive side, only half
the product in the ring is calculated, and reduction is especially simple.

4.2 Cubing and Cube Roots

For cubing in polynomial representations, we used an 8-to-24-bit lookup table to
“thin” coefficients and then reduced the result. This is analogous to the common
method for squaring in binary fields, and cubing is similarly inexpensive. Cube
roots were obtained by the method described in §2.2, with a 64-word lookup
table to extract coefficients. The cost depends on the number of nonzero terms
in x1/3 and x2/3.

For m = 239, we used the reduction polynomial x239 + x24 − 1 so that direct
comparisons could be made to [14]. This choice gives 23 terms in x1/3 and 9
terms in x2/3. As noted in Example 1, this is not optimal, but nonetheless
leads to fairly fast cube roots via sparse multiplication. For m = 509, there
is no trinomial giving sparse x1/3. We searched for irreducible tetranomial or
pentanomial x509 + p(x) giving the lowest combined weight for x1/3 and x2/3

subject to deg p ≤ 509 − 32. There are multiple candidate pentanomials, but
x509−x477 +x445 +x32−1 was chosen for the fortuitous spacing between powers
that permits optimizations. The choice gives x1/3 with 6 terms and x2/3 with 3.

1 More precisely, in our representation for characteristic 3, a shift and mask is applied
to a pair of words to obtain an output coefficient. For the mapping into the ring,
only half the coefficients are found this way—the remainder are obtained at low cost
by symmetry.



Software Implementation of Arithmetic in F3m 95

A possible implementation downside is the high degree of p(x), although this is
not a significant issue here.

In a normal basis representation, cubing and cube roots are rotations. In our
specific representation, this is rotation of a pair, an inexpensive operation.

4.3 Inversion

Inversion is performed via a Euclidean algorithm variant and also using exponen-
tiation. Although Euclidean algorithm variants can be faster, coding for speed
typically involves code expansion (to efficiently track lengths of operands, etc.).
The method using exponentiation is short and easy to code once field multipli-
cation is done.

For the Euclidean algorithm approach in characteristic 3, [16] and [14] employ
the “binary” Euclidean algorithm. We adapted the “usual” Euclidean algorithm
[15, Algorithm 2.48]. Unlike the binary Euclidean algorithm, explicit degree cal-
culations are required. Some processors have hardware support that can aid
in these calculations. The Intel Pentium family has “bit scan” instructions to
find the left- or right-most 1 bit in a word, and we used an assembly language
fragment to exploit this capability. A binary search can be used on processors
without such support,2 and in fact “bit scan” on the Pentium is less effective for
our code here than in [11] for characteristic 2, in part because of the difference
in characteristic and also that the characteristic 2 code uses more optimization
via code expansion.

For inversion via exponentiation, we used Itoh-Tsujii methods (see §2.3).
Rather than the direct recursive approach, a few multiplications can sometimes
be saved by choosing short addition chains. We used the following chains:

F3239 : 1, 2, 3, 6, 8, 14, 28, 56, 112, 224, 238
F3509 : 1, 2, 4, 8, 12, 24, 28, 56, 112, 224, 252, 504, 508

These give inversion via 12 and 14 multiplications, respectively, saving a mul-
tiplication in each case over the direct recursive approach. (The corresponding
inversion code using these chains has low resource requirements.)

4.4 Analysis

Table 1 shows that the times in [14, Table 4] are unnecessarily pessimistic (on
this platform) for both polynomial basis and normal basis field arithmetic in
characteristic 3. For the example field F3239 , multiplication times in a polynomial
basis are approximately a factor 5 faster than reported in [14], in part due to
algorithm differences.

For normal basis representations, significant improvement can be obtained
for the type 2 case exhibited by F3239 by exploiting Theorem 3 to reduce the
complexity. Further improvement is obtained by the “ring mapping” approach.
2 Sun recommends using a “population count” (popc) instruction to build a seven-

instruction bit-scan on SPARC [33]. However, popc is implemented via a trap, and
bit-scan will be faster via binary search.



96 O. Ahmadi, D. Hankerson, and A. Menezes

Our results are consistent with [14] in the sense that normal basis multiplica-
tion is sufficiently expensive relative to multiplication in a polynomial basis to
discourage the use of normal basis representations in this environment.

Nonetheless, normal bases continue to be of interest in some environments,
and choosing between the Ning-Yin approach and the ring mapping method
will depend, in part, on the type k of the Gaussian basis. Type 2 bases are of
course advantageous in both methods, but larger type may be the only choice if
supersingular curves with low cofactor are demanded. For example, in the range
239 < m < 487, only m = 317 and m = 353 give supersingular curves over F3m

with small cofactor, and the corresponding types are 26 and 14, resp.
The Ning-Yin precomputation requires 4m words of data-dependent storage,

and this amount is not affected by the type of the basis. The method is espe-
cially easy to code, and (roughly speaking) the running time increases linearly
with k, although the number and location of −1 entries in the multiplication
matrix complicates performance tuning. In contrast, the ring mapping approach
has an expansion by a factor k, although symmetry lessens the impact. For the
test platform, there will be a threshold k where multiplication will be fastest
via conversion to polynomial basis representation (at cost equivalent to a few
multiplications provided the conversion matrix is known). Of less practical im-
portance, [14] note the “exceptionally high cost of inversion in normal bases;”
however, in fact the methods of Itoh and Tsujii apply and inversion cost is
relatively modest.

For curve arithmetic, [16] provide comparisons for a supersingular curve over
F397 against a curve over F2241 , which offer similar security in the context of
pairing-based cryptography (the corresponding embedding degrees are 6 and 4,
respectively). In [16, Table 4], the best times for point multiplication favour the
characteristic three case by roughly a factor 2. However, the scalar recodings se-
lected are binary, ternary, and nonary, and this favours the characteristic three
curve; in fact, the ternary and nonary methods are not useful for the character-
istic two case. Since the nonary method is permitted storage for a few points of
precomputation, a more meaningful comparison would involve a similar-storage
width-w NAF method in the characteristic two case. In fact, the calculation of
the usual width-w NAF adapts directly to the base 3 case, and so we’d recom-
mend that the nonary method be replaced by a method employing a (base 3)
width-3 NAF (which uses the same amount of storage).

5 Identity-Based Encryption

In this section we compare the speed of encryption and decryption for the
Boneh-Franklin (BF) [7] and Sakai-Kasahara (SK) [27] identity-based encryption
schemes at the 128-bit security level.

5.1 Symmetric Pairings

Let E be a supersingular elliptic curve defined over Fq. Let n be a prime divisor
of #E(Fq), and suppose that n2 � #E(Fq). The embedding degree of E (with



Software Implementation of Arithmetic in F3m 97

respect to n) is the smallest positive integer k such that n | qk−1. Let P ∈ E(Fq)
be a point of order n, and let μn denote the order-n cyclic subgroup of F∗

qk . The
(reduced) Tate pairing is a bilinear map ê : 〈P 〉 × 〈P 〉 → μn.

The three pairings we consider are described next. We let m, s, c denote the
cost of multiplication, squaring, and cubing in the base field Fq, and let M , S,
C denote the cost of multiplication, squaring and cubing in the extension field
Fqk . Also, we let A, D, T denote the cost of point addition (using mixed affine-
projective coordinates), point doubling (using projective coordinates), and point
tripling (using projective coordinates) in E(Fq).

Type I Pairing. Let q = p be a 1536-bit prime such that p ≡ 3 (mod 4) and
p+1 has a 256-bit low Hamming weight prime divisor n. Then the elliptic curve

E1/Fp : Y 2 = X3 − 3X

is supersingular and n | #E1(Fp). The embedding degree of E1 is k = 2. The
extension field Fp2 is represented as Fp2 = Fp[i]/(i2 +1), and a distortion map is
(x, y) �→ (−x, iy). We have m ≈ s, M ≈ 3m, S ≈ 2m, A ≈ 3s+ 8m ≈ 11m, and
D ≈ 4s+ 4m ≈ 8m. The Tate pairing, computed using the algorithm described
by Scott [29], costs 4s+ 8m+S+M per bit of n (for the Miller operation) plus
5s+ 5m per bit of n (for the final exponentiation by (p2 − 1)/n). If one of the
two input points is fixed then, as observed in [29], precomputing 768 Fp-elements
can reduce the cost of the Miller operation to m+ S +M per bit of n.

Type II Pairing. Let q = 21223, F21223 = F2[x]/(x1223 + x255 + 1), and

E2/F21223 : Y 2 + Y = X3 +X.

Then E2 is supersingular, and #E2(F21223) = 5n where n is a 1221-bit prime.
The embedding degree of E2 is k = 4. The extension field Fq4 is represented
using tower extensions Fq2 = Fq[u]/(u2 + u + 1) and Fq4 = Fq2 [v]/(v2 + v + u).
We have M ≈ 9m and A ≈ 9m, while s, S and D are essentially free. Inversion
of an element α ∈ μn is also essentially free since α−1 = αq2

. The BGhS [4]
algorithm for computing the Tate pairing costs approximately 612× 7m.

Type III Pairing. Let q = 3509, F3509 = F3[x]/(x509 − x477 + x445 + x32 − 1),
and

E3/F3509 : Y 2 = X3 −X + 1.

Then E3 is supersingular, and #E3(F3509) = 7n where n is a 804-bit prime. The
embedding degree of E2 is k = 6. The extension field Fq6 is represented using
tower extensions Fq3 [u] = Fq[u]/(u3−u− 1) and Fq6 = Fq3 [v]/(v2 +1). We have
M ≈ 18m and A ≈ 9m, while c, C and T are essentially free. Inversion of an
element α ∈ μn is also essentially free since α−1 = αq3

. The BGhS [4] algorithm
for computing the Tate pairing costs approximately 255× 15m.



98 O. Ahmadi, D. Hankerson, and A. Menezes

5.2 Boneh-Franklin and Sakai-Kasahara IBE

Let P ∈ E(Fq) be a point of order n, and let ê : 〈P 〉×〈P 〉 → μn be a (symmetric)
bilinear pairing. Let H1 : {0, 1}∗ → 〈P 〉, H2 : {0, 1}λ × {0, 1}λ → [1, n − 1],
H3 : μn → {0, 1}λ, H4 : {0, 1}λ → {0, 1}λ, H5 : {0, 1}∗ → [1, n − 1] be hash
functions. The Key Generator’s private key is t ∈R [1, n − 1], while its public
key is T = tP .

Boneh-Franklin IBE. Party A’s private key is d = tQ, where Q = H1(IDA).
To encrypt a message m ∈ {0, 1}λ for A, a party B does the following: Select

σ ∈R {0, 1}λ, and compute Q = H1(IDA), r = H2(σ,m), R = rP , V = σ ⊕
H3(ê(T,Q)r), and c = m⊕H4(σ). B sends (R, V, c) to A.

To decrypt, A computes σ = V ⊕ H3(ê(d,R)), m = c ⊕ H4(σ), and r =
H2(σ,m). Finally, A accepts m provided that R = rP .

The BF scheme requires a hash function H1 : {0, 1}∗ → 〈P 〉. For Type I
pairings, H1 can be implemented by first hashing to a point Q′ in E(Fp), and
then multiplying Q′ by the cofactor h = #E(Fp)/n. As noted by Scott [29],
the cofactor multiplication can be avoided; thus the essential cost of hashing
is a square-root computation in Fp. Square roots in Fp can be obtained by an
exponentiation to the power (p+ 1)/4, an operation which requires about 1806
Fp-multiplications using width-5 sliding windows. The hash function H1 for the
Type II pairing (and the Type III pairing) is relatively inexpensive since square
roots (resp. cube roots) can be efficiently computed, and since the cofactor h is
small.

The dominant operations in BF encryption are the point multiplication rP
where P is fixed, and the computation of γ = ê(T,Q)r (plus a square-root com-
putation for Type I pairings). For Type I pairings, the fastest way to compute γ
is to first evaluate the Tate pairing ê(T,Q) (where T is fixed), and then perform
the exponentiation to the power r (where the base element ê(T,Q) is unknown in
advance). For Type II and III pairings, γ should be computed by first computing
rT (where T is fixed), and then evaluating ê(rT,Q). The dominant operations
in BF decryption are the Tate pairing evaluation ê(d,R) and the point multipli-
cation rP where the points d and P are fixed.

Sakai-Kasahara IBE. Party A’s private key is d = (1/(H5(IDA) + t)P .
To encrypt a message m ∈ {0, 1}λ for A, a party B does the following: Select

σ ∈R {0, 1}λ, and compute Q = H5(IDA)P + T , r = H2(σ,m), R = rQ, V =
σ ⊕H3(ê(P, P )r), and c = m⊕H4(σ). B sends (R, V, c) to A.

To decrypt, A computes σ = V ⊕ H3(ê(d,R)), m = c ⊕ H4(σ), and r =
H2(σ,m). Finally, A accepts m provided that R = rQ.

The dominant operations in SK encryption are the point multiplication
H5(IDA)P where the base point P is fixed, the point multiplication rQ where
the base point Q is unknown in advance, and the exponentiation ê(P, P )r where
the base element ê(P, P ) is fixed. The dominant operations in SK decryption are
the same as for BF decryption.



Software Implementation of Arithmetic in F3m 99

5.3 Costs

Table 2 lists the approximate number of Fq-multiplications needed to compute
the Tate pairing, and to perform point multiplication and exponentiation in μn

for the Type I, II and III pairings. We acknowledge that these raw multiplication
counts do not include the cost of other field operations such as additions, square
roots, cube roots, and inversions that are either relatively cheap or few in num-
ber. Nonetheless, these multiplication counts are reasonably accurate estimates
of the actual running times of the operations listed in Table 2. For example,
the timings for our implementation of the Tate pairing, point multiplication,
and μn-exponentiation for the Type II pairing are 4578, 2163, and 2037 F21223 -
multiplications, which are close to the estimated costs of 4284, 1895, and 1895
in Table 2. Similarly, the timings for our implementation of the Tate pairing,
point multiplication, and μn-exponentiation for the Type III pairing are 4359,
1602, and 2695 F3509 -multiplications, which are close to the estimated costs of
3825, 1259, and 2518 in Table 2.

Table 2. Cost (number of Fq-multiplications) of the Tate pairing, point multiplication
rP in E(Fq), and exponentiation αr in μn. The bitlength of n is denoted by �.

Pairing
type

Fq �
Tate

pairing
rP

P unknown
rP

P fixed
Exp in μn

α uknown
Exp in μn

α fixed

I 1536-bit p 256 6912/4096a 2602b 745c 512d 199c

II F21223 1221 4284 1895b/447e 1832b/384e 1895b/447e 1832b/384e

III F3509 804 3825 1259f/498g 1016f/324g 2518f/996g 2032f/648g

a Applicable when one of the input points is fixed; requires 144 Kbytes for precomputed
values.

b 5-NAF point multiplication/exponentiation (see Algorithm 3.36 of [15]) with �-bit
multiplier r.

c Width-5 two-table comb method (see Algorithm 3.45 of [15]) with �-bit multiplier r.
d Lucas-method of exponentiation [29].
e 5-NAF point multiplication/exponentiation with 256-bit multiplier r.
f 4-NAF point multiplication/exponentiation with �-bit multiplier r.
g 3-NAF point multiplication/exponentiation with 256-bit multiplier r.

Table 3 lists the multiplication costs of the dominant operations in encryption
and decryption for the BF and SK IBE schemes. The costs have been normalized
to Fp-multiplications (where p is a 1536-bit prime), using our timings of 12.8μs
for multiplication in F3509 , 15.6μs for multiplication in F21223 , and 26.5μs for
a multiplication in Fp (the latter obtained using Mike Scott’s MIRACL multi-
precision library [30]).3 The first set of (I,II,III) timings in Table 3 use full-length

3 Timings were obtained on a 2.4 GHz Pentium 4 running Linux/x86. Compilers were
GNU C (gcc) 3.3 for Fp and the Intel compiler (icc) 6.0 for the others. The expen-
sive portions in the Fp multiplcation are written in assembly, and times for these
fragments are not affected by compiler selection.



100 O. Ahmadi, D. Hankerson, and A. Menezes

multipliers r for the Type II and III pairings, and do not include any precom-
putation of the Type I Tate pairing computation. The second set of (I,II,III)
timings, on the other hand, use 256-bit multipliers r for the Type II and II pair-
ings, and allow for the 144 Kbytes of precomputed values that accelerate the
Tate pairing computation for Type I pairings. Short 2t-bit multipliers (where t
is the security level) instead of �-bit multipliers (where � is the bitlength of n)
have been used in some previous papers (e.g., [31] and [32]). The drawback of
using short multipliers is that the BF [7] and SK [9] security proofs are no longer
applicable.

Table 3. Normalized cost (in terms of Fp-multiplications) of encryption and decryption
for BF and SK IBE using the Type I, II and III pairings

Ia IIb IIIb Ic IId IIId

BF encrypt 9975 4679 2829 7159 2974 2161
BF decrypt 7657 3600 2338 4841 2748 2004

SK encrypt 3546 3272 2080 3546 715 710
SK decrypt 7657 3600 2338 4841 2748 2004

a No precomputation for Tate pairing computations.
b Full length multipliers r.
c 144 Kbytes of precomputed values for the Tate pairing computation.
d 256-bit multipliers r.

6 Conclusions

We devised faster multiplication algorithms for characteristic three finite fields
when elements are represented using a Gaussian normal bases. Despite our struc-
ture results and fast implementations, our analysis confirms the conclusions of
previous papers that multiplication is faster when a polynomial basis represen-
tation is employed. We also compared the relative speed of the BF and SK IBE
schemes at the 128-bit security levels when a pairing based on a supersingular

MIRACL has optimized code for several operations on the Pentium 4, the proces-
sor used in this comparison. In particular, the timing was obtained using general-
purpose registers and a multiplier that uses Karatsuba down to a specified operand-
size threshold. The threshold t is specified in terms of words and so that the modulus
size is t · 2n words for some n. Code size grows quadratically with t, and t between 8
and 16 is reasonable on this platform. Hence, for 1536-bit primes, we chose t = 12.

The Pentium 4 has special-purpose “multi-media” (SSE2) registers that can be
employed for field multiplication. Roughly speaking, the basic advantage for prime
fields is additional registers that participate in multiplications and accumulation
can be on 64 bits, and the advantage for characteristic 2 and 3 is wider operations.
Multiplication in MIRACL for prime fields is nearly a factor 2 faster with these
registers, and [15] reports similar acceleration for characteristic 2 fields (on a Pentium
III via the SSE subset); similar techniques apply to characteristic 3.



Software Implementation of Arithmetic in F3m 101

elliptic curve is used. The Type III pairing (over F3509) yields the fastest en-
cryption and decryption operations, which are several times faster than with a
Type I pairing (over a 1536-bit prime field). Moreover, when using a Type III
pairing, SK encryption is about 3 times as fast as BF encryption, while SK and
BF decryption have similar running times.

References

1. Ahmadi, O., Hankerson, D., Menezes, A.: Formulas for cube roots in F3m . Discrete
Applied Mathematics 155, 260–270 (2007)

2. Ash, D., Blake, I., Vanstone, S.: Low complexity normal bases. Discrete Applied
Mathematics 25, 191–210 (1989)

3. Barreto, P.: A note on efficient computation of cube roots in characteristic 3,
Technical Report 2004/305, Cryptology ePrint Archive (2004)

4. Barreto, P., Galbraith, S., hÉigeartaigh, C., Scott, M.: Efficient pairing compu-
tation on supersingular abelian varieties. Designs, Codes and Cryptography 42,
239–271 (2007)

5. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

6. Blake, I., Gao, X., Menezes, A., Mullin, R., Vanstone, S., Yaghoobian, T.: Appli-
cations of Finite Fields. Kluwer, Dordrecht (1993)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal on Computing 32, 586–615 (2003)

8. Boyen, X., Martin, L.: Identity-based cryptography standard (IBCS) #1: Super-
singular curve implementations of the BF and BB1 cryptosystems, IETF Internet
Draft (December 2006)

9. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption
scheme. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp.
442–459. Springer, Heidelberg (2005)

10. Dahab, R., Hankerson, D., Hu, F., Long, M., López, J., Menezes, A.: Software
multiplication using Gaussian normal bases. IEEE Transactions on Computers 55,
974–984 (2006)

11. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Transactions on Computers 53, 1047–1059 (2004)

12. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers, Technical Re-
port 2006/165, Cryptology ePrint Archive (2006)

13. Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic
three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411.
Springer, Heidelberg (2005)

14. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing based cryptography in characteristic three. IEEE Transactions on Com-
puters 54, 852–860 (2005)

15. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

16. Harrison, K., Page, D., Smart, N.: Software implementation of finite fields of charac-
teristic three, for use in pairing-based cryptosystems. LMS Journal of Computation
and Mathematics 5, 181–193 (2002)



102 O. Ahmadi, D. Hankerson, and A. Menezes

17. Hasan, M., Wang, M., Bhargava, V.: A modified Massey-Omura parallel multiplier
for a class of finite fields. IEEE Transactions on Computers 42, 1278–1280 (1993)

18. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Transactions
on Information Theory 52, 4595–4602 (2006)

19. Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual,
Vol. 1: Basic Architecture. Number 245470-007, (2002) available from
http://developer.intel.com.

20. Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient hardware for the Tate
pairing calculation in characteristic three. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

21. Lenstra, A.: Unbelievable security: Matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001)

22. López, J., Dahab, R.: High-speed software multiplication in F2m . In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

23. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences E84-A, 1234–1243 (2001)

24. Ning, P., Yin, Y.: Efficient software implementation for finite field multiplication
in normal basis. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS,
vol. 2229, pp. 177–189. Springer, Heidelberg (2001)

25. Page, D., Smart, N.: Hardware implementation of finite fields of characteristic
three. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 529–539. Springer, Heidelberg (2003)

26. Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication
using Gaussian normal bases. IEEE Transactions on Computers 55, 34–47 (2006)

27. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve,
Technical Report 2003/054, Cryptology ePrint Archive (2003)

28. Schirokauer, O.: The number field sieve for integers of low weight, Technical Report
2006/107, Cryptology ePrint Archive (2006)

29. Scott, M.: Computing the Tate pairing. In: Menezes, A.J. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

30. Scott, M.: MIRACL – Multiprecision Integer and Rational Arithmetic C Library,
http://www.computing.dcu.ie/∼mike/miracl.html

31. Scott, M.: Implementing cryptographic pairings, preprint (2006)
32. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings

on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp.
134–147. Springer, Heidelberg (2006)

33. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual (Version 9).
Prentice-Hall, Englewood Cliffs (1994)

34. Wu, H., Hasan, A., Blake, I., Gao, S.: Finite field multiplier using redundant rep-
resentation. IEEE Transactions on Computers 51, 1306–1316 (2002)

http://developer.intel.com
http://www.computing.dcu.ie/~mike/miracl.html


Complexity Reduction of Constant Matrix

Computations over the Binary Field

Oscar Gustafsson and Mikael Olofsson

Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden

oscarg@isy.liu.se, mikael@isy.liu.se

Abstract. In this work an algorithm for realizing a multiplication of
a vector by a constant matrix over the binary field with few two-input
XOR-gates is proposed. This type of problem occurs in, e.g., Galois field
computations, syndrome computation for linear error correcting codes,
cyclic redundancy checks (CRCs), linear feedback shift-registers (LF-
SRs), and implementations of the Advanced Encryption Standard (AES)
algorithm. As the proposed algorithm can utilize cancellation of terms
it outperforms in general previously proposed algorithms based on sub-
expression sharing.

Keywords: binary field, low-complexity, Galois field arithmetic, con-
stant multiplication.

1 Introduction

The binary field GF (2) is the set {0, 1} together with addition and multiplication
reduced modulo 2, i.e., addition and multiplication correspond to the logical op-
erations XOR and AND, respectively [1,2]. The extension field GF (2m) is the set
of univariate binary polynomials over GF (2) of degree less than m. Arithmetic
in GF (2m) is the corresponding polynomial arithmetic reduced modulo

p(x) =
m∑

i=0

pix
i,

where p(x) is an irreducible polynomial over GF (2). The reduction modulo p(x)
is performed by successive uses of

xm ≡
m−1∑

i=0

pix
i mod p(x).

If all non-zero elements of the field can be generated by x reduced modulo p(x),
i.e., if the set {xi mod p(x) : 0 ≤ i < 2m− 1} contains all non-zero elements in
GF (2m), then p(x) is said to be primitive.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 103–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



104 O. Gustafsson and M. Olofsson

Consider multiplying two arbitrary elements in GF (2m), represented in their
polynomial basis, a(x) and b(x) where we have

a(x) =
m−1∑

i=0

aix
i and b(x) =

m−1∑

i=0

bix
i.

The product c(x) is then given by

c(x) =
m−1∑

i=0

cix
i = a(x)b(x) =

m−1∑

i=0

bix
ia(x) mod p(x). (1)

Now, introduce a matrix X as

X =

⎡

⎢
⎢
⎢
⎣

0 . . . 0 p0
1 0 p1

. . .
...

0 1 pm−1

⎤

⎥
⎥
⎥
⎦
,

and the vector representations

ā = [a0 . . . am−1]
T
, b̄ = [b0 . . . bm−1]

T
, and c̄ = [c0 . . . cm−1]

T
.

Equation (1) can now be rewritten as c̄ = Ab̄, where

A = (ā, Xā, . . . , Xm−1ā).

Hence, for constant a(x) and p(x), the matrix A is a constant binary matrix.
This means that a multiplication by a constant in GF (2m) is a linear operation
over GF (2). Other linear operations in GF (2m) include e.g. squaring. In imple-
mentation of Reed-Solomon error correcting codes, constant computations may
be used in the encoder [3], the syndrome computation and Chien search of the
decoder [4]. Furthermore, constant computations are also used in, e.g., general
Galois field multipliers based on composite fields [5, 6].

The same type of problem also occurs in linear error correcting codes [7],
parallel realizations of cyclic redundancy checks (CRCs) [8, 9] and linear feed-
back shift-registers (LFSRs), and implementations of the Advanced Encryption
Standard (AES) algorithm [10].

The aim of this work is to realize a constant matrix multiplication like A
with as few additions (XOR-gates) as possible. This problem has been explicitly
studied for computations over the binary field in [3, 4, 7, 10]. However, these
previous works only cover a subset of the available algorithms proposed for a
similar problem, namely multiple constant multiplication (MCM). The MCM
problem is mainly motivated by the design of low-complexity FIR digital filters
[11, 12, 13, 14, 15, 16, 17].

In the next section the proposed algorithm is presented. Then, in Section
3, the algorithm is applied to an example matrix to illustrate the behavior. In
Section 4 the proposed algorithm is compared to previous algorithms. Finally,
in Section 5, some conclusions are drawn.



Complexity Reduction of Constant Matrix Computations 105

��
��
��
��
��

��

��

��
��
��

��

��
��� ���

Fig. 1. Realization of the computation in (2) (a) without and (b) with complexity
reduction

2 Complexity Reduction

Consider the computation

[
y0
y1

]

=
[
1 1 1
0 1 1

]
⎡

⎣
x0

x1

x2

⎤

⎦ . (2)

A straightforward realization of this computation is shown in Fig. 1(a) which
requires three adders/XOR-gates. However, it is also possible to share the com-
putation of x1 ⊕ x2 with a resulting complexity of two XOR-gates as illustrated
in Fig. 1(b).

2.1 Previous Approaches

The previously proposed algorithms for the considered problems are all based
on sub-expression sharing, i.e., common patterns are found and extracted for
realization. In [3, 4, 10] the most common combination of two inputs are re-
alized and used for later iterations. As long as there are common inputs the
algorithm continues extracting sub-expressions. The algorithms mainly differ in
how they handle the case where several combinations are as frequent. We will
refer to this type of algorithm as pairwise iterative matching sub-expression
sharing.

In [14] an approach were the largest, i.e., with the most non-zero positions,
possible common sub-expression is extracted. This sub-expression is then, given
that it includes more than two non-zero positions, added as a new row of the
problem. Similarly to the pairwise iterative matching method, this approach
continues until there are no more common sub-expressions to extract. While
this method has not been explicitly proposed for computations over the binary
field, we will use it for comparison. This method is here referred to as maximum
length sub-expression sharing.

In [7] a method similar to both the pairwise iterative matching method and the
maximum length method were proposed. Here, the most common sub-expression
independent of the number of non-zero positions is used.

Other approaches for sub-expression sharing has been proposed for the re-
alization of transposed form FIR filters. Among them are the use of a con-
tention resolution algorithm to select the best sub-expression taking the effect



106 O. Gustafsson and M. Olofsson

of subsequent sub-expressions into account [15]. In [17] an integer linear pro-
gramming model was proposed to solve the sub-expression sharing problem.
Furthermore, in [16] an exact method for selecting the sub-expressions was pro-
posed.

2.2 Proposed Approach

A completely different approach from sub-expression sharing is the adder graph
methodology introduced in [11]. The idea is the following: In iteration i, given an
initial set of available rows, Vi, compute all possible rows, Ci, using one operation
(here an XOR-gate). One row is here a vector with binary elements correspond-
ing to the sum of the non-zero elements, i.e., the row

(
0 1 0 1

)
corresponds to

x1 ⊕ x3. The set of rows remaining is denoted Ri. If any of the possible rows
are required, i.e. Ri ∩ Ci 
= ∅, they are moved to the set of available rows used
in the next iteration, Vi+1. If not, a heuristic decision must be taken to add one
possible row to the available rows in order to be able to find the required rows at
later stages. The output is in [11] represented as a graph with each node corre-
sponding to a computed value (row) and each edge to an interconnection, hence
the use of graph in the name. Note that if the algorithm terminates without
using the heuristic part, an optimal solution (one XOR-gate per unique row) is
found.

The proposed adder graph algorithm for XOR-gates with heuristic can be
described as

1. Initialize the set of available rows, V1, with the rows from the identity matrix
of size N . Initialize the set of required rows, R1, with the non-trivial1 rows
from the matrix to be realized, A. Remove any duplicate rows. Let i = 1.

2. Form a matrix Ci of all elementwise XOR-ed pairs of rows in Vi, i.e.,

Ci = {a⊕ b : a, b ∈ Vi}.

3. Form a new set of available rows, Vi+1, and a new set of required rows, Ri+1,
according to

Vi+1 = Vi ∪ (Ci ∩Ri),
Ri+1 = Ri − (Ci ∩Ri) = Ri − Ci,

i.e., move rows that are in both Ci and in the set of required rows from the
set of required rows to the set of available rows.

4. If Ri+1 = ∅, stop.
5. If (Ci ∩Ri) 
= ∅, increment i and go to 2.
6. Compute the Hamming distance between all rows in Ri and all rows in Ci.

For the combination with minimum Hamming distance, add the correspond-
ing row in Ci to Ri to form a new Ri+1. If several combinations have the same

1 Trivial rows do not require any XOR-gates to be realized, i.e., their Hamming weight
is ≤ 1.



Complexity Reduction of Constant Matrix Computations 107

��
��
��

��

��

Fig. 2. Realization of the transposed matrix in (3)

minimum Hamming distance, add the row from Ci that is present in most
combinations. If several such rows are present in equally many combinations,
pick one among them at random. Increment i and go to step 2.

The proposed heuristic in Step 6 generally realizes the row with minimum
Hamming weight initially. However, the order in which the intermediate rows
are generated does not consider the other rows to be generated later on. This
may lead to an increased number of XOR-gates for matrices with more columns
than rows.

2.3 Transposition

It is possible to obtain an alternative realization for a matrix by running our
algorithm on the transposed matrix, and then transposing the resulting network.
Transposition of a network is done by reverting the direction of the signals such
that the inputs become the outputs and the outputs become the inputs [18].
Furthermore, each 1-to-2-branch is replaced by a 2-input XOR-gate and each
2-input XOR-gate is replaced by a 1-to-2-branch.

Consider the following example which realizes the transposed matrix from (2).
The resulting realization is shown in Fig. 2.

⎡

⎣
y0
y1
y2

⎤

⎦ =
[
1 1 1
0 1 1

]T [
x0

x1

]

=

⎡

⎣
1 0
1 1
1 1

⎤

⎦
[
x0

x1

]

. (3)

If the number of inputs and outputs of the original realization is I and O,
respectively and the realization is done using X XOR-gates, then the transposed
realization will have

X +O − I XOR-gates. (4)

For the example in (2) and (3) this evaluates to 2+2−3 = 1, which can be seen
from Fig. 2 to be correct.

Hence, as the proposed algorithm is expected to perform worse on matri-
ces with more columns than rows, it is possible to apply the algorithm to
the transposed matrix instead and transpose the resulting realization. In Sec-
tion 4 we will give empirical support that transposing the network correspond-
ing to the transposed matrix actually can result in a significantly decreased
complexity.



108 O. Gustafsson and M. Olofsson

3 Example

To clarify the operation of the the proposed algorithm, we illustrate the proce-
dure by finding a solution for the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 1 0
1 1 1 0 0 0
0 0 1 1 1 0
1 0 1 0 0 0
1 0 0 1 1 1
0 0 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

A straightforward realization of A requires twelve XOR-gates.
We initialize the algorithm according to step 1, i.e., we set i = 1 and

V1 =

⎧
⎨

⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)

⎫
⎬

⎭
, R1 =

⎧
⎨

⎩

(1 1 0 1 1 0), (1 1 1 0 0 0)
(0 0 1 1 1 0), (1 0 1 0 0 0)
(1 0 0 1 1 1), (0 0 1 0 1 0)

⎫
⎬

⎭
.

According to steps 2 and 3, we calculate

C1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 1 0 0 0 0), (1 0 1 0 0 0)
(1 0 0 1 0 0), (1 0 0 0 1 0)
(1 0 0 0 0 1), (0 1 1 0 0 0)
(0 1 0 1 0 0), (0 1 0 0 1 0)
(0 1 0 0 0 1), (0 0 1 1 0 0)
(0 0 1 0 1 0), (0 0 1 0 0 1)
(0 0 0 1 1 0), (0 0 0 1 0 1)
(0 0 0 0 1 1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, C1 ∩R1 =
{

(1 0 1 0 0 0)
(0 0 1 0 1 0)

}

,

and

V2 =

⎧
⎪⎪⎨

⎪⎪⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)
(1 0 1 0 0 0), (0 0 1 0 1 0)

⎫
⎪⎪⎬

⎪⎪⎭

, R2 =

⎧
⎪⎪⎨

⎪⎪⎩

(1 1 0 1 1 0)
(1 1 1 0 0 0)
(0 0 1 1 1 0)
(1 0 0 1 1 1)

⎫
⎪⎪⎬

⎪⎪⎭

.

R2 is non-empty. Thus, in step 4 we continue to step 5, where we note that
C1 ∩R1 is non-empty. Thus, we increment i to i = 2 and return to step 2.

According to steps 2 and 3, we calculate

C2 = C1 ∪

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0 0 1 0 0 0), (1 1 1 0 0 0)
(1 0 0 0 0 0), (1 0 1 1 0 0)
(1 0 1 0 1 0), (1 0 1 0 0 1)
(0 1 1 0 1 0), (0 0 0 0 1 0)
(0 0 1 1 1 0), (0 0 1 0 1 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, C2 ∩R2 =
{

(1 1 1 0 0 0)
(0 0 1 1 1 0)

}

,

and

V3 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)
(1 0 1 0 0 0), (0 0 1 0 1 0)
(1 1 1 0 0 0), (0 0 1 1 1 0)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, R3 =
{

(1 1 0 1 1 0)
(1 0 0 1 1 1)

}

.



Complexity Reduction of Constant Matrix Computations 109

R3 is non-empty. Again, in step 4 we continue to step 5, where we note that
C2 ∩R2 is non-empty. Thus, we increment i to i = 3 and return to step 2.

According to steps 2 and 3, we calculate

C3 = C2 ∪

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 1 1 1 0 0), (1 1 1 0 1 0)
(1 1 1 0 0 1), (0 1 0 0 0 0)
(1 1 0 0 1 0), (1 0 1 1 1 0)
(0 1 1 1 1 0), (0 0 1 1 1 1)
(1 0 0 1 1 0), (1 1 0 1 1 0)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, C3 ∩R3 =
{
(1 1 0 1 1 0)

}
,

and

V4 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)
(1 0 1 0 0 0), (0 0 1 0 1 0)
(1 1 1 0 0 0), (0 0 1 1 1 0)
(1 1 0 1 1 0)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, R4 =
{
(1 0 0 1 1 1)

}
.

R4 is non-empty. Yet again, in step 4 we continue to step 5, where we note that
C3 ∩R3 is non-empty. Thus, we increment i to i = 4 and return to step 2.

According to steps 2 and 3, we calculate

C4 = C3 ∪
{

(0 1 0 1 1 0), (1 1 1 1 1 0)
(1 1 0 1 0 0), (1 1 0 1 1 1)

}

, C4 ∩R4 = ∅

and
V5 = V4, R5 = R4.

R5 is non-empty. Thus, in step 4 we continue to step 5, where we this time note
that C4 ∩ R4 is empty. Thus, we continue with the the heuristic part of the
algorithm, i.e., step 6, where we find two rows in C4 on hamming distance 1
from the only row in R4, and those are

(1 0 0 1 1 0) and (1 1 0 1 1 1).

Both occur once, so we choose one at random, say the first one. We update R5

with this row, and now we have

R5 =
{
(1 0 0 1 1 1), (1 0 0 1 1 0)

}
.

We increment i to i = 5 and return to step 2.
According to steps 2 and 3, we calculate

C5 = C4, C5 ∩R5 =
{
(1 0 0 1 1 0)

}
,

and

V6 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)
(1 0 1 0 0 0), (0 0 1 0 1 0)
(1 1 1 0 0 0), (0 0 1 1 1 0)
(1 1 0 1 1 0), (1 0 0 1 1 0)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, R6 =
{
(1 0 0 1 1 1)

}
.



110 O. Gustafsson and M. Olofsson

��
�	

�� �


��

��

�


��

��

��

�	��

Fig. 3. Realization of the computation in (5) using the proposed approach

R6 is non-empty. Again, in step 4 we continue to step 5, where we note that
C5 ∩R5 is non-empty. Thus, we increment i to i = 6 and return to step 2.

According to steps 2 and 3, we calculate

C6 = C5 ∪
{
(1 0 0 1 1 1)

}
, C6 ∩R6 =

{
(1 0 0 1 1 1)

}
,

and

V7 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 0 0 0 0 0), (0 1 0 0 0 0)
(0 0 1 0 0 0), (0 0 0 1 0 0)
(0 0 0 0 1 0), (0 0 0 0 0 1)
(1 0 1 0 0 0), (0 0 1 0 1 0)
(1 1 1 0 0 0), (0 0 1 1 1 0)
(1 1 0 1 1 0), (1 0 0 1 1 0)
(1 0 0 1 1 1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, R7 = ∅.

R7 is empty. Finally, in step 4 we stop.
Each row in V7, except the initial rows from the identity matrix, corresponds

to one XOR-gate. The network is built by identifying the rows in V7 in the
order that they were added to the set of available rows. The corresponding
implementation is given in Fig. 3.

4 Results

To evaluate the efficiency of the different methods a number of different tests has
been performed, both on random matrices as well as constant multiplications in
Galois fields.

4.1 Random Matrices

In this test random matrices with varying number of rows and columns were
used. For each position the probability of a one is 0.5 independent of adjacent
positions. For each row/column combination 100 matrices were used.

In Fig. 4, the average number of XOR-gates using the different algorithms
for matrices with ten columns is shown. Clearly, the graph based algorithm



Complexity Reduction of Constant Matrix Computations 111

0 10 20 30 40 50
0

20

40

60

80

Number of rows

N
um

be
r 

of
 X

O
R

−
ga

te
s

 

 

Pairwise Iterative Matching
Maximum Length
Proposed

Fig. 4. Average number of XOR-gates for matrices with ten columns and a varying
number of rows. Pairwise Iterative Matching refers to the method in [3, 4, 10], while
Maximum Length refers to the method in [14].

0 10 20 30 40 50
0

50

100

150

Number of columns

N
um

be
r 

of
 X

O
R

−
ga

te
s

 

 

Pairwise Iterative Matching
Maximum Length
Proposed
Proposed (Transposed)

Fig. 5. Average number of XOR-gates for matrices with ten rows and a varying number
of columns. Pairwise Iterative Matching refers to the method in [3,4,10], while Maxi-
mum Length refers to the method in [14]. The difference between those two methods
is not visible in this graph.

outperforms the sub-expression sharing algorithms. Even though the average
number of XOR-gates are similar for both sub-expression sharing algorithms,
they vary with a few gates for each individual case.

In a similar way, using matrices with ten rows and varying the number of
columns, the results in Fig. 5 are obtained. Here, it is obvious that the sub-
expression sharing algorithms perform better with increasing number of columns.
The reason for this is that the heuristic step for the proposed algorithm, step 6,
does not work well enough when the Hamming distance between the possible
rows and the required rows is large. Instead, it is for these cases better to find
the few sub-expressions that are common between the rows. However, by realiz-
ing the transposed matrix and transposing the resulting network, the proposed
algorithm shows significantly better results compared to the sub-expression shar-
ing based methods.

Finally, in Fig. 6, the same number of rows and columns are used. Here it is
seen that the proposed algorithm is slightly better for sizes between five and 20
rows and columns, while for larger sizes the sub-expression sharing methods are
better. This could be explained by the heuristic part as discussed above.



112 O. Gustafsson and M. Olofsson

0 5 10 15 20 25 30
0

50

100

150

200

Number of rows and columns

N
um

be
r 

of
 X

O
R

−
ga

te
s

 

 

Pairwise Iterative Matching
Maximum Length
Proposed

Fig. 6. Average number of XOR-gates for matrices with varying number of rows and
columns. Pairwise Iterative Matching refers to the method in [3,4,10], while Maximum
Length refers to the method in [14].

0 5 10 15 20
0

20

40

60

Number of XOR−gates

Fr
eq

ue
nc

y

 

 

Proposed
Pairwise Iterative Matching
Maximum Length

Fig. 7. Frequency of XOR-gate count for all multiplications in GF (28) with primitive
polynomial x8 + x4 + x3 + x2 + 1. Pairwise Iterative Matching refers to the method
in [3,4,10], while Maximum Length refers to the method in [14].

4.2 Galois Field Arithmetic

During syndrome calculation and Chien search in decoding of Reed-Solomon
codes, multiplication by constants can be used. In a fully parallel implementation
of the syndrome calculation, one instance of each multiplier constant is required.
Hence, the number of XOR-gates required to realize all constant multiplications
for a given Galois field is a relevant measure.

For GF (28) a commonly used polynomial is x8 + x4 + x3 + x2 + 1. The result
of applying the algorithms to all constant multiplications using the polynomial
basis is shown in Fig. 7. There are 255 different non-zero constants, and, hence,
255 8×8-matrices. The total number of required XOR-gates are 3800, 3776, and
3537 for the pairwise iterative matching, maximum length, and the proposed
algorithms, respectively. Using the best solution for each constant multiplier
among the three considered algorithms requires 3509 XOR-gates. A straightfor-
ward realization requires 6152 XOR-gates.

In a similar way the total number of XOR-gates for all constant multiplications
in GF (216) with primitive polynomial x16 + x12 + x3 + x+ 1 is 3681652 for the
proposed algorithm. For the sub-expression sharing based ones 3847420 and



Complexity Reduction of Constant Matrix Computations 113

Table 1. Number of XOR-gates required for all constant multiplications in GF (28).
Pairwise Iterative Matching (PIM) refers to the method in [3, 4, 10], while Maximum
Length (ML) refers to the method in [14].

Primitive polynomial PIM ML Proposed Besti No sharing

x8 + x7 + x3 + x2 + 1 3725 3711 3522 3471 6152
x8 + x5 + x3 + x + 1 3738 3742 3513 3473 6152
x8 + x7 + x5 + x3 + 1 3755 3725 3524 3475 6152
x8 + x6 + x5 + x + 1 3730 3718 3543 3482 6152
x8 + x6 + x5 + x2 + 1 3776 3752 3533 3492 6152
x8 + x6 + x3 + x2 + 1 3777 3747 3537 3498 6152
x8 + x6 + x5 + x4 + 1 3799 3777 3539 3504 6152
x8 + x5 + x3 + x2 + 1 3781 3764 3553 3505 6152
x8 + x4 + x3 + x2 + 1 3800 3776 3537 3509 6152
x8 + x6 + x5 + x3 + 1 3800 3761 3551 3509 6152
x8 + x6 + x4 + x3 + x2 + x + 1 3768 3749 3543 3510 6152
x8 + x7 + x6 + x + 1 3803 3782 3553 3511 6152
x8 + x7 + x2 + x + 1 3795 3802 3565 3513 6152
x8 + x7 + x6 + x5 + x2 + x + 1 3812 3807 3550 3517 6152
x8 + x7 + x6 + x5 + x4 + x2 + 1 3781 3749 3560 3520 6152
x8 + x7 + x6 + x3 + x2 + x + 1 3820 3796 3576 3541 6152

i As a comparison: For each constant multiplication, the best solution among the three
considered algorithms is used.

3839031 XOR-gates are required, respectively. Taking the best solution for each
constant multiplication requires 3613084 XOR-gates, while a straightforward
realization requires 7322438 XOR-gates.

Another aspect is the selection of a primitive polynomial so that the minimum
complexity is obtained. In Table 1, the number of XOR-gates for all constant
multiplications in GF (28) using different primitive polynomials using the differ-
ent algorithms are shown, along with the minimum number of XOR-gates using
the best solution for each constant. It can be seen that the proposed algorithm
outperforms the sub-expression sharing case when the total number of XOR-
gates is considered and only in rare cases results in a worse XOR-gate count for
single multiplications.

In [4] a given multiplication in GF (28) was used to describe the algorithm.
It was claimed that the 18 XOR-gates required were globally optimal. Applying
the proposed algorithm gives 17 XOR-gates (16 and 17 for the sub-expression
sharing based). In another example using four constant multipliers with the same
input, the result in [4] was 44 XOR-gates. Here, using the proposed algorithm
33 XOR-gates are required (40 and 38 for the sub-expression sharing based).

5 Conclusions

In this work the problem of minimization of the number of binary field addi-
tions (XOR-gates) for constant matrix multiplication over the binary field was



114 O. Gustafsson and M. Olofsson

considered. This is a common type of operation in, e.g., Galois field arithmetic,
linear error-correcting codes, CRC computation, LFSRs, and the AES algorithm.

An algorithm for solving the problem was proposed and it was shown by ex-
amples both on random matrices as well as matrices originating from Galois field
computations that the propose algorithm worked better than earlier proposed
algorithms.

The main advantage of the proposed algorithm is the ability to utilize cancella-
tion of terms when realizing the matrix multiplication. This brings an advantage
over sub-expression sharing based methods even if exact solutions of these are
considered.

References

1. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1996)

2. McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Springer,
Heidelberg (1987)

3. Paar, C.: Optimized Arithmetic for Reed-Solomon Encoders. In: Proceedings of
IEEE International Symposium on Information Theory, Ulm, Germany, p. 250
(June 1997)

4. Hu, Q., Wang, Z., Zhang, J., Xiao, J.: Low Complexity Parallel Chien Search
Architecture for RS Decoder. In: Proceedings of IEEE International Symposium
on Circuits and Systems, Kobe, Japan, May 2005, vol. 1, pp. 340–343 (2005)

5. Paar, C.: A New Architecture for a Parallel Finite Field Multiplier with Low Com-
plexity Based on Composite Fields. IEEE Transactions on Computers 45(7), 856–
861 (1996)

6. Olofsson, M.: VLSI Aspects on Inversion in Finite Fields. PhD thesis, Linköping
University, Linköping, Sweden, No. 731 (February 2002)

7. Chen, Y., Parhi, K.K.: Small Area Parallel Chien Search Architectures for Long
BCH Codes. IEEE Transactions on VLSI Systems 12(5), 401–412 (2004)

8. Pei, T.B., Zukowski, C.: High-speed Parallel CRC Circuits in VLSI. IEEE Trans-
actions on Communications 40(4), 653–657 (1992)

9. Cheng, C., Parhi, K.K.: High-speed Parallel CRC Implementation Based on Un-
folding, Pipelining, and Retiming. IEEE Transactions on Circuits and Systems
II 53(10), 1017–1021 (2006)

10. Zhang, X., Parhi, K.K.: Implementation approaches for the Advanced Encryption
Standard algorithm. IEEE Circuits and Systems Magazine 2(4), 24–46 (2002)

11. Bull, D.R., Horrocks, D.H.: Primitive Operator Digital Filters. IEE Proceedings
G 138(3), 401–412 (1991)

12. Potkonjak, M., Shrivasta, M.B., Chandrakasan, A.P.: Multiple Constant Multipli-
cation: Efficient and Versatile Framework and Algorithms for Exploring Common
Subexpression Elimination. IEEE Transactions on Computer-Aided Design 15(2),
151–161 (1996)

13. Hartley, R.I.: Subexpression Sharing in Filters Using Canonic Signed Digit Multi-
pliers. IEEE Transactions on Circuits and Systems II 43(10), 677–688 (1996)

14. Pasko, R., Schaumont, P., Derudder, V., Vernalde, S., Durackova, D.: A New
Algorithm for Elimination of Common Subexpressions. IEEE Transactions on
Computer-Aided Design 18(1), 58–68 (1999)



Complexity Reduction of Constant Matrix Computations 115

15. Xu, F., Chang, C.H., Jong, C.C.: Contention Resolution Algorithm for Common
Subexpression Elimination in Digital Filter Design. IEEE Transactions on Circuits
and Systems II 52(10), 695–700 (2005)

16. Flores, P., Monteiro, J., Costa, E.: An Exact Algorithm for the Maximal Sharing of
Partial Terms in Multiple Constant Multiplications. In: IEEE/ACM International
Conference on Computer-Aided Design, San Jose, CA, November 2005, pp. 13–16
(2005)

17. Gustafsson, O., Wanhammar, L.: ILP Modelling of the Common Subexpression
Sharing Problem. In: International Conference on Electronics, Circuits and Sys-
tems. Dubrovnik, Croatia, vol. 3, pp. 1171–1174 (September 2002)

18. Bordewijk, J.L.: Inter-reciprocity Applied to Electrical Networks. Applied Scientific
Research 6(1), 1–74 (1957)



Towards Optimal Toom-Cook Multiplication for

Univariate and Multivariate Polynomials in
Characteristic 2 and 0

Marco Bodrato

Centro “Vito Volterra” – Università di Roma Tor Vergata
Via Columbia 2 – 00133 Rome, Italy

waifi2007@bodrato.it

Abstract. Toom-Cook strategy is a well-known method for building
algorithms to efficiently multiply dense univariate polynomials. Efficiency
of the algorithm depends on the choice of interpolation points and on the
exact sequence of operations for evaluation and interpolation. If carefully
tuned, it gives the fastest algorithm for a wide range of inputs.

This work smoothly extends the Toom strategy to polynomial rings,
with a focus on GF2[x]. Moreover a method is proposed to find the faster
Toom multiplication algorithm for any given splitting order. New results
found with it, for polynomials in characteristic 2, are presented.

A new extension for multivariate polynomials is also introduced;
through a new definition of density leading Toom strategy to be efficient.

Keywords: Polynomial multiplication, multivariate, finite fields, Toom-
Cook, Karatsuba, GF2x, binary polynomials, squaring, convolution.

1 Introduction

Starting with the works of Karatsuba[9] and Toom[13], who found methods
to lower asymptotic complexity for polynomial multiplication from O(n2) to
O(n1+ε) with 0 < ε < 1, many efforts have been done in finding optimised
implementations in arithmetic software packages[5,6,12].

The family of so-called Toom-Cook methods is an infinite set of algorithms.
Each of them requires polynomial evaluation of the two operands and a polyno-
mial interpolation problem, with base points not specified a priori, giving rise
to many possible Toom-k algorithms, even for a fixed size of the operands.

Moreover, to implement one of them, we will need a sequence of many basic
operations, which typically are sums and subtractions of arbitrary long operands,
multiplication and exact division of long operand by small one, optimised, when
possible, by bit-shifts.

The exact sequence is important because it determines the real efficiency of
the algorithm. It is well known[10] that the recursive application of a single
Toom-k algorithm to multiply two polynomials of degree n gives an asymptotic
complexity of O(nlogk(2k−1)). There is even the well known Schönhage-Strassen
method[14,15], which complexity is asymptotically better than any Toom-k:

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 116–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Towards Optimal Toom-Cook Multiplication 117

O(n logn log logn). But the O-notation hides a constant factor which is very
important in practice.

All the advanced software libraries actually implement more than one method
because the asymptotically better ones, are not practical for small operands. So
there can be a wide range of operands where Toom-Cook methods can be the
preferred ones. The widely known GMP library[5] uses Toom-2 from around
250 decimal digits, then Toom-3, and finally uses FFT based multiplication over
35,000 digits. Hence the interest for improvement in Toom-k.

On the multivariate side, the problem is much more complex. Even if the com-
bination of Kronecker’s trick[11] with FFT multiplication can give asymptoti-
cally fast methods, the overhead is often too big to have algorithms useful in prac-
tice. The constraint for the polynomials to be dense is most of the time false, for
real world multivariate problems. A more flexible definition for density can help.

1.1 Representation of GF2[x] and Notation

All the algorithms in this paper work smoothly with elements of GF2[x] stored
in compact dense binary form, where each bit represents a coefficient and any
degree 7 polynomial fits in one byte.

For compactness and simpler reading, we will somewhere use hexadecimal
notation. Every hexadecimal number h corresponds to the element p ∈ GF2[x]
such that p(2) = h. For example p ∈ GF2[x] ↔ hex, 1 ↔ 1, x ↔ 2, x + 1 ↔
3, . . . , x3 + x2 + x+ 1↔ F, . . . , x8 + x7 + x6 ↔ 1C0, . . ..

We will also use the symbols  and ! for bit-shifts. Meaning multiplication
and division by power of x, in GF2[x], or by power of 2 in Z [x].

2 Toom-Cook Algorithm for Polynomials, Revisited

A general description of the Toom algorithm follows. Starting from two polyno-
mials u, v ∈ R[x], on some integral domain R, we want to compute the product
R[x] " w = u · v. The whole algorithm can be described in five steps.

Splitting: Choose some base Y = xb, and represent u and v by means of two
polynomials u(y, z) =

∑n−1
i=0 uiz

n−1−iyi, v(y, z) =
∑m−1

i=0 viz
m−1−iyi, both

homogeneous, with respectively n and m coefficients and degrees deg(u) =
n− 1, deg(v) = m− 1. Such that u(xb, 1) = u, v(xb, 1) = v. The coefficients
ui, vi ∈ R[x] are themselves polynomials and can be chosen to have degree
∀i, deg(ui) < b, deg(vi) < b.

Traditionally the Toom-n algorithm requires balanced operands so that
m = n, but we can easily generalise to unbalanced ones. We assume com-
mutativity, hence we also assume n ≥ m > 1.

Evaluation: We want to compute w = u ·v which degree is d = n+m−2, so we
need d+1 = n+m−1 evaluation points Pd = {(α0, β0), . . . , (αd, βd)} where
αi, βi ∈ R[x] can be polynomials. We define c = maxi(deg(αi), deg(βi)).

The evaluation of a single polynomial (for example u) on the points (αi, βi),
can be computed with a matrix by vector multiplication. The matrix Ed,n

is a (d+ 1)× n Vandermonde-like matrix. u(α, β) = Ed,nu =⇒



118 M. Bodrato

⎛

⎜
⎜
⎜
⎝

u(α0, β0)
u(α1, β1)

...
u(αd, βd)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

βn−1
0 α0 · βn−2

0 · · · αn−2
0 · β0 αn−1

1

βn−1
1 α1 · βn−2

1 · · · αn−2
1 · β1 αn−1

2
...

...
...

...
βn−1

k αk · βn−2
k · · · αn−2

k · βk αn−1
k

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

u0

u1

...
un−1

⎞

⎟
⎟
⎟
⎠

(1)

Recursive multiplication: We compute ∀i,w(αi, βi) = u(αi, βi) · v(αi, βi),
with d+1 multiplications of polynomials which degree is paragonable to that
of Y = xb. Exactly we have deg(u(αi, βi)) ≤ c(n − 1) + b, deg(v(αi, βi)) ≤
c(m−1)+b, and the results deg(w(αi, βi)) ≤ c(n+m−2)+2b = cd+2b. We
note that c, d,m, n are fixed numbers for a chosen implementation, b instead
will grow as the operands grow.

Interpolation: This step depends only on the expected degree of the result
d, and on the d+1 chosen points (αi, βi), no more on n and m separately.
We now need the coefficients of the polynomial w(y, z) =

∑d
i=0 wiz

d−iyi.
We know the values of w evaluated in d+1 points, so we face a classical
interpolation problem. We need to apply the inverse of Ad, a (d+1)× (d+1)
Vandermonde-like matrix. w(α, β) = Adw =⇒

⎛

⎜
⎜
⎜
⎝

w0

w1

...
wd

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

βd
0 α0 · βd−1

0 · · · αd−1
0 · β0 αd

0

βd
1 α1 · βd−1

1 · · · αd−1
1 · β1 αd

1
...

...
...

...
βd

d αd · βd−1
d · · · αd−1

k · βd αd
d

⎞

⎟
⎟
⎟
⎠

−1⎛

⎜
⎜
⎜
⎝

w(α0, β0)
w(α1, β1)

...
w(αd, βd)

⎞

⎟
⎟
⎟
⎠

(2)

Recomposition: The desired result can be simply computed with one more
evaluation: w = w(xb, 1). This step requires at most d shifts and sums.

The two critical phases are evaluation and interpolation. As stated by formu-
las (1) and (2), both require a matrix by vector multiplication. This two phases
can require many sums and subtractions, shifts, and even small multiplications
or exact divisions (interpolation only) by small elements in R[x]. The goal of this
paper is to find some optimal Evaluation Sequences of operations (called ES from
now on) as well as Interpolation Sequences (IS), leading to optimal algorithms.

2.1 References on Collected Ideas

After the first proposals [13,4], many small improvements where introduced
beside Toom ideas. Winograd[17] proposed ∞ and fractions for the evalua-
tion points; same results are obtained here with homogenisation. Zimmermann
and Quercia[18] proposed to evaluate also on positive and negative powers of
x ∈ GF2[x]; this idea is extended here using any coprime couple αi, βi ∈ R[x]
in the polynomial ring. Bodrato and Zanoni[2], underlined the need to consider
unbalanced operands; this idea was inherited by this paper.

3 The Matrices

Two kind of matrices are involved in any Toom-k algorithm, the square invert-
ible matrix Ad and the two, possibly equal, matrices Ed,n, Ed,m with the same



Towards Optimal Toom-Cook Multiplication 119

number d + 1 = 2k − 1 of rows, but fewer (respectively. n ≤ d and m ≤ d)
columns.

3.1 Matrices for the Interpolation Sequence

Since the matrices from equation 2 must be invertible, we are interested in the
determinant. Which can be computed from the points in Pd.

Theorem 1. For the Vandermonde-like matrix Ad generated from the d + 1
points in Pd = {(α0, β0), . . . , (αd, βd)}, the determinant can be computed with:

det(Ad) =
∏

0≤i<j≤d

(αiβj − αjβi)

Proof. It can be easily seen that a matrix with two points with βi = βj = 0 is
not invertible, and the above formula correctly gives 0.

If one point, suppose (α0, β0), has β0 = 0, the matrix will start with the line
(0, . . . , 0, αd

0). Computing the determinant starting from this row, we will have
αd

i det(Ãd) where Ãd is the complementary minor. Ãd is a Vandermonde d × d
matrix for the points αi/βi, where the i-th line was multiplied by βd

i .
Using the classical formula for Vandermonde matrices, we obtain:

det(Ad) = αd
0 det(Ãd) = αd

0

∏

0<i≤d

βd
i

∏

0<i<j≤d

(αi/βi−αj/βj) =
∏

0≤i<j≤d

(αiβj−αjβi)

3.2 The Choice of Evaluation Points

The choice of the evaluation points Pd is one of the most important steps
to reach an optimal implementation, and completely determines the matrices
Ad, Ed,2, . . . , Ed,d.

We will consider two of them as being automatically chosen (0, 1), (1, 0), rep-
resenting respectively 0 and ∞, and immediately giving w0 = u0 · v0, wd =
un−1 ·vm−1, and the rows (1, 0, . . .), (. . . , 0, 1). An other good choice is the point
(1, 1), and (if characteristic 
= 2) (−1, 1). We need an invertible matrix Ad, so
if we use any point (αi, βi), no other multiple point (λαi, λβi) can be added, or
the factor (αiλβi − λαiβi) will nullify the determinant.

Since the dimension of the extra space needed for the carries depends on the
parameter c = maxi(deg(αi), deg(βi)), we try to keep it as small as possible.
That’s why in GF2[x] we consider only the polynomials with degree at most 1.
So we will have α, β ∈ {0, 1, x, x+ 1}, and only 9 possible couples:

PGF2[x] = {(0, 1), (1, 0), (1, 1), (x, 1), (1, x), (x+1, 1), (1, x+1), (x+1, x), (x, x+1)}

With this auto-imposed restriction we will be able to analyse Toom-k algorithms
up to Toom-5. For any choice of the points the following theorem tells us that
any Toom-k in GF2[x]with k > 2 requires at least one division.



120 M. Bodrato

Theorem 2. Suppose d > 2, and the two points (0, 1), (1, 0) ∈ Pd. Than, for
any choice of the other points d−1 points in Pd, the determinant of the invertible
matrix Ad for a Toom algorithm in GF2[x] is not a power of x.

Proof. From theorem 1 we have:

det(Ad) =
∏

0<i<d

αiβi

∏

0<i<j<d

(αiβj − αjβi)

By contradiction, if the determinant is a power of x, then any factor of the above
formula must be. Then all the αi and βi are power of x. Any factor (αiβj−αjβi)
is then a difference of powers of x, giving 0 (a non invertible matrix) or a non-
power of x.

3.3 Matrices for the Evaluation Sequence

The matrices Ed,n are non-square, so we can not compute the determinant. But
we can compute the rank.

Theorem 3. If the points Pd give an invertible Ad, then the rank of any Ed,n

matrix is n.

Proof. Since the Ed,n are sub-matrices of the matrix Ad, modulo some multipli-
cation of rows by non-zero constants, all the n columns are linearly independent,
so the rank is n.

4 Optimising Through Graph Search

To study ES and IS, we need at first to fix the operations we admit. We consider
4 basic operations, giving a name for their cost in time:

- add or subtract two elements (cost: add)
- multiply an element by a small constant (cost: Smul)
- exact division by a small constant (cost: Sdiv)
- bit-shift by a small amount (cost: shift)
By small constant, we mean an element which fits in a few bytes, hopefully

in a register of the target CPU. All the resulting algorithms in this paper use
small constants needing at most two bytes.

We assume that: sum and subtractions do cost the same, right and left shift
do cost the same, multiplication cost and exact division cost do not depend on
the constant. Moreover we require some relations on the costs:

- shift < add: it should be faster to compute a = b 1 than a = b+ b
- shift < Smul: it should be faster to compute a = b 3 than a = b · x3

In the experiments we also used the empirical relations shift < Smul <
add < Sdiv, but we did not assume those to be true in general.

We also assume that any linear combination li ← ±cj · lj/dj ± ck · lk/dk is
possible without using temporary variables, for any cj , dj , ck, dk ∈ R[x] small
constants, even if i = j. The cost of this linear combination will be simply
computed adding up the cost of single operations, converted to bit-shift whenever
possible or skipped when the coefficient is trivial.



Towards Optimal Toom-Cook Multiplication 121

4.1 Searching for Evaluation Sequences

The sequences ES and IS will be searched working on their respective matrices.
IS can be seen as a sequence of operations on the lines of a matrix, starting from
the matrix Ad and reaching the identity matrix. A method to determine the
optimal IS with no use of temporaries was already given in [2]; except theorem 2
already shown, all the results from that paper can be directly applied to GF2[x];
the same strategy was used to find optimal IS for this paper.

Here we focus on ES. Also ES can be searched working only on the matrix.
Again we require the algorithm not to use any temporary variable.

Any evaluation u(αi, βi) =
∑n−1

j=0 uj · (αn−1−j
i · βj

i ) can be directly computed
with a cost at most equal to (n− 1) · sum+n · Smul, without any division. So we
search for the best ES without divisions.

We will search a sequence of elementary operations on lines starting from
the zero matrix and leading to the goal matrix Ed,n. Computing the evalua-
tions u(αi, βi) we can always use the coefficients of the polynomial u, the vector
u = (. . . , uj , . . .). This values can not be modified. So we use a block matrix,
where one block is the identity, and the other is the goal Ed,n. Moreover, since we
always use the two points (0, 1), (1, 0), and they give two rows already present in
the identity matrix, we will cut off two lines and use a smaller Ẽd,n as the goal.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u

u(αi,βi)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I

E

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·u;

⎛

⎜
⎜
⎜
⎜
⎜
⎝

In

Ed,n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · ·
...

. . .
...

· · · 0 1

1 0 · · ·

Ẽd,n

· · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; examine

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 :
... Ẽd,n

ld−2 :

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Lines coming from the identity matrix must be left untouched, and are noted
with a negative index. Allowed operation are

li ← cj · lj + ck · lk, where i > 0, k 
= i, cj , ck are null or small constants (3)

Then we look for a sequence starting from the empty matrix M0 = (0), reaching
the goal matrix Ẽd,n. Every single step changes only one line in the M matrix
with a linear combination of lines as formula (3) shows.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 : 0 · · · 0
...

... 0
...

ld−2 : 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

l1←l−1+l−2�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · ·
...

. . .
...

· · · 0 1

1 1 0 · · ·
... 0

...
0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· · ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

I

M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

· · ·�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

l−1 : 1 0 · · ·
...

...
. . .

...
l−n : · · · 0 1

l1 :
... Ẽd,n

ld−2 :

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)



122 M. Bodrato

4.2 The Graph

Now we have all the ingredients to build a graph, and search for the shortest

path. The nodes in the graph are all the possible matrices of the form
(
I
M

)

as in

(4), and will be labelled by M . From every node, directed arcs represent possible
operations as in (3), we only need a limit for the possible coefficients. For the
result in this paper we explored combinations with coefficients limited by the
biggest coefficient in the goal matrix Ed,n. In Z [x] the limit being the absolute
value, in GF2[x] the degree. The weight of an arc M → M̃ is the minimal cost
of the operations of the form (3) that lead M to M̃ .

The graphs mentioned above have an infinite number of nodes, so it’s essential
to use a clever algorithm for the shortest path search. Two possibilities were
explored: the Travel Through algorithm described in the previous work[2] on IS
and the more standard A* algorithm[7]. The first being slower, but with a smaller
memory footprint. While the second is faster but needs too much memory for
big matrices.

4.3 Estimate for Evaluation Sequences

Both A* and the Travel Through algorithm need a function to estimate the
remaining cost of a path, the estimated cost for a given node M must be smaller
or equal to the actual cost of the shortest path from M to the goal G = Ẽd,n.

To build this function we need some preliminary definitions and observations.

Definition 1 (Insertion). A given arc li ← cj · lj + ck · lk is an insertion if
and only if j < 0 ∧ cj 
= 0 or k < 0 ∧ ck 
= 0.

Theorem 4. If there exist a path of non-insertion arcs from node M to M̃ ,
then rank(M) ≥ rank(M̃).

Proof. A non-insertion arc, operates inside the matrix M . The resulting line is
a linear combination of lines in M , so the rank can not grow.

Theorem 5 (Rank estimate). The cost of the path from any node M to the
goal G is at least (rank(G) − rank(M)) · add.
Proof. By theorem 3, the rank(G) is maximal and rank(G)−rank(M) ≥ 0. Each
step modifies only one line, so the rank will be increased one by one.

Definition 2 (Needed insertions). Given a matrix M , and a line Gi of the
goal matrix, we define Ni(Gi,M) the minimal number of insertions needed to
obtain the line Gi from the matrix M .

If we fix a line Mj of the matrix M , and we note Mjk, Gik the k-th elements of
the two lines we can compute the minimal needed insertions for a path from Mj

to Gi with

Ñi(Gi,Mj) = n− max
λ∈GF2[x]\{0}

(#{k : Gik = λMjk}, 2).

Then we can compute the global Ni(Gi,M) = minj(Ñ i(Gi,Mj)).



Towards Optimal Toom-Cook Multiplication 123

Theorem 6 (Line estimate). The cost of the path from any node M to the
goal G is at least (#{i : Ni(Gi,M) 
= 0}) · add.

Proof. The function Ni(Gi,M) for a given line Gi gives zero iff Gi is already in
M . A combination is needed to change each line which is not yet in the goal.

Theorem 7 (Combined estimate). To estimate the cost of the path from a
node M to the goal G; let r = rank(G) − rank(M), a = #{i : Ni(Gi,M) = 1}
and b = #{i : Ni(Gi,M) > 1}, then

if r ≤ a the cost is at least (a+ b) · sum
if r > a the cost is at least (r + b− �(r − a)/2�) · sum

Proof. If r ≤ a the cost is that of theorem 6.
If r > a we proceed by induction. For the base case, we note that the formula

f(r, a, b) = (r + b − �(r − a)/2�), when r = a, gives f(a, a, b) = a + b which is
correct.

Then we study how the values a, b, r are modified following an arc from M
to an other matrix M ′. We can have the new r′ < r only if the arc is an
insertion, when this happen we have r′ = r − 1. An insertion can decrease by
one the lines counted by a, or move a line from the set counted by b to the set
counted by a. If the first condition applies, b′ = b, a′ = a − 1 ⇒ f(r′, a′, b′) =
r − 1 + b − �(r − 1 − a + 1)/2�) = f(r, a, b) − 1, if the second applies, b′ =
b− 1, a′ = a+ 1⇒ f(r′, a′, b′) = r− 1 + b− 1− �(r− a− 2)/2�) = f(r, a, b)− 1.
Otherwise, if r′ = r, the arc can be a non-insertion, so it can change more than
one element, but on a single line, and possibly decrease a or b by 1. In both cases
f(r′, a′, b′) ≥ f(r, a, b)− 1.

The last combined estimate is stronger than the others and is good enough to
allow the complete analysis for Toom-4 matrices in GF2[x].

5 Results and Algorithms in Characteristic 2

The algorithm described in the following sections were studied to work in GF2[x],
but can be applied in general for characteristic 2. We skip Toom-2 because it
coincides with the well known Karatsuba.

5.1 Toom-2.5 in GF2[x]

The Toom-2.5 algorithm can be used to multiply two operands whose size is not
the same. In particular, one will be divided in 3 parts, the other in 2 parts.

There are many possible choices for the set of points P3, once inserted the
canonical points (1, 0), (0, 1), there is a couple of free points left.

Many pairs of points give a total cost of both ES for E3,2 and E3,3 equal to
6 · add+ 3 · shift and the evaluation always require 4 multiplications. But only
two pairs1, (1, 1), (x, 1) and (1, 1), (x+ 1, 1), reach the minimum cost for the IS:
6 · add + 2 · shift+ 1 · Sdiv.
1 Also their reciprocal (1, 1), (1, x) and (1, 1), (1, x + 1).



124 M. Bodrato

We show here both algorithms, they are very similar. The author prefers the
first one, involving x+ 1, because of a slightly better locality.
P x+1

3 = {(0, 1), (1, 1), (x+ 1, 1), (1, 0)} P x
3 = {(0, 1), (1, 1), (x, 1), (1, 0)}

Ex+1
3,2 =

⎛

⎜
⎜
⎝

1 0

1 1
1 3

0 1

⎞

⎟
⎟
⎠;Ex+1

3,3 =

⎛

⎜
⎜
⎝

1 0 0

1 1 1
1 3 5

0 0 1

⎞

⎟
⎟
⎠;Ax+1

3 =

⎛

⎜
⎜
⎝

1 0 0 0
1 1 1 1
1 3 5 F
0 0 0 1

⎞

⎟
⎟
⎠Ex

3,2=

⎛

⎜
⎜
⎝

1 0

1 1
1 2

0 1

⎞

⎟
⎟
⎠;Ex

3,3=

⎛

⎜
⎜
⎝

1 0 0

1 1 1
1 2 4

0 0 1

⎞

⎟
⎟
⎠;Ax

3=

⎛

⎜
⎜
⎝

1 0 0 0
1 1 1 1
1 2 4 8
0 0 0 1

⎞

⎟
⎟
⎠

U = U2*Y^2 + U1*Y + U0
V = V1*Y + V0
\\Evaluation:6 add,3 shift;4 mul
W3 = U2 + U1 + U0; W0 = V1 + V0
W1 = W3 * W0
W3 = W3 +(U1 + U2*(x))*(x)

W0 = W0 + V1*(x)
W2 = W3 * W0
W3 = U2 * V1 ; W0 = U0 * V0
\\Interpolate:6 add,2 shift,1 Sdiv
W2 =(W2 + W1)/(x)
W1 = W1 + W0
W2 =(W2 + W1)/(x+1)
W2 = W2 + W3*(x)
W1 = W1 + W2 + W3

\\Recomposition
W = W3*Y^3+ W2*Y^2+ W1*Y + W0
W == U*V

U = U2*Y^2 + U1*Y + U0
V = V1*Y + V0
\\Evaluation:6 add,3 shift,4 mul
W3 = U2 + U1 + U0; W0 = V1 + V0
W1 = W3 * W0
W3 = U0 +(U1 + U2*(x))*(x)

W0 = V0 + V1*(x)
W2 = W3 * W0
W3 = U2 * V1 ; W0 = U0 * V0
\\Interpolate:6 add,2 shift,1 Sdiv
W2 =(W2 + W1)/(x+1)
W1 = W1 + W0
W2 =(W2 + W1)/(x)
W2 = W2 + W3*(x)
W1 = W1 + W2
W2 = W2 + W3
\\Recomposition
W = W3*Y^3+ W2*Y^2+ W1*Y + W0
W == U*V

5.2 Toom-3 in GF2[x]

Toom-3 is by far the best known and widely used variant of Toom-Cook algo-
rithms. But usually only in characteristic 0, for the multiplication in Z or Z [x].
While writing this paper, only one implementation of balanced Toom-3 in GF2[x]
was found on the net, by Zimmermann[18], based on the NTL library[12] and
carefully optimised. It uses the points PZ

4 = {(0, 1), (1, x), (1, 1), (x, 1), (1, 0)},
an ES requiring 6 · add + 4 · shift for each operand, and an IS with cost
11 · add+ 5 · shift+ 2 · Sdiv.

We tested all the triplets of points in PGF2[x]\(1, 0), (0, 1), and the combination
(1, 1), (1, x), (1, x+1) together with its reciprocal (1, 1), (x, 1), (x+1, 1) gave the
best results.

Toom-3 has two variants, the balanced one, which is the most interesting,
because it can be used recursively; and the unbalanced, good when one operand
is about twice as big as the other. The two variants share the same IS but has
different evaluation matrices. The balanced version uses twice E4,3, while the
unbalanced uses E4,2 for the smallest operand and E4,4 for the bigger one.



Towards Optimal Toom-Cook Multiplication 125

The set of points used is P4 = {(0, 1), (1, 1), (1, x), (1, x+ 1), (1, 0)}.

E4,3 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0
1 1 1
1 2 4
1 3 5
0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

; A4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
1 1 1 1 1
1 2 4 8 10
1 3 5 F 11
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

E4,2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 1
1 2
1 3
0 1

⎞

⎟
⎟
⎟
⎟
⎠

; E4,4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0
1 1 1 1
1 2 4 8
1 3 5 F
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

U = U2*Y^2 + U1*Y + U0
V = V2*Y^2 + V1*Y + V0
\\Evaluation:10 add,4 shift;5 mul
W3 = U2+U1+U0 ; W2 = V2+V1+V0
W1 = W3 * W2
W0 = U2*x^2+U1*x ; W4 = V2*x^2+V1*x
W3 = W3 + W0 ; W2 = W2 + W4

W0 = W0 + U0 ; W4 = W4 + V0
W3 = W3 * W2 ; W2 = W0 * W4
W4 = U2 * V2 ; W0 = U0 * V0

U = U3*Y^3 + U2*Y^2 + U1*Y + U0
V = V1*Y + V0
\\Eval:11 add,4 shift,1 Smul;5 mul
W3 = U3+U2+U1+U0 ;W2 = V1 + V0
W1 = W2 * W3
W0 = U3*(x^3)+U2*(x^2)+U1*(x)
W3 = W3 + W0 + (x^2+x)*U3

W2 = W2 + V1*(x)
W0 = W0 + U0 ;W4 = W2 + V1
W3 = W3 * W2 ;W2 = W0 * W4
W4 = U3 * V1 ;W0 = U0 * V0

\\Interpolation:9 add,1 shift,1 Smul,2 Sdiv
W3 = W3 + W2
W2 =((W2+ W0 )/(x)+ W3 + W4*(x^3+1)) / (x+1)
W1 = W1 + W0
W3 =(W3 + W1 )/(x*(x+1))
W1 = W1 + W4 + W2
W2 = W2 + W3
\\Recomposition:
W = W4*Y^4+ W3*Y^3+ W2*Y^2+ W1*Y + W0
W == U*V \\ check

The IS needs two exact divisions, one by the small constant element x + 1 and
one by x ·(x+1). Since we know these divisions are exact by very small constant,
they can be performed in linear time[8]. For a test implementation in NTL on a
32 bits CPU, the following C code for exact division by x+ 1 was implemented.
It is inspired by an analogous function by Michel Quercia[18]. Division by x2 +x
was actually implemented by one shift and the same function.

static void ExactDivOnePlusX (_ntl_ulong *c, long n) {
_ntl_ulong t = 0; long i;
for (i = 0; i < n; i++) {

t ^= c[i] ; t ^= t << 1; t ^= t << 2;
t ^= t << 4; t ^= t << 8; t ^= t << 16;
c[i] = t; t >>= 32-1;

}}

The main idea for this function is to multiply each word by the inverse of
x+1 modulo x2b

, where 2b is the number of coefficients stored in one word. This
requires b+ 1 shifts and sums for each word. Similar functions can be developed
for any exact division needed in Toom-3,4,5 IS.



126 M. Bodrato

With this function, the new algorithm is about 5% faster than Zimmermann’s,
and beats the NTL mul starting from 8 words, meaning degree 256. It is also
faster than Karatsuba for operands above 11 words, or degree 352.

5.3 Toom-4 in GF2[x]

The complete analysis of the Toom-4 candidate algorithms, requires too much
resources. So here we tested only the most promising choice for the 7 points:
P6 = {(0, 1), (1, x + 1), (1, x), (1, 1), (x, 1), (x + 1, 1), (1, 0)}. Here we show only
the balanced algorithm, used when the two operands have about the same size,
and the matrices.

U = U3*Y^3 + U2*Y^2 + U1*Y + U0
V = V3*Y^3 + V2*Y^2 + V1*Y + V0
\\Evaluation: 13*2 add, 7*2 shift, 2*2 Smul, 7 mul
W1 = U3 + U2 + U1 + U0 ; W2 = V3 + V2 + V1 + V0
W3 = W1 * W2
W0 = U1 + x*(U2 + x*U3) ; W6 = V1+ x*(V2 + x*V3)
W4 =(W0 + U3*(x+1))*x+W1 ; W5 =(W6 + V3*(x+1))*x+W2
W0 = W0*x + U0 ; W6 = W6*x + V0
W5 = W5 * W4 ; W4 = W0 * W6
W0 = U0*x^3+U1*x^2+U2*x ; W6 = V0*x^3+V1*x^2+V2*x
W1 = W1 + W0 + U0*(x^2+x) ; W2 = W2 + W6 + V0*(x^2+x)
W0 = W0 + U3 ; W6 = W6 + V3
W1 = W1 * W2 ; W2 = W0 * W6
W6 = U3 * V3 ; W0 = U0 * V0

E6,4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
F 5 3 1
8 4 2 1
1 1 1 1
1 2 4 8
1 3 5 F
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

\\Interpolation: 22 add, 4 shift, 4 Sdiv, 5mul
W1 = W1 + W2 + W0*(x^4+x^2+1)
W5 =(W5 + W4 + W6*(x^4+x^2+1) + W1)/(x^4+x)
W2 = W2 + W6 + W0*x^6
W4 = W4 + W2 + W6*x^6 + W0
W4 =(W4 + W5*(x^5+x))/(x^4+x^2)
W3 = W3 + W0 + W6
W1 = W1 + W3
W2 = W2 + W1*x + W3*x^2
W3 = W3 + W4 + W5
W1 =(W1 + W3*(x^2+x))/(x^4+x)
W5 = W5 + W1
W2 =(W2 + W5*(x^2+x))/(x^4+x^2)
W4 = W4 + W2
\\Recomposition:
W = W6*Y^6 + W5*Y^5 + W4*Y^4+ W3*Y^3+ W2*Y^2+ W1*Y + W0
W == U*V \\ check

A6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
55 33 11 F 5 3 1
40 20 10 8 4 2 1
1 1 1 1 1 1 1
1 2 4 8 10 20 40
1 3 5 F 11 33 55
0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

5.4 Toom-5 in GF2[x]

The complete analysis of Toom-5 is even harder. There is only one possible choice
for the evaluating point, with minimal degree:

PGF2[x] ={(0, 1), (x+1, x), (x+1, 1), (x, 1), (1, 1), (1, x), (1, x+1), (x, x+1), (1, 0)}.



Towards Optimal Toom-Cook Multiplication 127

The resulting algorithms are too big to be transcribed here, the found cost being:
ES: 2× (19 · add+ 6 · shift+ 4 · Smul)
IS: 36 · add+ 9 · shift+ 5 · Smul+ 6 · Sdiv
Only 3 different denominators for exact division are needed: x3 · (x + 1)3,

x · (x+ 1) · (x2 + x+ 1)2 and x2 · (x + 1)2 · (x2 + x+ 1). The two matrices:

E8,5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

11 1E 14 18 10
11 F 5 3 1
10 8 4 2 1
1 1 1 1 1
1 2 4 8 10
1 3 5 F 11
10 18 14 1E 11

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
101 1FE 154 198 110 1E0 140 180 100
101 FF 55 33 11 F 5 3 1
100 80 40 20 10 8 4 2 1
1 1 1 1 1 1 1 1 1
1 2 4 8 10 20 40 80 100
1 3 5 F 11 33 55 FF 101

100 180 140 1E0 110 198 154 1FE 101
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

6 Bivariate and Multivariate

The same strategy described in section 2 can be extended to multivariate polyno-
mials. In particular it fits perfectly for those polynomials which homogenisation
is dense: polynomials dense with respect to total degree.

On the opposite side there is the Kronecker substitution[11], which is very
efficient for polynomials dense with respect to maximal degree.

Definition 3. We call triangular polynomial a polynomial dense with respect to
total degree. We mean a polynomial where coefficients for all the possible terms
with sum of exponents limited by a constant d are mostly non-zero. We will call
square polynomial, those which are dense with respect to maximal degree.

A couple of examples, 1 + x+ y+ x2 + y2 + xy will be called triangular, while
1 + x+ y + x2 + y2 + xy + x2y + xy2 + x2y2 is a square polynomial.

6.1 Multivariate Toom-2

Karatsuba’s idea was generalised in many ways, one of them can be the extension
to multivariate polynomials. If we start from two triangular polynomials, u, v,
and we want to compute the product w = u · v, we can proceed as in section 2.

If we call X0 the homogenising variable and Xi the other ones, we will have
the canonical splitting u =

∑
i ui ·Xi. Than we have many smaller polynomials

ui, where u0 is a square, and the others are triangular.
All the evaluations and interpolations can be condensed in a one-line formula,

valid in any characteristic:u =
∑

i uiXi ∧ v =
∑

i viXi ⇒

w = u · v =
∑

i

(ui · vi)X2
i +

∑

i<j

((ui − uj) · (vj − vi) + uivi + ujvj)XiXj

where any product uivi is computed only once, and recycled for all the XiXj

coefficients.



128 M. Bodrato

Recurrence is not very easy in this algorithm, because all the products involv-
ing u0 and v0 are square product, where the same algorithm can not be used. On
squares we can fall back to the Kronecker’s trick or use univariate algorithms
recursively on any variable.

Another possible formula for the product, is the nearly equivalent

w = u · v =
∑

i

(ui · vi)X2
i +

∑

i<j

((ui + uj) · (vi + vj)− uivi − ujvj)XiXj

which is interesting for one reason: if we use this formula for an univariate poly-
nomial, with the identification Xi = xi, we obtain the Karatsuba generalisation
by Weimerskirch and Paar[16].

6.2 Bivariate Toom-2.5 in GF2[x]

The smallest interesting example of multivariate Toom, which is not a general-
isation of Karatsuba, is the algorithm to multiply a polynomial of degree 2 by
one of degree 1. Both with 2 variables. The product has degree 3, so it will have(
3+2
2

)
= 10 coefficients, and we need 10 points.

After homogenising, we have 3 variables and evaluation points need 3 values.
With the points P 2

3 = {(1, 0, 0), (1, 1, 0), (1, x+1, 0), (0, 1, 0), (0, 1, 1), (0, 1, x+1),
(0, 0, 1), (1, 0, 1), (x+ 1, 0, 1), (1, 1, 1)} we obtain the block-like matrices:

A2
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
F 5 3 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 F 5 3 1 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 F 5 3 0
1 1 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; E2
3,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
1 1 0
3 1 0
0 1 0
0 1 1
0 3 1
0 0 1
1 0 1
1 0 3
1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;E2
3,3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
1 1 1 0 0 0
5 3 1 0 0 0
0 0 1 0 0 0
0 0 1 1 1 0
0 0 5 3 1 0
0 0 0 0 1 0
1 0 0 0 1 1
1 0 0 0 5 3
1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We can observe that the square invertible matrix An
2k−2 used for the n-variate

Toom-k, is not a Vandermonde matrix when n > 1, and it has
(
2k−2+n

n

)
lines (and

columns). Also the En
2k−2,d are somehow sparse

(
2k−2+n

n

)
×
(
d−1+n

n

)
matrices.

Theorems proved in this paper can not be directly extended to those new
Vandermonde-blocks matrices, anyway algorithms developed for the univariate
case still works. Sparse matrix give graphs much smaller than expected and can
be fully analysed. The best bivariate triangular Toom-2.5 found by our software
follows.

U = U00*Z^2 + U10*Z*X + U20*X^2\
+ U01*Z*Y + U11*Y*X \
+ U02*Y^2

V = V00*Z + V10*X \
+ V01*Y

\\ Evaluation: 22 add, 9 shift; 10 mul



Towards Optimal Toom-Cook Multiplication 129

W3 = U20+ U10+ U00 ; W0 = V10+ V00 ; W1 = W0 * W3
W3 = W3 +(U10+U20*(x))*(x) ; W0 = W0 + V10*(x) ; W2 = W0 * W3
W3 = U20+ U11+ U02 ; W0 = V10+ V01 ; W4 = W0 * W3
W3 = W3 +(U11+U02*(x))*(x) ; W0 = W0 + V01*(x) ; W5 = W0 * W3
W3 = U02+ U01+ U00 ; W0 = V00+ V01 ; W7 = W0 * W3
W9 = W3 +(U01+U00*(x))*(x) ; W6 = W0 + V00*(x) ; W8 = W6 * W9
W3 = W3 + U20+ U11+ U10 ; W0 = W0 + V10
W9 = W3 * W0; W6 = U02* V01; W0 = U00* V00; W3 = U20* V10
\\ Interpolation: 21 add, 6 shift; 3 Sdiv
W2 =(W2 + W1)/(x) ; W5 =(W5 + W4)/(x) ; W8 =(W8 + W7)/(x)
W1 = W1 + W0 ; W4 = W4 + W3 ; W7 = W7 + W6

W9 = W9 - W7 - W4 - W1
W2 =(W2 + W1)/(x+1) ; W5 =(W5 + W4)/(x+1) ; W8 =(W8 + W7)/(x+1)
W2 = W2 + W3*(x) ; W5 = W5 + W6*(x) ; W8 = W8 + W0*(x)
W1 = W1 + W2 + W3 ; W4 = W4 + W5 + W6 ; W7 = W7 + W8 + W0
\\Recomposition
W = W0*Z^3 + W1*Z^2*X + W2*Z*X^2 + W3*X^3 \
+ W8*Z^2*Y + W9*Z*Y*X + W4*Y*X^2 \
+ W7*Z*Y^2 + W5*Y^2*X \
+ W6* Y^3

W==U*V

Three instances of the x+1 version of univariate Toom-2.5 can be recognised
in the code, the same trick could be applied using the x version. Only the point
(1, 1, 1) requires some extra operations.

6.3 Bivariate Toom-3 in GF2[x]

The first non-Karatsuba multivariate Toom which can be used for recursion is the
bivariate triangular Toom-3, with this algorithm we can multiply two triangular
bivariate polynomials with degree 2 to obtain a triangular result with degree 4.
This time we need

(
4+2
2

)
= 15

interpolation points. The choice
P 2

4 = { (1, 0, 0), (1, x+ 1, 0), (1, x, 0),
(1, 1, 0), (0, 1, 0), (0, 1, 1),
(0, 1, x), (0, 1, x+ 1), (0, 0, 1),
(x, 0, 1), (1, 0, 1), (1, 0, x),
(1, 1, x), (1, 1, 1), (x, 1, 1)}

gives again block-like matrices. The
algorithm requires 15 smaller mul-
tiplication, 5 involving triangular
polynomials, and 10 requiring some
squared polynomial algorithm. We
choosed three different sub-matrices,
so it’s more difficult to recover sub-IS.

A2
4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11F 5 3 1 0 0 0 0 0 0 0 0 0 0
10 8 4 2 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 2 4 8 10 0 0 0 0 0 0
0 0 0 0 1 3 5 F 11 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 10 8 4 2 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0
10 0 0 0 0 0 0 0 1 2 4 8 0 0 0
10 8 4 2 1 1 1 1 1 2 4 8 4 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 4 8 10 8 4 2 2 2 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

U = U00*Z^2+U10*Z*X+U20*X^2+U01*Z*Y+U11*X*Y+U02*Y^2
V = V00*Z^2+V10*Z*X+V20*X^2+V01*Z*Y+V11*X*Y+V02*Y^2



130 M. Bodrato

\\Evaluation: 23*2 add, 6*2 shift; 15 mul
W0 = U00+ U10+ U20 ; W4 = V00+ V10+ V20

W12=(U10+ U00*(x))*(x) ; W10=(V10+ V00*(x))*(x)
W2 = W0 + W12 ; W8 = W4 + W10
W3 = W12+ U20 ; W5 = W10+ V20
W1 = W2 * W8 ; W2 = W3 * W5 ; W3 = W0 * W4
W6 = U20+ U11+ U02 ; W7 = V20+ V11+ V02
W8 = U01*(x) ; W13= V01*(x)
W11= W6 + W12+ W8 ; W10= W10+ W7 + W13
W12= W11* W10; W5 = W6 * W7
W10= U02*(x^2) ; W11= V02*(x^2)
W9 = W10+ U11*(x) ; W14= W11 +V11*(x)
W6 = W6 + W9 ; W7 = W7 +W14
W0 = W0 + W9 +W8 ; W4 = W4 +W14+W13
W9 = W9 + U20 ; W14= W14 +V20
W10= W10+ W8 +U00 ; W11= W11 + W13+V00
W8 = W8 + U02+U00*(x^2); W13= W13 + V02+V00*(x^2)
W7 = W6 * W7 ; W6 = W9 * W14; W14= W0 * W4
W0 = U02+U01+U00 ; W4 = V02+V01+V00
W9 = W10* W11; W11= W8 * W13; W10= W0 * W4
W0 = W0+U20+U11+U10 ; W4 = W4+V20+V11+V10
W13= W0 * W4 ; W8 = U02*V02 ; W0 = U00*V00 ; W4 = U20*V20

E2
4,3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
5 3 1 0 0 0
4 2 1 0 0 0
1 1 1 0 0 0
0 0 1 0 0 0
0 0 1 1 1 0
0 0 1 2 4 0
0 0 1 3 5 0
0 0 0 0 1 0
1 0 0 0 4 2
1 0 0 0 1 1
4 0 0 0 1 2
4 2 1 1 1 2
1 1 1 1 1 1
1 1 1 2 4 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

\\Interpolation: 42 add, 8 shift, 2 Smul, 8 Sdiv
W12= W12+W2 ;W14= W14+W6 ;W13= W13+ W5
W1 = W1 +W2 ;W7 = W7 +W6 ;W9 = W9 + W0 + W8*(x^4)
W2 =(W2 +W4 )/(x) + W1 ;W6 =(W6 +W4 )/(x) + W7 ;W11= W11+ W8 + W0*(x^4)
W2=(W2+W0*(x^3+1))/(x+1);W6=(W6+W8*(x^3+1))/(x+1);W10= W10+ W8 + W0
W3 = W3 +W4 ;W5 = W5 +W4 ; W13= W13+ W10

W13 = W13+W3 ; W12 = W12+W5 ; W12=((W12+W11)/x+W13)/(x+1)
W14 = W14+W3 ; W14=((W14+W9 )/x+W13)/(x+1)

W1 =(W1 +W3)/(x*(x+1)) ;W7 =(W7 +W5)/(x*(x+1)) ;W9 =(W9+W11)/(x*(x^2+1))
W3 = W3 +W0 + W2 ;W5 = W5 +W8 + W6 ;W10= W10+ W9
W2 = W2 +W1 ;W6 = W6 +W7 ;W11=(W11/x+W9+W10*x)/(x^2+1)

W13 = W13+W12+W14 ;W9 = W9 +W11
\\Recomposition
W = W0 *Z^4 + W1 *Z^3 *X+ W2 *Z^2*X^2 + W3*Z*X^3 + W4*X^4 \
+ W11*Z^3*Y + W12*Z^2*Y*X+ W13*Z*Y*X^2 + W5*Y*X^3 \
+ W10*Z^2*Y^2+ W14*Z*Y^2*X+ W6 *Y^2*X^2 \
+ W9 *Z *Y^3+ W7 *Y^3*X \
+ W8 *Y^4

W ==U*V

7 Conclusions

The paper presented a method to determine an optimal evaluation sequence of
basic operations to be used in Toom multiplications. Joined with the previous
work on inversion sequences[2], this gives a complete framework for the search of
optimal Toom-Cook algorithms. This method shows his immediate effectiveness



Towards Optimal Toom-Cook Multiplication 131

giving new algorithms to be used in GF2[x], and the best known Toom-3 algo-
rithm for Z [x] and Z.

New generalisation of Toom described in section 2 open the possibility to
easily generate simple Toom multiplication algorithms for polynomials on other
integral domains[1]. Moreover section 6 generalise to multivariate polynomials,
with a natural definition of density. Further work is needed to find general im-
plementations working with any number of variables and any degree.

Note on Algorithms

Algorithms in this paper uses PARI/GP syntax[6], which should be simple
enough to translate to any other language, and allow a fast checking within
a GP shell. Some more definitions should be typed to have correct results for
algorithms in characteristic 2.

U0 = u0 * Mod(1,2) ; U1 = u1 * Mod(1,2) ; U2 = u2 * Mod(1,2)
U3 = u3 * Mod(1,2) ; U4 = u4 * Mod(1,2) ; U5 = u5 * Mod(1,2)
V0 = v0 * Mod(1,2) ; V1 = v1 * Mod(1,2) ; V2 = v2 * Mod(1,2)
V3 = v3 * Mod(1,2) ; V4 = v4 * Mod(1,2) ; V5 = v5 * Mod(1,2)

Acknowledgements

The author wants to thank Paul Zimmermann for the many stimulating ideas
and beautiful code which gave the start to this paper.

References

1. Bodrato, M.: Notes on Low Degree Toom-Cook Multiplication with Small Char-
acteristic, Technical Report, Centro V.Volterra, Università di Roma Tor Vergata
(2007)

2. Bodrato, M., Zanoni, A.: Integer and Polynomial Multiplication: Towards Optimal
Toom-Cook Matrices. Proceedings of the ISSAC 2007 Conference. ACM press, New
York (2007), http://bodrato.it/papers/#ISSAC2007

3. Chung, J., Anwar Hasan, M.: Asymmetric squaring formulae, Technical Report.
CACR 2006-24, University of Waterloo (2006)

4. Cook, S.A.: On the Minimum Computation Time of Functions, Thesis, Harvard
University, pp. 51–77 (1966)

5. The GNU Multi-Precision Library (GMP) http://gmplib.org/
6. The GP-Pari Computer Algebra System, http://pari.math.u-bordeaux.fr/
7. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics SSC4, pp. 100–107 (1968)

8. Jebelean, T.: An algorithm for exact division. Journal of Symbolic Computation 15,
169–180 (1993)

9. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata, So-
viet Physics-Doklady, 7, 595–596 (1963); translation from Dokl. Akad. Nauk SSSR,
145(2), 293–294, (1962)

10. Knuth, D.E.: The Art of Computer Programming, Chapter 4, Section 3.3, 2nd
edn., vol. 2, pp. 278–301. Addison-Wesley, Reading, MA (1981)

11. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
Journal Für die Reine und Angewandte Mathematik, pp. 92–122 (1882)

http://bodrato.it/papers/#ISSAC2007
http://gmplib.org/
http://pari.math.u-bordeaux.fr/


132 M. Bodrato

12. The Number Theory Library (NTL), http://www.shoup.net/ntl/
13. Toom, A.L.: The Complexity of a Scheme of Functional Elements Realizing the

Multiplication of Integers. Soviet Mathematics 3, 714–716 (1963)
14. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7,

281–292 (1971)
15. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charak-

teristik 2. Acta. Informatica 7, 395–398 (1977)
16. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba Algorithm for Effi-

cient Implementations, Cryptology ePrint Archive, Report 224 (2006)
17. Winograd, S.: Arithmetic Complexity of Computations, CBMS-NSF Regional Con-

ference Series in Mathematics, vol. 33 (1980)
18. Zimmermann, P., Quercia, M.: Private communication, October 2006, irred-ntl

source code (2003)

Appendix Z: Results in Z [x]

Toom-3 in Z [x]

The IS for Toom-3 in Z was fully examined in the previous work with Zanoni. We
give here the ES for the balanced and unbalanced (4x2) flavour. Both saves at
least one shift if compared to the currently used ES. Both were tested against
the GMP library, giving a small speedup.

U = U2*x^2 + U1*x + U0
V = V2*x^2 + V1*x + V0
\\Evaluation: 5*2 add, 2 shift; 5mul
W0 = U2 + U0 ; W4 = V2 + V0
W2 = W0 - U1 ; W1 = W4 - V1
W0 = W0 + U1 ; W4 = W4 + V1
W3 = W2 * W1 ; W1 = W0 * W4
W0 =(W0 + U2)<<1-U0; W4 =(W4 + V2)<<1-V0
W2 = W0 * W4
W0 = U0 * V0 ; W4 = U2 * V2

U = U3*x^3 + U2*x^2 + U1*x + U0
V = V1*x + V0
\\Eval: 7+3 add, 3 shift; 5mul
W0 = U1 + U3 ; W4 = U0 + U2
W3 = W4 + W0 ; W4 = W4 - W0
W0 = V0 + V1 ; W2 = V0 - V1
W1 = W3 * W0 ; W3 = W4 * W2
W4 =((U3<<1+U2)<<1+U1)<<1+U0
W0 = W0 + V1 ; W2 = W4 * W0
W0 = U0 * V0 ; W4 = U3 * V1

\\Interpolation: 8 add, 3 shift, 1 Sdiv
W2 =(W2 - W3)/3
W3 =(W1 - W3)>>1
W1 = W1 - W0
W2 =(W2 - W1)>>1 - W4<<1
W1 = W1 - W3 - W4
W3 = W3 - W2
\\Recomposition:
W = W4*x^4+ W2*x^3+ W1*x^2+ W3*x + W0
W == U*V

Asymmetrical Squaring in Z [x]

Chung and Anwar Hasan proposed new linear systems useful for squaring only;
refer to their report[3] for the details. Here we only show results found by our
software starting from their matrices, although not optimised for this case.

http://www.shoup.net/ntl/


Towards Optimal Toom-Cook Multiplication 133

The report proposed an evaluation sequence and an inversion algorithm for
the 5-way squaring method using temporary variables, with cost respectively
14 · add + 4 · shift and 18 · add + 7 · shift. Using our software we where able
to find shorter sequences, reaching 12 · add+ 5 · shift and 16 · add+ 3 · shift.

U = U4*Y^4 + U3*Y^3 + U2*Y^2 + U1*Y + U0
\\Evaluation: 12 add, 5 shift; 5 mul, 4 sqr
W0 = U0 - U3 ; W1 = U3 - U1 ; W6 = U1 - U2
W4 = U1 + U2 ; W5 = W6 - U4 ; W3 = W5 + W0<<1
W0 = W0 - W5 ; W6 = W0 + W6<<1; W7 = W6 + W1
W5 = W7 + W1 ; W8 = W5 + W4<<1; W4 = W4 - U4

W2 = W4 * W3; W4 = W6 * W5; W3 = W7 * W1
W1 = U0 * U1 * 2 ; W7 = U3 * U4 * 2
W5 = W8^2 ; W6 = W0^2 ; W0 = U0^2 ; W8 = U4^2

Ẽ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 −1 1 −1 1
1 0 −1 0 1
0 1 0 −1 0
1 1 −1 −1 1
1 −1 −1 1 1
0 1 1 0 −1
2 1 −1 −2 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

\\ Interpolation: 16 add, 3 shift.
W6 =(W6 + W5)>>1 ; W5 = W5 - W6
W4 =(W4 + W6)>>1 ; W6 = W6 - W4; W3 = W3 +W5>>1
W5 = W5 - W3 - W1; W4 = W4 - W8 - W0
W2 = W2 - W8 - W1 - W7 + W4 + W5
W3 = W3 - W7 ; W6 = W6 - W2
\\Recomposition:
W = W8*Y^8 + W7*Y^7 + W6*Y^6 + W5*Y^5 \

+ W4*Y^4 + W3*Y^3 + W2*Y^2 + W1*Y + W0
W == U^2

As=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1−1 1 −1 1 −1 1 −11
1 1 1 1 1 1 1 1 1
1 0 −1 0 1 0 −1 0 1
0 1 0 −1 0 1 0 −10
1 1 0 −1 −1 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Appendix T: Toom Three Timing Tests

We include at last some raw graphs of multiplication timings for balanced n bits
long univariate operands. Both show relative timings for different operand sizes.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  1000 2000 3000 4000 5000 6000 7000

Bodrato
Karatsuba

Zimmermann

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 5000  10000 15000 20000 25000 30000

Bodrato
Bodrato-Zanoni

GMP-4.2.1

NTL implementations, GF2[x] Toom-3,

normalised to Zimmermann’s irred-ntl

code. Up to degree 7,500.

GMP implementations, Z Toom-3,

normalised to GMP-4.2.1 timings. Up to

30,000 bits operands.



A Construction of Differentially 4-Uniform

Functions from Commutative Semifields of
Characteristic 2

Nobuo Nakagawa1 and Satoshi Yoshiara2

1 Department of Mathematics, Faculty of Science and Technology, Kinki University,
3-4-1 Kowakae, Higashi Osaka, Osaka 577-8502, Japan

2 Department of Mathematics, Tokyo Woman’s Christian University, Suginami-ku,
Tokyo 167-8585, Japan

Abstract. We construct differentially 4-uniform functions over GF (2n)
through Albert’s finite commutative semifields, if n is even. The key ob-
servation there is that for some k with 0 ≤ k ≤ n − 1, the function

fk(x) := (x2k+1
+ x)/(x2 + x) is a two to one map on a certain subset

Dk(n) of GF (2n). We conjecture that fk is two to one on Dk(n) if and
only if (n, k) belongs to a certain list. For (n, k) in this list, fk is proved
to be two to one. We also prove that if f2 is two to one on D2(n) then
(n, 2) belongs to the list.

Keywords: Finite field, Almost perfect nonlinear function, Differentially
δ-uniformity, Cubic function of a finite semifield, Absolute trace.

1 Introduction

Importance of functions on a finite field with high nonlinearity has been recog-
nized in recent applications to cryptgraphy. On the other hand, such functions
are known to have strong connections with finite geometries in the case of odd
characteristic, as we shall see below. One of the two purposes of this article is
to provide an explicit construction of those functions in the even characteristic
case, using the notion in finite geometries. The other is to investigate a class of
functions which plays an important role in this construction.

For a prime p and a positive integer n, we use GF (pn) to denote a finite field
of cardinality pn. Let f be a function on GF (pn) (from GF (pn) to itself). For
a ∈ GF (pn)× := GF (pn) \ {0} and b ∈ GF (pn), we set

δf (a, b) := #{x ∈ GF (pn) | f(x+ a)− f(x) = b},
δf := max

b∈GF (pn)
( max
a∈GF (pn)×

δf (a, b)).

For a positive integer δ, a function f is called differentially δ-uniform if δf ≤ δ.
Observe that δf = pn if f is GF (p)-linear. Thus functions f with small δf are
regarded to have high nonlinearity.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 134–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Construction of Differentially 4-Uniform Functions 135

The function f is called planar, if δf = 1. A planar function exists only when p
is odd. It is known that the existence of a planar function onGF (pn) is equivalent
to the existence of a certain class of affine planes defined onGF (pn)×GF (pn) [4].
Such an affine plane is coordinatized by an object with some algebraic structure,
such as a semifield. Conversely, this structure often provides functions onGF (pn)
with interesting properties. For example, the square mapping on a commutative
semifield is a planar function (see section 2).

In the case when p = 2, we have δf ≥ 2 because f(x + a) − f(x) = f((x +
a) + a)− f(x+ a). The function f on GF (2n) is called an APN (almost perfect
nonlinear) function if δf = 2. Thus APN functions can be thought of as an
analogue of planar functions in the even characteristic case. Recently, several
quadratic APN functions (inequivalent to any power functions) have been con-
structed, some of which were given as infinite series [1],[2]. We can construct a
certain geometric object from such functions, e.g. [8].

In this paper, we are interestead in the opposite direction: constructing δ-
uniform functions for small δ starting from finite geometrical objects. The idea
is to consider the “cubic” mapping on a commutative semifield, instead of the
square mapping which gives a planar function in the odd characteristic case. Af-
ter reviewing some standard results about finite commutative semifields (specif-
ically those of characteristic 2 and cubic functions of them) in section 2, a class
of differentially 4-uniform functions on GF (22e) is constructed using the cubic
functions of the Albert finite commutative semifields (see theorem 2).

This construction is based on the following observation (see lemma 1): the
function fe(x) := (x2e+1

+ x)/(x2 + x) defined on GF (22e) \ GF (2) is a two to
one map on the subset GF (22e)\GF (2e). This naturally leads us to the following
question.

Problem. Determine the list of pairs (n, k) of positive integers n and k with
1 ≤ k ≤ n − 1 for which fk(x) := (x2k+1

+ x)/(x2 + x) is a two to one map on
the subset Dk(n) := {x ∈ GF (2n) \GF (2) | fk(x) 
∈ GF (2)} of GF (2n).

In fact, we found a class of differentially 4-uniform functions indexed by k,
under the assumption that fk is two to one on Dk(n) (see theorem 3). We ex-
amined small fields GF (2n) with n ≤ 16 using GAP, and obtained the following
conjecture.

Conjecture. Assume ∅ 
= Dk(n). The function fk above is two to one on Dk(n)
if and only if n ≥ 3 and k is one of the following:

k = 1, k = n− 2;
k = (n/2)− 1 or k = n/2 if n is even; k = (n− 1)/2 if n is odd.

We also succeeded in solving the problem for the fixed value k = 2, exploiting
elementary but ingeneous arguments (see proposition 4). The general setting of
the problem is discussed in section 4 as well as the proof of proposition 4 in the
case when n is even (see proposition 5). Then a proof of proposition 4 for n odd



136 N. Nakagawa and S. Yoshiara

will be given in section 5 (see proposition 6), which is divided into several steps.
In the last section, we verify that fk is in fact two to one on Dk(n) for each of
the values k given in the conjecture.

2 Finite Commutative Semifields

A finite algebraic structure E = (E,+, ◦) is called a finite presemifield, if it is
an abelian group with respect to the operation + and the following properties
(i)–(iii) are satisfied for all x, y, z ∈ E [3,5]:

(i) x ◦ (y + z) = x ◦ y + x ◦ z.
(ii) (x+ y) ◦ z = x ◦ z + y ◦ z.
(iii) If x ◦ y = 0, then x = 0 or y = 0.

It is called a semifield (resp. commutative) if it has the identity element with
respect to the multiplication ◦ (resp. ◦ is commutative). With any presemifield,
we can associate a semifield by modifying the multiplication.

A finite commutative semifield E is a vector space over GF (p) for a prime
p. Therefore (E,+) is isomorphic to the additive group (GF (pn),+) for some
positive integer n. If p 
= 2, the square mapping s of E defined by

f(x) = x ◦ x

is known to be a planar function on (E,+), regarded as GF (pn). Explicit shapes
of such functions are calculated by K. Minami and the first author for almost
all known commutative semifields [7].

Two examples of finite commutative (pre)semifields of size 2n are known [5,3].
One of them is called Albert semifields, where the multiplication is given by

x ◦ y = xy + α(xy)σ ,

where α 
∈ {xσ+1 | x ∈ GF (2n)} and σ is an automorphism of GF (2n) which is
not a generator. The other is known as Knuth semifields, where the multiplication
is given by

x ◦ y = xy + (xTr(y) + yTr(x))2 ,

where Tr is the trace mapping of extention GF (2n)/K with a suitable subfieldK
of GF (2n). Sometimes Knuth semifields are described in more general form [5].

Let E(+, ◦) be a finite commutative semifield with |E| = 2n. We consider the
cubic function f of E, which is defined by

f(x) = (x ◦ x) ◦ x.

Then for any a ∈ E× := E − {0}, we have f(x + a) + f(x) + f(a) = (x ◦ x) ◦
a + (a ◦ a) ◦ x. The cubic order of a ∈ E× is defined to be co(a) := #{x ∈
E | (x ◦ x) ◦ a+ (a ◦ a) ◦ x = 0}.

It can be verified that the cubic function of E is an APN function if and only
if the cubic order co(a) of any a ∈ E× is 2. We put



A Construction of Differentially 4-Uniform Functions 137

GN(E) =: {a | (a ◦ a) ◦ x = a ◦ (a ◦ x) ( ∀x ∈ E)} and
N(E) := {a | (a ◦ x) ◦ y = a ◦ (x ◦ y) (∀x, y ∈ E)}.

It is known that N(E) is a finite field with respect to the operations + and ◦,
which is called the nucleus of E. Trivially N(E) ⊂ GN(E). We note that if
a ∈ GN(E), then co(a) = 2, because we have x = 0 or x = a from equation
(x ◦ x) ◦ a+ (a ◦ a) ◦ x = 0. Thus it is natural to expect that the cubic function
of a finite commutative semifield has low differentially uniformity. In the next
section, we shall see that this is in fact the case for a special type of Albert
semifields.

3 Construction of Differentially 4-Uniform Functions

Let E be the additive group (GF (22e),+). We define a multiplication ◦ in E by

x ◦ y = xy + α(xy)2
e

,

where α is a generator of GF (22e)×. We denote by τ the automorphism of
GF (22e) of order 2: xτ = x2e

(x ∈ GF (22e)). The subfield of GF (22e) consisting
of elements fixed by τ is GF (2e).

Then E is a commutative semifield, which is a special type of Albert’s semi-
fields. The cubic function f(x) = (x ◦ x) ◦ x of E is calculated to be as
follows:

f(x) = x3 + αx2τ+1 + αx3τ + ατ+1xτ+2.

Lemma 1. The function g defined by g(x) = (x2τ +x)/(x2 +x) is a two to one
mapping from GF (22e) \GF (2e) into GF (22e).

Proof of Lemma. Choose elements x and y of GF (22e) \ GF (2e). Assume that
g(x) = g(y). Then

(x2τy2 + xy2 + yx2τ ) + (y2τx2 + yx2 + xy2τ ) = 0 (1)

Sending the both sides of equation (1) by τ , we obtain

(x2y2τ + xτy2τ + yτx2) + (y2x2τ + yτx2τ + xτy2) = 0. (2)

Adding equations (1) and (2), we have

(x+ xτ )(y + yτ )((x+ y) + (x+ y)τ ) = 0.

Since x 
= xτ and y 
= yτ , we have (x+ y) = (x+ y)τ . Thus c := x+ y ∈ GF (2e).
We substitute y = x+ c into g(x) = g(y). Then we have

x2τ + x

x2 + x
=
x2τ + x+ c2 + c

x2 + x+ c2 + c
.

Thus
(c2 + c)(xτ + x)2 = 0.

As xτ + x 
= 0, we have c2 = c. This proves y = x or y = x+ 1.



138 N. Nakagawa and S. Yoshiara

Theorem 2. The function f given by f(x) = x3 + αx2τ+1 + αx3τ + ατ+1xτ+2

is differentially 4-uniform on GF (22e), where α is a generator of GF (22e)× and
xτ = x2e

(x ∈ GF (22e)).

Proof of Theorem. Fix an element a ∈ GF (22e)×. Then f(x + a) + f(x) is
calculated to be (x2a+a2x)+α(x2τ a+a2τx)+α(x2τ aτ +a2τxτ )+ατ+1(x2aτ +
a2xτ )+ (a3 +αa2τ+1 +αa3τ +ατ+1aτ+2). Hence it is sufficient to show that the
equation

(x2a+ a2x) + α(x2τa+ a2τx) + α(x2τaτ + a2τxτ )+
ατ+1(x2aτ + a2xτ ) = 0 (3)

has at most four solutions. Suppose x 
= 0 and x 
= a. We denote by α(3) the
equation obtained by applying τ to equation (3) and then multiply the result by
α. Then adding this to equation (3), we have

(1 + ατ+1){(x2a+ xa2) + α(x2τa+ a2τx)} = 0.

As 1 + ατ+1 
= 0, it follows that

α−1 =
a2τ+1{(x/a)2τ + (x/a)}
a3{(x/a)2 + (x/a)} .

Put t = x/a. Then α−1a2−2τ = (t2τ + t)/(t2 + t). Suppose that t lies in the
subfiled GF (2e). Then α−1 = a2τ−2 and (α−1)τ+1 = 1, which is a contradiction.
Therefore t is not contained in GF (2e). Then it follows from lemma 1 that there
are at most two elements t such that α−1a2−2τ = (t2τ + t)/(t2 + t), say t = t0
and t = t0 + 1. Hence it is proved that equation (3) has at most four solutions
0, a, at0 and a(t0 + 1). Theorem 2 is proved.

The inversive function g(x) = x22e−2 is known to be differentially 4-uniform on
GF (22e). It is easily checked that functions in theorem 2 are not extended affine
equivalent to the inversive function.

4 Two to One Property of Some Functions

From now on, we shall examine functions which are natural generalization of
functions appeared in lemma 1. We first fix our notation.

Let GF (q) be the finite field of q = 2n elements for a positive integer n greater
than 2. For each integer k with 0 ≤ k ≤ n − 1, we investigate the following
function fk, which is defined on GF (2n) \GF (2):

fk(x) :=
x2k+1

+ x

x2 + x
. (4)

If k = n− 1 (resp. 0), the funtion fn−1 is the zero map (resp. takes the constant
value 1). Thus we only consider the case where 1 ≤ k ≤ n− 2.



A Construction of Differentially 4-Uniform Functions 139

For x ∈ GF (q) \GF (2), we have fk(x) = 0 if and only if x2k+1
= x, that is, x

lies in the subfield GF (2(n,k+1)) of GF (q), where (n, k+ 1) denotes the greatest
common divisor of n and k + 1. Similarly, fk(x) = 1 if and only if x lies in the
subfield GF (2(n,k)). Thus, setting

Dk(n) := GF (q) \ (GF (2(n,k+1)) ∪GF (2(n,k))), (5)

we have Dk(n) = {x ∈ GF (q) \GF (2) | fk(x) 
∈ GF (2)}. We only consider the
case when Dk(n) 
= ∅.

Observe that the function g appearing in lemma 1 coincides with the function
fn/2 for n = 2e, with the above notation. As we already discussed in the intro-
duction, we are interested in the problem to determine (n, k) for which fk is a
two to one map on Dk(n); namely, fk(x) = fk(y) if and only if x + y ∈ GF (2).
In fact, we can construct a class of differentially 4-uniform functions on GF (2n),
if fk is two to one on Dk(n).

Theorem 3. Let n and k be positive integers with 1 ≤ k ≤ n−2. For a generator
α of GF (2n)×, consider a function hk,α on GF (2n) given by

hk,α(x) := x3 + αx2k+1+1.

If the function fk is two to one on Dk(n), then hk,α is differentially 4-uniform.

This theorem can be verified by the similar arguments in the proof of theorem 2.
Thus we omit the proof.

The conjectured answer to the above problem is given in introduction. In the
subsequent two sections, the authors show that the conjecture is true, if k is
fixed to be the smallest nontrivial value 2, but for an arbitrary value n with
k = 2 ≤ n− 2. Namely, the following proposition shall be proved:

Proposition 4. Let n ≥ 4. The function f2 defined by f2(x) = (x8+x)/(x2+x)
is a two to one map on D2(n) = GF (2n) \ (GF (2(n,3))∪GF (2(n,2))) if and only
if n = 4, 5 or 6.

The proof of proposition 4 is divided into two cases according to the parity of
n. We end this section with treating the case when n is even.

Proposition 5. Let n be an even integer with n ≥ 4. Then the function f2
defined by f2(x) := (x8 + x)/(x2 + x) for x ∈ GF (2n) \GF (2) is two to one on
D2(n) if and only if n = 4 or 6.

Proof of Proposition. It is straightforward to see that f2 is two to one on D2(n)
for n = 4 or 6. We will show the converse. Let n = 2m be an even integer with
m ≥ 4. It is sufficient to show that f2 is not two to one on D2(n).

Notice that the assumption m ≥ 4 implies that the subset D2(m) = GF (2m)\
(GF (2(2,m))∪GF (2(m,3))) is nonempty. We fix t ∈ D2(m). Then f2(t) is an ele-
ment of GF (2m)\GF (2). Consider the following polynomial a(X) in GF (2m)[X ],
and let F ∼= GF (2l) be the splitting field of a(X):

a(X) = X8 + f2(t)X2 + (1 + f2(t))X.



140 N. Nakagawa and S. Yoshiara

Observe that α ∈ F \ GF (2) is a root of a(X) if and only if f2(t) = (α8 +
α)/(α2 + α) = f2(α). Furthermore 0, 1, t, t + 1 are roots of a(X) in GF (2m).
Hence, if we find a root α of a(X) in F \ {0, 1, t, t+ 1}, then we conclude that
f2 is not two to one on D2(l). (Remark that α 
∈ GF (2(2,l)) ∪ GF (2(3,l)), as
f2(α) = f2(t) 
∈ GF (2).)

We shall examine the roots of polynomial b(X) := a(X)/X(X+1)(X+t)(X+
t+ 1) in GF (2m)[X ], which is of degree 4. As f2(t) 
= 1, the derivative a′(X) of
a(X) does not have a common root with a(X), whence the multiplicity of every
root of a(X) is 1. Thus the roots of b(X) lie in F \ {0, 1, t, t+ 1}. Since the map
GF (2m) " x �→ a(x) ∈ GF (2m) is GF (2)-linear, the roots of a(X) in F form a
vector space over GF (2). In particular, if α is a root of b(X) in F , the elements
α+ 1, α+ t and α+ t+ 1 are roots of b(X) in F as well.

If we have a root α of b(X) lying in GF (2m), then α is an element of D2(m)
with f2(α) = f2(t). Thus f2 is not two to one on D2(m), whence the same
holds on D2(n). (Observe that D2(m) = D2(n) ∩ GF (2m), as n = 2m.) If we
have an irreducible factor c(X) ∈ GF (2m) of b(X) of degree 2, take a root α of
c(X). Then GF (2m)(α) ∼= GF (2n). Thus we may assume that α is an element of
GF (2n) \ {0, 1, t, t+ 1} with f2(α) = f2(t). Then f2 is not two to one on D2(n).

In the unique remaining case, the polynomial b(X) of degree 4 is irreducible
over GF (2m). Then F ∼= GF (24m) and b(X) = (X + α)(X + α + 1)(X + α +
t)(X + α+ t+ 1) for some α ∈ F . Then there are Galois automorphisms σ and
τ in Gal(F/GF (2m)) satisfying ασ = α + 1 and ατ = α + t. Then we see that
α is fixed by both σ2 and τ2. As F = GF (2m)(α), this implies that σ2 = τ2 is
the identity on F . Then, both σ and τ are automorphisms of order 2 in a cylic
group Gal(F/GF (2m)). Thus we have σ = τ , whence α+ 1 = ασ = ατ = α+ t.
However, this implies that t = 1, which contradicts the choice of t ∈ D2(m).
Hence b(X) is not irreducible over GF (2m).

As we exhausted all the cases, we conlude that f2 is not two to one on D2(n),
if n is an even integer with n ≥ 8. This verified the claim.

5 Proof of Proposition 6

In this section, we will treat the remaining case where n is odd. Our aim is
to establish the following proposition, whose proof will be divided into several
steps.

Proposition 6. Let n be an odd integer with n ≥ 5. Then the function f2 is a
two to one map on D2(n) if and only if n = 5.

Proof of Proposition. It is straightforward to verify that f2 is two to one on
D2(5) (or by lemma 7(3)). In the following, we will show the only if part of the
proposition.

Assume that n is an odd integer with n ≥ 5 and that the function fk defined
by fk(x) := (x2k+1

+ x)/(x2 + x) for x ∈ GF (q) \GF (2) is two to one on Dk(n).
From Step 2 below, we shall specify k to be 2.



A Construction of Differentially 4-Uniform Functions 141

5.1 Step 1

The function t sending x ∈ GF (q) to t(x) = x + x2 is a two to one map from
D2(n) onto T×

0 . Here T×
0 := {x ∈ GF (q) | Tr(x) = 0} denotes the set of nonzero

elements of GF (q) with absolute trace 0, where Tr(x) = x+ x2 + · · ·x2i

+ · · ·+
x2n−1

. This notation will be used throughout the note.
Setting t = x + x2, we see x + x2k+1

= t + t2 + · · · t2i

+ · · · + t2
k

. Then
fk(x) = (

∑k
i=0 t

2i

)/t =
∑k

i=0 t
2i−1. Hence, if we define a map gk on T×

0 by
gk(t) :=

∑k
i=0 t

2i−1, the function fk is the composite of t and gk. Thus fk is two
to one on Dk(n) if and only if the function gk is injective on T×

0 .

5.2 Step 2

From now on, we consider the special case k = 2. As n is an odd integer in
this case, we write n = 2m + 1. Notice that Tr(1) = 1. As g2(t) = 1 + t + t3,
for each element y ∈ GF (q), we have equality g2(y) = g2(t) if and only if
0 = (y+ t)+ (y3 + t3) = (y+ t)(y2 + yt+ t2 + 1). This holds exactly when either
y = t or y satisfies the following equation with variable z:

(z

t

)2

+
z

t
+
(

1 +
1
t

)2

= 0. (6)

Note that there exists an element z ∈ GF (q) satisfying equation (6) if and only
if Tr(1 + (1/t)) = 0. If this condition is satisfied, we have

1 = Tr((1/t)) =
2m∑

i=0

(1/t)2
i

= (1/t)2 +

(
m∑

i=1

(1/t)2
2i

)

+

(
m∑

i=1

(1/t)2
2i+1

)

= (1/t)2 +

(
m∑

i=1

(1/t)2
2i

)

+

(
m∑

i=1

(1/t)2
2i

)2

,

as (1/t)2
2m+1

= (1/t)2
n

= (1/t). Thus z1 := t(
∑m

i=1(1/t)
22i

) and z2 := t(1 +
∑m

i=1(1/t)
22i

) are all solutions of equation (6) lying in GF (q). Hence the injec-
tivity of g2 is equivalent to the condition that none of zi (i = 1, 2) lie in T×

0

for every t ∈ T×
0 with Tr(1/t) = 1. As Tr(z2) = Tr(z1) + Tr(t) = Tr(z1), this

condition is equivalent to the condition that Tr(z1) = 1 for every t ∈ GF (q)×

with Tr(t) = 0 and Tr(1/t) = 1.
Rewriting w = 1/t, we verified the following claim:

Claim 1. For each w ∈ GF (q)×, if Tr(w) = 1 and Tr(1/w) = 0 then we have
Tr((1/w)(

∑m
i=1 w

22i

)) = 1.



142 N. Nakagawa and S. Yoshiara

5.3 Step 3

The condition in claim 1 is rephrased as follows. Remark that 1 + s+ s2 
= 0 for
every s ∈ GF (q), for otherwise 0 = s4 + s = s(1 + s)(1 + s + s2) and hence s
would lie in GF (2(n,2)) = GF (2).

Claim 2. For each s ∈ GF (q)×, if Tr(1/(1 + s + s2)) = 0 then Tr(s/(1 + s+
s2)) = 0.

Proof of Claim 2. Choose an element s ∈ GF (q)× with Tr(1/(1 + s+ s2)) = 0.
Then w := 1 + s+ s2 satisfies that Tr(w) = 1 and Tr(1/w) = 0, whence we can
apply claim 1 to this element. Remark that

∑m
i=1 w

22i

=
∑m

i=1(1+s2
2i

+s2
2i+1

) =
m+ Tr(s) + s2, because s2

2m+1
= s2

n

= s. Then it follows from claim 1 that

0 = 1 + Tr(
m+ Tr(s) + s2

1 + s+ s2
) = Tr(

m+ 1 + Tr(s) + s

1 + s+ s2
)

= Tr(
m+ 1 + Tr(s)

1 + s+ s2
) + Tr(

s

1 + s+ s2
).

Here, since m+ 1 + Tr(s) lies in GF (2), we have

Tr(
m+ 1 + Tr(s)

1 + s+ s2
) = (m+ 1 + Tr(s))Tr(

1
1 + s+ s2

) = 0

by the assumption on s. Hence we have 0 = Tr(s/(1 + s+ s2)). q.e.d.

5.4 Step 4

We now count the number of elements s ∈ GF (q) \GF (2) with Tr(s/(1 + s +
s2)) = 1 in two ways. We set

A := {s ∈ GF (q) \GF (2) | Tr(s/(1 + s+ s2)) = 1}. (7)

Before counting |A| in one way, notice that every element t ∈ T×
0 is written

as 1/(x + x−1) = x/(1 + x2) = x/(1 + x)2 for some x ∈ GF (q) \ GF (2). This
fact can be verified as follows. Since

x

(1 + x)2
=

1 + x

(1 + x)2
+

1
(1 + x)2

=
1

1 + x
+ (

1
1 + x

)2,

we have Tr(1/(x+ x−1)) = 0 for all x ∈ GF (q) \GF (2). Thus the map sending
x ∈ GF (q) \GF (2) to 1/(x+ x−1) is a map into T×

0 . It is easy to see that this
map is two to one, where x and x−1 correspond to the same element. Then the
image of this map consists of (q − 2)/2 = |T×

0 | elements. Hence we have

T×
0 = {1/(x+ x−1) | x ∈ GF (q) \GF (2)}.

We set B := {z ∈ GF (q) \ GF (2) | Tr(z + 1) = 0, T r(1/(z + 1)) = 1}.
Consider the map ρ sending s ∈ A to z = s/(1 + s + s2). Then z 
= 1, as



A Construction of Differentially 4-Uniform Functions 143

s 
= 1. We have Tr(z + 1) = Tr(s/(1 + s+ s2)) + 1 = 0 as s ∈ A. Furthermore,
Tr(1/(z + 1)) = Tr((1 + s+ s2)/(1 + s2)) = Tr(1) + Tr(s/(1 + s2)) = 1, by the
above remark. Thus the map ρ is into the set B.

To see that the map ρ is surjective onto B, take any z ∈ B. As Tr({1/(z +
1)}+ 1) = 0, there is s ∈ GF (q) \GF (2) with 1/(z + 1) = 1 + {1/(s+ s−1)} by
the above remark. The right hand side of the last equation is calculated to be
(1+s+s−1)/(s+s−1) = (1+s+s2)/(1+s2), from which we have z = s/(1+s+s2).
As z ∈ B, we have 1 = Tr(z). This shows that s ∈ A. Now it is easy to see that
the map ρ is two to one on A, as ρ(s) = ρ(1/s) = 1/(1 + s + s−1). Hence we
have |A| = 2|B|.

It is known that the set T00 := {x ∈ GF (q)× | Tr(x) = 0 = Tr(1/x)} has
the cardinality (q − 3− an)/4 (e.g. [6, Exercise 6.75]), where

an =
(
−1 +

√
−7

2

)n

+
(
−1−

√
−7

2

)n

. (8)

Since |B| = #{x ∈ GF (q)× | Tr(x) = 0, T r(1/x) = 1} is the cardinality of the
compliment to T00 in T×

0 , we have |B| = ((q/2) − 1 − |T00|) = (q − 1 + an)/4.
Summarizing, we have

|A| = (q − 1 + an)/2. (9)

5.5 Step 5

Now we start to count |A| in another way. Observe that the arguments in this
step except the last paragraph go through for any n, without assuming the
injectivity of g2 on T×

0 .
We set E(n) := GF (2n) \GF (2) with n odd, and let

t1(s) := Tr(1/(1 + s+ s2)) and t2(s) := Tr(s/(1 + s+ s2)) for s ∈ E(n).

The pair (t1(s), t2(s)) is one of the four vectors in GF (2)2. For each vector (a, b)
of GF (2)2, we define

E(n; a, b) := {s ∈ E(n) | (t1(s), t2(s)) = (a, b)}.

Clearly E(n) is the disjoint union of E(n; a, b) for (a, b) ∈ GF (2)2.
Let G be the subgroup of the group of bijections on E(n) generated by the

following two bijections α and ι:

xα := x+ 1, xι := (1/x) for x ∈ E(n) = GF (q) \GF (2).

It is easy to see that G is isomorphic to the symmetric group S3 of degree 3,
where α, ι and αια are involutions and αι and ια are elements of order 3.

For an element s of E(n; a, b), it is easy to see the following:

t1(sα) = Tr(1/(1 + (s+ 1) + (s+ 1)2)) = Tr(1/(1 + s+ s2)) = a,

t2(sα) = Tr((s+ 1)/(1 + s+ s2))
= Tr(s/(1 + s+ s2)) + Tr(1/(1 + s+ s2)) = a+ b,



144 N. Nakagawa and S. Yoshiara

t1(sι) = Tr(1/(1 + (1/s) + (1/s)2)) = Tr(s2/(1 + s+ s2))
= Tr(1) + Tr(1/(1 + s+ s2)) + Tr(s/(1 + s+ s2))
= 1 + a+ b,

t2(sι) = Tr((1/s)/(1 + (1/s) + (1/s)2))
= Tr(s/(1 + s+ s2)) = b.

Thus we have

E(n; a, b)α ⊆ E(n; a, a+ b) and E(n; a, b)ι ⊆ E(n; a+ b+ 1, b).

This implies the following inclusions among subsets E(n; a, b)g for g ∈ G = 〈α, ι〉
and (a, b) ∈ GF (2)2.

E(n; 0, 0)αι ⊆ E(n; 1, 0), E(n; 1, 0)αι ⊆ E(n; 1, 1),
E(n; 1, 1)αι ⊆ E(n; 0, 0) and E(n; 0, 1)g ⊆ E(n; 0, 1).

As g ∈ G is a permutation on E(n), we have |X | = |Xg| for a subset X of
E(n). Hence we have |E(n; 0, 0)| = |E(n; 1, 0)| = |E(n; 1, 1)| and E(n; 0, 1)g =
E(n; 0, 1) for all g ∈ G. As E(n) is the disjoint union of E(n; a, b) for (a, b) ∈
GF (2)2, we have

|E(n; a, b)| = |E(n)| − |E(n; 0, 1)|
3

=
q − 2− |E(n; 0, 1)|

3
. (10)

for any vector (a, b) of GF (2)2 distinct from (0, 1).
Observe that so far we did not use the injectivity of g2. Now we use it. Remark

that claim 2 implies E(n; 0, 1) = ∅. Thus the set A = {s ∈ E(n) | t2(s) = 1}
defind in equation (7) coincides with E(n; 1, 1). Then, from equation (10) applied
to (a, b) = (1, 1) we have

|A| = (q − 2)/3. (11)

5.6 Final Step

From equations (9) and (11), if f2 is a two to one map on D2(n) for n ≥ 4 with
(n, 2) = 1, then we have (q − 2)/3 = |A| = (q − 1 + an)/2, or equivalently

− (q + 1)/3 = an, (12)

where an is the integer defined in equation (8).
We see that this equation holds only for n = 5, as follows. Notice that the

absolute value |an| is at most 2
√
q, as an is the sum of two complex numbers

((−1±
√
−7)/2)n with absolute value (

√
2)n =

√
q. Then we have ((q+1)/3)2 ≤

4q from the above equality (12). This is satisfied only when q = 2n < 41,
which implies that n ≤ 5. As an is an integer, the remaining possibilities are
n = 5 and n = 3. However, the latter does not satisfy equation (12), because
a3 = −a2 − 2a1 = 5. (In fact, an is determined by the reccurence relation
an = −an−1 − 2an−2 with initial terms a1 = −1 and a2 = −3.) Remark that in
the case n = 5, we in fact have equality −(q + 1)/3 = −11 = a5.

This established proposition 6.



A Construction of Differentially 4-Uniform Functions 145

6 “If” Part of the Conjecture

We shall verify the “if” part of the conjecture. Remark that Dn−1−k(n) = Dk(n)
for any k, as (n, n− 1− k) = (n, k+ 1) and (n, (n− 1− k)+ 1) = (n, k). First, it
is staightforward to verify the following equation for positive integers n, k with
1 ≤ k ≤ n− 2 and x ∈ Dk(n), where we set f0(x) = 1.

fk(x)/fk−1(x) = {(1/fn−1−k(x)) + 1}2
k

. (13)

Lemma 7. (1) The function fk is two to one on Dk(n) for k = 1 or n− 2.
(2) For n even, the function fk is two to one on Dk(n) for k = (n/2) or (n/2)−1.
(3) For n odd, the function f(n−1)/2 is two to one on D(n−1)/2(n).

Proof (of lemma). (1) As f1(x) = (x22
+x)/(x2 +x) = x2 +x+1 for x ∈ D1(n),

it is immediate to see f1(x) = f1(y) if and only if x+ y ∈ GF (2). Thus f1 is two
to one on D1(n). Now by equation (13) with k = 1 we have

f1(x) = ((1/fn−2(x)) + 1)2 (14)

for x ∈ D1(n), as f0(x) = 1. Suppose that there exists some z ∈ D1(n)\{y, y+1}
with fn−2(y) = fn−2(z). Then the equation (14) applied to x = y and x = z
yields

f1(y) = ((1/fn−2(y)) + 1)2 = ((1/fn−2(z)) + 1)2 = f1(z),

which contradicts that f1 is two to one on D1(n).
(2) Let n be even. It follows from lemma 1 that fn/2 is two to one on Dn/2(n).

Then the two to one property of f(n/2)−1 on D(n/2)−1(n) = D(n/2) follows by
the same argument as in (1) from the equation

f(n/2)(x) = f(n/2)−1(x)
(
(1/f(n/2)−1(x)) + 1

)2n/2

,

which is equation (13) applied to k = (n/2). Note that k − 1 = n − k − 1 for
k = n/2.

(3) Let n = 2m + 1 be an odd integer. We denote by ρ and σ respectively
the Galois automorphisms defined by xρ = x2 and xσ = x2(n−1)/2

= x2m

for
x ∈ GF (q). Then we have xσ2ρ = x22m+1

= x2n

= x for all x ∈ GF (q), whence
σ2ρ = id, or equivalently ρ = σ−2. Then we have

fm(x) =
x2σ + x

x2 + x
=
xσρ + x

xρ + x
=
xσ−1

+ x

xσ−2 + x
.

Notice that the function fm is two to one on Dm(n) if and only if the function
1/fm defined by (1/fm)(x) = 1/fm(x) is two to one on Dm(n), which is equiv-
alent to the condition that the map (1/fm) + 1 defined by ((1/fm) + 1)(x) =
(1/fm(x)) + 1 is two to one on Dm(n). Now we have

((1/fm) + 1)(x) =
xσ−2

+ x

xσ−1 + x
+ 1 =

xσ−2
+ xσ−1

xσ−1 + x
= yσ−1

/y,



146 N. Nakagawa and S. Yoshiara

where we set y = xσ−1
+ x. Thus (1/fm) + 1 is the composite of the maps g

defined by g(x) = xσ−1
+ x and the map h defined by h(y) = yσ−1

/y. It is
easy to see that g is a two to one map from Dm(n) onto T×

0 , the set of nonzero
elements of GF (q) of trace 0, where x and x+1 correspond to the same element.
Furthermore, we see that the map h is injective on T×

0 , because the condition
yσ−1

/y = zσ−1
/z is equivalent to the condition that (y/z) = (y/z)σ, from which

we have y/z = 1, because ρ generates the group Gal(GF (q)/GF (2)) of odd
order and hence σ with σ2 = ρ−1 also generates Gal(GF (q)/GF (2)). Thus the
composite (1/fm) + 1 = h ◦ g and hence fm is a two to one map on Dm(n).

References

1. Budaghyan, L., Carlet, C., Leander, G.: A class of quadratic APN binomials in-
equivalent to power functions (submitted)

2. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear functions. Trans. Inform. Theory 52(3), 1141–1152 (2006)

3. Cordero, M., Wene, G.P.: A survey of finite semifields. Discrete Math. 208/209,
125–137 (1999)

4. Dembowski, P., Ostrom, T.G.: Planes of order n with collineation groups of order
n2. Math. Z. 103, 239–258 (1968)

5. Kantor, W.: Finite semifields. In: Hulpke, A., Liebler, B., Penttila, T., Seress, A.
(eds.) Finite Geometires, Groups, and Computation, Walder de Gruyter, Berlin-New
York (2006)

6. Lidle, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and its
Applications, 20, Addison-Wesley, Reading, Massachusetts (1983)

7. Minami, K., Nakagawa, N.: On planar functions of elementary abelian p-group type
(submitted)

8. Yoshiara, S.: Dimensional dual hyperovals admitting large automorphism groups,
manuscript for the proceeding of the symposium on finite groups and related topics,
Kyoto University (December 18-21, 2007)



Complete Mapping Polynomials over Finite

Field F16
�

Yuan Yuan, Yan Tong, and Huanguo Zhang

School of Computer, Wuhan University, Wuhan, Hubei, 430072, China
yuanliuyuan79@163.com,xianquan2006@sohu.com,liss@whu.edu.cn

Abstract. A polynomial f(x) over Fq, the finite field with q elements,
is called a complete mapping polynomial if the two mappings Fq →
Fq respectively defined by f(x) and f(x) + x are one-to-one. In this
correspondence, complete mapping polynomials over F16 are considered.
The nonexistence of the complete mapping polynomial of degree 9 and
the existence of the ones of degree 8 and 11 are proved; the result that
the reduced degree of complete mapping polynomials over F16 are 1, 4,
8, 10, 11, 12, 13 is presented; and by searching with computer, the degree
distribution of complete mapping polynomials over the field is given.

Keywords: permutation polynomials, complete mapping polynomials,
unique factorization domain.

1 Introduction

Fq is the finite field with q elements, a polynomial f(x) ∈ Fq[x] is called a
permutation polynomial on Fq if the mapping defined by f is one-to-one; i.e. the
f(a) where a ∈ Fq are a permutation of the a′s. If both f(x) and f(x) + x are
permutation polynomials of Fq, then f is called a complete mapping polynomial
of Fq. By Lagrange’s interpolation formula, any mapping of Fq into itself can be
represented by a unique polynomial of degree less then q. In fact, for f, h ∈ Fq[x],
we have f(c) = g(c) for all c ∈ Fq if and only if f(x) ≡ h(c)mod (xq − x). The
degree of the reduction of f(x)mod (xq − x) is called the reduced degree of f ,
thus, the reduced degree is always less than q.

Although permutation polynomials over finite fields have been a subject of
study for many years, complete mapping polynomials over finite fields were intro-
duced in Niederreiter and Robinson [1], and studied in detail in Niederreiter and
Robinson [2]. Since then, many results have been given about the subject, but
most of them are given from the view of pure theory, and on those polynomials
over finite fields of characteristic odd prime.

Now complete mapping polynomials over finite fields F2n , specially, those
ones over the finite fields F2n with 4|n, attract more and more attention, for

� Supported by National Natural Science Foundation of China (60373087, 60473023,
90104005, 60673071).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 147–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



148 Y. Yuan, Y. Tong, and H. Zhang

they have useful cryptographic properties and have important applications in
block cipher.

Naturally, considerable attention has been given to the case n = 4; i.e. the
complete mapping polynomials over F16. Over F16, many work have been done on
classifying complete mapping polynomials from their reduced degrees, in other
words, many work have been done to solve the problem: is there a complete
mapping polynomial of degree d with 0 < d < 16? the results obtained until now
are as follows:

1. by Wan’result[3], there is no complete mapping polynomial of degree 14;
2. by Hermite criterion[4], there is no complete mapping polynomials of

degree 2, 3, 5;
3. Li [5]proved that there exist complete mapping polynomials of degree 1, 4;

and there is no complete mapping polynomial of degree 6, 7 by using transform
technique. Unfortunately, her method is not feasible to those polynomials of
degree 8, 9, 10, 11, 12, 13. So the above problem over F16 has not been solved
completely until now.

In this correspondence, we note that F16
∼= Z[ξ5]/2Z[ξ5], where ξ5 is a primi-

tive 5-th root of unity in the rational number field Q, Z[ξ5] is the ring of algebraic
integers of the field Q(ξ5). By using the property that Z[ξ5] is a unique factor-
ization domain and the fact that there is a ring homomorphism from Z[ξ5] to
F16, we prove that over F16 there is no complete mapping polynomial of degree
9; and by discussing the complete mapping binomials and the complete mapping
trinomial of the form: axi + bxj + cx, abc 
= 0 and 15 > i > j > 1, we prove
that there exist complete mapping polynomials of degree 8, 11. We could not
prove theoretically there exist complete mapping polynomials of degree 10, 12,
13, which are the work we will do in the future, but it is not difficult for us
to find some complete mapping polynomials of degree 10, 12, 13. Hence, the
reduced degree of complete mapping polynomial of F16 are 1, 4, 8, 10, 11, 12,
13. By searching with computer, we list the degree distribution of the complete
mapping polynomials over F16. Thus, we classify the complete mapping poly-
nomials over F16 from their reduced degrees, and our result is the theoretical
preparation to find the complete mapping polynomials with good cryptographic
properties and use them into the design of the block substitution. Moreover, we
give a conjecture on the nonexistence of complete mapping polynomial of special
form.

2 Preliminaries

At the beginning of the section, we restate some general facts about complete
mapping polynomials over F2n which we freely use throughout this correspon-
dence (see [4]), and after that we present some properties on permutation poly-
nomials over F16.

Definition 1. A polynomial f(x) ∈ F2n [x] is called a permutation polynomial,
if f : c �→ f(c) is a permutation of F2n .



Complete Mapping Polynomials over Finite Field F16 149

Lemma 1 (Hermite Criterion). f(x) ∈ F2n [x] is a permutation polynomial
of F2n if and only if the following two conditions hold:
i) f(x) has exactly one root in F2n ;
ii) for each odd integer t with 1 ≤ t ≤ 2n−2, the reduction of f(x)tmod (x2n−

x) has degree ≤ 2n − 2.

Corollary 1. If d > 1 is a divisor of 2n − 1, then there is no permutation
polynomial of F2n of degree d.

Definition 2. A polynomial f(x) ∈ F2n [x] is called a complete mapping poly-
nomial, if both f(x) and f(x) + x are permutation polynomials of F2n .

Property 1. If f(x) is a permutation (complete mapping ) polynomial over F2n ,
then so is f(x) + γ, for any γ ∈ F2n .

Property 2. If f(x) is a complete mapping polynomial over F2n , then so is
f(x+ γ), for any γ ∈ F2n .

Lemma 2 (ref. [3]). If n > 1, then over F2n , the reduction of any complete
mapping polynomial modulo x2n − x has degree ≤ 2n − 3.

In the following, we will consider polynomials over the finite field F16. Let ξ5 be
a primitive 5-th root of unity in the rational number field Q, Z be the integer
ring. It is well known(e.g ref[6]) that, as the ring of algebraic integers of the field
Q(ξ5), Z[ξ5] is a unique factorization domain, and the quotient ring Z[ξ5]/2Z[ξ5]
is a finite field, where 2Z[ξ5] is the principal ideal of Z[ξ5] generated by 2. In
fact, as finite field, F16

∼= Z[ξ5]/2Z[ξ5]. Moreover, 2 is prime in Z[ξ5], i.e. for
a, b ∈ Z[ξ5], if 2|ab, then either 2|a or 2|b. For any a, b, c ∈ Z[ξ5], if c | (a − b),
then we write a ≡ b(mod c).

Let ζ : λ �→ λ + 2Z[ξ5] be the natural ring homomorphism from Z[ξ5] to
the quotient ring Z[ξ5]/2Z[ξ5], and φ be an isomorphism from Z[ξ5]/2Z[ξ5] to
F16, then η = φ ◦ ζ : λ �→ φ(ζ(λ)), is a ring homomorphism from Z[ξ5] to F16.
From the definition of η, we have: for any β ∈ F16, if u, v ∈ Z[ξ5] such that
η(u) = η(v) = β, then u ∈ v + 2Z[ξ5], thus there exists a y ∈ Z[ξ5] such that
u = v + 2y.

We now consider F16 as F2(α0), where α0 is a root of the irreducible polyno-
mial x4 + x+ 1 over F2. Obviously, α0 is a generator of the cyclic multiplicative
group F ∗

16 = F16 − {0}, and choose λ0 ∈ Z[ξ5] such that η(λ0) = α0, then we
have: η(λ0

15) = η(λ0)15 = α0
15 = 1, η(λ0

i) = α0
i 
= 1, 0 < i < 15. Obviously, for

1 ∈ Z[ξ5], η(1) = 1, thus we have λ0
15 ∈ 1 + 2Z[ξ5], that means 2|(λ0

15 − 1). So
we have λ15

0 ≡ 1(mod 2), and λi
0 
≡ 1(mod 2), 0 < i < 15. Specially, let α = α0

2,
it is easy to check that α is also a root of x4 +x+1, thus F16 also can be consid-
ered as F2(α), and α is also a generator of F16

∗. Let λ = λ0
2 ∈ Z[ξ5], then from

2|(λ0
15 − 1), we get that 4|(λ15 − 1). Thus we have η(λ) = η(λ0

2) = α0
2 = α,

and in Z[ξ5], λ15 ≡ 1(mod 4), λi 
≡ 1(mod 2), 0 < i < 15.
In the following, F16 is considered as F2(α), where α is a root of the irreducible

polynomial x4+x+1 over F2, with λ ∈ Z[ξ5] satisfying η(λ) = α, λ15 ≡ 1(mod 4),
and λi 
≡ 1(mod 2), 0 < i < 15. Denote S = {λi | i = 0, · · · , 14} ∪ {0}.



150 Y. Yuan, Y. Tong, and H. Zhang

Lemma 3. In Z[ξ5],
∑

x∈S

xi ≡
{

3 (mod 4) 15 | i
0 (mod 4) 15 � i

. In particular, when 15 � i and

i is even,
∑

x∈S

xi ≡ 0 (mod 8).

Proof.
∑

x∈S

xi =
14∑

j=0

(λj)i =

{
15 15 | i
(λi)15−1

λi−1 15 � i
. In the case 15 � i, from 4|(λ15 − 1),

we get 4|[(λi)15− 1] when i is odd, 8|[(λi)15− 1] when i is even; and 2 � (λi− 1),
then the Lemma follows from the fact that Z[ξ5] is a unique factorization domain.

�

Proposition 1. If f(x) =
14∑

i=0

aix
i is a permutation polynomial of F16, then

∑

i+j=15, i<j

aiaj = 0.

Proof. Suppose f(x) =
14∑

i=0

aix
i is a permutation polynomial of F16, then so is

f ′(x) =
14∑

i=1

aix
i by Property 1. Choose F (x) =

14∑

i=1

cix
i ∈ Z[ξ5][x] such that

η(F (x)) =
14∑

i=1

η(ci)xi =
14∑

i=1

aix
i = f(x); i.e. η(ci) = ai, 1 ≤ i ≤ 14. Then by

supposition,

{η(F (x)) | x ∈ S} = {η(
14∑

i=1

ci(λj)i)|0 ≤ j ≤ 14} ∪ {0}

= {
14∑

i=1

ai(αj)i|0 ≤ j ≤ 14} ∪ {0}

= {f ′(0), f ′(1), f ′(α), · · · , f ′(α14)} = F16

Thus we have {η(x) | x ∈ S} = F16 = {η(F (x)) | x ∈ S}. Hence:
1) 0 ∈ F16, then there is only one element x̃ ∈ S such that η(F (x̃)) = 0, thus

we have η(F (x̃)) = 0 = η(0), then ∃ ỹ ∈ Z[ξ5] such that F (x̃) = 0 + 2ỹ;
2) for each αi, 0 ≤ i ≤ 14, there is only one element xi ∈ S such that

η(F (xi)) = αi = η(λi), thus ∃ yi ∈ Z[ξ5] such that F (xi) = λi + 2yi.

So we have
∑

x∈S

F (x)2 = (2ỹ)2 +
14∑

i=0

(λi + 2yi)2

=
∑

x∈S

(x+ 2yx)2, yx ∈ Z[ξ5]

by Lemma 3 ≡
∑

x∈S

x2 (mod 4)

≡ 0 (mod 4)

on the other hand ,
∑

x∈S

F (x)2 =
∑

x∈S

(
14∑

i=1

cix
i)2

=
∑

x∈S

14∑

i=1

(ci2x2i) +
∑

x∈S

∑

i<j

2cicjxi+j

=
14∑

i=1

ci
2
∑

x∈S

x2i +
∑

i<j

2cicj
∑

x∈S

xi+j



Complete Mapping Polynomials over Finite Field F16 151

by Lemma 3 , ≡
∑

i+j=15, i<j

2cicj
∑

x∈S

x15 (mod 4)

≡
∑

i+j=15, i<j

2cicj (mod 4)

thus
∑

i+j=15, i<j

cicj ≡ 0 (mod 2)

hence
∑

i+j=15, i<j

aiaj = η(
∑

i+j=15, i<j

cicj) = 0 . �

3 Main Results

In this section, we give our main results and their proofs: in subsection 3.1,
the result on polynomials of degree 9 is given and a conjecture is presented;
in subsection 3.2, the result on polynomials of degree 8 is given; in subsection
3.3, the result on polynomials of degree 11 is given; we give the conclusions in
subsection 3.4.

3.1 Nonexistence of Complete Mapping Polynomial of Degree 9

Let C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12}, C5 = {5, 10}, C7 = {7, 14,
13, 11} be the cyclotomic cosets mod 15 over F16.

Let f(x) = a9x
9 + a8x

8 + . . . + a1x, where a9 
= 0, if f(x) is a complete
mapping polynomial over F16, then by Hermite Criterion, we have that in the
reductions of f(x)imod (x16 − x) and [f(x) + x]imod (x16 − x), 1 ≤ i ≤ 14
and i is odd, coefficients of x15 must equal to 0 respectively. In fact, when i, j
are in the same cyclotomic coset, f(x)imod (x16 − x) and f(x)j mod (x16 − x),
[f(x)+x]i mod (x16−x) and [f(x)+x]j mod (x16−x) induce the same equations
respectively. Thus, we only get 6 equations on the 9 coefficients ai from the
reductions of f(x)3mod (x16−x), [f(x) + x]3mod (x16−x), f(x)5mod (x16−x),
[f(x) + x]5mod (x16 − x), f(x)7mod (x16 − x), [f(x) + x]7mod (x16 − x), which
are not enough for us to decide whether there is complete mapping polynomial of
degree 9. By using the relations between F16 and Z[ξ5], we get 3 more equations
on those coefficients, thus we get 9 equations on 9 coefficients. In fact, among
those 9 equations, two are coincident, so we only have 8 equations on the 9
coefficients, but after computing, we still get the following result:

Theorem 1. There is no complete mapping polynomial of degree 9 over F16.

Proof. Let f(x) = a9x
9 + a8x

8 + . . .+ a1x+ a0, where a9 
= 0, then

I. f(x+ a8a9
−1) = a9(x+ a8a9

−1)9 + a8(x+ a8a9
−1)8 + . . .

+a1(x+ a8a9
−1) + a0

= a9x
9 + a′7x

7 + . . .+ a′1x+ a′0
by Property 2 and Property 1, f(x) is a complete mapping polynomial if and

only if a9x
9 + a′7x7 + . . .+ a′1x is also a complete mapping polynomial.

Thus, if we can prove there is no complete mapping polynomial of form (1):
f(x) = a9x

9 + a7x
7 + . . .+ a1x, where a9 
= 0, then the theorem get proved. We

use the proof by contradiction.



152 Y. Yuan, Y. Tong, and H. Zhang

II. If f(x) of form (1) is a complete mapping polynomial, then we have
f(x)3 ≡ (a9a3

2 + a7a4
2 + a5

3 + a3a6
2 + a1a7

2)x15 +ϕ(x)mod (x16−x), where
ϕ(x) is a polynomial of degree ≤ 14;

[f(x) + x]3 ≡ [a9a3
2+a7a4

2+a5
3+a3a6

2+(a1+1)a7
2]x15+ϕ′(x)mod (x16−x),

where ϕ′(x) is a polynomial of degree ≤ 14;
by Hermite Criterion, we have

{
a9a3

2 + a7a4
2 + a5

3 + a3a6
2 + a1a7

2 = 0
a9a3

2 + a7a4
2 + a5

3 + a3a6
2 + (a1 + 1)a7

2 = 0

solve the equations, we obtain a7 = 0 and a9a3
2 + a5

3 + a3a6
2 = 0.

Thus now, if we can prove there is no complete mapping polynomial of form
(2): f(x) = a9x

9 + a6x
6 + . . .+ a1x, where a9 
= 0, then the theorem get proved.

We use the proof by contradiction again.

III. If f(x) = a9x
9 + a6x

6 + . . . + a1x, where a9 
= 0, is a complete mapping
polynomial, then by Proposition 1, a6 = 0.

Hence, if we can prove that there is no complete mapping polynomial of form
(3): f(x) = a9x

9 + a5x
5 + . . .+ a1x, where a9 
= 0, then the theorem get proved.

We still use the proof by contradiction.

IV. If f(x) of form (3) is a complete mapping polynomial, then by Hermite
criterion (2), a9a3

2+a5
3 = 0 must hold. Choose F (x) = c9x

9+c5x5+c4x4+c3x3+
c2x

2 + c1x ∈ Z[ξ5][x] such that η(F (x)) = f(x); i.e. η(ci) = ai, i = 9, 5, 4, 3, 2, 1.
Obviously, η(1) = 1, thus η(F (x) + x) = f(x) + x. By supposition, f(x) and
f(x) + x are permutation polynomials, then similar to the proof of Proposition
1, we have:

{η(F (x)) | x ∈ S} = {η(F (x) + x) | x ∈ S} = {η(x) | x ∈ S} = F16

1)
∑

x∈S

(F (x) + x)4 =
∑

x∈S

(x+ 2yx)4 where yx ∈ Z[ξ5]

≡
∑

x∈S

x4 (mod 8)

by Lemma 3 ≡ 0 (mod 8)
on the other hand,∑

x∈S

(F (x) + x)4 =
∑

x∈S

[F (x)4 + 4F (x)3x+ 6F (x)2x2 + 4x3F (x) + x4]

compute the reduction of each item mod 8 respectively:

∑

x∈S

F (x)4 ≡
∑

x∈S

x4(mod 8) ≡ 0( mod 8)
∑

x∈S

4F (x)3x =
∑

x∈S

4(c9x
9 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x)3x

=
∑

x∈S

4(c9
2x18 + c5

2x10 + c4
2x8 + c3

2x6 + c2
2x4 + c1

2x4+

2c9c5x
14 + 2c9c4x

13 + 2c9c3x
12 + 2c9c2x

11 + 2c9c1x
10+

2c5c4x
9 + 2c5c3x

8 + 2c5c2x
7 + 2c5c1x

6 + 2c4c3x
7 + 2c4c2x

6+
2c4c1x

5 + 2c3c2x
5 + 2c3c1x

4 + 2c2c1x
3)

(c9x
9 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x)x



Complete Mapping Polynomials over Finite Field F16 153

≡
∑

x∈S

4(c9
3x28+c9

2c5x
24+c9

2c4x
23+c9

2c3x
22+c9

2c2x
21+c9

2c1x
20

+c5
2c9x

20+c5
3x16+c5

2c4x
15+c5

2c3x
14+c5

2c2x
13+c5

2c1x
12

+c4
2c9x

18+c4
2c5x

14+c4
3x13+c4

2c3x
12+c4

2c2x
11+c4

2c1x
10

+c3
2c9x

16+c3
2c5x

12+c3
2c4x

11+c4
3x10+c4

2c2x
9+c4

2c1x
8

+c2
2c9x

14+c2
2c5x

10+c2
2c4x

9+c2
2c3x

8+c2
3x7+c2

2c1x
6

+c1
2c9x

12+c1
2c5x

8+c1
2c4x

7+c1
2c3x

6+c1c2x
5+c1

3x4)( mod 8)
≡
∑

x∈S

4c5
2c4( mod 8)

∑

x∈S

6F (x)2x2 =
∑

x∈S

6(c9x
9+c5x

5+c4x
4+c3x

3+c2x
2+c1x)2x2

=
∑

x∈S

6(c9
2x20+c5

2x12+c4
2x10+c3

2x8+c2
2x6+c1

2x4+

2c9c5x
16+2c9c4x

15+2c9c3x
14+2c9c2x

13+2c9c1x
12+

2c5c4x
11+2c5c3x

10+2c5c2x
9+2c5c1x

8+2c4c3x
9+2c4c2x

8

2c4c1x
7+2c3c2x

7+2c3c1x
6+2c2c1x

5)
≡ 4c9c4 ( mod 8),∑

x∈S

4x3F (x) ≡ 0 (mod 8)
∑

x∈S

x4 ≡ 0 (mod 8)

then we have
∑

x∈S

(F (x) + x)4 ≡ 4c9c4 + 4c4c52 (mod 8)

hence, we get c9c4 + c4c5
2 ≡ 0(mod 2).

thus a9a4 + a4a5
2 = η(c9c4 + c4c5

2) = 0.

2)
∑

x∈S

(F (x) + x)6 =
∑

x∈S

(x+ 2yx)6 yx ∈ Z[ξ5]

≡
∑

x∈S

x6 (mod 4) ≡ 0 (mod 4)

on the other hand,∑

x∈S

(F (x) + x)6 =
∑

x∈S

[F (x)6 + 6F (x)5x+ 15F (x)4x2 + 20F (x)3x3+

15x4F (x)2 + 6F (x)x5 + x6]
≡
∑

x∈S

(2c9c54 + 2c2a3
4 + 2c9c2)x15 (mod 4)

≡ 2c9c54 + 2c2a3
4 + 2c9c2 (mod 4)

As above, we obtain a9a5
4 + a2a3

4 + a9a2 = 0.
Now we get 3 equations about the coefficients of f(x) as follows:

⎧
⎨

⎩

a9a3
2 + a5

3 = 0
a9a4 + a4a5

2 = 0
a9a5

4 + a2a3
4 + a9a2 = 0

solve the equation system, we get

⎧
⎨

⎩

a4 = 0
a3 = a5

9a9
7

a2(1 + a5
6a9

12) = a5
4

Hence, if we can prove that there is no complete mapping polynomial of form
(4):f(x) = a9x

9 + a5x
5 + a3x

3 + a2x
2 + a1x, where a9 
= 0, then the theorem get

proved. We use the proof by contradiction.



154 Y. Yuan, Y. Tong, and H. Zhang

V. If f(x) of form (4) is a complete mapping polynomial, then by Hermite
criterion (2), we have

{
a3 = a5

9a9
7 (1)

a2(1 + a5
6a9

12) = a5
4 (2)

Now we assert that a5(1+a5
6a9

12) 
= 0, for otherwise if 1+a5
6a9

12 = 0 or a5 = 0,
then a5 = 0, a2 = 0 follow from equation (2), hence a3 = 0 by equation (1),
which induce that f(x) = a9x

9 + a1x is a complete mapping polynomial, that is
impossible! for when a1 
= 0, f(x) = a9x

9 + a1x has more than 2 roots in F16.
Hence, we have

⎧
⎨

⎩

a9 
= 0, a5 
= 0, 1 + a5
6a9

12 
= 0
a3 = a5

9a9
7 (3)

a2 = a5
4(1 + a5

6a9
12)−1 = a5

10a9
12 + a5

7a9
6 (4)

f(x)7 ≡ [a9a1
6+a5a3

2a1
4+a5a2

2a9
4+a5a2

4a1
2+a3a2

6+a3
3a9

4+a3
2a2

4a1+
a5

2a1
5 + a3

4a1
3]x15 + φ(x)(modx16 − x), where φ(x) is a polynomial of degree

≤ 14;
[f(x) + x]7 ≡ [a9(a1 + 1)6 + a5a3

2(a1 + 1)4 + a5a2
2a9

4 + a5a2
4(a1 + 1)2 +

a3a2
6+a3

3a9
4+a3

2a2
4(a1+1)+a5

2(a1 + 1)5+a3
4(a1 + 1)3]x15+φ′(x)(modx16−

x), where φ′(x) is a polynomial of degree ≤ 14;
by Hermite Criterion, we have
a9a1

6+a5a3
2a1

4 +a5a2
2a9

4 +a5a2
4a1

2+a3a2
6+a3

3a9
4 +a3

2a2
4a1 +a5

2a1
5 +

a3
4a1

3 = 0 (5)
a9(a1

4+a1
2+1)+a5a3

2+a5a2
4+a5

2(a1
4+a1+1)+a3

2a2
4+a3

4(a1
2+a1+1) =

0 (6)
input (3),(4) to (5) and (6), we get conditions on a1, a5 and a9 as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a9 + a5
2)a1

4 + (a9 + a5
6a9

13)a1
2 + (a5

2 + a5
6a9

13)a1 + a9 + a5
2+

a5
4a9

14 + a5
6a9

13 + a5
11a9

3 + a5
13a9

2 + a5a9
8 = 0

a9a1
6 + a5

2a1
5 + a5

4a9
14a1

4 + a5
6a9

13a1
3 + (a5

11a9
3 + a5

14a9
9)a1

2+
(a5

13a9
2 + a5a9

8)a1 + a5
9a9

4 + a9 + a5
3a9

7 = 0
1 + a5

6a9
12 
= 0, a9 
= 0, a5 
= 0

When a9, a5 respectively run over F16
∗ with a5

6a9
12 
= 1, after computing

we could not find a1 ∈ F16 satisfying the above conditions. Hence there is no
complete mapping polynomial of form (4) over F16, thus the theorem get proved.

�
Note that in the proof of Theorem 1, the work to prove there is no complete
mapping polynomial of form f(x) = a9x

9 + a8x
8 + . . .+ a1x+ a0, where a9 
= 0,

is finally reduced to prove there is no complete mapping polynomial of form
f(x) = a9x

9 + a5x
5 + a3x

3 + a2x
2 + a1x, where a9 
= 0. In the case, f(x) =

x(a9x
8+a5x

4+a3x
2+a2x+a1), where a9x

8+a5x
4+a3x

2+a2x+a1 is a linearized
polynomial, a polynomial of the form

∑n−1
i=0 aix

2i

, ai ∈ F2n , is called a linearized
polynomial over F2n . Thus we note the fact that over F16, if f(x) = xg(x), where



Complete Mapping Polynomials over Finite Field F16 155

g(x) is a linearized polynomial, then f(x) is not a complete mapping polynomial,
and we find that the fact still holds over F8 and there are many examples over
other finite fields of characteristic 2, so we have the following conjecture:

Conjecture 1. Over F2n , there is no complete mapping polynomial of form
xg(x), where g(x) is a linearized polynomial over F2n .

3.2 The Complete Mapping Binomials

In this subsection, we classify the complete mapping binomials of degree less
than 16 over F16. From the classification, we obtain that there exist complete
mapping polynomials of degree 8.

Lemma 4. The permutation binomials over F16 are of the form as follows:

degree the form of permutation binomials
4 a(x4 + bx), ab 
= 0, b 
= α3, α6, α9, α12

8 a(x8 + bx2), ab 
= 0, b 
= α3, α6, α9, α12

13 a(x13 + bx7), ab 
= 0, b 
= α3, α6, α9, α12

14 a(x14 + bx11), ab 
= 0, b 
= α3, α6, α9, α12

Proof. Suppose a(xi + bxj) is a permutation polynomial, where ab 
= 0, 0 < j <
i < 15, then we have

(1) i � 15, by Corollary 1;
(2) (i−j, 15) > 1 and b 
∈ (αi−j), where (αi−j) is the subgroup of F ∗

16 generated
by αi−j , otherwise axj(xi−j + b) has more than 2 roots in F16, could not be a
permutation polynomial;

(3) i+ j 
= 15, by Proposition 1;
(4) i, j ∈ C1 or i, j ∈ C7, for otherwise:
i) if i ∈ C5, j 
∈ C5, then in the reduction of [a(xi + bxj)]3 mod (x16 − x), the

coefficient of x15 is a3 
= 0, a contradiction ; the contradiction happens again
for the case j ∈ C5, i 
∈ C5; but if i, j ∈ C5, then i must be 10, j must be 5,
contradict to (3);
ii) if i ∈ C3, j 
∈ C3, by i) we have j 
∈ C5, if j ∈ C1∪C7, then in the reduction

of [a(xi + bxj)]5 mod (x16 − x), the coefficient of x15 is a5 
= 0, a contradiction;
the contradiction induced again for the case j ∈ C3, i 
∈ C3; but if i ∈ C3, j ∈ C3,
and i+j 
= 15, then in the reduction of [a(xi+bxj)]3 mod (x16−x), the coefficient
of x15 is a3b or a3b2, not 0, a contradiction;
iii) if i ∈ C1, j ∈ C7, obviously i must be 8, j must be 7, contradict to (3);
iv) if i ∈ C7, j ∈ C1, when i − j = 5 or 10, by (2) we have b 
∈ (α5), hence

b3 
= 1, in this case, the coefficient of x15 in the reduction of [a(xi + bxj)]5

mod (x16 − x) is a5(b + b4) 
= 0, a contradiction; when i − j 
= 5, 10, in the
reduction of [a(xi + bxj)]3 mod (x16 − x), the coefficient of x15 is a3b or a3b2,
not 0, a contradiction.

From the above four restrictions, and by Hermite Criterion, it is easy for us
to get that if f(x) is a permutation polynomial, then f(x) must be of the form
as in the above table; and the converse is true. �



156 Y. Yuan, Y. Tong, and H. Zhang

Theorem 2. The complete mapping binomials over F16 are of the form as
follows:

degree the form of complete mapping binomials
4 a(x4 + bx), ab 
= 0; b, b+ a−1 
= α3, α6, α9, α12

8 a(x8 + bx2), ab 
= 0; b 
= α3, α6, α9, α12; and
x7 + bx+ a−1 has no root in F16

Proof. Suppose a(xi + bxj) is a complete mapping polynomial, where ab 
= 0,
0 < j < i < 15, then both a(xi + bxj) and a(xi + bxj) + x are permutation
polynomials, thus by Lemma 4, we have:

(1) i = 4, j = 1: by Lemma 4, ab 
= 0; b, b + a−1 
= α3, α6, α9, α12, obviously
there exist elements in F16 satisfying those conditions, so there exist complete
mapping binomials of form a(x4 + bx).

(2) i = 8, j = 2: by Hermite criterion, ab 
= 0, b 
= α3, α6, α9, α12; and
x7 + bx+ a−1 must have no root in F16. In fact, let g(x) = x7 + bx, then in the
reduction of g(x)3mod (x16 − x), the coefficient of x15 is b 
= 0, so by Hermite
criterion, g(x) = x7 + bx is not a permutation of F16, thus there eixst a 
= 0
such that x7 + bx+a−1 has no root in F16. Hence, there exist complete mapping
polynomials of form a(x8 + bx2).

(3) i = 13, j = 7: by Hermite criterion, x12 + bx6 + a−1 must have no root in
F16, with ab 
= 0, b 
= α3, α6, α9, α12. Let y = x6, x12 +bx6 +a−1 = y2 +by+a−1,
obviously, in this case, y2 + by is a permutation of F16, so x12 + bx6 + a−1 =
y2+by+a−1 has one root in F16. Thus, there is no complete mapping polynomial
of form a(x13 + bx7). �

3.3 The Complete Mapping Trinomial of Form axi + bxj + cx

In the subsection, we classify the complete mapping trinomial of form axi+bxj +
cx, abc 
= 0, and 15 > i > j > 1. In the process of the classification, we prove
that there exist complete mapping polynomials of degree 11 over F16.

Theorem 3. The complete mapping trinomial of form axi + bxj + cx, abc 
= 0,
and 15 > i > j > 1, must be one of the following: (1) ax4 + bx2 + cx; (2)
ax8 + bx2 + cx; (3) ax8 + bx4 + cx; (4) ax11 + bx7 + cx.

Proof. Suppose f(x) = axi +bxj +cx, abc 
= 0, and 15 > i > j > 1, is a complete
mapping polynomial, then four big cases are analyzed as follows:
I. if i ∈ C1:

(1) if i = 4: if j = 2, by Li [5], there exist complete mapping polynomials of
form f(x) = ax4+bx2+cx; if j = 3, then in the reduction of f(x)5mod (x16−x),
the coefficient of x15 is b5 
= 0, a contradiction.

(2) if i = 8: if j = 2, by Theorem 2, there exist complete mapping polynomials
of form f(x) = ax8 + bx2 + cx; if j = 4, by Hermite criterion, ax7 + bx3 + c,
and ax7 + bx3 + c + a−1 must have no root in F16, it is easy to check that
a = b = 1, c = α3 satisfy that conditions, so there exist complete mapping
polynomials of form f(x) = ax8 + bx4 + cx; if j ∈ C3, then in the reduction of



Complete Mapping Polynomials over Finite Field F16 157

f(x)5mod (x16 − x), the coefficient of x15 is b5 
= 0, a contradiction; if j ∈ C5,
then in the reduction of f(x)3mod (x16 − x), the coefficient of x15 is b3 
= 0, a
contradiction;
II. if i ∈ C5:

(1) if i = 5, by Corollary 2, there is no complete mapping polynomial of
degree 5.

(2) if i = 10: if j ∈ C1∪C3, in the reduction of f(x)3mod (x16−x), the coeffi-
cient of x15 is a3 
= 0, a contradiction; if j = 5, by Proposition 1, a contradiction;
if j = 7, by Hermite criterion (2), a3 = b2c and a3 = b2c + b2 must hold, that
means b = 0, a contradiction.
III. if i ∈ C3:

in this case, for there is no complete mapping polynomial of degree 3, 6,
and 9, we only need to consider i = 12: if j ∈ C1, then in the reduction of
f(x)5mod (x16−x), the coefficient of x15 is a5 
= 0, a contradiction; if j ∈ C5, in
the reduction of f(x)3mod (x16−x), the coefficient of x15 is b3 
= 0, a contradic-
tion; if j ∈ C3, in the reduction of f(x)3mod (x16−x), the coefficient of x15 is a2b
or ab2, not 0, a contradiction; if j = 7, in the reduction of f(x)3mod (x16 − x),
the coefficient of x15 is b2c 
= 0, a contradiction; if j = 11, in the reduction of
f(x)5mod (x16−x) and [f(x)+x]5mod (x16−x), the coefficients of x15 are a5+b4c
and a5 + b4(c+ 1) respectively, could not be 0 at same time, a contradiction;
IV. if i ∈ C7:

(1) if i = 7, there is no complete mapping polynomial of degree 7;
(2) if i = 11: if j = 2, in the reduction of f(x)3mod (x16 − x), the coefficient

of x15 is ab2 
= 0, a contradiction; if j = 4, contradict to Proposition 1; if j = 8,
in the reduction of f(x)3mod (x16 − x), the coefficient of x15 is a2b 
= 0, a
contradiction; if j ∈ C5, in the reduction of f(x)3mod (x16 − x), the coefficient
of x15 is b3 
= 0, a contradiction; if j = 3, in the reduction of f(x)5mod (x16−x)
and [f(x) + x]5mod (x16 − x), the coefficients of x15 are b5 + a4c + ac4 and
b5 +a4(c+1)+a(c4+1) respectively, in the reduction of f(x)3mod (x16−x) and
[f(x)+x]3mod (x16−x), the coefficients of x15 are a3b4+c3b4 and a3b4+(c+1)3b4

respectively, so the four expressions must equal to 0, which induce b = 0, a
contradiction; if j = 9, in f(x)7mod (x16− x), the coefficient of x15 is bc6 
= 0, a
contradiction; if j = 6, by Hermite criterion, a4c+ c4a+ b5 = 0 and a3 = 1 must
hold, that means a(c + c4) = b5, and a ∈ (α5) must hold. It is easy to check
that for any β ∈ F16, β4 + β ∈ (α5), then choose a ∈ (α5) and a 
= 0, c ∈ F16

such that c4 + c 
= 0, there exists a b 
= 0 with a(c+ c4) = b5. Thus, there exist
complete mapping polynomials of form ax11 +bx7 +cx; if j = 7, in the reduction
of f(x)3mod (x16 − x), the coefficient of x15 is b2c 
= 0, a contradiction.

(3) if i = 13: if j ∈ C5, in the reduction of f(x)3mod (x16 − x) and [f(x) +
x]3mod (x16−x), the coefficients of x15 are ac2+b3 and a(c2+1)+b3 respectively,
so the two expressions must equal to 0, which induce a = 0, a contradiction; if
j ∈ C1 ∪ C3, in the reduction of f(x)3mod (x16 − x), the coefficient of x15 is
ac2 
= 0, a contradiction; if j = 7, in the reduction of f(x)3mod (x16 − x) and
[f(x)+x]3mod (x16−x), the coefficients of x15 are ac2+b2c and a(c2+1)+b2(c+1)
respectively, so the two expressions must equal to 0, which induce c = 1, that



158 Y. Yuan, Y. Tong, and H. Zhang

is the case we discussed in the proof of Theorem 2, thus there is no complete
mapping polynomial of form ax13 + bx7 + cx. �

3.4 Conclusions

Although we could not prove theoretically there exist complete mapping poly-
nomials of degree 10, 12, 13, we find that α4x10 + α13x9 + α2x8 + α7x3 + α4x,
α8x12 +α14x9 +α5x6 +α11x3 +α5x, α14x13 +α8x10 +α7x7 +α8x are complete
mapping polynomials. Thus, the reduced degree of complete mapping polyno-
mials over F16 should be 1, 4, 8, 10, 11, 12, 13. By searching with computer, we
get the degree distribution of complete mapping polynomials over F16, listing as
follows:

degree the number of complete mapping polynomials of the degree
1 224
4 6560
8 132480
10 798720
11 933888
12 22179840
13 220692480

sum 244744192

Thus, we classify the complete mapping polynomials over F16 from their re-
duced degrees. From the classification, we even get that: the reduced degree of
linearized complete mapping polynomials are 1, 4, and 8; the reduced degree of
non-linearized complete mapping polynomials are 8, 10, 11, 12, 13. One of our
next work is to find the complete mapping polynomials with good cryptographic
properties and use them into the design of the block substitution.

References

1. Niederreiter, H., Robinson, K.H.: Bol loops of order pq. Math. proc. cambridge
philos. soc. 89, 241–256 (1981)

2. Niederreiter, H., Robinson, K.H.: Complete mappings of finite fields. J. Austral.
Math. Soc. Ser.A 33, 197–212 (1982)

3. Wan, D.: On a problem of Niederreiter and Robinson about finite fields. J.Austral.
Math. Soc. Ser. A 41, 336–338 (1986)

4. Lidl, R., Niederreiter, H.: Finite Fields, encyclopedia of mathematics and its ap-
plication. Addison-Wesley Publishing Company, London (1983)

5. Zhihui Li: The Research on Permutation Theory in Block Cipher System. Ph.D
thesis, Northwestern Polytechnical University (2002)

6. Lang, S.: Algebraic number theory, 2nd edn. GTM110. Springer, Berlin Heidelberg
New York (1994)



On the Classification of 4 Bit S-Boxes

G. Leander1,� and A. Poschmann2

1 GRIM, University Toulon, France
Gregor.Leander@rub.de

2 Horst-Görtz-Institute for IT-Security, Ruhr-University Bochum, Germany
poschmann@crypto.rub.de

Abstract. In this paper we classify all optimal 4 bit S-boxes. Remark-
ably, up to affine equivalence, there are only 16 different optimal S-boxes.
This observation can be used to efficiently generate optimal S-boxes ful-
filling additional criteria. One result is that an S-box which is optimal
against differential and linear attacks is always optimal with respect to
algebraic attacks as well. We also classify all optimal S-boxes up to the
so called CCZ equivalence. We furthermore generated all S-boxes fulfill-
ing the conditions on nonlinearity and uniformity for S-boxes used in
the block cipher Serpent. Up to a slightly modified notion of equiva-
lence, there are only 14 different S-boxes. Due to this small number it is
not surprising that some of the S-boxes of the Serpent cipher are linear
equivalent. Another advantage of our characterization is that it eases the
highly non-trivial task of choosing good S-boxes for hardware dedicated
ciphers a lot.

Keywords. S-box, Vectorial Boolean function, Affine equivalence, Hard-
ware Implementation.

1 Introduction

S-boxes play a fundamental role for the security of nearly all modern block
ciphers. In the two major design strategies for block ciphers, Feistel networks
and Substitution/Permutation networks, the S-boxes form the only non-linear
part of a block cipher. Therefore, S-boxes have to be chosen carefully to make the
cipher resistant against all kinds of attacks. In particular there are well studied
criteria that a good S-box has to fulfill to make the cipher resistant against
differential and linear cryptanalyses. There are mainly two ways of generating
good S-boxes: (1) picking a random large S-box or (2) generating small S-boxes
with good linear and differential properties. The main drawback of picking large
S-boxes is, that these S-boxes are much more inefficient to implement, especially
in hardware.

Many modern block ciphers use 4 or 8 bit S-boxes. In the AES, for example,
an 8 bit S-box is used that provides very good resistance against linear and
differential attacks. However, regarding the design of S-boxes there are still some
� Research supported by a DAAD postdoctoral fellowship.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 159–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



160 G. Leander and A. Poschmann

fundamental questions unsolved. For example, it is not known if the AES S-
box is really the optimal choice, it might be true that there exist S-boxes with
better resistance against linear and differential attacks. Hence, the AES S-box
is a world record S-box, but it is still unclear if this is an optimal result. The
problem to find optimal S-boxes is very hard due to the fact that the number
of permutations mapping n-bits to n-bits is huge even for very small values of
n. Therefore exhaustively checking all permutations to find good S-boxes is no
option.

In this paper we focus on 4 bit S-boxes, as used for example in Serpent. One
advantage in dimension 4 is that the optimal values for S-boxes with respect
to linear and differential cryptanalyses are known. However, the number of 4-
bit permutations is still huge: roughly 244. Furthermore a naive classification of
good 4 bit S-boxes is still difficult. However, it is well known that the resistance
of S-boxes against most attacks remains unchanged when an invertible affine
transformation is applied before and after the S-box. This fairly standard tech-
nique allows us to easily classify all optimal 4 bit S-boxes. Surprisingly, up to
equivalence, there are only 16 optimal S-boxes and we list them in this paper.
This massive reduction enables us to exhaustively check all optimal S-boxes with
respect to other criteria, such as algebraic degree or resistance against algebraic
attacks and we list some of the results. Most notably an optimal S-box with
respect to linear and differential properties is always optimal with respect to al-
gebraic attacks. Furthermore we classify these optimal S-boxes also with respect
to the more general CCZ equivalence.

Moreover, this classification simplifies the task to generate optimal S-boxes
that:

– are uniformly distributed among all optimal S-boxes,
– are not linear equivalent,
– fulfill additional criteria.

In the second part of this paper we focus on Serpent-type S-boxes. The block
cipher Serpent uses 8 S-boxes that were chosen to fulfill additional criteria that
are, in general, not invariant under affine transformations. Still it is possible
to develop a slightly modified notion of equivalence and again classify these S-
boxes. It turns out that, up to equivalence, there are only 14 S-boxes fulfilling the
Serpent criteria. Again, using this classification one can easily derive additional
properties for these kind of S-boxes. For example we demonstrate that it is not
possible to choose a Serpent-type S-box such that all component functions have
maximal algebraic degree.

This reduction can also be used for the design of hardware optimized block
ciphers. The highly non-trivial task of minimizing the area requirements of the
circuit of an S-box in hardware is eased a lot, because only a very small set of
S-boxes has to be synthesized.

In [2] it is observed that several of the Serpent-type S-boxes are linear equiv-
alent, although they have been generated in a pseudo random way. Our classi-
fication shows that this can be explained as a consequence of the small number
of equivalence classes. Instead of 8 different S-boxes our considerations show



On the Classification of 4 Bit S-Boxes 161

that Serpent uses only 4 (really) different S-boxes. In other words, it is possible
to specify the Serpent cipher, by modifying the linear layer, in such a way that
only 4 S-boxes are used. We want to point out, that to the best of our knowledge
this does not pose a threat to the security of Serpent. However, due to the small
number of linear inequivalent S-boxes, even randomly generated optimal S-boxes
might have unexpected and unwished relations. We feel that, when designing a
block cipher, one should be aware of this fact and take it into account.

We want to point out an important difference of this work and algorithms
that consider the linear equivalence of two given functions (see for example [2]):
the task of classifying all functions is not trivial, because the number of functions
for which this algorithm has to be applied to might still be too huge.

It should be noted that the results and techniques given here clearly do not
work for larger S-boxes. Even for dimension six, a complete classification of
all good S-boxes seems elusive. To illustrate the huge amount of computation
needed for this classification note that the number of linear inequivalent S-boxes
in dimension five is already larger than 261, see [9].

2 Notation

In this section we introduce the notation used throughout the paper. For two
vectors a, b ∈ Fn

2 , we denote by

〈a, b〉 =
n−1∑

i=0

aibi

the inner product of a and b. The binary weight of a vector a is denoted by
wt(a). For a Boolean function in n variables

f : Fn
2 → F2

and an element a ∈ Fn
2 we denote the Walsh Coefficient of f at a by

fW(a) =
∑

x∈Fn
2

(−1)f(x)+〈a,x〉. (1)

The linearity of f is defined as

Lin(f) = max
a∈Fn

2

|fW(a)|

The value Lin(f) is large if and only if f is close to a linear or affine function, i.e.
there exists a linear or affine function which is a good approximation for f . The
maximal possible value for Lin(f) is 2n and is attained iff f is linear or affine.
Moreover, due to Parsevals Equality

∑

a∈Fn
2

(
fW(a)

)2
= 22n



162 G. Leander and A. Poschmann

we see that Lin(f) ≥ 2n/2. Functions attaining this lower bound are called bent
functions. Bent functions were introduced by Rothaus [13] and exist if and only
if n is even.

This paper deals mainly with S-boxes, i.e. functions with values that are bit
strings. Given an S-box mapping n bits to m bits

S : Fn
2 → Fm

2

we denote for any vector b ∈ Fm
2 the corresponding component function S.

Sb : Fn
2 → F2

x �→ 〈b, S(x)〉

The function Sb is the Boolean function derived from S by considering a fixed
sum of the output bits determined by b ∈ Fm

2 . In particular, if b is the i-th vector
in the canonical base, Sb corresponds to the i-th bit of S. We define the linearity
of S as

Lin(S) = max
a∈Fn

2 ,b∈Fm
2 \{0}

|SW
b (a)|

This linearity represents a measure for the resistance against linear cryptanalysis.
For even dimension n the smallest known linearity for a permutation is 2n/2+1.
It is a longstanding open problem to find S-boxes with smaller linearity, or to
prove that such functions do not exist.

In linear cryptanalysis, introduced by Matsui in [10], one is interested in ap-
proximating S with a linear function.

The probability of a linear approximation of a combination of output bits Sb

(determined by b) by a linear combination of input bits x (determined by a) can
be written as

p =
# {x|Sb (x) = 〈a, x〉}

2n
. (2)

Combining equations (1) and (2) leads to

p =
1
2
− SW

b (a)
2n+1

.

The linear probability bias ε is a correlation measure for this deviation from
probability 1

2 for which it is entirely uncorrelated. We have

ε =
∣
∣
∣
∣p−

1
2

∣
∣
∣
∣ =
∣
∣
∣
∣
SW

b (a)
2n+1

∣
∣
∣
∣

and

ε ≤
∣
∣
∣
∣
Lin(S)
2n+1

∣
∣
∣
∣ .

Therefore, the smaller the linearity Lin(S) of a S-box is, the more secure the
S-box is against linear cryptanalysis.



On the Classification of 4 Bit S-Boxes 163

The idea of differential cryptanalysis (DC), invented by Biham and Shamir
(see [1]), in a nutshell, is to trace how the difference of two encrypted messages
m and m+δ propagates through the different rounds in a block cipher. Basically,
if an attacker can guess the output differences with high probability, the cipher
will be vulnerable to a differential attack. Thus, a designer of a block cipher has
to ensure that, given any nonzero input difference, no fixed output difference
occurs with high probability. Since in nearly all block ciphers S-boxes represent
the only nonlinear parts, it is particularly important to study the differential
properties of these building blocks. To measure the resistance against differential
cryptanalysis we define for a ∈ Fn

2

ΔS,a : Fn
2 → Fm

2

x �→ S(x) + S(x+ a)

and
Diff(S) = max

a�=0,b∈Fn
2

|Δ−1
S,a(b)|.

Clearly, the value Diff(S) is related to the maximal probability that any fixed
nonzero input difference causes any fixed output difference after applying the
S-box. Given an input difference a the value |Δ−1

S,a(b)| is the number of message
pairs (x, x + a) with the output difference b.

Clearly it holds for any S-box that Diff(S) ≥ 2. Functions attaining this lower
bound are called APN functions. However it is unknown if APN permutations
exist in even dimension.

3 Optimal 4 Bit S-Boxes

As explained in the introduction, a natural requirement for 4 bit S-boxes is an
optimal resistance against linear and differential cryptanalyses. Unlike for higher
dimensions the optimal values for Lin(S) and Diff(S) are known for dimension
n = 4. More precisely, for any bijective mapping S : F4

2 → F4
2 we have Lin(S) ≥ 8

and Diff(S) ≥ 4. To see that Lin(S) ≥ 8 note that, if S is a bijection then all its
component functions Sb have even weight and therefore all Walsh coefficients are
divisible by 4. Furthermore we must have Lin(S) > 4 since there are no vectorial
bent functions from Fn

2 → Fn
2 for any n as proven by Nyberg in [11]. Knudsen [7]

showed that there is no APN Permutation on F4
2, i.e. no S-boxes with Diff(S) = 2.

Therefore, as Diff(S) is always even, we must have Diff(S) ≥ 4. With respect to
these observations we call S-boxes attaining these minima optimal.

Definition 1. Let S : F4
2 → F4

2 be an S-box. If S fulfills the following conditions
we call S an optimal S-box

1. S is a bijection.
2. Lin(S) = 8.
3. Diff(S) = 4.



164 G. Leander and A. Poschmann

An example for an optimal S-box is the inverse function, where one identifies
the vector space Fn

2 with F2n , the finite field with 2n elements, and considers the
mapping

I : F2n → F2n

I(x) = x2n−2

This mapping fulfils Lin(S) = 2n/2+1 when n is even, as was proven for example
in [8]. The proof that Diff(S) = 4 when n is even and Diff(S) = 2 when n is
odd is trivial. This type of mapping is also used in the Advanced Encryption
Standard (AES). However, in AES we have n = 8 and it is not clear that this
S-box is optimal in this dimension. It can only be viewed as the world record
S-box in a sense that no bijection is known with better resistance against linear
and differential cryptanalyses.

When designing a block cipher it is important to know the set of S-boxes
to choose from in order to get an optimal resistance against known attacks.
Since the number of all permutations on Fn

2 is 2n! and thus huge even for small
dimensions, it is crucial to be able to reduce the number of S-boxes which have
to be considered. A well known and well suited tool is the notion of linear
equivalence.

3.1 Linear Equivalence

It is well known (see for example [4] and [12]) that the values of Diff(S) and
Lin(S) remain unchanged if we apply affine transformations in the domain or
co-domain of S. In particular if we take an optimal S-box in the above sense
and transform it in an affine way, we get another optimal S-box. Using such a
transformed S-box can also be viewed as changing the linear layer of a block
cipher.

This is formalized in the following theorem.

Theorem 1. Let A,B ∈ GL(4,F2) be two invertible 4×4 matrices and a, b ∈ F4
2.

Let S : F4
2 → F4

2 be an optimal S-box. Then the S-box S′ with

S′(x) = B(S(A(x) + a)) + b

is an optimal S-box as well.

This observation can be used to define an equivalence relation on the set of all
optimal S-boxes. We call two S-boxes S1, S2 equivalent if there exist bijective
linear mappings A,B and constants a, b ∈ F4

2 such that

S′(x) = B(S(A(x) + a)) + b.

If two S-boxes S1 and S2 are equivalent in the above sense we denote this by
S1 ∼ S2. A natural question that arises is in how many equivalence classes the
set of all optimal S-boxes is split. As we have already pointed out this reduction
to equivalence classes is also important for the practical design of block ciphers,



On the Classification of 4 Bit S-Boxes 165

because it simplifies the choice of good S-boxes. We computed the number of
equivalence classes using the observations presented in Section 6 and it turns out
that this number is very small. There are only 16 different, i.e. non-equivalent,
classes for each of them we list a representative in Table 6 and their polynomial
representation in Table 7. Each row in Table 6 contains one representative, where
we identify vectors Fn

2 with integers in {0, . . . , 15}. We list the images of the
values in integer ordering, i.e. the first integer represents the image of 0, the
second the image of 1, and so on. We summarize this result in the following fact.

Fact 1. There exist exactly 16 non equivalent optimal S-boxes. Any optimal S-
box is equivalent to exactly one S-box given in Table 6.

Note that G3 is equivalent to the invers mapping x �→ x−1.
This massive reduction allows us to exhaustively check all optimal S-boxes up

to equivalence with respect to other criteria as explained in the next section.

3.2 Other Criteria

With this reduction to 16 equivalence classes it is now easy to study additional
criteria, such as algebraic immunity, improved resistance against linear and dif-
ferential cryptanalyses, which are again invariant under this equivalence.

Algebraic Degree. Another important criterion for an S-box is to have high
algebraic degree. It is well known that every Boolean function f : Fn

2 → F2 can
be uniquely represented by a multivariate polynomial of degree at most 4, i.e.
there exist coefficients αu ∈ F2 such that

f(x) = f(x1, . . . , xn) =
∑

u∈Fn
2

αux
u1
1 · · ·xun

n

The (algebraic) degree of f is defined to be the maximal weight of u such that
αu 
= 0. For an S-box we define the algebraic degree as

deg(S) = max
b∈Fn

2 ,b�=0
deg(Sb)

Clearly the degree is invariant under linear equivalence. Moreover it is easy to
see that also the multiset

{deg(Sb) | b ∈ Fn
2}

is invariant under linear equivalence. It is known that any bijection must have
degree smaller than 3. We computed the degree of all 16 representatives and we
list the results in Table 1.

It should be noted that a frequently used criterion for good S-boxes is to have
high algebraic degree. From this perspective the following fact is of interest

Fact 2. There exist 8 non linear equivalent optimal S-boxes S : Fn
2 → Fn

2 such
that deg(Sb) = 3 for all b ∈ Fn

2 , b 
= 0.

Again, one example of such an S-box is the "inverse" S-box, which indeed is
equivalent to G3.



166 G. Leander and A. Poschmann

Table 1. Number of b ∈ F4
2 \{0} such that deg(Sb) = 2, 3

S − box G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

deg(Sb) = 2 3 3 3 0 0 0 0 0 3 1 1 0 0 0 1 1

deg(Sb) = 3 12 12 12 15 15 15 15 15 12 14 14 15 15 15 14 14

Linearity. Besides minimizing the linearity Lin(S) it might also be important
to study which Walsh coefficients occur and how often they occur. In particular
a reasonable design goal would be to minimize the number of Walsh coefficients
with the highest maximal value, as this minimizes the number of linear approx-
imation with maximal probability. We computed the Walsh spectra for all of
the 16 S-boxes. In Table 9 we list for each S-box the number of times a certain
Walsh coefficient is attained.

Algebraic Relations. Algebraic attacks, invented by Courtois and Pieprzyk
(see [5]), are another type of attack which have recently attracted a lot of at-
tention. It still seems to be unclear which conditions exactly enable this attack.
However, the main criterion to successfully mount an algebraic attack is the
number of linear independent low degree equations that are fulfilled by the in-
put and output values of the S-box, i.e equations of the form P (x, S(x)) = 0 for
all x. While for large S-boxes or for a huge number of small S-boxes computing
the number of such equations needs an enormous computational effort, it is very
easy to compute the number of equations for all 16 representative given above.
Following [6] we computed the number of quadratic equations, i.e. all equations
of the form

∑

i,j

αijxiyi +
∑

i�=j

βijxixj +
∑

i�=y

γijyiyj +
∑

i

δixi +
∑

i

εiyj + ν

where y = S(x). Remarkably all 16 representatives, and therefore all optimal
S-boxes fulfill exactly 21 linear independent quadratic equations. As explained
by Courtois in [6] this is the minimal number of quadratic equations for any
mapping from F4

2 to F4
2. In this sense the optimal S-boxes are also optimal with

respect to algebraic attacks. We summarize these observation in the following
fact.

Fact 3. Let S : F4
2 → F4

2 be an optimal S-box. Then S fulfills 21 quadratic
equations, which is the minimum number for S-boxes in dimension 4.

4 Serpent-Type S-Boxes

For the resistance of ciphers against linear and differential cryptanalyses not
only the linearity of an S-box might be important, but also where this maximum
occurs. Depending on the design strategy, for resistance against DC it might be
important, that any one bit input difference causes an output difference of at
least two bits (see for example DES or Serpent). Such a condition can be used



On the Classification of 4 Bit S-Boxes 167

to increase the minimal number of active S-boxes in two consecutive rounds.
A similar requirement for LC is that the probability of a linear approximation
using only one input and one output bit is especially low. We formalize these
two conditions using the following notation

Lin1(S) = max{|SW
b (a)| | wt(a) = wt(b) = 1}.

and
Diff1(S) = max

a�=0,b∈F
n
2

{|Δ−1
S,a(b)| wt(a) = wt(b) = 1}.

The S-boxes in the Serpent cipher fulfill the following conditions
Definition 2. Let S : F4

2 → F4
2 be a S-box. If S fulfills the following conditions

we call S a Serpent-type S-box
1. S is optimal
2. Diff1(S) = 0, i.e. any one bit input difference causes at least two bits output

difference.

We generated all S-boxes having 4-bit input and 4-bit output value fulfilling
these conditions. The total number of these S-boxes is 2, 211, 840 but again this
can be reduced using, a slightly modified, notion of linear equivalence.

4.1 Equivalence of Serpent-Type S-Boxes

It is easy to see that the condition Diff1(S) = 0 is, in general, not invariant
under the above defined equivalence relation. However, when we restrict to bit
permutations in the domain and the co-domain of a mapping S, instead of al-
lowing arbitrary linear bijections, this gives us a similar tool as before. We have
the following Theorem, which is a modified version of Theorem 1.
Theorem 2. Let P0, P1 ∈ GL(4,F2) be two 4 × 4 permutation matrices and
a, b ∈ F4

2. Let S : F4
2 → F4

2 be a Serpent-type S-box. Then the S-boxes S′ with

S′(x) = P1(S(P0(x) + a)) + b

is a Serpent-type S-box as well.

Proof. trival.

Clearly this again defines an equivalence relation of the set of S-boxes. If two
S-boxes S1, S2 are equivalent in the above sense we denote this by

S1 ∼S S2.

As this notion of equivalence is a special type of the equivalence used in Section 3
we have the implication

S1 ∼S S2 ⇒ S1 ∼ S2

Again, one might be interested in how many equivalence classes the set of all
Serpent-type S-boxes is split. Like before, this number is surprisingly small.
There are only 20 different classes and for each class we list a representative in
Table 8.

Fact 4. There exist exactly 20 non equivalent Serpent-Type S-boxes. Any
Serpent-Type S-box is equivalent to exactly one S-box given in Table 8.



168 G. Leander and A. Poschmann

4.2 Other Criteria

Again this reduction to only 20 representatives allows us to exhaustively check all
Serpent-type S-boxes with respect to other criteria. Since Serpent-type S-boxes
are in particular optimal S-boxes, Fact 3 immediately applies to Serpent-type
S-boxes as well. On the other hand due to the computations given in Table 2, it
is impossible to choose a Serpent-type S-box such that all linear combinations
of coordinate functions have maximal degree.

Table 2. Number of b ∈ F4
2 such that deg(Sb) = 2, 3

S − box R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

deg(Sb) = 2 3 3 3 1 1 1 3 3 1 3

deg(Sb) = 3 12 12 12 14 14 14 12 12 14 12

S − box R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

deg(Sb) = 2 3 3 3 1 3 1 3 3 3 3

deg(Sb) = 3 12 12 12 14 12 14 12 12 12 12

Fact 5. For any Serpent-type S-box S there exists an element b ∈ Fn
2 such that

Sb is a quadratic Boolean function.

In particular this implies that the “inverse" Function is not linear equivalent to
a Serpent-type S-box.

Linearity. We computed the Walsh spectra for all of the 20 S-boxes. In Ta-
ble 10 we list for each S-box the number of times a certain Walsh coefficient is
attained.

As already mentioned before, not only the linearity of an S-box is important
for the resistance of a cipher against linear cryptanalysis, but also where this
maximum occurs. In particular it might be important, depending on the linear
layer, that the Walsh coefficients SW

b (a) with wt(a) = wt(b) = 1 are especially
small. We list the values in Table 3. In particular we see that there exist no
Serpent-type S-box such that Lin1(S) = 0.

Table 3. Linearity of all 20 Classes of Serpent-type S-boxes

S−box R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Lin1(S) 4 4 8 4 4 4 4 4 4 8 8 8 8 4 4 4 4 8 4 4

Fact 6. Let S : F4
2 → F4

2 be a Serpent-type S-box. Then Lin1(S) ∈ {4, 8}.

This fact demonstrates that the choice made for the block cipher Serpent is
indeed optimal with regard to this criterion.



On the Classification of 4 Bit S-Boxes 169

5 Relation Between the Representatives and Inverses

The number of representatives can be further reduced when also the inverses of
the S-boxes are considered. This is due to the next Theorem, which is obvious
to proof.

Theorem 3. Let S : F4
2 → F4

2 be an optimal (resp. a Serpent-type) S-box then
its inverse S−1 is an optimal (resp. a Serpent-type) S-box as well.

We have the following relations between the representatives of the optimal S-
boxes and their inverses.

G0 ∼ G−1
2 , G1 ∼ G−1

1 , G2 ∼ G−1
0

G3 ∼ G−1
3 , G4 ∼ G−1

4 , G5 ∼ G−1
5

G6 ∼ G−1
6 , G7 ∼ G−1

7 , G8 ∼ G−1
8

G9 ∼ G−1
9 , G10 ∼ G−1

10 , G11 ∼ G−1
11

G12 ∼ G−1
12 , G13 ∼ G−1

13 , G14 ∼ G−1
15

G15 ∼ G−1
14

Remarkably, all optimal S-boxes except for G0, G2 and G14, G15 are linear equiv-
alent to their inverses.

For the Serpent-type S-boxes we have the following relations

R0 ∼S R
−1
18 , R1 ∼S R

−1
6 , R2 ∼S R

−1
17

R3 ∼S R
−1
5 , R4 ∼S R

−1
13 , R5 ∼S R

−1
3

R6 ∼S R
−1
1 , R7 ∼S R

−1
16 , R8 ∼S R

−1
15

R9 ∼S R
−1
10 , R10 ∼S R

−1
9 , R11 ∼S R

−1
12

R12 ∼S R
−1
11 , R13 ∼S R

−1
4 , R14 ∼S R

−1
19

R15 ∼S R
−1
8 , R16 ∼S R

−1
7 , R17 ∼S R

−1
2

R18 ∼S R
−1
0 , R19 ∼S R

−1
14

From these relations we see the following Fact.

Fact 7. No Serpent-type S-box is self-equivalent in a sense that

S ∼S S
−1

and in particular no Serpent-type S-box is an involution.

Clearly, as mentioned before, Serpent-type S-boxes are optimal S-boxes and
therefore each of the Serpent-type S-boxes Ri must be equivalent to one of the
optimal S-boxes Gj . For the sake of completeness we list these relations below.

R0 ∼ G1, R1 ∼ G1, R2 ∼ G1

R3 ∼ G10, R4 ∼ G9, R5 ∼ G10

R6 ∼ G1, R7 ∼ G2, R8 ∼ G15

R9 ∼ G0, R10 ∼ G2, R11 ∼ G0

R12 ∼ G2, R13 ∼ G9, R14 ∼ G2

R15 ∼ G14, R16 ∼ G0, R17 ∼ G1

R18 ∼ G1, R19 ∼ G0



170 G. Leander and A. Poschmann

5.1 CCZ Equivalence

The linear equivalence defined above, is a special case of a more general equiva-
lence (see [4]), called Carlet-Charpin-Zinoviev equivalence (CCZ for short). Two
functions F,G : Fn

2 → Fn
2 are called CCZ equivalent if there exist a linear per-

mutation on Fn
2 ×Fn

2 such that the graph of F , i.e. the set {(x, F (x)) | x ∈ Fn
2}

is mapped to the graph of G. Note that a permutation is always CCZ equiva-
lent to its inverse (cf. Section 5). CCZ equivalence is in particular interesting,
as many cryptographic properties of S-boxes are CCZ invariant. This includes
the Walsh spectra, the uniformity and the number of algebraic relations of any
degree. Using the algorithms presented in [3] we classified the optimal S-boxes
up to CCZ equivalence. There are 6 non CCZ equivalent classes and we list all
CCZ equivalence relations between the optimal S-boxes Gi below.

G0∼cczG1∼cczG2∼cczG8 G3∼cczG5

G4∼cczG6 G7∼cczG11∼cczG12

G9∼cczG10 G14∼cczG15

5.2 The Block Cipher Serpent

As an application of our observations we study the S-boxes in the Serpent cipher,
as specified in the AES submission. The 8 different S-boxes in Serpent have
been generated in a pseudo random manner from the set of all Serpent-type
S-boxes with the additional criterion that Lin1(S) = 4. We list the S-boxes used
in Serpent in Table 4. Up to ∼S-equivalence these S-boxes have been actually
chosen from a set of only 14 S-boxes, as 6 of the 20 representatives do not fulfill
Lin1(Ri) = 4. It is therefore no surprise that two of the S-boxes in Serpent are
linear equivalent, namely we have

S4 ∼S S5

Furthermore, if also the more general equivalence and inverses are considered it
turns out that the following relations hold

S0 ∼ S−1
1 ∼ G2 S2 ∼ S6 ∼ G1

S3 ∼ S7 ∼ G9 S4 ∼ S5 ∼ G14

Table 4. The S-boxes used in the cipher Serpent

S0 3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12

S1 15, 12, 2, 7, 9, 0, 5, 10, 1, 11, 14, 8, 6, 13, 3, 4

S2 8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2

S3 0, 15, 11, 8, 12, 9, 6, 3, 13, 1, 2, 4, 10, 7, 5, 14

S4 1, 15, 8, 3, 12, 0, 11, 6, 2, 5, 4, 10, 9, 14, 7, 13

S5 15, 5, 2, 11, 4, 10, 9, 12, 0, 3, 14, 8, 13, 6, 7, 1

S6 7, 2, 12, 5, 8, 4, 6, 11, 14, 9, 1, 15, 13, 3, 10, 0

S7 1, 13, 15, 0, 14, 8, 2, 11, 7, 4, 12, 10, 9, 3, 5, 6



On the Classification of 4 Bit S-Boxes 171

Hence, even though all Serpent S-boxes have been randomly generated, Serpent
uses only 4 different S-boxes with respect to linear equivalence and inverses. This
can also be viewed as follows: There exists a different specification of the Serpent
cipher, which uses a different linear layer, that uses only 4 S-boxes.

6 Implementation Details

In this section we explain some of the shortcuts that have been used to gener-
ate the set of representatives Gj for optimal S-boxes. Using these ideas all our
computations could be done within a few minutes on a regular PC. The most
important speedup was due to the following Lemma.

Lemma 1. Let S : Fn
2 → Fn

2 be a bijection. Then there exist bases B,B′ of Fn
2

such that
S(B) = B′

Proof. We give a proof by induction. For any subset B ⊂ Fn
2 we denote by 〈B〉

the linear span of B. Assume that we already constructed two sets Bi, B
′
i ⊂ Fn

2

each consisting of i < n linear independent elements such that S(Bi) = B′
i. We

have to find an element x ∈ Fn
2 \〈Bi〉 that is mapped into the set Fn

2 \〈B′
i〉. There

are 2n − 2i elements in Fn
2 \〈Bi〉 but, as S is a permutation, only 2i − i possible

images in 〈B′
i〉. Furthermore, for i < n it holds that 2n− 2i > 2i− i. Thus, as S

is a bijection, at least one element in Fn
2 \〈Bi〉 gets mapped to Fn

2 \〈B′
i〉. ��

Using this lemma, we can speedup the search for optimal S-boxes. We can restrict
to optimal S-boxes fulfilling

S(i) = i for i ∈ {0, 1, 2, 4, 8}

as, due to the above lemma, any optimal S-box is equivalent to such an S-box.
This observation reduced the search space from 16! ≈ 244 to only 11! ≈ 225

permutations that have to be created. We generated all those permutations and
tested if they fulfill Diff(S) = 4 and Lin(S) = 8. This resulted in 1396032 optimal
S-boxes.

Given this set of optimal S-boxes we created a set of representatives as follows.
We started by the first S-box in the set and generated all equivalent S-boxes.
Whenever one of these equivalent S-boxes was present in the set, we removed this
S-box from the set. Note that there are approximately 215 invertible 4×4 matri-
ces, thus running naively through all invertible matrices A,B and all constants
c, d ∈ F4

2 to generate all equivalent rows results in generating approximately 238

S-boxes. However, as all S-boxes in the set are chosen such that

S(i) = i for i ∈ {0, 1, 2, 4, 8} (3)

then, if we fix A and d, the values for B and c are completely determined. Namely
if we have

A(S(B(x) + c)) + d = S′(x)



172 G. Leander and A. Poschmann

for two S-boxes fulfilling (3) it must hold that

c = S−1
(
A−1(d)

)

and
B(i) = S−1

(
A−1(i+ d)

)
+ c for i ∈ 0, 1, 2, 4, 8

Using this observation we only had to generate approximately 219 S-boxes.

7 Hardware Implementation

During our investigations we automatically synthesized thousands of S-boxes.
Since hardware designers try to avoid using look-up tables, S-boxes are usually
realized in combinatorial logic. Therefore, we fed the S-boxes in a combinato-
rial description into the synthesis tool. We compiled them in an area-efficient
way, i.e. we instructed the synthesis tool to minimize the area requirements.
Unfortunately logic synthesis tools like Synopsys Design Compiler use heuristic
algorithms to map VHDL-code to standard-cells. Hence, it is never guaranteed
that the resulting gate-level netlist is the smallest possible for a given VHDL-
code.

To illustrate these suboptimal results we generated for all representatives Ri of
Serpent-type S-boxes all equivalent S-boxes and synthesized them for the AMIS
MTC45000 CMOS 0.35μm standard-cell library. The results are given in Table
5. Table 5 lists for all representatives of Serpent-type S-boxes the minimal and
maximal area requirements of equivalent S-boxes.

Table 5. Area Requirement for all 20 Classes of Serpent-type S-boxes

Repr. R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

min GE 27.4 25.0 28.0 25.3 27.3 28.0 26.4 25.3 23.7 24.0
max GE 38.7 35.3 37.3 33.3 35.3 35.3 37.3 37 33.3 33.3

Repr. R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

min GE 26.3 24.4 24.3 28.7 21.3 25.3 24.7 27.0 23.4 25.7
max GE 37 38.7 29.7 36.3 31 34.7 34 39 30.3 39.3

A two bit input XOR-gate typically needs 10 transistors or 2.5 gate equivalences
(GE), respectively. If one input bit is fixed, the XOR-gate is either superfluent
(inputbita ⊕ 0 = inputbita) or can be replaced by an inverter (inputbita ⊕ 1 =
¬inputbita), which costs two transistors. Bit-permutations do not need any tran-
sistors in hardware. They are realized by wiring, which means that they come for
a negligible amount of additional area or even for free. Hence, any two S-boxes
which differ only by a permutation of the input bits and an permutation of the



On the Classification of 4 Bit S-Boxes 173

output bits should be compiled to the same combinatorial “core”. Adding a con-
stant before and after the core can be realized with not more than 16 transistors
(= 4 GE). Therefore two equivalent Serpent-type S-boxes can be implemented
with a difference of at most 4 GE. Hence, S-boxes in the same class should have
been compiled to the same core and their size should not differ by more than 4
GEs. However, our figures clearly show that this is unfortunately not the case.
We believe that this discrepancy is caused by a suboptimal synthesis due to the
heuristic mapping algorithms.

As one can see, the biggest minimal representatives of an S-box class require
28.7 GE, whereas the smallest representatives only require 21.3 GE. Further-
more, the overall biggest representatives require 39.3 GE, which is 84 % more
than the smallest we found. This implies an area saving of 46 % when opti-
mal S-boxes are carefully chosen compared to a (worst-case) random selection
approach.

One possible next step is to manually synthesize all good candidate S-box
with the aim to gain the minimal result. Since this is a cumbersome work, it
is impossible for a lot of S-boxes. Our classification of S-boxes into 20 classes
greatly reduces the work and helps to find the most area-efficient S-box.

Acknowledgement

The work presented in this paper was supported in part by the European Com-
mission within the STREP UbiSec&Sens of the EU Framework Programme 6
for Research and Development (www.ist-ubisecsens.org). The views and conclu-
sions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the UbiSecSens project or the European Commission.

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1990)

2. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: Linear and affine equivalence algorithms. In: Biham, E. (ed.) Advances in
Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidel-
berg (2003)

3. Brinkman, M., Leander, G.: On the classification of apn functions up to dimension
five. International Workshop on Coding and Cryptography (2007)

4. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for des-like cryptosystems. Des. Codes Cryptography 15(2), 125–156 (1998)

5. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

6. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined
systems of equations. Cryptology ePrint Archive, Report 2002/044 (2002),
http://eprint.iacr.org/



174 G. Leander and A. Poschmann

7. Knudsen, L.: private communication
8. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended

quadratic binary goppa codes. IEEE Transactions on Information Theory 36(3),
686 (1990)

9. Lorens, C.S.: Invertible boolean functions. IEEE Trans. Electronic Comput-
ers 13(5), 529–541 (1964)

10. Matsui, M.: Linear cryptoanalysis method for des cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1993)

11. Nyberg, K.: Perfect nonlinear s-boxes. In: EUROCRYPT 1991. LNCS, vol. 547,
pp. 378–386. Springer, Heidelberg (1991)

12. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

13. Rothaus, O.S.: On "bent" functions. J. Comb. Theory, Ser. A 20(3), 300–305 (1976)

A List of Representatives

Table 6. Representatives for all 16 classes of optimal 4 bit S-boxes (G3 is equivalent
to the invers mapping.)

G0 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5

G1 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12

G2 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9

G3 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9

G4 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3

G5 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5

G6 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3

G7 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5

G8 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12

G9 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12

G10 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12

G11 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3

G12 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5

G13 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3

G14 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10

G15 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5



On the Classification of 4 Bit S-Boxes 175

Table 7. Representatives for all 16 classes of optimal 4 bit S-boxes as Polynomials. g
denotes a primitive element in F ∗

16

G0 x14 + x13 + g7x12 + g5x11 + g5x10

+g5x9 + x8 + g6x6 + g13x5 + g8x4 + g13x3 + g13x2

G1 x14 + g5x13 + x12 + gx11 + g3x10

+g4x9 + g14x8 + g4x7 + g12x6 + x5 + g13x4 + x3 + g13x2 + gx

G2 x14 + g6x13 + g13x12 + g10x10

+g6x9 + gx8 + g2x7 + g13x6 + g11x5 + g2x4 + g13x3 + g2x2 + g6x

G3 x14 + g11x13 + gx12 + g3x11

+g5x9 + g7x8 + g8x7 + g4x6 + g11x5 + g2x4 + g4x3 + g11x2

G4 x14 + g11x13 + g7x12 + gx11

+g8x10 + g13x9 + g11x8 + g2x6 + gx5 + g2x4 + g7x3 + gx2 + g8x

G5 x14 + g13x13 + g9x12 + g6x11 + g10x10

+g7x9 + g10x8 + g7x7 + g8x6 + g12x5 + g12x4 + x3 + g11x2 + g5x

G6 x14 + g4x13 + g3x12 + g2x11 + x10

+g11x9 + g2x8 + gx7 + g2x6 + g9x5 + g4x4 + g9x3 + g12x2 + g11x

G7 x14 + gx13 + g9x12 + gx11 + g7x10

+g6x7 + g10x6 + gx5 + g8x4 + g2x3 + g6x2 + g9x

G8 x14 + gx13 + x12 + g10x9 + g14x8

+g12x7 + g9x5 + g8x4 + g13x3 + g11x2 + g6x

G9 x13 + g7x12 + g5x11 + gx10

+g11x9 + g11x8 + g3x7 + g4x6 + g5x5 + gx4 + g7x3 + x2 + g6x

G10 x13 + g13x12 + g7x11 + g7x10

+g14x9 + g10x7 + gx6 + g5x5 + g7x4 + g12x3 + g6x

G11 x14 + gx13 + x12 + g7x11 + g13x10

+gx9 + g11x8 + g14x7 + g3x6 + g6x5 + gx4 + g14x3 + g14x2 + g9x

G12 x14 + g10x13 + gx12 + g4x11 + g14x10

+g4x9 + g5x8 + g2x7 + g9x6 + g4x5 + g8x4 + g14x3 + g5x2 + x

G13 x14 + g12x13 + g8x12 + g8x11 + g14x10

+gx9 + g8x8 + g14x7 + g6x6 + x5 + g14x4 + g12x3 + gx2 + g14x

G14 x14 + g8x13 + g10x12 + gx11 + gx10

+g9x9 + x7 + g10x6 + g7x5 + g4x4 + g2x3 + g12x2 + g14x

G15 x14 + g6x13 + g13x12 + g5x10 + x9

+x8 + x7 + g2x6 + g11x5 + g10x4 + g4x3 + gx2 + g3x



176 G. Leander and A. Poschmann

Table 8. Representatives for all 20 Classes of Serpent-type S-boxes

R0 0, 3, 5, 6, 7, 10, 11, 12, 13, 4, 14, 9, 8, 1, 2, 15

R1 0, 3, 5, 8, 6, 9, 10, 7, 11, 12, 14, 2, 1, 15, 13, 4

R2 0, 3, 5, 8, 6, 9, 11, 2, 13, 4, 14, 1, 10, 15, 7, 12

R3 0, 3, 5, 8, 6, 10, 15, 4, 14, 13, 9, 2, 1, 7, 12, 11

R4 0, 3, 5, 8, 6, 12, 11, 7, 9, 14, 10, 13, 15, 2, 1, 4

R5 0, 3, 5, 8, 6, 12, 11, 7, 10, 4, 9, 14, 15, 1, 2, 13

R6 0, 3, 5, 8, 6, 12, 11, 7, 10, 13, 9, 14, 15, 1, 2, 4

R7 0, 3, 5, 8, 6, 12, 11, 7, 13, 10, 14, 4, 1, 15, 2, 9

R8 0, 3, 5, 8, 6, 12, 15, 1, 10, 4, 9, 14, 13, 11, 2, 7

R9 0, 3, 5, 8, 6, 12, 15, 2, 14, 9, 11, 7, 13, 10, 4, 1

R10 0, 3, 5, 8, 6, 13, 15, 1, 9, 12, 2, 11, 10, 7, 4, 14

R11 0, 3, 5, 8, 6, 13, 15, 2, 7, 4, 14, 11, 10, 1, 9, 12

R12 0, 3, 5, 8, 6, 13, 15, 2, 12, 9, 10, 4, 11, 14, 1, 7

R13 0, 3, 5, 8, 6, 15, 10, 1, 7, 9, 14, 4, 11, 12, 13, 2

R14 0, 3, 5, 8, 7, 4, 9, 14, 15, 6, 2, 11, 10, 13, 12, 1

R15 0, 3, 5, 8, 7, 9, 11, 14, 10, 13, 15, 4, 12, 2, 6, 1

R16 0, 3, 5, 8, 9, 12, 14, 7, 10, 13, 15, 4, 6, 11, 1, 2

R17 0, 3, 5, 8, 10, 13, 9, 4, 15, 6, 2, 1, 12, 11, 7, 14

R18 0, 3, 5, 8, 11, 12, 6, 15, 14, 9, 2, 7, 4, 10, 13, 1

R19 0, 3, 5, 10, 7, 12, 11, 6, 13, 4, 2, 9, 14, 1, 8, 15

Table 9. Walsh spectra for all 16 Classes of 4 bit S-boxes (W (a) is the number of
Walsh coefficients of value a)

S − box G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

W (0) 108 108 108 90 90 90 90 90 108 96 96 90 90 90 96 96

W (4) 60 60 60 76 76 76 76 80 60 68 68 76 72 80 72 72

W (−4) 36 36 36 44 44 44 44 40 36 44 44 44 48 40 40 40

W (8) 27 27 27 22 22 22 22 20 27 25 25 22 24 20 23 23

W (−8) 9 9 9 8 8 8 8 10 9 7 7 8 6 10 9 9

Table 10. Walsh spectra for all 20 Classes of Serpent-type S-boxes (W (a) is the number
of Walsh coefficients of value a)

S − box R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

W (0) 108 108 108 96 96 96 108 108 96 108 108 108 108 96 108 96 108 108 108 108

W (4) 60 60 60 72 68 68 60 60 72 60 60 60 60 68 60 72 60 60 60 60

W (−4) 36 36 36 40 44 44 36 36 40 36 36 36 36 44 36 40 36 36 36 36

W (8) 27 27 27 23 25 25 27 27 23 27 27 27 27 25 27 23 27 27 27 27

W (−8) 9 9 9 9 7 7 9 9 9 9 9 9 9 7 9 9 9 9 9 9



The Simplest Method for Constructing APN

Polynomials EA-Inequivalent to Power Functions

Lilya Budaghyan

Department of Mathematics, University of Trento, I-38050 Povo (Trento), Italy
lilia.b@mail.ru

Abstract. In 2005 Budaghyan, Carlet and Pott constructed the first
APN polynomials EA-inequivalent to power functions by applying CCZ-
equivalence to the Gold APN functions. It is a natural question whether
it is possible to construct APN polynomials EA-inequivalent to power
functions by using only EA-equivalence and inverse transformation on a
power APN mapping: this would be the simplest method to construct
APN polynomials EA-inequivalent to power functions. In the present
paper we prove that the answer to this question is positive. By this
method we construct a class of APN polynomials EA-inequivalent to
power functions. On the other hand it is shown that the APN polynomi-
als constructed by Budaghyan, Carlet and Pott cannot be obtained by
the introduced method.

Keywords: Affine equivalence, Almost bent, Almost perfect nonlinear,
CCZ-equivalence, Differential uniformity, Nonlinearity, S-box, Vectorial
Boolean function.

1 Introduction

A function F : Fm
2 → Fm

2 is called almost perfect nonlinear (APN) if, for every
a 
= 0 and every b in Fm

2 , the equation F (x) + F (x+ a) = b admits at most two
solutions (it is also called differentially 2-uniform). Vectorial Boolean functions
used as S-boxes in block ciphers must have low differential uniformity to allow
high resistance to the differential cryptanalysis (see [2,30]). In this sense APN
functions are optimal. The notion of APN function is closely connected to the
notion of almost bent (AB) function. A function F : Fm

2 → Fm
2 is called AB if

the minimum Hamming distance between all the Boolean functions v · F , v ∈
Fm

2 \{0}, and all affine Boolean functions on Fm
2 is maximal. AB functions exist

for m odd only and oppose an optimum resistance to the linear cryptanalysis
(see [28,15]). Besides, every AB function is APN [15], and in the m odd case,
any quadratic function is APN if and only if it is AB [14].

The APN and AB properties are preserved by some transformations of func-
tions [14,30]. If F is an APN (resp. AB) function, A1, A2 are affine permutations
and A is affine then the function F ′ = A1 ◦ F ◦A2 +A is also APN (resp. AB);
the functions F and F ′ are called extended affine equivalent (EA-equivalent).
Another case is the inverse transformation, that is, the inverse of any APN

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 177–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



178 L. Budaghyan

(resp. AB) permutation is APN (resp. AB). Until recently, the only known con-
structions of APN and AB functions were EA-equivalent to power functions
F (x) = xd over finite fields (F2m being identified with Fm

2 ). Table 1 gives all
known values of exponents d (up to multiplication by a power of 2 modulo 2m−1,
and up to taking the inverse when a function is a permutation) such that the
power function xd over F2m is APN. For m odd the Gold, Kasami, Welch and
Niho APN functions from Table 1 are also AB (for the proofs of AB property
see [11,12,23,24,26,30]).

Table 1. Known APN power functions xd on F2m

Functions Exponents d Conditions Proven in

Gold 2i + 1 gcd(i, m) = 1 [23,30]

Kasami 22i − 2i + 1 gcd(i, m) = 1 [25,26]

Welch 2t + 3 m = 2t + 1 [20]

Niho 2t + 2
t
2 − 1, t even m = 2t + 1 [19]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 m = 2t + 1 [1,30]

Dobbertin 24t + 23t + 22t + 2t − 1 m = 5t [21]

In [14], Carlet, Charpin and Zinoviev introduced an equivalence relation of
functions, more recently called CCZ-equivalence, which corresponds to the affine
equivalence of the graphs of functions and preserves APN and AB properties.
EA-equivalence is a particular case of CCZ-equivalence and any permutation is
CCZ-equivalent to its inverse [14]. In [8,9], it is proven that CCZ-equivalence
is more general, and applying CCZ-equivalence to the Gold mappings classes
of APN functions EA-inequivalent to power functions are constructed. These
classes are presented in Table 2. When m is odd, these functions are also AB.

Table 2. Known APN functions EA-inequivalent to power functions on F2m

Functions Conditions Alg. degree

m ≥ 4

x2i+1 + (x2i

+ x + tr(1) + 1)tr(x2i+1 + x tr(1)) gcd(i, m) = 1 3

[x + tr(m,3)(x
2(2i+1) + x4(2i+1)) m divisible by 6 4

+tr(x)tr(m,3)(x
2i+1 + x22i(2i+1))]2

i+1 gcd(i, m) = 1

x2i+1 + tr(m,n)(x
2i+1) + x2i

tr(m,n)(x) + x tr(m,n)(x)2
i

m �= n

+[tr(m,n)(x)2
i+1 + tr(m,n)(x

2i+1) + tr(m,n)(x)]
1

2i+1 m divisible by n n + 2

×(x2i

+ tr(m,n)(x)2
i

+ 1) + [tr(m,n)(x)2
i+1 gcd(2i, m) = 1

+tr(m,n)(x
2i+1) + tr(m,n)(x)]

2i

2i+1 (x + tr(m,n)(x))



The Simplest Method for Constructing APN Polynomials EA-Inequivalent 179

These new results on CCZ-equivalence have solved several problems (see
[8,9]) and have also raised some interesting questions. One of these questions
is whether the known classes of APN power functions are CCZ-inequivalent.
Partly the answer is given in [6]: it is proven that in general the Gold func-
tions are CCZ-inequivalent to the Kasami and Welch functions, and that for
different parameters 1 ≤ i, j ≤ m−1

2 the Gold functions x2i+1 and x2j+1 are
CCZ-inequivalent. Another interesting question is the existence of APN polyno-
mials CCZ-inequivalent to power functions. Different methods for constructing
quadratic APN polynomials CCZ-inequivalent to power functions have been pro-
posed in [3,4,17,22,29], and infinite classes of such functions are constructed in
[3,4,5,6,7]. In the present paper we consider the natural question whether it is
possible to construct APN polynomials EA-inequivalent to power functions by
applying only EA-equivalence and the inverse transformation on a power APN
function. We prove that the answer is positive and construct a class of AB func-
tions EA-inequivalent to power mappings by applying this method to the Gold
AB functions. It should be mentioned that the functions from Table 2 cannot
be obtained by this method. It can be illustrated, for instance, by the fact that
for m = 5 the functions from Table 2 and for m even the Gold functions are
EA-inequivalent to permutations [8,9,31], therefore, the inverse transformation
cannot be applied in these cases and the method fails.

2 Preliminaries

Let Fm
2 be them-dimensional vector space over the field F2. Any function F from

Fm
2 to itself can be uniquely represented as a polynomial on m variables with

coefficients in Fm
2 , whose degree with respect to each coordinate is at most 1:

F (x1, . . . , xm) =
∑

u∈Fm
2

c(u)
( m∏

i=1

xui

i

)
, c(u) ∈ Fm

2 .

This representation is called the algebraic normal form of F and its degree d◦(F )
the algebraic degree of the function F .

Besides, the field F2m can be identified with Fm
2 as a vector space. Then,

viewed as a function from this field to itself, F has a unique representation as a
univariate polynomial over F2m of degree smaller than 2m:

F (x) =
2m−1∑

i=0

cix
i, ci ∈ F2m .

For any k, 0 ≤ k ≤ 2m − 1, the number w2(k) of the nonzero coefficients ks ∈
{0, 1} in the binary expansion

∑m−1
s=0 2sks of k is called the 2-weight of k. The

algebraic degree of F is equal to the maximum 2-weight of the exponents i of
the polynomial F (x) such that ci 
= 0, that is, d◦(F ) = max0≤i≤m−1,ci �=0 w2(i)
(see [14]).



180 L. Budaghyan

A function F : Fm
2 → Fm

2 is linear if and only if F (x) is a linearized polynomial
over F2m , that is,

m−1∑

i=0

cix
2i

, ci ∈ F2m .

The sum of a linear function and a constant is called an affine function.
Let F be a function from F2m to itself and A1, A2 : F2m → F2m be affine

permutations. The functions F and A1 ◦F ◦A2 are then called affine equivalent.
Affine equivalent functions have the same algebraic degree (i.e. the algebraic
degree is affine invariant).

As recalled in the Introduction, we say that the functions F and F ′ are ex-
tended affine equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine permutations
A1, A2 and an affine function A. If F is not affine, then F and F ′ have again
the same algebraic degree.

Two mappings F and F ′ from F2m to itself are called Carlet-Charpin-Zinoviev
equivalent (CCZ-equivalent) if the graphs of F and F ′, that is, the subsets GF =
{(x, F (x)) | x ∈ F2m} and GF ′ = {(x, F ′(x)) | x ∈ F2m} of F2m×F2m , are affine
equivalent. Hence, F and F ′ are CCZ-equivalent if and only if there exists an
affine automorphism L = (L1, L2) of F2m × F2m such that

y = F (x)⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a
permutation too (see [6]). As shown in [14], EA-equivalence is a particular case
of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

For a function F : F2m → F2m and any elements a, b ∈ F2m we denote

δF (a, b) = |{x ∈ Fm
2 : F (x+ a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F∗
2m ,b∈F2m δF (a, b) ≤ δ.

Note that δ ≥ 2 for any function over F2m . Differentially 2-uniform mappings
are called almost perfect nonlinear.

For any function F : F2m → F2m we denote

λF (a, b) =
∑

x∈F2m

(−1)tr(bF (x)+ax), a, b ∈ F2m ,

where tr(x) = x+ x2 + x4 + · · ·+ x2m−1
is the trace function from F2m into F2.

The set ΛF = {λF (a, b) : a, b ∈ F2m , b 
= 0} is called the Walsh spectrum of the
function F and the multiset {|λF (a, b)| : a, b ∈ F2n , b 
= 0} is called the extended
Walsh spectrum of F . The value

NL(F ) = 2m−1 − 1
2

max
a∈F2m ,b∈F∗

2m

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F
satisfies the inequality

NL(F ) ≤ 2m−1 − 2
m−1

2

([15,32]) and in case of equality F is called almost bent or maximum nonlinear.



The Simplest Method for Constructing APN Polynomials EA-Inequivalent 181

Obviously, AB functions exist only for n odd. It is proven in [15] that every AB
function is APN and its Walsh spectrum equals {0,±2

m+1
2 }. If m is odd, every

APN mapping which is quadratic (that is, whose algebraic degree equals 2) is AB
[14], but this is not true for nonquadratic cases: the Dobbertin and the inverse
APN functions are not AB (see [12,14]). When m is even, the inverse function
x2m−2 is a differentially 4-uniform permutation [30] and has the best known non-
linearity [27], that is 2m−1 − 2

m
2 (see [12,18]). This function has been chosen as

the basic S-box, with m = 8, in the Advanced Encryption Standard (AES), see
[16]. A comprehensive survey on APN and AB functions can be found in [13].

It is shown in [14] that, if F and G are CCZ-equivalent, then F is APN
(resp. AB) if and only if G is APN (resp. AB). More generally, CCZ-equivalent
functions have the same differential uniformity and the same extended Walsh
spectrum (see [8]). Further invariants for CCZ-equivalence can be found in [22]
(see also [17]) in terms of group algebras.

3 The New Construction

In this section we show that it is possible to construct APN polynomials
EA-inequivalent to power functions by applying only EA-equivalence and the in-
verse transformation on a power APN function. The inverse transformation and
EA-equivalence are simple transformations of functions which preserve APN and
AB properties. However, applying each of them separately on power mappings it
is obviously impossible to construct polynomials EA-inequivalent to power func-
tions. Therefore, our approach for constructingAPN polynomialsEA-inequivalent
to power mappings is the simplest. We shall illustrate this method on the Gold AB
functions and in order to do it we need the following result from [8,9].

Proposition 1. ([8,9]) Let F : F2m → F2m , F (x) = L(x2i+1) + L′(x), where
gcd(i,m) = 1 and L,L′ are linear. Then F is a permutation if and only if,
for every u 
= 0 in F2m and every v such that tr(v) = tr(1), the condition
L(u2i+1v) 
= L′(u) holds.

Further we use the following notations for any divisor n of m

tr(m,n)(x) = x+ x2n

+ x22n

. . .+ x2n(m/n−1)
,

trn(x) = x+ x2 + · · ·+ x2n−1
.

Theorem 1. Let m ≥ 9 be odd and divisible by 3. Then the function

F ′(x) =
(
x

1
2i+1 + tr(m,3)(x+ x22i

)
)−1

,

with 1 ≤ i ≤ m, gcd(i,m) = 1, is an AB permutation over F2m . The function F ′

is EA-inequivalent to the Gold functions and to their inverses, that is, to x2j+1

and x
1

2j+1 for any 1 ≤ j ≤ m.

Proof. To prove that the function F ′ is an AB permutation we only need to show
that the function F1(x) = x

1
2i+1 + tr(m,3)(x + x22i

) is a permutation. Since the



182 L. Budaghyan

function x2i+1 is a permutation when m is odd and gcd(i,m) = 1 then F1 is a
permutation if and only if the function F (x) = F1(x2i+1) = x+ tr(m,3)(x2i+1 +
x22s(2i+1)), with s = i mod 3, is a permutation.

By Proposition 1 the function F is a permutation if for every v ∈ F2m such
that tr(v) = 1 and every u ∈ F∗

2m the condition tr(m,3)(u2i+1v + (u2i+1v)2
2s

) 
=
u holds. Obviously, if u /∈ F∗

23 then tr(m,3)(u2i+1v + (u2i+1v)2
2s

) 
= u. For
any u ∈ F∗

23 the condition tr(m,3)(u2i+1v + (u2i+1v)2
2s

) 
= u is equivalent to
u2i+1tr(m,3)(v) + (u2i+1tr(m,3)(v))2

2s 
= u. Therefore, F is a permutation if for
every u,w ∈ F∗

23 , tr3(w) = 1 the condition u2i+1w+(u2i+1w)2
2s 
= u is satisfied.

Then F is a permutation if x + x2i+1 + x22s(2i+1) is a permutation on F23 and
that was easily checked by a computer.

We have d◦(x2i+1) = 2 and it is proven in [30] that d◦(x
1

2i+1 ) = m+1
2 . We

show below that d◦(F ′) = 4 form ≥ 9. Since the function F ′ has algebraic degree
different from 2 and m+1

2 then it is EA-inequivalent to the Gold functions and
to their inverses.

Since F ′(x) = F−1
1 (x) = [F (x

1
2i+1 )]−1 = [F−1(x)]2

i+1 then to get the rep-
resentation of the function F ′ we need the representation of the function F−1.
The following computations are helpful to show that F−1 = F ◦ F .

tr(m,3)[(x + tr(m,3)(x2i+1 + x22s(2i+1)))2
i+1]

= tr(m,3)(x2i+1) + tr(m,3)(x2s

)tr(m,3)(x2i+1 + x22s(2i+1))

+tr(m,3)(x)tr(m,3)(x2i+1 + x2s(2i+1))

+tr(m,3)(x2i+1 + x22s(2i+1))tr(m,3)(x2i+1 + x2s(2i+1)),

since

tr(m,3)((x2i+1 + x22s(2i+1))2
i

) = tr(m,3)((x2i+1 + x22s(2i+1))2
s

)

= tr(m,3)(x2s(2i+1) + x23s(2i+1)) = tr(m,3)(x2s(2i+1) + x2i+1).

Then

tr(m,3)[(x+tr(m,3)(x
2i+1+x22s(2i+1)))2

i+1+(x+tr(m,3)(x
2i+1+x22s(2i+1)))2

2s(2i+1)]

= tr(m,3)(x
2i+1 + x22s(2i+1)) + tr(m,3)(x

2s

)tr(m,3)(x
2i+1 + x22s(2i+1))

+tr(m,3)(x)tr(m,3)(x
22s(2i+1) + x2s(2i+1)) + tr(m,3)(x)tr(m,3)(x

2i+1 + x2s(2i+1))

+tr(m,3)(x
22s

)tr(m,3)(x
22s(2i+1) + x(2i+1))

+tr(m,3)(x
2i+1 + x22s(2i+1))tr(m,3)(x

2i+1 + x2s(2i+1))

+tr(m,3)(x
22s(2i+1) + x2s(2i+1))tr(m,3)(x

22s(2i+1) + x(2i+1))

= tr(m,3)(x
2i+1 + x22s(2i+1)) + tr(m,3)(x + x2s

+ x22s

)tr(m,3)(x
2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2 = tr(m,3)(x

2i+1 + x22s(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2



The Simplest Method for Constructing APN Polynomials EA-Inequivalent 183

and

F ◦ F (x) = x + trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2

and, since trm(tr(m,3)(x2i+1 + x22s(2i+1))) = 0,

(F ◦ F ) ◦ F (x) = x + tr(m,3)(x
2i+1 + x22s(2i+1)) + trm(x)[tr(m,3)(x

2i+1 + x22s(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + (tr(m,3)(x

2i+1 + x22s(2i+1)))2]

+[tr(m,3)(x
2i+1 + x22s(2i+1)) + trm(x)tr(m,3)(x

2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2]2 = x + tr(m,3)(x

2i+1 + x22s(2i+1))

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2 + (tr(m,3)(x

2i+1 + x22s(2i+1)))4

= x + tr3(tr(m,3)(x
2i+1 + x22s(2i+1))) = x + trm(x2i+1 + x22s(2i+1))) = x.

Therefore,

F −1(x)=F ◦ F (x)=x+trm(x)tr(m,3)(x
2i+1+x22s(2i+1))+(tr(m,3)(x

2i+1+x22s(2i+1)))2.

Thus, we have

F ′(x) = [F −1(x)]2
i+1 = [x + trm(x)tr(m,3)(x

2i+1 + x22s(2i+1)) + (tr(m,3)(x
2i+1

+x22s(2i+1)))2]2
i+1 = x2i+1 + trm(x)(tr(m,3)(x

2i+1 + x22s(2i+1)))2
s+1

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2(2

s+1) + x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s

+ x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1))

+x (tr(m,3)(x
2(2i+1) + x22s+1(2i+1)))2

s

+ trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+2

+trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1+1 = x2i+1 + (tr(m,3)(x
2i+1

+x22s(2i+1)))2(2
s+1) + x2i

trm(x)(tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)tr(m,3)(x
2i+1 + x2s(2i+1)) + x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1))

+x tr(m,3)(x
2(2i+1) + x2s+1(2i+1)) + trm(x)[(tr(m,3)(x

2i+1 + x22s(2i+1)))2
s+1

+(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+2 + (tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1+1].

The only item in this sum which can give algebraic degree greater than 4 is the
last item. We have

(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1 + (tr(m,3)(x2i+1 + x22s(2i+1)))2

s+2

+(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1+1 = (tr(m,3)(x2i+1 + x22s(2i+1)))2

s+1

+(tr(m,3)(x2i+1 + x22s(2i+1)))4(2
s+1) + (tr(m,3)(x2i+1 + x22s(2i+1)))2

2s

,

since

2s + 2 =
{

4 if s = 1
6 if s = 2 ,



184 L. Budaghyan

4(2s + 1) =
{

12 = 5 (mod 23 − 1) if s = 1
20 = 6 (mod 23 − 1) if s = 2 ,

2s+1 + 1 =
{

5 if s = 1
9 = 2 (mod 23 − 1) if s = 2 ,

22s =
{

4 if s = 1
16 = 2 (mod 23 − 1) if s = 2 .

On the other hand,

(tr(m,3)(x
2i+1 + x22s(2i+1)))2

s+1 = tr(m,3)(x
2i+1 + x22s(2i+1))

×tr(m,3)(x
2i+1 + x2s(2i+1)) = tr(m,3)(x

2i+1)2 + (tr(m,3)(x
2i+1))2

2s+1

+(tr(m,3)(x
2i+1))2

s+1 + (tr(m,3)(x
2i+1))2

2s+2s

= (tr(m,3)(x
2i+1))6 + (tr(m,3)(x

2i+1))5 + (tr(m,3)(x
2i+1))3 + (tr(m,3)(x

2i+1))2. (1)

Using (1) we get

(tr(m,3)(x2i+1 + x22s(2i+1)))2
s+1 + (tr(m,3)(x2i+1 + x22s(2i+1)))4(2

s+1)

+ (tr(m,3)(x2i+1 + x22s(2i+1)))2
2s

= (tr(m,3)(x2i+1))6

+ (tr(m,3)(x2i+1))5 + (tr(m,3)(x2i+1))3 + (tr(m,3)(x2i+1))2

+ [(tr(m,3)(x2i+1))3 + (tr(m,3)(x2i+1))6 + (tr(m,3)(x2i+1))5

+ tr(m,3)(x2i+1)] + (tr(m,3)(x2i+1))2 + (tr(m,3)(x2i+1))4

= tr(m,3)(x2i+1) + (tr(m,3)(x2i+1))4. (2)

Hence, applying (1) and (2) we get

F ′(x) = x2i+1 + [(tr(m,3)(x
2i+1))6 + (tr(m,3)(x

2i+1))5 + (tr(m,3)(x
2i+1))3

+(tr(m,3)(x
2i+1))2]2 + x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1))

+x trm(x)tr(m,3)(x
2i+1 + x2s(2i+1)) + x2i

tr(m,3)(x
2(2i+1)

+x22s+1(2i+1)) + x tr(m,3)(x
2(2i+1) + x2s+1(2i+1))

+trm(x)[tr(m,3)(x
2i+1) + (tr(m,3)(x

2i+1))4] = x2i+1 + (tr(m,3)(x
2i+1))6

+(tr(m,3)(x
2i+1))5 + (tr(m,3)(x

2i+1))3 + (tr(m,3)(x
2i+1))4

+x2i

trm(x)tr(m,3)(x
2i+1 + x22s(2i+1)) + x trm(x)tr(m,3)(x

2i+1 + x2s(2i+1))

+x2i

tr(m,3)(x
2(2i+1) + x22s+1(2i+1)) + x tr(m,3)(x

2(2i+1) + x2s+1(2i+1))

+trm(x)tr(m,3)(x
2i+1 + x4(2i+1)).

Below we consider all items in the sum presenting the function F ′ which may
give the algebraic degree 4:



The Simplest Method for Constructing APN Polynomials EA-Inequivalent 185

[(tr(m,3)(x2i+1))6 + (tr(m,3)(x2i+1))5 + (tr(m,3)(x2i+1))3]

+[x2i

trm(x)(tr(m,3)(x2i+1 + x22s(2i+1)) + x trm(x)(tr(m,3)(x2i+1 + x2s(2i+1))].

For simplicity we take i = 1. Obviously, all the items in the second bracket of
the algebraic degree 4 have the form x2j+2k+2l+2r

, where r < l < k < j ≤ m−1,
r ≤ 1. Therefore, if we find an item of algebraic degree 4 in the first bracket of
the form x2j+2k+2l+2r

, where 2 ≤ r < l < k < j ≤ m−1, which does not cancel,
then this item does not vanish in the whole sum.

We have

tr(m,3)(x3) = x2+1 + x24+23
+ · · ·+ x2m−5+2m−6

+ x2m−2+2m−3

=

m
3 −1∑

k=0

x23k+1+23k

,

(tr(m,3)(x3))2 = x22+2 + x25+24
+ · · ·+ x2m−4+2m−5

+ x2m−1+2m−2

=

m
3 −1∑

k=0

x23k+2+23k+1
,

(tr(m,3)(x3))4 = x23+22
+ x26+25

+ · · ·+ x2m−3+2m−4
+ x2m+2m−1

=

m
3 −2∑

k=0

x23k+3+23k+2
+ x2m−1+1,

(tr(m,3)(x3))3 = (tr(m,3)(x3))2tr(m,3)(x3)=

m
3 −1∑

i,k=0

x23k+1+23k+23i+2+23i+1
, (3)

(tr(m,3)(x3))5 =

m
3 −2∑

j=0

m
3 −1∑

k=0

x23j+3+23j+2+23k+1+23k

+

m
3 −1∑

k=0

x2m−1+1+23k+1+23k

, (4)

(tr(m,3)(x3))6 =

m
3 −2∑

j=0

m
3 −1∑

k=0

x23j+3+23j+2+23k+2+23k+1
+

m
3 −1∑

k=0

x2m−1+1+23k+2+23k+1
.

(5)

Note that all exponents of weight 4 in (3)-(5) are smaller than 2m. If m ≥ 9 then
it is obvious that the item x26+25+24+23

does not vanish in (4) and it definitely
differs from all items in (3) and (5).

Hence, the function F ′ has the algebraic degree 4 when m ≥ 9 and that
completes the proof of the theorem. ��

It is proven in [6] that the Gold functions are CCZ-inequivalent to the Welch
function for all m ≥ 9. Therefore, the function F ′ of Theorem 1 is CCZ-
inequivalent to the Welch function. Further, the inverse and the Dobbertin
APN functions are not AB (see [12,14]) and, therefore, the AB function F ′ is



186 L. Budaghyan

CCZ-inequivalent to them. The algebraic degree of the Kasami function x4i−2i+1,
2 ≤ i ≤ m−1

2 , gcd(i,m) = 1, is equal to i + 1. Thus, its algebraic degree equals
4 if and only if i = 3. Since the function F ′ is defined only for m divisible by
3 then for i = 3 we would have gcd(i,m) 
= 1. On the other hand, if Gold and
Kasami functions are CCZ-equivalent then it follows from the proof of Theo-
rem 5 of [6] that the Gold function is EA-equivalent to the inverse of the Kasami
function which must be quadratic in this case. Thus, if F ′ was EA-equivalent to
the inverse of a Kasami function then F ′ would be quadratic. Hence, F ′ cannot
be EA-equivalent to the Kasami functions or to their inverses.

Proposition 2. The function of Theorem 1 is EA-inequivalent to the Welch,
Kasami, inverse, Dobbertin functions and to their inverses.

For m = 2t+ 1 the Niho function has the algebraic degree t+ 1 if t is odd and
the algebraic degree (t+ 2)/2 if t is even. Therefore, its algebraic degree equals
4 if and only if m = 7, 13.

Proposition 3. The function of Theorem 1 is EA-inequivalent to the Niho
function.

We do not have a general proof of EA-inequivalence of F ′ and the inverse of
the Niho function but for m = 9 the Niho function coincides with the Welch
functions and therefore its inverse cannot be EA-equivalent to the function F ′.

Corollary 1. For m = 9 the function of Theorem 1 is EA-inequivalent to any
power function.

When m is odd and divisible by 3 the APN functions from Table 2 have algebraic
degrees different from 4. Thus we get the following proposition.

Proposition 4. The function of Theorem 1 is EA-inequivalent to any APN
function from Table 2.

Acknowledgments

We would like to thank Claude Carlet for many valuable discussions and for
detailed and insightful comments on the several drafts of this paper. The main
part of this work was carried out while the author was with Otto-von-Guericke
University Magdeburg and the research was supported by the State of Saxony
Anhalt, Germany; also supported by a postdoctoral fellowship of MIUR-Italy
via PRIN 2006.

References

1. Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 65–76. Springer, Heidelberg (1993)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)



The Simplest Method for Constructing APN Polynomials EA-Inequivalent 187

3. Budaghyan, L., Carlet, C.: Classes of Quadratic APN Trinomials and Hexanomials
and Related Structures. Preprint, available at
http://eprint.iacr.org/2007/098

4. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from
known ones. Preprint, available at http://eprint.iacr.org/2007/063

5. Budaghyan, L., Carlet, C., Leander, G.: Another class of quadratic APN binomials
over F2n : the case n divisible by 4. In: Proceedings of the Workshop on Coding
and Cryptography (2007) (To appear) available at
http://eprint.iacr.org/2006/428.pdf

6. Budaghyan, L., Carlet, C., Leander, G.: A class of quadratic APN binomials in-
equivalent to power functions. Submitted to IEEE Trans. Inform. Theory, available
at http://eprint.iacr.org/2006/445.pdf

7. Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic
APN functions which are not equivalent to power mappings. Proceedings of the
IEEE International Symposium on Information Theory 2006, Seattle, USA (July
2006)

8. Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost
Perfect Nonlinear Functions. IEEE Trans. Inform. Theory 52(3), 1141–1152 (2006)

9. Budaghyan, L., Carlet, C., Pott, A.: New Constructions of Almost Bent and Almost
Perfect Nonlinear Functions. In: Charpin, P., Ytrehus, Ø., (eds.) Proceedings of the
Workshop on Coding and Cryptography 2005, pp. 306–315 (2005)

10. Canteaut, A., Charpin, P., Dobbertin, H.: A new characterization of almost bent
functions. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 186–200.
Springer, Heidelberg (1999)

11. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued
crosscorrelation: A proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1),
4–8 (2000)

12. Canteaut, A., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly
nonlinear functions on F2m , and crosscorrelation of maximum-length sequences.
SIAM Journal on Discrete Mathematics 13(1), 105–138 (2000)

13. Carlet, C.: Vectorial (multi-output) Boolean Functions for Cryptography. In:
Crama, Y., Hammer, P. (eds.) Chapter of the monography Boolean Methods and
Models, Cambridge University Press, to appear soon. Preliminary version available
at http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html

14. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–
156 (1998)

15. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

16. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999),
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

17. Dillon, J.F.: APN Polynomials and Related Codes. Polynomials over Finite Fields
and Applications, Banff International Research Station (November 2006)

18. Dobbertin, H.: One-to-One Highly Nonlinear Power Functions on GF (2n). Appl.
Algebra Eng. Commun. Comput. 9(2), 139–152 (1998)

19. Dobbertin, H.: Almost perfect nonlinear power functions over GF (2n): the Niho
case. Inform. and Comput. 151, 57–72 (1999)

20. Dobbertin, H.: Almost perfect nonlinear power functions over GF (2n): the Welch
case. IEEE Trans. Inform. Theory 45, 1271–1275 (1999)

http://eprint.iacr.org/2007/098
http://eprint.iacr.org/2007/063
http://eprint.iacr.org/2006/428.pdf
http://eprint.iacr.org/2006/445.pdf
http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf


188 L. Budaghyan

21. Dobbertin, H.: Almost perfect nonlinear power functions over GF (2n): a new case
for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) Proceedings of Finite
Fields and Applications FQ5, Augsburg, Germany, pp. 113–121. Springer, Heidel-
berg (2000)

22. Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent
to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)

23. Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation
functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)

24. Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscor-
relations of binary m-sequences. Finite Fields and Their Applications 7, 253–286
(2001)

25. Janwa, H., Wilson, R.: Hyperplane sections of Fermat varieties in P 3 in char. 2
and some applications to cyclic codes. In: Moreno, O., Cohen, G., Mora, T. (eds.)
AAECC-10. LNCS, vol. 673, pp. 180–194. Springer, Heidelberg (1993)

26. Kasami, T.: The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Inform. and Control 18, 369–394 (1971)

27. Lachaud, G., Wolfmann, J.: The Weights of the Orthogonals of the Extended
Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)

28. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

29. Nakagawa, N., Yoshiara, S.: A construction of differentially 4-uniform functions
from commutative semifields of characteristic 2. In: Proceedings of WAIFI 2007,
LNCS (2007)

30. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

31. Nyberg, K.: S-boxes and Round Functions with Controllable Linearity and Differ-
ential Uniformity. In: Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008,
pp. 111–130. Springer, Heidelberg (1995)

32. Sidelnikov, V.: On mutual correlation of sequences. Soviet Math. Dokl. 12,
197–201 (1971)



New Point Addition Formulae for ECC

Applications

Nicolas Meloni1,2

1 Institut de Mathématiques et de Modélisation de Montpellier,
Univ. Montpellier 2, France

2 Laboratoire d’Informatique,
de Robotique et de Microélectronique de Montpellier,

CNRS, Univ. Montpellier 2, France
nicolas.meloni@lirmm.fr

Abstract. In this paper we propose a new approach to point scalar mul-
tiplication on elliptic curves defined over fields of characteristic greater
than 3. It is based on new point addition formulae that suit very well to
exponentiation algorithms based on Euclidean addition chains. However
finding small chains remains a very difficult problem, so we also develop
a specific exponentiation algorithm, based on Zeckendorf representation
(i.e. representing the scalar k using Fibonacci numbers instead of powers
of 2), which takes advantage of our formulae.

Keywords: elliptic curve, scalar multiplication, exponentiation,
Fibonacci, addition chains.

1 Introduction

Since its introduction by Miller and Koblitz [11,9], elliptic curve cryptography
(ECC) has received a lot of attention and has subsequently become one of the
main standards in public key cryptography. The main operation (in terms of
computations) of such systems is the point scalar multiplication, i.e. the com-
putation of the point [k]P = P + · · · + P , where k is an integer and P a point
on a curve. It involves hundreds of multiplications on the underlying field which
means that some efforts are to be made on optimizing this computation. This is
precisely what this paper deals with.

A point scalar multiplication is just a sequence of point additions, being them-
selves made of several multiplications, squarings and inversions on a finite field.
So improvements can be done at the finite field level by developing faster modular
multiplication algorithms, at the curve level by improving the point addition and
finally at the algorithmic level by proposing exponentiation algorithms adapted
to the context of elliptic curves.

In this paper we will contribute to the two last levels. First we will propose
new point addition formulae in a specific case. More precisely, if one computes
P3 = P1+P2 on a curve then computing P3+P1 or P3+P2 can be done at a very
low computational cost. Then we will compare this approach to existing works

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 189–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



190 N. Meloni

done by Montgomery [13] and generalized by Brier and Joye on one hand [1] and
by Lopez and Dahab [10] on the other hand. Those formulae suit very well to
Euclidean addition chains which will lead to a very efficient point multiplication
algorithm as long as one is able to find a small chain to compute a given integer.
This problem being still difficult, we will propose next to represent the scalar
k using Fibonacci numbers instead of powers of 2. That is to say writing k =∑n

i=1 Fi, where Fi is the ith Fibonacci number. This will allow us to propose a
“Fibonacci-and-add” algorithm taking advantage of our formula.

2 Elliptic Curve Arithmetic

Definition 1. An elliptic curve E over a field K denoted by E/K is given by
the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y) on E, the partial
derivatives do not vanish simultaneously.

In practice, the equation can be simplified into

y2 = x3 + ax+ b

where a, b ∈ K and 4a3 + 27b2 
= 0, over field of characteristic greater than 3.
The set of points of E/K is an abelian group. There exist explicit formu-

lae to compute the sum of two points, and several coordinate systems have been
proposed to speed up this computation. For a complete overview of those coordi-
nates, one can refer to [3,6]. As an example, in Jacobian coordinates, the curve E
(over a field of characteristic greater than 3) is given by Y 2 = X3+a4XZ

4+a6Z
6,

the point (X,Y, Z) on E corresponds to the affine point ( X
Z2 ,

Y
Z3 ) and the for-

mulae are:

Addition:
P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P +Q = (X3, Y3, Z3)

A = X1Z
2
1 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B −A, F = D − C

and

X3 = −E3 − 2AE2 + F, Y3 = −CE3 + F (AE2 −X3), Z3 = Z1Z2E

Doubling:
[2]P = (X3, Y3, Z3)

A = 4X1Y
2
1 , B = 3X2

1 + a4Z
4
1

and
X3 = −2A+B2, Y3 = −8Y 4

1 +B(A−X3), Z3 = 2Y1Z1.

The computation cost is 12 multiplications (M) and 4 squarings (S) (8M and
3S if one of the point is given in the form (X,Y,1)) for the addition and 4M and
6S for the doubling.



New Point Addition Formulae for ECC Applications 191

The computation of [k]P is usually done using Algorithm 1. It requires about
log2(k) doublings and w(k) additions, where w(k) is the Hamming weight of k.
Several methods have been developed to reduce both the cost of a doubling and
the number of additions. This can be achieved by using, for example, modified
Jacobian coordinates and windowing methods [4]. Other methods include the
use of a different number system to represent the scalar k, as the double base
number system [5]. Finally over binary fields doubling can be replaced by other
endomorphisms such as the Frobenius endomorphism [14] or point halving [7].

Algorithm 1. Double-and-add
Data: P ∈ E and k = (kl−1, . . . , k0)2 ∈ N.
Result: [k]P ∈ E.
begin

Q← P
for i = l − 2 . . . 0 do

Q← [2]Q
if ki = 1 then

Q← Q+ P
end

end
end
return Q

3 New Point Addition Formulae

Let K be a field of characteristic greater than 3, E/K an elliptic curve, P1 =
(X1, Y1, Z) and P2 = (X2, Y2, Z) two points (in Jacobian coordinates) on E shar-
ing the same z-coordinate. Then if we note P1 +P2 = P3 = (X3, Y3, Z3) we have:

X3 = (Y2Z
3 − Y1Z

3)2 − (X2Z
2 −X1Z

2)3 − 2X1Z
2(X2Z

2 −X1Z
2)2

= ((Y2 − Y1)2 − (X2 −X1)3 − 2X1(X2 −X1)2)Z6

= ((Y2 − Y1)2 − (X1 +X2)(X2 −X1)2)Z6

= X ′
3Z

6

Y3 = −Y1Z
3(X2Z

2 −X1Z
2)3

+(Y2Z
3 − Y1Z

3)(X1Z
2(X2Z

2 −X1Z
2)2 −X3)

= (−Y1(X2 −X1)3 + (Y2 − Y1)(X1(X2 −X1)2 −X ′
3))Z

9

= Y ′
3Z

9

Z3 = Z2(X2Z
2 −X1Z

2)
= Z(X2 −X1)Z3

= Z ′
3Z

3

Thus we have (X3, Y3, Z3) = (X ′
3Z

6, Y ′
3Z

9, Z ′
3Z

3) ∼ (X ′
3, Y

′
3 , Z

′
3).

So when P1 and P2 have the same z-coordinate, P1+P2 can be obtained using
the following formulae:



192 N. Meloni

Addition:
P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) and P1 + P2 = (X ′

3, Y
′
3 , Z

′
3)

A = (X2 −X1)2, B = X1A, C = X2A, D = (Y2 − Y1)2

and
X ′

3 = D −B − C ,
Y ′

3 = (Y2 − Y1)(B −X3)− Y1(C −B) ,
Z ′

3 = Z(X2 −X1) .
This addition involves 5M and 2S.

As they require special conditions, our formulae are logically more efficient
than any general or mixed addition formulae. What is more striking is the fact
that they are more efficient than any doubling formulae (the best doubling is
obtained using modified Jacobian coordinates and requires 4M and 4S).

The comparison with Montgomery’s elliptic curves arithmetic is a lot more
interesting. At a first sight the approaches look very similar. Indeed on Mont-
gomery’s curves the arithmetic is based on the fact that it is easy to compute
the x and z-coordinates of P1 + P2 from the x and z-coordinates of P1, P2 and
P1 − P2. The computational cost of this addition is 4M and 2S, which is lower
than with our formula, but requires additional computations to recover the y-
coordinate. Besides, recovering the y-coordinate requires to perform the point
scalar multiplication using the Montgomery ladder algorithm. In the case of Eu-
clidean addition chains exponentiation (treated in the next section) one cannot
recover the y-coordinate from Montgomery’s formulae. On the other hand we
will show that it is possible not to compute the y-coordinate with our formulae.
In this case the computational cost of our formulae is reduced to 4M+2S.

Finally notice that not every elliptic curves are Montgomery’s curves (Brier
and Joye generalized this approach to general curves [1] but in this case the
computational cost rises to 9M and 2S) whereas our formulae work on any curve
(as long as the characteristic of the underlying field is greater than 3).

It seems unlikely for both P1 and P2 to have the same z-coordinate. For-
tunately the quantities X1A = X1(X2 −X1)2 and Y1(C − B) = Y1(X2 −X1)3

computed during the addition can be seen as the x and y-coordinates of the point
(X1(X2−X1)2, Y1(X2−X1)3, Z(X2−X1)) ∼ (X1, Y1, Z). Thus it is possible to
add P1 and P1 + P2 with our new formulae.

Remark 1. The same observation can be made from the doubling formulae,
indeed the quantities A = X1(2Y1)2 and 8Y 4

1 = Y1(2Y1)3 are the x and y-
coordinates of the point (X1(2Y1)2, Y1(2Y1)3, 2Y1Z1) ∼ (X1, Y1, Z1) allowing us
to compute P + [2]P without additional computation.

So we now have at our disposal an operator NewADD working the following way:
let P1 and P2 be two points sharing the same z-coordinate then NewADD(P1, P2)
returns two points, P1 + P2 and P1, sharing the same z-coordinate.

Example 1. One can compute [25]P in the following way:
– NewADD([2]P, P )=([3]P, [2]P )
– NewADD([2]P, [3]P )=([5]P, [2]P )
– NewADD([2]P, [5]P )=([7]P, [2]P )



New Point Addition Formulae for ECC Applications 193

– NewADD([7]P, [2]P )=([9]P, [7]P )
– NewADD([9]P, [7]P )=([16]P, [9]P )
– NewADD([16]P, [9]P )=([25]P, [16]P )

Remark 2. The same kind of formulae can be developed in characteristic two.
However we do not deal with this case in the remainder of the paper. Indeed
Lopez and Dahab showed [10] that all curve can be turned into Montgomery’s.
Moreover many other methods, as fast doublings, point halving etc, lead to very
efficient exponentiation algorithms so that our approach is no longer relevant.

4 Point Scalar Multiplication

From the previous section we have seen that our formulae are quite efficient in
terms of computational cost (more than a doubling) but cannot be used with
classical double-and-add algorithms and require specific exponentiation schemes,
as the one shown on example 1.

4.1 Euclidean Addition Chains

In this section we first show that the NewADD operator suits very well to Euclidean
addition chains. We will then explain why finding such chains that are small is
difficult.

Definition 2. An addition chain computing an integer k is given by a sequence
v = (v1, . . . , vs) where v1 = 1, vs = k and ∀ 1 ≤ i ≤ s, vi = vi1 + vi2 for some
i1 and i2 lower than i.

Definition 3. An Euclidean addition chain (EAC) computing an integer k is
an addition chain which satisfies v1 = 1, v2 = 2, v3 = v2 + v1 and ∀ 3 ≤ i ≤ s−
1, if vi = vi−1 +vj for some j < i−1, then vi+1 = vi+vi−1 (case 1) or vi+1 =
vi + vj (case 2).

Case 1 will be called big step (we add the biggest of the two possible numbers
to vi) and case 2 small step (we add the smallest one).

As an example, (1, 2, 3, 4, 7, 11, 15, 19, 34) is an Euclidean addition chain com-
puting 34. For instance, in step 4 we have computed 4=3+1, thus in step 5 we
must add 3 or 1 to 4, in other words from step 4 we can only compute 5=4+1
or 7=4+3. In this example we have chosen to compute 7=4+3 so, at step 6, we
can compute 10=7+3 or 11=7+4 etc. Another classical example of EAC is the
Fibonacci sequence (1, 2, 3, 5, 8, 13, 21, 34) (which is only made of big steps).

Finding such chains is quite simple, it suffices to choose an integer g coprime
with k and apply the subtractive form of Euclid’s algorithm.

Example 2. Let k = 34 and g = 19 and let apply them the subtractive form of
Euclid’s algorithm:

34− 19 = 15 (big step)
19− 15 = 4 (small step)
15− 4 = 11 (small step)



194 N. Meloni

11− 4 = 7 (big step)
7− 4 = 3 (big step)
4− 3 = 1 (small step)
3− 1 = 2
2− 1 = 1
1− 1 = 0

Reading the first number of each line gives the EAC (1, 2, 3, 4, 7, 11, 15, 19, 34).
Finally, in order to simplify the writing of the algorithm, we will use the

following notation : if v = (1, 2, 3, v4, . . . , vs) is an EAC then we only consider
the chain from v4 and we replace all the vi’s by 0 if it has been computed using
a big step and by 1 for a small step.

For instance the sequence: (1, 2, 3, 4, 7, 11, 15, 19, 34)
will be written: (1, 0, 0, 1, 1, 0).

Finally we note the chain c = (c4, . . . , cs) instead of v in order to prevent
confusion between both representations.

We can now propose an algorithm performing a point scalar multiplication
and using only the NewADD operator.

Algorithm 2. Euclid-Exp(c, P )
Data: P , [2]P with ZP = Z[2]P and an EAC c = (c4, . . . , cs)

computing k ;
Result: [k]P ∈ E;
begin

(U1, U2)← ([2]P, P )
for i = 4 . . . s do

if ci = 0 then
(U1, U2)← NewADD(U1, U2) ;

else
(U1, U2)← NewADD(U2, U1) ;

end
end
(U1, U2)← NewADD(U1, U2) ;
return U1

end

Example 3. Let us see what happens with the chain c = (1, 0, 0, 1, 1, 0) comput-
ing 34:

first we compute ([2]P, P )
c4 = 1 so we compute NewADD(P, [2]P ) = ([3]P, P )
c5 = 0 so we compute NewADD([3]P, P ) = ([4]P, [3]P )
c6 = 0 so we compute NewADD([4]P, [3]P ) = ([7]P, [4]P )



New Point Addition Formulae for ECC Applications 195

c7 = 1 so we compute NewADD([4]P, [7]P ) = ([11]P, [4]P )
c8 = 1 so we compute NewADD([4]P, [11]P ) = ([15]P, [4]P )
c9 = 0 so we compute NewADD([15]P, [4]P ) = ([19]P, [15]P )

and finally we compute NewADD([19]P, [15]P ) which gives [34]P

If we consider that the point P is given in affine coordinate (that is Z = 1)
then the doubling step can be performed using 3M and 3S and so, the total
computational cost of our algorithm is (5s− 7)M and (2s− 1)S.

Remark 3. Some cryptographic protocols only require the x-coordinate of the
point [k]P . In this case it is possible to save one multiplication by step of Algo-
rithm 2 by noticing that Z does not appear during the computation of X ′

3 and
Y ′

3 , thus it is not necessary to compute Z ′
3 during the process. Appendix A shows

how to recover the x-coordinate in the end.

4.2 About Euclid’s Addition Chains Length

At this point we know that Euclidean addition chains are easy to compute,
however finding small chains is a lot more complicated.

We begin by a theorem proved by D. Knuth and A. Yao in 1975 [8].

Theorem 1. Let S(k) denote the average number of steps to compute gcd(k, g)
using the subtractive Euclid’s algorithm when g is uniformly distributed in the
range 1 ≤ g ≤ k. Then

S(k) = 6π−2(ln k)2 +O(log k(log log k)2)

This theorem shows that if, in order to find an EAC for an integer k, we choose
an integer g at random, it will return a chain of length about (ln k)2, which is
too long to be used with ECC. Indeed, for a 160-bit exponent, we will see in the
last section that to be efficient, Algorithm 2 requires chains of length at most
320, whereas the previous theorem tells us that, theoretically, random chains
have a length of 7000 on average (it is rather 2500 in practice).

A classic way to limit the length of EAC is to choose g close to k
φ , where

φ = 1+
√

5
2 is the golden section. This guarantees that the last steps of the EAC

will be big steps. In practice this method allows to find EAC of an average length
of 1100.

A second obvious way to find shorter chains is to try many g around k
φ and

to keep the shortest chain. A more precise study can be found in [12].
Considering 160-bit integers, finding EAC of length 320 can be done by check-

ing (on average) about 30 g′s. Finding shorter chains is a lot more difficult, as
an example finding chains of length 270 requires testing more than 45 000 g′s.
Such a computation can not be integrated into any exponentiation algorithm so,
if some offline computations cannot be performed, one should not expect to use
EAC whose length is shorter than 320.



196 N. Meloni

5 Using Zeckendorf Representation

We have seen that finding a small Euclidean addition chain that compute a large
integer is quite difficult. However if the integer k is a Fibonacci number then an
optimal chain is quite easy to compute. Indeed theFibonacci sequence is anoptimal
chain. The idea proposed in this section is to switch from binary to the Zeckendorf
representation in order to replace doublings by Fibonacci numbers computations.

5.1 A Fibonacci-and-Add Algorithm

Theorem 2. Let k be an integer and (Fi)i≥0 the Fibonacci sequence, then k can
be uniquely written in the form:

k =
l∑

i=2

diFi,

with di ∈ {0, 1} and didi+1 = 0
An integer k written in this form is said to be in Zeckendorf representation
and will be denoted as k = (dl−1, . . . , d2)Z . Such a representation is easy to
compute as it can be obtained using a greedy algorithm. An equivalent of the
double-and-add algorithm is proposed next.

Algorithm 3. Fibonacci-and-add(k, P )
Data: P ∈ E(K), k = (dl, . . . , d2)Z ;
Result: [k]P ∈ E;
begin

(U, V )← (P, P )
for i = l − 1 . . . 2 do

if di = 1 then
U ← U + P (add step);

end
(U, V )← (U + V, U) (Fibonacci step) ;

end
return U

end

Example 4. Computation of [25]P with 25 = 21 + 3 + 1= (1000101)Z:

– initialization: (U, V )← (P, P )
– d7 = 0 : (U, V )← ([2]P, P )
– d6 = 0 : (U, V )← ([3]P, [2]P )
– d5 = 0 : (U, V )← ([5]P, [3]P )
– d4 = 1 : U ← [6]P then (U, V )← ([9]P, [6]P )
– d3 = 0 : (U, V )← ([15]P, [9]P )
– d2 = 1 : U ← [16]P then (U, V )← ([25]P, [16]P )
– return U = [25]P



New Point Addition Formulae for ECC Applications 197

The Zeckendorf representation needs 44% more digits in comparison with the
binary method. For instance a 160-bit integer will require around 230 Fibonacci
digits. However, the density of 1’s in this representation is lower. From [2] we
know that the density of 1’s is about 0.2764. This means that representing a 160-
bits integer requires, on average, 80 powers of 2 but only 64 Fibonacci numbers
( ) 230×0.2764).

More generally, for a n-bit integer, the classical double-and-add algorithm
requires on average 1.5 × n operations (n doublings and n

2 additions) and the
Fibonacci-and-add requires 1.83×n operations (1.44×n “Fibonacci” and 0.398×
n additions). In other words the Fibonacci-and-add algorithms requires about
23% more operations.

5.2 Using NewADD

We want to adapt Algorithm 5.1 to elliptic curves using the NewADD operator. It
is clear that, as long as U and V are two points sharing the same z-coordinate,
the Fibonacci step just consists of one use of NewADD. This means that a sequence
of 0’s in the Zeckendorf representation of the k can be performed by a sequence
of NewADD.

We need now to compute U + P return U + P and V with the same z-
coordinate. Let us suppose that U = (XU , YU , Z), V = (XV , YV , Z) and P =
(x, y, 1). First we compute the point P ′ = (xZ2, yZ3, Z) ∼ P (3M+S) so that
one can compute U + P = (XU+P , YU+P , ZU+P ) using NewADD (5M+2S). Then
on one hand we have ZU+P = (XU − xZ2)Z. On the other hand (XU − xZ2)2

and (XU − xZ2)3 have been computed during the computation of U + P (see
the quantities A and C − B in our formulae in section 3) so that updating the
point V to (XV (XU − xZ2)2, YV (XU − xZ2)3, Z(XU − xZ2)) requires only 2M.

As a conclusion the final computational cost of an add step is 10M+3S.
All this is summarized in the following algorithm:

Algorithm 4. Fibonacci-and-add(k, P )
Data: P ∈ E(K), k = (dl, . . . , d2)Z ;
Result: [k]P ∈ E;
begin

(U, V )← (P, P )
for i = l − 1 . . . 2 do

if di = 1 then
update P ;
(U, .)← NewADD(U,P ) ;
update V ;

end
(U, V )←NewADD (U, V ) ;

end
return U

end



198 N. Meloni

We have seen that this algorithm is expected to perform 1.44 × n Fibonacci
steps and 0.398×n add steps (where n is the bit length of k). Then the average
complexity of this algorithm is (11.18×n)M + (4.07×n)S.

5.3 Improvements

As with the binary case, it is possible to modify the Zeckendorf representation
to reduce the number add step. As an example one can use a signed version of
the Zeckendorf representation. In this case the density of 1’s decreases to 0.2,
which means that for an n-bit integer, the number of 1’s is reduced to 0.29× n.

If some extra memory is available (and with minor modifications of Algorithm
5.1) one can use some kind of window methods. For instance, one can modify
the Zeckendorf representation using the following properties:

– Fn+3 + Fn = 2Fn+2 → 1001Z = 0200Z
– Fn+3 − Fn = 2Fn+1 → 1001Z = 0020Z
– Fn+4 + Fn = 3Fn+2 → 10001Z = 00300Z
– Fn+6 − Fn = 4Fn+3 → 1000001Z = 0004000Z

Experiments seem to show that using these recoding rules allows to reduce
the density of non zero digits to 0.135 so that the number of expected add steps
in Algorithm 5.1 is reduced to 0.194× n.

Remark 4. Of course it is possible to find many more properties in the huge
literature dedicated to Fibonacci numbers, however the four rules given previously
are sufficient when dealing with 160-bit integers.

6 Comparisons with Other Methods

In this section we give some practical results about the complexities of our point
multiplication algorithms and compare them with other classical methods. More
precisely in Table 1 we compare our formulae used with Euclidean addition
chains to Montgomery’s ladder and Euclidean chains on Montgomery’s curves,
and in Table 2 we compare our Fibonacci number based algorithm (and its im-
proved version) to double-and-add, NAF and 4-NAF methods on general curves
using mixed coordinates.

We assume that S=0.8M, that k is a 160-bit integer and refer to [4] for the
complexity of the window method using mixed coordinate.

In Table 1 we can see that our new formulae allow to generalize the use
of Euclidean chains without loss of efficiency. Moreover one can compute both
the x and y-coordinates (with a little efficiency loss) which is not possible with
Montgomery’s formulae. However Montgomery’s ladder still remains a lot more
efficient than any methods.

Comparing similar algorithms in Table 2 shows that Fibonacci based algo-
rithms are still slower than their binary equivalents. From 10 to 23 % slower
for simple to window Fibonacci-and-add. However this has to be balanced by
the fact that those algorithms naturally require a lot more operations than the



New Point Addition Formulae for ECC Applications 199

Table 1. Comparisons with algorithms on Montgomery curves

Algorithm Curve type recovery of y-coord. Field Mult.

Mont. ladder Montgomery yes 1463

EAC-320 Montgomery no 1792

EAC-270 Montgomery no 1512

EAC-320 Weiestraß yes 2112

EAC-270 Weiestraß yes 1782

EAC-320 Weiestraß no 1792

EAC-270 Weiestraß no 1512

Table 2. Comparisons between binary and Fibonacci based algorithm

Algorithm Coord. Field Mult.

Double-and-add Mixed 2104

NAF Mixed 1780

4-NAF Mixed 1600

Fibonacci-and-add NewADD 2311

Signed Fib-and-add NewADD 2088

Window Fib-and-add NewADD 1960

binary ones. From 23 % more for the Fibonacci-and-add to 36% for the window
version. So we can see that our formulae significantly reduce the additional com-
putation cost of our Fibonacci based algorithms making then almost as efficient
as the binary ones.

7 Summary

In this paper we have proposed new point addition formulae with a lower compu-
tational cost than the best known doubling. We have shown that these formulae
are really well suited to a special type of addition chains: the Euclidean addi-
tion chains. Our formulae allow us to generalize the use of those chains to any
elliptic curve without loss of efficiency, compared to Montgomery’s formulae. In
addition we have proposed a Fibonacci number based point scalar multiplication
algorithm. In practice it requires a lot more operations than its binary counter-
part, but coupled with our formulae the former becomes almost as efficient as
the latter (the additional cost is reduced from 23 % to 10 %).

References

1. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

2. Capocelli, R.M.: A generalization of fibonacci trees. In: Third In. Conf. on Fi-
bonacci Numbers and their Applications (1988)



200 N. Meloni

3. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Cryptography.
Chapman & Hall, Sydney, Australia (2006)

4. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
Springer, Heidelberg (1998)

5. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

6. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

7. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

8. Knuth, D., Yao, A.: Analysis of the subtractive algorithm for greater common
divisors. Proc. Nat. Acad. Sci. USA 72(12), 4720–4722 (1975)

9. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

10. Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2 m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

11. Miller, V.S.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–428. Springer, Heidelberg (1986)

12. Montgomery, P.: Evaluating Recurrences of form xm+n = f(xm, xn, xm−n) via
Lucas chains (1983), Available at ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz

13. Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

14. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves.
Technical report, University of Waterloo (1999),
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-46.pdf

A Recovery of x-Coordinate

As said in section 3 the x-coordinate of the sum of two points P1 and P2 can be
recovered without computing the z coordinate. Or in other word the value
P1 + P2 = (XP1+P2 , YP1+P2 , ZP1+P2) can be recovered thanks to the the fol-

lowing property:

Property 1. Let P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) and P1 +P2 = (X3, Y3, Z3)
be points of an elliptic curve E given in Jacobian coordinates, then

Z2 =
a

2b

[
(X1 −X2)(X3 + 2Y2Y1 −X1X2(X1 +X2))

Y 2
1 − Y 2

2 +X3
2 −X3

1

− (X1 +X2)
]

Proof: P1 and P2 satisfy Y 2 = X3 + aXZ4 + bZ6 so

Y 2
1 − Y 2

2 = X3
1 −X3

2 + aX1Z
4 − aX2Z

4 + bZ6 − bZ6

which gives

Z4 =
Y 2

1 − Y 2
2 +X3

2 −X3
1

a(X1 −X2)

ftp.cwi.nl:/pub/pmontgom/Lucas.ps.gz


New Point Addition Formulae for ECC Applications 201

Moreover
X3 = (Y2 − Y1)2 − (X1 +X2)(X2 −X1)2

= Y 2
2 − 2Y2Y1 + Y 2

1 −X3
2 +X2

2X1 +X2
1X2 −X3

1

= Y 2
2 −X3

2 + Y 2
1 −X3

1 − 2Y2Y1 +X1X2(X1 +X2)
= aX1Z

4 + bZ6 + aX2Z
4 + bZ6 − 2Y2Y1 +X1X2(X1 +X2)

= Z4(a(X1 +X2) + 2bZ2)− 2Y2Y1 +X1X2(X1 +X2)
and so

Z2 =
a

2b

[
(X1 −X2)(X3 + 2Y2Y1 −X1X2(X1 +X2))

Y 2
1 − Y 2

2 +X3
2 −X3

1

− (X1 +X2)
]

Recovering the final x-coordinate can be done in 8M, 4S and one inversion.



Explicit Formulas for Real Hyperelliptic Curves

of Genus 2 in Affine Representation

Stefan Erickson1, Michael J. Jacobson Jr.2, Ning Shang3,
Shuo Shen3, and Andreas Stein4

1 Department of Mathematics and Computer Science, Colorado College,
14 E. Cache La Poudre, Colorado Spgs., CO. 80903, USA

Stefan.Erickson@ColoradoCollege.edu
2 Department of Computer Science, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
jacobs@cpsc.ucalgary.ca

3 Department of Mathematics, Purdue University, 150 N. University Street,
West Lafayette, IN 47907-2067, USA

nshang@math.purdue.edu, sshen@math.purdue.edu
4 Department of Mathematics, University of Wyoming 1000 E. University Avenue,

Laramie, WY 82071-3036, USA
astein@uwyo.edu

Abstract. In this paper, we present for the first time efficient explicit
formulas for arithmetic in the degree 0 divisor class group of a real hy-
perelliptic curve. Hereby, we consider real hyperelliptic curves of genus 2
given in affine coordinates for which the underlying finite field has char-
acteristic > 3. These formulas are much faster than the optimized generic
algorithms for real hyperelliptic curves and the cryptographic protocols
in the real setting perform almost as well as those in the imaginary case.
We provide the idea for the improvements and the correctness together
with a comprehensive analysis of the number of field operations. Finally,
we perform a direct comparison of cryptographic protocols using explicit
formulas for real hyperelliptic curves with the corresponding protocols
presented in the imaginary model.

Keywords: hyperelliptic curve, reduced divisor, infrastructure and dis-
tance, Cantor’s algorithm, explicit formulas, efficient implementation,
cryptographic key exchange.

1 Introduction and Motivation

In 1989, Koblitz [9] first proposed the Jacobian of an imaginary hyperelliptic
curve for use in public-key cryptographic protocols. Hyperelliptic curves are in a
sense generalizations of elliptic curves, which are an attractive option for public-
key cryptography because their key-per-bit security is significantly better than
RSA. This is due to the fact that the best-known attacks on elliptic curve based
cryptosystems have exponential as opposed to subexponential complexity in the
bit length of the key. Hyperelliptic curves can be used with the same key-per-bit

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 202–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Explicit Formulas for Real Hyperelliptic Curves 203

strength as elliptic curves provided that the genus is very small. In particular,
recent attacks [4,5], imply that only genus 2 and possibly genus 3 hyperelliptic
curves offer the same key-per-bit security as elliptic curves.

The Jacobian is a finite abelian group which, like elliptic curve groups, has
unique representatives of group elements and efficient arithmetic (divisor ad-
dition and reduction). Although the arithmetic appears more complicated than
that of elliptic curves [10,16,21,1,6], there are some indications that it can in some
cases be more efficient. Those results are based on optimized explicit formulas
and very efficient implementations for genus 2 and 3 imaginary hyperelliptic
curves.

Several years later, a key exchange protocol was presented for the real model
of a hyperelliptic curve [18]. Its underlying key space was the set of reduced
principal ideals in the ring of regular functions of the curve, together with its
group-like infrastructure. Although the main operation of divisor class addition,
which is composition followed by reduction, is comparable in efficiency to that of
the imaginary model [20], the protocol in [18] was significantly slower and more
complicated than its imaginary cousin [9], while offering no additional security;
the same was true for subsequent modifications presented in [17].

Despite the apparent short-comings of the real model, recent work [7] shows
that real hyperelliptic curves may admit protocols that are comparable in effi-
ciency to those based on the imaginary model. The main idea is that, in addition
to the divisor class addition operation, the real model has a second operation
called a baby step that is significantly more efficient. By exploiting this opera-
tion and some reasonable heuristics, new public-key protocols for key exchange,
digital signatures, and encryption have been devised that are significantly faster
than all previous protocols in real hyperelliptic curves and might even be com-
parable in efficiency with analogous protocols in the imaginary setting. However,
the protocols in [7] were based on a generic implementation and did not incorpo-
rate explicit formulas. In order to examine the efficiency of these new protocols
completely, it is necessary to devise explicit formulas for divisor arithmetic in
the real model of cryptographically-relevant low genus curves.

The contribution of this paper is to close this gap and for the first time present
efficient explicit formulas for divisor class arithmetic on real hyperelliptic curves.
We concentrate on genus 2 real hyperelliptic curves in affine coordinates for
which the underlying finite field has characteristic p > 3. Formulas for arbitrary
characteristic, that also handle all special cases, will be included in the full
version of this paper, which will be submitted to a journal. We thus provide
explicit formulas for the protocols in [7], thereby enabling a direct comparison
with the corresponding protocols presented in the imaginary model.

Notice that although there exist easy transformations from the imaginary
model to the real model of a hyperelliptic curve, the converse direction is only
possible if the curve defined over Fq contains an Fq-rational point. If q is odd and
one uses an irreducible polynomial for the generation of the real hyperelliptic
curve, one has to extend the field of constants to Fq2g+2 in order to be able to
perform this transformation, which is unrealistic for efficient implementations.



204 S. Erickson et al.

Furthermore, complex multiplication methods for generating hyperelliptic curves
of small genus often produce real hyperelliptic curves. With an efficient arith-
metic, those curves can be readily used in cryptographic protocols. Finally, ex-
plicit formulas enable us to provide a real-world comparison of subexponential
attacks to hyperelliptic curve cryptosystems in both the real and imaginary
setting.

The analysis of the formulas presented here shows that they require a few more
finite field multiplications than their imaginary counterparts. However, the baby
step operation in its explicit form is significantly more efficient than divisor
class addition in either setting, and as a result, the cryptographic protocols
in the real setting perform almost as well as those in the imaginary case. In
addition, even though the formulas are not as fast as those in the imaginary case,
they are certainly more efficient than using generic algorithms. Thus, using our
formulas will significantly speed other computations in the divisor class group or
infrastructure of a real hyperelliptic curve, for example, computing the regulator
or class number.

The paper is organized as follows. We first provide the necessary background
on real hyperelliptic curves and introduce the notation. We will also present
the essential, generic algorithms for real hyperelliptic curves and explain how to
perform arithmetic in the degree 0 divisor class group via ideal arithmetic. In
Section 3, we present the explicit formulas for the basic algorithms assuming a
finite field of characteristic p > 3. We provide the idea for the improvements
and the correctness together with a comprehensive analysis of the number of
field operations. Some of the calculations can also be found in the Appendix.
Section 4 contains numerical data comparing cryptographic protocols based on
real hyperelliptic curves with those using imaginary hyperelliptic curves, where
divisor class arithmetic is implemented using explicit formulas in both cases.

2 Background and Notation

Throughout this paper, let Fq be a finite field with q = pl elements, where p
is a prime, and let Fq =

⋃
n≥1 Fqn be its algebraic closure. For details on the

arithmetic of hyperelliptic curves we refer to [11,6,2,7], and specifically for real
hyperelliptic curves we refer to [15,20,3,7,8].

Definition 1. A hyperelliptic curve C of genus g defined over Fq is an absolutely
irreducible non-singular curve defined by an equation of the form

C : y2 + h(x)y = f(x), (2.1)

where f, h ∈ Fq[x] are such that y2 + h(x)y − f(x) is absolutely irreducible, i.e.
irreducible over Fq, and if b2+h(a)b = f(a) for (a, b) ∈ Fq×Fq, then 2b+h(a) 
= 0
or h′(a)b − f ′(a) 
= 0. A hyperelliptic curve C is called

1. an imaginary hyperelliptic curve if the following hold: If q is odd, then f is
monic, deg(f) = 2g + 1, and h = 0. If q is even, then h and f are monic,
deg(f) = 2g + 1, and deg(h) ≤ g.



Explicit Formulas for Real Hyperelliptic Curves 205

2. a real hyperelliptic curve if the following hold: If q is odd, then f is monic,
deg(f) = 2g+2, and h = 0. If q is even, then h is monic, deg h = g+1, and
either (a) deg f ≤ 2g+ 1 or (b) deg f = 2g+ 2 and the leading coefficient of
f is of the form β2 + β for some β ∈ F∗

q.
3. an unusual hyperelliptic curve [3] if the following holds: if Fq has odd char-

acteristic, then deg(f) = 2g+2 and sgn(f) is a non-square in F∗
q , whereas if

Fq has characteristic 2, then deg(h) = g+1, deg(f) = 2g+2 and the leading
coefficient of f is not of the form e2 + e for any e ∈ F∗

q .

The function field K = Fq(C) of a hyperelliptic curve C is a quadratic, separable
extension of Fq(x) and the integral closure of Fq(x) in K is given by Fq[C] =
Fq[x, y]/(y2 + h(x)y − f(x)). Let S denote the set of points at infinity. Then
the set C(Fq) = {(a, b) ∈ Fq × Fq : b2 + h(a)b = f(a)} ∪ S is called the set
of (Fq-rational) points on C. For a point P = (a, b) ∈ C(Fq), the hyperelliptic
involution is given by ι(a, b) = (a,−b− h(a)) ∈ C(Fq).

Notice that in all three cases we can assume h = 0 if q is odd. The imaginary
model1 corresponds to the case where S = {∞1}. In the real model2, there exist
two points at infinity so that S = {∞1,∞2}. Let v1 and v2 be the normalized
valuations of K at∞1 and∞2, respectively. It is possible to transform an imag-
inary model of a hyperelliptic curve into a real model. For the converse direction
one needs an Fq-rational point (see [15,6]). From now on, we only consider the
real case.

Let C be a real hyperelliptic curve given as in Definition 1. A divisor on C
is a finite formal sum D =

∑
P∈C mPP of points P ∈ C(Fq), where mP ∈ Z

and mP = 0 for almost all P . The degree of D is defined by degD =
∑

P mP .
A divisor D of Fq(C) is effective if mP ≥ 0 for all P , and a divisor D is defined
over Fq, if Dσ =

∑
P mPP

σ = D for all automorphisms σ of Fq over Fq. The set
Div(K) of divisors of C defined over Fq forms an additive abelian group under
formal addition with the set Div0(K) of all degree zero divisors of C defined over
Fq as a subgroup. For a function G ∈ K, we can associate a principal divisor
div(G) =

∑
P vP (G)P , where vP (G) is the normalized valuation of G at P . The

group of principal divisors P (K) = {div(G) : G ∈ K} of C forms a subgroup
of Div0(K). The factor group J(K) = Div0(K)/P (K) is called the divisor class
group of K. We denote by D ∈ J(K) the class of D ∈ Div0(K).

Since C is a real hyperelliptic curve we have S = {∞1,∞2} and we know
from [15] that every degree 0 divisor class can be represented by D such that
D =

∑r
i=1 Pi − r∞2, where Pi ∈ C(Fq), Pi 
= ∞2, and Pi 
= ιPj if i 
= j. The

representative D of D is then called semi-reduced. In addition, there exists a
representative D such that r ≤ g. In this case, the representative D is called
reduced. Notice that Pi =∞1 is allowed for some i. It follows that every degree
0 divisor class contains a unique representative D with

1 In function field terms, the pole divisor ∞ of x in Fq(x) is totally ramified in K so
that Con(∞) = 2∞1.

2 In function field terms, the pole divisor ∞ of x in Fq(x) splits completely in K so
that Con(∞) = ∞1 + ∞2.



206 S. Erickson et al.

D =
l(D)∑

i=1

Qi − l(D)∞2 + v1(D)(∞1 −∞2) ,

where Qi ∈ C(Fq), Qi 
=∞1,∞2, Qi 
= ιQj if i 
= j, and 0 ≤ l(D) + v1(D) ≤ g.
The regulator R of K in Fq[C] is defined to be the order of the degree 0 divisor
class containing ∞1 −∞2.

We know that Fq[C] is a Dedekind domain and the ideal class group Cl(K)
of K in Fq[C] is the factor group of fractional Fq[C]-ideals modulo principal
fractional ideals. A non-zero integral ideal a in Fq[C] is a fractional ideal such
that a ⊆ Fq[C]. It can be represented as a = k[x] d(x)u(x) + k[x] d(x)(v(x) + y)
where , u, v ∈ k[x] and u | f+hv−v2. Note that d and u are unique up to factors
in F∗

q and v is unique modulo u. a is primitive if we can take d(x) = 1 in which
case we simply write a = [u(x), v(x) + y]. A primitive ideal a = [u(x), v(x) + y]
is reduced if deg u ≤ g. A basis {u(x), v(x) + y} of a primitive ideal is called
adapted or standard if deg(v) < deg(u) and u is monic. For instance, Fq[C] is
represented as Fq[C] = [1, y]. The degree of a primitive ideal is deg(a) = deg u.
We call a basis {u(x), v(x) + y} of a primitive ideal reduced if −v1(v − h− y) <
−v1(u) = deg(u) < −v1(v + y) and u is monic.

For any two ideals a and b in the same ideal class, there exists α ∈ K∗

with b = (α)a. We then define the distance of b with respect to a as δ(b, a) =
−v1(α) (mod R) where R is the regulator. Note that the distance is only well-
defined and unique modulo R. In each ideal class, we expect up to R many re-
duced ideals. If we fix the principal ideal class, then we may assume that a = a1 =
Fq[C] = (1). Then, for any principal ideal b = (α), we have δ(b) = δ(b, a1) =
−v1(α) (mod R). Notice that the distance defines an order on all reduced prin-
cipal ideals, i.e. the set of reduced principal ideals is R = {a1, a2, . . . , am} where
δ(a1) = 0 < δ(a2) < . . . < δ(am).

The following theorem gives a representation of degree 0 divisor classes in
terms of reduced ideals and corresponds to the Mumford representation [13,
page 317] in the imaginary model.

Theorem 1 (Paulus-Rück, 1999). There is a canonical bijection between the
divisor class group J(K) and the set of pairs {(a, n)}, where a is a reduced ideal
of Fq[C] and n is a non-negative integer with 0 ≤ deg(a) + n ≤ g.

The bijection is such that the unique reduced divisor D in a degree 0 divisor
class D corresponds to such a pair {(a, n)}. It follows that arithmetic in J(K)
can be performed via arithmetic of reduced ideals. An algorithm for computing
the group law in J(K) based on this theorem has been presented in [18,15,20].
It consists of three steps, namely (a) composition of reduced ideals, (b) reduc-
tion of the primitive part of the product, and (c) baby steps, i.e. adjusting
the output of the reduction so that the degree condition of the theorem is sat-
isfied. Step (a) and (b) together are called a giant step. A giant step is the
analogue of the group operation in the imaginary case. We use [u1, v1] + [u2, v2]



Explicit Formulas for Real Hyperelliptic Curves 207

to denote the giant step operation. Elements in J(K) can represented as triples
[u, v, n] where [u(x), y + v(x)] is a reduced ideal and 0 ≤ deg(a) + n ≤ g. It
can be easily seen that the arithmetic can be restricted to the special subset
{(a, 0) : a reduced and principal} = R, which is not a group. We may restrict
our arithmetic to the degree 0 divisor classes that correspond to the setR. Those
elements can be represented as [u, v, 0] or simply as pairs [u, v]. We therefore
assume that we only perform operations on elements of J(K) which are given
by a pair D = [u, v], where u, v ∈ Fq[x] such that

1. u is monic,
2. deg(u) ≤ g,
3. u | f + hv − v2,
4. one of the following degree conditions is satisfied, namely

(a) for the reduced basis: −v1(v − h− y) < −v1(u) = deg(u) < −v1(v + y),
or

(b) for the adapted (standard) basis: deg(v) < deg(u) .

If only 1., 3., and 4. are satisfied, the ideal [u(x), y + v(x)] is only primitive and
the corresponding representative D ∈ D is semi-reduced. We also denote this
element by [u, v].

In [7], several optimized key-exchange protocols have been presented that use
arithmetic in R. In fact, under reasonable assumptions, one can avoid the addi-
tional adjusting steps and replace some giant steps by baby steps. Furthermore,
in each giant step, it is easy to keep track of the distances of the corresponding
reduced ideals. In fact, assuming certain heuristics, one can even avoid comput-
ing distances in almost all situations. We will therefore ignore the computation
of distances. Even in those cases, where distances are needed, the running time
for the computation of the distance is negligible. The protocols for real hyper-
elliptic curves are analogous to the ones in the imaginary setting, but they also
make use of the additional baby step operation.

We now give all three relevant algorithms. For details on how to produce
key exchange protocols with these algorithms, we refer to [18,7]. We will use
additive notation in order to express the group operation in J(K) even though
ideal arithmetic is usually denoted multiplicatively. Note that, by using these
algorithms, arithmetic in J(K) is reduced to polynomial arithmetic in Fq[x].

Algorithm 1 (Composition)
Input: D1 = [u1, v1], D2 = [u2, v2], and h(x), f(x) as in (2.1).
Output: D = [u, v] such that D is semi-reduced and D = D1 +D2.

1. Compute d, x1, x2, x3 ∈ Fq[x] such that

d = gcd(u1, u2, v1 + v2 + h) = x1u1 + x2u2 + x3(v1 + v2 + h) .

2. Put u = u1u2/d
2 and v = (x1u1v2 + x2u2v1 + x3(v1v2 + f))/d (mod u).

For the group operation, we assume that the representatives of the degree 0
divisor classes D1 and D2 are reduced so that the ideals [u1(x), y + v1(x)] and



208 S. Erickson et al.

[u2(x), y + v2(x)] are reduced, i.e. deg(u1), deg(u2) ≤ g. However, the algorithm
also allows semi-reduced representatives D1 and D2 as an input. Notice that the
output of this algorithm D = [u, v] corresponds to a semi-reduced divisor so that
[u(x), v(x) + y] is a primitive ideal which is not necessarily reduced.

For the second step, we need to precompute the principal part H(y) = �y� of
a root y of y2 +h(x)y−f(x) = 0. The other root is −y−h. If y =

∑m
i=−∞ yix

i ∈
Fq〈x−1〉, then H(y) =

∑m
i=0 yix

i.

Algorithm 2 (Reduction)
Input: D = [u, v], where D is semi-reduced, and h(x), f(x) as in (2.1).
Output: D

′
= [u′, v′] such that D′ is reduced and D

′
= D.

1. Compute a = (v +H(y)) div u.
2. Let v′ = v − au, u′ = (f + hv′ − v′2)/u.
3. If deg(u′) > g, put u = u′, v = v′, and goto 1.
4. Make u′ monic and adjust v′ to a reduced/adapted basis if necessary.

If we allow the input of Algorithm 2 to be reduced and only perform 1,2, and
4, the output will be another reduced divisor D′ representing a different degree
0 divisor class D

′
. In this case, we call this operation a baby step3 denoted by

[u′, v′] = ρ[u, v].

3 Explicit Formulas

Let [u, v] be a Mumford representation of a degree 0 divisor class. We present
explicit formulas for divisor class addition (ideal multiplication), divisor class
doubling (ideal squaring), and a baby step. We will assume that characteristic
of the field is a prime p > 3. Under this assumption, we can transform the general
equation defining the curve to one of the form

C : y2 = f(x)

that is isomorphic to the original curve, where f(x) = x6 + f4x4 + f3x3 + f2x2 +
f1x + f0, i.e., we can assume that h(x) = 0, the leading coefficient of f(x) is
1, and the x5 term of f(x) is 0. The transformation y �→ y − h/2, valid if the
finite field characteristic is not 2, eliminates h(x) and x �→ x− f5/6, valid if the
characteristic is not 2 or 3, eliminates the x5 term in f(x). This assumption also
implies that H(y) = x3 + y1x+ y0, with y1 = f4/2 and y0 = f3/2.

We also assume that the divisor [u, v] is in reduced basis. Under our assump-
tions about C, this implies that v is of the form

v = x3 + v1x+ v0,

i.e., the leading two coefficients of v always match that of H(y). We will present
formulas for the general description of a genus two real hyperelliptic curve in
3 However, notice that in this case the reduced ideal a corresponding to D and the

reduced ideal a′ corresponding to D
′
are in the same ideal class.



Explicit Formulas for Real Hyperelliptic Curves 209

affine presentation over an arbitrary finite field, using both reduced and adapted
basis, in the full version of this paper.

We only count inversions, squarings and multiplications of finite field elements,
which consist of the bulk of the computation when compared with additions
and subtractions. In the tables below, we let I, S and M denote “inversion,”
“squaring,” and “multiplication,” respectively.

In the formulas described below, we assume that the coefficients of f(x) =
x6 + f4x

4 + f3x
3 + f2x

2 + f1x + f0 and H(y) = x3 + y1x + y0 that define the
hyperelliptic curve are available. Thus, these are not explicitly listed as input.

3.1 Baby Step

Let [u, v] be the Mumford representation of a degree 0 divisor class. To compute
ρ[u, v] = [u′, v′], we apply the following formulas:

v′ = H(y)− [(H(y) + v) mod u] ,

u′ = Monic
(
f − (v′)2

u

)

were, as mentioned above, H(y) is the principal part of a root of a root y of
y2 + h(x)y − f(x) = 0. Explicit formulas are derived by simply expanding the
operations and using the formula for reducing a degree three polynomial (H(y)+
v) modulo a monic polynomial of degree two (u) described in [10]. The resulting
formulas are presented in Table 1.

Table 1. Explicit Formulas for a Baby Step

Baby Step, Reduced Basis, deg u = 2

Input u = x2 + u1x + u0, v = x3 + v1x + v0

Output [u′, v′] = ρ[u, v]

Step Expression Operations

1 v′ = H(y) − [(H(y) + v) mod u] 1S, 1M

v′
1 = 2(u0 − u2

1) − v1

v′
0 = −2u0 · u1 − v0

2 u′ = Monic((f − (v′)2)/u) 1I, 1S, 3M

u2 = f4 − 2v′
1

I = u−1
2

u′
1 = I · (f3 − 2v′

0 − u1)
u′

0 = I ·
(
f2 − (v′

1)
2)− u0 − u′

1 · u1

Total 1I, 2S, 4M

3.2 Addition Formulas

Let the Mumford representations of two degree 0 divisor classes be [u1, v1] and
[u2, v2]. The main case of addition of degree 0 divisor classes occurs when the



210 S. Erickson et al.

Table 2. Explicit Formulas for Addition of Divisor Classes

Addition, Reduced Basis, deg u1 = deg u2 = 2, gcd(u1, u2) = 1

Input u1 = x2 + u11x + u10, v1 = x3 + v11x + v10

u2 = x2 + u21x + u20, v2 = x3 + v21x + v20

Output [u′, v′] = [u1, v1] + [u2, v2]

Step Expression Operations

Composition
1 inv = z1x + z2 4M

z0 = u10 − u20, z1 = u11 − u21

z2 = u11 · z1 − z0, z3 = u10 · z1

r = z1 · z3 − z0 · z2

2 s′ = s′
1x + s′

0 4M
w0 = v10 − v20, w1 = v11 − v21

s′
1 = w0 · z1 − w1 · z0, s′

0 = w0 · z2 − w1 · z3

Reduction
3 k = k2x

2 + k1x + k0

k2 = f4 − 2v21

4 s = 1
r
s′ = s1x + s0 1I, 2S, 6M

r2 = r2, ŵ0 = r2 − (s′
1 + r)2(= r2m4), ŵ1 = (r · ŵ0)

−1,
ŵ2 = ŵ0 · ŵ1(=

1
r
), ŵ3 = r · r2 · ŵ1(=

1
m4

)

s1 = s′
1 · ŵ2, s0 = s′

0 · ŵ2

5 l = l3x
3 + l2x

2 + l1x + l0 (note that l3 = s1) 3M

w̃0 = s0 · u20, w̃1 = s1 · u21, l2 = s0 + w̃1

l1 = (s0 + s1) · (u21 + u20) − w̃1 − w̃0, l0 = w̃0

6 m′ = x4 + m′
3x

3 + m′
2x

2 + m′
1x + m′

0, u′ = x2 + u′
1x + u′

0 6M

m′
3 = ŵ3 · (−s1 · (s0 + l2) − 2s0)(=

m3
m4

)

m′
2 = ŵ3 · (k2 − s1 · (l1 + 2v21) − s0 · l2)(=

m2
m4

)

u′
1 = m′

3 − u11, u′
0 = m′

2 − u10 − u11 · u′
1

7 v′ = x3 + v′
1x + v′

0 3M
w1 = u′

1 · (s1 + 2), w0 = u′
0 · (l2 − w1)

v′
1 = (u′

0 + u′
1) · (s1 + 2 − w1 + l2) − v21 − l1 − w0 − w1

v′
0 = w0 − v20 − l0

Total 1I, 2S, 26M

two degree 0 divisor classes consist of four points on the curve which are differ-
ent from each other and their opposites. This situation occurs precisely when
deg(u1) = deg(u2) = 2 and u1, u2 are relatively prime. In the rare cases when
u1 or u2 has degree less than 2, or when u1 and u2 are not relatively prime,
the costs are considerably less than the general case. Here, we present addition
for the general case; the special cases will be presented in the full version of the
paper.

To optimize the computations, we do not follow Cantor’s algorithm literally;
we proceed instead as described in [10]. Given two degree 0 divisor classes [u1, v1]
and [u2, v2], the algorithm for divisor addition [u′, v′] = [u1, v1]+[u2, v2] is found
by calculating the following subexpressions.



Explicit Formulas for Real Hyperelliptic Curves 211

r = resultant of u1, u2 inv ≡ r(u2)−1 (mod u1)

s′ ≡ (v1 − v2) · inv (mod u1) s = 1
r · s

′

k = f−v2
2

u2
l = s · u2

m = k − s · (l + 2v2) m′ = m/m4 = m made monic
u′ = m′/u1 v′ = H(y)− [(H(y) + v2 + l) (mod u′)]

The explicit formulas are presented in Table 2.

1. Step 1 and Step 2 calculate the coefficients of s = s1x+s0 = (v1−v2)·(u2)−1

mod u1. Instead of calculating s1 and s0, we calculate s′1 = r · s1 and s′0 =
r · s0, thereby postponing the inversion until Step 4.

2. If s′1 = 0 in Step 2, one needs to modify Step 4 through Step 7. In this special
case, the sum of the two divisors will be a degree one divisor. As this case
only occurs very rarely, we do not describe the required modifications here,
rather, they will appear in the full version of the paper.

3. The composition of divisors in Step 1 and Step 2 is exactly the same for both
real and imaginary cases. These two steps can replace the first three steps
of imaginary divisor addition found in [10] for a savings of one squaring. For
reference, this improvement makes 1I, 2S, 22M the least known number of
field operations needed for divisor addition in the imaginary case.

3.3 Doubling Formulas

Let [u, v] = [x2 +u1x+u0, x
3 +v1x+v0] be a degree two divisor in reduced basis

with both points of the divisor not equal to their opposites. Again following [10],
we compute the degree 0 divisor class [u′, v′] := [u, v] + [u, v] as follows.

r = resultant of u and ṽ

ṽ ≡ 2v (mod u) inv ≡ r(ṽ)−1 (mod u)

k = f−v2

u s′ ≡ k · inv (mod u)

s = 1
r · s

′ ũ = s2 + 2vs−k
u

u′ = ũ made monic v′ = H(y)− [(H(y) + s · u+ v) (mod u′)]

The resulting explicit formulas are presented in Table 3. The special cases when
s′1 = 0 in Step 4 and when w̃0 = 0 in Step 5 need to be handled separately.
As these occur only rarely, we do not describe the required modifications here,
rather, they will appear in the full version of the paper.

3.4 Summary of Results

The best known results for the imaginary case are found in [10]. As noted ear-
lier, an improvement of one less squaring has been found which applies to the
addition formula in the imaginary case (though not in the doubling case). Com-
pared to the imaginary case, the addition formulas for the real case requires four
more multiplications in the main case. The doubling formulas require six more



212 S. Erickson et al.

Table 3. Explicit Formulas for Doubling Divisor Classes

Doubling, Reduced Basis, deg u = 2

Input [u, v], u = x2 + u1x + u0, v = x3 + v1x + v0

Output [u′, v′] = 2[u, v] := [u, v] + [u, v]

Step Expression Operations

1 ṽ = ṽ1x + ṽ0 1S, 1M
w1 = u2

1, ṽ1 = 2(v1 + w1 − u0), ṽ0 = 2(v0 + u0 · u1)

2 r = res(ṽ, u), inv = inv1x + inv0 4M

w2 = u0 · ṽ1, w3 = u1 · ṽ1

inv1 = ṽ1, inv0 = w3 − ṽ0

r = ṽ0 · inv0 − w2 · ṽ1

3 k′ ≡ (f − v2)/u (mod u) = k′
1x + k′

0: 1S, 3M

k′
2 = f4 − 2v1,

k′
1 = f3 − 2v0 − 2k′

2 · u1,
k′
0 = f2 − v2

1 − k′
1 · u1 − k′

2 · (w1 + 2u0)

4 s′ = s′
1x + s′

0 4M
s′
1 = inv1 · k′

0 − ṽ0 · k′
1, s′

0 = inv0 · k′
0 − w2 · k′

1

5 Inversion, r−1, s0, s1, ũ−1
2 I, 2S, 6M

r2 = r2, ŵ0 = (s′
1 + r)2 − r2(= r2ũ2), ŵ1 = (r · ŵ0)

−1

ŵ2 = ŵ0 · ŵ1(=
1
r
), ŵ3 = r · r2 · ŵ1(=

1
ũ2

)

s1 = ŵ2 · s′
1, s0 = ŵ2 · s′

0

6 u′ = x2 + u′
1x + u′

0 5M
u′

1 = 2ŵ3 · ((s0 − u1) · s1 + s0)
u′

0 = ŵ3 · ((s0 − 2u1) · s0 + ṽ1 · s1 − k′
2)

7 v′ = x3 + v′
1x + v′

0 5M
z0 = u′

0 − u0, z1 = u′
1 − u1

w0 = z0 · s0, w1 = z1 · s1

v′
1 = 2u′

0 − v1 +(s0 + s1) · (z0 + z1)−w0 −w1 −u′
1 · (2u′

1 +w1)
v′
0 = w0 − v0 − u′

0 · (2u′
1 + w1)

Total 1I, 4S, 28M

Table 4. Comparison of Operation Counts for Explicit Formulas

Imaginary Real

Baby Step NA 1I, 2S, 4M
Addition 1I, 2S, 22M [10] 1I, 2S, 26M
Doubling 1I, 5S, 22M [10] 1I, 4S, 28M

multiplications but one less squaring than the imaginary case. It is worth noting
that the baby step operation is the cheapest of all, and that there is no analogue
for this operation in the imaginary case. Table 4 summarizes the comparison.

The main obstruction from getting more competitive formulas in the real case
is the extra coefficient interfering with the inversion step. In the imaginary case,
the leading coefficient of the new u is simply s21, which allows one to simplify
both addition and doubling formulas. In the real case, we found that computing



Explicit Formulas for Real Hyperelliptic Curves 213

s0 and s1 explicitly was the most efficient way to compute addition and doubling
of divisors.

4 Numerical Results

As cryptographic applications were one of our motivations for developing explicit
formulas for divisor arithmetic on genus 2 real hyperelliptic curves, we have im-
plemented key exchange protocols in the imaginary and real models in order to
determine whether the real model can be competitive with the imaginary model
in terms of efficiency. In the imaginary case, the main operation is scalar mul-
tiplication using a non-adjacent form (NAF) expansion of the multiplier, which
we will refer to as SCALAR-MULT. In the real case, there are two variations
of scalar multiplication described in [7] that comprise the key exchange proto-
col. Algorithm VAR-DIST2 is a variation of NAF-based scalar multiplication
using only degree 0 divisor class doubling and baby steps, whereas Algorithm
FIXED-DIST2 generalizes the usual NAF-based scalar multiplication algorithm.
The costs of these each of these algorithms in terms of divisor class additions,
doublings, and baby steps, assuming that the NAF representation of the corre-
sponding scalar multiplier has l+1 bits, is recalled from [7] in Table 5. All three

Table 5. Operation counts for scalar multiplication in R

Doubles Adds Baby Steps

Imaginary (SCALAR-MULT) l l/3 -
Real, Variable Distance (VAR-DIST2) l l/3 d
Real, Fixed Distance (FIXED-DIST2) l 1 l/3

of these algorithms were implemented, using the explicit formulas from [10] for
the imaginary case and the formulas in this paper for the real case.

We used the computer algebra library NTL [19] for finite field and polyno-
mial arithmetic and the GNU C++ compiler version 3.4.3. The computations
described below were performed on a Pentium IV 2.4 GHz computer running
Linux. Although faster absolute times could be obtained using customized im-
plementations of finite field arithmetic, our goal was to compare the relative
performance of algorithms in the imaginary and real settings using exactly the
same finite fields as opposed to producing the fastest times possible. Thus, NTL
was sufficient for our purposes.

All three algorithms were implemented using curves defined over prime finite
fields Fp where p > 3. We ran numerous examples of the three scalar multiplica-
tion algorithms using curves with genus 2 where the underlying finite field was
chosen so that the size of J(K), and hence the set R, was roughly 2160, 2224,
2256, 2384, and 2512. Note that |J(K)| ≈ p2 in this case, and that most likely
|R| = |J(K)| for a randomly-chosen curve. Thus, curves offer 80, 112, 128, 192,



214 S. Erickson et al.

and 256 bits of security for cryptographic protocols based on the correspond-
ing DLP. NIST [14] currently recommends these five levels of security for key
establishment in U.S. Government applications.

For the finite field, we chose a random prime p of appropriate length such
that p2 had the required bit length. For each finite field, we randomly selected
5000 curves and executed Diffie-Hellman key exchange once for each curve. Thus,
we ran 10000 instances of Algorithm SCALAR-MULT (two instances for each
participant using each curve) and 5000 instances each of Algorithm FIXED-
DIST2 and VAR-DIST2 (one instance of each algorithm per participant using
each curve). The random exponents used had 160, 224, 256, 384, and 512 bits,
respectively, ensuring that the number of bits of security provided corresponds
to the five levels recommended by NIST (again, considering only generic at-
tacks). In order to provide a fair comparison between the three algorithms, the
same sequence of random exponents was used for each run of the key exchange
protocol.

Table 6 contains the average CPU time in seconds for each of the three al-
gorithms. The times required to generate domain parameters required for our
real hyperelliptic curve protocols (see [7]), are not included in these timings,
as domain parameter generation is a one-time computation that is performed
when the public keys are generated. The time for Algorithm SCALAR-MULT is
denoted by ”Imag,” the time for Algorithm FIXED-DIST2 by ”Fixed” and that
for Algorithm VAR-DIST2 by ”Var.” We also list the times required to execute
Diffie-Hellman key exchange using both real and imaginary models. Note that
in the imaginary case this amounts to two executions of Algorithm SCALAR-
MULT, and in the real case one execution of VAR-DIST2 and one of FIXED-
DIST2. The run-times achieved using the real model are slower than those using
the imaginary model, but they are certainly close.

Table 6. Scalar multiplication and key exchange timings over Fp (in seconds)

Security Level (bits) Imag Fixed Var DH Imag DH Real

80 0.0048 0.0050 0.0056 0.0097 0.0106
112 0.0083 0.0085 0.0096 0.0166 0.0180
128 0.0103 0.0106 0.0117 0.0206 0.0223
192 0.0220 0.0230 0.0256 0.0442 0.0485
256 0.0403 0.0411 0.0452 0.0806 0.0863

5 Conclusions

The formulas presented in this paper are the first explicit formulas for divisor
arithmetic on a real hyperelliptic curve. Although they are a few field multiplica-
tions slower than their imaginary counterparts, they will certainly out-perform a
generic implementation of Cantor’s algorithm and will be useful for any compu-
tational tasks in the class group or infrastructure. Unfortunately cryptographic



Explicit Formulas for Real Hyperelliptic Curves 215

protocols using our formulas in the real model are also slower than those us-
ing the imaginary case, even with the improved protocols described in [7] in
which many divisor additions are traded for significantly faster baby steps. Nev-
ertheless, we hope the fact that we can achieve run times close to those in the
imaginary case will increase interest in cryptographic protocols in this setting.

There is still much work to be done on this topic. As mentioned earlier, for-
mulas for degree 0 divisor class arithmetic that work for the general form of the
curve equation and any finite field, including characteristic 2, will be presented
in the full version of this paper. As in [10], there are certain special cases that
can arise in the formulas, for example, the polynomial s may have degree 1 in-
stead of degree 2. As in the imaginary setting, this can be exploited to simplify
the formulas; these cases will also be dealt with in the full version of the paper.

We continue to look for improvements to the formulas presented here. Reduc-
ing the number of field multiplications required for addition and doubling by only
two or three would likely result in the cryptographic protocols in the real setting
being slightly faster than the imaginary case. Another possible improvement that
would improve the performance of the protocols in the real setting is compound
operations. In particular, compounding the doubling and baby step operations
will almost certainly save a few multiplication and require would likely require
only one inversion (as opposed to two) as compared to performing them sepa-
rately. This would improve the speed of the VAR-DIST2 scalar multiplication
algorithm (doubling and baby steps) from [7].

Finally, a great deal of work has been done on explicit formulas in the imagi-
nary setting including using projective coordinates to obtain inversion-free for-
mulas, formulas for genus 3 and 4, explicit formulas via theta functions, and
explicit formulas via NUCOMP. All of these topics are work in progress.

Acknowledgements. This paper is an outcome of a research project proposed
at the RMMC Summer School in Computational Number Theory and Cryp-
tography which was held at the University of Wyoming in 2006. We would like
to thank the following sponsors for their support: the University of Wyoming,
the National Science Foundation (grant DMS-0612103), the Rocky Mountain
Mathematics Consortium, The Number Theory Foundation, The Institute for
Mathematics and its Applications (IMA), The Fields Institute, The Centre for
Information Security and Cryptography (CISaC) and iCORE of Canada.

References

1. Avanzi, R.M.: Aspects of hyperelliptic curves over large prime fields in software im-
plementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 148–162. Springer, Heidelberg (2004)

2. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. Discrete Mathematics and Its Applications, vol. 34. Chapman & Hall/CRC,
Sydney, Australia (2005)

3. Enge, A.: How to distinguish hyperelliptic curves in even characteristic. In: Alster,
K., Urbanowicz, J., Williams, H.C., (eds.) Public-Key Cryptography and Compu-
tational Number Theory, pp. 49–58, De Gruyter, Berlin (2001)



216 S. Erickson et al.

4. Gaudry, P.: On breaking the discrete log on hyperelliptic curves. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)

5. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for
small genus hyperelliptic index calculus. Mathematics of Computation 76, 475–492
(2007)

6. Jacobson Jr., M.J., Menezes, A.J., Stein, A.: Hyperelliptic curves and cryptography.
In: High Primes and Misdemeanours: lectures in honour of the 60th birthday of
Hugh Cowie Williams. Fields Institute Communications Series, vol. 41, pp. 255–
282. American Mathematical Society (2004)

7. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic protocols on real and
imaginary hyperelliptic curves. Accepted to Advances in Mathematics of Commu-
nications pending revisions (2007)

8. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Fast Arithmetic on Hyperelliptic Curves
Via Continued Fraction Expansions. To appear in Advances in Coding Theory
and Cryptology. In: Shaaska, T., Huffman, W.C., Joyner, D., Ustimenko, V. (eds.)
Series on Coding, Theory and Cryptology, vol. 2, World Scientific Publishing (2007)

9. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1, 139–150 (1988)

10. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication, and Computing 15, 295–328 (2005)

11. Menezes, A.J., Wu, Y., Zuccherato, R.J.: An elementary introduction to hyperel-
liptic curves. Technical Report CORR 96-19, Department of Combinatorics and
Optimization, University of Waterloo, Waterloo, Ontario, 1996. In: Koblitz, N.
(ed.) Algebraic Aspects of Cryptography, Springer-Verlag, Berlin Heidelberg New
York (1998)

12. Müller, V., Stein, A., Thiel, C.: Computing discrete logarithms in real quadratic
congruence function fields of large genus. Mathematics of Computation 68, 807–822
(1999)

13. Mumford, D.: Tata Lectures on Theta I, II. Birkhäuser, Boston (1983/84)

14. National Institute of Standards and Technology (NIST). Recommendation on key
establishment schemes. NIST Special Publication 800-56 (January 2003)

15. Paulus, S., Rück, H.-G.: Real and imaginary quadratic representations of hyperel-
liptic function fields. Mathematics of Computation 68, 1233–1241 (1999)

16. Pelzl, J., Wollinger, T., Paar, C.: Low cost security: explicit formulae for genus-
4 hyperelliptic curves. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 1–16. Springer, Heidelberg (2003)

17. Scheidler, R.: Cryptography in quadratic function fields. Designs, Codes and Cryp-
tography 22, 239–264 (2001)

18. Scheidler, R., Stein, A., Williams, H.C.: Key-exchange in real quadratic congruence
function fields. Designs, Codes and Cryptography 7, 153–174 (1996)

19. V. Shoup. NTL: A library for doing number theory. Software (2001) See
http://www.shoup.net/ntl.

20. Stein, A.: Sharp upper bounds for arithmetics in hyperelliptic function fields. Jour-
nal of the Ramanujan Mathematical Society 9-16(2), 1–86 (2001)

21. Wollinger, T., Pelzl, J., Paar, C.: Cantor versus Harley: optimization and analysis
of explicit formulae for hyperelliptic curve cryptosystems. IEEE Transactions on
Computers 54, 861–872 (2005)

http://www.shoup.net/ntl


Explicit Formulas for Real Hyperelliptic Curves 217

A Divisor Addition

To perform divisor addition, we compute the following expressions, then show
that these formulas give the desired result.

s ≡ (v1 − v2) · (u2)−1 (mod u1) l = s · u2

k = f−v2
2

u2

m = k − s · (l + 2v2) m′ = m/m4 = m made monic
u′ = m′/u1 v′ = H(y)− [(H(y) + v2 + l) (mod u′)] .

Let (u1, v1) and (u2, v2) be two reduced divisors written in the Mumford rep-
resentation. Assume u1 and u2 are both degree 2 and are relatively prime. The
composition step of Cantor’s Algorithm is given by

U0 = u1u2

V0 ≡ v2 + su2 = v2 + l (mod U0)

where s ≡ u−1
2 (v1 − v2) (mod u1) and l = su2. The reduction step can be

expressed as

V1 = −V0 +
⌊

V0+H(y)
U0

⌋
· U0

U1 = f−V 2
1

U0

where H(y) is the principal part of a root of the equation y2 = f(x). Since V0

and d both have degree 3 and U0 has degree 4,
⌊

V0+H(y)
U0

⌋
= 0, and so

V1 = −V0 = −(v2 + l)

Plugging this into the formula U1 yields

U1 = f−(v2+l)2

u1u2

= f−v2
2−l2−2v2l
u1u2

= 1
u1

(
f−v2

2
u2
− l(l+2v2)

u2

)

= k−s(l+2v2)
u1

where k = f−v2
2

u2
.

The final output is [u′, v′] transformed to reduced basis, i.e., u′ = U1 made
monic, and v′ = H(y) − [(H(y) − V1) (mod u′)]. In the formulas, we first find
m = k − s(l + 2v2), find the leading coefficient and compute its inverse, then
compute m′ = m made monic.



218 S. Erickson et al.

B Divisor Doubling

To perform divisor doubling, we compute the following expressions, then show
that these formulas give the desired result.

k = f−v2

u s ≡ k · (2v)−1 (mod u)

ũ = s2 + (2v)·s−k
u u′ = ũ made monic

v′ = H(y)− [(H(y) + s · u+ v) (mod u′)]

Let (u, v) = (x2+u1x+u0, x
3+v1x+v0) be a degree two reduced basis Mumford

representation with both points of the divisor are not equal to their opposites.
Then Cantor’s Algorithm for doubling the divisor (u, v) must result in (U1, V1)
such that

U0 = u2

V0 ≡ v (mod u)
(V0 = v + su for some s)

V1 = −V0 +
⌊

V0+H(y)
U0

⌋
U0

U1 = f−V 2
1

U0

Here, s is chosen such that U0 divides V 2
0 − f . Again,

⌊
V0+H(y)

U0

⌋
is zero since U0

has degree 4 and V0 +H(y) has degree 3. Hence, V1 = −V0 = −v − su and

U1 = f−(−v−su)2

u2

= f−v2−2vsu−s2u2

u2

= 1
u

(
f−v2

u − 2vs
)
− s2

= 1
u (k − 2vs)− s2

where the division in k = (f − v2)/u is exact. To ensure that the division of
k − 2vs by u is exact, we choose s ≡ −k · (−2v)−1 (mod u), and obtain

k − 2vs ≡ k + 2v · k · (−2v)−1 ≡ 0 (mod u) .

Finally, U1 will be made monic, to arrive at

u′ = s2 + 2vs−k
u made monic

v′ = H(y)− [(H(y) + v + su) mod u′]

where [u′, v′] is in reduced basis.



The Quadratic Extension Extractor for

(Hyper)Elliptic Curves in Odd Characteristic

Reza Rezaeian Farashahi1,2 and Ruud Pellikaan1

1 Dept. of Mathematics and Computer Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Dept. of Mathematical Sciences, Isfahan University of Technology,
P.O. Box 85145 Isfahan, Iran

{r.rezaeian, g.r.pellikaan}@tue.nl

Abstract. We propose a simple and efficient deterministic extractor for
the (hyper)elliptic curve C, defined over Fq2 , where q is some power of
an odd prime. Our extractor, for a given point P on C, outputs the first
Fq-coefficient of the abscissa of the point P . We show that if a point P is
chosen uniformly at random in C, the element extracted from the point
P is indistinguishable from a uniformly random variable in Fq.

Keywords: Elliptic curve, Hyperelliptic curve, Deterministic extractor.

1 Introduction

A deterministic extractor for a curve is a function that converts a random point
on the curve to a bit-string of fixed length that is statistically close to uniformly
random. Let C be an absolutely irreducible nonsingular affine curve that is de-
fined over Fq2 , where q = pk, for some odd prime p and positive integer k, by
the equation y2 = f(x), where the degree of f is an odd number d. In this
paper, we propose a simple and efficient deterministic extractor, called Ext, for
C. Let {α0, α1} be a basis of Fq2 over Fq. The extractor Ext, for a given point
P on C, outputs the first Fq-coefficient of the abscissa of the point P . Similarly
one could define an extractor that, for a given point on the curve, outputs a
Fq-linear combination of Fq-coordinates of the abscissa of the point. Provided
that the point P is chosen uniformly at random in C, the element extracted from
the point P is indistinguishable from a uniformly random variable in Fq.

Gürel [7] proposed an extractor for an elliptic curve E defined over a quadratic
extension of a prime field. Given a point P on E(Fp2), it extracts half of the
bits of the abscissa of P . Provided that the point P is chosen uniformly at
random, the statistical distance between the bits extracted from the point P
and uniformly random bits is shown to be negligible [7]. We recall this extractor
for E in Subsection 5.2 and we improve that result in Theorem 3. The definition
of our extractor is similar, yet more general. Our extractor Ext is defined for C.

The problem of converting random points of an elliptic curve into random
bits has several cryptographic applications. Such applications are key derivation

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 219–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



220 R.R. Farashahi and R. Pellikaan

functions, design of cryptographically secure pseudorandom number generators
and a class of key exchange protocols based on elliptic curves (e.g, the well-
known Elliptic Curve Diffie-Hellman protocol). By the end of the Elliptic Curve
Diffie-Hellman protocol, the parties agree on a common secret element of the
group, which is indistinguishable from a uniformly random element under the
decisional Diffie-Hellman assumption (denoted by DDH). However the binary
representation of the common secret element is distinguishable from a uniformly
random bit-string of the same length. Hence one has to convert this group ele-
ment into a random-looking bit-string. This can be done using a deterministic
extractor.

Kaliski [11] shows that if a point is taken uniformly at random from the
union of an elliptic curve and its quadratic twist then the abscissa of this point
is uniformly distributed in the finite field. Then Chevassut et al. [3] proposed
the TAU technique. This technique allows to extract almost all the bits of the
abscissa of a point of the union of an elliptic curve and its quadratic twist.
Recently Farashahi et al. [5] proposed two extractors for ordinary elliptic curve
E, defined over F2N , where N = 2� and � is a positive integer. For a given point
P on E, the first extractor outputs the first F2�-coefficient of the abscissa of
P while the second outputs the second F2�-coefficient. They also propose two
deterministic extractors for the main subgroup G of E, where E has minimal
2-torsion. If a point P is chosen uniformly at random in G, the bits extracted
from the point P are indistinguishable from a uniformly random bit-string of
length �.

Sequences of x-coordinates of pseudorandom points on elliptic curves have
been studied in [9,12,13,17]. On the other hand, the x-coordinate of a uniformly
random point on an elliptic curve can be easily distinguished from uniformly
random field element since only about 50% of all field elements are x-coordinates
of points of the curve. Our extractors provide only part of the x-coordinate and
thereby avoid the obvious problem; the proof shows that actual uniformity is
achieved. Our approach is somewhat similar to the basic idea of pseudorandom
generators proposed by Gong et al. [6] and Beelen and Doumen [2] in that they
use a function that maps the set of points on elliptic curve to a set of smaller
cardinality. Our aim is to extract as many bits as possible while keeping the
output distribution statistically close to uniform.

We organize the paper as follows. In the next section we introduce some
notations and recall some basic definitions. In Section 3, we define an affine
variety A of dimension 2 in A3

Fq
related to the affine curve C. We show that

there exists a bijection between C(Fq2) and A(Fq). Then in Section 4 we propose
the extractor Ext for C as Ext(x, y) = x0, where x = x0α0 + x1α1. We show
that the output of this extractor, for a given uniformly random point of C, is
statistically close to a uniformly random variable in Fq. To show the latter we give
bounds on the number of preimages Ext−1(x0), where x0 ∈ Fq. In fact, by using
the bijection between C(Fq2) and A(Fq), we give the estimate for the number of
Fq-rational points on the intersection of A and the hyperplane x0 = x0 in A3

Fq
.

We show that for almost all values of x0 in Fq, this intersection is an absolutely



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 221

irreducible nonsingular curve. Actually this problem is a special case of Bertini
theorems. The classical Bertini theorems say that if an algebraic subvariety X
of Pn has a certain property, then for a sufficiently general hyperplane H ⊆ Pn,
the intersection H ∩ X has the same property (see [8,15]). Then we give two
examples in Section 5. We conclude our result in Section 6.

2 Preliminaries

Let us introduce the notations and recall the basic definitions that are used
throughout the paper.

Notation. Denote by Zn the set of nonnegative integers less than n. A field
is denoted by F and its algebraic closure by F. Denote by F∗ the set of nonzero
elements of F. The finite field with q elements is denoted by Fq, and its algebraic
closure by Fq. Let C be a curve defined over Fq, then the set of Fq-rational points
on C is denoted by C(Fq). The cardinality of a finite set S is denoted by #S.
We make a distinction between a variable x and a specific value x in F.

2.1 Finite Field Notation

Consider the finite fields Fq and Fq2 , where q = pk, for some odd prime number
p and positive integer k. Then Fq2 is a two dimensional vector space over Fq. Let
{α0, α1} be a basis of Fq2 over Fq. That means every element x in Fq2 can be
represented in the form x = x0α0 + x1α1, where x0 and x1 are in Fq. We recall
that {α0, α1} is a basis of Fq2 over Fq if and only if

∣
∣
∣
∣
α0 α1

αq
0 α

q
1

∣
∣
∣
∣ 
= 0.

That is equivalent to α0, α1 ∈ F∗
q2 and αq−1

0 
= αq−1
1 .

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq. Let Tr : Fq2 −→
Fq be the trace function. Then Tr(x) = x+φ(x), for x ∈ Fq2 . Let N : Fq2 −→ Fq

be the norm function. Then N(x) = xφ(x), for x ∈ Fq2 .

Remark 1. Let α be a primitive element of Fq2 . So every x ∈ F∗
q2 is a power of

α. Then N(α) is a primitive element of Fq. Let x ∈ F∗
q2 . Then x is a square in

Fq2 if and only if x = α2i, for some integer i. Similarly N(x) is a square in Fq if
and only if N(x) = (N(α))2i, for some integer i. Furthermore x = α2i, for some
integer i, if and only if N(x) = (N(α))2j , for some integer j. Obviously N(0) = 0.
Therefor x is a square in Fq2 if and only if N(x) is a square in Fq.

2.2 Hyperelliptic Curves

Definition 1. An absolutely irreducible nonsingular curve C of genus at least
2 is called hyperelliptic if there exists a morphism of degree 2 from C to the
projective line.



222 R.R. Farashahi and R. Pellikaan

Theorem 1. Let C be a hyperelliptic curve of genus g over Fq, where q is odd.
Then C has a plane model of the form

y2 = f(x),

where f is a square free polynomial and 2g + 1 ≤ deg(f) ≤ 2g + 2. The plane
model is singular at infinity. If deg(f) = 2g+1 then the point at infinity ramifies
and C has only one point at infinity. If deg(f) = 2g+ 2 then C has zero or two
Fq-rational points at infinity.

Proof. See [1,4].

2.3 Deterministic Extractor

In our analysis we use the notion of a deterministic extractor, so let us recall it
briefly. For general definition of extractors we refer to [16,18].

Definition 2. Let X and Y be S-valued random variables, where S is a finite
set. Then the statistical distance Δ(X,Y ) of X and Y is

Δ(X,Y ) = 1
2

∑
s∈S |Pr[X = s]− Pr[Y = s] | .

Let US denote a random variable uniformly distributed on S. We say that a
random variable X on S is δ-uniform, if Δ(X,US) ≤ δ.
Note that if the random variable X is δ-uniform, then no algorithm can dis-
tinguish X from US with advantage larger than δ, that is, for all algorithms
D : S −→ {0, 1}

|Pr[D(X) = 1]− Pr[D(US) = 1]| ≤ δ.
See [14].

Definition 3. Let S, T be finite sets. Consider the function Ext : S −→ T . We
say that Ext is a deterministic (T, δ)-extractor for S if Ext(US) is δ-uniform
on T . That means

Δ(Ext(US), UT ) ≤ δ.
In the case that T = {0, 1}k, we say Ext is a δ-deterministic extractor for S.

In this paper we consider deterministic (Fq, δ)-extractors. Observe that, convert-
ing random elements of Fq into random bit strings is a relatively easy problem.
For instance, one can represent an element of Fq by a number in Zq and use
Algorithm Q2 from [10], which was presented without analysis. It can actually
be shown, however, that Algorithm Q2 produces on average n − 2 bits given a
uniformly distributed random number UZq , where n denotes the bit length of q.

Furthermore, if q is close to a power of 2, that is, 0 ≤ (2n − q)/2n ≤ δ for
a small δ, then the uniform element UFq is statistically close to n uniformly
random bits.

The following simple lemma is a well-known result (the proof can be found,
for instance, in [3]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between UFq and U2n is bounded from above by δ.



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 223

3 Norm Variety

Consider an absolutely irreducible nonsingular affine curve C defined over Fq2 .
We define an affine variety A in A3

Fq
from the curve C. Then we show that

the number of Fq2 -rational points on the affine curve C equals the number of
Fq-rational points on the affine variety A.

From now on, let C be an absolutely irreducible nonsingular affine curve that
is defined over Fq2 by the equation

y2 = f(x), (1)

where f(x) ∈ Fq2 [x] is a monic square-free polynomial of odd degree d. Let

f(x) = xd +
d−1∑

i=0

eixi =
d∏

i=1

(x− λi), (2)

where ei ∈ Fq2 and λi ∈ Fq. Then λi 
= λj , for i 
= j, since f(x) is square-free.
Define the variables x0, x1 by x = x0α0+x1α1. Then there exist two bivariate

functions f0, f1 ∈ Fq[x0,x1], so that

f(x) = f(x0α0 + x1α1) = f0(x0,x1)α0 + f1(x0,x1)α1. (3)

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq. Define the
polynomial

f(x) = xd +
d−1∑

i=0

φ(ei)xi. (4)

Define x = x0φ(α0) + x1φ(α1). Then

f(x) = f(x0φ(α0) + x1φ(α1)) = f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1). (5)

Define
F (x0,x1) = f(x0α0 + x1α1)f(x0φ(α0) + x1φ(α1)).

Then from equations (3) and (5), we have

F (x0,x1) = (f0(x0,x1)α0 + f1(x0,x1)α1)(f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1)).

We note that f0, f1 are in Fq[x0,x1]. Also αiφ(αi) = N(αi) ∈ Fq, for i ∈ {0, 1}.
Furthermore α0φ(α1) + φ(α0)α1 = Tr(α0)Tr(α1)−Tr(α0α1) ∈ Fq. Hence F is a
polynomial in Fq[x0,x1].

Proposition 1. The polynomial F is square-free.

Proof. The affine curve C is defined by the equation y2 = f(x) =
∏d

i=1(x− λi),
where λi ∈ Fq and λi 
= λj , for i 
= j. Then

f(x0α0 + x1α1) =
d∏

i=1

(x0α0 + x1α1 − λi). (6)



224 R.R. Farashahi and R. Pellikaan

Hence f(x0α0+x1α1) is a square-free polynomial. Consider the polynomial f(x)
(see equality (4)). Then f(x) =

∏d
i=1(x−φ(λi)). Since λi 
= λj , for i 
= j, and φ

is bijective, so φ(λi) 
= φ(λj), for i 
= j. Hence the polynomial f(x) is a square
free polynomial. Then

f(x0φ(α0) + x1φ(α1)) =
d∏

i=1

(x0φ(α0) + x1φ(α1)− φ(λi)). (7)

So f(x0φ(α0)+x1φ(α1)) is a square-free polynomial. Now assume that f(x0α0+
x1α1) and f(x0φ(α0) + x1φ(α1)) have a common factor. Then φ(α0) = γα0

and φ(α1) = γα1, for some γ ∈ Fq2 , which is a contradiction, since α0φ(α1) 
=
φ(α0)α1 (see Subsection 2.1). Therefore f(x0α0 + x1α1) and f(x0φ(α0)
+ x1φ(α1)) do not have a common factor. Thus F is a square-free polynomial.

In particular, Proposition 1 shows that the polynomial F is not a square in
Fq[x0,x1]. Consider the polynomial z2 − F (x0,x1) in Fq[x0,x1, z]. Then this
polynomial is absolutely irreducible in Fq[x0,x1, z].

Definition 4. Define the affine variety A over Fq by the equation

z2 − F (x0,x1) = 0.

The affine varietyA is absolutely irreducible, since the polynomial z2−F (x0,x1)
is absolutely irreducible.

Remark 2. Let P = (x, y) ∈ C(Fq2), where x = x0α0 + x1α1 and x0, x1 ∈ Fq.
So y2 = f(x). Then φ(y2) = φ(f(x)) = f(φ(x)) = f(x0φ(α0) + x1φ(α1)). Let
z = N(y) = yφ(y). Then

z2 = f(x)f (φ(x)) = f(x0α0 + x1α1)f(x0φ(α0) + x1φ(α1)) = F (x0, x1).

That means (x0, x1, z) ∈ A(Fq).

In Theorem 2, we show that the number of Fq2 -rational points on the affine curve
C equals the number of Fq-rational points on the affine variety A. For the proof
of Theorem 2, we need several lemmas and a proposition.

Lemma 2. Define the projection map πC : C(Fq2) −→ A2(Fq), by

πC(x, y) = (x0, x1),

where x = x0α0 + x1α1. Assume that π−1
C (x0, x1) 
= ∅. If F (x0, x1) = 0, then

#π−1
C (x0, x1) = 1, otherwise #π−1

C (x0, x1) = 2.

Proof. Let P = (x, y) ∈ π−1
C (x0, x1), where x = x0α0 + x1α1. Remark 2 shows

that (N(y))2 = F (x0, x1). So F (x0, x1) = 0 if and only if y = 0. If y = 0, then
π−1
C (x0, x1) = {(x, 0)}. If y 
= 0, then −P = (x,−y) ∈ π−1

C (x0, x1) and −P 
= P .
Since P,−P are the only points on C(Fq2), with the fixed first coordinate x, then
π−1
C (x0, x1) = {P,−P}.



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 225

Lemma 3. Define the projection map πA : A(Fq) −→ A2(Fq), by

πA(x0, x1, z) = (x0, x1).

Assume π−1
A (x0, x1) 
= ∅. If F (x0, x1) = 0, then #π−1

A (x0, x1) = 1, otherwise
#π−1

A (x0, x1) = 2.

Proof. Let (x0, x1, z) ∈ π−1
A (x0, x1). Then z2 = F (x0, x1). If F (x0, x1) = 0,

then z = 0 and π−1
A (x0, x1) = {(x0, x1, 0)}. If F (x0, x1) 
= 0, then (x0, x1, z)

and (x0, x1,−z) are the only points on A, such that they have the first and
second coordinates equal x0 and x1. Furthermore z 
= −z. Therefore in this case
π−1
A (x0, x1) = {(x0, x1, z), (x0, x1,−z)}.

Proposition 2. For all x0, x1 ∈ Fq, #π−1
C (x0, x1) = #π−1

A (x0, x1).

Proof. First assume that π−1
C (x0, x1) 
= ∅. Then there exists a point (x, y) on

C(Fq2), such that x = x0α0 + x1α1. Let z = N(y). Then Remark 2 shows that
(x0, x1, z) ∈ A(Fq). Therefore (x0, x1, z) ∈ π−1

A (x0, x1) and π−1
A (x0, x1) 
= ∅.

Second assume that π−1
A (x0, x1) 
= ∅. Then there exists a point (x0, x1, z)

on A(Fq). Thus z2 = F (x0, x1). Let x = x0α0 + x1α1. Then from Remark 2,
z2 = f(x)φ(f(x)) = N(f(x)). So N(f(x)) is a square in Fq. Remark 1 implies
f(x) is a square in Fq2 . Let y2 = f(x), where y ∈ Fq2 . So (x, y) ∈ C(Fq2). That
means (x, y) ∈ π−1

C (x0, x1) and π−1
C (x0, x1) 
= ∅.

Hence π−1
A (x0, x1) 
= ∅ if and only if π−1

C (x0, x1) 
= ∅. Then Lemmas 2 and 3
conclude the proof of this proposition.

Theorem 2. The number of Fq2-rational points on the affine curve C equals the
number of Fq-rational points on the affine variety A.

#C(Fq2) = #A(Fq).

Proof. Consider the projection maps πC and πA from Lemmas 2 and 3. Then

#C(Fq2) =
∑

(x0,x1)∈A2(Fq)

#π−1
C (x0, x1),

and
#A(Fq) =

∑

(x0,x1)∈A2(Fq)

#π−1
A (x0, x1).

Proposition 2 shows that #π−1
C (x0, x1) = #π−1

A (x0, x1), for all x0, x1 ∈ Fq. So
the proof of this theorem is completed.

Remark 3. In fact, one can show that the number of Fq2 -rational points on the
nonsingular projective model of C equals the number of Fq-rational points on
the projective closure of A in P3

Fq
.



226 R.R. Farashahi and R. Pellikaan

4 The Quadratic Extension Extractor

In this section we introduce an extractor that works for the affine curve C as
defined in Section 3. We recall that C is defined over the quadratic extension of
Fq. The extractor, for a given point on the curve, outputs the first Fq-coordinate
of the abscissa of the point. Then, we show that the output of this extractor, for
a given uniformly random point of C, is statistically close to a uniform random
variable in Fq.

Similarly one could define an extractor that, for a given point on the curve,
outputs a Fq-linear combination of Fq-coordinates of the abscissa of the point.
In more detail , let a0, a1 ∈ Fq be such that both are not zero. The extractor, for
a given point P = (x, y) ∈ C(Fq2), where x = x0α0 + x1α1, outputs a0x0 + a1x1.
Interchange the basis α0, α1 to another basis α̂0, α̂1, by

(
α̂0

α̂1

)

=
(
a0 b0
a1 b1

)−1(
α0

α1

)

,

where b0, b1 ∈ Fq, such that the transformation matrix is nonsingular. Then x
can be represented in the form x = x̂0α̂0 + x̂1α̂1, where x̂0, x̂1 ∈ Fq. Clearly
x̂0 = a0x0 + a1x1. This amounts to the extractor that outputs x0. So without
loss of generality we consider the first extractor.

4.1 The Extractor for C
In this subsection we define the extractor for the affine curve C defined over
Fq2 (see Section 3 equation (1)). Then we compute the number of pre-images
of this extractor for an element x0 in Fq, in terms of the number of Fq-rational
points on a curve Ax0 . In other words, we show some bounds for the number of
Fq2 -rational points of C, whose abscissa have the fixed first Fq-coordinate.

Definition 5. The extractor Ext is defined as a function

Ext : C(Fq2) −→ Fq

Ext(x, y) = x0,

Theorem 3 gives some bounds for #Ext−1(x0), for all x0 in Fq. For the proof
of this theorem, we need several lemmas and propositions. We define the affine
curve Ax0 as the intersection of the affine variety A and the hyperplane x0 = x0,
for x0 in Fq. Then in Proposition 3 we show that #Ax0(Fq) = #Ext−1(x0), for all
x0 in Fq. We show that the curve Ax0 is reducible if and only if x0 ∈ I (Proposi-
tion 4) and the curve Ax0 is singular if and only if x0 ∈ S (Proposition 5), where
the sets I, S are defined by Definition 9. If the curveAx0 is absolutely irreducible
and singular, we consider the curve Xx0 , that is a nonsingular plane model of
Ax0 . By using the Hasse-Weil bound for the curve Xx0 , we obtain the bound for
#Ax0(Fq), where x0 /∈ I (Proposition 8). Note that we have a trivial bound for
#Ax0(Fq), if x0 ∈ I. Then Proposition 3 concludes the proof of Theorem 3.

Consider the affine variety A over Fq, as introduced in Definition 4. Fix the
element x0 in Fq. Then the points of A that have the first coordinate equal to
x0 form a curve which we call Ax0 .



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 227

Definition 6. Let x0 ∈ Fq. The affine curve Ax0 is defined by the equation

Fx0(x1, z) = z2 − Fx0(x1) = 0,

where Fx0(x1) = F (x0,x1).

Therefore

Ax0(Fq) = {P = (x1, z) : x1, z ∈ Fq, z
2 = Fx0(x1) = F (x0, x1)}.

Note that x1 and z are variables and x0 is a fixed element in Fq.

Proposition 3. #Ax0(Fq) = #Ext−1(x0), for all x0 in Fq.

Proof. Let x0 ∈ Fq. Consider the projection maps πC and πA from Lemmas 2
and 3. Then

#Ax0(Fq) =
∑

x1∈Fq

#π−1
A (x0, x1),

and
#Ext−1(x0) =

∑

x1∈Fq

#π−1
C (x0, x1).

Proposition 2 shows that #π−1
C (x0, x1) = #π−1

A (x0, x1), for all x0, x1 ∈ Fq. So
the proof of this proposition is completed.

Remark 4. Let x0 ∈ Fq. Define

fx0(x1) = f(x0α0 + x1α1),

fx0
(x1) = f(x0φ(α0) + x1φ(α1)).

We recall that Fx0(x1) = fx0(x1)fx0
(x1). Note that fx0 , fx0

are polynomials in
Fq2 [x1] and Fx0 is a polynomial in Fq[x1]. From equalities (6) and (7), we have

fx0(x1) =
d∏

i=1

(x0α0 + x1α1 − λi),

fx0
(x1) =

d∏

i=1

(x0φ(α0) + x1φ(α1)− φ(λi)).

Definition 7. Let x0 ∈ Fq. Define θi = λi−x0α0
α1

, for i ∈ {1, 2, . . . , d}.

Then φ(θi) = φ(λi)−x0φ(α0)
φ(α1)

. Furthemore

fx0(x1) = αd
1

d∏

i=1

(x1 − θi),

fx0
(x1) = αqd

1

d∏

i=1

(x1 − φ(θi)).



228 R.R. Farashahi and R. Pellikaan

Since λi 
= λj , for i 
= j, so θi 
= θj and φ(θi) 
= φ(θj), for i 
= j. Thus fx0 and
fx0

are square free polynomials in Fq[x1]. Then

Fx0(x1) = (N(α1))d
d∏

i=1

((x1 − θi)(x1 − φ(θi)).

Lemma 4. Fx0(x1) has θ ∈ Fq as multiple root if and only if

f0(x0, θ) = f1(x0, θ) = 0.

Proof. From Remark 4 and equalities (3), (5), we have

fx0(x1) = f0(x0,x1)α0 + f1(x0,x1)α1,

fx0
(x1) = f0(x0,x1)φ(α0) + f1(x0,x1)φ(α1),

(8)

where f0(x0,x1) and f1(x0,x1) are polynomials in Fq[x1]. The polynomials fx0

and fx0
are square free, so if (x1 − θ)2 is a factor of Fx0(x1), then (x1 − θ) is a

common factor of both polynomials fx0 and fx0
. Hence

(
f0(x0, θ) f1(x0, θ)

)
(
α0 φ(α0)
α1 φ(α1)

)

=
(
0 0
)
.

Since the matrix is nonsingular (see Subsection 2.1), so f0(x0, θ) = f1(x0, θ) = 0.
Converse is obvious.

Definition 8. For x0 ∈ Fq, let

Sx0 = {x1 ∈ Fq : f0(x0, x1) = f1(x0, x1) = 0}

and dx0 = #Sx0 , gx0(x1) = gcd(f0(x0,x1), f1(x0,x1)).

Since fx0(x1) is square free in Fq[x1], it follows from equality (8) that gx0 has
no multiple root in Fq. That means dx0 = deg(gx0). Furthermore 0 ≤ dx0 ≤ d.

Remark 5. From the proof of Lemma 4, fx0(x1) = fx0
(x1) = 0, for x1 ∈ Fq, if

and only if f0(x0, x1) = f1(x0, x1) = 0. So x1 ∈ Sx0 if and only if x1 = θi = φ(θj),
for some indexes i and j (see Remark 4). In other words

Sx0 = {θ1, θ2, . . . , θd} ∩ {φ(θ1), φ(θ2), . . . , φ(θd)}.

Definition 9. For i, j ∈ {1, 2, . . . , d}, let

si,j =

∣
∣
∣
∣
λi α1

φ(λj) φ(α1)

∣
∣
∣
∣

∣
∣
∣
∣
α0 α1

φ(α0) φ(α1)

∣
∣
∣
∣

.

Let S = {s ∈ Fq : s = si,j , for some indexes i, j} and I = {s ∈ S : ds = d}.



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 229

Remark 6. Let θi = φ(θj), for some indexes i, j. Then

λi − x0α0

α1
=
φ(λj)− x0φ(α0)

φ(α1)
.

Thus

x0 =
λiφ(α1)− φ(λj)α1

α0φ(α1)− φ(α0)α1
= si,j .

We note that α0φ(α1)− φ(α0)α1 
= 0 (see Subsection 2.1).
The converse is also true. That means x0 = si,j if and only if θi = φ(θj).

Furthermore
dx0 = #{(i, j) : si,j = x0}.

So x0 /∈ S if an only if dx0 = 0.

Proposition 4. The affine plane curve Ax0 is absolutely irreducible if and only
if x0 /∈ I.

Proof. The affine curve Ax0 is defined by the equation z2 = Fx0(x1). The curve
Ax0 is reducible if and only if Fx0 is a square in Fq[x1]. From equality (??) Fx0

is a square in Fq[x1] if and only if {θ1, θ2, . . . , θd} = {φ(θ1), φ(θ2), . . . , φ(θd)}.
Remarks 5 and 6 explain that this is equivalent to dx0 = d.

Remark 7. Assume the affine curve Ax0 is reducible. So from the proof of Propo-
sition 4 we have, {θ1, θ2, . . . , θd} = {φ(θ1), φ(θ2), . . . , φ(θd)}. Then

∑d
i=1 θi =

∑d
i=1 φ(θi). Therefore

d∑

i=1

λi − x0α0

α1
=

d∑

i=1

φ(λi)− x0φ(α0)
φ(α1)

.

Because
∑d

i=1 λi = ed−1 (see equation (2)), we have

dx0 =
ed−1φ(α1)− φ(ed−1)α1

α0φ(α1)− φ(α0)α1
.

In other words, if x0 ∈ I, then

dx0 =

∣
∣
∣
∣
ed−1 α1

φ(ed−1) φ(α1)

∣
∣
∣
∣

∣
∣
∣
∣
α0 α1

φ(α0) φ(α1)

∣
∣
∣
∣

.

Note that the converse is not true. If d is not divisible by p, then #I ≤ 1.
Otherwise #I ≤ d.

Proposition 5. The affine curve Ax0 is singular if and only if x0 ∈ S. The
curve Ax0 has dx0 singular points.



230 R.R. Farashahi and R. Pellikaan

Proof. The point (x1, z) ∈ Fq×Fq is a singular point on Ax0 if and only if z = 0
and x1 is a double root of Fx0(x1). From Lemma 4, x1 is a double root of Fx0(x1)
if and only if x1 ∈ Sx0 . So Ax0 has dx0 singular points. Remarks 5 and 6 explain
that there exists x1 ∈ Sx0 if and only if x0 = si,j , for some indexes i, j. Since
x0 ∈ Fq, therefore x0 ∈ S if and only if Ax0 is singular.

We recall that gx0 is a square free polynomial of degree dx0 in Fq[x1]. From
Lemma 4 and Remark 5, gx0 is the square factor of Fx0 . Let

Fx0(x1) = g2
x0

(x1)Hx0(x1),

where Hx0 is a square free polynomial of degree 2(d− dx0) in Fq[x1].

Definition 10. Let Xx0 be the affine curve given by the equation

w2 −Hx0(x1) = 0.

Proposition 6. The affine curve Xx0 is absolutely irreducible and nonsingular
if and only if x0 /∈ I.

Proof. The affine curve Xx0 is defined by the equation w2 = Hx0(x1). Since
Hx0 is a square free polynomial of degree 2(d − dx0) in Fq[x1], it is absolutely
irreducible and nonsingular if and only if Hx0 is not constant. Clearly Hx0 is
constant if and only if dx0 = d. That means Hx0 is constant if and only if
x0 ∈ I.

Remark 8. If Hx0 is not constant, the affine curve Xx0 is a nonsingular plane
model of Ax0 .

Proposition 7. For x0 ∈ Fq, |#Ax0(Fq)−#Xx0(Fq)| ≤ dx0 .

Proof. The affine curves Ax0 and Xx0 are defined by the equations z2 = Fx0(x1)
and w2 = Hx0(x1) respectively. We recall that Fx0(x1) = g2

x0
(x1)Hx0(x1).

Define the projection maps πA : Ax0(Fq) −→ Fq, by πA(x1, z) = x1 and
πX : Xx0(Fq) −→ Fq, by πX (x1, w) = x1.

Let x1 ∈ Fq. First assume that gx0(x1) 
= 0. Then

#π−1
A (x1) = #π−1

X (x1) =

⎧
⎪⎨

⎪⎩

0, if Hx0(x1) is a non-square in Fq,

1, if Hx0(x1) = 0,
2, if Hx0(x1) is a square in F∗

q .

Now assume that gx0(x1) = 0. Then #π−1
A (x1) = 1 and #π−1

X (x1) equals 0 or 2.
Then

|#Ax0(Fq)−#Xx0(Fq)| =

∣
∣
∣
∣
∣
∣

∑

x1∈Fq

#π−1
A (x1)−

∑

x1∈Fq

#π−1
X (x1)

∣
∣
∣
∣
∣
∣

=
∑

x1∈Fq , gx0(x1)=0

1 ≤ dx0 .



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 231

Proposition 8. Let x0 ∈ Fq. If x0 /∈ I, then

|#Ax0(Fq)− q| ≤ 2(d− dx0 − 1)
√
q + dx0 + 1.

Proof. Let x0 ∈ Fq \ I. Then the affine curve Xx0 is absolutely irreducible and
nonsingular (see Proposition 6). The degree of Xx0 is 2(d− dx0). Let X̃x0 be the
nonsingular projective model of Xx0 . So X̃x0 is a hyperelliptic curve of genus
d−dx0−1. Furthermore #X̃x0(Fq)−#Xx0(Fq) equals zero or two. (see Theorem
1). By using the Hasse-Weil bound, we have

∣
∣
∣#X̃ (Fq)− (q + 1)

∣
∣
∣ ≤ 2(d− dx0 − 1)

√
q.

Then |#X (Fq)− q| ≤ 2(d − dx0 − 1)
√
q + 1. Proposition 7 concludes the proof

of this proposition.

Theorem 3. Let x0 ∈ Fq. If x0 /∈ I, then
∣
∣#Ext−1(x0)− q

∣
∣ ≤ 2(d− dx0 − 1)

√
q + dx0 + 1.

Otherwise, ∣
∣#Ext−1(x0)− q

∣
∣ ≤ q.

Proof. Let x0 ∈ Fq. Then Proposition 3 shows that #Ax0(Fq) = #Ext−1(x0). If
x0 /∈ I, then Proposition 8 gives the estimate for #Ext−1(x0). If x0 ∈ I, then
the curve Ax0 is reducible (see Proposition 4). So in this case we have the trivial
estimate for #Ext−1(x0).

4.2 Analysis of the Extractor

In this subsection we show that provided the point P is chosen uniformly at
random in C(Fq2), the element extracted from the point P by Ext is indistin-
guishable from a uniformly random element in Fq.

Let X be a Fq-valued random variable that is defined as

X = Ext(P ), for P ∈R C(Fq2).

Proposition 9. The random variable X is statistically close to the uniform
random variable UFq .

Δ(X,UFq) = O(
1
√
q
).

Proof. Let z ∈ Fq. For the uniform random variable UFq , Pr[UFq = z] = 1/q.
Also for the Fq-valued random variable X ,

Pr[X = z] =
#Ext−1(z)
#C(Fq2)

.



232 R.R. Farashahi and R. Pellikaan

Hasse-Weil’s Theorem gives the bound for #C(Fq2) and Theorem 3 gives the
bound for #Ext−1(z). Hence

Δ(X,UFq) =
1
2

∑

z∈Fq

∣
∣Pr[X = z]− Pr[UFq = z]

∣
∣

=
1
2

∑

z∈Fq

∣
∣
∣
∣
#Ext−1(z)
#C(Fq2)

− 1
q

∣
∣
∣
∣

=
∑

z∈I

∣
∣q#Ext−1(z)−#C(Fq2)

∣
∣

2q#C(Fq2)
+
∑

z∈Fq\I

∣
∣q#Ext−1(z)−#C(Fq2)

∣
∣

2q#C(Fq2)
.

Let r = #I. Then

Δ(X,UFq) ≤
r(q2 + (d− 1)q + 1) + (q − r)(2(d− 1)q

√
q + dq + 1)

2q(q2 − (d− 1)q + 1)

=
2(d− 1)q

√
q + (d+ r)q − 2(d− 1)r

√
q − r + 1

2(q2 − (d− 1)q + 1)
=
d− 1 + ε(q)
√
q

,

where ε(q) = (d+r)q
√

q+2(d−1)(d−r−1)q−(r−1)
√

q−2(d−1)

2(q2−(d−1)q+1) . If q ≥ 2d2, then ε(q) < 1.

Corollary 1. Ext is a deterministic (Fq, O( 1√
q ))-extractor for C(Fq2) .

5 Examples

In this section we give some examples for the extractors Ext. Our first example
is the extractor for the subgroup of quadratic residues of F∗

q2 . For the second
example, we recall an extractor in [7] for an elliptic curve defined over Fq2 . Also
from the result of Theorem 3, we improve the result of [7].

5.1 The Extractor for a Subgroup of F∗
q2

In this subsection we propose a simple extractor for the subgroup of quadratic
residues of F∗

q2 . This extractor is the result of Theorem 3, where f(x) = x.
Let G be the subgroup of quadratic residues of F∗

q2 . We recall that every
element x in Fq2 is represented in the form x = x0α0 + x1α1, where x0, x1 ∈ Fq.
Define the extractor ext for G as the function

ext : G −→ Fq

ext(x) = x0.

The following proposition gives the estimate for #ext−1(z), where z ∈ Fq.

Proposition 10. For all z ∈ F∗
q,

#ext−1(z) =
q ± 1

2
,

and for z = 0, #ext−1(0) = 0 or #ext−1(0) = q − 1.



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 233

Proof. Let the affine curve C be defined by the equation C : y2 = f(x) = x. This
curve is of the type considered in Section 4. Clearly for each element x ∈ G, there
are exactly two points (x, y) and (x,−y) on C. In fact there is a bijection between
G and the set of nonzero abscissa of points on C. Then #Ext−1(z) = 2#ext−1(z),
for all z ∈ F∗

q . It is easy to see that I = {0}. Then Theorem 3 implies the proof
of this proposition. Also the bound for #ext−1(0) is obvious.

Corollary 2. ext is a deterministic (Fq,
1
q )-extractor for G.

Proof. For d = 1, the estimate for ε(q) can be made tighter (see proof of Propo-
sition 9), so that ε(q) < 1

q .

5.2 The Extractor for Elliptic Curves

In this subsection we recall the extractor introduced by Gürel in [7], that works
for an elliptic curve defined over Fq2 . This extractor, for a given random point on
elliptic curve, outputs the first Fq-coordinate of the abscissa of the point. Then
from the result of Theorem 3, we improve the bounds which are proposed in [7].

Let E be an elliptic curve defined over Fq2 , where q = pk, for prime number
p > 3 and positive integer k. Then

E(Fq2) = {(x, y) ∈ Fq2 × Fq2 : y2 = f(x) = x3 + ax+ b} ∪ {OE},

where a and b are in Fq2 . Since E is nonsingular, then f(x) is a square free
polynomial in Fq[x].

Let α0 = 1 and α1 = t, where t ∈ Fq2 , such that t2 = c and c is a non-
square element in Fq. So every element x in Fq2 can be represented in the form
x = x0 + x1t, where x0, x1 ∈ Fq.

The extractor ext for E is defined as a function

ext : E(Fq2) −→ Fq

ext(x, y) = x0,

ext(OE) = 0.

The following theorem gives the tight bounds for #ext−1(z), for all z in Fq.

Proposition 11. For all z ∈ F∗
q,

∣
∣#ext−1(z)− q

∣
∣ ≤ 4

√
q + 1.

For z = 0, if a1 
= 0 or b0 
= 0, then
∣
∣#ext−1(0)− (q + 1)

∣
∣ ≤ 4

√
q + 1,

otherwise, ∣
∣#ext−1(0)− (q + 1)

∣
∣ ≤ q.



234 R.R. Farashahi and R. Pellikaan

Proof. The proof of this theorem follows from Theorems 3, in the case that
f(x) = x3 + ax + b. Define the variables x0 and x1 by x = x0 + x1t. Then

f(x0 + x1t) = f0(x0,x1) + f1(x0,x1)t,

where
f0(x0,x1) = x3

0 + 3cx0x2
1 + a0x0 + ca1x1 + b0

f1(x0,x1) = cx3
1 + 3x2

0x1 + a1x0 + a0x1 + b1.

Then we fix x0 by z. It is easy to see that I = {0} if and only if f0(z,x1) = 0.
Clearly f0(z,x1) = 0, if and only if z = a1 = b0 = 0, since p 
= 3. Recall that
p is the characteristic of Fq. Also note that #ext−1(0) = #Ext−1(0) + 1, since
ext(OE) = 0.

Corollary 3. ext is a deterministic (Fq,
3√
q )-extractor for E(Fq2 ), if q ≥ 18.

Proof. The proof of this corollary is similar to the proof of Proposition 9, in the
case that d = 3 and r ≤ 1.

6 Conclusion

We introduce a deterministic extractor Ext, for the (hyper)elliptic curve C, de-
fined over Fq2 , where q is some power of an odd prime. Our extractor, for a given
point P on C, outputs the first Fq-coefficient of the abscissa of the point P . The
main part of the analysis of this extractor is to compute #Ext−1(z), where
z ∈ Fq. That is equivalent to counting the number of Fq-rational points on the
fibers Az on the affine variety A. Theorem 3 gives the estimates for #Ext−1(z).
Our experiments with MAGMA for #Ext−1(z), show that the bounds in Theo-
rem 3 are tight. Then we show that if a point P is chosen uniformly at random
in C, the element extracted from the point P is statistically close to a uniformly
random variable in Fq.

Future Work. Consider the finite field Fqn , where q is a power of a prime
p and n is a positive integer. Then Fqn is a n dimensional vector space over Fq.
Let {α1, α2, . . . , αn} be a basis of Fqn over Fq. That means every element x in
Fqn can be represented in the form x = x1α1 +x2α2 + . . .+xnαn, where xi ∈ Fq.

Let C be an absolutely irreducible nonsingular affine curve that is defined
over Fqn by the equation

ym = f(x),

where f(x) ∈ Fqn [x] is a monic square-free polynomial of degree d and m is a
positive integer dividing q − 1.

We define the extractors ext� for C, where � is a positive integer less than n.
The extractor ext�, for a given point P on the curve, outputs the � first
Fq-coordinate of the abscissa of the point P .



The Quadratic Extension Extractor for (Hyper)Elliptic Curves 235

Definition 11. Let � be a positive integer less than n. The extractor ext� is
defined as a function

ext� : C(Fqn) −→ A�(Fq)
ext�(x, y) = (x1, . . . , x�),

where x ∈ Fqn is represented as x = x1α1 + x2α2 + · · ·+ xnαn, for xi ∈ Fq.

Let X� be a F�
q-valued random variable that is defined as

X� = ext�(P ), for P ∈R C(Fqn).

Conjecture 1. The random variable X� is c√
qn−�

-uniform on F�
q, where c is a

constant depending on m,n and d. That is

Δ(X�, UF�
q
) ≤ c

√
qn−�

.

We leave the proof of this conjecture for the future work.

Acknowledgment. The authors would like to thank T. Lange for her help-
ful comments.

References

1. Artin, E.: Algebraic Numbers and Algebraic Functions. Gordon and Breach, New
York (1967)

2. Beelen, P., Doumen, J.M.: Pseudorandom sequences from elliptic curves. In: Finite
Fields with Applications to Coding Theory, Cryptography and Related Areas, pp.
37–52. Springer-Verlag, Berlin Heidelberg (2002)

3. Chevassut, O., Fouque, P., Gaudry, P., Pointcheval, D.: The Twist-Augmented
Technique for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)

4. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Chapman & Hall/CRC, New York (2006)

5. Farashahi, R.R., Pellikaan, R., Sidorenko, A.: Extractors for Binary Elliptic Curves,
Extended Abstract to appear at WCC (2007)

6. Gong, G., Berson, T.A., Stinson, D.R.: Elliptic Curve Pseudorandom Sequence
Generators. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
34–48. Springer, Heidelberg (2000)

7. Gürel, N.: Extracting bits from coordinates of a point of an elliptic curve, Cryp-
tology ePrint Archive, Report 2005/324, (2005), http://eprint.iacr.org/

8. Hartshorne, R.: Algebraic Geometry, Grad. Texts Math, vol. 52. Springer, Berlin
Heidelberg (1977)

9. Hess, F., Shparlinski, I.E.: On the Linear Complexity and Multidimensional Dis-
tribution of Congruential Generators over Elliptic Curves. Designs, Codes and
Cryptography 35(1), 111–117 (2005)

http://eprint.iacr.org/


236 R.R. Farashahi and R. Pellikaan

10. Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into
fair coins. IEEE Transactions on Information Theory 46(3), 911–921 (2000)

11. Kaliski, B.S.: A Pseudo-Random Bit Generator Based on Elliptic Logarithms. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer, Hei-
delberg (1987)

12. Lange, T., Shparlinski, I.E.: Certain Exponential Sums and Random Walks on
Elliptic Curves. Canad. J. Math. 57(2), 338–350 (2005)

13. —: Distribution of Some Sequences of Points on Elliptic Curves, J. Math. Crypt.
1, 1–11 (2007)

14. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton, USA (1994)

15. Poonen, B.: Bertini Theorems over Finite Fields. Annals of Mathematics 160(3),
1099–1127 (2004)

16. Shaltiel, R.: Recent Developments in Explicit Constructions of Extractors. Bulletin
of the EATCS 77, 67–95 (2002)

17. Shparlinski, I.E.: On the Naor-Reingold Pseudo-Random Function from Elliptic
Curves. Applicable Algebra in Engineering, Communication and Computing—
AAECC 11(1), 27–34 (2000)

18. Trevisan, L., Vadhan, S.: Extracting Randomness from Samplable Distributions,
IEEE Symposium on Foundations of Computer Science, pp. 32–42 (2000)



On Kabatianskii-Krouk-Smeets Signatures

Pierre-Louis Cayrel1, Ayoub Otmani2, and Damien Vergnaud3

1 DMI/XLIM - Université de Limoges, 123 avenue Albert Thomas,
87060 Limoges, France

pierre-louis.cayrel@xlim.fr
2 GREYC - Ensicaen, Boulevard Maréchal Juin, 14050 Caen Cedex, France

Ayoub.Otmani@info.unicaen.fr
3 b-it COSEC - Bonn/Aachen International Center for Information Technology -

Computer Security Group, Dahlmannstr. 2, D-53113 Bonn, Germany
vergnaud@bit.uni-bonn.de

Abstract. Kabastianskii, Krouk and Smeets proposed in 1997 a digital
signature scheme based on random error-correcting codes. In this pa-
per we investigate the security and the efficiency of their proposal. We
show that a passive attacker who may intercept just a few signatures can
recover the private key. We give precisely the number of signatures re-
quired to achieve this goal. This enables us to prove that all the schemes
given in the original paper can be broken with at most 20 signatures. We
improve the efficiency of these schemes by firstly providing parameters
that enable to sign about 40 messages, and secondly, by describing a way
to extend these few-times signatures into classical multi-time signatures.
We finally study their key sizes and a mean to reduce them by means of
more compact matrices.

Keywords: Code-based cryptography, digital signature, random error-
correcting codes, Niederreiter cryptosystem.

1 Introduction

Kabastianskii, Krouk and Smeets proposed in 1997 a digital signature scheme
based on random error-correcting codes. In this paper we investigate the security
and the efficiency of their proposal. We show that a passive attacker who may
intercept just a few signatures can recover the private key. We give precisely
the number of signatures required to achieve this goal. This enables us to prove
that all the schemes given in the original paper can be broken with at most
20 signatures. We improve the efficiency of these schemes by firstly providing
parameters that enable to sign about 40 messages, and secondly, by describing
a way to extend these few-times signatures into classical multi-time signatures.
We finally study their key sizes and a mean to reduce them by means of more
compact matrices.

Related Work. In 1978, McEliece [12] proposed the first public key cryptosys-
tem based on coding theory. His idea is to first select a particular code for which

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 237–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



238 P.-L. Cayrel, A. Otmani, and D. Vergnaud

an efficient decoding algorithm is known, and then disguise it as a general-looking
linear code. A description of the original code can serve as the private key, while
a description of the transformed code serves as the public key. Several proposals
were made to modify McEliece’s original scheme, but unfortunately most of them
turn out to be insecure or inefficient. However, the original primitive, which uses
Goppa codes, has remained unbroken (for appropriate system parameters).

In 1986, Niederreiter [14] proposed another (knapsack-based) scheme which
relies on a linear code. The McEliece scheme uses a generator matrix while the
Niederreiter scheme uses a parity-check matrix, but they were proved [10] to be
equivalent in terms of security for the same parameters1.

Compared with other public-key cryptosystems which involve modular ex-
ponentiation, these schemes have the advantage2 of high-speed encryption and
decryption. However, they suffer from the fact that the public key is very large.
In 2005, Gaborit [5] proposed a method to severely decrease its size (making it
almost linear – see below).

Digital signature schemes are the most important cryptographic primitive for
providing authentication in an electronic world. They allow a signer with a secret
key to sign messages such that anyone with access to the corresponding public
key is able to verify authenticity of the message. Parallel to the efforts to build
an efficient public key encryption scheme from error correcting codes, several
attempts were proposed to design signature schemes based on error-correcting
codes. Unfortunately, most of the proposed protocols have been proved insecure
(see the survey [4] and the references therein for details).

It is well known that any trapdoor permutation permits to design digital sig-
natures by using the unique capacity of the owner of the public key to invert
this permutation. The so-called Full Domain Hash (FDH) approach can only be
used to sign messages whose hash values lies in the range set of the trapdoor per-
mutation. Therefore, a signature scheme based on trapdoor codes must achieve
complete decoding. In 2001, Courtois, Finiasz and Sendrier [3] have presented a
practical signature scheme derived from a technique allowing complete decoding
of Goppa codes (for some parameter choices).

At Crypto’93, Stern [18] proposed an identification scheme based on the syn-
drome decoding problem. In this scheme, all users share a parity-check matrix
for a binary linear code and each user secretly chooses a vector v of small Ham-
ming weight (slightly below the expected minimum distance of the code). The
public key of identification is the corresponding syndrome. By an interactive
zero-knowledge protocol, any user can identify himself to another by proving he
knows v without revealing it. A dual version of the Stern identification scheme
that uses a generator matrix of the code was proposed by Véron [19]. Both pro-
tocols can give rise to digital signature schemes (though inefficient), by applying
the well-known Fiat-Shamir heuristic.

1 Niederreiter’s original scheme relies on generalized Reed-Solomon codes and the two
primitives are equivalent if we substitute these codes by Goppa codes.

2 For the same parameters, the Niederreiter cryptosystem reveals some advantages,
for example, the size of the public key and the number of operations to encrypt.



On Kabatianskii-Krouk-Smeets Signatures 239

Finally, Kabastianskii, Krouk and Smeets [6] proposed, 10 years ago, a digital
signature scheme based on random linear codes. They exploited the fact that for
every linear code the set of its correctable syndrome contains a linear subspace of
relatively large dimension. Kabatianskii et al. concluded their paper by asking for
an analysis of the efficiency and the security of their scheme. The investigation
of this issue is the main purpose of the present paper.

Organisation of the Paper. The rest of this paper is organized as follows.
Section 2 begins with background material on coding theory. In section 3 and 4,
we review the paradigm of signing without decoding, together with the schemes
proposed by Kabatianskii et al. (KKS-1 to KKS-4). In section 5, we present
an analysis of their security under a known message attack. In particular, we
show that a passive attacker who may only intercept signatures can recover the
private key. For the concrete parameters, just about 20 signatures are sufficient
to reveal a large part of the key. Section 6 discusses a way to extend these
few-times signatures into classical multi-time signatures. In section 7, we study
the key sizes of the KKS signature schemes and propose a way to reduce them.
Section 8 concludes the paper with efficiency considerations.

2 Notations and Definitions

Let n be a non-negative integer and q be a prime power that usually is 2. The
support supp(x) of a vector x ∈ GF (q)n is the set of coordinates i such that
xi 
= 0. The (Hamming) weight wt(x) of x ∈ GF (q)n is the cardinality of supp(x).
A C [n, n − r, d] code over GF (q) is a linear subspace of GF (q)n of dimension
n− r and minimum distance d. The elements of C are codewords. A linear code
can be defined either by a parity check matrix or a generator matrix. A parity
check matrix H for C is an r × n matrix such that the vectors w ∈ GF (q)n

which are solutions to the equation HwT = 0 are exactly the codewords of C .
When the first r columns of H form the r × r identity matrix, we denote H by
(Ir|M) where the columns of M are the last n − r columns of H . A generator
matrix G is an (n− r)× n matrix formed by a basis of C . G is systematic if its
first n− r columns form In−r. For a non-negative integer t, we denote by Mn,t

the set of vectors of GF (q)n of weight t and by Mn,≤t the set ∪t
i=0Mn,i.

A syndrome decoding algorithm dec() for C (defined by a r × n parity check
matrix H) is a process that is able to find for a given vector s ∈ GF (q)r a vector
e = dec(s) ∈ GF (q)n such that:

H · eT = s. (1)

The vector e is seen as an error and the element s ∈ GF (q)r is called its
syndrome. Note that a decoding algorithm does not necessarly succeed in finding
an error for any syndrome. The algorithm dec() achieves a complete decoding if it
can resolve Equation (1) for any s ∈ GF (q)r, and a t-bounded syndrome decoding
algorithm for C is a decoding algorithm that is able to recover any error vector
of Mn,≤t. More precisely, it is an application dec : HMn,≤t →Mn,≤t such that



240 P.-L. Cayrel, A. Otmani, and D. Vergnaud

dec(0) = 0 and for any s ∈ HMn,≤t whereHMr,≤t is the set {HzT : z ∈Mn,≤t},
dec(s) is solution to Equation (1). The set of correctable syndromes for dec is
therefore HMn,≤t. Note that dec() is well-defined when 2t + 1 < d because
Equation (1) admits a unique solution. Finally, it has been proved in [1] that
the problem of syndrome decoding i.e. solving Equation (1) is NP-Hard.

As mentionned in the introduction Niederreiter outlined a public-key cryp-
tosystem based upon the difficulty of the syndrome decoding problem [14] for
an arbitrary linear code. It is a modified version of the McEliece cryptosystem
[12]. Each user chooses a code C [n, n− r, d] over GF (q) for which a polynomial
(in n) decoding algorithm is known. The plain text space is the set Mn,t with
2t+ 1 < d. The private key is a parity check matrix H of C , a t-bounded syn-
drome decoding algorithm dec() for C , an r× r invertible matrix S and a n× n
permutation matrix P . The public key is the matrix H ′ = SHP . The encryption
process consists of computing c = H ′mT for m ∈Mn,t. To decrypt a cipher text
c′ ∈ GF (q)r, the owner of the private key computes dec(S−1 · c′) · P .

The security of code-based cryptosystems relies upon two kinds of attacks.
One type of attacks which are called structural attacks aims at totally breaking
the cryptosystem by recovering the secret matrices. The other class of attacks
try to conceive decoding algorithms for arbitrary linear codes in order to de-
crypt a given cipher text. Such an attack is called a decoding attack. The most
efficient algorithms used to decode arbitrary linear codes are based on the in-
formation set decoding. A first analysis was done by McEliece in [12], then
by Lee and in Brickell in [8] and also by Stern in [17] and Leon in [9] and
lastly by Canteaut and Chabaud in [2] which is the best algorithm known up to
now with roughly O

(
n3
(
n
t

)
/
(
r
t

))
= O

(
n32nh2(

t
n )−rh2(

t
r )+o(n)

)
operations where

h2(x) = −x log2(x)− (1−x) log2(1−x). Nowadays it is commonly accepted that
a system is secure if the best attack known requires more than 280 operations.

3 How to Sign Without Decoding?

Let k be an integer and assume that GF (q)k is the set of messages to be signed.
In order to sign a messagem by means of a Niederreiter cryptosystem, one has to
define an k×n parity check matrix H representing a code C [n, n−k, d]. However
m has to be a correctable syndrome or in other words, there must exist z ∈Mn,t

such that HzT = m. This is not possible for any message because the decoding
algorithm can only decode the set of correctable syndromes which is different
from GF (q)r. Thus one needs to find an application χ : GF (q)k → HMn,t, and
then decode χ(m) to produce z ∈Mn,t that satisfies χ(m) = HzT .

Kabatianskii et al. [6] presented a technique to produce code-based signatures
using any arbitrary linear code. This means that it is not necessary to design
a decoding algorithm to sign messages. The idea is to directly define a secret
application f : GF (q)k → Mn,t in order to automatically generate a signature
f(m) for m ∈ GF (q)k. The signer then sends (m, f(m)). He also publishes an
application χ : GF (q)k → HMn,t to be used in the verification step which is



On Kabatianskii-Krouk-Smeets Signatures 241

defined for any m ∈ GF (q)k by χ(m) def= Hf(m)T . A receiver checks the validity
of a signed message (m, z) by verifying that:

wt(z) = t and χ(m) = HzT . (2)

The most important part of a “signing-without-decoding” scheme is to design
the application f . From a practical point of view, the description of f (and χ)
has to be better than an enumeration of its images for which it would need
qk log2(

(
n
t

)
(q − 1)t) bits to store f (and also χ). Thus, a random application f

would be a good choice in terms of security but a bad one for a concrete use.
From a security point of view, it is necessary that the public matrix H and the
public application χ do not provide any information about the secret application
f . If this property is guaranteed then the security of the scheme is equivalent to
that of the Niederreiter cryptosystem upon which it is built. Indeed to recover f
from H (and χ), an opponent has to solve χ(m) = HzT for a given m ∈ GF (q)k

which is actually an instance of the syndrome decoding problem.
Moreover, it should be noted that the only property needed for C is that

it should be difficult to solve Equation (2). In other words, t should be large
enough or at a pinch C can be a random linear code provided its minimum
distance is large enough. The following proposition given in [6] estimates the
minimum distance of a (random) linear code generated by a randomly drawn
parity check matrix.

Proposition 1. The probability Pr {d(C ) ≥ d} that a random r×n parity check
matrix [Ir|M ] over GF (q) defines a code C with a minimum distance d(C )
greater or equal to d satisfies the following inequality:

Pr {d(C ) ≥ d} ≥ 1− q−r+nhq( d−1
n ),

where hq(x) = x logq(q − 1)− x logq(x)− (1 − x) logq(1− x).

4 Kabatianskii-Krouk-Smeets Signatures

Kabatianskii et al. [6] proposed a signature scheme based on arbitrary linear
error-correcting codes. Actually, they proposed to use a linear application f .
Three versions are given which are presented in the sequel but all have one point
in common: for any m ∈ GF (q)k, the signature f(m) is a codeword of a linear
code U . Each version of KKS proposes different linear codes in order to improve
the scheme. We now give a full description of their scheme.

Firstly, we suppose that C is defined by a random parity check matrix H .
We also assume that we have a very good estimate d of its minimum distance
through Proposition 1 for instance. Next, we consider a linear code U of length
n′ ≤ n and dimension k defined by a generator matrix G = [gi,j ]. We suppose
that there exist two integers t1 and t2 such that t1 ≤ wt(u) ≤ t2 for any non-zero
codeword u ∈ U .

Let J be a subset of {1, . . . , n} of cardinality n′, H(J) be the sub matrix
of H consisting of the columns hi where i ∈ J and define an r × n′ matrix



242 P.-L. Cayrel, A. Otmani, and D. Vergnaud

F
def= H(J)GT . The application f : GF (q)k →Mn,t is then defined by f(m) =

mG∗ for any m ∈ GF (q)k where G∗ = [g∗i,j ] is the k × n matrix with g∗i,j = gi,j

if j ∈ J and g∗i,j = 0 otherwise. The public application χ is then χ(m) = FmT

because HG∗T = H(J)GT . The main difference with Niederreiter signatures
resides in the verification step where the receiver checks that:

t1 ≤ wt(z) ≤ t2 and F ·mT = H · zT . (3)

– Setup. The signer chooses a random matrix H = [Ir|D] that represents the parity
check matrix of a code C [n, n − r, ≥ d]. He also chooses a generator matrix G
that defines a code U [n′, k, t1] such that wt(u) ≤ t2 for any u ∈ U . He chooses a
random set J ⊂ {1, . . . , n} and he forms F = H(J)GT .

– Parameters.
• Private key. The set J ⊂ {1, . . . , n} and the k × n′ matrix G
• Public key. The r × k matrix F and the r × n matrix H

– Signature. Given m ∈ GF (q)k, the signer sends (m,m · G∗)
– Verification. Given (m,z), the receiver verifies that:

t1 ≤ wt(z) ≤ t2 and F · mT = H · zT .

Fig. 1. KKS signature scheme

Note that it is not so important to have d > 2t2 because it would mean
otherwise that a messagem may have several signatures z which are all solutions
to Equation (3). Recall also that the crucial fact about C is that Equation (3)
should be difficult to solve when the number of errors (i.e. the weight of z)
belongs to the interval [t1, t2]. Figure 1 sums up the different steps of a KKS
signature scheme.

Definition 1 (KKS-1). Let U [n′, k, t] be an equidistant code (t1 = t2 = t)
over GF (q) such that n′ ≤ n defined by a generator matrix G = [gi,j ]. It is
known [11] that for such a code, n′ = qk−1

q−1 and t = qk−1.

Unfortunately, KKS-1 is not practicable because it requires a code length too
large. For instance in the binary case (q = 2) and in the FDH paradigm, k must
be at least 160. It implies that n ≥ n′ = 2160 − 1. It is necessary to replace the
equidistant code by another one for which t1 
= t2. Two solutions are proposed
in [6]: either one chooses the dual code of a binary BCH code or a random linear
code thanks to Proposition 2 and Proposition 3.

Proposition 2 (Carlitz-Uchiyama Bound). Let U be the dual of a binary
BCH code of length n′ = 2m− 1 and designed distance δ = 2s+ 1. Then for any
u ∈ U : ∣

∣
∣
∣wt(u)− n′ + 1

2

∣
∣
∣
∣ ≤ (s− 1)

√
n′ + 1.



On Kabatianskii-Krouk-Smeets Signatures 243

Table 1. KKS Parameters

Scheme Version k n′ t1 t2 r n nh2(
t1
n

) − rh2(
t1
r

)

KKS-2 60 1023 352 672 2808 3000 36

KKS-3
#1 60 280 50 230 990 1250 17
#2 160 1000 90 110 1100 2000 80

KKS-4 48 180 96 96 765 1100 53

Definition 2 (KKS-2). The signer chooses randomly: a binary r × (n − r)
matrix D, a non singular k×k matrix A, an n′-subset J ⊂ {1, . . . , n}. He forms
a binary r × n parity check matrix H = [Ir|D]. He chooses a generator matrix
G of a dual binary BCH code with length n′ = 2m − 1 and designed distance
2s+1. He forms F = H(J)(AG)T (he masks matrix G). The public key consists
of matrices H and F , and the secret key is the set J and the matrix A.

The following numeric values are given in [6]: m = 10, s = 6, k = ms = 60,
n′ = 210 − 1 = 1023, t1 = 352, t2 = 672, r = 2808 and n = 3000. The minimum
distance of C is at least 1024 with probability ≥ 1− 10−9.

As for the number of bits to store, we see that the private key consists of
nh2(n′

n ) bits for describing J and k2 bits for the matrix A. For the public key,
we need to store r(n − r) bits for the matrix H and rk bits for the matrix
F . KKS-2 can be even more improved by taking a random linear code for U .
Thanks to Proposition 3, it is possible to know the probability that a random
linear code have its nonzero codeword weights inside a given interval.

Proposition 3. Let U be a code defined by a random k × n′ systematic gen-
erator matrix. Let δ be a real such that 0 < δ < 1. Then the probability that a
random binary linear that its nonzero codewords have their weight inside [ω1;ω2]
is at least:

Pr {ω1 ≤ wt(U ) ≤ ω2} ≥ 1− 2−2(n′−k)+n′h2(
ω1−1

n′ )+n′h2(
n′−ω2+1

n′ ).

Definition 3 (KKS-3). The signer follows the same steps as KKS-2 but
chooses a random k × n′ systematic matrix G = [Ik|B]. The public key con-
sists of matrices H and F , and the secret key is the set J and the matrix B.

Now the size of the private key of KKS-3 consists again of nh2(n′

n ) bits for J and
k(n′ − k) bits for the matrix B. The size of the public key is not changed. We
give the following numeric values: k = 160, n′ = 900. The code U generated by
G has all its weights between t1 = 90 and t2 = 110 with probability ≥ 1−2−749.
The signer selects a random 1100 × 2000) parity check matrix H for C . Then
d(C ) > 220 with probability ≥ 1 − 2−100. Table 1 gives the parameters given
by the authors for KKS-3 called here version #1 updated with our proposition
(version #2) that encounters the current security level. Unlike what was done
in [6] where the security of the system is evaluated through t = t1+t2

2 , we give a
value for t1 such that the decoding attack [2] can not cope with it.



244 P.-L. Cayrel, A. Otmani, and D. Vergnaud

Finally, the authors proposed a modification that helps someone to construct
a KKS scheme from codes that contain codewords of low weight. The idea is to
take for the code U the direct product of P codes Ui[n∗, k∗, t∗1] overGF (q) whose
codewords have weight ≤ t∗2. Of course, U has also codewords of low weight. So,
one has to find a way to eliminate those codewords. Assume that each code Ui

is defined by a generator matrix Gi. The finite field GF (qk∗
) is considered as a

k∗-dimensional vector space over GF (q) defined by a fixed basis. We denote by
Mβ the matrix representing the linear map x �→ xβ where β ∈ GF (qk∗

). Let Q
be a non-negative integer. For any u = (u1, . . . , uQ) ∈ GF (qk∗

)Q we define for
any x ∈ GF (qk∗

)
u(x) = u1 + u2x+ · · · + uQx

Q−1.

Let β1, . . . , βP be non-zero elements of GF (qk∗
), A1, . . . , AP be non-singular

k∗ × k∗ matrices and J1, . . . , JP disjoint subsets of {1, . . . , n} of cardinality n∗

with Pn∗ < n. The application f : GF (qk∗
)Q �→ GF (q)n sends any u to z which

equals 0 on positions {1, . . . , n}\ ∪P
i=1 Ji and equals u(βi)AiGi on the positions

of Ji. The signature equation is again HzT = FuT where the public matrix is
F = (F1, . . . , FQ) and where Fj is the r × k∗ matrix that equals

Fj
def=

P∑

i=1

H(Ji)
(
Mβj−1

i
AiGi

)T

.

The set of messages is now GF (qk∗
)Q−1 and to sign (u2, . . . , uQ), the sender

chooses u1 ∈ GF (qk∗
) such that u1 
∈ {

∑Q
i=2 uiβ

i−1
j : j = 1, . . . , P} (this is

always possible when P ≤ qk∗
) and so that Pt∗1 ≤ wt(f(u)) ≤ Pt∗2. We call this

scheme KKS-4.

Definition 4 (KKS-4). The signer chooses P codes Ui[n∗, k∗, t1] over GF (q)
whose codewords have weight ≤ t2, nonzero elements β1, . . . , βP in GF (qk∗

),
non singular k∗ × k∗ matrices A1, . . . , AP and disjoint subsets J1, . . . , JP of
{1, . . . , n}. These quantities form the secret key. He forms matrix F as described
above which constitues with matrix H the public key.

Note that in this modified scheme n′ = Pn∗, k = Pk∗, t1 = Pt∗1 and t2 = Pt∗2.
The authors gave these values: Q = 14, P = 12, k∗ = 4, n∗ = 15. The codes
U1, . . . ,Up are all equal to a binary equidistant code U [15, 4, 8]. C is a random
code of length n = 1100 and dimension 335. The minimum distance d(C ) ≥ 193
with probability at least 1− 10−9. Table 1 recapitulates these values.

5 Recovering the Private Key Under a Known Message
Attack

The security of KKS signatures rests on the quality of f . We have seen that if f
provides no information then a priori KKS scheme is as secure as a Niederreiter
cryptosystem. In reality, with each use of f , we do obtain a lot of information.
Indeed, each signature z reveals |supp(z)| positions of the secret set J . Therefore



On Kabatianskii-Krouk-Smeets Signatures 245

an opponent can exploit this fact to recover J . Note that once the opponent
knows J , he can find secret matrix G by just solving the linear system F =
H(J)GT where G represents the unknown because with high probability H(J)
is a full rank matrix since most of the time r > n′.

However in the case of KKS-4, the opponent has also to find A1, . . . , AP and
the elements β1, . . . , βP that are roots of the polynomials U(X) =

∑Q
i=1 uiX

i

defined by each message (u1, . . . , uQ). We do not treat this issue in this paper
and we prefer to focus on the first scheme.

We assume that the attacker has � ≥ 1 signatures (mi, zi) at his disposal.
Each signature zi can be seen as a result of an independent random choice,
and � signatures give

∣
∣∪�

i=1supp(zi)
∣
∣ elements of J . We define the random vari-

able U�
def=
∣
∣∪�

i=1supp(zi)
∣
∣. Thus � signatures reveal on average E[U�] positions

of J where E[X ] is the expectation of a random variable X . For any position
j ∈ {1, . . . , n′}, let χj be the Bernoulli random variable defined by χj = 1 if j ∈
∪�

i=1supp(zi) and by χj = 0 otherwise. By definition U� =
∑n′

j=1 χj and conse-

quently E[U�] =
∑n′

j=1 E[χj ]. Moreover, Pr {χj = 0} =
∏�

i=1 Pr {j 
∈ supp(zi)} =

Pr {j 
∈ supp(z1)}� since the signatures zi are considered as independent random
variables:

Pr {j 
∈ supp(zi)} =
t2∑

t=t1

Pr {j 
∈ supp(zi),wt(zi) = t}

=
t2∑

t=t1

Pr {j 
∈ supp(zi)|wt(zi) = t}Pr {wt(zi) = t}

= q−k
t2∑

t=t1

Nt

(

1− t

n′

)

where Nw is the number of codewords of U of weight w. The last equation is
obtained thanks to the fact that Pr {wt(zi) = t} = Nt

qk . So we have:

Pr {j 
∈ supp(zi)} = 1− q−k

n′

t2∑

t=t1

tNt.

This implies that Pr {χj = 0} =
(
1− q−k

n′

∑t2
t=t1

tNt

)�

. Thus if we set:

p�
def= 1−

(

1− q−k

n′

t2∑

t=t1

tNt

)�

then we have proved the following proposition.

Proposition 4. The number U� of elements of J revealed by � signatures is a
random variable that follows the binomial distribution with parameters n′ and p�:



246 P.-L. Cayrel, A. Otmani, and D. Vergnaud

Pr {U� = j} =
(
n′

j

)

pj
�(1− p�)n′−j

E[U�] = n′p�.

It is necessary to know the weight distribution of the code U if one wishes to use
Proposition 4. This property is in general difficult to calculate for an arbitrary
linear code but for an equidistant code the task is easier. Corollary 1 shows that
with a probability ≥ ε the set J can be completely determined.

Corollary 1. Let U be an equidistant code (t1 = t2 = t) and let ε > 0 be a

positive real. Assume that � ≥ ln(1− n′√
ε)

ln(1 − t
n′ )

then Pr {U� = n′} ≥ ε.

Proof. The probability p� is equal to 1 − (1 − t
n′ )� when U is an equidistant

code. Therefore, if � ln(1 − t

n′
) ≤ ln(1− n′√

ε) then p� ≥ n′√
ε.

For instance, the set J is totally determined with probability ≥ 0.5 with 81
signatures for KKS-4. However, Corollary 1 is optimistic from a security point
of view because we shall see that is not necessary to have so many signatures
to break the scheme. An opponent can easily execute the following attack. Since
E[U�] = n′p� positions of J are known on average with � signatures, the opponent
has to search the (n′−n′p�) missing elements of J among the (n−n′p�) positions
left. At each step, he solves k systems of r linear equations with n′ unknowns
and stops as soon as the system admits a solution. The cost of this attack is
therefore O(kn′ω

(
n−n′p�

n′−n′p�

)
) where n′ω represents the cost to solve a linear system

with n′ unknowns (naively ω = 3). In order to apply Proposition 4 to any linear
code, we need to give inequalities for p�. This can be done by remarking that:

1−
(

1− t1
n′

)�

≤ p� ≤ 1−
(

1− t2
n′

)�

.

Let us define a def= n′(1 − t1
n′ )� and b

def= n − n′ + n′(1 − t1
n′ )�. We have then

(
n−n′p�

n′−n′p�

)
≤
(

b
a

)
. We put in Table 2 the number of operations of the attack for

different �. These numeric results are obtained by means of Inequality (4) and
by putting ω = 3: (

b

a

)

≤ 1
√

2πa(1− a
b )

2bh2(
a
b ). (4)

We see for instance that we need only � = 13 signatures to break KKS-2 with
an amount of O(278) operations, and � = 20 signatures to break version #1 of
the KKS-3 system with an amount of O(277) operations.

These numerical results are confirmed by Proposition 5 that gives a very good
approximation of the maximum number of signatures allowed without compro-
mising the security of a KKS scheme.



On Kabatianskii-Krouk-Smeets Signatures 247

Table 2. Number of operations to recover J for different values of � for the schemes
proposed in [6]

� = 15 � = 14 � = 13 � = 12 � = 11 � = 10

KKS-2 256 265 278 297 2122 2160

� = 23 � = 22 � = 21 � = 20 � = 19 � = 18

KKS-3 (version #1) 258 264 270 277 286 296

� = 6 � = 5 � = 4 � = 3 � = 2

KKS-4 246 263 296 2155 2261

Proposition 5. Assume that n sufficiently large and let n′ be such that 2n′ ≤ n
and such that the security parameter λ defined by 80−ω log2 n′−log2 k

n−n′ satisfies 0 <
λ < 1. Let γ be the smallest real > 0 such that h2(γ) = λ. Let us define �γ by:

�γ
def=

ln γ
1−γ + ln( n

n′ − 1)

ln(1 − t2
n′ )

.

The private key of the KKS system can be recovered with � signatures if � ≥ �γ.

Proof. Let � ≤ �γ and let δ�
def= n′−n′p�

n−n′p�
. Note that δ� ≤ n′

n ≤
1
2 . It is well-known

that
(

n−n′p�

n′−n′p�

)
= 2(n−n′p�)h2(δ�)+o(n). One can check that if � ≤ �γ then δ� ≥ γ

and therefore h2(δ�) ≥ h2(γ). Since p� ≤ 1− (1 − t2
n′ )�, we can write that:

(n− n′p�)h2(δ�) ≥
(

n− n′ + n′
(

1− t2
n′

)�γ
)

h2(γ)

≥ 1 + γ

1− γ (80− ω log2 n
′ − log2 k) .

So we have kn′ω2(n−n′p�)h2(δ�) ≥ 280 because 1+γ
1−γ ≥ 1 (γ ≥ 0) and this termi-

nates the proof.

Proposition 5 gives �γ = 46 allowed signatures obtained with γ = 0.00421 · · ·
for our parameters of KKS-3 version #2. Actually, Inequality (4) shows that we
can sign at most 40 times.

6 Extension to Multi-time Signatures

From One-Time to Multi-time Signatures. Merkle trees were invented in
1979 by Merkle [13]. The original purpose was to make it possible to efficiently
handle many Lamport [7] one-time signatures. A Merkle tree is a way to commit



248 P.-L. Cayrel, A. Otmani, and D. Vergnaud

to nmessages with a single hash value in such a way that revealing any particular
message requires revelation of only logn hash values.

The underlying idea is to place the n messages at the leaves of a complete
binary tree (assuming n is a power of 2 for the sake of simplicity) and then to
compute the value at each non-leaf node in the tree as the hash of the values of
its two children. The value at the root of the tree is the commitment to the n
messages. To reveal a value, the user publishes it as well as the values at siblings
of each ancestor of it (the so-called authenticating path). One can easily verify
that the value was correctly revealed by simply computing hashes up the tree
and checking that the ultimate hash value matches the root.

Merkle trees have been proposed to extend one-time signatures to multi-time
signatures. The idea is to generate n one-time public keys, and place them in a
Merkle tree. The root of the Merkle tree becomes the public key of the signature
scheme. For more details, we refer the reader to Merkle’s original paper [13].
From Few-Time to Multi-time Signatures. Following Merkle’s idea, it
is possible to extend a few-time signature scheme into a multi-time signature
scheme with the same security. If the underlying signature scheme is secure
against a �-chosen/known message attacks, the idea is to place the n messages
at the leaves of a complete �-ary tree.

Let Σ� = (Setup�, Sign�,Verify�) be a signature scheme secure against a �-
chosen/known message attacks and let n be an integer (for the ease of ex-
planation, we assume that n = �p is a power of �). The scheme Σmulti =
(Setupmulti, Signmulti,Verifymulti) is defined as follows:

– Setupmulti: on input an integer λ (the security parameter), Setupmulti calls
(�p−1 − 1)/(�− 1) times Setup�(λ) in order to obtain the key pairs:

(pki,j , ski,j) for j ∈ {0, . . . , p− 1} and i ∈ {1, . . . , �j}.

The public key is the root pk1,0 and the private key consists of a concate-
nation of the key pairs (pki,j , ski,j). The user must keep a counter which
contains the number of previously created signatures. In the beginning, the
counter is set to zero.

– Signmulti: Let i be the counter. On input a message m and the secret key,
Signmulti computes σ0 = Sign�(m, skr0,p−1) where r0 = �i/�� and then re-
cursively σt+1 = Signk(pkrt,p−1−t, skrt+1,p−2−t) , where rt+1 = �rt/�� for
t ∈ {0, . . . , p− 2}. The resulting signature on m is:

σ =
(
σ0, pkr0,p−1, σ1, pkr1,p−2, . . . , σp−2, pkrp−2,1

)
.

– Verifymulti: on input a message m, a signature

σ =
(
σ0, pkr0,p−1, σ1, pkr1,p−2, . . . , σp−2, pkrp−2,1

)
,

and a public key pk0,1, Verifymulti accepts the signature σ if and only if:

Verify�(pkrt,p−1−t, skrt+1,p−2−t, σt+1) = 1 for t ∈ {1, . . . , p− 2}

and Sign�(m, skr0,p−1, σ0) = 1.



On Kabatianskii-Krouk-Smeets Signatures 249

The security of Σmulti against an n-chosen/known message attack is trivially
equivalent to the one of Σ� against a �-chosen/known message attack. In the
design of Σmulti, tradeoffs can be made between size of the signatures and size of
the public key.

This construction permits to transform the KKS signature schemes into classi-
cal multi-time schemes, but the resulting signatures are unfortunately very long,
and in order to make the scheme more practical, it is necessary to reduce the
size of the public parameters.

7 Reduction of Parameters

In this section we study the key sizes of the KKS schemes and the way to re-
duce them. We restrict ourselves to the binary case. Firstly, we recall the size
of the different parameters for each KKS scheme. The private key consists of
nh2(n′

n )+k2 bits in the case of KKS-2 and nh2(n′

n )+k(n′−k) bits in the case of
KKS-3. As to the public key, both schemes need to store r(n−r)+rk bits. Table 3
which gives numeric values obtained shows as such these solutions can not be
used practically. However, we can improve the storage of the public key. Indeed,
H can be shared by all the users. Thus each user needs only to provide his own F .

Table 3. Key sizes in bits

Scheme Public key Private key
Common (H) Personal (F ) Total public key

KKS-2 539136 168480 707616 6378

KKS-3
version #1 257400 59400 316800 14160
version #2 990000 176000 1166000 120385

Gaborit presented in [5] a method that reduces the key sizes of error-correcting
code cryptosystems. The idea relies upon the use of almost quasi-cyclic matrices.
Such matrices are completely determined if the first row is known.

Definition 5 (Almost quasi-cyclic matrix). An r×n matrix M with r ≥ 2
and n ≥ 2 is a almost quasi-cyclic matrix if each row vector is rotated one
element to the right relative to the preceding row vector:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c1 c2 . . . . . . cn
cn c1 c2 cn−1

cn−1 cn c1 c2 cn−2

...
. . . . . . . . . . . .

...
cn−r+2 . . . cn−1 cn c1 c2 . . . cn−r+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Our new scheme relies on the use of random almost quasi-cyclic codes rather than
pure random linear codes. We modify KKS schemes by replacing each random
matrix by a random systematic almost quasi-cyclic matrix. In other words, the



250 P.-L. Cayrel, A. Otmani, and D. Vergnaud

parity check matrix H = (Ir |D) is chosen such thatD is almost quasi-cyclic. The
common public key size is now (n− r) bits and the personal public key still has
rk bits. For KKS-2 the private key does not change but for KKS-3 the random
systematic matrix G can also be a systematic almost quasi-cyclic matrix. In
that case the private key has nh2(n′

n ) + (n′ − k). When applied to our proposed
version of KKS-3 (number 2), this methods gives 176000 bits for the personal
public key, 900 bits for common public key and only 2726 bits for the private
key. The signature length is about log2

(
n
t2

)
= log2

(
2000
110

)
= nh2( 11

200 ) = 615 bits.

8 Efficiency Issues and Conclusion

In [15], Perrig proposed a one-time signature scheme called “BiBa” (for Bins and
Balls) whose main advantages are fast verification and short signatures. In 2002,
Reyzin and Reyzin [16] presented a simpler one-time signature scheme, called
HORS, that maintains BiBa’s advantages and removes its main disadvantage,
namely the costly generation of signatures. As the schemes studied in this paper,
the HORS scheme can be used to sign a few number of messages, instead of just
once (and the security decreases as this number increases). Therefore it is worth
comparing its efficiency with the one of the KKS schemes.

In the table 4, we compare (for the same heuristic security) the performances
of KKS-3 version #2 with our parameters and the HORS scheme implemented
with the same one-way function and allowing to sign the same number of mes-
sages (namely, 40).

Table 4. Efficiency comparison of KKS and HORS for 80-bits of heuristic security

Scheme
HORS HORS HORS

KKS-3
(k, t) = (16, 23657) (k, t) = (20, 14766) (k, t) = (32, 8364)

Public key size 23833000 147836000 854000 176900
Private key size 3785120 2362560 1338240 2726
Signature size 2560 3200 5120 615

KKS compares very favorably in performance with respect to HORS since its
key sizes are much smaller and it can be used over a lower bandwidth channel.
However, the generation of HORS signatures is faster since it requires only the
evaluation of a hash-function. Furthermore, the security of HORS reduces to an
ad-hoc (though well-defined) security assumption on the underlying hash func-
tion, whereas the scheme KKS has been proposed without any formal security
analysis.

In this paper, we have quantified the variation of the security of KKS schemes
against a passive attacker who may intercept a few signatures, but an interesting
open issue which remains is to study their resistance to forgery in a reductionnist
approach.

Acknowledgements. We thank P. Gaborit for helpful discussions.



On Kabatianskii-Krouk-Smeets Signatures 251

References

1. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the intractability
of certain coding problems. IEEE Transactions on Information Theory 24(3),
384–386 (1978)

2. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a
linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)

3. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

4. Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryp-
tosystems and their security, Cryptology ePrint Archive, Report 2006/162 (2006),
http://eprint.iacr.org/

5. Gaborit, P.: Shorter keys for code based cryptography. In: WCC 2005. LNCS,
vol. 3969, pp. 81–91. Springer, Heidelberg (2006)

6. Kabatianskii, G., Krouk, E., Smeets, B.J.M.: A digital signature scheme based on
random error-correcting codes. In: Darnell, M. (ed.) Cryptography and Coding.
LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)

7. Lamport, L.: Constructing digital signatures from a one way function, Tech. Report
CSL-98, SRI International (October 1979)

8. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

9. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359
(1988)

10. Li, Y.X., Deng, R.H., Wang, X.-M.: On the equivalence of McEliece’s and Niederre-
iter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1),
271–273 (1994)

11. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, 5th edn.
North–Holland, Amsterdam (1986)

12. McEliece, R.J.: A public-key system based on algebraic coding theory, pp. 114–116,
Jet Propulsion Lab, DSN Progress Report 44 (1978)

13. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1989)

14. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems Control Inform. Theory 15(2), 159–166 (1986)

15. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Proceedings of the 8th ACM Conference on Computer and Communications
Security, pp. 28–37. ACM Press, New York (2001)

16. Reyzin, L., Reyzin, N.: Better than BiBa: Short One-Time Signatures with Fast
Signing and Verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS,
vol. 2384, pp. 144–153. Springer, Heidelberg (2002)

17. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen,
G. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp. 106–113. Springer,
Heidelberg (1989)

18. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

19. Véron, P.: Problème SD, opérateur trace, schémas d’identification et codes de
goppa, Ph.D. thesis, Université Toulon et du Var, Toulon, France (1995)

http://eprint.iacr.org/


C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 252 – 263, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Self-certified Signatures Based on Discrete Logarithms 

Zuhua Shao 

Department of Computer and Electronic Engineering 
Zhejiang University of Science and Technology 

No. 318, LiuHe Road, Hangzhou, Zhejiang 
310023, P.R. of China 

zhshao_98@yahoo.com 

Abstract. In the trivial PKI, a digital signature provides the authenticity of a 
signed message with respect to a public key, while the authenticity of the public 
key with respect to a signer lies on a certificate provided by a certificate 
authority. To verify a signature, verifiers have to first verify the corresponding 
certificate. To avoid this burden, in this paper, we propose a self-certified 
signature scheme based on discrete logarithms to provide an implicit as well as 
mandatory verification of public keys. We show that this new scheme can 
achieve strong unforgeability in the random oracle model. 

Keywords: Discrete logarithm; Self-certified public key signature; strong 
unforgeability. 

1   Introduction 

A digital signature [1] is analogous to an ordinary hand-written signature, and 
establishes both of signer authenticity and data integrity assurance. In a signature 
scheme, each signer randomly chooses a private key and publishes the corresponding 
public key. The signer uses his private key to compute signatures for some messages, 
while any other can verify the signatures with the corresponding public key. However, 
public key cryptosystems suffer from the well-known authentication problem [2]. If an 
imposter supplies a valid but incorrect public key, a user could unknowingly encipher 
confidential data that would be decipherable to the imposter or be tricked into accepting 
wrong signatures with incorrect public keys. Hence, before using a public key, users are 
required to first verify the binding of the public key and the identity of its holder.  

The most familiar approach to certifying a public key is to use an explicit certificate 
such as X.509 [3]. Whenever a user wants to use a public key, he has to first verify the 
corresponding certificate, which incurs an additional computation burden to him. 
Another approach, introduced by Shamir [4], is called identity-based public key. The 
public key is nothing but the identity of the signer. The corresponding private key is 
generated by a Private Key Generator PKG. All users have to trust PKG entirely, since 
PKG knows their private keys. A sophisticated approach, first introduced by Girault 
[5], is called self-certified public key. Each user chooses his private key, computes the 
corresponding public key and sends it to a certificate authority. Then the certificate 



 Self-certified Signatures Based on Discrete Logarithms 253 

authority computes the certificate (witness) for the user’s public key by using a RSA 
cryptosystem [6], which satisfies a computationally unforgeable relationship with 
the public key and the identity of the holder. Verifiers can generate the public key from 
the identity and the certificate. The scheme offers an implicit certification, in that the 
authenticity of a public key is verified through the subsequent uses of the correct 
private key. 

Compared with the identity-based approach, the self-certified public key approach 
can get rid of key escrow problems and secure channel problems. Compared with the 
traditional PKI approaches, this approach can provide an implicit validation of public 
keys when the system works. Hence, ordinary users without cryptography knowledge 
would benefit from this automatic, as well as mandatory validation of public keys. 

Gentry introduced the concept of certificate-based encryption [7]. Later, Al-Riyami 
and Paterson introduced the concept of certificateless public key cryptography 
(CL-PKC) [8], including certificateless public key encryption (CL-PKE), signature 
(CL-PKS) and key exchange scheme from pairings. Recently, Shao proposed a 
self-certified scheme (SCS) from pairings [9] under the CDH assumption, which is 
more efficient than the CL-PKS of Al-Riyami and Paterson. Furthermore, Shao 
provided a formal security proof based on a new security definition in the random 
oracle model.  

Although with different terms, the three schemes addressed the same security 
concerns, namely, to offer an automatic authentication for the binding public key and 
its holder and to get rid of the key escrow problem to be inherent in the identity-based 
public key cryptography (ID-PKC). Hence, they use the similar way, that is, a 
certificate, or, more generally, a signature of the public key and the identity of the 
holder, acts not only as a certificate but also as the private key. 

In the three schemes, this certificate makes use of the short signatures from pairings, 
due to Boneh et al. [10], which is deterministic. There is single one signature 
corresponding to a given message. Hence, they adopt a slightly weaker security model, 
called single-occurrence adaptive chosen-message attack (SO-CMA), where the 
adversary is allowed to make at most one signature query for each message.  

Since Diffie and Hellman invented the concept of the public key cryptography, 
discrete logarithm-based schemes have been one of the most popular signature 
schemes. The computation for the modular exponentiations in the discrete 
logarithm-based schemes is more efficient than that for the admissible pairings. 
Meanwhile, the underlying assumption, Discrete Logarithm problem DL, is believed to 
be harder than that of the short signature from pairings, Computational Diffie-Hellman 
CDH problem. 

Petersen and Horster [11] first extended Girault’s works to discrete logarithm-based 
cryptosystems. A problem of their self-certified public key is that it only provides 
implicit authentication, i.e., the validity of a self-certified public key is verified only 
after a successful application. They illustrated the relevance of all concepts by 
discussing several useful applications, including proxy signatures [12]. Shao [13] 
proposed a self-certified signature scheme based on discrete logarithms, providing both 
implicit authentication and explicit authentication. Lee and Kim [14] proposed a 
self-certified signature scheme and a multi-certificate signature scheme. However these 
works did not provide a formal security proof, which results in some troublesome: there 
has been no consensus on the precise meaning of the security requirements for 



254 Z. Shao 

self-certified public keys based on discrete logarithms. Some schemes attempted 
formal security definitions and security proofs, and some schemes turned out, in fact, to 
be insecure [15, 16]. The main difficulty comes from the security requirement that 
partial private keys chosen by the adversary are unknown to simulators. To our best 
knowledge, no formal security definitions of strong unforgeability and security proofs 
for self-certified signature schemes based on discrete logarithms have been proposed to 
date. 

In this paper, we propose a Self-Certificate Signature scheme based on Discrete 
Logarithms (SCSDL). We will introduce a security model and provide a formal 
security proof for it in the random oracle model. The underlying signature of the 
proposed scheme is the Schnorr signature [17]. There may be several signatures 
corresponding to a given message. Hence, we adopt a stronger security model, called 
strong unforgeability [18], where the adversary needs to forge a new signature of a 
message and is allowed to ask for signatures of the same message many times, and each 
new answer would give it some useful information. This more liberal rule makes the 
adversary successful when it outputs one new signature on a previously signed 
message. 

2   Self-certified Signature Scheme 

In this section, we first present a formal definition for the Self-Certified Signature 
schemes (SCS), which is a modification of that in [9]. The two main entities involved in 
a SCS scheme are a certificate authority CA and a signer S. Then we propose a concrete 
Self-Certified Signature scheme based on Discrete Logarithms (SCSDL).  

2.1   The Definition of a Self-certified Signature Scheme 

Definition 1. A Self-Certified Signature scheme (SCS) is specified as the following 
four probabilistic algorithms Gen, Extract, Sign, and Verify:  

(1) The key generation algorithm Gen that when given a security parameter 1k as 
input and returns two key pairs (xCA, YCA) and (xS, YS) of the certificate authority CA 
and the signer S respectively. Gen also outputs system parameters, including two 
cryptographic hash functions H and F. 

(2) The certificate extracting algorithm Extract that when given the pair (xCA, YCA) of 
the certificate authority CA and a certificate message CIS in any form, which 
includes a serial number, the signer’s identity and public key YS, the issuer’s 
identity and public key YCA, a period of validity, extensions, etc., produces a 
signature CertS, which is the secret certificate of the certificate message CIS. 

(3) The signing algorithm Sign that when given the pair (xS, YS) of the signer, the 
secret certificate CertS and a message M as input, produces a signature σ.  

(4) The verification algorithm Verify that on input (CIS, M, σ), returns either invalid 
or valid, with the property that if {(xCA, YCA), (xS, YS)}← Gen(1k), CertS ← Extract 
(xCA, YCA, CIS) and σ ← Sign(M, xS, YS, CertS), then Verify(CIS, M, σ) = valid. This 
algorithm need not be probabilistic. 



 Self-certified Signatures Based on Discrete Logarithms 255 

2.2   The Self-certified Signature Scheme Based on DL (SCSDL) 

We use the Schnorr signature [17] as the underlying signature, which has been proven 
to be secure in the random oracle model. [19] 

We now describe the SCSDL signature scheme in full detail. 

(1) The key generation algorithm Gen:  
Let p and q be large primes with q|(p – 1). Also let Gg, p = {g0, g1, …, gq-1} be a subgroup 
of the multiplicative group Zp*, where g is a generator with the prime order q. Let H and 
F be (ideal) hash functions, where 

H: {0, 1}*× Zp
*→ Zq

*  and  F: {0, 1}*× Zp
*× Zq

* → Zq
* 

The certificate authority CA picks a random xCA in Zq* as the private key and 

computes the corresponding public key YCA = CAxg  mod p. The signer S generates her 

key pair (xS, YS) similarly. 

(2) The certificate extracting algorithm Extract:  
The signer S sends her public key YS and her identity information to the certificate 
authority CA. After authenticating them, CA composes the certificate message CIS for 
the signer S. The certificate authority CA computes a secret certificate CertS that is the 
Schnorr signature of the certificate authority CA on the certificate message CIS. To 
generate CertS, CA chooses a random number kS ∈ Zq* and computes  

CertS = (rS, dS) = ( Skg mod p, xCAH(CIS, rs) + kS mod q). 

CA chooses a random number r ∈ Zq
*, computes u = gr mod p and w = dS ⊕ H(rS, YS

r 
mod p). CA sends (u, rS, w, CIS) to the signer S.  

S first recovers CertS = (rS, dS) by dS = )mod,( purHw Sx
S⊕ . Finally, S verifies 

(rS, dS) and the certificate message CIS by checking 

S
rCIH

CA
d rYg SSS ),(=  mod p. 

(3) The signing algorithm sign:  
The signer S chooses a random number k ∈ Zq

* and computes 

r = gk mod p, hS = H(CIS, rS), e = F(M, r, hS), s = k – e(xShS
2 + dS) mod q. 

The self-certified signature of the message M is σ = (CIS, s, e, rS). 

(4) The verification algorithm Verify:  
The verifier first checks the validity of CIS, and then computes hS = H(CIS, rS), r = 

e
S

h
CA

h
S

s rYYg SS )(
2

mod p and e’ = F(M, r, hS). If e = e’, outputs valid, otherwise 

outputs invalid. 

Completeness: Because dS = xCAH(CIS, rs) + kS mod q and s = k – e(xShS
2 + dS) mod q 

= k – e(xShS
2 + xCAhS + kS) mod q, then k = s + e(xShS

2 + xCAhS + kS) mod q implies r = 
e

S
h

CA
h

S
s rYYg SS )(

2

mod p. Hence, the signature σ = (s, e, CIS, rS) produced by the 

signing algorithm Sign is always valid. 



256 Z. Shao 

Remark 1: By using ElGamal encryption [20] to distribute the public key certificate CertS, 
CA can also check that the public key YS chosen by the signer S is well generated [3]. 

Remark 2: The values (xShS
2 + dS) and )(

2

S
h

CA
h

S rYY SS  can be precomputed once for 

all, since they are independent of messages to be signed.  

Remark 3: Our results can also be carried over to other groups, such as those built on 
elliptic curves. 

3   Security Model and Security Proof 

In this section, we first describe the formal security model for the SCSDL scheme and 
introduce two types of adversaries. Then we provide a security proof for the SCSDL 
scheme in the random oracle model. 

3.1   Security Model for SCSDL Scheme 

Existential unforgeability against adaptive chosen message attacks (EUF-CMA) [21] is 
the well-accepted security model for signature schemes, where the adversary is allowed 
to ask the challenger to sign any message of its choice adaptively, i.e. he can adapt its 
queries according to previous answers. Finally, the adversary could not provide a new 
message-signature pair with a non-negligible advantage.  

The underlying signature of the proposed scheme, the Schnorr signature, is not 
deterministic. The signer may generate several signatures corresponding to a given 
message. We adopt a stronger security model, strong unforgeability, where the 
adversary is allowed to ask for signatures of the same message many times, and he 
would obtain some useful information from each new answer. The adversary is 
required to forge a new signature on a previously signed message. This model gives the 
adversary more powers and more chances for success. 

Furthermore, the security definition for Self-Certified public keys must be 
strengthened more. Besides ordinary adversaries of signatures, there are two types of 
adversaries with more powers than ordinary adversaries. A Type 1 adversary is an 
uncertified signer, who wants to impersonate a victim by using public keys of its 
choice, along with the identity of the victim. The adversary is allowed to ask for the 
secret certificate associated with any CIi of its choice, including the certificate 
information CIS being challenged (which is not allowed in both CL-PKS and SCS from 
pairings [8, 9]). We refer to such queries as certificate extraction queries. A Type 2 
adversary is a malicious CA, who wants to impersonate a victim with a given public 
key. Like in PKI, however, the Type 2 adversary cannot access the corresponding 
private key chosen by the victim, otherwise there would be not any security at all since 
such malicious CA could know all private keys. Additionally, the self-certified 
signatures are with respect to two public keys, only one is chosen by the challenger, the 
other chosen by the adversaries is unknown to the challenger. Hence, it is a chosen key 
model that gives the adversaries more powers than those in ordinary signature schemes. 



 Self-certified Signatures Based on Discrete Logarithms 257 

Type 1 attack 
We say that a Self-Certified Signature scheme based on Discrete Logarithms SCSDL is 
strongly unforgeable against the Type 1 attack if no polynomial bounded Type 1 
adversary A has a non-negligible advantage against the challenger in the following 
game: 

Gen: The challenger takes a security parameter 1k and runs the key-generation algorithm. 
It gives the Type 1 adversary the resulting system parameters {p, q, g} and a random 
public key YCA of the certificate authority CA.  
Queries: The Type 1 adversary A issues queries q1, …, qm adaptively where query qi is 
one of:  

- Certificate extraction query <CIi>, where CIi includes the public key Yi chosen by 
the Type 1 adversary A besides the public key YCA.  

- Self-certified sign query <CIi, Mi>.  

Output: Finally, the Type 1 adversary outputs a new signature σ for a message M with 
respect to a certificate information CIS composed by the adversary, which includes 
singer’s public keys YS chosen by the adversary besides the challenged public key YCA.  

The Type 1 adversary A wins the game if the output signature (CIS, s, e, rS) is 
nontrivial, i.e. it is not an answer of a self-certified sign query for the message M and 
the certificate information CIS, and rS is not an answer of a certificate extraction 
query <CIS>. 

The probability is over the random bits used by the challenger and the Type 1 
adversary.  

Remark 4: If the Type 1 adversary could forge a new secret certificate for the certificate 
information CIS, he would easily forge a self-certified signature for any message by 
using the private key of its choice. 

Type 2 attack 
We say that a Self-Certified Signature scheme based on Discrete Logarithms SCSDL is 
strongly unforgeable against the Type 2 attack if no polynomial bounded Type 2 
adversary A has a non-negligible advantage against the challenger in the following 
game: 
Gen: The challenger takes a security parameter 1k and runs the key-generation 
algorithm. It gives the Type 2 adversary the resulting system parameters {p, q, g} and a 
random public key YS of a signer.  
Queries: The Type 2 adversary A issues queries q1, …, qm adaptively, where query qi is 
one of:  

- Ordinary sign query <Mi> under the public key YS. 
- Self-certified sign query <CIi, mi>, where CIi includes the public key YCAi 

chosen by the Type 2 adversary A besides the public key YS.  

Output: Finally, the Type 2 adversary outputs a new self-certified signature σ with 
respect to a certificate information CIS composed by the adversary, which includes the 
public key YCA chosen by the Type 2 adversary A besides the challenged public key YS, 
or a new ordinary signature for a message M with respect to the public key YS.  

The Type 2 adversary A wins the game if the output signature (CIS, s, e, rS) is 
nontrivial, i.e. it is not an answer of a self-certified sign query for the message M under 



258 Z. Shao 

the certificate information CIS or the output ordinary signature is not an answer of an 
ordinary sign query for the message M under the challenged public key YS. 

The probability is over the random bits used by the challenger and the Type 2 
adversary.  

Definition 2 (Discrete Logarithm DL assumption). A probabilistic algorithm B is said 
to (t, ε)-break DL in a group Gg,p, if on input (g, p, q, y = ga mod p) and after running in 
time at most t, B computes the discrete logarithm problem a = logg,py with probability at 
least ε, where the probability is over the uniform random choices of g from the group 
Gg,p, of (a) from Zq

*, and the coin tosses of B. The (t, ε)-DL assumption on the group 
Gg,p is that no algorithm can (t, ε)-break DL in the group Gg,p. 

3.2   Security Proof of the SCSDL Scheme 

We have the following theorem about the security of the SCSDL scheme. 

Theorem. Let the hash functions H, F be random oracles. Then the Self-Certified 
Signature scheme based on Discrete Logarithms SCSDL is strongly unforgeable under 
the Discrete Logarithm DL assumption.  

Lemma 1: Suppose that there is a type 1 adversary A, that has advantage ε against the 
SCSDL scheme and A runs in time at most t. Suppose that A makes at most qH, qF 
queries to the hash functions H and F respectively, at most qE queries to the certificate 
extraction oracle, and at most qSS queries to the self-certified sign oracle. Then there is 
an algorithm B that (t’, ε’)-breaks DL in the group Gg,p, where:  

ε ≤ qHqF (2
19ε’)1/10 + 1/q + qSS(qF + qSS)/p + qE(qH + qE)/p (1) 

t ≈ t’/6 – (4qSS + 2qE)Cexp(Gg,p) (2) 

Here Cexp(Gg,p) denotes the computation of a long exponentiation in the group Gg,p. 

Lemma 2: Suppose that there is a type 2 adversary A, that has advantage ε against the 
SCSDL scheme and A runs in time at most t. Suppose that A makes at most qH, qF 
queries to the hash functions H and F respectively, at most qOS queries to the ordinary 
sign oracle, and at most qSS queries to the self-certified sign oracle. Then there is an 
algorithm B that (t’, ε’)-breaks DL in the group Gg,p, where:  

ε ≤ qHqF (2
19ε’)1/10 + 1/q + qSS(qF + qSS)/p + qOS(qH + qOS)/p (3) 

t ≈ t’/6 – (4qSS + 2qOS)Cexp(Gg,p) (4) 

Proof: We only provide a proof for Lemma 1 since that for Lemma 2 is similar.  
We show how to construct a DL algorithm B that uses A as a computer program to 

gain an advantage ε’ for a DL problem with running time t’. The challenger takes a 
security parameter 1k and runs the key-generation algorithm to obtain the group Gg, p 
and YCA. Its goal to output xCA = log,g,pYCA ∈ Zq

*. 
Algorithm B simulates the challenger and interacts with the Type 1 adversary A in 

the following attack games:  



 Self-certified Signatures Based on Discrete Logarithms 259 

Algorithm B gives the adversary A the resulting parameters and YCA as the public key 
of the certificate authority. At any time, the adversary A can query hash oracles H or F. 
To response to these queries, B maintains two lists of tuples for the hash oracles H and 
F, respectively. We refer to these lists as H-list and F-list. The contents of the two lists 
are “dynamic” during the attack games. Namely, when the games start, they are initially 
empty, but at the end of the games, they record all pairs of queries/answers. 

Answering H-oracle Queries. For a new query <CIi, ri>, algorithm B picks a random 
hi in Zq

*, and responds with hi = H(CIi, ri) and adds the tuple <<CIi, ri>, hi> to the H-list. 

Answering F-oracle Queries. For a new query <Mi, ri, hi>, B checks if hi is in the 
H-list and generates a random ei ∈ Zq

* and responds with ei = F(Mi, ri, hi) and adds the 
tuple <<Mi, ri, hi >, ei> to the F-list. 

Obviously, in two ways, hi and ei are uniform in Zq
*, and they are independent of A’s 

current view as required. 

Answering certificate extraction queries. When A queries a new certificate 
extraction oracle with some certification information <CIi>,  

1. B checks if CIi is a valid certificate information. 

2. B generates two random integers hi and di ∈ Zq
* and computes ri =

ii h
CAi

d Yg −
 mod p, 

where YCAi is the public key of a certificate authority in CIi. 
3. If there exists a tuple <<CIi, ri>, hi’> in the H-list with hi ≠ hi’, B aborts and restarts 

simulation (the probability of this unfortunate coincidence is at most (qH + qE)/p).  
4. B answers with (ri, di, CIi), and adds the tuple <<CIi, ri>, hi> to the H-list. 

Answering self-certified sign queries. When the adversary A queries a new 
self-certified signature <CIi, Mi>,  

1. B checks if CIi is a valid certificate information. 
2. B picks a random ri ∈ Zp

* and runs the above algorithm for responding to H-queries 
to obtain hi = H(CIi, ri). 

3. B chooses at random si and ei ∈ Zq
*, and computes r = iiii e

i
h

CAi
h

i
s rYYg )(

2

 mod p, 

where YCAi is the public key of a certificate authority and Yi is the public key of a 
signer in CIi.  

4. If there exists a tuple <<Mi, r, hi>, ei’> in the F-list with ei ≠ ei’, B reports failure and 
terminates. (The probability of this unfortunate coincidence is at most (qF + qSS)/p). 

5. Otherwise, B responds with (si, ei, CIi, ri) to the adversary A and adds <<Mi, r, hi>, 
ei> to the F-list. 

Obviously, the outputs of the simulated oracles are indistinguishable from those in 
the real attacks.  

Finally, the adversary A returns a new self-certified signature (CIS, s, e, rS) of a 
message M under the challenged public keys <YCA, YS> such that 

F(M, e
S

h
CA

h
S

s rYYg SS )(
2

mod p, hS) = e, where hS = H(CIS, rS) 

 



260 Z. Shao 

If the adversary A has not queried F(M, r, h) or H(CIS, rS), the probability  

Pr[F(M, e
S

h
CA

h
S

s rYYg SS )(
2

mod p, hS) = e, where hS = H(CIS, rS)] ≤ 1/q 

since both the responses F(M, r, H(CIS, rS)) and H(CIS, rS) are picked randomly. 
Hence, with the probability  

(1- 1/q)(ε – qSS(qF + qSS)/p – qE(qH + qE)/p)  
≥ (ε - 1/q– qSS(qF + qSS)/p – qE(qH + qE)/p) 

the Type 1 adversary A returns a new self-certified signature (CIS, s, e, rS) such that   

F(M, e
S

h
CA

h
S

s rYYg SS )(
2

mod p, hS) = e, where hS = H(CIS, rS) 

and the responses F(M, r, H(CIS, rS)) and H(CIS, rS) are in the F-list and the H-list. 
The verification equation is equivalent to the equation 

)),(,,(),(),( )(
2

SSSSSS rCIHrMF
S

rCIH
CA

rCIH
S

s rYYg = r mod p, 

where the certificate information includes the public key YS of a signer and the public 
key YCA of a certificate authority. YS is chosen by the adversary A and YCA is chosen by 
the challenger.  

We try to use oracle replay techniques of Pointcheval and Stern [19] to solve this DL 
problem, finding xCA = logg,pYCA. 

B uses six copies of the Type 1 adversary A. In the attack games, the Type 1 
adversary A would choose its public key YS that is included in the certificate 
information CIs. We first guess a fixed index 1 ≤ k ≤ qH and hope that (CIk, rk) happens 
to be one for which A asks for H(CIk, rk) query, i.e. CIS = CIk. Then we guess a fixed 
index 1 ≤ j ≤ qF and hope that <Mj, rj, hk> happens to be one for which A forges a 
self-certified signature of the message Mj. A must first asks for H(CIk, rk) before for 
F(Mj, rj, hk).  

Suppose that we make two good guesses by chance, denoted by the event 
GoodGuess. The probability of the event GoodGuess is 

Pr[GoodGuess] = 1/(qHqF). 

Hence, with the probability  

ε’’≥ (ε – 1/q– qSS(qF + qSS)/p – qE(qH + qE)/p)/(qFqH) 

the adversary A generates a new self-certified signature. 
B gives the same system parameters, the public key YCA and same sequence of 

random bits to the six copies of the adversary A, and responds with the same random 
answers to their queries for oracles until they at the same time ask the H-oracle query 
for <CIk, rk>. This is the first forking point. At that point, B gives three independent 
random answers h1, h2 and h3 to the hash queries H(CIk, rk), the first two, gives h1, the 
second two, gives h2, and the last two, gives h3.  

Then B gives the first two copies of the adversary A same sequence of random bits, 
and the same random answers to their oracle queries until they both ask for F(Mj1, rj1, 
h1). This is the second forking point. At that point, B gives two independent random 



 Self-certified Signatures Based on Discrete Logarithms 261 

answers e11 and e12 to the hash queries F(Mj1, rj1, h1) in the two runs. Similarly, B gives 
two independent random answers e21 and e22 to the hash queries F(Mj2, rj2, h2) (the third 
forking point) in the second two runs, e31 and e32 to the hash queries F(Mj3, rj3, h3) (the 
4th forking point) in the last two runs. Thus, we would obtain six self-certified 
signatures, satisfying the following equations: 

111
2

111 )( e
S

h
CA

h
S

s rYYg = rj1 mod p 

121
2

112 )( e
S

h
CA

h
S

s rYYg = rj1 mod p 

212
2

221 )( e
S

h
CA

h
S

s rYYg = rj2 mod p 

222
2

222 )( e
S

h
CA

h
S

s rYYg = rj2 mod p 

313
2

331 )( e
S

h
CA

h
S

s rYYg = rj3 mod p 

323
2

332 )( e
S

h
CA

h
S

s rYYg = r3 mod p 

From these equations, we have  

S
h

CA
h

S
eess rYYg 1

2
111121211 )/()( =−−  mod p 

S
h

CA
h

S
eess rYYg 2

2
221222221 )/()( =−−  mod p 

S
h

CA
h

S
eess rYYg 3

2
331323231 )/()( =−−  mod p 

Then we can derive both logg,pYS and logg,pYCA, since h1, h2 and h3 are different from 
each other. 

We continue to use the “splitting lemma” [19] to compute the probability that A 
works as hoped. Let X be the set of possible sequences of random bits and random 
function values that take the adversary up to the first forking point where A asks for 
H(CIk, rk); let Y be the set of possible sequences of random bits and random function 
values from the first forking point to the second forking point, where A asks for F(Mj1, 
rj1, h1); let Z be the set of possible sequences of random bits and random function values 
from the second forking point. By assumption, for any x ∈ X, y ∈ Y, z ∈ Z, the 
probability that A, supplied the sequences of random bits and random values (x||y||z), 
generates a self-certified signature is ε’’.  

Suppose that the sequences of random bits and random function values supplied up to 
the first forking point in the simulations is a. By “splitting lemma”, Pr{a ∈ “good” subset 
Ω} ≥ ε’’ / 2, and whenever a ∈ Ω, y ∈ Y, z ∈ Z, the probability that A, supplied the 
sequences of random bits and random values (a||y||z), produces a forgery is at least ε’’ / 2. 

Suppose that the sequences of random bits and random function values, supplied 
from the first forking point up to the second forking point in the simulations, is b. Thus, 
Pr{b ∈ “good” subset Ω’} ≥ ε’’/4, and whenever a ∈ Ω, b ∈ Ω’, z ∈ Z, the probability 



262 Z. Shao 

that A, supplied the sequences of random bits and random values (a||b||z), produces a 
forgery is at least ε’’/4.  

By the same reason, we can compute the same probability for the other two cases.  
Hence the probability that B solves the discrete logarithm through the six 

simulations is  

ε’ ≥ (ε’’)10/219 ≥ ((ε –1/q – qSS(qF + qSS)/p – qE(qH + qE)/p)/(qFqH))10/219 

The time required to run one simulation is t + (4qSS + 2qE)Cexp(Gg,p). The time 
required to solve the discrete logarithm logg,pYCA is 

t’ ≤ 6(t + (4qSS + 2qE)Cexp(Gg,p)). Q.E.D. 

Therefore, from Lemma 1 and Lemma 2, we obtain the Theorem.  

4   Conclusions 

Compared with the trivial PKI-based signature schemes based on discrete logarithms, 
the proposed self-certified signature scheme avoids a multi-exponentiation for 
verification. If the group Gg, p is built on GF(p), the signature size of the proposed 
scheme is longer than that of the trivial PKI-based signature schemes, while if the 
group is built on elliptic curves, the comparison result is in opposition. 

Compared with the pairings-based self-certified signature schemes, such as the 
CL-PKS of Al-Riyami and Paterson and the SCS of Shao, the proposed scheme not 
only enjoys greater efficiency and easy implementation but also does not rely on the 
relatively new and untested hardness assumption related to bilinear maps.      
Furthermore the proposed scheme can achieve strong unforgeability. 

In the proposed scheme, the binding of the public key and the identity of its holder 
can be verified implicitly at the same time as the schemes work. Afterwards the signer 
can use the verified private key directly to sign messages. Anyone can also use the 
verified public key directly to encrypt messages. This is the main advantage over the 
concept of self-certified keys of Petersen and Horster. 

Acknowledgements. This material is based upon work funded by Zhejiang Provincial 
Natural Science Foundation of China under Grant No.Y104201. 

References 

1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. IT-22, 644–654 
(1976) 

2. Kohnfelder, L.M.: A method for certificate, MIT Lab. For Computer Science, Cambridge, 
Mass. (1978) 

3. IEEE P1363 Standard Specifications for Public Key Cryptography (2000) 
4. Shamir, A.: Identity-based cryptosystem based on the discrete logarithm problem. In: 

Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, 
Heidelberg (1985) 

5. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, 
vol. 547, pp. 491–497. Springer, Heidelberg (1991) 



 Self-certified Signatures Based on Discrete Logarithms 263 

6. Rivest, R.L., Shamir, A., Adelman, L.: A method for obtaining digital signatures and 
public-key cryptosystem. Commun. ACM 21(2), 120–126 (1978) 

7. Gentry, C.: Certificated-based encryption and the certificate revocation problem. In: Biham, 
E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 272–293. 
Springer–Verlag, Heidelberg (2003) 

8. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. 
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003) 

9. Shao, Z.: Self-certified signature scheme from pairings. Journal of System and 
Software 80(3), 388–395 (2007) 

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Wail pairings. In: Boyd, C. 
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001) 

11. Petersen, H., Hoster, P.: Self-certified keys-Concept and Applications. In: Petersen, H., 
Hoster, P. (eds.) Proc. Communication and Multimedia Security’97, pp. 102–116. Chapman 
& Hall, Sydney, Australia (1997) 

12. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: Delegation of the power to sign 
messages. IEICE Trans. Fundam. E79-A(9), 1338–1354 (1996) 

13. Shao, Z.: Cryptographic systems using self-certified public key based on discrete 
logarithms. IEE Proc.-Comput. Digit. Tech. 148(6), 233–237 (2001) 

14. Lee, B., Kim, K.: Self-Certified Signatures. In: Menezes, A.J., Sarkar, P. (eds.) 
INDOCRYPT 2002. LNCS, vol. 2551, pp. 199–214. Springer, Heidelberg (2002) 

15. Wu, T.-S., Hsu, C.-L.: Threshold signature scheme using self-certified public keys. Journal 
of Systems and Software 67(2), 89–97 (2003) 

16. Bao, H., Cao, Z., Wang, S.: Remarks on Wu-Hsu’s threshold signature scheme using 
self-certified public keys. Journal of Systems and Software 78(1), 56–59 (2005) 

17. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 3(3), 
161–174 (1991) 

18. An, J., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, 
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002) 

19. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. 
Journal of Cryptology 13(3), 196–361 (2000) 

20. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete 
logarithms. IEEE Trans. Inform. Theory IT-31, 469–472 (1985) 

21. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive 
chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988) 



Attacking the Filter Generator over GF (2m)

Sondre Rønjom and Tor Helleseth

The Selmer Center,
Department of Informatics, University of Bergen

PB 7800, N-5020 Bergen, Norway
{sondrer,torh}@ii.uib.no

Abstract. We consider the filter generator over GF (2m) consisting of
a linear feedback shift register of length k that generates a maximal
length linear sequence of period 2mk − 1 over GF (2m) and a Boolean
function of degree d that combines bits from one element in the shift
register (considered as an element in GF (2m)) and creates a binary out-
put bit zt at any time t. We show how to extend a recent attack by
the authors on the binary filter generator to the filter generator over
GF (2m). The attack recovers the initial state of the filter generator
from L keystream bits with complexity O(L), after a pre-computation
with complexity O(L(log2L)3), where L is the linear complexity upper
bounded by D =

∑d
i=1

(
n
i

)
with n = mk, which is also the number of

monomials of degree ≤ d over GF (2). In addition we explain why a func-
tion of only one element of the shift register reduces the linear complexity
of the keystream significantly, compared to using the function freely on
bits from several words in the initial state. We also discuss implications
for the WG stream cipher [4].

Keywords: Filter generators, m-sequences, Boolean functions, solving
nonlinear equations.

1 Introduction

The filter generator over GF (2) uses a linear feedback shift register of length
n that generates a maximal linear sequence (an m-sequence) of period 2n − 1
in combination with a nonlinear Boolean function f of degree d that combines
output from the shift register (st, st+1, . . . , st+n−1) at any time t and produces
an output bit zt. The filter generator is an important building block in stream
ciphers and some of the eSTREAM candidates make use of the filter generator
as a major component.

In a recent paper [5] Rønjom and Helleseth present a new attack that re-
constructs the initial state (s0, s1, . . . , sn−1) of the binary filter generator us-
ing L keystream bits with complexity O(L), where L is upper bounded by
D =

∑d
i=1

(
n
i

)
, after a pre-computation of complexity O(L(log2L)3). For an

introduction to results on algebraic attacks the reader is referred to [1] and [3],
and [5] for a comparison of the attack described in this paper with fast algebraic
attacks.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 264–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Attacking the Filter Generator over GF (2m) 265

The main idea in [5] is to use the underlying structure of m-sequences to im-
prove the existing solution techniques for the nonlinear system in the n unknowns
s0, s1, . . . , sn−1 obtained from the relations

zt = ft(s0, s1, . . . , sn−1), t = 0, 1, . . . , L− 1.

Then we have that ft(s0, s1, . . . , sn−1) = f(st, st+1, . . . , st+n−1) ∈ R/J , where
R = GF (2)[s0, ..., sn−1] is reduced over J = {s20 + s0, ..., s

2
n−1 + sn−1}.

For any U = {u0, u1, . . . , ur−1} ⊂ {0, 1, . . . , n − 1} let sU = su0su1 · · · sur−1 .
Let KU,t be the coefficient for the monomial sU in the corresponding equation at
time t. Then we can represent the system of equations in terms of the coefficient
sequences KU,t as

zt =
∑

U

sUKU,t. (1)

The method in [5] shows that all coefficient sequences KU,t where |U | ≥ 2
corresponding to all nonlinear terms obey the same linear recursion with charac-
teristic polynomial p(x) =

∑L−n
j=0 pjx

j with zeros βJ where the Hamming weight
of the binary representation of J , denoted wt(J) obeys 2 ≤ J ≤ d = deg(f). This
polynomial can be constructed in the pre-computation phase and has complexity
O(L(log2L)3) ([3]). Here β is a zero of the primitive polynomial that generates
the shift register in the filter generator. The pre-computation also computes
the n polynomials f∗t for t = 0, 1, . . . , n − 1 defined by f∗t (s0, s1, . . . , sn−1) =
∑L−n

j=0 pjft+j(s0, s1, . . . , sn−1). Note that these are linear polynomials since all
nonlinear coefficient sequences obey the recursion. Moreover, only f∗0 needs to
be computed, since f∗1 , ..., f∗n−1 are shifts of the equation f∗0 and the resulting
n× n coefficient matrix is thus a Vandermonde type matrix.

To solve the nonlinear equation system to find the initial state s0, s1, . . . , sn−1

for a given keystream zt of L bits, one computes the n bits z∗t =
∑L−n

j=0 pjzt+j

for t = 0, 1, . . . , n− 1.
The initial state (secret key) (s0, s1, . . . , sn−1) can now be determined from

the linear system of n equations in the n unknowns s0, s1, . . . , sn−1 given by

z∗t = f∗t (s0, s1, . . . , sn−1) for t = 0, 1, . . . , n− 1.

In the case when f∗0 
= 0 the coefficient matrix of the system will be non-singular.
The case f∗0 = 0 has very small probability 2−n and the attack needs some
modifications and may not work so efficiently.

The method above works for a binary filter generator using a linear shift regis-
ter over GF (2). Some filter generators such as the WG cipher in the eSTREAM
project uses a shift register over GF (2m). In this paper a filter generator over an
extension field is considered. This filter generator uses a shift register of length
k, where all the elements belong to GF (2m), in combination with a Boolean
function f of degree d. At any time t the Boolean function is a function of the



266 S. Rønjom and T. Helleseth

m-bits in a single element (that is considered as an element in GF (2)m) in the
shift register. The WG cipher has k = 11, m = 29, n = mk = 319 and d = 11.

The focal point of this paper is to extend the attack by Rønjom and Helleseth
to the filter generator over GF (2m). In order to prove this, the analog of the
coefficient sequences need to be calculated. Furthermore, they are shown to pos-
sess the properties needed to extend the attack in [5]. A particular observation
is that when the Boolean function is defined on a single element in the linear
feedback shift register, the linear complexity of the keystream zt will typically
reduce by a factor of e−d2(k−1)/2n compared with the case when the Boolean
function acts on all bits in the initial state of linear feedback shift register.
The attack recovers the initial state of the WG cipher in complexity ≈ 245.0415

using the same number of keybits, after a pre-computation of complexity 262.
One should, however, observe that the designers of the WG ciphers have re-
stricted the number of keybits on a given key to 245. It should also be noted
that this type of attack is applicable to any linear register, not only LFSRs,
and also when the filter function is a nonlinear function of bits from several
LFSRs.

2 Preliminaries

Let the sequence {St} over GF (2m) obey a recursion of degree k given by

k∑

j=0

gjSt+j = 0, gj ∈ GF (2m)

where g0 
= 0 and gk = 1. For cryptographic applications such as in a filter gen-
erator one normally considers the characteristic polynomial g(x) =

∑k
j=0 gjx

j

of the linear recursion to be a primitive polynomial over GF (2m). The sequence
{St} overGF (2m) is completely determined by the initial state (S0, S1, . . . , Sk−1)
and the characteristic polynomial g(x). We denote all 2mk sequences generated
by g(x), corresponding to all initial states, by Ω(g(x). The nonzero sequences
generated by g(x) are maximal length sequences of period 2mk − 1 = 2n − 1,
where n = mk. The zeros of g(x) are β2mi

for i = 0, 1, . . . , k − 1, where β is a
primitive element in GF (2n). For further information on linear feedback shift
registers the reader is referred to [2].

By repeated use of the recursion we can write St as a linear combination of
the n elements in the initial state. Thus, we have

St =
k−1∑

i=0

SiLit (2)

for some k sequences {Lit} over GF (2m) for i = 0, 1, . . . , k−1. Note that each of
these k sequences obey the same recursion as {St} and are thus maximal length
linear sequences. This follows since it holds for all integers t that



Attacking the Filter Generator over GF (2m) 267

0 =
k∑

j=0

gjSt+j

=
k∑

j=0

gj

k−1∑

i=0

SiLi,t+j

=
k−1∑

i=0

Si

k∑

j=0

gjLi,t+j .

This relation holds for any initial state (S0, S1, . . . , Sn−1). For example, letting
Si = 1 and Sl = 0 for the remaining elements in the initial state, it follows that
each {Lit} obeys the recursion. Note that all the sequences {Lit} are nonzero and
therefore m-sequences for i = 0, 1, . . . , k − 1 since Lii = 1 for i = 0, 1, . . . , k − 1.

Let Trn
m(x) denote the trace mapping from GF (2n) to a subfield GF (2m),

where n = mk, defined by

Trn
m(x) =

k−1∑

i=0

x2mi

.

It is well known that we can write any sequence over GF (2m) generated by
g(x) in terms of the trace mapping. In particular the k sequences Lit for i =
0, 1, . . . , k − 1, can be represented in the form

Lit = Trn
m(Aiβ

t) (3)

where β is a zero (and a primitive element of GF (2n)) of g(x) and Ai ∈ GF (2n).
During the shifting of the register the elements S0, S1, . . . , St, . . . in GF (2m)

are generated. Each element in GF (2m) is identified with an m-bit binary vector
using a suitable basis. Let {μ0, μ1, . . . , μm−1} and {α0, α1, . . . , αm−1} denote two
dual bases for GF (2m) over GF (2). Thus Trm

1 (μiαj) = δij where δij = 1 if i = j
and 0 otherwise. We represent the element St in GF (2m) as an m-bit binary
vector given by St = (smt, smt+1, . . . , smt+m−1) using the basis {αj}. Then

St =
m−1∑

j=0

smt+jαj .

Then using the dual basis, we can find the components of St by

smt+j = Trm
1 (Stμj). (4)

Since the element St and thus the bits smt+j , j = 0, 1, . . .m − 1, are the
input bits to the Boolean function at time t, it is useful to find an expression
for any bit sr in terms of the initial bits s0, s1, . . . , sn−1 in the register. In
particular, the lemma below provides a relation smt+j =

∑n−1
u=0 sul

(j)
u,t where

l
(j)
u,t = Trn

1 (Aiαlμjβ
t) and u = mi+ l, where 0 ≤ l < m and 0 ≤ i < k.



268 S. Rønjom and T. Helleseth

Lemma 1. Let r = mt+ j, where 0 ≤ j < m, then

sr =
n−1∑

u=0

Trn
1 (Buμjβ

t)su

where u = mi+ l, 0 ≤ i < k, 0 ≤ l < m, and Bu = Aiαl.

Proof. By definition, and using the representation of Litμj in the basis {μl},
we obtain from (2), (3) and (4) that

smt+j = Trm
1 (Stμj)

= Trm
1 (

k−1∑

i=0

SiLitμj)

=
k−1∑

i=0

Trm
1 (Si

m−1∑

l=0

Trm
1 (Litμjαl)μl)

=
k−1∑

i=0

m−1∑

l=0

Trm
1 (Litμjαl)Trm

1 (Siμl)

=
k−1∑

i=0

m−1∑

l=0

Trm
1 (Litμjαl)smi+l.

Using the trace representation of Lit given in (3), and letting r = mt+ j, we
obtain

sr =
k−1∑

i=0

m−1∑

l=0

Trn
1 (Aiαlμjβ

t)smi+l

=
k−1∑

i=0

m−1∑

l=0

Trn
1 (Aiαlμjβ

t)su

=
n−1∑

u=0

Trn
1 (Buμjβ

t)su

where u = mi+ l, 0 ≤ i < k, 0 ≤ l < m, and Bu = Aiαl. �

3 Finding the Coefficient Sequences

The filter function is a Boolean function f(x0, x1, . . . , xm−1) in m variables of
degree d. For a subset A = {a0, a1, . . . , ar−1} of {0, 1, . . . ,m − 1} we use the
notation xA = xa0xa1 · · ·xar−1 . The Boolean function can then be written as

f(x0, x1, . . . , xm−1) =
∑

A

cAxA, cA ∈ {0, 1}

where the summation is taken over all subsets A of {0, 1, . . . ,m− 1}.



Attacking the Filter Generator over GF (2m) 269

The keystream bit zt, at time t, is computed by only selecting bits from the
element St = (smt, smt+1, . . . , smt+m−1) in the m-sequence over GF (2m) such
that

zt = f(smt, smt+1, . . . , smt+m−1).

By expressing smt, smt+1, and smt+m−1 as a linear combination of s0, s1, . . . ,
sn−1, we arrive at a system of equations of degree d relating the n unknowns
s0, s1, . . . , sn−1 in the initial state to the keystream bits zt. This leads to a set
of nonlinear equations for t = 0, 1, . . .

zt = ft(s0, s1, . . . , sn−1).

For any U = {u0, u1, . . . , ur−1} ⊂ {0, 1, . . . , n − 1} let sU = su0su1 · · · sur−1 .
Let KU,t be the coefficient of sU in the corresponding equation at time t, re-
sulting from the keystream and the Boolean function via zt = f(smt, smt+1, . . . ,
smt+m−1). Then we can represent the system of equations as

zt =
∑

U

sUKU,t. (5)

In this section we investigate the properties of the coefficient sequences KU,t of
sU . The crucial part of the attack depends on the properties of these sequences.
The main observation is that these sequences have a nice structure. This is shown
in [5] for the binary filter generator and will be proved also to be the case for
the filter generator over an extension field.

For simplicity, we first consider the contribution to the keystream from a
Boolean function consisting of a single monomial of degree r, say f∗ = xa0xa1 . . .
xar−1 , where 0 ≤ a0 < a1 < · · · < ar−1 < m. Let A = {a0, a1, . . . , ar−1},
uj = mij + lj, Buj = Aijαlj , and l(aj)

uj ,t = Trn
1 (Bujμajβ

t), for j = 0, 1, . . . , r − 1,
then

zt = f∗(smt+a0 , smt+a1 , . . . , smt+ar−1)
= smt+a0smt+a1 · · · smt+ar−1

=
r−1∏

j=0

(
k−1∑

ij=0

m−1∑

lj=0

Trn
1 (Aijαljμajβ

t)smij+lj )

=
∑

u0,u1,...,ur−1

su0su1 · · · sur−1 l
(a0)
u0,t l

(a1)
u1,t · · · l

(ar−1)
ur−1,t

=
∑

U

sU

∑

U={u0,u1,...,ur−1}
l
(a0)
u0,t l

(a1)
u1,t · · · l

(ar−1)
ur−1,t

=
∑

U

sUKU,A,t

where

KU,A,t =
∑

U={u0,u1,...,ur−1}
l
(a0)
u0,t l

(a1)
u1,t · · · l

(ar−1)
ur−1,t . (6)



270 S. Rønjom and T. Helleseth

The summation runs over all combinations of u0, u1, . . . , ur−1 where the uj’s are
in {0, 1, . . . , n− 1} and such that U = {u0, u1, . . . , ur−1}.

Therefore, for the general case, any Boolean function f of degree d in m
variables can be written as a sum of monomials as f =

∑
A cAxA. Note in

particular that each subset A of {0, 1, . . . ,m−1} such that |A| ≥ |U | contributes
to the coefficient sequence KU,t. We therefore obtain

zt = f(smt, smt+1, . . . , smt+m−1)

=
∑

A

cA
∑

U

sUKU,A,t

=
∑

U

sU

∑

A,|A|≥|U|
cAKU,A,t

=
∑

U

sUKU,t

where

KU,t =
∑

A,|A|≥|U|
cAKU,A,t. (7)

Let U ⊂ {0, 1, . . . , n − 1} and A = {a0, a1, . . . , ar−1}. Let the sum below
range over all r-tuples (u0, u1, . . . , ur−1) where the uj ’s are in {0, 1, . . . , n − 1}
and such that U = {u0, u1, . . . , ur−1}. Let for simplicity Bij = B2j

i , βj = β2j

and μaj = μ2j

a . Then by definitions, we obtain

KU,A,t =
∑

U={u0,u1,...,ur−1}

l
(a0)
u0,tl

(a1)
u1,t · · · l

(ar−1)
ur−1,t

=
∑

U

Trn
1 (Bu0μa0βt)Trn

1 (Bu1μa1βt) · · ·Trn
1 (Bur−1μar−1βt)

=
∑

U

(

n−1∑

j0=0

Bu0j0μa0j0βt
j0

)(

n−1∑

j1=0

Bu1j1μa1j1βt
j1

) · · · (
n−1∑

jr−1=0

Bur−1jr−1μar−1jr−1βt
jr−1

)

=
∑

U

∑

j0,j1,...jr−1

Bu0j0Bu1j1 · · ·Bur−1jr−1μa0j0μa1j1 . . . μar−1jr−1 [βj0βj1 . . . βjr−1 ]t

=
∑

j0,j1,...jr−1

(
∑

U

Bu0j0Bi1j1 · · · Bir−1jr−1 )μa0j0μa1j1 . . . μar−1jar−1 [βj0βj1 . . . βjr−1 ]t

=
∑

j0,j1,...jr−1

TU,J μa0j0μa1j1 . . . μar−1jr−1 [βj0βj1 . . . βjr−1 ]t

=
∑

j0,j1,...jr−1

TU,J μa0j0μa1j1 . . . μar−1jr−1β
(2j0+2j1+···+2jr−1 )t

(8)

where
TU,J =

∑

U={u0,u1,...,ur−1}
Bu0j0Bu1j1 · · ·Bur−1jr−1 .

In the following we will describe a useful lemma needed to find the mini-
mum polynomial of the coefficient sequences KU,t. Let ji be integers such that



Attacking the Filter Generator over GF (2m) 271

0 ≤ ji < n for i = 0, 1, . . . , r−1. To any r-tuple (j0, j1, . . . , jr−1) we associate the
integer defined by J = 2j0 + 2j1 + · · ·+ 2jr−1 (mod 2n − 1). Furthermore, the
weight of J is denoted wt(J) and denotes the weight of the binary representation
of J .

Lemma 2. Let U ⊆ {0, 1, . . . , n− 1} and furthermore let (j0, j1, . . . , jr−1) and
J = 2j0 + 2j1 + · · · + 2jr−1 (mod 2n − 1). Let wt(J) < |U | and let the sum
below range over all r-tuples (u0, u1, . . . , ur−1) such that U = {u0, u1, . . . , ur−1}.
Then

TU,J
def
=

∑

U={u0,u1,...,ur−1}
Bu0j0Bu1j1 · · ·Bur−1jr−1 = 0.

Proof. This proof is similar to the proof of Lemma 1 in [5]. We give the proof
for completeness. Let wt(J) < |U |, where |U | denotes the number of distinct
elements in I considered as a subset of {0, 1, . . . , n − 1}. Since, wt(J) < |U | it
follows that two of the ji’s must be the same. Without loss of generality we
can assume j0 = j1 = j. An important observation is that this implies that all
terms cancel pairwise except the ones where u0 = u1. The reason for this is that
otherwise, if u0 
= u1, all the terms in TU,J will cancel pairwise since

Bu0jBu1j · · ·Bur−1jr−1 = Bu1jBu0j · · ·Bur−1jr−1 .

Furthermore, since if j0 = j1 we can assume that u0 = u1, it follows from the
observation B2

u,j = Bu,j+1, that

TU,J =
∑

U={u0,u1,...,ur−1}
Bu1j1+1Bu2j2 · · ·Bur−1jr−1 .

Since wt(J) < |U | it follows that the second indices can not all be distinct. Thus
we can repeat the argument until all the remaining ul’s are distinct. The fact
that wt(J) < |U | implies that two of the remaining second indices must still be
the same. Thus since the corresponding first indices now are different it follows
that the terms in TU,J cancel pairwise and we obtain TU,J = 0. �

It follows from the expression in (8) that KU,A,t can be written as

KU,A,t =
2n−2∑

J=0

bJβ
Jt

and Lemma 2 combined with (8) implies that |U | ≤ wt(J) ≤ |A| ≤ d = deg(f)
and some bJ ∈ GF (2n). Therefore KU,A,t is generated by the binary polynomial
pw(x) with zeros βJ where w ≤ wt(J) ≤ d = deg(f). Since KU,t is a linear
combination of terms of the form KU,A,t, where |A| ≥ |U | it holds that

KU,t =
∑

A,|A|≥|U|
cAKU,A,t

is also generated by pw(x).



272 S. Rønjom and T. Helleseth

For the coefficient sequences we have therefore proved the following lemma. As
a consequence of this discussion it also follows in particular that zt is generated
by p1(x).

Lemma 3. Let KU,t be the coefficient sequence corresponding to sU for a
Boolean function f of degree d. Then KU,t is generated by the polynomial pw(x)
with zeros βJ where w = |U | ≤ wt(J) ≤ d.
Note that p1(x)| p2(x)| · · · | pd(x). The generator polynomial pw(x) therefore gen-
erates all coefficient sequences KU,t for all sets of U such that w ≥ |U |. It follows
that the polynomial p(x) = p2(x) with zeros βJ where 2 ≤ wt(J) ≤ d generates
all the coefficient sequences of degree 2 and larger. Therefore, using the recursion
with characteristic polynomial pw(x) on the relation zt = ft(s0, s1, . . . , sn−1)
leads to a linear equation in the unknowns s0, s1, . . . , sn−1 since all nonlinear
terms disappear due to the recursion.

Let Zf be the set of zeros that may occur as zeros of the minimum polynomial
of the possible keystreams that may be generated by a filter generator. For a
Boolean function of degree d then Zf is contained in the set βJ where 1 ≤
wt(J) ≤ d. Observe that the zeros of the minimum polynomial of any coefficient
sequence is a subset Zf . For example if the initial state is (s0, s1, . . . , sn−1) =
(1, 0, . . . , 0) then zt = K{1},t. Similarly any coefficient sequence corresponding
to a linear term has their zeros in Zf . To show that this is the case for any
coefficient sequenceKU,t, we proceed by induction with respect to |U |. In general
if the initial state has si = 1 exactly when i ∈ U , then

zt =
∑

V ⊂U

KV,t

contains the term KU,t and terms KV,t corresponding to proper subsets of V
of U . Since the zeros of the minimum polynomial of zt are in Zf and the same
is true, by induction, for the zeros of the minimum polynomial of all coefficient
sequences KV,t for all proper subsets V of U , it follows that the zeros of the
minimum polynomial of KU,t are also in Zf .

Thus we can perform essentially the same attack as in [5] also for the word
oriented filter generator by deriving a set of linear equations in the n unknowns
s0, s1, . . . , sn−1 and the bits in the keystream zt. The complexity of the attack
will be as in [5] a pre-computation of complexity O(L(log2L)3) and the actual
attack is of complexity O(L), where L is the linear complexity upper bounded by
D =

∑d
i=1

(
n
i

)
. For the WG cipher the linear complexity L is given in [4] to be

≈ 245.0415. The zeros of the generator polynomial of all possible keystream zt are
known and the generator polynomial corresponding to the coefficient sequences
of degree at least two can be generated similar to the techniques in [3] with
complexity O(L(log2L)3). The initial state in the WG cipher can be found in
complexity ≈ 245.0415 using the same number of keybits, after a pre-computation
done only once with complexity 262. One should, however, observe that the
authors restrict the number of keybits on a given key to 245. Note that a standard
algebraic attack is not possible directly and the existence of a fast algebraic
attack is highly unlikely according to the authors of WG.



Attacking the Filter Generator over GF (2m) 273

One additionally interesting observation in studying the word oriented filter
generator that we observe from our approach is that the linear complexity is
sometimes significantly smaller than it would have been if the Boolean function
had acted on all the bits in the initial state instead of limiting itself to the bits
within one single word.

For a typical binary filter generator involving a Boolean function of degree d,
the linear complexity L will typically be of the order

∑d
i=1

(
n
i

)
. This corresponds

to the maximum number of possible nonzero terms of the form bJβ
Jt where

1 ≤ wt(J) ≤ d. In general there are no known way of showing that certain
coefficients disappear for all Boolean functions. Furthermore, examples shows
that frequently all coefficients are nonzero.

However, in the special case when one uses the filter generator over GF (2m)
there are large families of integers J such that bJ = 0, no matter how the Boolean
function is selected, as long as it acts on one element in the linear feedback shift
register only. This observation may lead to a significant reduction of the linear
complexity of zt.

Lemma 4. Let zt be the keystream obtained from the filter generator of length
k with elements over GF (2m). Then the linear complexity of zt is at most

d∑

w=1

n(n− k)(n− 2k) . . . (n− (w − 1)k)
w!

where n = mk.

Proof. The linear complexity of a keystream sequence zt is the number of
nonzero coefficients in the expression for zt in terms of the zeros βJ given by

zt =
∑

J,1≤wt(J)≤d

bJβ
Jt.

The keystream zt can be written as a sum of coefficient sequences given by

zt =
∑

U

sUKU,t.

We will show that for large families of integers J it holds that the coefficient bJ
of βJt is zero for all coefficient sequences KU,t. Let

J = 2j′
0 + 2j′

1 + · · ·+ 2j′
w−1

where the j′i’s are distinct and 0 ≤ j′i < n. The main observation is that it turns
out that bJ = 0 for any J whenever two of the j′i’s are the same modulo m.
This holds for any Boolean function that acts on a single element in the linear
feedback shift register.

To give a brief sketch of why this holds we again consider the description
KU,t as a sum of terms of the form KU,A,t, where |A| ≥ |U |. It follows that



274 S. Rønjom and T. Helleseth

it is sufficient to show that the coefficient of βJt disappears in the description
of KU,A,t for these values of J . The main idea is to extend the arguments in
Lemma 2 in combination with the key fact that the μaiji ’s are in the subfield
GF (2m). It follows from (8) that KU,A,t equals

KU,A,t =
∑

j0,j1,...jr−1

TU,Jμa0j0μa1j1 . . . μar−1jr−1β
(2j0+2j1+···+2jr−1 )t

where

TU,J =
∑

U={u0,u1,...,ur−1}
Bu0j0Bu1j1 · · ·Bur−1jr−1 .

Each J = 2j0 + 2j1 + · · ·+ 2jr−1 contributing to this sum do not necessarily
have distinct values of the ji’s. We assume that the unique binary representation
of J is J = 2j′

0 + 2j′
1 + · · · + 2j′

w−1 where the j′is are distinct. It follows from
Lemma 2 that TU,J = 0 whenever wt(J) < |U |. In the case when wt(J) ≥ |U |,
the arguments in Lemma 2 imply that TU,J can be represented in the form

TU,J =
∑

U={u′
0,u′

1,...,u′
w−1}

Bu′
0j′

1
Bu′

1j′
1
· · ·Bu′

w−1j′
w−1

.

Furthermore, subsets of the ji’s are combined to form the j′i’s. Suppose j′1 =
j′0 + tm. Then any of the ji’s involved in forming j′0 are increased by tm while
any of the ji’s involved in j′1 are decreased by tm. This leads to another number
J∗ modulo 2n − 1. Since the μaiji ’s are in GF (2m), the modifications of ji by a
multiple of m do not change the value of μaiji , and thus the contribution from
J corresponding to j0, j1, . . . , jr−1 and J∗ cancel. It follows that all terms cancel
pairwise and thus the coefficient bJ = 0.

The number of choices of J of weight w with a nonzero coefficient bJ of βJt

is therefore at most the number of choices of the j′1, j
′
2, . . . , j

′
w that are distinct

modulo m, which is given by n(n−k)(n−2k)···(n−(w−1)k)
w! , since n = mk. �

Observe that the fraction of J ’s of weight wt(J) = w with bJ 
= 0 for this case
compared with the case when the Boolean function acts on bits in the initial state
(when the linear complexity contribution from terms J of weight w is typically(

n
w

)
) is therefore

Frac(w) =
n(n− k)(n− 2k) · · · (n− (w − 1)k)
n(n− 1)(n− 2) · · · (n− (w − 1))

Hence, for large values of n = mk compared to k we obtain a rough estimate
of Frac(w) = e−w(w−1)(k−1)/(2n)). Since the main contribution to the linear
complexity will normally come from the highest degree d a typically reduction
in complexity will be by a factor of magnitude about e−d2(k−1)/(2n) under these
assumptions.



Attacking the Filter Generator over GF (2m) 275

4 Conclusions

The filter generator over an extension field uses a shift register of length k that
generates an m-sequence S0, S1, . . . of period 2mk − 1 over GF (2m) in combi-
nation with a Boolean function f of degree d that acts on a single element
St at any time t. An attack on the filter generator over GF (2m) has been de-
scribed in this paper as an extension of the attack in [5]. The general attack
reconstructs the initial state in complexity O(L) after a pre-computation of
complexity O(L(log2L)3), where L ≤ D =

∑d
i=1

(
n
i

)
.

An additional observation is that this construction reduces the linear com-
plexity L of the keystream, sometimes to a small fraction of the maximal linear
complexity that would be possible by using the Boolean function on all bits
instead of just using the bits confined to one single element of GF (2m).

Acknowledgements

This work was supported by the Norwegian Research Council.

References

1. Canteaut, A.: Open problems related to algebraic attacks on stream ciphers. In:
Ytrehus, Ø., (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer, Heidelberg
(2006)

2. Golomb, S.W., Gong, G.: Gong Signal Design for Good Correlation: For Wireless
Communication, Cryptography and Radar. Cambridge University Press, Cambridge
(2005)

3. Hawkes, P., Rose, G.: Rewriting variables: The complexity of fast algebraic attacks
on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
390–406. Springer, Heidelberg (2004)

4. Nawaz, Y., Gong, G.: The WG stream cipher, eSTREAM project,
http://www.cosic.esat.kuleuven.ac.be/ecrypt/stream/ciphers/wg/wg.pdf.

5. Rønjom, S., Helleseth, T.: A New Attack on the Filter Generator, accepted by IEEE
Transactions on Information Theory

http://www.cosic.esat.kuleuven.ac.be/ecrypt/stream/ciphers/wg/wg.pdf.


Cyclic Additive and Quantum Stabilizer Codes

Jürgen Bierbrauer

Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931, USA

Abstract. We develop the theory of additive cyclic codes and of cyclic
quantum stabilizer codes.

Keywords: Cyclic codes, additive codes, quantum codes, Galois group,
cyclotomic cosets, Kloosterman codes.

1 Introduction

Definition 1. A q-linear qm-ary code [n, k]qm is a km-dimensional Fq-subspace
of C ⊆ En, where E = Fm

q . In particular C has qkm codewords.

This is a generalization of linear codes in the sense that the alphabet is not
considered as field Fqm but only as a vector space over the subfield Fq. These
codes are also collectively known as additive codes although it may be wiser
to reserve this term for the more general case when the alphabet is considered
as an abelian group.

In [8, 2, 3] we generalized the classical theory of linear cyclic codes and ob-
tained a description of a large class of additive cyclic codes. This mechanism
was then used to obtain constructions of quantum stabilizer codes. Let us call
the family of cyclic additive codes as described in [8, 2, 3] twisted codes.
The theory of twisted codes does not describe the additive cyclic codes in their
generality. A small example of a good cyclic code, which is not twisted, is the
[7, 3.5, 4]4-code obtained by a computer construction in Blokhuis-Brouwer [6].
In [4] we give a design-theoretic construction of this code.

One of the main objectives of the present paper is to give a general theory
of the additive cyclic codes of length coprime to the characteristic. It turns out
that the theory of twisted codes is the main ingredient of the general theory. We
obtain a parametric description of all those codes and enumerate them. A first
construction result is a cyclic [15, 4.5, 9]4-code. The second main objective is the
theory of cyclic quantum stabilizer codes. This is the special case of the general
theory when the alphabet is E = F2

q and the code is self-orthogonal with respect
to the symplectic form. We give a parametric description and an enumeration
of those quantum stabilizer codes and of the self-dual such quantum codes. The
case q = 2 of quaternary quantum stabilizer codes is of special interest. In fact
the original paper [7] works only with quaternary codes. A justification of the
extension to general self-orthogonal symplectic codes is in [1, 11].

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 276–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Cyclic Additive and Quantum Stabilizer Codes 277

2 Notation and Twisted Codes

Let n | qr − 1, where r is the order of q mod n. Consider the field F = Fqr and
the trace tr : F −→ Fq. The Galois group G = Gal(F |Fq) = {g0, g1, . . . , gr−1}
where gi maps x ∈ F to xqi

acts on Zn = Z/nZ in the natural way. The orbits
of G on Zn are the cyclotomic cosets. For a fixed cyclotomic coset Z we denote
s = |Z|. Let z ∈ Z. The stabilizer H of z in G has order r/s and is generated
by gs. The fixed field of H is L = Fqs . Let W ⊂ F be the subgroup of order n,
generated by α.

A twisted code C of length n is described by two ingredients,

• a subset A ⊆ Zn and
• a tuple Γ = (γ1, γ2, . . . , γm) ∈ Fm such that the γj are linearly indendent

over Fq (and consequently m ≤ r).
The F -vector space P(A) consists of the polynomials with coefficients in F

all of whose monomials have degrees in A. The codewords of the F -linear length
n code (B(A), Γ ) are the evaluations ev(v, Γ ) where v ∈ P(A), whose entry in
coordinate u ∈ W is the m-tuple (γ1v, . . . , γmv). Let 〈, 〉 be a nondegenerate
bilinear form on the vector space E = Fm

q , extended to En in the natural way.
The twisted codes are tr(B(A), Γ ) and its dual with respect to 〈, 〉. In a tradi-
tional coding context it is natural to choose 〈, 〉 as the Euclidean form (the dot
product). In the context of quantum codes one chooses m = 2 and a symplectic
form, giving E the structure of a hyperbolic plane.

Let A = {z} and Z the cyclotomic coset containing z. With the notation
introduced above (|Z| = s,H,L) denote by ΓH the orbit of Γ under H and
by 〈ΓH〉F the F -vector space generated by ΓH . Also, let 〈γ1, . . . , γm〉L be the
L-vector space generated by the γj .

Proposition 1. The dimension of tr((B(z), Γ ) equals

s · dimF 〈ΓH〉F = s · dimL(〈γ1, . . . , γm〉L)

Proof. The first expression is a special case of Theorem 21 of [2]. In order to
prove the second expression consider the Fq-linear mapping a �→ tr(ev(aXz , Γ ))
which by definition is surjective : F −→ tr((B(z), Γ ). It has a in the kernel if
and only if a ∈ (〈γ1, . . . , γm〉L)⊥, where the dual is with respect to the trace
form. �
We consider the ambient space VF = Fmn as the space of n-tuples of m-tuples:
VF = {(vu) | u ∈ W} where vu ∈ Fm. For each cyclotomic coset Z let VF (Z) =
ev(P(Z)m). Here the typical element (p1(X), . . . , pm(X)) ∈ P(Z)m has evalua-
tion (vu), where vu = (p1(u), . . . , pm(u)). We have dim(VF (Z)) = m|Z| and

VF = ⊕ZVF (Z).

Also the Fq-dimension of tr(VF (Z)) is m|Z| and

Fmn
q = En = ⊕Ztr(VF (Z)).

It follows from the classical theory of linear cyclic codes that the dual of
tr(VF (Z)) with respect to 〈, 〉 is ⊕Z′ �=−Ztr(VF (Z ′)) (see Theorem 13.6 of [3]).



278 J. Bierbrauer

3 Irreducible Additive Cyclic Codes

Definition 2. An additive cyclic code is irreducible if it does not contain
proper nonzero additive cyclic subcodes.

By Maschke’s theorem the cyclic additive codes of length coprime to the char-
acteristic are completely reducible. It suffices therefore, in a sense, to describe
the irreducible cyclic codes. The irreducible cyclic codes contained in the twisted
codes are easy to describe:

Proposition 2. The irreducible cyclic codes contained in the twisted code
tr((B(z), Γ )) are {tr(ev(r0aXz, Γ )) | a ∈ L} where r0 ∈ F \ 〈γ1, . . . , γm〉⊥L is
fixed and the dual is with respect to the trace form. The dimension of this irre-
ducible cyclic code is s = |Z|.

Proof. Because of irreducibility we can restrict to case A = {z}. Start from 0 
=
v = tr(ev(r0Xz)). The fact that v 
= 0 is equivalent with r0 /∈ (〈γ1, . . . , γm〉L)⊥.
Let C be the cyclic closure of v. The cyclic shift produces tr(ev(r0αzXz)) where
W = 〈α〉. This shows that tr(ev(r0LXz)) ⊆ C. As this code is additive and cyclic
we have equality. The mapping from a ∈ L to the generic codeword is Fq-linear,
and a 
= 0 is in the kernel of the mapping if and only if r0 ∈ 〈γ1, . . . , γm〉⊥L ,
contradiction. It follows that each of these irreducible codes has dimension s. �

Comparison with Proposition 1 shows that the twisted code itself is irreducible if
and only if dimL(〈γ1, . . . , γm〉L) = 1. This means that all the γj are L-multiples
of one another.

Next we want to study how twisted codes tr((B(z), Γ ) and tr((B(z), Γ ′) in-
tersect. Let v = tr(ev(aXz , Γ )). Then v is in the intersection if there exists a′

such that v = tr(ev(a′Xz, Γ ′). This is equivalent with aΓ − a′Γ ′ having all its
components in L⊥.

Definition 3. Let cs(Γ, Γ ′) be the L-dimension of the space A ⊆ F of all a such
that there exists a′ satisfying aΓ − a′Γ ′ ∈ (L⊥)m. Here the dual is with respect
to the trace form.

Clearly A is an L-vector space and A ⊇ (〈γ1, . . . , γm〉L)⊥.

Proposition 3. The dimension of tr((B(z), Γ ) ∩ tr((B(z), Γ ′) is

s · (cs(Γ, Γ ′)− dimL(〈γ1, . . . , γm〉⊥L )).

Proof. The elements of the intersection are parametrized by the elements a of
the s · cs(Γ, Γ ′)-dimensional space defined above, and a is in the kernel if it is
orthogonal to the L-vector space generated by the γj . �

Comparison with Proposition 1 shows that tr((B(z), Γ ) ⊆ tr((B(z), Γ ′) if and
only if cs(Γ, Γ ′) = r/s and tr((B(z), Γ ) ⊆ tr((B(z), Γ ′) if and only if cs(Γ, Γ ′) =
cs(Γ ′, Γ ) = r/s.



Cyclic Additive and Quantum Stabilizer Codes 279

A central result is the following:

Theorem 1. Let C be an irreducible cyclic additive qm-ary q-linear code of
length n where gcd(n, q) = 1 such that the projection to each of the m coor-
dinates is nonzero. Then C is contained in a twisted code.

Proof. Let πj be the projection from Fm
q onto coordinate j, where j = 1, . . . ,m.

By assumption πj(C) is not the 0-code. As it is a q-ary linear cyclic code it
can be described by a nonempty union Zj of cyclotomic cosets. Because of ir-
reducibility each Zj is a cyclotomic coset. Choose zj ∈ Zj and consider the
stabilizers Hj and fixed fields Lj . Let B be the set of all m-tuples (v1, . . . , vm)
of polynomials whose trace-evaluations are in C. By definition and basic prop-
erties of the trace we can choose vj = bjX

zj . Without restriction there is
some (aXz1 , bXz2, . . . ) ∈ B where a /∈ L⊥

1 , b /∈ L⊥
2 . Let α be a generator of

W. The cyclicity shows that some (aαz1Xz1, bαz2Xz2, . . . ) ∈ B, by induction
(aαiz1Xz1 , bαiz2Xz2 , . . . ) ∈ B for all i = 0, 1, . . . . Assume ord(αz1 ) 
= ord(αz2 ).
Without restriction there is some i such that αiz1 = 1, αiz2 
= 1. After subtrac-
tion this yields (0, b(αiz2 − 1)(Xz2, . . . ) ∈ B. This contradicts the irreducibility.
It follows ord(αz1 ) = ord(αz2 ) and therefore |Z1| = |Z2| = s. Let β = αz1 . Then
αz2 = βj for a j coprime with the order of β. The smallest field containing β is
L = GF (qs). The irreducibility shows that

∑
ciβ

i = 0 with coefficients ci ∈ Fq

if and only if
∑
ciβ

ij = 0. This shows that raising to the j-th power is a field
automorphism of L. It follows that z2 and z1 are in the same cyclotomic coset.

�

4 The Additive Cyclic Codes

By Theorem 1 each irreducible additive cyclic code is contained in a twisted code
provided all its m coordinate projections are nonzero. By Proposition 2 we know
the irreducible cyclic codes contained in twisted codes. If some of the coordinate
projections of our irreducible cyclic code vanish, then we should forget them. The
code is then contained in a twisted code for a smaller value of m. It follows that
an irreducible cyclic additive code C is determined by the following ingredients:

• the support consisting of the coordinates j∈{1, 2, . . . ,m} such that πj(C) 
=0,
• an m-tuple Γ with 0-entries outside of the support and nonzero entries in

the support,
• a cyclotomic coset and,
• in the case when the corresponding twisted code is not irreducible, a coset

(see Proposition 2).

The first two ingredients can be combined into one: a nonzero tuple Γ ∈ Fm.
We specialize to case m = 2 now.

Theorem 2. The irreducible cyclic additive codes in case m = 2 are the twisted
codes tr((B(z), Γ ), where z varies over representatives z of cyclotomic cosets
and Γ varies over representatives of points in PG(1, L), where L = GF (qs)
and s = |Z|.



280 J. Bierbrauer

Proof. We know that all those codes are indeed irreducible, and they are precisely
the twisted codes (with m = 2 or m = 1) which are irreducible cyclic codes.
Consider now a code tr((B(z), Γ ′) where Γ ′ = (1, γ′) and γ /∈ L. Let Γ = (1, γ)
where γ ∈ L. We claim that tr((B(z), Γ ) ⊂ tr((B(z), Γ ′). In order to show this
it suffices by Proposition 3 to show that for each a ∈ F we can find a′ such that
a(1, γ)− a′(1, γ′) ∈ (L⊥)2, in other words trL(γ′) and trL(a′γ′) are prescribed,
where trL is the trace : F −→ L. As γ′ /∈ L this is possible. The same proof
works when Γ = (0, 1). We see that the nonzero elements of the 2s-dimensional
code tr((B(z), Γ ′) are partitioned into the nonzero elements of those irreducible
twisted subcodes. �

Proposition 4. The number of nonzero irreducible cyclic additive codes in case
m = 2 is

∑
Z(q|Z| + 1).

We also obtain a complete picture of the additive cyclic codes, at least in case
m = 2. Recall that the ambient space En = F2n

q is written as the direct sum of
the tr(VF (Z)), where Z varies over the cyclotomic cosets and dim(tr(VF (Z))) =
2|Z| = 2s. Each Γ ∈ F × F generates a point P ∈ PG(1, F ). Choose a
representative z for each cyclotomic coset Z. The irreducible cyclic codes are
precisely the tr(B(z), Γ ) where z varies over the representatives of cyclotomic
cosets and Γ varies over representatives of points in PG(1, qs) (and |Z| = s).
Each Z therefore yields qs + 1 irreducible cyclic codes, each of Fq-dimension
s. Their nonzero elements partition the 2s-dimensional space tr(VF (Z)), and
tr((B(z), Γ ) = tr(VF (Z)) whenever Γ generates a point of PG(1, F ) which is
not in PG(1, L).

Theorem 3. The number of cyclic additive codes in case m = 2 is
∏

Z(q|Z|+3).

Proof. In order to describe a cyclic code we have to decide the contribution of
each cyclotomic coset Z. If |Z| = s there are qs + 3 possibilities: the summand
is either one of the qs + 1 irreducible codes (dimension s each) or the 0-code or
is tr(VF (Z)). �

Lengths 7 and 15

As illustrative examples consider the quaternary length 7 and 15 cases. In the
first case (q = 2,m = 2, n = 7) we have cyclotomic cosets of lengths 1, 3, 3
(representatives 0, 1,−1) and therefore 3 + 9 + 9 = 21 irreducible cyclic, 5 ×
11 × 11 = 605 cyclic codes alltogether. A [7, 3.5, 4]4-code is obtained as the
sum of the irreducible codes tr((B(1), 1, 0), tr((B(−1), 0, 1), tr((B(0), 1, 1). It
is self-dual with respect to the dot product but not self-dual with respect to
the symplectic form. In fact, there is no additive code with these parameters
which is self-dual in the symplectic sense, as this would generate a quantum
code [[7, 0, 4]]4 which cannot exist (see [10]).

In length 15 we use the primitive equation ε4 = ε+1 for F = GF (16) = F2(ε).
Representatives of the cyclotomic cosets are 0 (length 1), 5 (length 2) and 1, 3, 14
(length 4 each). There are 3+5+3×17 = 59 irreducible cyclic codes and a total
of 5× 7× 193 cyclic codes. Define



Cyclic Additive and Quantum Stabilizer Codes 281

C = tr((B(1), ε, 1)⊕ tr((B(3), 1, ε2)⊕ tr((B(0), 1, 1).

Then C is a [15, 4.5, 9]4-code. These are new parameters. In fact a linear [15, 5, 9]4
cannot exist. Here is a concrete representation of its subcodeD = tr((B(1), ε, 1)⊕
tr((B(3), 1, ε2). The codewords are parametrized by pairs a, b ∈ F = GF (16),
the coordinates by 0 
= x ∈ F and the corresponding entry is the pair

ca,b(x) = (tr(εax+ bx3), tr(ax + ε2bx3)).

Cases b = 0 and a = 0 describe the two irreducible subcodes. C is the direct sum
of D and 1115.

5 Cyclic Quantum Stabilizer Codes

This corresponds to the case when m = 2 and the bilinear form 〈, 〉 on E = F2
q is

symplectic. Such a cyclic q2-ary code C of length n coprime to the characteristic
is a quantum stabilizer code if it contains its dual. If C ⊇ C⊥ has dimension
k and all codewords in C \ C⊥ have weight ≥ d, then the quantum parameters
are written as [[n, 2k − n, d]]q2 . The code is pure if all nonzero codewords of C
have weight ≥ d.
Theorem 4. A cyclic additive q2-ary quantum code is equivalent with a cyclic
additive code in case m = 2 which is contained in its dual with respect to the
symplectic form 〈, 〉.
Our first objective is to give a parametrized description of the self-orthogonal
codes B as in Theorem 4. Write B =

∑
Z SZ . Recall from the introduction and [3]

that
tr(VF (Z))⊥ =

∑

Z′ �=Z

tr(VF (Z ′)).

It follows that B is self-orthogonal if and only if SZ and S−Z are orthogonal for
each Z. Consider at first the generic case Z 
= −Z. If one of the SZ or S−Z is 0,
then there is no restriction on the other. If SZ = tr(VF (Z)), then S−Z = 0.

We use Lemma 17.26 of [3]:

Lemma 1.
∑

u∈W

tr(αuz0 )tr(βu−z0) = n × tr(αTr(β)), where Tr is the trace:

F −→ Fqs .

Proposition 5. Let Γ = (γ1, γ2), Γ ′ = (γ′1, γ
′
2) ∈ L × L. The irreducible cyclic

codes tr((B(z), Γ ) and tr((B(−z), Γ ′) are orthogonal if and only if Γ and Γ ′

generate the same point in PG(1, L).

Proof. Writing out the symplectic product of typical vectors we obtain the
condition

∑

u∈W

tr(γ1au
z)tr(γ′2bu

−z)− tr(γ2au
z)tr(γ′1bu

−z) = 0

for all a, b ∈ F. Because of Lemma 1 and the L-linearity of Tr an equivalent
condition is γ1γ

′
2 = γ2γ

′
1. �



282 J. Bierbrauer

This shows what the self-orthogonality condition is: if SZ = tr((B(z), Γ ) for
Γ ∈ PG(1, qs), then either S−Z = 0 or S−Z = tr((B(−z), Γ ).

Consider case Z = −Z, s > 1. Then either SZ = 0 or SZ is a self-orthogonal ir-
reducible code tr((B(z), Γ ). By Proposition 5 this must coincide with
tr((B(−z), Γ ). We have s = 2i and zqi = −z. It follows tr((B(−z), Γ ) =
tr((B(z), Γ qi

) and the condition is that Γ and Γ qi

generate the same projec-
tive point, which means that Γ ∈ PG(1, qi). There are qi + 1 choices for Γ. As
Z = {0} contributes q + 2 self-orthogonal and q + 1 self-dual codes we arrive at
the following enumeration result:

Theorem 5. The number of additive cyclic q2-ary quantum stabilizer codes is
∏

Z=−Z,s=1

(q + 2)
∏

Z=−Z,s>1

(qs/2 + 2)
∏

Z �=−Z

(3qs + 6).

The number of self-dual such codes is
∏

Z=−Z,s=1

(q + 1)
∏

Z=−Z,s>1

(qs/2 + 1)
∏

Z �=−Z

(qs + 3).

Here s = |Z| and the last product is over all pairs {Z,−Z} of cyclotomic cosets
such that Z 
= −Z.

In case n = 7 we obtain 4×30 = 120 quantum codes alltogether and 3×11 = 33
self-dual ones, for n = 15 the number of quantum codes is 4 × 4 × 6 × 54 and
there are 3× 3× 5× 19 self-dual codes.

6 Codes of Kloosterman Type

The self-dual [7, 3.5, 4]4-code of Section 4 is generated by the all-1-word and
a code whose words are indexed by a pair a, b of elements of F8, with entry
(tr(ax), tr(b/x)) in coordinate x ∈ F∗

8. This is very much remeniscent of the
Kloosterman or dual Mélas codes.

Definition 4. Let q = 2f . The Kloosterman code is a 2f -dimensional length
q−1 binary code whose codewords are c(a, b), where a, b ∈ Fq, with entry tr(ax+
b/x) in coordinate 0 
= x ∈ Fq.

Definition 5. For 0 
= v ∈ Fq let pv be the number of 0 
= x ∈ Fq such that
tr(x) = tr(v/x) = 1. Here tr is the absolute trace.

The determination of the minimum distance of the Kloosterman codes is equiva-
lent with the determination of the largest number pv. A close relation with elliptic
curves shows that this number is the largest integer less than (q + 1 + 2

√
q)/4.

Schoof-van der Vlugt [12] have indeed determined the weight distribution of the
Kloosterman codes. In [9] we made use of this information to determine the
weight distribution of certain extremal caps in AG(4, q).



Cyclic Additive and Quantum Stabilizer Codes 283

We may consider tr((B(1), 1, 0) ⊕ tr((B(−1), 0, 1) and its direct sum with
tr((B(0), 1, 1) in case q = 2,m = 2, n = 2r−1 as additive versions of Kloosterman
codes. Unfortunately we cannot expect good code parameters in general as the
irreducible subcodes themselves have minimum distance 2r−1. Consider instead
the codes

tr((B(1), 1, γ1)⊕ tr((B(−1), 1, γ2)

where the γi are different and not in F2. In this case the irreducible summands
have minimum weights 2r − 2r−2. The general codeword v(a, b) (where a, b ∈
F = GF (2r)) has entry

v(a, b)x = (tr((ax + b/x), tr(aγ1x+ bγ2/x))

in coordinate x 
= 0. We can assume ab 
= 0. Let v = ab and replace x by vx. In
order to determine the minimum distance one has to count the x 
= 0 such that

tr(x + v/x) = tr(γ1x+ γ2v/x) = 0.

References

[1] Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Transactions
on Information Theory 47, 3065–3072 (2001)

[2] Bierbrauer, J.: The theory of cyclic codes and a generalization to additive codes.
Designs, Codes and Cryptography 25, 189–206 (2002)

[3] Bierbrauer, J.: Introduction to Coding Theory, Chapman and Hall/CRC Press,
Boca Raton, FL (2004)

[4] Bierbrauer, J., Faina, G., Marcugini, S., Pambianco, F.: Additive quaternary codes
of small length, Proceedings ACCT, Zvenigorod (Russia) (September 15-18, 2006)

[5] Bierbrauer, J., Edel, Y.: Quantum twisted codes. Journal of Combinatorial De-
signs 8, 174–188 (2000)

[6] Blokhuis, A., Brouwer, A.E.: Small additive quaternary codes, European Journal
of Combinatorics 25, 161–167 (2004)

[7] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error cor-
rection via codes over GF(4). IEEE Transactions on Information Theory 44, 1369–
1387 (1998)

[8] Edel, Y., Bierbrauer, J.: Twisted BCH-codes. Journal of Combinatorial Designs 5,
377–389 (1997)

[9] Edel, Y., Bierbrauer, J.: Caps of order 3q2 in affine 4-space in characteristic 2,.
Finite Fields and Their Applications 10, 168–182 (2004)

[10] Grassl, M.: Tables on, http://iaks-www.ira.uka.de/home/grassl/
[11] Rains, E.M.: Nonbinary quantum codes. IEEE Transactions on Information The-

ory 45, 1827–1832 (1999)
[12] Schoof, R., van der Vlugt, M.: Hecke operators and the weight distribution of

certain codes. Journal of Combinatorial Theory A 57, 163–186 (1991)

http://iaks-www.ira.uka.de/home/grassl/


Determining the Number of One-Weight Cyclic

Codes When Length and Dimension Are Given

Gerardo Vega

Dirección General de Servicios de Cómputo Académico, Universidad Nacional
Autónoma de México, 04510 México D.F., Mexico

gerardov@servidor.unam.mx

Abstract. We use techniques from linear recurring sequences, expo-
nential sums and Gaussian sums, in order to present a set of charac-
terizations for the one-weight irreducible cyclic codes over finite fields.
Without using such techniques, a subset of these characterizations was
already presented in [2]. By means of this new set of characterizations,
we give an explicit expression for the number of one-weight cyclic codes,
when the length and dimension are given.

Keywords: One-weight cyclic codes, linear recurring sequences, expo-
nential sums and Gaussian sums.

1 Introduction

Let C be an [n, k] linear code over IFq whose dual weight is at least 2. It is well
known (see for example [3]) that if, additionally, C is a one-weight code, then
its length n must be given by

n = λ
qk − 1
q − 1

, (1)

for some positive integer λ. Since the minimal distance of the dual of any nonzero
irreducible cyclic code over IFq is greater than 1, it follows that the length n
of all one-weight irreducible cyclic codes of dimension k, is given by (1). For
this particular case, the zeros of xn − 1, which form a cyclic group, lie in the
extension field IFqk and therefore n divides qk − 1. That is, for some integer s,

we have λ( qk−1
q−1 )s = (q − 1)( qk−1

q−1 ), which implies that λ divides q − 1. Thus,
for all one-weight irreducible cyclic codes, we can always assume λ|(q − 1). In
this work we are going to consider irreducible cyclic codes and present a set
of characterizations for those that are one-weight codes. Additionally, we use
these characterizations in order to give an explicit expression for the number of
one-weight cyclic codes, when the length and dimension are given.

In order to achieve our goal, we will use several results related to linear re-
curring sequences, exponential sums and Gaussian sums. All those results can
be found in [1]. To avoid (an impractical) repetition, we do not include such

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 284–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Determining the Number of One-Weight Cyclic Codes 285

results in this work. Instead of that, we will give an explicit reference for all
these results.

This work is organized as follows: in Section 2 we recall the connection between
linear cyclic codes and linear recurring sequences. In Section 3 we present some
general results, that we will use in order to prove our characterizations. Section
4 is devoted to give a first approximation to the characterizations, whereas in
Section 5, the characterizations are presented. Finally, in Section 6 we determine
the number of one-weight cyclic codes, when the length and dimension are given.

2 Linear Recurring Sequences and Cyclic Codes

Let n and q be two positive integers, where q is a prime power, with gcd(n, q) = 1.
Let h(x) and g(x) be monic polynomials over IFq, such that h(x)g(x) = xn − 1
and deg(h(x)) = k > 0. Without loss of generality, we suppose that:

h(x) = xk − hk−1x
k−1 − hk−2x

k−2 − · · · − h0 .

Since the coefficients of the polynomial g(x), can be obtained through the
synthetic division of polynomials xn − 1 and h(x), then, if

g(x) = g0x
n−1 + g1x

n−2 + · · ·+ gk−1x
n−k + gkx

n−k−1 + · · ·+ gn−1 , (2)

we have gi = 0 for all 0 ≤ i < k − 1, gk−1 = 1 and

gm+k = hk−1gm+k−1 + hk−2gm+k−2 + · · ·+ h0gm ,

with 0 ≤ m < n − k. That is, the n coefficients of g(x) in (2) are the first n
terms of the k-order impulse response sequence (see [1, Ch. 8, p. 402]), given by

gm+k = hk−1gm+k−1 + hk−2gm+k−2 + · · ·+ h0gm for m = 0, 1, 2, · · · . (3)

In agreement with Theorem 8.27 in [1, p. 408], the previous sequence is peri-
odic (in the sense of Definition 8.5 in [1, p. 398]), where such period, r, is equal
to the order of h(x), that is, r = ord(h(x)).

We will use the same notation introduced in [1, Ch. 8, Secc. 5, p. 423]. Thus,
S(h(x)) will denote the set of all homogeneous linear recurring sequences in IFq

with characteristic polynomial h(x). In fact, S(h(x)) is a vector space over IFq

of dimension k = deg(h(x)), where the role of the zero vector is played by the
zero sequence, all of whose terms are 0. We will denote by σ the element of
S(h(x)), which corresponds to the k-order impulse response sequence given by
(3). That is, σ = g0, g1, g2, · · ·. For any integer b ≥ 0, we denote by σ(b) the
shifted sequence gb, gb+1, gb+2, · · ·. Here we are following the notation in [1, p.
426]. Clearly, σ(b) ∈ S(h(x)), for all b ≥ 0.

Now, if s is an integer, 0 ≤ s < k, then we have

xsg(x) = gsx
n−1 + gs+1x

n−2 + · · ·+ gn−1x
s + g0x

s−1 + g1x
s−2 + · · ·+ gs−1 ,



286 G. Vega

in the ring IFq[x]/(xn − 1). But the period r, of σ, divides n, so

xsg(x) = gsx
n−1 +gs+1x

n−2 + · · ·+gn−1x
s +gnx

s−1 +gn+1x
s−2 + · · ·+gn+s−1 .

That is, the n coefficients of xsg(x) are the first n terms of the shifted se-
quence σ(s). Using this fact, and since S(h(x)) is a vector space over IFq, we
have that if f(x) =

∑k−1
i=0 fix

i is a polynomial over IFq, then the n coefficients
of f(x)g(x) (taking this product over IFq[x]/(xn − 1)) are the first n terms of
the sequence

∑k−1
i=0 fiσ

(i), where the previous summations and scalar products
are taken over the vector space S(h(x)). This allows us to establish a one-to-one
relationship between the sequences in S(h(x)) and the codewords in < g(x) >
(this relationship is not new, see for example [1, Ch. 9, Secc. 2, p. 485]). There-
fore, the calculation of the weight distribution of < g(x) > will be equivalent
to count the number of zero terms that appears in the first full period, for each
sequence in S(h(x)). For this reason we will introduce the following notation:

Let τ = t0, t1, t2, · · · be a sequence in S(h(x)), also let b ∈ IFq and let N be a
positive integer. Then, we will denote by Z(τ, b,N) the number of i, 0 ≤ i < N ,
with ti = b (this notation is similar to that introduced in [1, p. 453]). Now, note
that if r|N , then

Z(aσ(s), 0, N) = Z(σ, 0, N), for all a ∈ IF∗
q and for any integer s ≥ 0. (4)

It is important to remark that if τ = t0, t1, t2, · · · is a sequence in S(h(x)),
then such sequence is completely determined by its first k terms. For this rea-
son, the vector (t0, t1, t2, · · · , tk−1) is called the Initial State Vector of the linear
recurring sequence τ . For sequence σ, such vector is (0, 0, · · · , 0, 1). Clearly, two
sequences in S(h(x)) will be the same if, and only if, their initial state vectors
are the same. Since there exist qk different choices for initial state vectors, then
S(h(x)) contains exactly qk different sequences. This is not surprising, since we
already know that there exists a one-to-one relationship between the sequences
in S(h(x)) and the codewords in < g(x) >.

3 Some General Results

We will begin this section by setting some notation and giving a definition.

Notation: For a finite field IF of characteristic p, we will denote by “Tr”, the
absolute trace of IF over IFp.

The following definition could be considered as an extension of the order,
ord(f), of a polynomial f(x) ∈ IFq[x].

Definition 1. Let h ∈ IFq[x] be a polynomial of positive degree with h(0) 
=
0. The last positive integer ρ for which xρ is congruent modulo h(x), to some
element of IFq, is called the quasi-order of h and it will be denoted by qord(h(x)).

Clearly qord(h(x)) ≤ ord(h(x)). However, for the special case where h(x) is an
irreducible polynomial, even more can be said.



Determining the Number of One-Weight Cyclic Codes 287

Theorem 2. Let h ∈ IFq[x] be a polynomial of positive degree with h(0) 
= 0.
Let r = ord(h) and ρ = qord(h). If h(x) is an irreducible polynomial, then r =
gcd(r, q − 1)ρ.

Proof. Let F be the splitting field of h(x) over IFq. By Theorem 3.17 in [1, p.
89] there must exist an integer d such that d|q − 1 and r = dρ. Then we have
d|gcd(r, q − 1). Suppose d < gcd(r, q − 1), then r = gcd(r, q − 1)ρ/t, for some
integer t > 1, hence ρ > ρ/t = r/gcd(r, q − 1). Let α be a fixed root of h(x)
in F . Clearly, α has order equal to r. Now, observe that αr(q−1)/gcd(r,q−1) = 1,
thus we have that αr/gcd(r,q−1) ∈ IFq, say αr/gcd(r,q−1) = a. This means that α
is root of f(x) = xρ/t − a and hence h(x)|f(x). But this is a contradiction since
ρ/t < ρ. ��

Observe that the converse of the previous theorem is not true. For example, if
q = 3 and h(x) = (x+ 1)2, then r = 6, ρ = 3 and gcd(r, q − 1) = 2.

Theorem 3. Let γ be a primitive element of IFqk , where q = pm for some
positive integer m and some prime p. Let t be a fixed integer and let S =< γt >.
For each a ∈ IFp, let Sa = {x ∈ S : Tr(x) = a}. If gcd(t, qk − 1) divides qk−1

p−1 ,
then |Sa| = |Sb| for all a, b ∈ IF∗

p.

Proof. Let a, b ∈ IF∗
p and let v = qk−1

p−1 . Since gcd(t/gcd(t, qk − 1), p − 1) = 1
and IF∗

p is a (p − 1)-order subgroup of IF∗
qk , then we have IF∗

p = {γsv : 0 ≤ s <
(p− 1)} = {(γt)vs/gcd(t,qk−1) : 0 ≤ s < (p− 1)} ⊆ S. Let x ∈ Sa and let c ∈ IF∗

p

be the uniquely determined field element such that b = ca. Thus, if y = cx, then
y ∈ Sb. Finally, the correspondence x �→ y = cx is clearly bijective. ��

Corollary 4. Using the same notation as in the previous theorem, let θ be a
fixed field element in IFqk . For each a ∈ IFp let Sθ

a = {x ∈ S : Tr(θx) = a}. If

gcd(t, qk − 1) divides qk−1
p−1 , then |Sθ

a| = |Sθ
b | for all a, b ∈ IF∗

p.

For some kind of exponential sums we can now show, by means of the previous
corollary, that their values are always nonzero integers.

Theorem 5. Using the same notation as in the previous theorem, let θ be a
nonzero fixed field element in IFqk and let χ be a nontrivial additive character of

IFqk . Suppose that gcd(t, qk − 1) divides qk−1
p−1 , then, the value of the exponential

sum: ∑

c∈IF
qk

χ(θct) ,

is an integer different from zero if gcd(t, qk − 1) 
= 1, and zero otherwise.

Proof. Suppose gcd(t, qk − 1) 
= 1. Let χ1 be the canonical additive character
of IFqk , then there exists an element d ∈ IFqk such that χ(c) = χ1(dc) for
all c ∈ IFqk . Let γ and S be as in Theorem 3. For each a ∈ IFp let Sdθ

a =
{x ∈ S : Tr(dθx) = a} and Ia = {c ∈ IF∗

qk : Tr(dθct) = a}. Since S is a



288 G. Vega

((qk − 1)/gcd(t, qk − 1))-order subgroup of IF∗
qk , then |Ia| = gcd(t, qk − 1)|Sdθ

a |
for all a ∈ IFp. Now let I ′0 = {c ∈ IFqk : Tr(dθct) = 0}. Clearly |I ′0| = |I0|+1, and
therefore, since gcd(t, qk − 1) 
= 1, it follows that gcd(t, qk − 1) does not divide
|I ′0|. By applying Corollary 4, we deduce that |Ia| = |Ib|, for all a, b ∈ IF∗

p. Thus,

∑

c∈IF
qk

χ(θct) = |I ′0|+ |I1|
p−1∑

a=1

e2πia/p

= |I ′0| − |I1| 
= 0 .

On the other hand, if gcd(t, qk − 1) = 1, then IFqk = {θct : c ∈ IFqk} and
therefore, in this case, the result follows trivially. ��

There is a close connection between the exponential sums and Gaussian sums:

Theorem 6. [1, Ch. 5, p. 217] Let χ be a nontrivial additive character of IFqk ,
m ∈ IN, and ψ a multiplicative character of IFqk of order t = gcd(m, qk − 1).
Then,

∑

c∈IF
qk

χ(θcm) =
t−1∑

j=1

ψ̄j(θ)G(ψj , χ) ,

for all θ ∈ IF∗
qk .

Since the order of any multiplicative character of IFqk divides qk − 1, then we
have the following:

Corollary 7. Let χ be a nontrivial additive character of IFqk , and ψ a multi-

plicative character of IFqk of order t which divides qk−1
p−1 . Then,

t−1∑

j=1

ψ̄j(θ)G(ψj , χ) =
{

an integer different from zero, if t 
= 1
0 otherwise .

4 A First Approach to the Characterizations

From now on, we will assume k to be a positive integer and the length of a one-
weight k-dimensional linear cyclic code over the finite field IFq, be n = λ(qk −
1)/(q− 1), for some integer λ > 0, which divides q− 1. So, xλ − 1|xq−1 − 1, and
therefore gcd(xλ−1, xq−x) = xλ−1, thus there must exist a1, a2, · · · , aλ ∈ IF∗

q ,
such that xλ− 1 =

∏λ
i=1(x− ai). That is, the splitting field of xλ− 1 is IFq. But

n = λ(qk − 1)/(q − 1), therefore, we have xn − 1 =
∏λ

i=1(x
n/λ − ai). Now, if

h(x) is an irreducible polynomial such that h(x)|xn − 1, then there must exist a
1 ≤ j ≤ λ, such that h(x)|xn/λ − aj. Then, clearly, qord(h(x)) ≤ (qk − 1/q− 1).
In fact qord(h(x)) divides (qk − 1/q − 1):

Lemma 8. Let h(x) be an irreducible polynomial over IFq and let ρ=qord(h(x)).
Suppose that there exists a positive integer η and a field element b ∈ IF∗

q such
that h(x)|xη − b, then ρ|η.



Determining the Number of One-Weight Cyclic Codes 289

Proof. Clearly, η ≥ ρ, then suppose η = sρ + t for some positive integers s
and t, with 0 ≤ t < ρ. Due to the definition of ρ there must exist a uniquely
determined field element a0 ∈ IF∗

q such that a0 ≡ xρ mod h(x). Thus we have b ≡
xη mod h(x) = xsρ+t mod h(x) ≡ as

0x
t mod h(x). That is, xt ≡ ba−s

0 mod h(x).
Because of the definition of ρ this is only possible if t = 0. ��

For the special case when qord(h(x)) and (qk − 1/q − 1) are equal, we have the
following:

Theorem 9. Let q, k, n and λ be as before. Let h(x) be a k-degree monic irre-
ducible polynomial over IFq, which divides xn − 1. Set g(x) = (xn − 1)/h(x).
If we denote by wt(g(x)) the Hamming weight of the polynomial g(x), then
qord(h(x)) = (qk − 1/q − 1) if, and only if, wt(g(x)) = λqk−1.

Proof. First of all, we fix several notations; by using σ, we will denote the k-order
impulse response sequence given by (3). That is, σ = g0, g1, g2, · · ·. Additionally,
we will denote by r and ρ, the order and the quasi-order, respectively, of the
polynomial h(x). Set K = IFq, and let F be the splitting field of h(x) over K.
Let α be a fixed root of h(x) in F ; then α 
= 0 because h(0) 
= 0. By Theorem
8.24 of [1, p. 406], there exists θ ∈ F such that

gm = TrF/K(θαm) for m = 0, 1, 2, · · · . (5)

We clearly have θ 
= 0. Let χ′ be the canonical additive character of K. The
character relation (5.9) of [1, p. 192] yields

1
q

∑

c∈K

χ′(cgm) =
{

1 if gm = 0
0 if gm 
= 0

and so, together with (5),

Z(σ, 0, n) =
1
q

n−1∑

m=0

∑

c∈K

χ′(TrF/K(c θαm)) .

If χ denotes the canonical additive character of F , then χ′ and χ are related
by χ′(TrF/K(β)) = χ(β) for all β ∈ F . Therefore,

Z(σ, 0, n) =
1
q

∑

c∈K

n−1∑

m=0

χ(c θαm) =
n

q
+

1
q

∑

c∈K∗

n−1∑

m=0

χ(c θαm) . (6)

Now, by (5.17) of [1, p. 195],

χ(β) =
1

qk − 1

∑

ψ

G(ψ̄, χ)ψ(β) for β ∈ F ∗ ,



290 G. Vega

where the sum is extended over all multiplicative characters ψ of F . For c ∈ K∗

it follows that
n−1∑

m=0

χ(c θαm) =
1

qk − 1

n−1∑

m=0

∑

ψ

G(ψ̄, χ)ψ(c θαm)

=
1

qk − 1

∑

ψ

ψ(c θ)G(ψ̄, χ)
n−1∑

m=0

ψ(α)m .

Substituting this in (6), we get

Z(σ, 0, n) =
n

q
+

1
q(qk − 1)

∑

c∈K∗

∑

ψ

ψ(c θ)G(ψ̄, χ)
n−1∑

m=0

ψ(α)m

=
n

q
+

1
q(qk − 1)

∑

ψ

ψ(θ)G(ψ̄, χ)
n−1∑

m=0

ψ(α)m
∑

c∈K∗

ψ(c) .

Now, if the restriction ψ′ of ψ to K∗ is nontrivial, then
∑

c∈K∗ ψ(c) = 0.
Consequently, it suffices to extend the sum over the set B of characters ψ for
which ψ′ is trivial, so that

Z(σ, 0, n) =
n

q
+

q − 1
q(qk − 1)

∑

ψ∈B

ψ(θ)G(ψ̄, χ)
n−1∑

m=0

ψ(α)m .

Now, let γ be a fixed primitive element of F . Thus, K∗ = {γs(qk−1/q−1) :
0 ≤ s < (q − 1)}, and hence, B = {ψs(q−1) : 0 ≤ s < (qk − 1/q − 1)}1. Thus,
since ψs(q−1)(α) = ψ1(αs(q−1)), for all 0 ≤ s < (qk − 1/q − 1), we obtain:

Z(σ, 0, n) =
n

q
+

q − 1
q(qk − 1)

(qk−1/q−1)−1∑

s=0

ψs(q−1)(θ)G(ψ̄s(q−1) , χ)
n−1∑

m=0

ψ1(αs(q−1))m .

The inner sum in the last expression is a finite geometric series that vanishes
if ψ1(αs(q−1)) 
= 1, because of ψ1(αs(q−1))n = ψ1(αsn(q−1)) = ψ1(1) = 1. On
the other hand, ψ1(αs(q−1)) = 1 if, and only if, αs(q−1) = 1. By means of
Theorem 2 we know that r = gcd(r, q − 1)ρ. Now, the field element α(q−1) has
order r/gcd(r, q − 1) = ρ and, by virtue of Lemma 8, there exists a positive
integer t, such that t = (qk − 1/q − 1)/ρ. Thus, ψ1(αs(q−1)) = 1 if, and only if,
s = jρ = (j/t)(qk − 1/q − 1), for j = 0, 1, ..., t− 1, and therefore

Z(σ, 0, n) =
n

q
+
n(q − 1)
q(qk − 1)

ψ0(θ)G(ψ̄0, χ) +

n(q − 1)
q(qk − 1)

t−1∑

j=1

ψj
(qk−1)/t

(θ)G(ψ̄j
(qk−1)/t

, χ) .

1 Here we are considering ψj(γ
�) = e2πij�/(qk−1).



Determining the Number of One-Weight Cyclic Codes 291

Clearly, the multiplicative character ψ(qk−1)/t has order t, thus, by Corollary 7,
and since ψ0(θ) = 1 and G(ψ̄0, χ) = −1, we have

Z(σ, 0, n) =
(qk−1 − 1)n
qk − 1

=
(qk−1 − 1)λ

q − 1
⇔ ρ = (qk − 1/q − 1) ,

and hence, wt(g(x)) = n− Z(σ, 0, n) = λqk−1 ⇔ ρ = (qk − 1/q − 1). ��

5 The Characterizations

We begin this section recalling the following result that was proved in [3].

Proposition 10. Let C be an [n, k] linear code over IFq. If C is a one-weight
code with weight w and if the weight of the dual of C is at least 2, then there
exists λ ∈ IN such that n = λ qk−1

q−1 and w = λqk−1.

Finally, we are now able to present our characterizations.

Theorem 11. Let q and k be as before. Let γ be a primitive element of IFqk .
For a positive integer a, let ha(x) ∈ IFqk [x] be the minimal polynomial of γa.
For each positive integer �, such that �| gcd(a, q − 1), set λ� = (q−1)�

gcd(a,q−1) and
n� = λ�(qk − 1)/(q − 1). Then, the following statements are equivalent:

A) gcd(a, qk − 1/q − 1) = 1.
B) ha(x)|xn� − 1, deg(ha(x)) = k and qord(ha(x)) = (qk − 1/q − 1).
C) ha(x)|xn� − 1, deg(ha(x)) = k and the Hamming weight of the polynomial

xn� − 1/ha(x) is λ�q
k−1.

D) ha(x)|xn� − 1 and deg(ha(x)) = k. Additionally, if g(x) = xn� − 1/ha(x)
and if we denote by σ the k-order impulse response sequence given by (3)
(taking in that equation: h(x) = ha(x)), then for any nonzero codeword c(x)
in < g(x) > there exist a uniquely determined integer s, 0 ≤ s < qk−1/q−1,
and a uniquely determined field element d ∈ IF∗

q, such that the n� coefficients
of c(x) are the first n� terms of the sequence τ = dσ(s).

E) ha(x) is the parity-check polynomial for a one-weight cyclic code of dimension
k.

Proof. Suppose statement A) holds. Then gcd(a, qk−1) = gcd(a, q−1) and hence
ord(ha(x))|n�, thus ha(x)|xn�−1. Let s be the smallest positive integer such that
aqs ≡ a (mod n�). Then a(qs− 1) ≡ 0 (mod n�) and (qk − 1/q− 1)|a(qs− 1),
which implies that (qk−1)|(qs−1)(q−1). The last condition is impossible if s < k,
thus deg(h(x)) = k. Now, by using Theorem 2 we have qord(ha(x)) = qk−1/q−1
if and only if

ord(ha(x)) = (qk − 1)/ gcd(a, qk − 1) = gcd(r, q − 1)(
qk − 1
q − 1

) ⇔

gcd(a, qk − 1) gcd(
qk − 1

gcd(a, qk − 1)
, q − 1) = q − 1 ⇔ gcd(a, qk − 1/q − 1) = 1 ,



292 G. Vega

proving, in this way, equivalence of statements A) and B). Due to this, the
equivalence of statements A), B) and C), comes from Theorem 9.

By taking N = n� in (4), we conclude that D) implies E). Since the weight
of the dual code in E) is at least 2, then Proposition 10 and Theorem 9 proves
that qord(ha(x)) = (qk − 1/q− 1). But qord(ha(x)) = (qk − 1/q− 1) if and only
if gcd(a, qk − 1/q− 1) = 1, therefore E) implies A). Thus, what we now have to
do is just prove that statement B) implies statement D). In order to give such a
proof, we first take the sequence σ and determine the following:

ρ′ = min{m ∈ IN : σ(m) = dσ, for some d ∈ IF∗
q} .

Such ρ′ must exist since σ(ord(ha(x))) = σ. Thus, let d0 be the uniquely de-
termined field element in IF∗

q , such that σ(ρ′) = d0σ. But, by the previous equal-
ity, it follows that gm+ρ′ = d0gm, m = 0, 1, 2, · · ·. That is, the sequence σ is
also a ρ′-order linear recurring sequence over IFq with characteristic polynomial
p(x) = xρ′ − d0. Now, applying Theorems 8.42 and 8.50 in [1, pp. 418 and 422],
and since ha(x) is irreducible, we have that ha(x)|p(x). Thus, by Definition 1,
we conclude that ρ′ ≥ qord(ha(x)) = (qk − 1/q − 1). Due to this inequality, we
have that if d1, d2 ∈ IF∗

q and 0 ≤ s1, s2 < (qk−1/q−1), then d1σ
(s1) = d2σ

(s2) if,
and only if, d1 = d2 and s1 = s2. That is because if we suppose -without loss of
generality- that s1 ≤ s2, then d1σ

(s1) = d2σ
(s2) if, and only if, σ = d2d

−1
1 σ(s2−s1),

and this equality is only possible if s2− s1 = 0 and d2d
−1
1 = 1. Considering this,

we define

S = {τ ∈ S(ha(x)) : τ = dσ(s), for some d ∈ IFq and 0 ≤ s < (qk − 1/q − 1)} .

Since |IF∗
q | = q − 1, then |S| = qk. But S ⊆ S(ha(x)) and |S(ha(x))| = qk,

so what we have proved is that if τ ∈ S(ha(x)), is a nonzero sequence, then
there must exist a uniquely determined integer s, 0 ≤ s < (qk − 1/q − 1), and a
uniquely determined field element d ∈ IF∗

q , such that τ = dσ(s).
Thus, if c(x) is a nonzero codeword in < xn� − 1/ha(x) >, then there must

exist a uniquely determined nonzero sequence in S(ha(x)), say τ , such that the
n� coefficients of c(x) are the first n� terms of such sequence. ��

6 Number of One-Weight Cyclic Codes When the Length
and Dimension Are Given

In order to give an explicit expression for the number of one-weight cyclic codes,
when the length and dimension are given, we need to keep in mind the following:

Remark: If φ denotes the Euler φ-function (see, for example, [1, p. 7]) and if ξ
and m are two positive integers, then the number of integers between 1 and ξm,
relatively prime to m, is ξφ(m).

Theorem 12. Let q and k be as before. Let n = λ(qk − 1)/(q − 1), for some
integer λ > 0, which divides q − 1. The number of one-weight cyclic codes of
length n and dimension k is equal to



Determining the Number of One-Weight Cyclic Codes 293

δλ(gcd(n, q − 1))
λφ(qk − 1/q − 1)

k
,

where δ is Kronecker’s delta (δx(y) is one if x = y and zero otherwise).

Proof. Let b be an integer such that 1 ≤ b < n and set a = b(q−1)/λ. Let γ and
ha(x) be as in Theorem 11. Clearly ord(ha(x))|n and if statement A), in Theorem
11, holds, then ord(ha(x)) = (q − 1)/ gcd(a, q − 1)((qk − 1)/(q − 1)). Therefore,
under these circumstances, we conclude that there must exist an integer � such
that �| gcd(a, q − 1) and λ = (q − 1)�/ gcd(a, q − 1).

Taking ξ = λ and m = qk−1/q−1, then the result follows from above remark,
the equivalence between statements A) and E), in Theorem 11, and the fact that
γ(q−1)/λ is a primitive nth root of unity. ��

For example, if q = 31, k = 2 and if n is any of the integers: 32, 64, 96, 160, 192,
320, 480 or 960, then the number of one-weight cyclic codes, for each n, is,
respectively, 0, 16, 0, 0, 48, 80, 0, 240.

References

1. Lidl, R., Niederreitter, H.: Finite Fields. Cambridge Univ. Press, Cambridge (1983)
2. Vega, G., Wolfmann, J.: New Classes of 2-weight Cyclic Codes. Designs, Codes and

Cryptography 42(3), 327–334 (2007)
3. Wolfmann, J.: Are 2-Weight Projective Cyclic Codes Irreducible? IEEE Trans. In-

form. Theory. 51, 733–737 (2005)



Error Correcting Codes from Quasi-Hadamard

Matrices

V. Álvarez, J.A. Armario, M.D. Frau, E. Martin, and A. Osuna�

Dpto. Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n
41012 Sevilla, Spain

{valvarez,armario,mdfrau,emartin,aosuna}@us.es

Abstract. Levenshtein described in [5] a method for constructing er-
ror correcting codes which meet the Plotkin bounds, provided suitable
Hadamard matrices exist. Uncertainty about the existence of Hadamard
matrices on all orders multiple of 4 is a source of difficulties for the prac-
tical application of this method. Here we extend the method to the case
of quasi-Hadamard matrices. Since efficient algorithms for constructing
quasi-Hadamard matrices are potentially available from the literature
(e.g. [7]), good error correcting codes may be constructed in practise.
We illustrate the method with some examples.

Keywords: Error correcting code, Hadamard matrix, Hadamard code.

1 Introduction

One of the main goals in Coding Theory is the design of optimal error correcting
codes. For given length n and minimum distance d, the term optimal means a
code which consists of a set of code words as large as possible. For (not necessarily
linear) binary codes (n,M, d), Plotkin found out in [10] the following bounds for
the number M of codewords:

M ≤ 2� d

2d− n� if d is even and d ≤ n < 2d, (1)

M ≤ 2n if d is even and n = 2d, (2)

M ≤ 2� d+ 1
2d+ 1− n� if d is odd and d ≤ n < 2d+ 1, (3)

M ≤ 2n+ 2 if d is odd and n = 2d+ 1. (4)

Levenshtein proved in [5] that the Plotkin bounds are tight, in the sense
that there exist binary codes which meet these bounds, provided that enough
Hadamard matrices exist. Unfortunately, the Hadamard Conjecture about the
existence of Hadamard matrices in all orders multiple of 4 remains still open.
Moreover, there are infinite orders for which no Hadamard matrices have been
� All authors are partially supported by the PAICYT research project FQM–296 from

Junta de Andalućıa (Spain).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 294–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Error Correcting Codes from Quasi-Hadamard Matrices 295

found. This means that, though theoretically correct, Levenshtein’s method
could not be useful in practise.

In the sequel a matrix for which the inner product of rows two by two is
mostly zero is called a quasi-Hadamard matrix. We will use Levenshtein’s method
in this paper to show that “good” error-correcting codes may be analogously
constructed from quasi-Hadamard matrices. Here the term “good” refers to a
code formed from a significantly large number of code words, for given length
and minimum distance. We must emphasize that quasi-Hadamard matrices may
be straightforwardly obtained in all orders multiple of 4, so that the associated
error-correcting codes may be constructed in practise.

We organize the paper as follows.
In Section 2 we introduce the notion of quasi-Hadamard matrices, and some

processes to construct them, which are available in the literature. Section 3 is
devoted to explain how to construct good error-correcting codes from suitable
quasi-Hadamard matrices. Some examples are discussed in Section 4.

2 Quasi-Hadamard Matrices

A Hadamard matrix H of order n is an n × n matrix of +1’s and −1’s entries
such that HHT = nI. That is, the inner product of any two distinct rows of H
is zero.

We now generalize this notion.
We define a quasi-Hadamard matrix of order n as an n×n matrix M of +1’s

and −1’s entries such that the inner product of rows two by two is mostly zero.
Sometimes it is necessary to precise the largest number q of rows in M which

are orthogonal one to each other. The larger q is, the closer M is from being
a Hadamard matrix. In these circumstances, M is termed a quasi-Hadamard
matrix of depth q.

In some sense, a quasi-Hadamard matrix could be thought as a Hadamard ma-
trix in which some rows have been substituted, so that the Hadamard character
is generally lost in turn.

Constructing Hadamard matrices is hard. How about constructing quasi-
Hadamard matrices?

We now attend to another characterization of Hadamard matrices, in terms of
cliques of graphs (that is, a collection of n vertices and n(n−1)

2 edges of a graph
G which form a complete subgraph Kn of G).

Consider the graph G4t whose vertices are all the tuples of length 4t formed
from 2t ones and 2t minus ones, with the restriction that precisely t ones have to
appear within the first 2t positions (by analogy, precisely t ones appear within
the last 2t positions). There is an edge between two vertices if and only if the in-
ner product of the correspondent tuples is zero. A Hadamard matrix of order 4t
exists if and only if G4t contains a clique of size 4t−2. Furthermore, the vertices

of such a clique and the normalized rows (

4t
︷ ︸︸ ︷
1, . . . 1) and (

2t
︷ ︸︸ ︷
1, . . . , 1,

2t
︷ ︸︸ ︷
−1, . . . ,−1) form



296 V. Álvarez et al.

a Hadamard matrix. This is a particular type of Hadamard Graph, as defined
in [8,9].

Unfortunately, the problem of finding out the maximum clique in a graph has
been proven to be NP-hard [4]. Moreover, even its approximations within a con-
stant factor are NP-hard [2,3]. So one should expect that finding out Hadamard
matrices from G, or even quasi-Hadamard matrices for large depths close to 4t,
are to be hard problems. In fact, they are.

Hopefully, heuristic methods for the maximum clique problem can be found
in the literature, which output pretty large cliques [7]. These methods can be
used in turn to construct quasi-Hadamard matrices of large depth as well.

3 Quasi-Hadamard Codes

We firstly recall Levenshtein’s method [5] for constructing optimal error correct-
ing codes from suitable Hadamard matrices.

Starting from a normalized (i.e. the first row and column formed all of 1’s)
Hadamard matrixH of order 4t, some codes (which are termed Hadamard codes)
may be constructed (see [6], for instance). More concretely, consider the matrix
A4t related to H4t, which consists in replacing the +1’s by 0’s and the −1’s
by 1’s. Since the rows of H4t are orthogonal, any two rows of A4t agree in 2t
places and differ in 2t places, and so have Hamming distance 2t apart. In these
circumstances, one may construct:

1. An (4t − 1, 4t, 2t) code, A4t, consisting of the rows of A4t with the first
column deleted. This is optimal for the Plotkin bound (1).

2. An (4t− 1, 8t, 2t− 1) code, B4t, consisting of A4t together with the comple-
ments of all its codewords. This is optimal for the Plotkin bound (4).

3. An (4t, 8t, 2t) code, C4t, consisting of the rows of A4t and their complements.
This is optimal for the Plotkin bound (2).

4. An (4t− 2, 2t, 2t) code, D4t, formed from the codewords in A4t which begin
with 0, with the initial zero deleted. This is optimal for the Plotkin bound
(1).

Furthermore, as explained in [6], for any d ≤ n < 2d, an optimal code attend-
ing to the Plotkin bound (1) may be obtained from a suitable combination of
codes of the above type.

More concretely, given d even so that 2d > n ≥ d, define k = � d

2d− n� and

a = d(2k + 1)− n(k + 1), b = kn− d(2k − 1).

Then a and b are nonnegative integers satisfying that n = (2k− 1)a+ (2k+ 1)b
and d = ka+ (k + 1)b. Moreover, if n is even then so are a and b. Analogously,
if n is odd and k even, then b is even. Finally, if both of n and k are odd, then
a is even.



Error Correcting Codes from Quasi-Hadamard Matrices 297

Depending on the parity of n and k, define the code C to be:

– If n is even, C =
a

2
D4k ⊕

b

2
D4k+4.

– If n is odd and k even, C = aA2k ⊕
b

2
D4k+4.

– If n and k are odd, C =
a

2
D4k ⊕ bA2k+2.

Here ⊕ denotes the following “summation” of codes. Suppose that C1 and C2
are (n1,M1, d1) and (n2,M2, d2) codes, respectively. Assume, for instance, that
M2 ≥ M1. For nonnegative integers a, b, the code aC1 ⊕ bC2 consists in pasting
a copies of C1, side by side, followed by b copies of the code obtained from C2 by
omitting the last M2 −M1 codewords. By construction, aC1 + bC2 is shown to
be an (an1 + bn2,M1, d) code, for d ≥ ad1 + bd2.

This way, the code C defined above meets the Plotkin bound (1), since it has

length n, minimum distance d, and contains 2k = 2� d

2d− n� codewords.

We now extend Levenshtein’s method for constructing optimal error correct-
ing codes from Hadamard matrices to the case of quasi-Hadamard matrices. The
codes so obtained are termed quasi-Hadamard codes.

Consider a normalized quasi-Hadamard matrix M4t of order 4t and depth q.
We define the matrix A′

4t related to M4t in the following way: select a q-set of
rows of M4t which are orthogonal one to each other (notice that there is no
larger set with this property, since q is the depth of M4t), and replace the +1’s
by 0’s and the −1’s by 1’s.

Theorem 1. In the circumstances above, the following quasi-Hadamard codes
may be constructed:

1. An (4t−1, q, 2t) code, A′
4t, consisting of the rows of A′

4t with the first column
deleted.

2. An (4t− 1, 2q, 2t− 1) code, B′
4t, consisting of A′

4t together with the comple-
ments of all its codewords.

3. An (4t, 2q, 2t) code, C′4t, consisting of the rows of A′
4t and their complements.

4. An (4t− 2, h, 2t) code, D′
4t, formed from the h codewords in A′

4t which begin
with 0, with the initial zero deleted (we only know that h ≤ q).

Proof. It is a straightforward extension of the case of usual Hadamard codes
coming from Hadamard matrices, since:

– A′
4t consists of q rows.

– Any two rows of A′
4t agree in 2t places and differ in 2t places (since they are

pairwise orthogonal), and so have Hamming distance 2t apart.

The result follows. ��

Remark 1. Obviously, the closer q is from 4t, the better codes A′
4t, B′

4t, C′4t and
D′

4t are. In the sense that the number of codewords is very close to the optimal
value indicated in the Plotkin bound.



298 V. Álvarez et al.

Theorem 2. For d even so that 2d > n ≥ d, define k = � d

2d− n� and

a = d(2k + 1)− n(k + 1), b = kn− d(2k − 1).

as before. A good error correcting code C′ of length n and minimum distance
d may be obtained, from suitable quasi-Hadamard matrices. More concretely,
depending on the parity of n and k, define the code C′ to be:

– If n is even, C′ =
a

2
D′

4k ⊕
b

2
D′

4k+4.

– If n is odd and k even, C′ = aA′
2k ⊕

b

2
D′

4k+4.

– If n and k are odd, C′ =
a

2
D′

4k ⊕ bA′
2k+2.

Proof. From Levenshtein’s method [5] described before, it is readily checked
that C′ consists of codewords of length n. Furthermore:

– If n is even, select a normalized quasi-Hadamard matrix 1M4k of order 4k and
depth q1, and a normalized quasi-Hadamard matrix 2M4k+4 of order 4k+ 4
and depth q2. Denote iA′ a qi-set of pairwise orthogonal rows in iM with
their first entry dropped, and where the +1’s and the−1’s have been replaced
by 0’s and 1’s, respectively. Denote iD′ the hi-set of rows in iA′ which begin

with 0, for 0 ≤ hi ≤ qi. In these circumstances, C′ =
a

2
(1D′

4k)⊕ b

2
(2D′

4k+4)

consists in a (n,min{h1, h2}, d)-code.
– If n is odd and k even, select a normalized quasi-Hadamard matrix 1M2k of

order 2k and depth q1, and a normalized quasi-Hadamard matrix 2M4k+4

of order 4k + 4 and depth q2. Denote iA′ a qi-set of pairwise orthogonal
rows in iM with their first entry dropped, and where the +1’s and the −1’s
have been replaced by 0’s and 1’s, respectively. Denote 2D′ the h2-set of
rows in 2A′ which begin with 0, for 0 ≤ h2 ≤ q2. In these circumstances,

C′ = a (1A′
2k)⊕ b

2
(2D′

4k+4) consists in a (n,min{q1, h2}, d)-code.
– If n and k are odd, select a normalized quasi-Hadamard matrix 1M4k of

order 4k and depth q1, and a normalized quasi-Hadamard matrix 2M2k+2

of order 2k + 2 and depth q2. Denote iA′ a qi-set of pairwise orthogonal
rows in iM with their first entry dropped, and where the +1’s and the −1’s
have been replaced by 0’s and 1’s, respectively. Denote 1D′ the h1-set of
rows in 1A′ which begin with 0, for 0 ≤ h1 ≤ q1. In these circumstances,
C′ =

a

2
(1D′

4k)⊕ b (2A′
2k+2) consists in a (n,min{h1, q2}, d)-code.

The “goodness” of the code C′ depends on the choices of qi and hi, so that
the number of codewords is not far from the Plotkin bound (1). ��

4 Examples

The examples below illustrate that suitable quasi-Hadamard matrices give raise
to good error correcting codes, even optimal ones.

In the sequel we write “−” instead of “−1” for simplicity.



Error Correcting Codes from Quasi-Hadamard Matrices 299

4.1 Example 1: An Optimal Quasi-Hadamard Code

Consider the Hadamard matrices

H8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
1 − 1 1 − 1 − −
1 − − 1 1 − 1 −
1 − − − 1 1 − 1
1 − 1 − − − 1 1
1 1 − − − 1 1 −
1 1 − 1 − − − 1
1 1 1 − 1 − − −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 − 1 1 1 − − − 1 −
1 − − 1 − 1 1 1 − − − 1
1 1 − − 1 − 1 1 1 − − −
1 − 1 − − 1 − 1 1 1 − −
1 − − 1 − − 1 − 1 1 1 −
1 − − − 1 − − 1 − 1 1 1
1 1 − − − 1 − − 1 − 1 1
1 1 1 − − − 1 − − 1 − 1
1 1 1 1 − − − 1 − − 1 −
1 − 1 1 1 − − − 1 − − 1
1 1 − 1 1 1 − − − 1 − −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

As it is shown in [6], Levenshtein’s method provide a (27, 6, 16) Hadamard
code C from H8 and H12. Assuming the notation of the precedent section, this
code is constructed as the summation 2D12 ⊕A8, so that

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1
1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1
0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 0
0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0
1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Taking into account Theorem 2, the same optimal code C may be obtained as
the summation 2(1D′

12)⊕ (2A′
8) from the following quasi-Hadamard matrices:

– A quasi-Hadamard matrix 1M8 of order 8 and depth 6, which consists in
randomly substituting the last two rows of H8.

– A quasi-Hadamard matrix 12M12 of order 12 and depth 6, which consists in
randomly substituting those rows of H12 which begin with (1− . . .). ��

4.2 Example 2: A Good (Non Optimal) Quasi-Hadamard Code

The section “Finding out a liar” in ([1], chap. 17) has provided inspiration for
this example.

Suppose that someone thinks of a number between 1 and 10, and that you
are supposed to guess which number it is. The rules of the game let you to ask
8 questions (with “yes” or “no” answers), and no more than one lie is allowed.

In order to win, it suffices to get a code capable of correcting up to 1 error,
formed from at least 10 codewords (one for every number in the given range).
Writing 1 for “yes” and 0 for “no”, now choose the questions so that the binary



300 V. Álvarez et al.

tuple that the answers generates in each case coincides with the corresponding
codeword. This requires that the length of the code should coincide with the
number of questions. Summing up, you need a (n,M, d) code so that n = 8,
M ≥ 10 and d allows to correct at least 1 error.

Your elementary background on the Theory of Codes indicates that in order
to correct e errors you need to use a code of minimum distance d such that

�d− 1
2
� ≥ e. Since e = 1, you need d ≥ 3.

Assume that d = 4. Taking into account the Plotkin bound (2), it follows that
n = 2d = 8 and the number M of codewords is always M ≤ 2n = 16.

Attending to Levenshtein’s method, the code C8

C8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 0 1 0
0 1 0 1 1 1 0 0
0 0 1 1 1 0 0 1
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1
1 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1
1 0 1 0 0 0 1 1
1 1 0 0 0 1 1 0
1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

related to the matrix H8 above is optimal for given length 8 and minimum
distance 4. Since C8 consists of 16 codewords, C8 may be used to solve the game.

In spite of this fact, a smaller (8,M, 4) code may be used as well, provided
M ≥ 10.

Consider the quasi-Hadamard matrix M8 obtained from H8 by randomly
changing the entries located at the 1st, 7th and 8th rows,

M8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 − 1 1 − 1 − −
1 − − 1 1 − 1 −
1 − − − 1 1 − 1
1 − 1 − − − 1 1
1 1 − − − 1 1 −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠



Error Correcting Codes from Quasi-Hadamard Matrices 301

Taking into account Theorem 1, we may construct the (8, 10, 4) code C′8,

C′8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 1 0 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 0 1 0
0 1 0 1 1 1 0 0
0 0 1 1 1 0 0 1
1 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1
1 0 1 0 0 0 1 1
1 1 0 0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

related to the matrix M8 above.
Map every integer i in the range [1, 10] to the i-th codeword ci in C′8.
Now you should ask the following questions:

1. Is the number greater than 5?
2. Is it less or equal to 4 modulo 10?
3. Is it in the set {2, 3, 5, 6, 9}?
4. Is it in the range [3, 7]?
5. Is it in the set {1, 4, 5, 7, 8}?
6. Is it even?
7. Is it in the set {1, 3, 7, 9, 10}?
8. Is it in the set {1, 2, 5, 8, 9}?

Assume that the vector of answers is a = (a1, . . . , a8). Select the unique
codeword ci in C′8 whose summation with a modulo 2 produces a tuple with
at most one non zero entry. Then the correct number is i, and the player lied
precisely when he answered the question which corresponds to the column with
the non zero entry. ��

Remark 2. Notice that any quasi-Hadamard matrix of order 8 and depth 5 could
have been used as well in order to solve the game. The only variation is the
questions to ask. In fact, the questions should be formulated so that if the number
to guess is i, then the answer to the j-th question is the i-th entry of the j-th
codeword of the code.

Summarizing, depending on the needs of the user, suitable quasi-Hadamard ma-
trices have to be constructed in order to perform the desired error correcting
code. Notice that working with quasi-Hadamard matrices and codes instead of
Hadamard ones does not mean that functionality is lost (see example 1, for in-
stance). In fact, it often occurs that not all codewords of a given code are actually
used for transmissions in practise (see example 2 above). So quasi-Hadamard
matrices and quasi-Hadamard codes may suffice to perform transmissions at the
entire satisfaction of users, including optimal detection and correction affairs.



302 V. Álvarez et al.

Acknowledgments

The authors want to express their gratitude to the referees for their suggestions,
which have led to a number of improvements of the paper.

References

1. Cameron, P.J.: Combinatorics: topics, techniques, algorithms. Cambridge Univer-
sity Press, Cambridge (1994)

2. Feige, U., Goldwasser, S., Safra, S., Lovász, L., Szegedy, M.: Approximating clique
is almost NP-complete. Proceedings 32nd Annual Symposium on the Foundations
of Computer Science, FOCS, pp. 2–12 (1991)

3. Hastad, J.: Clique is hard to approximate within n1−ε. Proceedings 37th Annual
IEEE Symposium on the Foundations of Computer Science, FOCS, pp. 627–636
(1996)

4. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations, pp. 85–103 (1972)

5. Levenshtein, V.I.: Application of the Hadamard matrices to a problem in coding.
Problems of Cybernetics 5, 166–184 (1964)

6. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North
Holland, New York (1977)

7. Marchiori, E.: Genetic, Iterated and Multistart Local Search for the Maximum
Clique Problem. In: Cagnoni, S., et al. (ed.) EvoIASP 2002, EvoWorkshops 2002,
EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 112–121.
Springer, Heidelberg (2002)

8. Noboru, I.: Hadamard Graphs I. Graphs Combin. 1 1, 57–64 (1985)
9. Noboru, I.: Hadamard Graphs II. Graphs Combin. 1 4, 331–337 (1985)

10. Plotkin, M.: Binary codes with specified minimum distances. IEEE Trans. Infor-
mation Theory 6, 445–450 (1960)



Fast Computations of Gröbner Bases and Blind

Recognitions of Convolutional Codes�

Peizhong Lu and Yan Zou

Fudan University, Shanghai 200433, P.R. China
pzlu@fudan.edu.cn

Abstract. This paper provides a fast algorithm for Gröbner bases of
homogenous ideals of the ring F[x, y] over a field F. The computational
complexity of the algorithm is O(N2), where N is the maximum degree
of the input generating polynomials. The new algorithm can be used to
solve a problem of blind recognition of convolutional codes. This is a new
generalization of the important problem of synthesis of a linear recurring
sequence.

Keywords: Gröbner basis, sequence synthesis, Berlekamp-Massey algo-
rithm, blind recognition of convolutional code.

1 Introduction

Let F be a field, and F[X ] = F[x1, ..., xn] the polynomial ring with n unknown
variables. Let I be an ideal of F[X ]. The theory of Gröbner basis suggested by
B.Buchberger [4] (1965) is a powerful tool used in the theoretical researches of
algebraic decoding, algebraic attacks in cryptanalysis [11]. It is a critical problem
to find a fast computation of Gröbner bases for the polynomial ideals related to
practical applications. However, for a general ideal I, the computation of Gröbner
basis is very complex. The upper boundary [15] of computational complexity is
O(N2n

), where N is the maximum degree of the generating polynomials of I.
Many of the algorithmic developments in Gröbner basis computation have

been modifications of Buchberger’s original algorithm to reduce the number of
unnecessary S-polynomials that are processed. We must mention two results of
important practical significance. The first is Faugere’s F4 algorithm [7], which
exploits sparse linear algebra to allow multiple pairs to be processed simultane-
ously. The second is the ‘FGLM’ algorithm of [6], which allows one to rapidly
convert a Gröbner basis for a zero dimensional ideal from one term ordering to
another with computational complexity O(D3), where D = dimF F[X ]/I. How-
ever, how to precisely determine the computational complexity of F4, even in
the special cases of zero dimensional ideals, is still an intractable open problem.

� This work was supported by the National Natural Science Foundation of China
(60673082,90204013),and Special Funds of Authors of Excellent Doctoral Disserta-
tion in China(200084).

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 303–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



304 P. Lu and Y. Zou

This paper provides a fast algorithm (Algorithm2) for Gröbner basis of ho-
mogenous ideals of the ring F[x, y] over a field F. We show that the computational
complexity of our new algorithm is O(N2) where N is the maximum degree of
the input generating polynomials of the ideal.

As one of the most important applications of our new algorithm, we demon-
strate that Algorithm 2 can solve the problem of fast blind recognition of con-
volutional code, which is a new important topic in adaptive communications,
communication acquisitions [19]. We also show that the fast blind recognition
of convolutional code is a novel generalization of synthesis problem of linearly
recurring sequence (LRS). It is well-known that the problem of synthesis of LRS
is a very important object to study in algebraic coding, cryptography, and sig-
nal processing. Berlekamp [3](1968) and Massey [20](1969) found the famous
BM algorithm that carries out the fast computation of synthesis problem by
solving Key Equation (KE) with computational complexity O(N2). Due to the
importance of BM algorithm, a great deal of attention has been given to the
problem of finding new algorithms or relationships between the existence algo-
rithms [1],[2],[5],[12],[13],[14],[16], [17].

G.L.Feng(1991) [9] generalized KE and successfully provided an efficient al-
gorithm of decoding the algebraic geometry codes. S.Sakata [21] generalized
KE in another way, which can solve the synthesis problem of linear recurring
array(LRA). Both of their algorithms were generalizations of BM algorithm
basically.

In this paper, we further generalize KE by Homogenous Key Module Equation
(HKME). The fast computation of Gröbner basis is used for blind recognition
of convolutional code which turns out to be a new generalization of the syn-
thesis problem. Our generalization has a new direction different from that sug-
gested by Feng and Sakata. Our new direction also has a promising future. As
a special application, our new algorithm can be used to solve the HKME with
computational complexity O(N2). P.Fitzpatrick [10] also solved KE by using
Gröbner bases derived from FGLM algorithm with computational complexity
O(D3), where D = dimF F[X ]/I). In general, due to O(dimF F[X ]/I) ≥ O(N),
our algorithm to solve HKME is much faster than FGLM’s.

2 Fast Computation of Gröbner Basis of Homogenous
Ideals with Two Variables

We give a brief introduction to Gröbner basis. Details can be found in [4].
Let N be the set of natural number. For arbitrary i = (i1, . . . , in) ∈ Nn, we

call Xi = xi1
1 · · ·xin

n a power product of F[X ]. Let T n be a set of power products
of F[X ], namely

T n =
{
xβ1

1 · · ·xβn
n |βi ∈ N, i = 1, . . . , n

}
.

For a given term ordering over F[X ], and arbitrary 0 
= f ∈ F[X ], then f can
be represented as



Fast Computations of Gröbner Bases and Blind Recognitions 305

f = a1X
α1 + a2X

α2 + · · ·+ arX
αr , (1)

where 0 
= ai ∈ R,Xαi ∈ T n, and Xα1 > Xα2 > · · · > Xαr .

Definition 1. In the representation of f in (1), let lp(f) = Xα1 be the leading
power product of f , lc(f) = a1 the leading coefficient of f , and lt(f) = a1X

α1

the leading term of f .

In the sequel, any discussions about lp, lc, lt are related to a fixed term
ordering.

Definition 2. Given f, h in F[X ] and a polynomial set G = {g1, . . . , gs} , we
say that f is reduced to h by modulo G in one step, written f

G−→ h, if and
only if

h = f − (c1X1g1 + · · ·+ csXsgs)

where c1, . . . , cs ∈ F , X1, . . . , Xs ∈ T n, lp(f) = lp(Xi)lp(gi),and lt(f) =
c1X1lt(g1) + · · ·+ csXslt(gs).

Definition 3. Let f , h ∈ F[X ], and nonzero polynomial set G = {g1, . . . , gs} ⊂
F[X ]. we call f is reduced to h by module G, denoted as f G−→+ h, if there exist
polynomials h1, . . . , ht−1 ∈ F[X ] such that f F→ h1

G→ · · · G→ ht−1
G→ h.

Definition 4. Let 0 
= f, g ∈ F[x1, · · · , xn], L = lcm(lp(f), lp(g)). The following
polynomial S(f, g) = L

lt(f)f −
L

lt(g)g is called the S-polynomial of f and g.

Theorem 1. ([4]) Let I be an ideal of F[X ]. Let G = {g1, . . . , gt} be a subset
of I. The following statements are equivalent.

1. f ∈ I if and only if f
G→+ 0.

2. f ∈ I if and only if
f = h1g1 + · · ·+ htgt, (2)

where h1, . . . , ht ∈ F[X ] and lp(f) = max1≤i≤t(lp(hi)lp(gi)).
3. G is a generating set of I, and S(gi, gj)

G→+ 0, for arbitrary 1 ≤ i < j ≤ t.

Definition 5. Let I be an ideal of F[X ], G a subset of I. Then G is called a
Gröbner basis of I, if G satisfies any equivalent condition in theorem 1. We call
the subset G of F[X ] as Gröbner basis if G is a Gröbner basis of 〈G〉 .

If B is a subset of F[X ], then we denote Lt(B) an ideal generated by the leading
terms of the polynomials in B.

Definition 6. Let I be an ideal of F[X ], G = {g1, g2, · · · , gr} a Gröbner basis of
I. If for each j = 1, · · · , r, lt(gj) /∈ Lt(G \ {gj}), G is called a minimal Gröbner
basis.

In the following we study the computation of Gröbner bases of ideals of the
polynomial ring F[x, y] with two variables.



306 P. Lu and Y. Zou

Definition 7. f is called a nonzero monomial over F[x, y], if there exists 0 
=
c ∈ F such that f = cxnym. In this case, we denote degx f = n, degy f = m.

Let G = {g1, · · · , gl}, where each gi is a homogenous polynomial of F[x, y]. In
the sequel, we chose lexicographic order as the fixed term order on F[x, y], and
y < x.

Example 1. G = {g1 = x5 + x4y + x2y3, g2 = x7 + x2y5 + y7, g3 = x6y + xy6},
each monomials of polynomial g1 is ordered as : x5 > x4y > x2y3.

Lemma 1. Let G = {g1, · · · , gl} be a minimal Gröbner basis. Let lp(gi) =
xniymi , i = 1, 2, · · · , l be the leading term of gi and n1 ≥ n2 ≥ · · · ≥ nl. Then
n1 > n2 > · · · > nl, and m1 < m2 < · · · < ml.

Definition 8. Let G = {g1, · · · , gl} be a subset of F[x, y]. With a fixed term
order, if lp(g1) > lp(g2) > · · · > lp(gl), and lp(gi) � lp(gj), i 
= j, then the leading
terms of G are called to be strictly ordered.

Corollary 1. Let G = {g1, · · · , gl} be a minimal Gröbner basis, and lp(gi) =
xniymi be the leading term of gi. If n1 ≥ n2 ≥ · · · ≥ nl, then the leading terms
of G are strictly ordered.

Let K be a finite subset of homogenous polynomials in F[x, y]. The following al-
gorithm convertsK to a strictly ordered finite set G in lexicographic order,where
y <T x, and 〈K〉 = 〈G〉.

Algorithm 1. Finding a strictly ordered homogenous generator set for
an ideal.

INPUT: a homogenous polynomial set K = {g1, · · · , gl}
OUTPUT: a strictly ordered generator set G such that 〈G〉 = 〈K〉.
INITIAL: G = ∅
WHILE K 
= ∅

I = {g ∈ K| degy lp(g) = minf∈K{degy lp(f)}}.
Find g ∈ I such that degx lp(g) = minf∈I{degx lp(f)},
K ′ := K \ {g}, G := G ∪ {g}, K = ∅
WHILE K ′ 
= ∅

Choose f ∈ K ′,K ′ := K ′ \ {f}
WHILE degx lp(f) ≥ degx lp(g)

Reduced f by g to produce a reduced canonical form
f ′ ∈ F[x, y] such that f →G f ′

IF f ′ 
= 0 THEN f = f ′

K := K ∪ {f}
RETURN G

Proposition 1. Let K = {f1, . . . , fk} be a homogenous polynomial subset of
F[x, y] and G = {g1, . . . , g�} the finite set resulting from Algorithm 1. Then the
leading terms of G are strictly ordered. Moreover � ≤ k, and 〈K〉 = 〈G〉.



Fast Computations of Gröbner Bases and Blind Recognitions 307

Proof. Let K0 = K,G0 = ∅, and let Ki, Gi be the sets established in i-th
step in Algorithm 1. Assume that the Algorithm 1 has generated all the subsets
K0, . . . ,Ki, G0, · · · , Gi such that for all 0 ≤ j ≤ i, the polynomials in Gj are
strictly ordered, and

〈Gj ∪Kj〉 = 〈K〉 , 0 ≤ j ≤ i.
Thus the assumption is true when j = 0. By Algorithm 1, Gi+1 = {gi+1} ∪
Gi, where gi+1 is a polynomial g form Ki such that (degx lp(g), degy lp(g)) is
minimal. Here, the ordering rule of a pair of positive integers is that (n1,m1) <
(n2,m2) if and only if m1 < m2, or m1 = m2 and n1 < n2. Since Ki+1 is the set
of canonical form of the elements from Ki \ {gi+1} reduced by gi+1 , thus

〈Ki〉 = 〈Ki+1 ∪ {gi+1}〉 .

Therefore we have

〈Ki+1 ∪Gi+1〉 = 〈Ki+1 ∪ {gi+1} ∪Gi〉 = 〈Ki ∪Gi〉 = 〈K〉 .

In the following we prove that degx lp(gi+1) < degx lp(gi). By the assumption,
the leading terms of Gi are strictly ordered, and Gi+1 = {gi+1} ∪Gi. We know
that gi+1 ∈ Ki. If gi+1 is a polynomial reduced from some f in Ki−1 by gi, then
degx lp(gi+1) < degx lp(gi). If gi+1 is a polynomial f in Ki−1 such that it can not
be nontrivially reduced by gi, then degy lp(gi+1) < degy lp(gi), or degy lp(gi+1) ≥
degy lp(gi) and degx lp(gi+1) < degx lp(gi). The former contradicts with the rule
in the algorithm to select gi. Therefore degx lp(gi+1) < degx lp(gi).

We further prove that degy lp(gi+1) > degy lp(gi). Obviously degy lp(gi+1) ≥
degy lp(gi). We show that degy lp(gi+1) 
= degy lp(gi).

From the construction of gi+1, there are two cases need to consider.
(a) gi+1 is a polynomial f of Ki−1 , and can not be nontrivial reduced by gi.
In this case, degx lp(gi+1) < degx lp(gi). If degy lp(gi+1) = degy lp(gi), it

contradicts the minimum property of gi.
(b) gi+1 is the nontrivial reduced polynomial f of Ki−1 by gi.
Since degy lp(f) ≥ degy lp(gi), and f is reduced by gi to gi+1 , therefore

degy lp(gi+1) > degy(lp(f)) ≥ degy lp(gi).

Thus degy lp(gi+1) > degy lp(gi). Hence Gi+1 is strictly ordered. Thus, by in-
duction on i, we have proved that G is strictly ordered.

Due to

|Ki+1| ≤ |Ki| − 1 ≤ k − i− 1, |Gi+1| ≤ |Gi|+ 1 ≤ i+ 1, i = 0, 1, · · · , k − 1,

thus Kk = ∅, and 〈Gk〉 = 〈Gk ∪Kk〉 = 〈K〉. Therefore � = |G| ≤ |Gk| ≤ k. �

Theorem 2. Let G = {g1, · · · , g�} be a homogenous strictly ordered subset of
F[x, y]. Then G is a minimal Gröbner basis if and only if

S(gi, gi+1)
G→+ 0, i = 1, · · · , �− 1



308 P. Lu and Y. Zou

Proof. Necessity: If G is a minimal Gröbner basis, then, by theorem 1, we have
S(gi, gi+1)

G→+ 0, for i = 1, · · · , �− 1.
Sufficiency: Let S(gi, gi+1)

G→+ 0, for i = 1, · · · , � − 1. We prove that G
is a Gröbner basis. From theorem 1, we only need to prove that for arbitrary
f ∈ 〈g1, g2, · · · , g�〉, f can be written as f = h1g1 + · · ·+htg�, where h1, . . . , h� ∈
F[x, y], and

lp(f) = max
1≤i≤�

(lp(hi)lp(gi)). (3)

In fact, since f ∈ 〈g1, g2, · · · , g�〉, f can be written as

f = h1g1 + · · ·+ h�g�, (4)

where h1, . . . , h� ∈ F[x, y].
There is a representation of f as (4), such that X = max1≤i≤�(lp(hi)lp(gi))

is minimal, and moreover the number of elements in the following set

S = {i|1 ≤ i ≤ �, lp(hi)lp(gi) = X},

namely |S|, is minimal.
If X ≤ lp(f), then formula (3) is true.
Now let lp(f) < X .
If t = |S| = 1, then in the right side of formula (4) there only exists one

maximal term in the summations that can not be eliminated by the other terms.
Thus lp(f) = X , which contradicts with the hypothesis. So let t = |S| ≥ 2. Let
us suppose that the interval between the least two elements in S is minimal.
Hence, if S = {i1, · · · , it}, where 1 ≤ i1 < i2 < · · · < it ≤ �, then t and i2 − i1
are both minimal.

For convenience in description, we suppose 1, j ∈ S, where 1 < j ≤ �, and j is
minimal. From X = lp(h1)lp(g1)) = lp(hj)lp(gj)),we know that X is a common
multiple of lp(g1), lp(gj). Let degx gi = ni, degy gi = mi. Then n1 > n2 > · · · >
n�, m1 < m2 < · · · < m�. Thus the least common multiple of lp(g1) and lp(gj) is
xn1ymj . Let , = lc(h1) and δ = lc(g1)lc(h1)

lc(g2) . From the definition of S-polynomial,
we have S(g1, g2) = ym2−m1g1 − (lc(g1)/lc(g2))xn1−n2g2.

Thus

h1g1 + h2g2 −,
X

xn1ym2
S(g1, g2) = (h1 − lt(h1))g1 + (h2 + δ

X

xn2ym1
)g2.

If j = 2, then

f = h1g1 + h2g2 + · · ·+ h�g�

= h1g1 + h2g2 +
∑

i∈S,i�=1,i�=2

higi +
∑

i/∈S

higi

= , X
xn1ym2 S(g1, g2)−, X

xn1ym2 S(g1, g2) + h1g1 + h2g2

+
∑

i∈S,i�=1,i�=2

higi +
∑

i/∈S

higi



Fast Computations of Gröbner Bases and Blind Recognitions 309

= , X
xn1ym2 S(g1, g2) + (h1 − lt(h1))g1 + (h2 + δ X

xn2ym1 )g2

+
∑

i∈S,i�=1,i�=2

higi +
∑

i/∈S

higi.

Thus
f = (h2 + δ

X

xn2ym2
)g2 +

∑

i∈S,i�=1,i�=2

higi +
∑

i/∈S

higi + ω, (5)

where ω = , X
xn1ym2 S(g1, g2)+ (h1− lt(h1))g1. Due to S(g1, g2)

G−→+ 0, we have

, X
xn1ym2 S(g1, g2)

G−→+ 0, and

, X

xn1ym2
S(g1, g2) = h′1g1 + · · ·+ h′�g�,

where X > lp(, X
xn1ym2 S(g1, g2)) = max1≤i≤�(lp(h′i)lp(gi)). Since lp(h1

− lt(h1))g1 < lp(h1g1) = X, then ω can be written as

ω = h′′1g1 + · · ·+ h′′� g�,

where X > lp(ω) = max1≤i≤�(lp(h′′i )lp(gi)). In the right side of (5) we can see
in the first term that lp( X

xn2ym2 ) = lp(h2), and thus

lp((h2 + δ
X

xn2ym2
))lp(g2) ≤ X.

Therefore, from (5) we conclude that f can be represented as a summation in
which the number of maximal monomials not exceed |S| − 1,which contradicts
the hypothesis that |S| is minimal. So it’s true in the condition of j = 2.

Now consider j > 2. For convenience in description, we suppose lc(g1) =
lc(gj) = lc(hj) = 1. Since

f = h1g1 + hjgj +
∑

i∈S,i�=1,i�=j

higi +
∑

i/∈S

higi

= X
xnj−1ymj S(gj−1, gj)− X

xnj−1ymj S(gj−1, gj) + h1g1 + hjgj

+
∑

i∈S,i�=1,i�=j

higi +
∑

i/∈S

higi

= −X
xnj−1ymj S(gj−1, gj) + h1g1 + X

xnj−1ymj−1 gj−1 + (hj − lp(hj))gj

+
∑

i∈S,i�=1,i�=j

higi +
∑

i/∈S

higi,

thus

f = h1g1 +
X

xnj−1ymj−1
gj−1 +

∑

i∈S,i�=1,i�=2

higi +
∑

i/∈S

higi

− X

xnj−1ymj
S(gj−1, gj) + (hj − lp(hj))gj . (6)



310 P. Lu and Y. Zou

In (6), due to X
xnj−1ymj S(gj−1, gj) →G 0 and lp( X

xnj−1ymj S(gj−1, gj)) < X ,
lp((hj − lp(hj))gj) < X , the number of maximal monomials X in f equal to |S|.
But the position set of maximum monomials X is {1, j − 1} ∪ S \ {j}, which
contradicts with the hypothesis that j is minimal. Here the conclusions are all
proved. �
Based on theorem 2 and proposition 1 above, we give the following algorithm to
compute a minimal Gröbner basis for a homogenous ideal over F[x, y].

Algorithm 2. Computing a minimal Gröbner basis for a homogenous ideal of
F[x, y]

INPUT: A homogenous set K = {g1, · · · , gl}
OUTPUT: Gröbner basis G such that 〈G〉 = 〈K〉.
INITIAL: Call subroutine Algorithm 1 such that homogenous set K

is changed into a strictly ordered set. i = 0, Gi = ∅
WHILE K 
= ∅

i := i+ 1
I = {g ∈ K| degy lp(g) = minf∈K{degy lp(f)}}.
Find g ∈ I that degx lp(g) = minf∈I{degx lp(f)},
K ′ := K − {g}, Gi := Gi−1 ∪ {g}, gi = g,K = ∅
h := S(gi, gi−1), K ′ := K ′ ∪ {h},
WHILE K ′ 
= ∅

Find f ∈ K ′,K ′ := K ′ − {f}
WHILE degx lp(f) ≥ degx lp(g)

Reduced f by g gives the canonical form f ′ ∈ F[x, y]
such that f →Gi f

′, namely f ≡ f ′modGi

IF f ′ 
= 0 THEN f = f ′

K := K ∪ {f}
G = Gi

RETURN G

3 Analysis of Computational Complexity

Lemma 2. Let f, g ∈ F[x], g be a monic polynomial, and deg f ≥ deg g. To
find polynomials q, r ∈ F[x] such that f = qg + r, and deg r < deg g, by division
algorithm, the computational complexity is O((deg f−deg g+1)deg g) operations
over F.

Proposition 2. Let K = {f1, . . . , fk} be a homogenous polynomial subset of
F[x, y] and G = {g1, . . . , g�} the finite set in Algorithm 1, and degx gi = ni, i =
1, · · · , �. Let N = n0 = maxf∈K degx lp(f), then the computational complexity
of Algorithm 1 is O(kN2).

Proof. In the Algorithm 1, let S, Si be the numbers of all operations taken
place in all steps and in step i respectively . Let Gi = Gi−1 ∪ {gi}, ni =
degx lp(gi), mi = degy lp(gi). The computational complexity to find gi+1 in Ki



Fast Computations of Gröbner Bases and Blind Recognitions 311

is less than 2(|Ki| − 1) ≤ 2(k − i− 1) times comparing operations. Let f be an
arbitrary element in Ki, then degy lp(f) ≥ degy lp(gi+1). From the constructing
process of Ki+1, we know that for f ∈ Ki, if degx lp(f) < degx lp(gi+1), then
f can be put into Ki+1. If degx lp(f) ≥ degx lp(gi+1), then, after dividing f by
gi+1, the reduced canonical form f ′ = f−h ·gi+1 is put into Ki+1. By Lemma 2,
the number of addition and multiplication required in the above process is

(degx lp(f)− degx gi+1 + 1)degx lp(gi+1) = (degx lp(f)− ni+1 + 1)ni+1.

Then the computational complexity to construct Ki+1 from Ki satisfies

S0 ≤
∑

f∈K−{g1}
(degx lp(f)− n1 + 1) · n1 + 2k ≤ k(n0 − n1 + 1)n1 + 2k,

where n0 = maxf∈K{degx f}, and

Si+1 ≤
∑

f∈Ki−{gi+1}
(degx lp(f)− ni+1 + 1) · ni+1 + 2(k − i− 1).

If f ∈ Ki, then degx lp(f) ≤ degx lp(gi) = ni, and thus

Si+1 ≤
∑

f∈Ki−{gi+1}(degx f − ni+1 + 1) · ni+1 + 2(k − i− 1)
≤ (ni − ni+1 + 1) · ni+1(|Ki| − 1) + 2(k − i− 1)
≤ ((ni − ni+1 + 1) · ni+1 + 2)(k − i− 1).

Therefore, the total computation S in Algorithm 1 satisfies

S ≤ S0 +
∑�

i=1((ni − ni+1 + 1) · ni+1 + 2)(k − i− 1)
≤ S0 + k

∑�
i=1((ni − ni+1 + 1) · ni+1 + 2)

≤ S0 + k
∑�

i=1(ni − ni+1 + 1) · ni+1 + 2k�
≤ S0 + k

∑�
i=1(ni − ni+1 + 1) · n1 + 2k�

≤ S0 + k(n2
1 + �n1 + 2�)

= O(kN2).

Here we suppose n�+1 = 0. The conditions of � ≤ k, and n1 > · · · > n� >
n�+1 = 0 are needed. �
Theorem 3. Let K = {g1, · · · , gk} be a homogenous subset of F[x, y], then the
finite set G from Algorithm 2 is a strictly ordered Gröbner basis. The computa-
tional complexity is O(kN2), where N the maximal degree of variable x in K.

Proof. 1) The degree degx g of g selected in each step in Algorithm 2 is strictly
descending. Thus the algorithm ends in finite steps. 2) Since G is strictly ordered,
and satisfies the conditions of Lemma 2, G is a Gröbner basis. 3) Let Si be
the number of operations needed in step i in Algorithm 2. From the proof of
Proposition 2, we know that

Si+1 = numbers of operations in selecting gi+1 from Ki

+numbers of operations of computing S-polynomial
+numbers of operations of K ′ mod gi

≤ 2(k − 1) + ni+1 +
∑

f∈Ki
(degx lp(f)− ni+1)ni+1.



312 P. Lu and Y. Zou

Thus the total computation is

S ≤
∑�

i=0(2(k − 1) + ni+1 +
∑

f∈Ki
(degx lp(f)− ni+1)ni+1)

≤ 2(k − 1)(n0 + 2) + n0(n0 + 1) + k(n0 + 1)n0,

where � is steps of Algorithm 2. Since degx lp(gi+1) ≤ degx lp(gi) − 1 , thus
� ≤ n0 + 1. Therefore the computational complexity of Algorithm 2 does not
exceed O(kN2). �

4 A New Generalization of Sequence Synthesis

In this section we show that the fast computation of Gröbner basis of homoge-
nous ideals of F[x, y] can be used to solve the famous problem of sequence syn-
thesis, and its new generalization for blind recognition of convolutional code.

4.1 Synthesis of LRS and Blind Recognition of Convolutional Code

Let a = (a0, a1, · · · , aN ) be a sequence with finite length over F. Let f(x) =
f0 + f1x + · · · + fLx

L be a polynomial in F[x], where deg f(x) ≤ L, f0 = 1. If
this polynomial satisfies the following linear recurrence relation

ai+L + f1ai+L−1 + f2ai+L−2 + · · ·+ fLai = 0, i ≥ 0,

then (f(x), L) is called linear recurrence relation of sequence a. If (f(x), L) is
linear recurrence relation of sequence a, and L is minimal, then (f(x), L) is called
the minimal linear recurring relation of a and L is called linear complexity of a,
namely �(a).

The so called synthesis problem of LRS is to find the minimal linear recurrence
relation that can generate sequence a.

Let a convolutional code with coding rate 1/2 be

C = {(a(x)g1(x), a(x)g2(x)) |a(x) ∈ F[[x]]} (7)

where a(x) = a0+a1x+a2x
2+· · · is the signal sequence, g1(x), g2(x) are the gen-

erating polynomials, and F[[x]] is Laurent series ring over F. The problem of blind
recognition of convolutional codes is to find the unknown g1(x), g2(x) from a fi-
nite partial known convolutional subsequence C(x) with errors, namely,C(x) =
(C1(x), C2(x))

Ci(x) + Ei(x) = (ci0 + ci1x+ · · ·+ ciNx
N ) + (ei0 + ei1x+ · · ·+ eiNx

N ), (8)

i = 1, 2, where the error code is Ei(x) = ei0 + ei1x+ · · ·+ eiNx
N .

We only consider the noiseless case. For computing gi(x), we first estimate the
restricted length k = max(deg g1(x), deg g2(x)). If the length N of the partial
known convolutional subsequence is so large that N > 3× (k + 1), then we can
solve the following linear equations



Fast Computations of Gröbner Bases and Blind Recognitions 313

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1,k c1,k−1 · · · c1,0 c2,k c2,k−1 · · · c2,0

c1,k+1 c1,k · · · c1,1 c2,k+1 c2,k · · · c2,1

. . .
. . .

. . .
. . .

. . .

c1,N c1,N−1 · · · c1,N−k c2,N c2,N−1 · · · c2,N−k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g2,0

g2,1

...
g2,k

g1,0

g1,1

...
g1,k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (9)

To guarantee the solvability of equations (9), we need to set k a large integer.
But if k is too large, the computational complexity becomes higher. To solve
equations (9) by Gauss elimination, the computational complexity is O(N3).

When g2(x) = 0, the problem of blind recognition of convolutional code be-
comes synthesis problem of LRS.

4.2 Key Equation and Key Module Equation

Let A(x) = a0+a1x+ · · ·+aNx
N be a polynomial representation of the sequence

a. Synthesis problem of LRS can be converted to how to solve the following key
equation efficiently.

Key equation (KE): Find an element (f(x), L) in

Φ(1) =

{

(f(x), L) ∈ F[x] × N

∣
∣
∣
∣
deg f(x) ≤ L, ∃b(x) ∈ F[x], deg b(x) < L such that

f(x)A(x) ≡ b(x) mod xN

}

.

such that f(0) 
= 0 and L is minimal.
Since the problem of blind recognition of convolutional code is a generalization

of synthesis problem of LRS, we propose the following generalized key equation.
Let

Ci(x) = ci0 + ci1x+ ci2x
2 + · · ·+ ciNx

N , i = 1, 2

be the partial known convolutional subsequences over F.
Key module equation (KME): Find an element pair (h1(x), h2(x), L) in

Φ(2) =

⎧
⎨

⎩
(h1(x), h2(x), L)∈R[x]2×N

∣
∣
∣
∣
∣
∣

∃d(x)∈F[x], such that
h1(x)C1(x) + h2(x)C2(x)≡d(x) modxN+1,
deg d(x) < L, max(deg h1(x), deg h2(x)) ≤ L

⎫
⎬

⎭

such that L be minimal and (h1(0), h2(0)) 
= (0, 0).

4.3 Homogenous Key Equation and Homogenous Key Module
Equation

In reference[17], we originally proposed homogenous key equation for modelling
the synthesis problem of LRS. The homogeneity of A(x) is denoted as A(x, y),



314 P. Lu and Y. Zou

namely A(x, y) = a0y
N + a1xy

N−1 + · · · + aNx
N . Let I =

〈
xN+1, yN+1

〉
be a

homogenous ideal of F[x, y].
Homogenous key equation (HKE): Find a minimal generator of the ho-

mogenous ideal

Γ (1) = {b(x, y) ∈ F[x, y] |b(x, y)A(x, y) ≡ 0modI } (10)

Similar to synthesis of LRS, we propose homogenous key module equation
for blind recognition of convolutional code. Firstly, we need to homogenize the
convolutional code subsequence Ci(x) to

Ci(x, y) = ci0y
N + ci1xy

N−1 + ci2x
2yN−2 + · · ·+ ciNx

N , i = 1, 2

Denote I =
〈
xN+1, yN+1

〉
as a homogenous ideal of F[x, y] generated from

xN+1, yN+1 .
Homogenous key module equation (HKME): Find a minimal generator

of F[x, y]-module

Γ (2) =
{
(H1, H2) ∈ F[x, y]2 |H1C1(x, y) +H2C2(x, y) ≡ 0 mod I

}
(11)

Blind recognition of convolutional code is a problem to compute a Gröbner
basis of finite generating module Γ (2). The following proposition show the tight
relationship between KME and HKME.

Theorem 4. [18] Let Ci(x),Ci(x, y) be polynomials in KME and HKME respec-
tively. Let hi(x) = hi0 + hi1x + · · · + himx

m, i = 1, 2 be polynomials over F[x]
with corresponding homogenous polynomials Hi(x, y) = hi0y

m+hi1xy
m−1+· · ·+

himx
m, i = 1, 2 respectively. Then (h1(x), h2(x),m) ∈ Φ(2) in KME if and only

if (H1(x, y), H2(x, y)) ∈ Γ (2) in HKME.

Obviously, HKME has a nice algebraic structure. By theorem 4, we have the
following conclusions:

1. Synthesis problem of LRS can be carry out by finding a Gröbner basis of
homogenous ideal

I(1) =
〈
A(x, y), xN+1, yN+1

〉

and the Syzygy of I(1), where A(x, y) is defined in HKE.
2. The problem of blind recognition of convolutional code can be fast carry

out by finding a Gröbner basis of homogenous ideal

I(2) =
〈
C1(x, y), C2(x, y), xN+1, yN+1

〉

and the Syzygy of I(2), where C1(x, y), C2(x, y) are defined in HKME.
The definition of Syzygy of ideal can be found in reference [4]. If only the

Gröbner basis is found, the corresponding Syzygy can be obtained at the same
time. See the example in the next subsection.



Fast Computations of Gröbner Bases and Blind Recognitions 315

4.4 Computational Example of Blind Recognition of Convolutional
Code

Example 2. The received convolutional code subsequence are denoted as F1 =
x25 +x21y4 +x20y5 +x19y6+x18y7 +x15y10+x13y12 +x12y13 +x11y14+x10y15+
x7y18+x2y23+xy24+y25, and F2 := x25 +x24y+x22y3+x19y6+x18y7+x17y8+
x16y9 +x15y10 +x14y11 +x13y12 +x11y14 +x10y15 +x9y16 +x3y22 +x2y23 +y25.

We choose the partial subsequences of length 18 which are written as C1(x, y)
= x17 +x16y+x15y2 +x14y3+x13y4 +x11y6 +x10y7 +x9y8 +x3y14+x2y15+y17,
C2(x, y) = x15y2+x13y4 +x12y5+x11y6 +x10y7+x7y10 +x2y15+xy16+y17. We
compute the Gröbner basis G of the homogenous ideal I = 〈C1(x, y), C2(x, y),
x18, y18〉 by Algorithm 2, and record the coefficient matrix in the process of
reductions. The coefficient matrix is just the Syzygy relation.

Initial: Let (f0,−1, f1,−1, f2,−1, f3,−1) = (C1(x, y), x18, C2(x, y), y18) based on
the term order. Let

(1, 0, 0, 0) f0,−1 = x17 + x16y + x15y2 + x14y3 + x13y4 + x11y6 + x10y7 + x9y8 + x3y14 + x2y15 + y17

(0, 1, 0, 0) f1,−1 = x18

(0, 0, 1, 0) f2,−1 = x15y2 + x13y4 + x12y5 + x11y6 + x10y7 + x7y10 + x2y15 + xy16 + y17

(0, 0, 0, 1) f3,−1 = y18

The vectors in the first row of above table compose the matrix A(k) such
that

(f0,k, f1,k, f2,k, f3,k) = (f0,−1, f1,−1, f2,−1, f3,−1)A(k).

Thus A(k) records the changes of corresponding coefficients in the process
that computing Gröbner basis from input generators in algorithm 2. But
for blind recognition of convolutional code, we only need to compute the
generators set of the module satisfying the following equation:

h0f0,−1 + h2f2,−1 ≡ 0mod (x18, y18).

Hence,we do not record the second row (corresponding to the coefficients
x18) and the forth row(corresponding to the coefficient of y18) of A(k). We
list

(1, 0) f0,−1 = x17 + x16y + x15y2 + x14y3 + x13y4 + x11y6 + x10y7 + x9y8 + x3y14 + x2y15 + y17

(0, 0) f1,−1 = x18

(0, 1) f2,−1 = x15y2 + x13y4 + x12y5 + x11y6 + x10y7 + x7y10 + x2y15 + xy16 + y17

(0, 0) f3,−1 = y18

Step 0: f0,0 = f0,−1 = x17 + x16y + x15y2 + x14y3 + x13y4 + x11y6 + x10y7 +
x9y8 + x3y14 + x2y15 + y17,

(1, 0)
f0,0 = f0,−1 = x17 + x16y + x15y2 + x14y3

+x13y4 + x11y6 + x10y7 + x9y8 + x3y14 + x2y15 + y17

(0, 0)
−(x + y)(1, 0)

f1,0 = f1,−1 − (x + y)f0,−1 = x13y5 + x12y6 + x9y9 + x4y14 + x2y16 + xy17

(0, 1) f2,0 = f2,−1 = x15y2 + x13y4 + x12y5 + x11y6 + x10y7 + x7y10 + x2y15 + xy16 + y17

(0, 0) f3,0 = f3,−1 = y18



316 P. Lu and Y. Zou

Step 1: f0,1 = f2,0 = x15y2 + x13y4 + x12y5 + x11y6 + x10y7 + x7y10 + x2y15 +
xy16 + y17,

(0, 1)
f0,1 = f2,0 =
x15y2 + x13y4 + x12y5 + x11y6 + x10y7 + x7y10 + x2y15 + xy16 + y17

(x + y, 0) f1,1 = x13y5 + x12y6 + x9y9 + x4y14 + x2y16 + xy17

y2(1, 0)
+(x2 + xy)(0, 1)

f2,1 = y2f0,0 − (x2 + xy)f2,0

= x14y5 + x13y6 + x10y9 + x8y11 + x4y15 + x3y16 + x2y17

(0, 0) f3,1 = f3,0 = y18

Step 2: f0,2 = f1,1 = x13y5 + x12y6 + x9y9 + x4y14 + x2y16 + xy17,

(x + y, 0) f0,2 = f1,1 = x13y5 + x12y6 + x9y9 + x4y14 + x2y16 + xy17

y3(0, 1) + (x2 + xy)(x + y, 0)
f1,2 = y3f0,1 − (x2 + xy)f1,1 =
x12y8 + x7y13 + x6y14 + x4y16 + x5y15

(y2, x2 + xy) − x(x + y, 0) f2,2 = f2,1 − xf1,1 = x8y11 + x4y15 − x5y14

(0, 0) f3,2 = f3,1 = y18

Step 3: f0,3 = f1,2 = x12y8 + x7y13 + x6y14 + x4y16 + x5y15

(x3 + xy2, y3) f0,3 = f1,2 = x12y8 + x7y13 + x6y14 + x5y15 + x4y16

y3(x + y, 0) − (x + y)(x3 + xy2, y3) f1,3 = y3f0,2 − (x + y)f1,2 = x9y12 − x8y13

(y2 − x2 − xy, x2 + xy) f2,3 = f2,2 = x8y11 + x4y15 − x5y14

(0, 0) f3,3 = f3,2 = y18

Step 4: f0,4 = f2,3 = x8y11 + x4y15 − x5y14

(y2 − x2 − xy, x2 + xy) f0,4 = f2,3 = x8y11 + x4y15 + y19 − x5y14

(y4 − x4 − x2y2 − yx3, −xy3 + y4)
−(xy + y2)(y2 − x2 − xy, x2 + xy)

f1,4 = f1,3 − (xy + y2)f2,3 = −x4y17 + x6y15

y3(x3 + xy2, y3)−
(x4 + xy3 + y4)(y2 − x2 − xy, x2 + xy)

f2,4 = y3f0,3 − (x4 + xy3 + y4)f2,3 = y16x7

(0, 0) f3,4 = f3,3 = y18

Step 5: f0,5 = f1,4 = x6y15 − y17x4

(−x4 − x2y2, y4 − yx3) f0,5 = f1,4 = x6y15 − x4y17

y4(y2 − x2 − xy, x2 + xy) − (x2 + y2)(−x4 − x2y2, y4 − yx3) f1,5 = y4f0,4 − (x2 + y2)f1,4 = 0

(xy5 − x4y2 + x6 + x5y − y6, y6 − x6 − x5y − y3x3 − y5x)
−xy(−x4 − x2y2, y4 − yx3)

f2,5 = f2,4 − xyf1,4 = 0

(0, 0) f3,5 = f3,4 = y18

Step 6: f0,6 = f3,5 = y18

(0, 0) f0,6 = f3,5 = y18

(x6 + xy5 + y6, x5y + x3y3 + xy5 + y6) f1,6 = f1,5 = 0

(x6 + x4y2 + x3y3 + xy5 + y6, x6 + x5y + x4y2 + x3y3 + y6) f2,6 = f2,5 = 0

y3(−x4 − x2y2, y4 − yx3) f3,6 = y3f0,5 − (x6 − x2y4)f3,5 = 0

Thus we have the Gröbner basis G = {f0,0, f0,1, f0,2, f0,3, f0,4, f0,5, f0,6} , and
the generating polynomials of the convolutional code areH1 = x6+x4y2+x3y3+
xy5 + y6, H2 = x6 + x5y + x4y2 + x3y3 + y6.



Fast Computations of Gröbner Bases and Blind Recognitions 317

References

1. Althaler, J., Dür, A.: Finite Linear Recurring Sequences and Homogeneous Ideals.
AAECC 7, 377–390 (1996)

2. Althaler, J., Dür, A.: A Generalization of the Massey-Ding Algorithm. AAECC 9,
1–14 (1998)

3. Berlekamp, E.R.: Algebraic Coding Theory. McGrw-Hill, New York (1968)
4. Buchberger, B.: Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-

ory, in Multidimensional Systems Theory, Ed. by N.K.Bose (1984)
5. Cheng, M.H.: Generalised Berlekamp-Massey Algorithm. IEE Proc.Comm. 149(4),

207–210 (2002)
6. Faugére, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-

dimensional Gröbner bases by Change of Ordering. J.Symb. Comp. 16, 329–344
(1993)

7. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases (F4). J. Pure
and Applied Algebra 139, 61–83 (1999)

8. Faugére, J.: A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In: Proc. of ISSAC 02, pp. 75–83. ACM Press, New York
(2002)

9. Feng, K.L.: A Generation of the Berlekamp-Massey Algorithm for Mutisequence
Shift-register Synthesis with Applications to Decoding Cyclic Codes. IEEE Trans.
on Inform. Theory 37, 1274–1287 (1991)

10. Fitzpatrick, P.: Solving a Multivariable Congruence by Change of Term Order. J.
Symb.Comp. 11, 1–15 (1997)

11. Golic, J.D.: Vectorial Boolean Functions and Induced Algebraic Equations. IEEE
Trans. on Inform. Theory 52(2), 528–537 (2006)

12. Heydtmann, A.E., Jensen, J.M.: On the Equivalence of the Berlekamp-Massey and
the Euclidean Algorithms for Decoding. IEEE Trans. Inform.Theory 46(7), 2614–
2624 (2000)

13. Kailath, T.: Encounters with the Berlekamp-Massey Algorithm. In: Blahut, R.E.,
et al. (ed.) Communication and Cryptography, pp. 209–220. Kluwer Academic
Publisher, Boston, MA (1994)

14. Kuijper, M., Willems, J.C.: On Constructing a Shortest Linear Recurrence Rela-
tion. IEEE Trans. Automat. Contr. 42(11), 1554–1558 (1997)

15. Lazard, D.: A Note on Upper Bounds for Ideal-Theoretic Problems. J.Symbolic
Computation 13(3), 231–233 (1992)

16. Lu, P.Z., Liu, M.L.: Gröbner Basis of Characteristic Ideal of LRS over UFD, Science
in China(Series A), vol. 28(6) (1998)

17. Lu, P.Z.: Synthesis of Sequences and Efficient Decoding for a Class of Algebraic
Geometry Codes. Acta. Electronic Sinica 21(1), 1–10 (1993)

18. Lu, P.Z.: Structure of Groebner Bases for the Characteristic Ideal of a Finite Linear
Recursive Sequence, AAECC-13, HI,USA (November 14-November 19, 1999)

19. Lu, P.Z., Shen, L., Zou, L., Luo, X.Y.: Blind Recognition of Punctured Concolu-
tional Codes. Science in China(Series F) 48(4), 484–498 (2005)

20. Massey, J.L.: Shift-Register Synthesis and BCH Decoding. IEEE Trans. Info. The-
ory 15(1), 122–127 (1969)

21. Sakata, S.: Synthesis of Two-Dimensional Linear Feedback Shift-Registers and
Groebner Basis. LNCS, vol. 356. Springer, Heidelberg (1989)



A Twin for Euler’s φ Function in F2[X]�

R. Durán Dı́az1, J. Muñoz Masqué2, and A. Peinado Domı́nguez3

1 Departamento de Automática
Universidad de Alcalá de Henares

Carretera de Madrid-Barcelona, km. 33.6
28871-Alcalá de Henares, Spain

raul.duran@uah.es
2 CSIC, Instituto de F́ısica Aplicada
C/ Serrano 144, 28006-Madrid, Spain

jaime@iec.csic.es
3 Departamento de Ingenieŕıa de Comunicaciones

E.T.S. de Ingenieros de Telecomunicación
Universidad de Málaga

Campus de Teatinos, 29071-Málaga, Spain
apeinado@ic.uma.es

Abstract. In this paper, we present a function in F2[X] and prove that
several of its properties closely resemble those of Euler’s φ function. Ad-
ditionally, we conjecture another property for this function that can be
used as a simple primality test in F2[X], and we provide numerical evi-
dence to support this conjecture. Finally, we further apply the previous
results to design a simple primality test for trinomials.

Keywords: Characteristic-2 field, Euler φ function, polynomial factor-
ization.

Mathematics Subject Classification 2000: Primary 13P05; Secondary
11T06, 12E05, 15A04.

1 Statement of the Main Result

Let V , W be finite-dimensional k-vector spaces. We recall (e.g., see [3, II, §1,
13]) that a semi-linear map is a pair (A, σ) consisting of a field automorphism
σ : k → k, and a homomorphism A : (V,+)→ (W,+) of the underlying additive
groups such that A(λv) = σ(λ)A(v), ∀λ ∈ k, ∀v ∈ V . If k ⊂ F is a finite
extension, then we consider the structure of F -vector space on F ⊗k V uniquely
defined by x · (y⊗ v) = (xy)⊗ v, for all x, y ∈ F , v ∈ V . Moreover, if L : V →W
is a k-linear map, then I ⊗ L : F ⊗k V → F ⊗k W is a F -linear map, where I
stands for the identity map of F , and if L : V → V is an endomorphism then
� Supported by Ministerio de Educación y Ciencia of Spain under grant number

MTM2005–00173 and Consejeŕıa de Educación y Cultura de la Junta de Castilla
y León under grant number SA110A06.

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 318–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Twin for Euler’s φ Function in F2[X] 319

both, L and I ⊗ L have the same invariant polynomials (e.g., see [4, VII, §5,
1, Corollaire 2]), although not the same elementary divisors. In particular they
have the same characteristic polynomial.

Throughout the paper, the ground field considered is the characteristic-2
prime field F2. We use the standard properties of finite field extensions (e.g.,
see [10]). In particular we use the properties of conjugate roots of an irreducible
polynomial over a finite field.

Theorem 1. Given a polynomial f ∈ F2[X ], let Rf be the finite-dimensional
F2-algebra Rf = F2[X ]/(f), and let Lf : Rf → Rf be the linear map

Lf (x) = x2 + αx, ∀x ∈ Rf ,

α = X (mod f) .

Let χf be the characteristic polynomial of Lf , that is, χf (X) = det(X · I +Lf ),
I being the identity map of Rf . Then,

(i) If f is irreducible and e is a positive integer, then χfe = fe−1(f + 1).
(ii) If f and g are two coprime polynomials in F2[X ], then χfg = χfχg.
(iii) If χf = f + 1 for f ∈ F2[X ], then f is squarefree.

2 Proof of Theorem 1

In order to prove the item (i), we proceed by recurrence on e.
Assume e = 1. We thus need to prove that if f is irreducible, then χf = f+1.

As f is irreducible, Rf is a finite extension of the ground field, i.e., Rf
∼= F2n ,

n = deg f . As is well known the Galois group of the extension F2 ⊂ F2n is cyclic
and generated by the Frobenius automorphism ϕ : F2n → F2n , ϕ(x) = x2. Then
we have Lf = ϕ+ Tα, where Tα : F2n → F2n is the F2-linear map: Tα(x) = αx.
The characteristic polynomial of Tα is f ; i.e., det(X · I + Tα) = f(X), as the
matrix A = (aij)i,j=1,...,n of Tα in the basis (1, α, α2, . . . , αn−1) is given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 a0

1 0 . . . 0 a1

...
...

. . .
...

...
0 0 . . . 0 an−2

0 0 . . . 1 an−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where

f(X) = Xn + an−1X
n−1 + an−2X

n−2 + . . .+ a1X + a0 ∈ F2 [X ] .

Accordingly, the eigenvalues of

I ⊗ Tα : F2n ⊗F2 F2n → F2n ⊗F2 F2n

are α, α2, α22
, . . . , α2n−1

, and so I ⊗ Tα is diagonalizable. Let v0 be a non-
vanishing eigenvector of the eigenvalue α, i.e.,



320 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

v0 = x0 (1⊗ 1) + x1 (1⊗ α) + x2

(
1⊗ α2

)
+ . . .+ xn−1

(
1⊗ αn−1

)
,

where (x0, x1, x2, . . . , xn−1) ∈ (F2n)n is a non-trivial solution of the linear system

n∑

j=1

aijxj−1 = αxi−1, i = 1, . . . , n. (1)

As aij ∈ F2, by applying ϕ successively to (1), we obtain

n∑

j=1

aij (xj−1)
2h

= α2h

(xi−1)
2h

, h = 0, . . . , n− 1,

thus showing that the vector

vh = (ϕ⊗ I)h (v0)

= (x0)
2h

(1⊗ 1) + (x1)
2h

(1⊗ α) + (x2)
2h (

1⊗ α2
)

+ . . .+ (xn−1)
2h (

1⊗ αn−1
)

satisfies
(I ⊗ Tα) (vh) = α2h

vh, h = 0, . . . , n− 1. (2)

The vectors (v0, v1, . . . , vn−1) are a basis of the F2n -vector space F2n ⊗F2 F2n

since they are eigenvectors corresponding to pairwise distinct eigenvalues, and
the matrix of I ⊗ Tα in this basis is

⎡

⎢
⎢
⎢
⎣

α 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · α2n−1

⎤

⎥
⎥
⎥
⎦
. (3)

Set wi = (I ⊗ ϕ)(vi), i = 0, . . . , n− 1. By remarking that ϕ ◦ Tα = Tα2 ◦ ϕ, and
using the formula (2) we obtain

(I ⊗ Tα2) (wi) = (I ⊗ ϕ)
(
α2i

vi

)
= α2i

wi, i = 0, . . . , n− 1. (4)

Moreover, again from formula (2), we have

(I ⊗ Tα2) (vi) = α2i+1
vi, i = 0, . . . , n− 1.

From the formulas (2) and (4), we conclude that there exist scalars λi ∈ F2n ,
λi 
= 0, such that wi = λivn−1+i, i = 0, . . . , n−1, where the subindices are taken
modn. Hence

(I ⊗ ϕ) (vi) = λivn−1+i, i = 0, . . . , n− 1,



A Twin for Euler’s φ Function in F2[X] 321

and recalling that vi = (ϕ ⊗ I)(vi−1) and (ϕ ⊗ I, ϕ) is a semi-linear map from
F2n ⊗F2 F2n onto itself, we have

λivn−1+i = (I ⊗ ϕ) (vi)
= (I ⊗ ϕ) (ϕ⊗ I) (vi−1)
= (ϕ⊗ I) ((I ⊗ ϕ) (vi−1))
= (ϕ⊗ I) (λi−1vn−2+i)

= λ2
i−1vn−1+i.

Hence λi = λ2
i−1, and setting

μi = (λ0)
−(21+22+23+...+2i) , i = 0, . . . , n− 1,

we have (I ⊗ ϕ)(μivi) = μn−1+ivn−1+i, thus finally obtaining a basis

(μ0v0, μ1v1, . . . , μn−1vn−1)

on which the matrix of I ⊗ Tα is the same matrix as the one given in formula
(3), whereas the matrix of I ⊗ ϕ is the following:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Therefore,

χf (X) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X + α 1 0 · · · 0
0 X + α2 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

1 0 0 · · · X + α2n−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (X + α)
(
X + α2

)
· · ·
(
X + α2n−1

)
+ 1

= f(X) + 1.

Next assume e > 1. Then we have an exact sequence of F2-vector spaces

0 −→ Rf
ιe−→ Rfe

πe−→ Rfe−1 −→ 0,

where

ιe (F (mod f)) = Ffe−1 (mod fe) ,

πe (F (mod fe)) = F
(
mod fe−1

)
,

for every F ∈ F2[X ]. Furthermore, ιe(Rf ) remains invariant under Lfe and the
restriction of Lf to Rf is nothing but Tα. Hence we have a commutative diagram



322 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

0 −→ Rf
ιe−→ Rfe

πe−→ Rfe−1 −→ 0
↓ Tα ↓ Lfe ↓ Lfe−1

0 −→ Rf
ιe−→ Rfe

πe−→ Rfe−1 −→ 0

Accordingly, χfe(X) = det(X ·I+Tα) ·χfe−1(X), and we can conclude by virtue
of the recurrence hypothesis.

Next, we prove the item (ii). If f and g are coprime polynomials in F2[X ],
then from Chinese Remainder Theorem we obtain an isomorphism

Rfg = F2 [X ] /(fg) ∼= Rf ×Rg

such that α = X(mod fg) corresponds to the pair (αf , αg), with αf = X(mod f),
αg = X(mod g). Hence Lfg(x, y) = (Lf(x), Lg(y)).

Finally, we prove the item (iii). If f = pe1
1 · · · per

r is the factorization of f into
irreducible factors, then the equation χf = f + 1 means

pe1−1
1 · · · per−1

r (p1 + 1) · · · (pr + 1) = pe1
1 · · · per

r + 1.

If ei ≥ 2 for some index i = 1, . . . , r, then the equation above leads us to a
contradiction as pi should divide the unit.

Moreover, for r = 2 we have f = p1p2 and the equation χf = f + 1 yields
p2 = p1, thus leading to a contradiction.

3 Trinomials

Conjecture 1. If a reducible polynomial f ∈ F2[X ] satisfies the equation χf =
f + 1, then the number of terms of f is 2r − 1 at least, r being its number of
factors.

Corollary 1. If a polynomial f ∈ F2[X ] satisfies the equation χf = f + 1 and
the number of its terms is ≤ 4, then f is irreducible.

Let f = Xn +Xm + 1, n > m, be a trinomial in F2[X ]. We can further assume
m ≤ n

2 , as

Xn +Xm + 1 = Xn
[(
X−1

)n
+
(
X−1

)n−m
+ 1
]
,

and hence Xn +Xm + 1 is reducible if and only if Xn +Xn−m + 1 is reducible.
With the same notations as in Theorem 1, the matrix of Tα in the basis

(1, α, . . . , αn−1) is the following:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

← (m+ 1)-th row.



A Twin for Euler’s φ Function in F2[X] 323

Next, we compute the matrix S of the map ϕ(x) = x2 in the same basis.
We first remark that the inverse of αm is (αm)−1 = α−m = αn−m + 1. Let

q = q(n,m), r = r(n,m) be the quotient and the remainder of the Euclidean
division on n over m, i.e., n = mq + r, 0 ≤ r ≤ m− 1.

We are led to distinguish the following cases:

1. m and n are even, say m = 2m′, n = 2n′.
Then, we have

ϕ
(
αi
)

= α2i, 0 ≤ i ≤ n′ − 1, (5)

ϕ
(
αn′+i

)
= αm+2i + α2i, 0 ≤ i ≤ n′ −m′ − 1. (6)

Moreover, we have

ϕ
(
αn−m′+i

)
=
(
αm + αm(q−1)+r + 1

)
α2i. (7)

As m ≤ n
2 , we have q ≥ 2 necessarily, and then there are two subcases:

(a) If n = 2m, then the trinomial under consideration is reducible; indeed,
one has Xn +Xm + 1 = X2m +X2m′

+ 1 = (Xm +Xm′
+ 1)2. Hence,

this subcase is not interesting.
(b) If n > 2m, then m(q − 1) + r = n −m > m. From the formula (7) we

thus obtain

ϕ
(
αn−m′+i

)
= αn−m+2i + αm+2i + α2i, 0 ≤ i ≤ m′ − 1. (8)

2. m is even and n is odd, say m = 2m′, n = 2n′ + 1.
We have

ϕ
(
αi
)

= α2i, 0 ≤ i ≤ n′, (9)

ϕ
(
αn′+1+i

)
= αm+1+2i + α1+2i, 0 ≤ i ≤ n′ −m′ − 1, (10)

ϕ
(
αn−m′+i

)
= αn−m+2i + αm+2i + α2i, 0 ≤ i ≤ m′ − 1. (11)

3. m is odd and n is even, say m = 2m′ + 1, n = 2n′.
Then, we have

ϕ
(
αi
)

= α2i, 0 ≤ i ≤ n′ − 1, (12)

ϕ
(
αn′+i

)
= αm+2i + α2i, 0 ≤ i ≤ n′ −m′ − 1. (13)

Moreover, we have

ϕ
(
αn−m′+i

)
=
(
αm + αm(q−1)+r + 1

)
α2i+1. (14)

As in the first case, there are two subcases:



324 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

(a) If n = 2m, then from the formula (14) we obtain

ϕ
(
αn−m′+i

)
= α2i+1, 0 ≤ i ≤ m′ − 1. (15)

(b) If n > 2m, then from the formula (14) we obtain

ϕ
(
αn−m′+i

)
= αn−m+1+2i + αm+1+2i + α2i+1, 0 ≤ i ≤ m′ − 1.

4. m and n are odd, say m = 2m′ + 1, n = 2n′ + 1.
We have

ϕ
(
αi
)

= α2i, 0 ≤ i ≤ n′, (16)

ϕ
(
αn′+1+i

)
= αm+1+2i + α1+2i, 0 ≤ i ≤ n′ −m′ − 1, (17)

ϕ
(
αn−m′+i

)
= αn+1−m+2i + αm+1+2i + α2i+1, 0 ≤ i ≤ m′ − 1. (18)

Theorem 2. If Conjecture 1 holds and rkLf = deg f − 1, then f is irreducible.

Proof. We have rkLf =
∑r

i=1 ei deg pi − r. Hence, if f is a polynomial with no
repeated factors (i.e., e1 = . . . = er = 1) then rkLf = n − r, and the result
follows.

Remark 1. Note that the matrix of Lf in the basis B = (1, α, α2, . . . , αn−1) does
not coincide with Berlekamp’s matrix (cf. [10, IV, §1]).

Remark 2. If f is irreducible, then χf coincides with the minimal polynomial
for Lf . In fact, as a computation shows, the entry (1, 1) of the matrix of (Lf )k,
for k = 0, . . . , n− 1, in the basis B is equal to αk.

Remark 3. It is not difficult to see that the polynomials f ∈ F2[X ] satisfying the
relationship χf = f are exactly the polynomials f(X) = Xh(X + 1)k, h, k ∈ N.

The cases above complete the computation of χf . In Appendix II we provide a
program that computes this determinant.

4 Concluding Remarks

We have presented the function χf in F2[X ] and we have shown how some of
its properties closely resemble those of Euler’s φ function. We have conjectured
another property of χf and we have provided numerical evidence to support this
conjecture. This property can be used as a simple primality test in F2[X ], and
it is specially well suited for the case of trinomials.

Determining the primality of a trinomial is not a trivial problem and has been
paid a lot of attention in the literature (see, for example, [2], [5], [6], [7], [8], [11],
[13], [14]). Even the “simple” case Xn + X + 1 is not easy to deal with: see,



A Twin for Euler’s φ Function in F2[X] 325

for example, [12, Table I] that contains all 33 values of n ≤ 30000, for which
Xn +X + 1 is irreducible, along with some other information.

Our result boils down the problem of trinomial primality to the computation
of the determinant of a matrix, which can be explicitly written. This matrix is
extremely sparse and hence, the size of the compressed format of the matrix
should be small. Accordingly, the computation of the determinant should not be
long even for high degrees of the trinomial.

In a forthcoming paper we shall try to compare the results above with those
appeared in the literature on the topic; among other authors and approaches,
we should specially mention [1], [2], [6], [7], [8], [11], [12], [13], and [14].

References

1. Blake, I., Gao, S., Lambert, R.: Constructive problems for irreducible polynomials
over finite fields. In: Gulliver, T.A., Secord, N.P. (eds.) Information Theory and
Applications. LNCS, vol. 793, pp. 1–23. Springer, Heidelberg (1994)

2. —: Construction and distribution problems for irreducible trinomials over finite
fields, Applications of finite fields, Inst. Math. Appl. Conf. Ser. New Ser., vol. 59,
pp. 19–32, Oxford University Press, New York (1996)

3. Bourbaki, N.: Éléments de Mathématique, Algèbre, Chapitres 1 à 3, Hermann,
Paris (1970)

4. —: Éléments de Mathématique, Livre II, Algèbre, Chapitres 6–7, Deuxième
Édition, Hermann, Paris (1964)

5. Ciet, M., Quisquater, J.-J., Sica, F.: A Short Note on Irreducible Trinomials in Bi-
nary Fields. In: Macq, B., Quisquater, J.-J. (eds.) 23rd Symposium on Information
Theory in the BENELUX, Louvain-la-Neuve, Belgium, pp. 233–234 (2002)

6. Fredricksen, H., Wisniewski, R.: On trinomials xn + x2 + 1 and x8l±3 + xk + 1
irreducible over GF (2). Inform. and Control 50, 58–63 (1981)

7. von zur Gathen, J.: Irreducible trinomials over finite fields. In: Proceedings of
the 2001 International Symposium on Symbolic and Algebraic Computation (elec-
tronic), pp. 332–336. ACM, New York (2001)

8. —: Irreducible trinomials over finite fields. Math. Comp. 72, 1987–2000 (2003)
9. von zur Gathen, J., Panario, D.: Factoring Polynomials over Finite Fields: A Sur-

vey. J. Symbolic Computation 31, 3–17 (2001)
10. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-

bridge University Press, Cambridge, UK (1994)
11. Vishne, U.: Factorization of trinomials over Galois fields of characteristic 2. Finite

Fields Appl. 3, 370–377 (1997)
12. Zierler, N.: On xn +x+1 over GF (2). Information and Control 16, 502–505 (1970)
13. Zierler, N., Brillhart, J.: On primitive trinomials (mod 2). Information and Con-

trol 13, 541–554 (1968)
14. —: On primitive trinomials (mod 2), II. Information and Control 14, 566–569 (1969)

Appendix I

Below we present a MAPLE source code computing some of the polynomials
with four prime factors f = P1 · · ·P4 satisfying the equation χf = f + 1 in



326 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

Theorem 1-(iii). The integer appearing on the right hand of each output denotes
the number of—non-vanishing—terms of f . Observe that this number is always
equal or greater than 2r−1, where r is the number of factors in the polynomial,
4 for the present case.

> L:=[]:
> f := x:
> for n from 0 to 500 do
> L:=[op(L),[f,degree(f)]]:
> f:=Nextprime(f,x) mod 2:
> end do:
> max_deg:=op(2,L[nops(L)]):
> ji:=1: jf:=1:
>
> for i from 1 to max_deg do
> while (jf <= nops(L) and op(2,L[jf]) = i) do
> jf:=jf+1:
> end do:
>
> jf:=jf-1:
>
> for p1 from ji to jf do
> for p2 from p1+1 to jf do
> for p3 from p2+1 to nops(L) do
> P1:=op(1,L[p1]): P2:=op(1,L[p2]): P3:=op(1,L[p3]):
> if P1*P2+P1*P3+P1+P2*P3+P2+P3+1 mod 2 <> 0 then
> if prem(P1*P2*P3+P1*P2+P1*P3+P1+P2*P3+P2+P3 mod 2,
> P1*P2+P1*P3+P1+P2*P3+P2+P3+1 mod 2, x) mod 2 = 0 then
> Q1:=simplify(expand(P1*P2*P3+
> P1*P2+P1*P3+P1+P2*P3+P2+P3)) mod 2;
> Q2:=simplify(expand(P1*P2+P1*P3+
> P1+P2*P3+P2+P3+1)) mod 2;
> P4:=(Factor(Q1) mod 2)/(Factor(Q2) mod 2);
> if type(P4, ’polynom’) then
> if irreduc(P4) then
> n:=nops(simplify(expand(P1*P2*P3*P4)) mod 2);
> if not assigned(tabla[n]) then
> tabla[n]:=0:
> end if:
> tabla[n]:=tabla[n]+1:
> print(P1,P2,P3,P4,n);
> end if;
> end if;
> end if;
> end if;
> end do;



A Twin for Euler’s φ Function in F2[X] 327

> end do;
> end do:
> ji:=jf+1:
> jf:=ji:
> end do:

x5 + x3 + 1, x5 + x4 + x3 + x2 + 1, x6 + x5 + x4 + x+ 1
x9 + x8 + x4 + x+ 1

}

11

x5 + x3 + 1, x5 + x4 + x3 + x2 + 1, x6 + x5 + x4 + x2 + 1
x9 + x4 + 1

}

9

x6 + x+ 1, x6 + x5 + x2 + x+ 1,
x7 + x6 + x4 + x2 + 1, x13 + x12 + x8 + x6 + x3 + x2 + 1

}

15

x6 + x4 + x2 + x+ 1, x7 + x5 + x4 + x3 + x2 + x+ 1
x6 + x5 + 1, x13 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + 1

}

15

x7 + x3 + x2 + x+ 1
x7 + x5 + x4 + x3 + x2 + x+ 1
x9 + x8 + x6 + x5 + x3 + x2 + 1
x15 + x14 + x12 + x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1

⎫
⎪⎪⎬

⎪⎪⎭

23

x7 + x4 + x3 + x2 + 1, x7 + x5 + x3 + x+ 1,
x9 + x8 + x5 + x4 + 1, x13 + x12 + x11 + x10 + x7 + x+ 1

}

17

x7 + x6 + 1, x7 + x6 + x5 + x2 + 1
x9 + x5 + 1, x13 + x11 + x7 + x6 + x4 + x2 + 1

}

15

x7 + x6 + x4 + x2 + 1
x7 + x6 + x5 + x4 + x2 + x+ 1
x9 + x6 + x5 + x3 + x2 + x+ 1
x15 + x13 + x12 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1

⎫
⎪⎪⎬

⎪⎪⎭

15

x7 + x6 + x4 + x2 + 1
x7 + x6 + x5 + x4 + x2 + x+ 1
x9 + x6 + x5 + x3 + x2 + x+ 1
x15 + x13 + x12 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1

⎫
⎪⎪⎬

⎪⎪⎭

15

x9 + x6 + x5 + x2 + 1
x9 + x7 + x6 + x4 + x3 + x+ 1
x11 + x8 + x5 + x3 + 1
x19 + x18 + x17 + x16 + x15 + x14 + x12 + x11 + x10 + x7 + x6

+x5 + x4 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

23

x9 + x6 + x5 + x2 + 1
x9 + x7 + x6 + x4 + x3 + x+ 1
x11 + x8 + x5 + x3 + 1
x19 + x18 + x17 + x16 + x15 + x14 + x12 + x11 + x10 + x7 + x6

+x5 + x4 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

23



328 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

x9 + x7 + x5 + x3 + x2 + x+ 1
x9 + x8 + x7 + x5 + x4 + x3 + 1
x10 + x9 + x7 + x5 + x4 + x2 + 1
x25 + x22 + x21 + x20 + x19 + x18 + x16 + x15 + x12 + x11 + x6

+x4 + x2 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

29

x9 + x7 + x6 + x4 + 1
x9 + x8 + x7 + x6 + x2 + x+ 1
x10 + x9 + x7 + x6 + x4 + x3 + x2 + x+ 1
x25 + x24 + x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13

+x9 + x7 + x6 + x4 + x3 + x2 + 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

25

x9 + x8 + x6 + x5 + 1
x9 + x8 + x7 + x5 + x4 + x2 + 1
x11 + x10 + x9 + x5 + x4 + x+ 1
x19 + x15 + x13 + x12 + x8

+x5 + x4 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

23

x10 + x3 + x2 + x+ 1
x10 + x8 + x6 + x5 + x2 + x+ 1
x12 + x9 + x8 + x7 + x5 + x4 + x3 + x+ 1
x25 + x22 + x20 + x14 + x13 + x8 + x6 + x+ 1

⎫
⎪⎪⎬

⎪⎪⎭
27

x10 + x6 + x5 + x2 + 1
x10 + x8 + x3 + x2 + 1
x12 + x9 + x8 + x7 + x6 + x+ 1
x25 + x24 + x22 + x18 + x17 + x16 + x14 + x13 + x10

+x6 + x5 + x4 + x2 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

35

x10 + x7 + 1
x10 + x9 + x6 + x+ 1
x11 + x10 + x9 + x8 + x5 + x4 + x2 + x+ 1
x27 + x26 + x25 + x23 + x22 + x20 + x18 + x16 + x12 + x11 + x8

+x6 + x4 + x3 + 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

23

x10 + x7 + x6 + x5 + x3 + x2 + 1
x10 + x9 + x8 + x6 + x5 + x4 + x3 + x+ 1
x11 + x8 + x5 + x3 + 1
x26 + x24 + x22 + x18 + x17 + x16 + x12 + x11 + x10 + x9 + x6

+x5 + x3 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

33

x10 + x8 + x7 + x4 + x2 + x+ 1
x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + 1
x11 + x10 + x9 + x5 + x4 + x+ 1
x26 + x22 + x20 + x18 + x17 + x12 + x11 + x10 + x5 + x2 + 1

⎫
⎪⎪⎬

⎪⎪⎭

27

x10 + x9 + x6 + x4 + 1
x11 + x5 + x3 + x2 + 1
x10 + x8 + x7 + x6 + x5 + x4 + x3 + x+ 1
x27 + x24 + x23 + x21 + x20 + x18 + x17 + x12 + x10 + x9 + x7

+x6 + x5 + x+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

33



A Twin for Euler’s φ Function in F2[X] 329

The following table shows the number N of polynomials in the list above with
n terms:

Appendix II

Below we present a MAPLE source code computing χf for every f = xn+xm+1,
with n ≤ 12, m ≤ n

2 , which shows the Corollary 1 holds true for this list. The
output provides the following four fields: [χf , n,m, irreduc].

> with(PolynomialTools):
> f:=x^n+x^m+1:
>
> Listan:=[]:
> for n from 2 to 12 do
> for m from 1 to n/2 do
> S:=array(1..n,1..n):
> for i from 1 to n do
> for j from 1 to n do
> S[i,j]:=0:
> end do:
> end do:
> if type(n, even) and type(m, even) then
> mp:= m/2;
> np:= n/2;
> for i from 0 to np-1 do
> S[2*i+1,i+1]:=1:
> end do:
> for i from 0 to np-mp-1 do
> S[m+2*i+1,np+i+1]:=1:
> S[2*i+1,np+i+1]:=1:
> end do:
> if n = 2*m then
> for i from 0 to mp-1 do
> S[2*i+1,n-mp+i+1]:=1:
> end do:
> else
> for i from 0 to mp-1 do
> S[n-m+2*i+1,n-mp+i+1]:=1:
> S[m+2*i+1,n-mp+i+1]:=1:
> S[2*i+1,n-mp+i+1]:=1:
> end do:
> end if:
> elif type(n, odd) and type(m, even) then
> mp:=m/2:
> np:=(n-1)/2:



330 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

> for i from 0 to np do
> S[2*i+1,i+1]:=1:
> end do:
> for i from 0 to np-mp-1 do
> S[m+2*i+2,np+i+2]:=1:
> S[2*i+2,np+i+2]:=1:
> end do:
> for i from 0 to mp-1 do
> S[n-m+2*i+1,n-mp+i+1]:=1:
> S[m+2*i+1,n-mp+i+1]:=1:
> S[2*i+1,n-mp+i+1]:=1:
> end do:
> elif type(n, even) and type(m, odd) then
> np:=n/2:
> mp:=(m-1)/2:
> for i from 0 to np-1 do
> S[2*i+1,i+1]:=1:
> end do:
> for i from 0 to np-mp-1 do
> S[m+2*i+1,np+i+1]:=1:
> S[2*i+1,np+i+1]:=1:
> end do:
> if mp > 0 then
> if n = 2*m then
> for i from 0 to mp-1 do
> S[2*i+2,n-mp+i+1]:=1:
> end do:
> else
> for i from 0 to mp-1 do
> S[n-m+2*i+2,n-mp+i+1]:=1:
> S[m+2*i+2,n-mp+i+1]:=1:
> S[2*i+2,n-mp+i+1]:=1:
> end do:
> end if:
> end if:
> else
> np:=(n-1)/2:
> mp:=(m-1)/2:
> for i from 0 to np do
> S[2*i+1,i+1]:=1:
> end do:
> for i from 0 to np-mp-1 do
> S[m+2*i+2,np+i+2]:=1:
> S[2*i+2,np+i+2]:=1:
> end do:



A Twin for Euler’s φ Function in F2[X] 331

> for i from 0 to mp-1 do
> S[n-m+2*i+2,n-mp+i+1]:=1:
> S[m+2*i+2,n-mp+i+1]:=1:
> S[2*i+2,n-mp+i+1]:=1:
> end do:
> end if:
>
> T:=array(1..n,1..n);
> for i from 1 to n do
> for j from 1 to n do
> if i-1 = j then
> T[i,j] := 1:
> else
> T[i,j] := 0:
> end if:
> end do:
> end do:
> T[1,n]:=1:
> T[m+1,n]:=1:
> identidad:=Matrix(n,n,shape=identity):
> C:=evalm(x*identidad+S+T):
> Listan:=[op(Listan),[Irreduc(f) mod 2,
> (det(C) + x^n + x^m) mod 2, n, m, det(C) mod 2]]:
> unassign(’S’, ’T’, ’identidad’);
> end do:
> end do:
>
> for i from 1 to nops(Listan) do
> n:=op(3,op(i,Listan)):
> m:=op(4,op(i,Listan)):
> det:=op(5,op(i,Listan)):
> irreduc:=op(1,op(i,Listan)):
> print(det, n, m, irreduc);
> end do:

χf : x+ x2 x+ x3 x+ x4 x+ x4 x3 + x5 x2 + x5 x+ x6

n : 2 3 4 4 5 5 6
m : 1 1 1 2 1 2 1

irreduc : true true true false false true true

χf : x+ x2 + x3 + x6 x3 + x6 x+ x7 x2 + x4 + x5 + x7 x3 + x7

n : 6 6 7 7 7
m : 2 3 1 2 3

irreduc : false true true false true



332 R. Durán Dı́az, J. Muñoz Masqué, and A. Peinado Domı́nguez

χf : x3 + x5 + x6 + x8 x+ x2 + x4 + x8 x2 + x3 + x5 + x8

n : 8 8 8
m : 1 2 3

irreduc : false false false

χf : x+ x3 + x4 + x5 + x6 + x8 x+ x9 x5 + x9 x4 + x5 + x6 + x9

n : 8 9 9 9
m : 4 1 2 3

irreduc : false true false false

χf : x4 + x9 x4 + x5 + x7 + x10 x3 + x4 + x5 + x6 + x8 + x10 x3 + x10

n : 9 10 10 10
m : 4 1 2 3

irreduc : true false false true

χf : x2+x4+x5+x10 x5+x7+x8+x10 x3+x5+x6+x8+x9+x11

n : 10 10 11
m : 4 5 1

irreduc : false false false

χf : x2+x11 x2+x3+x6+x11 x2+x3+x4+x5+x6+x8+x9+x11

n : 11 11 11
m : 2 3 4

irreduc : true false false

χf : x2 + x3 + x4 + x6 + x8 + x11 x6 + x7 + x9 + x12 x+ x2 + x6 + x12

n : 11 12 12
m : 5 1 2

irreduc : false false false

χf : x3 + x12 x+ x2 + x4 + x5 + x6 + x7 + x9 + x12 x5 + x12 x3 + x12

n : 12 12 12 12
m : 3 4 5 6

irreduc : true false true false



Discrete Phase-Space Structures and Mutually

Unbiased Bases

A.B. Klimov1, J.L. Romero1, G. Björk2, and L.L. Sánchez-Soto3

1 Departamento de F́ısica, Universidad de Guadalajara, Revolución 1500,
44420 Guadalajara, Jalisco, Mexico

2 School of Information and Communication Technology, Royal Institute of
Technology (KTH), Electrum 229, SE-164 40 Kista, Sweden

3 Departamento de Óptica, Facultad de F́ısica, Universidad Complutense,
28040 Madrid, Spain

Abstract. We propose a unifying phase-space approach to the construc-
tion of mutually unbiased bases for an n-qubit system. It is based on an
explicit classification of the geometrical structures compatible with the
notion of unbiasedness. These consist of bundles of discrete curves in-
tersecting only at the origin and satisfying certain additional conditions.
The effect of local transformations is also studied.

Keywords: Mutually unbiased bases, quantum state estimation, Galois
fields, Abelian curves.

1 Introduction

The notion of mutually unbiased bases (MUBs) emerged in the seminal work
of Schwinger [1] and it has turned into a cornerstone of the modern quantum
information. Indeed, MUBs play a central role in a proper understanding of
complementarity [2,3,4,5,6], as well as in approaching some relevant issues such
as optimum state reconstruction [7,8], quantum key distribution [9,10], quantum
error correction codes [11,12], and the mean king problem [13,14,15,16,17].

For a d-dimensional system (also known as a qudit) it has been found that
the maximum number of MUBs cannot be greater than d + 1 and this limit is
reached if d = p is prime [18] or power of prime, d = pn [19]. It was shown in
Ref. [20] that the construction of MUBs is closely related to the possibility of
finding of d + 1 disjoint classes, each one having d − 1 commuting operators,
so that the corresponding eigenstates form sets of MUBs. Since then, different
explicit constructions of MUBs in prime power dimensions have been suggested
in a number of papers [21,22,23,24,25,26,27].

The phase space of a qudit can be seen as a d × d lattice whose coordinates
are elements of the finite Galois field GF(d) [28]. The use of elements of GF(d)
as coordinates allow us to endow the phase-space grid with a similar geometric
properties as the ordinary plane. There are several possibilities for mapping
quantum states onto this phase space [29,30,31]. However, the most elaborate

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 333–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



334 A.B. Klimov et al.

approach was developed by Wootters and coworkers [32,33], which has been used
to define a discrete Wigner function (see Refs. [34,35,36] for picturing qubits in
phase space). According to this approach, we can put in correspondence lines in
the d× d phase space with states in a Hilbert space in such a way that different
sets of d+ 1 parallel lines (striations) become associated with orthogonal bases
which results in a set of mutually unbiased bases.

In this paper, we start by considering the geometrical structures in phase
space that are compatible with the notion of unbiasedness and classify these
admissible structures into rays and curves (and the former also in regular and
exceptional, depending on the degeneracy). Some properties of regular curves are
shown. To each curve, we associate a set of commuting operators, and we show
how different curves are related by local transformations on the corresponding
operators that do not change the entanglement properties of their eigenstates.

2 Constructing Mutually Unbiased Bases

When the space dimension d = pn is a power of a prime it is natural to view
the system as composed of n subsystems, each of dimension p [38]. We briefly
summarize a simple construction of MUBs for this case, according to the method
introduced in Ref. [27], although focusing on the particular case of n qubits. The
main idea consists in labeling both the states of the subsystems and the elements
of the generalized Pauli group with elements of the finite field GF(2n), instead
of natural numbers. In particular, we shall denote as |α〉 with α ∈ GF(2n) an
orthonormal basis in the Hilbert space of the system. Operationally, the elements
of the basis can be labeled by powers of a primitive element (that is, a root of
the minimal irreducible polynomial), so that the basis reads

{|0〉, |σ〉, . . . , |σ2n−1 = 1〉} . (1)

These vectors are eigenvectors of the generalized position operators Zβ

Zβ =
∑

α∈GF(2n)

χ(αβ) |α〉〈α| , (2)

where henceforth we assume α, β ∈ GF(2n). Here χ(θ) is an additive character

χ(θ) = exp [iπ tr(θ)] , (3)

and the trace operation, which maps elements of GF(2n) onto the prime field
GF(2)) Z2, is defined as tr(θ) = θ + θ2 + . . .+ θ2

n−1
.

The diagonal operators Zβ are conjugated to the generalized momentum op-
erators Xβ

Xβ =
∑

α∈GF(2n)

|α+ β〉〈α| , (4)

through the finite Fourier transform

F Xβ F
† = Zβ , (5)



Discrete Phase-Space Structures and Mutually Unbiased Bases 335

with
F =

1
2n

∑

α,β∈GF(2n)

χ(αβ) |α〉〈β| . (6)

The operators {Zα, Xβ} are the generators of the generalized Pauli group

ZαXβ = χ(αβ)XβZα . (7)

In consequence, we can form 2n + 1 sets of commuting operators (which will be
called displacement operators) as follows,

{Xβ}, {ZαXβ=μα} , (8)

with μ ∈ GF(2n). The operators (8) can be factorized into products of powers
of single-particle operators σz and σx, whose expression in the standard basis of
the two-dimensional Hilbert space is

σz = |1〉〈1| − |0〉〈0|, σx = |0〉〈1|+ |1〉〈0| . (9)

This factorization can be carried out by mapping each element of GF(2n) onto
an ordered set of natural numbers [33], α ⇔ (a1, . . . , an), where aj are the
coefficients of the expansion of α in a field basis θj

α = a1θ1 + . . .+ anθn . (10)

A convenient basis is that in which the finite Fourier transform is factorized into
a product of single-particle Fourier operators. This is the so-called self-dual basis,
defined by the property tr(θiθj) = δij and leads to the following factorizations

Zα = σa1
z ⊗ . . .⊗ σan

z , Xβ = σb1
x ⊗ . . .⊗ σbn

x . (11)

The simplest geometrical structure in the discrete phase space are the straight
lines; i.e., the set of points (α, β) ∈ GF(2n)×GF(2n) satisfying the relation

ζα+ ηβ = ϑ, (12)

where ζ, η, ϑ are fixed elements of GF (2n). Two lines

ζα + ηβ = ϑ, ζ′α+ η′β = ϑ′, (13)

are parallel if they have no common points, which implies that ηζ′ = ζη′. If the
lines (13) are not parallel they cross each other at a single point. A ray is a line
passing through the origin, so that its equation has the form

α = 0, or β = μα. (14)

The equation (14) can be rewritten in the parametric form:

α(κ) = ηκ, β(κ) = ζκ, (15)



336 A.B. Klimov et al.

where κ ∈ GF(2n) is a parameter running through the field. The rays are the
simplest nonsingular (that is, with no self intersection) Abelian substructures in
the phase space, in the sense that

α(κ+ κ′) = α(κ) + α(κ′),
β(κ+ κ′) = β(κ) + β(κ′).

(16)

where α(κ) and β(κ) are parameterized as in (15). The Abelian condition (16)
can be interpreted as follows: by summing two points belonging to a ray we ob-
tain some other point of the same ray. In particular, this leads to the possibility
of introducing some specific (displacement) operators, which generate “transla-
tions” along such rays [2]. The important properties of the rays consists in that
the monomials ZαXβ labeled with the points of the phase space belonging to
the same ray commute:

Zα1Xβ1=μα1Zα2Xβ2=μα2 = Zα2Xβ2=μα2Zα1Xβ1=μα1 , (17)

and thus, have a common system of eigenvectors {|ψμ
ν 〉}, with μ, ν ∈ GF(2n):

ZαXμα|ψμ
ν 〉 = exp(iξμ,ν)|ψμ

ν 〉, (18)

where μ is fixed and exp(iξμ,ν) is the corresponding eigenvalue, so that |ψ0
ν〉 = |ν〉

are eigenstates of Zα (displacement operators labeled by the points of the ray
β = 0, which we take as horizontal axis).

This means that each ray defines a set of 2n − 1 commuting operators (that
form “lines”) and the whole bundle of 2n + 1 rays (which is obtained by varying
the “slope” index μ and adding the set Xβ labeled by points of the vertical axis
α = 0) allows one to construct a complete set of MUBs operators arranged in a
(2n − 1)× (2n + 1) table.

3 Curves in Phase Space

3.1 General Form of Abelian Curves

The rays are not the only Abelian structures that exist in the discrete phase
space. It is easy to see that the parametrically defined curves (which obviously
pass through the origin)

α(κ) =
n−1∑

m=0

μmκ
2m

, β(κ) =
n−1∑

m=0

νmκ
2m

, (19)

satisfy the Abelian condition (16). If we demand that the displacement operators
labeled by points of the curves (19) commute with each other; i.e.,

tr(αβ′) = tr(α′β) , (20)



Discrete Phase-Space Structures and Mutually Unbiased Bases 337

where α′ = α(κ′), β′ = β(κ′), the coefficients μm, νm should satisfy the
restriction ∑

m �=k

tr(μmνk) = 0 . (21)

If the condition (20) is satisfied, we can associate to each curve (19), with given
coefficients μ,ν, a state |ψμ,ν〉. The curves satisfying Eqs. (19) will be called
Abelian curves. If such a curve contains exactly n+1 different points, the mono-
mials ZαXβ , where (α, β) are coordinates of the points on the curve, will form
a set of commuting operators. Thus, the problem of finding sets of all the pos-
sible MUB operators can be reduced to the problem of arranging commutative
non-singular curves in the discrete phase space in bundles of n + 1 mutually
non-intersecting curves. It is worth noting that the parametrization (19) is not
unique: each parametrization determines a certain order of the points on the
curve.

3.2 Non-singularity Condition

Let us try to classify all the Abelian curves. First, we discuss the no self-
intersection condition. To this end, let us consider a curve defined in the para-
metric form (19) and note that a self-intersection means that there exists κ′ 
=
κ ∈ GF(2n), so that

α(κ) = α(κ′), β(κ) = β(κ′). (22)

We can find a necessary condition of no self-intersection. It is clear that if α(κ) =
α(κ′), then σm[α(κ+ κ′)] = 0, for m = 0, . . . , n− 1, where σm[α] = α2m

are the
Frobenius automorphism operators [28]. Let us introduce the following matrices

M(μ) =

⎡

⎢
⎢
⎢
⎢
⎣

μ20

0 . . . μ20

n−1

μ21

n−1 . . . μ
21

n−2
...

. . .
...

μ2n−1

1 . . . μ2n−1

0

⎤

⎥
⎥
⎥
⎥
⎦
, N(ν) =

⎡

⎢
⎢
⎢
⎢
⎣

ν20

0 . . . ν20

n−1

ν21

n−1 . . . ν
21

n−2
...

. . .
...

ν2n−1

1 . . . ν2n−1

0

⎤

⎥
⎥
⎥
⎥
⎦
, (23)

where the lines in the above matrices are formed by the coefficients appearing in
the expansion (19) and the corresponding expansions of σm[α(κ)] and σm[β(κ)].
If detM and detN do not vanish simultaneously, the corresponding curve (19)
has no self-intersection. Nevertheless, the condition

detM = detN = 0 , (24)

means that the ranks of the matrices M and N are lesser than the dimension of
the system, but this does not guarantee that there exist κ′ 
= κ satisfying (22),
because the solutions of α(κ) = α(κ′) and β(κ′′) = β(κ′′′) can form disjoint
sets. Therefore, the condition (24) is necessary, but not sufficient to determine
if a curve is singular. Another necessary, but not sufficient, condition of a curve
singularity is det(M +N) = 0. A curve with either detM 
= 0 or detN 
= 0 will



338 A.B. Klimov et al.

be called a regular curve. A peculiarity of such a curve is that the parameter α
(if detM 
= 0) or β (if detN 
= 0) takes all the values in the field. Non-singular
curves satisfying (24) will be called exceptional curves.

It is worth noting that the conditions (24) mean that σm[α] (m = 0, . . . , n−1)
as well as σm[β] (m = 0, . . . , n − 1) are not linearly independent, so that not
one of α and β run through the whole field (in other words, the values of both
α and β are degenerate). The number of linearly independent powers of α (β)
equals to the rank of the matrix M (N) and the quantities n − rankM and
n− rankN determine the degree of degeneration of each allowed value of α and
β, respectively.

It is interesting to note that the determinants of matrices of type (23) over
GF(2n) take only values zero and one; i.e., detM ∈ Z2, which can be easily seen
by observing that (detM)2 = detM .

4 Regular Curves

4.1 Explicit Forms

Given a regular curve, we can invert one of the relations (19) and substitute it
into the other one to find an explicit equation of the curve:

a) if detM 
= 0, then the equation of the curve can always be written as

β =
n−1∑

m=0

φmα
2m

; (25)

b) if detN 
= 0, then the equation of the curve reads as

α =
n−1∑

m=0

ψmβ
2m

. (26)

Nevertheless, if detM 
= 0 but detN = 0, then the coordinate β is degenerate
and the curve equation cannot be expressed in the form (26). We shall refer to the
corresponding curve as an α-curve. Similarly, when detN 
= 0 but detM = 0, the
coordinate α is degenerate and the corresponding curve will be called a β-curve.

The general commutativity condition (21) can be essentially simplified for
regular curves. When detM 
= 0 (or detN 
= 0) we obtain, by direct substitution
of the explicit forms (25) or (26) into (20), the following restrictions on the
coefficients φm (or ψm):

φj = φ2j

n−j , ψj = ψ2j

n−j , (27)

where j = 1, . . . , [(n − 1)/2]. For even values of n, the additional conditions
φn/2 = φ2n/2

n/2 and ψn/2 = ψ2n/2

n/2 , should be fulfilled.
Note that, because the regular curves are automatically non-singular, we do

not have to carry out the whole analysis involving the parametric forms and the
properties of the corresponding M and N matrices, but rather to write down
explicit expressions directly using (27).



Discrete Phase-Space Structures and Mutually Unbiased Bases 339

4.2 Examples

1. Completely non-degenerate regular curve.
Consider the curve given in the parametric form in GF(23)

α = σ2κ+ κ2 + σ4κ4,

β = σ3κ+ σ6κ2 + σ6κ4,
(28)

where σ is the primitive element, which fulfills σ3 + σ + 1 = 0. The associated
matrices are now

M =

⎡

⎣
σ2 1 σ4

σ σ4 1
1 σ2 σ

⎤

⎦ , N =

⎡

⎣
σ3 σ6 σ6

σ5 σ6 σ5

σ3 σ3 σ5

⎤

⎦ , (29)

with detM = detN = 1, thus leading to the following explicit forms

β = σ6α+ σ3α2 + σ5α4, or α = σ6β + σ3β2 + σ5β4, (30)

whose coefficients satisfy the general condition (27). The set of commuting op-
erators corresponding to this curve is:

Zσ3Xσ3 , Zσ6Xσ5 , Zσ5Xσ6 , Zσ4Xσ2 , ZσXσ, Zσ7Xσ7 , Zσ2Xσ4 . (31)

2. β-curve.
To the curve given in the parametric form

α = σ2κ+ κ2 + σκ4,

β = σ2κ4,
(32)

correspond the following matrices

M =

⎡

⎣
σ2 1 σ
σ2 σ4 1
1 σ4 σ

⎤

⎦ , N =

⎡

⎣
0 0 σ2

σ4 0 0
0 σ 0

⎤

⎦ , (33)

with detM = 0, detN = 1, thus leading to the following explicit form of the
β-curve

α = σ6β + σ5β2 + σ6β4. (34)

Note that the above equation cannot be inverted and represented in the form
(25). The set of commuting operators corresponding to this curve is:

Zσ5Xσ2 , Xσ6 , Zσ2Xσ3 , Zσ5Xσ7 , Zσ2Xσ4 , Zσ3Xσ, Zσ3Xσ5 . (35)

5 Exceptional Curves

The analysis of exceptional curves is more involved, but the number of such
curves is substantially lesser than the number of regular curves. As it was pointed



340 A.B. Klimov et al.

above, the points on the curve do not take all the values in the field, and their
admissible values are fixed by the structural equations

rM∑

m=0

υmα
2m

= 0,
rN∑

m=0

τmβ
2m

= 0, (36)

where rM = rankM ≤ n−1 and rN = rankN ≤ n−1, which are consequence of
the linear dependence of α2m

and β2m

(m = 0, . . . , n−1). The coordinates α and
β of the points on a exceptional curve are 2n−rM and 2n−rN times degenerate,
respectively. The non-singularity condition means that there are 2n different
pairs (α, β) belonging to the curve, so that the condition rM + rN ≥ n should be
satisfied. When a curve equation; i.e., a relation of the type F (α) = G(β), with
F (α) and G(β) being polynomials of degrees 2rM−1 and 2rN−1, can be found,
it establishes a correspondence between the roots of (36). Nevertheless, such a
relation cannot always be established, as we will see below.

There are two ways to approach the classification of exceptional curves. The
first would be a direct analysis of an arbitrary curve given in parametric form,
whose coefficients satisfy the commutativity relation (21) and the corresponding
determinants turn to zero. We first have to determine the rank of the matricesM
and N and find the structural relations (36), which determine admissible values
of the “coordinates” α and β along the curve and check the non-singularity
condition. Afterwards, we should find the curve equation of the type F (α) =
G(β), which establishes a relation between the values of α and β determined
by the structural relations. Nevertheless, the main difficulty of this approach
consists in the complicated form of the commutativity condition (21), related to
the fact that there is no one-to-one correspondence between a parametric form
of a curve and points in the discrete phase space of such a curve.

The other approach consists in constructing the possible exceptional curves by
imposing from the beginning the non-singularity and commutativity conditions.
In this construction we need information about the degree of degeneration in α
and β directions. As an example, consider the following Abelian curve,

α = σκ2 + κ4,

β = σ4κ+ σ5κ2.
(37)

The corresponding matrices are

M =

⎡

⎣
0 σ 1
1 0 σ2

σ4 1 0

⎤

⎦ , N =

⎡

⎣
σ4 σ5 0
0 σ σ3

σ6 0 σ2

⎤

⎦ , (38)

so that detM = detN = 0 and the structural equations turn out to be

α+ σ5α2 + σα4 = 0, β + σ4β2 + σ5β4 = 0, (39)

which define the admissible values of α and β, in particular, α = {0, σ3, σ6, σ4}
and β = {0, σ7, σ5, σ4}. The coordinates over the curve are related by

β2 + σ5β = σ2α2 + σ6α , (40)



Discrete Phase-Space Structures and Mutually Unbiased Bases 341

while the set of commuting operators corresponding to this curve is

Zσ3Xσ7 , Zσ6Xσ4 , Zσ6Xσ7 , Zσ4Xσ5 , Xσ5 , Zσ3Xσ4 , Zσ4 . (41)

6 Local Transformations

When local transformations are applied to a set of commuting MUB operators,
nontrivial transformations of the curve form are introduced, although they pre-
serve the factorization property (11) in a given basis:

ZαXβ =
n⊗

j=1

(σaj
z σ

bj
x ) ≡

n∏

j=1

(aj , bj) . (42)

Under local transformations applied to the j-th particle (π/2 rotations around
z, x, and y axis, which we denote as z-, x-, and y-rotations), we have

z : (aj , bj)→ (aj + bj, bj),
x : (aj , bj)→ (aj , bj + aj), (43)
y : (aj , bj)→ (aj + aj + bj , bj + aj + bj) = (bj, aj).

In terms of the field elements this is equivalent to

z : α→ α+ θj tr(βθj), β → β,
x : α→ α, β → β + θj tr(αθj),
y : α→ α+ θj tr[(α+ β)θj ], β → β + θj tr[(α+ β)θj ].

(44)

The above transformations are non-linear in terms of the field elements. In par-
ticular, this means that starting with a standard set of MUB operators related
to rays, we get another set of MUB operators parameterized by points of curves,
but leading to the same factorization structure.

7 Curves over GF(22)

In the case of GF(22) a full analysis of curves can be carried out by studying
the parametric forms

α(κ) = μ0κ+ μ1κ
2 , β(κ) = ν0κ+ ν1κ

2 . (45)

The commutativity condition impose the following restrictions on the coefficients
μj and νj :

μ1ν0 + (μ1ν0)2 = μ0ν1 + (μ0ν1)2 . (46)

All the possible curves satisfying condition (46) can be divided into two types:
a) regular curves

α−curves : α = σκ , β = νκ+ σ2κ2 , (47)
β−curves : β = σκ , α = νκ+ σ2κ2 , (48)

where ν takes all values in GF(22).



342 A.B. Klimov et al.

b) exceptional curves

α = μ(κ+ κ2) , β = μ2(σκ+ σ2κ2) , (49)

where μ takes all values in GF(22).
The regular curves are nondegenerate, in the sense that α or β (or both) are

not repeated in any set of four points defining a curve. In other words, α or β
(or both) take all the values in the field GF(22). This allows us to write down
explicit relations between α and β as follows

α−curves : β = νσ2α+ α2 , (50)
β−curves : α = νσ2β + β2 . (51)

Every point of exceptional curves is doubly degenerate and can be obtained from
equations that relate powers of α and β:

α2 = μα , β2 = μ2β . (52)

It is impossible to write an explicit nontrivial equation of the form f(α, β) =
0 for them. However, it is possible to obtain all the curves of the form (47)
and (49) from the rays after some (nonlinear) operations (44), corresponding
to local transformations of operators. The families of such transformations are
the following [41]: First, 8 rays and curves can be obtained from a single ray
α = 0, β = σ2κ (vertical axis). Second, another 5 different rays and curves can
be obtained from the ray α = σκ, β = σ2κ (β = σα).

8 Curves over GF(23)

A generic Abelian curve over GF(23) is defined in parametric form as

α = μ0κ+ μ1κ
2 + μ2κ

4 ,

β = ν0κ+ ν1κ
2 + ν2κ

4.
(53)

The commutativity condition in this case is much more complicated than for
GF(22), so that a full analysis of all the possible curves becomes extremely
cumbersome if we start with (53). Instead, we just find all the possible regular
curves. A generic regular α-curve has the following form

β = φ0α+ φ2α2 + φα4 . (54)

There are two kind of exceptional curves: a) when both α and β coordinates of
each point is doubly degenerate and b) when one of the coordinate is doubly de-
generate while the other one is four times degenerate. All the double degenerate
exceptional curves over GF(23) are parametrized by two numbers and have the
form of two “parallel” lines

β
(1)
j = υ1υ

−1
0 α−1

j α, β
(2)
j = υ1υ

−1
0 (α−1

j α+ 1), (55)



Discrete Phase-Space Structures and Mutually Unbiased Bases 343

where αj = α1, α2, α1 +α2 and the admissible values of α are 0, α1, α2, α1 +α2.
So, for fixed α1 and α2 we have three exceptional curves

1. − (α1, 0), (α1, δ), (α2, δ(α−1
1 α2 + 1)), (α2, δα

−1
1 α2), (α1 + α2, δα

−1
1 α2),

(α1 + α2, δ(α−1
1 α2 + 1)), (0, δ);

2. − (α2, 0), (α2, δ), (α1, δ(α−1
2 α1 + 1)), (α1, δα

−1
2 α1), (α1 + α2, δα

−1
2 α1),

(α1 + α2, δ(α−1
2 α1 + 1)), (0, δ);

3. − (α1 + α2, 0), (α1 + α2, δ), (α1, δ(α−1
1 α2 + 1)−1), (α1, δ(α−1

1 α2 + 1)−1 + δ),

(α2, δ
(
α−1

2 α1 + 1
)−1

), (α2, δ(α−1
2 α1 + 1)−1 + δ), (0, δ);

where
δ =

1
α1 + α2

+
α1 + α2

α1α2
. (56)

Note that α1, α2 and α3 = α1 + α2 can be considered as roots of the following
structural equation

υ0α+ υ1α
2 + α4 = 0, (57)

where υ0,1 are symmetrical functions of the roots α1,2,3.
The other possibility to form exceptional curves is when one of the curve

coordinate (let us say, α) is still double degenerate while the other one (β) is
four times degenerate. In this case, the coordinate β takes only two values: 0
and δ, while the allowed values of α are 0, α1, α2, α1 +α2. Thus, any such curve
has the form

(0, 0), (α1, 0), (α2, 0), (α1 + α2, 0), (α1, δ), (α2, δ), (α1 + α2, δ), (0, δ) . (58)

The commutativity condition (20) leads to the following structural equation for
the α coordinate:

δα+ δ2α2 + δ4α4 = 0 , (59)

so that δ5 = α1α2 + α2
1 + α2

2.

Acknowledgements

This work was supported by the Grant 45704 of Consejo Nacional de Ciencia
y Tecnologia (CONACyT), Mexico, the Swedish Foundation for International
Cooperation in Research and Higher Education (STINT), the Swedish Research
Council (VR), the Swedish Foundation for Strategic Research (SSF), and the
Spanish Research Directorate (DGI), Grant FIS2005-0671.

References

1. Schwinger, J.: The geometry of quantum states. Proc. Natl. Acad. Sci. USA 46,
257–265 (1960)

2. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics.
Ann. Phys (NY) 176, 1–21 (1987)



344 A.B. Klimov et al.

3. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35,
3070–3075 (1987)

4. Lawrence, J., Brukner, Č., Zeilinger, A.: Mutually unbiased binary observable sets
on N qubits. Phys. Rev. A 65, 32320 (2002)

5. Chaturvedi, S.: Aspects of mutually unbiased bases in odd-prime-power dimen-
sions. Phys. Rev. A 65, 44301 (2002)

6. Wootters, W.K.: Quantum measurements and finite geometry. Found. Phys. 36,
112–126 (2006)

7. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased
measurements. Ann. Phys (NY) 191, 363–381 (1989)

8. Asplund, R., Björk, G.: Reconstructing the discrete Wigner function and some
properties of the measurement bases. Phys. Rev. A 64, 12106 (2001)

9. Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-State sys-
tems. Phys. Rev. Lett. 85, 3313–3316 (2000)

10. Cerf, N., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distri-
bution using d-level systems. Phys. Rev. A 88, 127902 (2002)

11. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum
Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

12. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error cor-
rection and orthogonal geometry. Phys. Rev. Lett. 78, 405–408 (1997)

13. Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of σx, σy,
and σz of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385–1387 (1987)

14. Englert, B.-G., Aharonov, Y.: The mean king’s problem: prime degrees of freedom.
Phys. Lett. A 284, 1–5 (2001)

15. Aravind, P.K.: Solution to the king’s problem in prime power dimensions. Z. Natur-
forsch. A. Phys. Sci. 58, 85–92 (2003)

16. Schulz, O., Steinhübl, R., Weber, M., Englert, B.-G, Kurtsiefer, C., Weinfurter,
H.: Ascertaining the values of σx, σy, and σz of a polarization qubit. Phys. Rev.
Lett. 90, 177901 (2003)

17. Kimura, G., Tanaka, H., Ozawa, M.: Solution to the mean king’s problem with
mutually unbiased bases for arbitrary levels. Phys. Rev. A 73, 50301 (R) (2006)

18. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys.
A 14, 3241–3246 (1981)

19. Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: Z4-Kerdock codes,
orthogonal spreads, and extremal Euclidean line-sets. Proc. London Math. Soc. 75,
436–480 (1997)

20. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, V.: A new proof for
the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)

21. Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In:
Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. LNCS,
vol. 2948, pp. 137–144. Springer, Heidelberg (2004)

22. Lawrence, J.: Mutually unbiased bases and trinary operator sets for N qutrits.
Phys. Rev. A 70, 12302 (2004)

23. Parthasarathy, K.R.: On estimating the state of a finite level quantum system.
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 607–617 (2004)

24. Pittenger, A.O., Rubin, M.H.: Wigner function and separability for finite systems.
J. Phys. A 38, 6005–6036 (2005)

25. Durt, T.: About mutually unbiased bases in even and odd prime power dimensions.
J. Phys. A 38, 5267–5284 (2005)

26. Planat, M., Rosu, H.: Mutually unbiased phase states, phase uncertainties, and
Gauss sums. Eur. Phys. J. D 36, 133–139 (2005)



Discrete Phase-Space Structures and Mutually Unbiased Bases 345

27. Klimov, A.B., Sánchez-Soto, L.L., de Guise, H.: Multicomplementary operators via
finite Fourier transform. J. Phys. A 38, 2747–2760 (2005)

28. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications.
Cambridge University Press, Cambridge (1986)

29. Buot, F.A.: Method for calculating TrHn in solid-state theory. Phys. Rev. B 10,
3700–3705 (1974)

30. Galetti, D., De Toledo Piza, A.F.R.: An extended Weyl-Wigner transformation for
special finite spaces. Physica A 149, 267–282 (1988)

31. Cohendet, O., Combe, P., Sirugue, M., Sirugue-Collin, M.: A stochastic treatment
of the dynamics of an integer spin. J. Phys. A 21, 2875–2884 (1988)

32. Wootters, W.K.: Picturing qubits in phase space. IBM J. Res. Dev. 48, 99–110
(2004)

33. Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on
finite fields. Phys. Rev. A 70, 62101 (2004)

34. Paz, J.P., Roncaglia, A.J., Saraceno, M.: Qubits in phase space: Wigner-function
approach to quantum-error correction and the mean-king problem. Phys. Rev.
A 72, 12309 (2005)

35. Durt, T.: About Weyl and Wigner tomography in finite-dimensional Hilbert spaces.
Open Syst. Inf. Dyn. 13, 403–413 (2006)

36. Klimov, A.B., Munoz, C., Romero, J.L.: Geometrical approach to the discrete
Wigner function in prime power dimensions. J. Phys. A 39, 14471–14497 (2006)

37. Romero, J.L., Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: On the structure of the
sets of mutually unbiased bases for N qubits. Phys. Rev. A 72, 62310 (2005)

38. Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67,
267–320 (2004)

39. Englert, B.-G., Metwally, N.: Separability of entangled q-bit pairs. J. Mod. Opt. 47,
2221–2231 (2000)

40. Björk, G., Romero, J.L., Klimov, A.B., Sánchez-Soto, L.L.: Mutually unbiased
bases and discrete Wigner functions. J. Opt. Soc. Am. B 24, 371–379 (2007)

41. Klimov, A.B., Romero, J.L., Björk, G., Sánchez-Soto, L.L.: J. Phys. A 40, 3987–
3998 (2007)



 

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 346–353, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Some Novel Results of p -Adic Component of Primitive 
Sequences over )/( dpZ  

Yuewen Tang and Dongyang Long 

Department of Computer Science, Sun Yat-Sen University, Guangzhou 510275, PRC 
yw811@yahoo.com.cn, issldy@mail.sysu.edu.cn 

Abstract. Some novel results of the p-adic components of primitive sequences 
over ring Z  mod 

dp ( )/( dpZ ) are given. An improving result of Dai 
Zongdao formula is presented. Moreover, we characterize the minimal 
polynomials and trace expressions for 0, 1 level components of primitive 
sequences over )/( dpZ  for any prime number p .  

1   Introduction 

The sequences over ring have many properties different from the ones over field 
[1-9]. The study of sequences over ring has been one of hotspot topics of modern 
cryptography research recently [4-9]. 

Many significant results are given [4-9] for the sequences over ring. Huang Minqiang 
characterized the algebraic structures of components of primitive sequences over 

)2/( dZ  [5]. He obtained the minimal polynomials and trace expressions for 0, 1, 2 

level component of primitive sequence over )2/( dZ  [5]. In this paper, we investigate 

the algebraic structures of components of primitive sequences over )/( dpZ  for any 

prime number p . The methods using in the paper are different from Huang’s method 

in [5]. An improving result of the Dai Zongdao formula [5] is presented. At the same 
time, we characterize the minimal polynomials and trace expressions for 0, 1 level 

component of primitive sequences over )/( dpZ  for any prime number p . In 

particular, when 2=p  we easily reduce some main results of Huang’s work in [5].  

We first introduce the necessary concepts and notations. For additional details and 
definitions, see the references, in particular [1-5]. 

Let p  is a prime number and d  a positive integer, ]),/([)( xpZPxf d
n∈  If 

per 1( ( )) ( 1), deg ( )d

d n

p
f x p p n f x−= − = , then )(xf is said to be a primitive 

polynomial for module dp [4]. If per 1( ) ( 1)d

d n

p
p pα −= − , then we call α  a 

primitive sequence for module dp . 

For each )(xf  and α  over )/( dpZ , there exists an unique p -adic 

decomposition  



 Some Novel Results of  p-Adic Component of Primitive Sequences 347 

 

∑
≥

+++==
0

2
2

10 .......
i

i
i ppp ααααα , 

2
0 1 2

0

( ) ( ) ( ) ( ) ( ) .......i
i

i

f x p f x f x pf x p f x
≥

= = + + +∑ ，  

where iα  is said to be the i-th level component sequence of α  , by )(xgi  denotes the 

minimal polynomial of iα  and by )(deg)( xgL ii =α  denotes the linear complexity 

of iα . 

2   A Key Theorem 

Lemma 1 ([3]). Let 01
1

1 ... apapapan h
h

h
h ++++= −

−  where pah <≤1 ，  

pa j <≤0 ，  ,1,...,1,0 −= hj  ∑
=

=
h

k
kapnA

0

),( .Then we have  

(1) );1/()],([)!( −−= ppnAnnpot p  

(2) ).1/()],(),(),([ −−−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ppnAprnAprA

r

n
pot p  

Theorem 1. Let 01
1

1 ... apapapan h
h

h
h ++++= −

− , where pah <≤1 , 

pa j <≤0 ， 1,...,1,0 −= hj . Then we have  

modk k

n
a p

p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

Proof. (1) If 0=ka , let 0...21 ==== +++ jkkk aaa , 01 ≠++ jka , then  

1
0 1 1

1 2
1) 2

... ( 1) ...

( 1) ( 1) ...

k k k
k

k j k j k j h
k j k j h

n p a a p a p p p

p p a p a p a p

−
−

+ + + + +
+ + + +

− = + + + + − +

+ − + − + + +
 

By Lemma 1, we have 1( 0)p j

n
pot j j

p

⎛ ⎞
= + ≥⎜ ⎟

⎝ ⎠
 

so that 0 modk k

n
a p

p

⎛ ⎞
≡ ≡⎜ ⎟
⎝ ⎠

. 

(2) If 0≠ka ， assume that  

2
0 1 2 ......

k

n
c c p c p

p

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 (2.1) 



348 Y. Tang and D. Long 

 

is a p -adic decomposition of 
k

n

p

⎛ ⎞
⎜ ⎟
⎝ ⎠

, then we easily obtain 

......][)!(!! 2
210 +++−= pcpccpnpn kk  (2.2) 

By Lemma 1 and 0≠ka ， then we have 0p j

n
pot

p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 so that 00 ≠c . Since 

])!(![)!( kk
pp pnppotnpot −= , we can easily calculate every element module 

p  of Equation (2.2) and then we have 

pcpaaapaaaa y
h

x
hk mod])!1[(!!...!])!1[(!!...!...! 01010 −≡−  (2.3) 

where  

)1...()1...(...)1(

)1...(...)1()1(

,)1...(...)1()1(

211

21
3

2
21

21
3

2
21

+++++++++++−

+++++++++++=

+++++++++++=

−−−

−−

−−

pppapppa

pppappapay

apppappapax

kk
h

hh
k

kk

h
hh

 

Since yx = , by Equations (2.3) and (2.1), then we have  

0c modk k

n
a p

p

⎛ ⎞
= ≡ ⎜ ⎟

⎝ ⎠
 

3   An Improvement of Dai Zongduo Formula 

Lemma 2 (Dai Zongduo Formula [5]). Let )(xf  is a polynomial over )/( dpZ  and 

α  is a sequence over )/( dpZ . If ∑
≥

=
0

)()(
i

i
i xfpxf ，  

∑
≥

=
0j

j
jp αα , then ∑

≥

=
0

0)(
r

r
rpxf βα ，where ijβ  is defined by  

2
0 0 00 01 02( ) ......f x p pα β β β= + + +  

and ,......,, 020100 βββ , are p -adic sequences. Based on definition of )( riij <β , 

we define rjβ  as follow  

0

( ) j
i j ij rj

i j r i j r j
i r

f x pα β β
+ = + = ≥

<

+ =∑ ∑ ∑  



 Some Novel Results of  p-Adic Component of Primitive Sequences 349 

 

Definition 1. Let tyyy ,...,, 21  be p -adic variables. Then their p -adic function is 

defined by f  

1 2

1 2
1 2

... 1 2
0

1,2,...,

( , ,..., ) ...
k

t

m m

t
k t

ti i i p
i y p

m t

yy y
M y y y

ii i+ + + =
≤ ≤ <

=

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

Theorem 2. Let ( )
i

k
i

k s

f x x
∈

=∑  ， then we have  

0
0 0( )i

k kM L i sβ α= ∈ ，  

.1),,,,:( ≥<=+=+∈= rrurvurjismLM i
uvj

m
krk βαβ  

Proof. By Theorem 1 and Lemma 2, we have 

k0β ＝
0 0

k

f

p

α⎛ ⎞
⎜ ⎟
⎝ ⎠

   mod p ，  rkβ ＝

i j ij
i j r i j r

r r

k

f

p

α β
+ = + =

<

⎛ ⎞+
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
 mod p  

Since 
1 2 1 2...(1 ) (1 ) (1 ) (1 )t tx x x xσ σ σ σσ σ+ + ++ = + + + ，  

1 2 ... t

kp

σ σ σ+ + +⎛ ⎞
⎜ ⎟
⎝ ⎠

 ＝
1 2 ...

0

k
t

m m

i i i p
i σ

+ + + =
≤ ≤

∑  
1

1i

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

  
2

2i

σ⎛ ⎞
⎜ ⎟
⎝ ⎠

 …(
t

ti

σ
) 

and the definition of ),...,,( 21 tk yyyM , we can easily complete the proof of 

Theorem 2. 

Theorem 3. Let 01 1 2( , ,..., ,...)tβ β β β= ， then we have  

∑ ∑∑
<≤

=++ ≠

−

=

++ +≡
+

pii
pii ps

st
s

n
tptitip

iit

k

k
w

kk

k
dC

,...,0
...

1

0

)...(
...

1

1

1
11

1
][ πππβ

ν

νν

 

where
1 ki iC ＝ ),!!.../()!1( 1 tiip −    s＝ 1 2 rv v vp p p+ + + ,  sd is a constant 

over GF(pn). 
 
 



350 Y. Tang and D. Long 

 

Proof. By Theorem 2, we have  

            β01＝
0 0f

p

α⎛ ⎞
⎜ ⎟
⎝ ⎠

    mod p，  

βt ＝ 1
u

k

t t
u

p

+
=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

σ∑
 mod p  ≡ 1 2

1

1

1 2
0 , ,

k

k

k

t tt t t t

i i p k
i i p

i i i

++ +

+ + =
≤ <

σσ σ ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  

                 ≡－ 1

1

1

( , , ) 1 0

( )
u

k u

k

ik

i i t t
i i u j

C j
−

+
= =

−σ∑ ∏∏     (mod p). 

The remainder of proof is the same as Ref. [5], so we omit the details. 

4   Algebraic Structures of Components 0α and 1α  

Lemma 3 ([4]). Let p be a odd prime and f0(x)＝ 1 2 ktt tx x x+ + , where 0 ≤ t1 ≤ 

t2 ≤…≤ tk＝n， then we have ( ) dp
per f ＝pd-1(pn-1)  iff  f0(x) is a primitive polynomial 

in GF(p), and  

f1(π)≠
1 1

1 2

1

1/

...
0 , ,

1
( )k k

k

k

i t i t p

i i i p
i i p

ki iC π + +

+ + + =
≤ <

∑  

where 
1 ki iC ＝(p-1)!/(i1!…ik!), and  define  

＝θ(π)  
1 1

1 2

1

...
0 , ,

1

k k

k

k

i t i t

i i i p
i i p

ki iC π + +

+ + + =
≤ <

∑ . 

Definition 2. Assume that π is a root of f0(x)＝
0i S∈
∑ xi over GF ( pn),  we define Et(x) 

and Dt(x) as  follows: 

Et(x)＝
1 ( )

( )
w t

x
≤ ζ ≤

− ζ∏    ∈Fp[x], 

Dt(x)＝ 
( )

( )
w t

x
ζ =

− ζ∏      ∈Fp[x]. 



 Some Novel Results of  p-Adic Component of Primitive Sequences 351 

 

Lemma 4 ([2], [4-5]). For i≥1, we define p-adic sequences ia  by ia ＝( )tita ，  ita ＝ 

1

t

i

⎛ ⎞
⎜ ⎟−⎝ ⎠

 mod p. then (1) (L-1) 1ia + ＝ ia ，  ( ) ( 1)
i

i
am x x= − ；  (2) If b is a p-adic 

sequence and ( )bm x  has not multi-root, then ( ) ( ( ))
i

i
b bam x m x= ;  

(3) Suppose p(x)＝ i
i

i

d x∑  
∈Fp[x], then 

p(x) ( ia b )＝ ia p(x)b＋ 1 ( )ia x p x b′
− ＋… 

            ＝∑
≤≤ ik0

( )k
i ka x p x b[κ ]
−  

where p[k](x)＝∑
i

i k
i

i
d x

k
−⎛ ⎞

⎜ ⎟
⎝ ⎠

is k-th differential coefficient of p(x).  

Theorem 4. Let f(x) be a primitive polynomial with degree n over Z/(pd) and α is a 
primitive sequence generated by f(x) over Z/(pd), then we have  

(1) g0(x)＝ f0(x), L(α0)＝ n. 

(2) α0 has a trace expression α0＝{tr(δ0πt)}t≥0  ＝ t

n

u

tpp uu

}{
1

0
0∑

−

=

πδ where π is a root of 

f0(x) over GF(p n). 

Proof. By Lemma 2, we have seen that f · α＝ 0 iff  nether two equations hold over Fp 

                                 0 0 0f α =  

0i j ij
i j r i j r

i r

f α β
+ = + =

<

+ =∑ ∑           1 1r d≤ ≤ −  

Obviously, we can get the conclusion of Theorem 4. 

Theorem 5. Let 
2

0 1 2( ) ( ) ( ) ( )f x f x pf x p f x= + + + ∈Pn[Z/(pd), x] be a primitive 

polynomial, 2
0 1 2p pα α α α= + + + ∈G[Z/(pd), f(x)] be a primitive sequence, 

then we have  

(1) 0 1 1( ) ( )Pj x E xα α= , where j1(x)∈Fp [x],  

1 ( )j π ＝
1/ 1

1 2[( ( ) ( )) ( ) ( )]p
pf D Dθ π π π π −−  ；  

(2) 1 0( ) ( ) ( )Pg x f x E x= ，
2 3

1( ) 2 p
n n nL n C C Cα = + + + + ；  

(3)  If 0 0{ ( )}t
r ttα π= δ ， then there exists δ s ∈GF(p n) which satisfy 

.
1 2 0 1{ ( ) }

w

t s t
r s t

s p

a tα π π
≠

≡ δ Δ + δ∑  mod G(f0(x))，  



352 Y. Tang and D. Long 

 

where / 1 1/
1 0 1( ( )) [ ( ) ( )]pf fπ π θ π π−Δ = − , 1 2 rv v vs p p p= + + + , 

1, , rv v n0≤ < ， r p2≤ < ，δ s ∈GF(p n)，w is a positive integer. 

Proof. (1) By Theorem 3, we have  

t
ii ps

st
s

n
tptitip

ii

k
w

kk

k
dC }][{

),...,(

1

0

)...(
...01

1

1
11

1∑ ∑∑
≠

−

=

++ +−≡
+

πππβ
ν

νν

 

Let 2 3( ) ( ) ( ) ( )Pg x D x D x D x= , we get ( ) 0sg π = ， and 

1/
01( ) { [ ( ) ( ) ]}p t

r tg x t gθ π π πβ = − , 

By Theorem 4 and 0 1 1 0 01 0f fα + α +β = , we easily get 0 1 1 0 01f fα = − α −β ， thus 

1/
0 1 1( ) ( ) { [ ( ) ( ) ] [ ( ) ( ) ]}p t t

r r tf x g x t g t f gθ π π π π π πα = −  

                                          1/
1{ [( ( ) ( )) ( ) ]}p t

r tt f gθ π π π π= −  

                                          1/
1 0[ ( ) ( )] ( )px f x g xθ= − α  

By Lemma 3, j(x) 1/
1[ ( ) ( )] ( )px f x g xθ= −  there exists a element j1(x) which satisfy 

j1(x)＝ [ j(x)]-1
，namely, j1(x)＝ 1/ 1

1[( ( ) ( )) ( )]px f x g xθ −= − ， then 

0 1 1( ) ( )Pj x E xα α= . 

(2) Since 0 1 0( ) ( ) ( )f x g x j xα = α , we get 2
0 1( ) ( ) 0f x g x α = . namely,  

1 0( ) ( ) ( )pg x f x E x= ，
2 3

1( ) 2 p
n n nL n C C Cα = + + + + . 

(3) Let 0 0{ ( )}t
r ttα π= δ ， since 0 1 1 0 01f fα = − α −β ，we have  

1/p .
0 1 0 1{ [ ( )) ] }

w

t s t
r s t

s p

f t fα θ π π π π/
≠

= δ ( ( ) − + δ∑  

                                 
/ .

0 0 1{ [ ( ) ] }
w

t s t
r s t

s p

t fπ π π π/
≠

= δ Δ + δ∑ ；  

By Lemma 4,   α1 ≡ .
2 0 1{ ) }

w

t s t
r S t

s p

a t π π
≠

(δ Δ + δ∑  mod G(f0(x)) where  

                  / 1 1/
1 0 1( ( )) [ ( ) ( )]pf fπ π θ π π−Δ = − , 

1 2 rv v vS p p p= + + + , 1, , rv v n0≤ <
，

r p2≤ <
，  

                  /
0 ( )s sf π /δ = δ ∈GF(pn), which is a stream of constants. 



 Some Novel Results of  p-Adic Component of Primitive Sequences 353 

 

5   Conclusion 

Although we only give the algebraic structures for 0, 1 level components of primitive 

sequences over )/( dpZ  in this paper, the similar results for higher level 

components are easily shown by the same way, the details of the proof are omitted 
here. 

Acknowledgments 

This work was partially sponsored by the National Natural Science Foundation of 
China (Project No. 60273062, 60573039) and the Guangdong Provincial Natural 
Science Foundation (Project No. 04205407, 5003350) 

References 

[1] Lidl, R., Niedereiter, H.: Finite Fields, Encyclopedia of Mathematics and Its Applications. 
vol. 20 (1983) 

[2] Zhexian, W.: Algebra and Coding Theory. Science Press, Beijing (1980) (in Chinese) 
[3] Zhao, K., Qi, S.: Lecture on the Number Theory. Higher Education Press, Beijing (1988) 

(in Chinese) 
[4] Minqiang, H.: Maximal Period Polynomials over )/( dpZ  Science in China(series 

A) 35(3), 270–275 (1992) (in Chinese) 
[5] Minqiang, H.: Structures of Binary Component of Primitive Sequences over Z mod

d2  
Postdoctoral Thesis of China (3), 18–23 (1990) 

[6] Xiangang, L.: The Linear Recurring Sequences on Information Theory, San Diego, 
California (January 1990) 

[7] Wenfeng, Q., Zongduo, D.: The Trace Representation of Sequences and the Space of 
Nonlinear Filtered Sequences over. )/( dpZ  Acta. Mathematicae Applicatae 
Sinica 20(1), 128 (1997) (in Chinese) 

[8] Wenfeng, Q., Xuanyong, Z.: Injectivness of compression Mappings on Primitive Sequence 
over Galois Rings. Acta Mathematica Sinica 44(3), 445–452 (2001) (in Chinese) 

[9] Xuanyong, Z., Wenfeng, Q.: Uniqueness of the Distribution of Zeroes of Primitive. Level 
Sequences over )/( epZ （Ⅱ） . Acta. Mathematicae Applicatae Sinica 27(4), 731–743 
(2004) (in Chinese) 



Author Index

Ahmadi, Omran 85
Álvarez, V. 294
Armario, J.A. 294
Avanzi, Roberto 69

Bai, Enjian 11
Beuchat, Jean-Luc 25
Bierbrauer, Jürgen 276
Björk, G. 333
Bodrato, Marco 116
Brisebarre, Nicolas 25
Budaghyan, Lilya 177

Cayrel, Pierre-Louis 237

Dı́az, R. Durán 318
Domı́nguez, A. Peinado 318
Du, Xiaoni 11

Erickson, Stefan 202

Farashahi, Reza Rezaeian 219
Fitzgerald, Robert W. 1
Frau, M.D. 294

Gathen, Joachim von zur 55
Großschädl, Johann 40
Gustafsson, Oscar 103

Hamahata, Yoshinori 18
Hankerson, Darrel 85
Helleseth, Tor 264

Jacobson Jr., Michael J. 202

Klimov, A.B. 333

Leander, G. 159
Long, Dongyang 346
Lu, Peizhong 303

Martin, E. 294
Masqué, J. Muñoz 318

Meloni, Nicolas 189
Menezes, Alfred 85

Nakagawa, Nobuo 134

Okamoto, Eiji 25
Olofsson, Mikael 103
Osuna, A. 294
Otmani, Ayoub 237

Pellikaan, Ruud 219
Poschmann, A. 159

Romero, J.L. 333
Rønjom, Sondre 264

Sánchez-Soto, L.L. 333
Shang, Ning 202
Shao, Zuhua 252
Shen, Shuo 202
Shirase, Masaaki 25
Shokrollahi, Amin 55
Shokrollahi, Jamshid 55
Stein, Andreas 202

Takagi, Tsuyoshi 25
Tang, Yuewen 346
Thériault, Nicolas 69
Tillich, Stefan 40
Tong, Yan 147

Vega, Gerardo 284
Vergnaud, Damien 237

Xiao, Guozhen 11

Yan, Tongjiang 11
Yoshiara, Satoshi 134
Yuan, Yuan 147
Yucas, Joseph L. 1

Zhang, Huanguo 147
Zou, Yan 303


	Title Page
	Preface
	Organization
	Table of Contents
	Explicit Factorizations of Cyclotomic and Dickson Polynomials over Finite Fields
	Introduction
	Factors of Cyclotomic Polynomials
	Cyclotomic Polynomials in the Case r = 3
	Factors of Dickson Polynomials
	Dickson Polynomials in the Case r = 3
	References

	Some Notes on d-Form Functions with Difference-Balanced Property
	Introduction and Preliminaries
	Properties of d-Form Functions
	MainResults
	References

	A Note on Modular Forms on Finite Upper Half Planes
	Introduction
	Modular Forms
	Mixed Modular Forms
	Modular Embeddings
	Concluding Remarks
	References

	A Coprocessor for the Final Exponentiation of the $\eta_T$ Pairing in Characteristic Three
	Introduction
	Computation of the Final Exponentiation
	Hardware Implementation
	Addition and Subtraction over $F_3^m$
	Multiplication over $F_3^m$
	Cubing over $F_3^m$
	An Operator for Multiplication, Addition, and Cubing over $F_3^97$
	Architecture of the Coprocessor

	Results and Comparisons
	Concluding Remarks
	References

	VLSI Implementation of a Functional Unit to Accelerate ECC and AES on 32-Bit Processors
	Introduction
	Contributions of This Work

	Arithmetic in Binary Extension Fields
	Implementation Options for AES
	Instruction Set Extensions

	Design of a Unified Multiplier with AES Support
	Basic Unified Multiplier Architecture
	Concepts for Support of AES MixColumns Multiplication

	Implementation Details
	Experimental Results
	Silicon Area and Critical Path
	AES Performance
	Comparison with Designs Using an AES Coprocessor

	Summary of Results and Conclusions
	References

	Efficient Multiplication Using Type 2 Optimal Normal Bases
	Introduction
	PermutedNormalBasis
	Multiplier Structure
	Polynomials from Normal Bases
	Factorizations of the Conversion Matrices
	Cost of Computing $\nu_n$ and $\pi_n$
	OtherCosts
	Comparison
	Conclusion
	References

	Effects of Optimizations for Software Implementations of Small Binary Field Arithmetic
	Introduction
	Types of Overheads
	Implementation Techniques
	Field Multiplication and Architecture Granularity
	Sequential Multiplications
	Polynomial Squaring
	Modular Reduction
	Modular Inversion

	Performance Results, Comparisons, and Conclusions
	Comparisons with Other Literature
	Application to Curve-Based Cryptography
	Conclusions and Perspectives

	References

	Software Implementation of Arithmetic in $F_3^m$
	Introduction
	Polynomial Bases for $F_3^m$
	Field Multiplication
	Cubing and Cube Roots
	Inversion

	NormalBases
	Gauss Periods
	Complexity and Structure for T When q = 3

	Implementation Notes and Timings
	Field Multiplication
	Cubing and Cube Roots
	Inversion
	Analysis

	Identity-Based Encryption
	Symmetric Pairings
	Boneh-Franklin and Sakai-Kasahara IBE
	Costs

	Conclusions
	References

	Complexity Reduction of Constant Matrix Computations over the Binary Field
	Introduction
	Complexity Reduction
	Previous Approaches
	Proposed Approach
	Transposition

	Example
	Results
	Random Matrices
	Galois Field Arithmetic

	Conclusions
	References

	Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0
	Introduction
	Representation of $GF_2[x]$ and Notation

	Toom-Cook Algorithm for Polynomials, Revisited
	References on Collected Ideas

	TheMatrices
	Matrices for the Interpolation Sequence
	The Choice of Evaluation Points
	Matrices for the Evaluation Sequence

	Optimising Through Graph Search
	Searching for Evaluation Sequences
	The Graph
	Estimate for Evaluation Sequences

	Results and Algorithms in Characteristic 2
	Toom-2.5 in $GF_2[x]$
	Toom-3 in $GF_2[x]$
	Toom-4 in $GF_2[x]$
	Toom-5 in $GF_2[x]$

	Bivariate and Multivariate
	Multivariate Toom-2
	Bivariate Toom-2.5 in $GF_2[x]$
	Bivariate Toom-3 in $GF_2[x]$

	Conclusions
	References

	A Construction of Differentially 4-Uniform Functions from Commutative Semifields of Characteristic 2
	Introduction
	Finite Commutative Semifields
	Construction of Differentially $4$-Uniform Functions
	Two to One Property of Some Functions
	Proof of Proposition 6
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Final Step

	“If” Part of the Conjecture
	References

	Complete Mapping Polynomials over Finite Field $F_16$
	Introduction
	Preliminaries
	MainResults
	Nonexistence of Complete Mapping Polynomial of Degree 9
	The Complete Mapping Binomials
	The Complete Mapping Trinomial of Form $ax^i + bx^j + cx$
	Conclusions

	References

	On the Classification of 4 Bit S-Boxes
	Introduction
	Notation
	Optimal 4 Bit S-Boxes
	Linear Equivalence
	Other Criteria

	Serpent-Type S-Boxes
	Equivalence of Serpent-Type S-Boxes
	Other Criteria

	Relation Between the Representatives and Inverses
	CCZ Equivalence
	The Block Cipher Serpent

	Implementation Details
	Hardware Implementation
	References

	The Simplest Method for Constructing APN Polynomials EA-Inequivalent to Power Functions
	Introduction
	Preliminaries
	TheNewConstruction
	References

	New Point Addition Formulae for ECC Applications
	Introduction
	Elliptic Curve Arithmetic
	New Point Addition Formulae
	Point Scalar Multiplication
	Euclidean Addition Chains
	About Euclid’s Addition Chains Length

	Using Zeckendorf Representation
	A Fibonacci-and-Add Algorithm
	Using $NewADD$
	Improvements

	Comparisons with Other Methods
	Summary
	References

	Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation
	Introduction and Motivation
	Background and Notation
	Explicit Formulas
	Baby Step
	Addition Formulas
	Doubling Formulas
	Summary of Results

	Numerical Results
	Conclusions
	References

	The Quadratic Extension Extractor for (Hyper)Elliptic Curves in Odd Characteristic
	Introduction
	Preliminaries
	Finite Field Notation
	Hyperelliptic Curves
	Deterministic Extractor

	Norm Variety
	The Quadratic Extension Extractor
	The Extractor for $C$
	Analysis of the Extractor

	Examples
	The Extractor for a Subgroup of $F*_q^2$
	The Extractor for Elliptic Curves

	Conclusion
	References

	On Kabatianskii-Krouk-Smeets Signatures
	Introduction
	Notations and Definitions
	How to Sign Without Decoding?
	Kabatianskii-Krouk-Smeets Signatures
	Recovering the Private Key Under a Known Message Attack
	Extension to Multi-time Signatures
	Reduction of Parameters
	Efficiency Issues and Conclusion
	References

	Self-certified Signatures Based on Discrete Logarithms
	Introduction
	Self-certified Signature Scheme
	The Definition of a Self-certified Signature Scheme
	The Self-certified Signature Scheme Based on DL (SCSDL)

	Security Model and Security Proof
	Security Model for SCSDL Scheme
	Security Proof of the SCSDL Scheme

	Conclusions
	References

	Attacking the Filter Generator over $GF(2^m)$
	Introduction
	Preliminaries
	Finding the Coefficient Sequences
	Conclusions
	References

	Cyclic Additive and Quantum Stabilizer Codes
	Introduction
	Notation and Twisted Codes
	Irreducible Additive Cyclic Codes
	The Additive Cyclic Codes
	Cyclic Quantum Stabilizer Codes
	Codes of Kloosterman Type
	References

	Determining the Number of One-Weight Cyclic Codes When Length and Dimension Are Given
	Introduction
	Linear Recurring Sequences and Cyclic Codes
	Some General Results
	A First Approach to the Characterizations
	The Characterizations
	Number of One-Weight Cyclic Codes When the Length and Dimension Are Given
	References

	Error Correcting Codes from Quasi-Hadamard Matrices
	Introduction
	Quasi-Hadamard Matrices
	Quasi-Hadamard Codes
	Examples
	Example 1: An Optimal Quasi-Hadamard Code
	Example 2: A Good (Non Optimal) Quasi-Hadamard Code

	References

	Fast Computations of Gr¨obner Bases and Blind Recognitions of Convolutional Codes
	Introduction
	Fast Computation of Gr\"{o}bner Basis of HomogenousIdeals with Two Variables
	Analysis of Computational Complexity
	A New Generalization of Sequence Synthesis
	Synthesis of LRS and Blind Recognition of Convolutional Code
	Key Equation and Key Module Equation
	Homogenous Key Equation and Homogenous Key Module Equation
	Computational Example of Blind Recognition of Convolutional Code

	References

	A Twin for Euler’s $\phi$ Function in $F_2[X]$
	Statement of the Main Result
	Proof of Theorem 1
	Trinomials
	Concluding Remarks
	References

	Discrete Phase-Space Structures and Mutually Unbiased Bases
	Introduction
	Constructing Mutually Unbiased Bases
	Curves in Phase Space
	General Form of Abelian Curves
	Non-singularity Condition

	Regular Curves
	Explicit Forms
	Examples

	Exceptional Curves
	Local Transformations
	Curves over $GF(2^2)$
	Curves over $GF(2^3)$
	References

	Some Novel Results of $p$ -Adic Component of Primitive Sequences over $Z /( p^d )$
	Introduction
	A Key Theorem
	An Improvement of Dai Zongduo Formula
	Algebraic Structures of Components $\alpha_0$ and $\alpha_1$
	Conclusion
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




