

Lecture Notes in Computer Science 4581
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alexandre Petrenko Margus Veanes
Jan Tretmans Wolfgang Grieskamp (Eds.)

Testing of Software
and Communicating
Systems

19th IFIP TC6/WG6.1 International Conference, TestCom 2007
7th International Workshop, FATES 2007
Tallinn, Estonia, June 26-29, 2007
Proceedings

13

Volume Editors

Alexandre Petrenko
CRIM
Montreal, Canada
E-mail: petrenko@crim.ca

Margus Veanes
Microsoft Research
Redmond, WA, USA
E-mail: margus@microsoft.com

Jan Tretmans
Embedded Systems Institute
Eindhoven, The Netherlands
E-mail: jan.tretmans@esi.nl

Wolfgang Grieskamp
Microsoft Research
Redmond, WA, USA
E-mail: wrwg@microsoft.com

Library of Congress Control Number: 2007928493

CR Subject Classification (1998): D.2.5, D.2-3, C.2, F.3, K.6

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-73065-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73065-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12076826 06/3180 5 4 3 2 1 0

© IFIP International Federation for Information Processing 2007

DOI:

The original version of the book frontmatter was revised:
The copyright line was incorrect. The Erratum
to the book frontmatter is available at

10.1007/978-3-540-73066-8_26

http://dx.doi.org/10.1007/978-3-540-73066-8_26

Preface

Testing is one of the most important techniques for validating the correctness
of communicating and software systems. Triggered by the quest for improved
quality of systems, and by the high and ever-increasing costs of making and
executing the necessary tests, testing has evolved during the last two decades
from an ad-hoc and under-exposed area of systems development to an important
and active area, where a lot of research and development, in academia as well
as in industry, is taking place. This evolvement is also reflected in an increasing
number of testing conferences and workshops being regularly organized. Two of
these, TestCom the 19th IFIP TC6/WG6.1 International Conference on Testing
of Communicating Systems – and Fates the seventh International Workshop on
Formal Approaches to Testing of Software, were jointly held in Tallinn, Estonia,
June 27–29, 2007. In addition, Forte, the 27th IFIP International Conference on
Formal Methods for Networked and Distributed Systems, was also held in Tallinn
during these dates, together thus forming a large event on testing, validation,
and specification of software, communicating, and distributed systems.

The objective of TestCom/Fates 2007 was to offer a forum for researchers
from academia as well as industry, developers, and testers to present, discuss,
and learn about new approaches, theories, methods, and tools in the field of
testing of software and communicating systems.

TestCom - Testing of Communicating Systems is an IFIP-sponsored series
of international conferences, previously also called the International Workshop
on Protocol Test Systems (IWPTS) or International Workshop on Testing of
Communicating Systems (IWTCS). It is devoted to testing of communicating
systems, including testing of communication protocols, services, distributed plat-
forms, and middleware. The previous events were held in Vancouver, Canada
(1988); Berlin, Germany (1989); McLean, USA (1990); Leidschendam,
The Netherlands (1991); Montreal, Canada (1992); Pau, France (1993); Tokyo,
Japan (1994); Evry, France (1995); Darmstadt, Germany (1996); Cheju Island,
Korea (1997); Tomsk, Russia (1998); Budapest, Hungary (1999); Ottawa, Canada
(2000); Berlin, Germany (2002); Sophia Antipolis, France (2003); Oxford, UK
(2004); Montreal, Canada (2005); and New York, USA (2006).

Fates - Formal Approaches to Testing of Software is a series of workshops de-
voted to the use of formal methods in software testing. Previous events were held
in Aalborg, Denmark (2001); Brno, Czech Republic (2002); Montreal, Canada
(2003); Linz, Austria (2004); Edinburgh, UK (2005); and Seattle, USA (2006).

This volume contains the proceedings of TestCom/Fates 2007, the joint
conference of TestCom and Fates. Out of 61 submitted papers, the Program
Committee selected 24 papers for presentation at the conference. Together with
the invited presentation by Antti Huima from Conformiq Software Ltd., Finland,
they form the contents of these proceedings. The conference itself, in addition,

VI Preface

contained another invited presentation, jointly with Forte, by Susanne Graf from
Verimag (France), and presentations of work-in-progress papers, position papers,
short experience reports, and tool demonstrations, which were separately pub-
lished. A tutorial day preceded the main conference.

We would like to thank the numerous people who contributed to the suc-
cess of TestCom/Fates 2007: the Steering Committee of IFIP for the Test-

Com conference, the Program Committee and the additional reviewers for their
support in selecting and composing the conference program, and the authors
and the invited speakers for their contributions without which, of course, these
proceedings would not exist. We thank Conformiq Software Ltd., CRIM, and
Microsoft Research for their financial support and Springer for their support
in publishing these proceedings. We acknowledge the use of EasyChair for the
conference management and wish to thank its developers. Last, but not least, we
thank the Institute of Cybernetics at Tallinn University of Technology and the
Department of Computer Science of TUT, in particular, Juhan Ernits, Monika
Perkmann, Jaagup Irve, Ando Saabas, Kristi Uustalu, and Tarmo Uustalu, for
all matters regarding the local organization and for making TestCom/Fates 2007
run smoothly.

April 2007 Alexandre Petrenko
Margus Veanes
Jan Tretmans

Wolfgang Grieskamp

II

Conference Organization

Program Chairs

Alexandre Petrenko (CRIM, Canada)
Margus Veanes (Microsoft Research, USA)
Jan Tretmans (Embedded Systems Institute, The Netherlands)
Wolfgang Grieskamp (Microsoft Research, USA)

Steering Committee

John Derrick (University of Sheffield, UK), Chair
Ana R. Cavalli (INT, France)
Roland Groz (LSR-IMAG, France)
Alexandre Petrenko (CRIM, Canada)

Program Committee

Bernhard K. Aichernig (Graz University of Technology, Austria)
Paul Baker (Motorola, UK)
Antonia Bertolino (ISTI-CNR, Italy)
Gregor v. Bochmann (University of Ottawa, Canada)
Juris Borzovs (LVU, Latvia)
Rachel Cardell-Oliver (The University of Western Australia, Australia)
Richard Castanet (LABRI, France)
Ana R. Cavalli (INT, France)
John Derrick (University of Sheffield, UK)
Sarolta Dibuz (Ericsson, Hungary)
Khaled El-Fakih (American University of Sharjah, UAE)
Marie-Claude Gaudel (University of Paris-Sud, France)
Jens Grabowski (University of Gottingen, Germany)
Roland Groz (LSR-IMAG, France)
Rob Hierons (Brunel University, UK)
Teruo Higashino (Osaka University, Japan)
Dieter Hogrefe (University of Gottingen, Germany)
Antti Huima (Conformiq Software Ltd., Finland)
Thierry Jeron (IRISA Rennes, France)
Ferhat Khendek (Concordia University, Canada)
Myungchul Kim (ICU, Korea)
Victor Kuliamin (ISP RAS, Russia)
Hartmut Konig (BTU Cottbus, Germany)
David Lee (Ohio State University, USA)

Organization

Bruno Legeard (Leirios, France)
Alexander Letichevsky (Institute of Cybernetics, Ukraine)
Giulio Maggiore (Telecom Italia Mobile, Italy)
Brian Nielsen (University of Aalborg, Denmark)
Manuel Núñez (UC de Madrid, Spain)
Ian Oliver (Nokia Research, Finland)
Doron Peled (University of Bar-Ilan, Israel)
Alexander Pretschner (ETH Zurich, Switzerland)
Harry Robinson (Google, USA)
Vlad Rusu (IRISA Rennes, France)
Ina Schieferdecker (Fraunhofer FOKUS, Germany)
Kenji Suzuki (University of Electro-Communications, Japan)
Andreas Ulrich (Siemens, Germany)
Hasan Ural (University of Ottawa, Canada)
Mark Utting (University of Waikato, New Zealand)
M Umit Uyar (City University of New York, USA)
Juri Vain (Tallinn University of Technology, Estonia)
Carsten Weise (Ericsson, Germany)
Burkhart Wolff (ETH Zurich, Switzerland)
Jianping Wu (Tsinghua University, China)
Nina Yevtushenko (Tomsk State University, Russia)
Zheng Zhang (Microsoft Research, China)

Local Organization

Juhan Ernits, Monika Perkmann, Jaagup Irve, Ando Saabas, Kristi Uustalu,
Tarmo Uustalu (Tallinn University of Technology, Estonia)

External Reviewers

Benharef Abdel
Jongmoon Baik
Lydie du Bousquet
Henrik Brosenne
Patryk Chamuczynski
Camille Constant
Guglielmo De Angelis
Jeremy Dubreil
Maxim Gromov
Toru Hasegawa
Hatem Hamdi
Jukka Honkola
Akira Idoue
Guy-Vincent Jourdan
Sungwon Kang

Fang-Chun Kuo
Mounir Lallali
Shuhao Li
Luis Llana
Stephane Maag
Wissam Mallouli
Mercedes G. Merayo
Marius Mikucionis
Helmut Neukirchen
Tomohiko Ogishi
Jean-Marie Orset
Patrizio Pelliccione
Larry Quo
Ismael Rodriguez
Soonuk Seol

X

Organization XI

Natalia Shabaldina
Xingang Shi
Atsushi Tagami
Abel Vamos
Vianney Darmaillacq
Jean-Luc Richier

Zhiliang Wang
Edith Werner
Constantin Werner
Xia Yin
Benjamin Zeiss

Table of Contents

Implementing Conformiq Qtronic . 1
Antti Huima

New Approach for EFSM-Based Passive Testing of Web Services 13
Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani,
Abdeslam En-Nouaary, and Roch Glitho

Automation of Avionic Systems Testing . 28
David Cebrián, Valent́ın Valero, and Fernando Cuartero

Automatic Test Generation from Interprocedural Specifications 41
Camille Constant, Bertrand Jeannet, and Thierry Jéron

A New Method for Interoperability Test Generation 58
Alexandra Desmoulin and César Viho

Component Testing Is Not Enough - A Study of Software Faults in
Telecom Middleware . 74

Sigrid Eldh, Sasikumar Punnekkat, Hans Hansson, and
Peter Jönsson

Symbolic Model Based Testing for Component Oriented Systems 90
Alain Faivre, Christophe Gaston, and Pascale Le Gall

A Compositional Testing Framework Driven by Partial Specifications . . . 107
Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier, and
Jean-Luc Richier

Nodes Self-similarity to Test Wireless Ad Hoc Routing Protocols 123
Cyril Grepet and Stephane Maag

Testing and Model-Checking Techniques for Diagnosis 138
Maxim Gromov and Tim A.C. Willemse

Model-Based Testing of Service Infrastructure Components 155
László Gönczy, Reiko Heckel, and Dániel Varró

Testing Input/Output Partial Order Automata . 171
Stefan Haar, Claude Jard, and Guy-Vincent Jourdan

A Framework for Testing AIS Implementations . 186
Tamás Horváth and Tibor Sulyán

XI Table of Contents

An Object-Oriented Framework for Improving Software Reuse on
Automated Testing of Mobile Phones . 199

Luiz Kawakami, André Knabben, Douglas Rechia, Denise Bastos,
Otavio Pereira, Ricardo Pereira e Silva, and Luiz C.V. dos Santos

Model Based Testing of an Embedded Session and Transport
Protocol . 212

Vesa Luukkala and Ian Oliver

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test
Suites . 228

Helmut Neukirchen and Martin Bisanz

A Bounded Incremental Test Generation Algorithm for Finite State
Machines . 244

Zoltán Pap, Mahadevan Subramaniam, Gábor Kovács, and
Gábor Árpád Németh

Experimental Testing of TCP/IP/Ethernet Communication for
Automatic Control . 260

Przemyslaw Plesowicz and Mieczyslaw Metzger

Towards Systematic Signature Testing . 276
Sebastian Schmerl and Hartmut Koenig

TPLan-A Notation for Expressing Test Purposes . 292
Stephan Schulz, Anthony Wiles, and Steve Randall

Testing Nondeterministic Finite State Machines with Respect to the
Separability Relation . 305

Natalia Shabaldina, Khaled El-Fakih, and Nina Yevtushenko

Learning and Integration of Parameterized Components Through
Testing . 319

Muzammil Shahbaz, Keqin Li, and Roland Groz

An EFSM-Based Passive Fault Detection Approach 335
Hasan Ural and Zhi Xu

Test Data Variance as a Test Quality Measure: Exemplified for
TTCN-3 . 351

Diana Vega, Ina Schieferdecker, and George Din

Model-Based Testing of Optimizing Compilers . 365
Sergey Zelenov and Sophia Zelenova

Author Index . 379

V

Erratum to: Testing of Software and Communicating Systems E1
Alexandre Petrenko, Margus Veanes, Jan Tretmans,
and Wolfgang Grieskamp

Implementing Conformiq Qtronic

(Invited Talk)

Antti Huima

Conformiq Software Ltd
antti.huima@conformiq.com

Abstract. Conformiq Qtronic1 is a commercial tool for model driven
testing. It derives tests automatically from behavioral system models.
These are black-box tests [1] by nature, which means that they depend
on the model and the interfaces of the system under test, but not on the
internal structure (e.g. source code) of the implementation.

In this essay, which accompanies my invited talk, I survey the nature
of Conformiq Qtronic, the main implementation challenges that we have
encountered and how we have approached them.

Problem Statement

Conformiq Qtronic is an ongoing attempt to provide an industrially applicable
solution to the following technical problem: Create an automatic method that
provided an object (a model) M that describes the external behavior of an open
system (begin interpreted via well-defined semantics) constructs a strategy to
test real-life black-box systems (implementations) I in order to find out if they
have the same external behavior as M .

(Now the fact that we have created a company with the mission to solve this
technical problem hints that we believe it to be a good idea to employ automatic
methods of this kind in actual software development processes—which is not a
priori self-evident. In this essay, however, I will not touch these commercial and
methodological issues, but will concentrate on the technical problem only.)

Two notes are due, and the first concerns the test harness. It is namely usually
so that the model M describes a system with different interfaces and behavior
than the real implementation that is being tested (iut, implementation under
test). Virtually always, the model M is somehow described on a higher level of
abstraction than the real implementation. As a concrete example, sip (Session
Initiation Protocol) [2] is a packet-oriented protocol that is run over a transport
(e.g. udp [3]) and that has an ascii encoding: every sip packet is encoded as a
series of ascii characters. However, some possible model M for testing an sip

implementation could define the logical flow of packets with their main contents
but not describe, for instance, their actual encoding. How can this model M
be used to test a real sip implementation that requires ascii encoded packets
over udp? The answer is that the “abstract” tests generated automatically from
1 www.conformiq.com

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 1–12, 2007.
c© IFIP- International Federation for Information Processing 2007

2 A. Huima

Fig. 1. The relation between a model and a corresponding implementation under test.
The test harness bridges the higher-level model with the concrete executable imple-
mentation. The logic of the test harness itself is not explicitly tested by the generated
testing logic.

M are run through a test harness that provides the “low-level details” such as
encoding and decoding data and managing the udp packets.

What does this mean in terms of testing? The automatic tests derived from
M are not testing the codec layer of the sip implementation per se, because the
codec was not specified in M . Instead, the tests focus on the “high-level” logic
above the codec layers. See Fig. 1.

This is a very commonly occurring pattern. Yet testing the codecs could also
benefit from model-based testing. In practical deployments this would be usually
carried out by using a different model and different testing set-up that would
focus solely on the testing of the codecs. Regardless, we have found that succesful
deployments of model-based testing usually focus on the “higher level” issues.

The second note concerns the modelsM in the context of Conformiq Qtronic.
For us, the models are—on the internal level—multithreaded Scheme [4] pro-
grams that can “talk” with an external, unspecified (open) environment, and
the semantics for these programs are given via small-step virtual machine oper-
ational semantics [5, 6], defined in the corresponding language specification [7].

Design of Conformiq Qtronic

The development of Conformiq Qtronic has always been driven by two major
design goals, which are industrial applicability and openess. In other words, we
have strived to create a tool that can be applied to real-world problems by
“normal” software engineers in the industry, and that can be integrated easily
into heterogenous software development tool chains.

Implementing Conformiq Qtronic 3

The most visible consequence is that Conformiq Qtronic allows the user to
use in modeling many constructs that are known to create difficulties for model
checking algorithms. Namely, Conformiq Qtronic supports infinite data types
(e.g. rational numbers and strings), fully dynamic data with garbage collection,
classes with static and dynamic polymorphism, concurrency, and timings. Fur-
thermore, the user is not asked to provide abstractions [8, 9] or slicings [10, 11]
of the model, as the design philosophy has been that Conformiq Qtronic should
relieve the user of such technicalities.

Challenge:

Legal models can have arbitrarily complex, infinite state spaces

It follows immediately that there exist models that are too difficult for Con-
formiq Qtronic to handle. Our solution to this problem is that we do not try to
solve it, because to provide the tool’s raison d’être, it is sufficent that there exist
enough contexts where Conformiq Qtronic can create substantial value.

Another consequence is that many of the known methods for model checking
and test generation that assume finite-state specifications [12,13,14,15,16,17,18,
19,20], or even only finitely branching specifications, are of limited value for us.
I do not claim that research into model driven testing from finite-state models
would be useless in general, especially as there exist case studies that prove
otherwise [21]. However, our experience is that the number of industrial systems
that have natural finite-state specifications is limited. There exists certainly a
larger body of systems that have somewhat natural finite-state abstractions, but
as I already mentioned, we do not want to force the user to do abstraction
manually.

Modeling

The main artifact the user of Conformiq Qtronic must manage is the model, and
we believe it is very important that the model can be described in a powerful
language that is easy to adopt.

Challenge:

Providing industrial-strength specification and modeling language

In the out-of-the-box version of Conformiq Qtronic, the behavioral models are
combinations of uml statecharts [22, 23] and blocks of an object-oriented pro-
gramming language that is basically a superset of Java [24] and C# [25]. We
have dubbed this semi-graphical language qml (Qtronic Modeling Language).
The use of uml statecharts is optional so that models can be described in pure
textual notation also.

qml [26] extends Java by adding value-type records (which exist already in
C#), true static polymorphism (i.e. templates or generics), discretionary type
inference [27,28,29], and a system for free-form macros (see Fig. 2). To avoid any
misunderstanding it must be mentioned that qml does not include the standard
libraries that come with Java or C#.

4 A. Huima

_rec -> _port ::= _port.send(_rec, -1)

Fig. 2. A free-form macro that gives a new syntax for sending data through ports
without timeouts. Note that there is no built-in meaning for the arrow literal, and
when matched, port and rec can correspond to arbitrary expressions.

A qml program must specify an open system, i.e. a system with one or more
message passing interfaces that are open to the “environment” (please see Fig. 1
again). These interfaces correspond to the testing interfaces of the real system
under test. For example, if a qml program starts by sending out a message X ,
then a conforming system under test must also send out the message X when it
starts. Thus, in a very concrete manner, a qml program is an abstract reference
implementation of the system it specifies. As a matter of fact, a great way to test
Conformiq Qtronic itself is to run tests derived from a model against a simulated
execution of the very same model (expect no failures!), or mutants [30,31,32] of it.

In order to clarify this further, we do not rely on any existing Java or C#
compilers, but have a full custom-built translator for qml. (I elaborate this later
in this paper.)

Online and Offline Testing

Conformiq Qtronic offers two complementary ways for deploying the derived
tests: online testing (on-the-fly) and offline test generation. Online testing means
in our context that Conformiq Qtronic is connected “directly” with the sys-
tem under test via a dll (dynamically linked library) plug-in interface. In this
mode, the selection and execution of test steps and the validation of the system
under test’s behavior all take place in parallel. In contrast, offline test gen-
eration decouples test case design from the execution of tests. In the offline
mode, Conformiq Qtronic creates a library of test cases that are exported via
an open plug-in interface and that can be deployed later, independent of the
Conformiq Qtronic tool.

Conformiq Qtronic supports the testing of systems against nondeterministic
system models, i.e. again models that allow for multiple different observable
behaviors even against a deterministic testing strategy—but only in the online
mode.

Challenge:

Supporting nondeterministic system models

At the present, the offline test case generator assumes a deterministic system
model. One of the reasons for this is that the test cases corresponding to a
nondeterministic model resemble trees as at the test generation time the choices
that the system under test will make are not yet known. The branching factor of
such trees is difficult to contain, especially in the case of very wide nondetermin-
istic branches (e.g. the system under test chooses a random integer). In contrast,

Implementing Conformiq Qtronic 5

the online algorithm can adapt to the already observed responses of the system
under test, and choose the next test steps completely dynamically. [21,33]

Challenge:

Timed testing in real time

One important source of nondeterminism is time [33,34, 35], especially because
the testing setup itself typically creates communication latencies. For example,
if the sut sends out a timeout message after 10 seconds, it can be that the
testing harness actually sees the message only after 10.1 seconds due to some
slowness in the testing environment. In the same way the inputs to the sut can
get delayed. This is so important that the user interface for Conformiq Qtronic
provides a widget for setting the maximum allowed communication latency. This
widget actually controls the time bound of a bidirectional queue object that the
tool adds implicitly “in front of” the provided system model.

Multilanguage Support

Even though qml is the default modeling language provided with Con-
formiq Qtronic, the tool supports also other languages. This multi-language
support is implemented internally by translating all user-level models into an
intermediate process notation. This notation, which we call CQλ, is actually a
variant of Scheme [4], a lexically scoped dialect of the lisp language family [36].
For an example, see Fig. 3.

Challenge:

Compiling models into an intermediate language

So, all qml models are translated eventually into lisp programs. Our pipeline
for doing this consists of the following components: (1) a model and metamodel
[37] loading front-end based on the ECore specification [38] and xmi [39]; (2)
an in-memory model repository [40, 41]; (3) a parsing framework for textual
languages that supports fully ambiguous grammars [42, 43]; and (4) a graph-
rewriting [44,45,46] based framework for model transformation [40].

First, a qml model consisting of uml statecharts and textual program blocks
is loaded into the model repository via the model loading front-end. At the same
time, two metamodels are loaded: one for qml and one for CQλ. Originally, the
textual program blocks appear in the repository as opaque strings. The next
step is to parse them and to replace the strings with the corresponding syntax
trees (for which there is support in the qml metamodel). Macro expansion, type
checking and type inference happen at this stage. Then the graph rewriter is
invoked with a specific rule set, which is iterated until a fixpoint; this causes
the model to be gradually transformed from an instance of the qml metamodel
to an instance of the CQλ metamodel. Eventually, the resulting CQλ model is
linearized into a textual CQλ program and a fixed CQλ library pasted in. [47,48]
A simple example of a rewriting rule is shown in Fig. 4.

6 A. Huima

(define-input-port input)
(define-output-port output)
(define main
(lambda ()

(let* ((msg (ref (handshake input #f) 1))
(_ (handshake (tuple output msg) #f)))

(main))))

Fig. 3. A minimalistic CQλ program that defines an “echo” system: every message
sent to the port input must be echoed back immediately through the port output

replace "Timer trigger" {
} where {

Transition t;
TimeoutTrigger trigger;
t.trigger == trigger;
t.trigger_cql == nil;

} with {
t.trigger_cql := ‘(tuple ,CQL_Symbol("__after__") ,trigger.timeout);

};

Fig. 4. A simple graph rewriting rule that generates the CQλ counterpart for a timeout
trigger in an uml statechart

It is important to be able to map the translated CQλ program back to the
original user-level model in order to support traceability. There is specific support
for this in the CQλ language: program blocks can be linked both lexically as well
as dynamically to the user-level model.

Test Generation

So how does Conformiq Qtronic generate tests? The core algorithm is an enu-
merator for simulated executions of the given model. What makes this difficult
is that this enumerator needs to be able to simulate an open model, i.e. a model
that communicates an environment that has not been specified. Basically the
enumerator assumes that a fully nondeterministic environment has been linked
with the open model. This creates infinitely wide nondeterministic branches in
the state space, because the hypothetical environment could send e.g. any integer
whatsover to the system (Conformiq Qtronic supports as a datatype the full set
Z). Another set of nondeterministic branches is caused by the internal choices in
the model itself, and these can be also infinitely wide (the model generates a free
integer value). So the trick is how to handle a state space with infinitely many
states and an infinite branching factor. This we do with symbolic execution and
I get back to this shortly.

Implementing Conformiq Qtronic 7

Challenge:

Supporting known testing heuristics

In order to be able to support different testing heuristics, such as transition or
state coverage or boundary value analysis [1], Conformiq Qtronic has a built-in
capability to include coverage checkpoints in the intermediate CQλ-level mod-
els. Similar constructs have been called also e.g. coverage items in the litera-
ture. [49] A coverage checkpoint is marked in a lisp model by a call to the built-in
checkpoint procedure. This means that the generation of coverage checkpoints
can be fully controlled in the model transformation stage. Indeed, all the var-
ious user-level testing heuristics such as transition coverage or boundary value
analysis have been implemented in the model transformator via this generic
checkpoint facility.

Let us give the set of all possible traces, i.e. sequences of messages, the name
T, the set of all coverage checkpoints the name C, and denote the set of booleans
by B. The state space enumerator can be seen as an oracle that implements the
following functions:

valid : T → B

coverage : T → 2C

plan : T× 2C → T

The function valid tells whether a given trace is something that the model
could produce or not, so it embodies a (bounded) model checker. The next
function coverage calculates the set of checkpoints that must have been passed
on every execution of the model that produces the given trace. Finally, plan
calculates an extension (suffix) for a valid trace that can be produced by the
model, attempting to find such an extension that it would cause a checkpoint
that is not included in the given set to be passed.

Given these oracles, a simplified version of the online mode of Con-
formiq Qtronic can be described by the following algorithm. Initialize a vari-
able C—which will contain checkpoints—with the empty set. Initialize another
variable t—which will contain a trace—with the empty trace. Then repeat ad
infinitum: If valid(t) = false, signal ‘FAIL’ and stop testing. Otherwise, update
C to C ∪ coverage(t). Then calculate t′ = plan(t, C). If the next event in t′ is an
input to the system under test, wait until the time of the event and then send
it. Otherwise just wait for some time. In any case, if a message is received from
the sut during waiting, update t accordingly; if not, update t with the message
potentially sent, and in any case with the current wallclock reading.

Offline script generation is even easier. Because the model must be determin-
istic modulo inputs, anything returned by plan works as a test case. The basic
idea is to find a set T of traces such that |T | is small and

⋃
t∈T coverage(t) is

large.
In practice, the oracles valid, coverage and others are built around a symbolic

executor for CQλ. Symbolic execution is well known and has been applied for

8 A. Huima

test generation and program verification. [50, 51, 52] Usually implementing it
requires some form of constraint solving [53,54], and so Conformiq Qtronic also
sports a constraint solver under the hood. Maybe interestingly, the data domain
for our solver is the least D such that

Q ∪ B ∪ S ∪D0 ∪D1 ∪ · · · = D

where S denotes the infinite set of symbols (opaque, enumerated values). In
words, any constraint variable in a constraint problem within Conformiq Qtronic
can a priori assume a numeric, boolean or symbol value, or a tuple of an arbi-
trary size containing such values and other tuples recursively. In particular, we
present strings (e.g. strings of Unicode [55] characters) as tuples of integers, and
value records (structs) as tuples containing the values of the fields. This weakly
typed structure of the constraint solver reflects the dynamic typing in the CQλ
language.

Challenge:

Implementing constraint solver over infinite domains

The constraint solver for Conformiq Qtronic has been developed in-house in
C++ because it is tightly integrated with the symbolic executor itself. For ex-
ample, our symbolic executor has a garbage collector [56] for the lisp heap,
and when symbolic data gets garbage collected (references to constraint vari-
ables), the solver attempts to eliminate the variables from the constraint sys-
tem by bucket elimination [57]. Handling infinite data domains provides a big
challenge, because many of the state-of-the-art methods for solving difficult con-
straint problems assume finite-domain problems, and we do active research on
this area on daily basis.

Scalability

At least in the form implemented in Conformiq Qtronic, model-based testing is
a computationally intensive task.

Challenge:

Practical time and space complexity

In practice, both time and memory space are important resource factors for us.
Certainly, we work continuously to incrementally improve the time and mem-
ory characteristics of Conformiq Qtronic, but we employ also some categorical
solutions.

The performance of Conformiq Qtronic (as for most other software applica-
tions) becomes unacceptable when it runs out of physical memory and begins
swap trashing. To prevent this, Conformiq Qtronic swaps proactively most of
the runtime objects—like parts of the symbolic state space—on hard disk. Our
architectural solution for this is based on a variant of reference counting [56].

One challenge in the near future is to scale Conformiq Qtronic from single-
workstation application to ad hoc grids [58] or clusters. Simply, we want to

Implementing Conformiq Qtronic 9

provide the option to run the core algorithms in parallel on all free cpus in an
internal network, such as all the idling Windows and Linux workstations within
an office.

Post Scriptum

According to John A. Wheeler,

We live on an island surrounded by a sea of ignorance. As our island of
knowledge grows, so does the shore of our ignorance.

How true is this of model-based testing also! When we started the Con-
formiq Qtronic journey in early 2003—one hundred years after Wheeler’s famous
quote—we had a few fundamental questions that we had to solve. Today, our
questions have changed in nature but only increased in number! Here are some
of those which we have encountered:

—Is it possible to automatically explain the “logic behind” computer-
generated test cases to a human engineer?

—Can computer-generated test cases be grouped and catalogued intelligently?
—Is it possible to generate offline test scripts that handle infinite-valued non-

determinism without resorting to full constraint solving during test script exe-
cution?

—What forms of precomputation (e.g. forms of abstract interpretation [59,28,
60]) can be used to reduce the runtime computational burden of online testing?

—Are the better modeling formalisms for system modeling for model-based
testing than general modeling languages?

—How can well-researched finite-domain constraint solving techniques (like
nonchronological backtracking or conflict set learning) be used to the full extent
in the context of infinite-domain problems?

Acknowledgements. Conformiq Qtronic research and development has been
partially supported by tekes

2, and itea
3, an eureka

4 cluster. Special thanks
are due to the co-chairs of the conference for their kind invitation.

References

[1] Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House Publishers
(2002)

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session initiation protocol. Request for Com-
ments 3261, The Internet Society (2002)

2 www.tekes.fi
3 www.itea-office.org
4 www.eureka.be

10 A. Huima

[3] Postel, J.: User datagram protocol. Request for Comments 768, The Internet
Society (1980)

[4] Abelson, H., Dybvig, R.K., Haynes, C.T., Rozas, G.J., Iv, N.I.A., Friedman, D.P.,
Kohlbecker, E., Steele, J.G.L., Bartley, D.H., Halstead, R., Oxley, D., Sussman,
G.J., Brooks, G., Hanson, C., Pitman, K.M., Wand, M.: Revised report on the
algorithmic language scheme. Higher Order Symbol. Comput. 11(1), 7–105 (1998)

[5] Gunter, C.A.: Semantics of Programming Languages. MIT Press, Cambridge
(1992) ISBN 0-262-07143-6

[6] Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

[7] Huima, A. (ed.): CQλ specification. Technical report, Conformiq Software (2003)
Available upon request.

[8] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

[9] Ammann, P., Black, P.: Abstracting formal specifications to generate software
tests via model checking. In: Proceedings of the 18th Digital Avionics Systems
Conference (DASC99), vol. 2, 10.A.6, IEEE, New York (1999)

[10] Reps, T., Turnidge, T.: Program specialization via program slicing. In: Danvy,
O., Glueck, R., Thiemann, P. (eds.) Proceedings of the Dagstuhl Seminar on
Partial Evaluation, Schloss Dagstuhl, Wadern, Germany, pp. 409–429. Springer,
New York (1996)

[11] Weiser, M.: Program slicing. In: ICSE ’81: Proceedings of the 5th international
conference on Software engineering, Piscataway, NJ, USA, pp. 439–449. IEEE
Press, New York (1981)

[12] Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (2000) ISBN 0-262-03270-8

[13] Luo, G., Petrenko, A., Bochmann, G.V.: Selecting test sequences for partially-
specified nondeterministic finite state machines. Technical Report IRO-864 (1993)

[14] Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
- A survey. In: Proceedings of the IEEE,vol. 84, pp. 1090–1126 (1996)

[15] Pyhälä, T., Heljanko, K.: Specification coverage aided test selection. In: Lilius,
J., Balarin, F., Machado, R.J. (eds.) Proceeding of the 3rd International Confer-
ence on Application of Concurrency to System Design (ACSD’2003), Guimaraes,
Portugal, pp. 187–195. IEEE Computer Society, Washington (2003)

[16] Tretmans, J.: A formal approach to conformance testing. In: Proc. 6th Interna-
tional Workshop on Protocols Test Systems. Number C-19 in IFIP Transactions,
pp. 257–276 (1994)

[17] Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on communicat-
ing nondeterministic finite state machines using a generalized wp-method. IEEE
Transactions on Software Engineering SE-20(2), 149–162 (1994)

[18] Feijs, L., Goga, N., Mauw, S.: Probabilities in the TorX test derivation algorithm.
In: Proc. SAM’2000, SDL Forum Society (2000)

[19] Petrenko, A., Yevtushenko, N., Huo, J.L.: Testing transition systems with input
and output tester. In: TestCom 2003, Springer, Heidelberg (2003)

[20] Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

[21] Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: ESEC/FSE-13: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pp. 273–282. ACM Press, New York, NY,
USA (2005)

Implementing Conformiq Qtronic 11

[22] Object Management Group: Unified Modeling Language: Superstructure. Techni-
cal Report formal/2007-02-05 (2007)

[23] Selic, B.: UML 2: a model-driven development tool. IBM Syst. J. 45(3), 607–620
(2006)

[24] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Prentice-Hall, Englewood Cliffs (2005)

[25] Michaelis, M.: Essential C# 2.0. Addison-Wesley, London (2006)
[26] Conformiq Software: Conformiq Qtronic User Manual. Conformiq Software, Pub-

licly available as part of product download (2007)
[27] Milner, R.: A theory of type polymorphism in programming. Journal of Computer

and System Science 17(3), 348–375 (1978)
[28] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (1999) ISBN 3-540-65410-0
[29] Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
[30] Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Theoretical and em-

pirical studies on using program mutation to test the functional correctness of
programs. In: POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 220–233. ACM Press, New
York, USA (1980)

[31] Offutt, A.J., Lee, S.: An empirical evaluation of weak mutation. IEEE Transac-
tions on Software Engineering 20(5), 337–344 (1994)

[32] Zhu, H., Hall, P., May, J.: Software unit test coverage and adequacy. ACM Com-
puting Surveys 29(4), 366–427 (1997)

[33] Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems us-
ing UPPAAL. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 79–94. Springer, Heidelberg (2005)

[34] Bohnenkamp, H., Belinfante, A.: Timed testing with TorX. In: Fitzgerald, J.A.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 173–188. Springer,
Heidelberg (2005)

[35] Briones, L., Brinksma, E.: Testing real-time multi input-output systems. In: Lau,
K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 264–279. Springer,
Heidelberg (2005)

[36] Steele Jr., G.L., Gabriel, R.P.: The evolution of Lisp. ACM SIGPLAN No-
tices 28(3), 231–270 (1993)

[37] Object Management Group: Meta Object Facility (MOF) Core Specification.
Technical Report formal/06-01-01 (2006)

[38] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework, 1st edn. Addison-Wesley, London (2003)

[39] Object Management Group: MOF 2.0/XMI Mapping Specification. Technical Re-
port formal/05-09-01 (2005)

[40] Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled. Addison-Wesley, Lon-
don (2004)

[41] Kleppe, A., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley, London
(2003)

[42] Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic parsing of ambiguous gram-
mars. Commun. ACM 18(8), 441–452 (1975)

[43] Aycock, J., Horspool, R.N.: Faster generalized LR parsing. In: Jähnichen, S. (ed.)
CC 1999 and ETAPS 1999. LNCS, vol. 1575, pp. 32–46. Springer, Heidelberg
(1999)

[44] Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, vol. 1 (1997)

12 A. Huima

[45] Engelfriet, J., Rozenberg, G.: Node replacement graph grammars, vol. 44, pp.
1–94

[46] Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars,
vol. 44, pp. 95–162

[47] Nupponen, K.: The design and implementation of a graph rewrite engine for model
transformations. Master’s thesis, Helsinki University of Technology (2005)

[48] Vainikainen, T.: Applying graph rewriting to model transformations. Master’s
thesis, Helsinki University of Technology (2005)

[49] Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

[50] Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. In: ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis, pp. 53–62. ACM Press,
New York, USA (1998)

[51] Khurshid, S., Pasareanu, C.S.: Generalized symbolic execution for model checking
and testing. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

[52] Lee, G., Morris, J., Parker, K., Bundell, G.A., Lam, P.: Using symbolic execution
to guide test generation: Research articles. Softw. Test. Verif. Reliab. 15(1), 41–61
(2005)

[53] Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco
(2003)

[54] Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

[55] The Unicode Consortium: The Unicode Standard, Version 5.0. 5th edn. Addison-
Wesley Professional (2006)

[56] Jones, R., Lins, R.D.: Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, Chichester (1996)

[57] Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113(1-2), 41–85 (1999)

[58] Cunha, J.C., Rana, O.F. (eds.): Grid Computing: Software Environments and
Tools, 1st edn. Springer, Heidelberg (2005)

[59] Cousot, P.: Abstract interpretation. ACM Computing Surveys 28(2), 324–328
(1996)

[60] Bozga, M., Fernandez, J.C., Ghirvu, L.: Using static analysis to improve auto-
matic test generation. In: Tools and Algorithms for Construction and Analysis of
Systems, pp. 235–250 (2000)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 13–27, 2007.
© IFIP- International Federation for Information Processing 2007

New Approach for EFSM-Based Passive Testing of Web
Services

Abdelghani Benharref, Rachida Dssouli, Mohamed Adel Serhani,
Abdeslam En-Nouaary, and Roch Glitho

Concordia University
1455 de Maisonneuve West Bd, Montreal, Quebec

H3G 1M8, Canada
{abdel,m_serhan,ennouaar}@ece.concordia.ca,

{dssouli,glitho}@ciise.concordia.ca

Abstract. Fault management, including fault detection and location, is an
important task in management of Web Services. Fault detection can be
performed through testing, which can be active or passive. Based on passive
observation of interactions between a Web Service and its client, a passive
tester tries to detect possible misbehaviors in requests and/or responses. Passive
observation is performed in two steps: passive homing and fault detection. In
FSM-based observers, the homing consists of state recognition. However, it
consists of state recognition and variables initialization in EFSM-based
observers. In this paper, we present a novel approach to speed up homing of
EFSM-based observers designed for observation of Web Services. Our
approach is based on combining observed events and backward walks in the
EFSM model to recognize states and appropriately initialize variables. We
present different algorithms and illustrate the procedure through an example
where faults would not be detected unless backward walks are considered.

Keywords: EFSM-based passive testing, Web Services testing.

1 Introduction

Web services, a rapidly emerging technology, offer a set of mechanisms for program-
to-program interactions over the Internet [1]. Managing Web Services is critical
because they are being actually used in a wide range of applications. Fault
management including fault detection is an important issue in this management.

Active testing and passive testing have been used for fault detection. An active
tester applies test cases to the Web Service Under Test (WSUT) and checks its
responses. In passive testing, messages received (requests) and sent (responses) by the
Web Service Under Observation (WSUO) are observed, and the correct functioning is
checked against the WSUT’s model. The observation is done by entities known as
observers.

Passive testing can complement active testing because it helps detecting faults that
have not been detected before deployment. Furthermore, in many cases, it is a better
alternative to active testing when the system is already deployed in its final operating

14 A. Benharref et al.

environment. It enables fault detection without subjecting the system to test cases.
Test cases consume resources and may even imply taking the WSUT off-line.

Passive testing is conducted in two steps: passive homing (or state recognition) and
fault detection. During the first phase, the observer tries to figure out the state where
the WSUO is moving actually. This phase is necessary when the observation starts a
while after the interaction has started and previous traces are not available.

Few models have been used for model-based observers but most of the published
work on passive testing are on control part of systems and are based on Finite State
Machine (FSM) model ([2], [3], [4]). Although this model is appropriate for control
parts of WSUO, it does not support data flow. Extended FSM (EFSM) is more
appropriate for the handling of variables.

The homing procedure in an EFSM-based observer consists of recognizing the
actual state of the WSUO in addition to assigning appropriate values to different
variables. In the few published papers on EFSM-based passive testing, the homing
procedure is either ignored or it depends on the upcoming observed request/responses.
In the first case ([5], [6], [7]), the observer must get all the traces to be able to initiate
the fault detection process. In the second case ([8], [9]), the observer waits for
exchanged messages before moving forward in the homing procedure. Ignoring the
homing phase is a very restrictive assumption. Waiting for exchanged messages to
continue on the homing procedure may delay the fault detection. Moreover, if there is
a significant time gap between requests and responses, the observer spends most of its
time waiting.

In this paper, we present a novel approach for homing online EFSM-based
observers. Unlike offline observers, online observers analyze the observed traces in
real time and report faults as soon as they appear. The observer performs forward
walks whenever a new event (request or response) is observed. It performs backward
walks in the EFSM model of the WSUO in absence of observed events. The
information gathered from the backward and forward walks help speeding up the
homing procedure.

The remaining sections of this paper are organized as follows: in the next section,
we present related work for passive observation based on FSM and EFSM models.
Section 3 presents our new approach using backward and forward walks to speed up
the homing procedure and discusses different algorithms illustrated through an
example. Section 4 concludes the paper and gives an insight for future works.

2 Related Work

Active testing refers to the process of applying a set of requests to the WSUT and
verifying its reactions. In this configuration [10], the tester has complete control over
the requests and uses selected test sequences to reveal possible faults in the WSUT.
Even though it is performed before deployment, active testing is not practical for
management once a Web Service is operating in its final environment. Under normal
conditions, the tester has no control over requests and/or responses. Passive
observation is a potential alternative in this case.

 New Approach for EFSM-Based Passive Testing of Web Services 15

Fig. 1 shows an observer monitoring interactions between the WSUO and its client
during normal operations without disturbing it. Disturbing in this case means no
injection of requests messages for testing purposes. If the observed responses are
different from what's expected, the WSUO is then declared faulty.

Fig. 1. Passive Testing Architecture

Formal methods, especially Finite State Machine (FSM) have been used in passive
observation. Lee et al. in [2] propose algorithms for passive homing and fault
detection for FSM-based observers for network management. These algorithms are
extended in ([11]; [12]) to deal with fault location in networks and in [13] for avionics
telecommunication. They have also been applied to GSM-MAP protocol in [4] and to
TCP in [14]. Miller et al. extended the algorithms using Communicating FSM
(CFSM) in [3]. While these algorithms work fine, they provide no support for
dataflow which requires consideration of EFSM models.

EFSM is an extension of FSM by the following:

 Interactions have certain parameters, which are typed.
 The machine has a certain number of local variables, which are typed.
 Each transition is associated with an enabling predicate. The predicate can be

any expression that evaluates to a Boolean (TRUE or FALSE). It depends on
parameters of the received input and/or current values of local variables.

 Whenever a transition is fired, local variables can be updated accordingly and
parameters of the output are computed.

Formally, an EFSM is described by a tuple M = (S, S0, I, O, T, V, δ) ([10]) where:

 S is a set of states,
 S0 ∈ S is the initial state,
 I is a finite set of inputs,
 O is a finite set of outputs,
 T is a finite set of transitions
 V is a finite set of variables
 δ: S x (I U O) S is a transition relation

In an EFSM, each transition of T is represented as t: I|P|A|O where:

 t: label/ID of the transition,
 Ss: starting state of the transition,

16 A. Benharref et al.

 I: the input that triggers the transition,
 P: the enabling predicate (data conditions),
 A: variables assignments
 O: the output produced by the transition
 Se: ending state of the transition

Using EFSM models allows the detection of input/output faults in addition to faults
related to data flow. The latter faults include calling of wrong function, wrong
specification of data type, wrong initial values of variables, and referencing undefined
or wrong variables.

In the literature on EFSM-based observers, the homing procedure is either ignored
or depends fully on observed messages. In the first case, the authors in ([5]; [15]; [7];
[16]) suppose that the observation will start sharply with the interaction between the
WSUO and its client. A passive observer based on this assumption will not be able to
detect faults if it does not get whole traces. In the second case ([8]; [9]), the observer
must wait for exchange of messages before moving forward in the homing
procedure.

Since we are interested in online observation of Web Services, ignoring the
homing procedure is not an option. We suppose that an EFSM-based online observer
can initiate its observation at any time without having access to previously exchanged
requests/responses. In the work presented in ([8]; [9]), the observer uses the
exchanged messages for state and variables homing. This approach is efficient when
the time gap between requests and responses is too short so the observer will be
processing traces most of its time. If this time gap is relatively high, the observer
spends a significant amount of time waiting for events while valuable information can
be gathered by analyzing the EFSM model of the WSUO. The example presented in
section 3.6 shows an example where the approaches presented in ([8]; [9]) fail to
detect a fault that would have been detected if the observer was performing
appropriate analysis of the EFSM machine of the WSUO.

3 EFSM-Based Observation: Forward and Backward Walks

In client-server communication as in Web Services, it is reasonable to assume that
there will be a delay between requests and responses. In fact, the client takes time to
formulate and send its request. Once a response is received, the client takes again
some time to process the response and decide what to do with it. Moreover, the Web
Service requires time to process a request, generate, and send its response.

To speed up the homing procedure, the observer should make a concise use of the
information contained within the EFSM model in addition to the information carried
by observed events. The homing algorithm can perform backward walks in the EFSM
model to guess what transitions the WSUO fired before getting into its actual state.
By analyzing the set of predicates and variable definitions on these transitions, the
observer can reduce the set of possible states and/or the set of possible values of
variables. Performing both backward and forward walks provides a set of possible

 New Approach for EFSM-Based Passive Testing of Web Services 17

execution trees: the forward process adds execution sequences to the root of trees, and
the backward process adds execution sequences to the leaf states of trees.

During the homing procedure, the observer manipulates the following entities:

 Set of Possible States (SPS): this is the set of possible states with regards to
what has been observed and processed up to now. At the beginning, all states
are possible.

 Tree of Possible Previous States for state s (TPPS(s)): this tree contains the
possible paths that could lead to each state s in the SPS. During the homing
procedure, there is a TPPS for each state in the SPS.

 Set of Possible Variable Values for variable v (SPVV(v)): this is the set of all
possible values that variable v can have with regards to what has been received
and processed before. It consists of a list of specific values or ranges. At the
beginning, all values in the definition’s domain of variable v are possible.

 Set of Known Variables (SKV): the set of known variables. A variable is said
to be known if it is assigned a specific value. In this case, SPVV(v) contains
one element, i.e. |SPVV(v)| = 1.

 Set of Unknown Variables (SUV): the set of variables not yet known.

The next three sub-sections present in detail the processes of analyzing observed
requests and responses and performing backward walks within an EFSM-based
observer using both backward and forward walks.

3.1 The Homing Controller Algorithm

While the observer is going through the homing procedure (Algorithm 1), it has 3
possible options:

1. process a request that has been received by the WSUO (line 11),
2. process a response that has been sent by the WSUO (line 17), or
3. perform a one-step backward walk (line 20). In this case, the algorithm

considers the event e that triggers the loop as empty.

Processing observed events has priority and the backward walk is performed if and
only if there are no observed events waiting for processing. This procedure is repeated
until:

 a fault is detected (unexpected input/output which results in an empty set of
possible states and/or contradictory values of variables), or

 the set of possible states has one item (|SPS| = 1) and the set of unknown
variables is empty (SUV = Ø).

The complexity of Algorithm 1 depends on the number of events required to
successfully achieve the homing procedure (line 4) and the complexity of
processInput (line 11), processOutput (line 17), and performBackWalk (line 20). Lets

18 A. Benharref et al.

denote the number of cycles to achieve the homing by n, and the complexities of
processInput, processOutput and performBackWalk by O(BF_PI), O(BF_PO),
O(BF_BW) respectively. The complexity O(H) of the homing algorithm is given in
Equation 1 and will be developed through the following sections when individual
complexities will be computed.

O(H) = n.O(BF_PI) + n.O(BF_PO) + n.O(BF_BW) (1)

SPS := S // At startup, all states are possible

SUV := V // At startup, all variables are unknown

Expected Event ← “Any”

Data: event e

4 repeat
e ← observed event

switch (e) do

case (e is an input)

if (Expected Event == ”Output”) then
return “Fault: Output expected not Input”

else

11 processInput(e); // Complexity: O(BF PI)

Expected Event ← “Output”;

case (e is an output)

if (Expected Event == ”Input”) then
return “Fault: Input expected not Output”

else

17 processOutput(e) ; // Complexity: O(BF PO)

Expected Event ← “Input”;

otherwise

20 performBackWalk ; // Complexity: O(BF BW)

until (|SPS| == 1)AND(|SUV | == 0)

Algorithm 1. Homing controller

3.2 Processing Observed Requests

When the observer witnesses an input, if the observer was expecting an output, a
fault (“Output expected rather than Input”) is generated. Otherwise, it removes all
the states in the set of possible states that don’t accept the input, and the states that

 New Approach for EFSM-Based Passive Testing of Web Services 19

accept the input but the predicate of the corresponding transition is evaluated to
FALSE. For each of the remaining possible transitions, the input parameters are
assigned (if applicable) to appropriate state variables. Then, the predicate condition
is decomposed into elementary expressions (operands of AND/OR/XOR
combinations). For each state variable, the set of possible values/ranges is updated
using the elementary conditions. If this set contains a unique value, this latter is
assigned to the corresponding variable; this variable is then removed from the set of
unknown variables and added to the set of known variables. The transition’s
assignments part is processed, then updating the sets of known/unknown variables
accordingly (Algorithm 2). The observer expects now the next observable event to
be an output.

Input: event e

Data: boolean possibleState

1 foreach (S ∈ SPS) do
possibleState = false

3 foreach Transition t so that ((t.Ss == S) AND (t.I == e) AND

(t.P �= FALSE)) do
possibleState = true

assign appropriate variables the values of the parameters of e

6 update SPV V , SKV , and SUV

7 decompose the predicate into elementary conditions

8 foreach (elementary condition) do
9 update the SPV V , SKV , and SUV

if (contradictory values/ranges) then
return “Contradictory values/ranges”

if (possibleState == false) then
remove S from SPS

if (SPS == ∅) then
return “Fault detected before homing is complete”

Algorithm 2. Processing observed requests

The complexity of Algorithm 2 is affected by the maximum number of states in the
SPS (line 1), maximum number of transitions at each state in the SPS (line 3), and the
complexity of updating the SPVV, SKV, and SUV. In fact, we can assume that a
predicate will have very few elementary conditions, then decomposing the predicate

20 A. Benharref et al.

(line 7) and using the elementary conditions to update the variables (line 8) does not
affect the complexity of the whole algorithm. If the number of variables is V, the
complexity of updating the SPVV, SKV, and SUV is in the order of O(V) since the
procedure should go through all the variables. The complexity of Algorithm 2 is
depicted in Equation 2 where Smax is the maximum number of states in the SPS, and
Tmax is the maximum number of transitions that a state in the SPS can have.

max maxO(BF_PI)=O(S .T .V) (2)

3.3 Processing Observed Responses

In case the event is a response (output), if the observer was expecting an input, a
fault (“Input expected rather than Output”) is generated. Otherwise, the observer
removes all the states in the set of possible states that don’t have transitions that
produce the output. If a state has two (or more) possible transitions, the TPPS is
cloned as many as possible (number of possible transitions) so that each clone
represents a possible transition. The assignment part of the transition is processed
and variables are updated. The set of possible states holds the ending states of all the
possible transitions. In the context of SOAP communication between a Web Service
and its client, the response (message) holds basically one parameter. Whenever an
output message is observed, a variable becomes known, or at least a new condition
on variable values is augmented unless the message carries no parameter or the
variable is already known. The observer expects now the next observable event to be
an input.

Let’s now determine the complexity of Algorithm 3. If we denote the maximum
number of nodes (i.e states) in a TPPS tree by Pmax, cloning a TPPS tree (line 5) is in
the order of O(Pmax). Moreover, the complexity of removing a TPPS tree (lines 14 and
19) is also in the order of O(Pmax). Lines 8 and 9 do not affect the complexity since the
number of assignments in a transition is somehow low compared, for instance, to
Pmax. The complexity of Algorithm 3 then can be written as:

max max maxO(BF_PO) = O(S .T .(P + V)

(3)

3.4 Performing Backward Walk

While the observer is waiting for a new event (either request or response), it can
perform a 1-step backward walk in the EFSM model to guess the path that could bring
the Web Service to its actual state. From each state in the set of possible states, the
observer builds a tree of probable-previously visited states and fired transitions. Every
time a transition could lead to the actual state or one of its possible previous states, the
variables constraints in the enabling condition is added as a set of successive
elementary conditions connected with logical operators OR and AND: constraints of
two successive transitions are connected with AND, while constraints on two
transitions ending at the same state are connected with OR.

 New Approach for EFSM-Based Passive Testing of Web Services 21

Data: event e

Data: boolean possibleState

1 foreach (S ∈ SPS) do
possibleState = false

3 foreach Transition t so that ((t.Ss == S) AND (t.I == e) AND

(t.P �= FALSE) AND (t can produce e)) do
possibleState = true

5 clone the corresponding TPPS

t.Se becomes the root of the cloned TPPS

S becomes its child

8 process the transition’s assignment part

9 assign appropriate variables values of the parameter (if any) of e

10 update the SPV V , SKV and SUV

if (contradictory values/ranges) then
return “Contradictory values/ranges”

13 remove S from the SPS

14 remove the original TPPS ; /* no longer useful, cloned (and

updated) trees will be used */

if (possibleState == false) then
16 remove S from SPS

if (SPS == ∅) then
return “Fault detected before homing is complete”

19 remove the corresponding TPPS

Algorithm 3. Processing observed responses

Algorithm 4 has three embedded loops. The first loop (line 1) is bounded by the
number of TPPS trees; that is, the number of states in the SPS (Smax). The second loop
(line 2) goes through all leaf states of a TPPS, which is at the worst case Pmax. The
third loop (line 3) explores all the states in the EFSM that can lead to a particular state
in a TPPS. Lets denote the number of states in an EFSM by SEFSM. Propagating a
constraint through the root of a TPPS (line 4) is in the order of O(Pmax.V) since the
procedure has to process all states and update the SPVV at each state. The complexity
of Algorithm 4 can be written as:

2
max EFSM maxP(BF_BW) = O(S .S .P .V)

(4)

22 A. Benharref et al.

Input: EFSM

1 foreach (TPPS) do

2 foreach (Leaf state S of TPPS) do

3 foreach (state S′ in the EFSM that leads to S) do
4 Propagate the constraints of the corresponding transition

toward the root of TPPS;

/* Lets consider that propagation cannot go beyound

state Sp */

if (Sp is the root of TPPS) then

/* this path is possible→ consider it in the

TPPS */

add S′ as child of S;

7 update SPV V , SKV , and SUV ;

if (contradictory values/ranges) then
return “Contradictory values/ranges”;

Algorithm 4. Performing Backward walk

From Equation 1, Equation 2, Equation 3, and Equation 4, the overall complexity
for homing an observer using Algorithm 1 can be developed as follows:

max max max max max

2
max EFSM max

2
max max max max EFSM max

O(H) = O(n.S .T .V + n.S .T .(P + V) +

 n.S .S .P .V)

 = n.S .T .(P + V)+ n.S .S .P .V)

3.5 Discussion

Although backward walks-based observers require a little bit more resources than an
observer without backward walks, this overload is acceptable. First of all, backward
walks are performed whenever there is no trace to analyze so the observer does not
use additional processing time. It just uses the slots initially allocated to trace
analysis. Second, limiting the backward to a unique step at a time reduces the duration
of cycles of Algorithm 4 and does not delay processing of eventual available traces.

As for convergence of Algorithm 1, it is not possible to decide if the observer will
converge or not. This is the case for both brands of observers: with backward and
without backward. This limitation is out of the scope of the homing approach used but
fully tied to the fact that the observer has no control on exchanged events. The Web

 New Approach for EFSM-Based Passive Testing of Web Services 23

Service and its client can continuously exchange messages that do not bring useful
information to reduce the SPS and the SPVV.

However, the backward approach can be compared to the approach without
backward, for the same WSUO and observed traces, as follows:

Property 1: if an observer without backward walks converges, an observer with
backward walks converges too.

Property 2: if an observer without backward walks requires n cycles to converge, and
an observer with backward walks requires m cycles to converge, then m≤n.

The next sub-section presents a proof of property 2 which can be considered also as
proof for property 1.

Proof
The homing algorithm converges when the SPS has one element and the SUV is
empty. The SUV is empty when, for each variable v in V, SPVV(v) contains a unique
element.

As discussed above, analysis of traces adds states as roots of TPPS and backward
walks adds states as leaves of TPPS. Whenever a trace can generate two different
execution paths, the corresponding TPPS is cloned. This will build TPPS trees where
the root has a unique child. In such trees, all constraints propagation from backward
walks will propagate using AND operator between the root and its child. This
propagation tries to reduce the SPVV; in the worst case the SPVV is neither reduced
nor extended.

In Fig. 2, at a cycle i, a TPPS has Si as root, Sj is its child, and SPVVi(v) is the set
of possible values of variable v at Si as computed from a previously observed trace.
Suppose that during cycle i+1, the backward walk adds two leaves to Sj: Sl and Sk. In
Fig. 2, the labels on transitions represent the SPVV that result from the predicate of
the transitions.

Sj Si
SPVVi(v)

Cycle i

Sj Si
SPVVi(v)

Cycle i + 1

Sl SPVV
j1(v)

Sk

SPVVj2(v
)

Fig. 2. SPVV and constraints propagation

Propagation of constraints from Sl and Sk to Sj and then to Si modifies SPVV(v) as
follows: SPVVi+1(v) = SPVVi(v) ∩ ((SPVVl(v) ∪ SPVVk(v)). There are three cases:

1. SPVVi(v) ⊆ (SPVVl(v) ∪ SPVVk(v)): in this case, the SPVVi+1(v) is equal to
SPVVi(v). The backward walks do not bring useful information to reduce

24 A. Benharref et al.

SPVVi(v). If subsequent backward walks do the same, the number of required
cycles for homing remains unchanged: m=n.

2. SPVVi+1(v) = ∅: this indicates that the variable, at Si after cycle i+1 can not

have any value from its definition domain. The observer detects a fault
immediately without waiting for the next observed event which results in m
strictly less than n (m<n).

3. SPVVi+1(v) ⊂ SPVVi(v): in this case, the SPVV(v) is reduced. If following

backward walks, associated to trace analysis, reduce further the SPVV(v), the
homing with backward is likely to require less than n cycles (m<n) or at most
n cycles (m=n).

The following example illustrates the first case where backward walks reduce the
number of required cycles (m<n) and allows detection of faults that can not be
detected without backward walks. The execution of the homing procedure is detailed
hereafter in a step by step scenario.

3.6 Example

Let’s consider the portion of an EFSM of a Web Service illustrated in Fig. 3 where
variables u, x, y, and z are integers. Events I1(15), O(13), and I2(0) are observed
respectively. Each transition is represented as t:I|P|A|O where t is the label of the
transition, I its input, P its predicate, A is the set of assignments, and O is the output.
A predicate of a transition is evaluated to TRUE/FALSE if its condition is true/false,
otherwise it is said INCONCLUSIVE if the predicate can not be evaluated. The latter
case occurs if some of the variables in the predicate are not yet known.

Fig. 3. EFSM Example

Observation without backward walks
After observing I1(15), transitions t1, t2, and t4 can be fired but not t3 or t5. However,
since the input parameter is bigger than 0, the predicate of t4 is evaluated to FALSE.

 New Approach for EFSM-Based Passive Testing of Web Services 25

Only transitions t1 and t2 should be considered since the variables y and z are, up to
now, unknown and the predicates are evaluated to INCONCLUSIVE. This reduces
the set of possible states to S1 and S2. If t1 is executed then x := 15, y > 15, and z :=
15 − y, if t2 is executed then y := 15, z < 15, x := 15 − z.

When O1(13) is observed, the value of the output parameter (13) indicates that
transition t2 has been executed. Later on, when event I2(0) is observed, since the
variable u is unknown, the predicate (x > u) is evaluated to INCONCLUSIVE,
which enables the transition. So, the sequence I1(15), O1(13), I2(0) executes
properly.

However, the sequence I1(15), O1(13), I2(0) is a faulty sequence and the fault
would be detected if backward walks have been considered as discussed in the next
section.

Observation with backward walks
The delay after each event (I1, O1, and I2) gives the observer opportunities to
perform backward walks. The observer executes the following operations:
processInput(I1(15)), performBackWalk, processOutput(O1(13)), performBackWalk,
processInput(I2(0)).

As illustrated in Table 1, after executing the first three operations, SPS contains S3.
In TPPS, S2 is the child of S3. To get to S2, the only previous transition is t4 which
assigns 10 to variable u. From this point forward, the homing procedure is completed
since SPS has one state and SUV is empty. Later on when receiving I2(0), transition
t3 can not be fired since its predicate (x>u) is evaluated to FALSE. The observer
notifies the WSO that a fault just occurred.

Table 1. Content of SPS, SPVV, SKV, SUV, TPPS

 I1(15) Backward walk O1(13)

SPS S1, S2 S1, S2 S3

SPVV
t1 : x:=15, y> 15, z:= x-y

 or

t2 : y:=15, z <15, x:=y-z

t4 : u:=10

 or

t5 : u:=15

x:=13, y:=15,
z:=2, u:=10

SKV
t1 : x,

 or

t2 : y

 u, x

 or

u, y

x, y, z, u

SUV
t1 : y, z, u

 or

t2 : x, z, u

y, z

 or

x, z

Ø

TPPS Figure 4.a Figure 4.b

26 A. Benharref et al.

t5:I2(x)|x>0|u:=15|O2(u)

t4:I1(x)|x<0|u:=10|O1(u)

S1

S2

a b

S4

S4

S1

S2

Fig. 4. TPPS

4 Conclusion

Fault detection is a basic operation in management of Web Services. It is conducted
through testing which can be passive or active. An active tester applies selected test
cases to the WSUT and checks the responses. Unlike active testers, a passive tester
observes, passively, the interactions between the WSUO and its client. Based on this
observation, correctness of requests and/or responses is verified.

FSM models have been used for passive testing for network management.
However, it does not support data flows, an important aspect in Web Services XML-
messaging. EFSM has the ability to specify both control and data flow parts of Web
Services. When designing EFSM-based observers, the homing procedure has to
assign appropriate values for different variables.

In this paper, we presented a novel approach for homing EFSM-based observers.
This approach is based on observed events and on backward walks in the EFSM
model of the WSUO. Whenever a trace is observed, it’s immediately processed by the
observer. Otherwise, the observer analyzes the possible paths that could bring the
WSUO to its actual state. Analyzing the set of constraints on different paths could
reduce the set of possible values variables can have at a specific state.

We are currently implementing observers based on the algorithms presented above
and Web Services that will be used to evaluate the detection capabilities of such
observers.

References

[1] W3C, World Wide Consortium (2006) at http://www.w3.org
[2] Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive testing and

applications to network management. In: International Conference on Network Protocols,
Atlanta, GA, USA, pp. 113–122. IEEE Computer Society, Washington (1997)

[3] Miller, R.E.: Passive testing of networks using a CFSM specification. In: International
Performance, Computing and Communications Conference, Tempe/Phoenix, AZ, USA,
pp. 111–116. IEEE, New York (1998)

[4] Tabourier, M., Cavalli, A., Ionescu, M.: A GSM-MAP protocol experiment using passive
testing. In: Brauer, W. (ed.) Formal Methods. World Congress on Formal Methods in the
Development of Computing Systems. LNCS, vol. 1, pp. 915–934. Springer, Heidelberg
(1999)

 New Approach for EFSM-Based Passive Testing of Web Services 27

[5] Cavalli, A., Gervy, C., Prokopenko, S.: New approaches for passive testing using an
Extended Finite State Machine specification. Information and Software Technology 45,
837–852 (2003)

[6] Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Network protocol system passive
testing for fault management: a backward checking approach. In: Formal Techniques for
Networked and Distributed Systems (FM), Madrid, Spain. LNCS, pp. 150–166. Springer,
Heidelberg (2004)

[7] Ladani, B.T., Alcalde, B., Cavalli, A.: Passive testing - a constrained invariant checking
approach. In: 17th International Conference on Testing of communicating systems
(TestCom), Montreal, Que, Canada. LNCS, pp. 9–22. Springer, Heidelberg (2005)

[8] Lee, D., Dongluo, C., Ruibing, H., Miller, R.E., Jianping, W., Xia, Y.: A formal approach
for passive testing of protocol data portions. In: 10th International Conference on
Network Protocols, Paris, France, pp. 122–131. IEEE Computer Society, Washington
(2002)

[9] Lee, D., Dongluo, C., Ruibing, H., Miller, R.E., Jianping, W., Xia, Y.: Network protocol
system monitoring-a formal approach with passive testing. IEEE/ACM Transactions on
Networking 14, 424–437 (2006)

[10] Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A., Bourhfir, C.: Test development
for communication protocols: towards automation. Computer Networks 31, 1835–1872
(1999)

[11] Miller, R.E., Arisha, K.A.: On fault location in networks by passive testing. In:
International Performance, Computing, and Communications Conference, Phoenix, AZ,
USA, pp. 281–287. IEEE, New York (2000)

[12] Miller, R.E., Arisha, K.A.: Fault identification in networks by passive testing. In: 34th
Annual Simulation Symposium, Seattle, WA, USA, pp. 277–284. IEEE Computer
Society, Washington (2001)

[13] Arisha, K.A.: Fault management in avionics telecommunication using passive testing. In:
20th Digital Avionics Systems Conference (DASC), Daytona Beach, FL, USA, vol. 1,
pp. 1–7. IEEE, New York (2001)

[14] Dongluo, C., Jianping, W., HuiCheng, C.: Passive testing on TCP. In: International
Conference on Communication Technology (ICCT). Beijing, China: Beijing Univ. Posts
& Telecommun, pp. 182–186 (2003)

[15] Arnedo, J.A., Cavalli, A., Nunez, M.: Fast testing of critical properties through passive
testing. In: 15th IFIP International Conference on Testing of Communicating Systems,
Sophia Antipolis, France. LNCS, pp. 295–310. Springer, Heidelberg (2003)

[16] Bayse, E., Cavalli, A., Nunez, M., Zaidi, F.: A passive testing approach based on
invariants: application to the WAP. Computer Networks 48, 247–266 (2005)

Automation of Avionic Systems Testing�

David Cebrián, Valent́ın Valero, and Fernando Cuartero

Albacete Computer Science Research Institute
University of Castilla-La Mancha, Avda. España s/n, Albacete (Spain)

http://www.dsi.uclm.es

Abstract. In this paper we present an automatic testing process to
validate Avionic Systems. To do that, we have developed a tool that in-
terprets scripts written in Automated Test Language and translate them
to user codes written in C language. To carry out this work, the syntax of
scripts has been defined by a context free grammar. This testing process
is based on the execution of a pre-defined set of test cases. Currently,
these test sets are obtained from Test Description Document and they
are introduced in the system in C code manually. Therefore, automation
of this process would reduce the time used for the testing, as a great
quantity of tests are realized and a great quantity of errors are made
when tests are made by hand.

Keywords: Testing, Avionics systems, Real time systems, grammar
testing.

1 Introduction

In the development of Avionic Systems, testing and validation, have become a
very important part into the software development process, due to the critical
real environment where they are going to work. For this reason, testing is usually
a very time consuming task. Test automation facilities are desirable in order to
reduce the time required for this task.

Actually, for the development of Avionic Systems Software, and in general
for the development of complex critical systems, the use of formal techniques
for evaluating the capabilities provided by the system and the expected ones
becomes very important. Depending on the system to be designed, very different
specification formalisms can be used [2,4,12,15].

Real-time and embedded systems are nowadays so complex that to completely
specify their behavior is a very difficult task. In particular, these systems are very
heterogeneous and include a big amount of components with different natures
(sensors, busses, displays, keyboards, storage devices, etc.).

For this reason, software testing, and mainly in this kind of systems, has
become a very important part into the software development process [15], as

� Supported by the Spanish government (cofinanced by FEDER founds) with the
project TIN2006-15578-C02-02, and the JCCLM regional project PAC06-0008-6995.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 28–40, 2007.
c© IFIP- International Federation for Information Processing 2007

http://www.dsi.uclm.es

Automation of Avionic Systems Testing 29

systems are more and more complex and not detected failures can have fatal
consequences.

A failure in a software system can occur for several reasons, now we just
mention some of them:

– Specification deficiencies:
• Incomplete description of functionality.
• Inconsistent description of functionality.

– Design errors:
• Misinterpretation of specification.
• Erroneous control logic.
• Insufficient error handling.

– Coding errors:
• Non-initialized data.
• Usage of wrong variables.

In the development of Avionic systems, testing and validation is a decisive job
due to the critical real environment where they are going to work. The effects of
an avionic system malfunction would be catastrophic in many cases, so intense
efforts to avoid failures are always taken and heavy tests are performed on the
equipments. That is why testing is usually a very time consuming human effort
and so much time is dedicated to achieve the necessary qualification.

In the literature about avionic software testing, we can see in [14] a description
of the main aspects that must be considered to test this kind of systems. Another
related work is [7], where model-based simulation testing is used to test avionic
software systems.

Then, the main purpose in these works is to be able to qualify before getting
the system totally operative in the Avionic systems in order to improve the
whole process. For that purpose, test automation facilities are desirable in order
to reduce the time required for qualification. Thus, in this paper our goal is to
describe a tool that we have developed in order to automate a part of the testing
process for Helicopter embedded software.

This tool interprets scripts written in Automated Test Language and trans-
lates them to user codes written in C. This Automated Test Language is closer
to human language and it permits to describe test cases easily. This test automa-
tion tool has been applied to helicopter software testing, in a real corporation
(Eurocopter company).

The particular language that we use has been defined by the software testing
group of the helicopter company, and it is specific for this purpose. There are,
of course, some standard notations that could be used to accomplish this task
too, like TTCN-3 [3].

To interpret these scripts written in Automated Test Language, a context-
free grammar has been used. Nowadays, grammars are omnipresent in software
development. They are used for the definition of syntax, exchange formats and
others. Several important kinds of software rely on grammars, e.g., compilers,
debuggers, profilers, slicing tools, pretty printers, (re-) documentation tools, lan-
guage reference manuals, browsers, software analysis tools, code preprocessing
tools, and software modification tools [6,9,16].

30 D. Cebrián, V. Valero, and F. Cuartero

A grammar defines a formal language and provides a device for generating
sentences. From a perspective of software engineering, a grammar may be con-
sidered as both a specification (defining a language) and a program (serving
as a parser generators input). In practice, ensuring that a grammar specifies
an intended language which can be considered as user requirements is indeed a
validation problem [5].

Testing is a standard way to validate specifications or programs (formal anal-
ysis is another). Grammar testing covers various technical and pragmatic aspects
such as coverage notions [10], test set generation [11], correctness and complete-
ness claims for grammars or parsers, and integration of testing and grammar
transformations.

In this paper we focus our attention on test set generation. Test data genera-
tion requires a variety of techniques [8], for example, to minimize test cases, to
accomplish negative test cases, etc.

The rest of the paper is structured as follows. In the next Section a description
of a system that accepts user codes generated by the tool will be described. Next,
the tool operation is shown. In Section 4 a case study is presented. Finally, our
conclusions and future work are presented.

2 System Overview

In this section, we describe the specific system that we consider for our Avionic
System Testing environment. This System accepts user codes generated by the
implemented tool. The System is a combination of a real-time platform designed
to execute Avionic Equipment Tests and a Unix workstation which is used as a
user interface to drive the test.

The Avionic Equipment of the considered helicopter basically consists of a
core computer that integrates, among others, the functions concerning control
and display subsystem, navigation subsystem and communication subsystem.
These subsystems are connected via redundant busses to improve reliability.

Then, the Real-Time System platform contains the simulated equipment of
the helicopter and it is mainly composed by I/O cards for the different busses of
the helicopter (MILBUS 1553, ARINC 429, RS485, etc.) and an avionic database
containing specific information about the helicopter to be tested (Fig. 1).

And finally, the System Unix Workstation shall provide the capability to con-
trol the operation of the tests and run the simulations. By means of it, we can
manage the simulations, specifying the concrete datas that are to be used, we
can also inject some types of errors to test the system reactions, we can prepare
the scripts for the tests, and of course, we can monitor the system, to view and
record the results of the simulation.

Another feature of interest of this system is that of scenarios, which allow
the testers to establish the context in which tests are to be made. Then, a
scenario is a specific test directly linked to an upper context that defines the
set of objects which should be operational during the test like codes, data items
to be displayed in dashboards, data items to be modified in dashboards and

Automation of Avionic Systems Testing 31

Fig. 1. Real-Time platform

configuration of simulated equipment. The descriptions of the system and of the
scenarios are stored in the database.

2.1 Testing Environment Constraints

Due to the nature of the system environment there are important constraints
related to how user code should be generated. User code will be always executed
in the same way: there is a period indicated in the test information which serves
as a basis to cyclic execution of pieces of code. Each cycle will have the duration
of the specified period, and each piece of code is forced to be executed within
one cycle. Generated user code has to fit this rule and special care has to be
taken in controlling that no piece of code extends the cycle duration, since this
would cause a general system failure.

Thus user code must be divided according to this restriction, so a control code
is introduced to select the concrete piece of code that must be executed on each
cycle. The easiest solution to fulfil this as a set of switches, each one including
a persistent counter that will indicate in each cycle what case clause to execute:

static int Counter = 1;

int TestRun ()
{
switch (Counter)
{
case 1 :
<execution piece 0>
Counter = 2;
break ;

32 D. Cebrián, V. Valero, and F. Cuartero

case 2 :
<execution piece 1>
Counter = 3;

...
}

}

Thus, the modification of the value of the persistent counter will allow navi-
gating between different execution pieces.

This hard coding constraint makes the most challenging task of the code
generator to establish a set of mechanisms that will allow translating a sequence
of instructions to an equivalent code made of a set of switch clauses connected
and controlled by auxiliary variables.

Then, once we have described the testing environment, let us see the format
that system user codes have (each test). They are defined by the following items:

– A name - (32 bytes length).
– A period - integer expressed in milliseconds.
– An Interface: a text file description describing the exchange of information

between the user code and the system.
– A specific main module which will be automatically called by the system

according to the period.
– Some user modules.

Furthermore, a test is composed of three hierarchical levels: procedures, tasks
and steps. This division obeys the grammar definition that we are considering,
in which each test is divided in this way. Then, each of these three levels may
be run in a kind of control loop for some specific set of values, which may be
defined directly in the test description or in a text file which can be modified
from an execution to another.

3 The Tool

The system accepts C code to specify the tests. With the purpose of making eas-
ier the specification of these tests, a tool called Code Generator, has been built.
This tool accepts as input user scripts that make easier the tests specification.
The function of this software is to interpret these scripts written in Automated
Test Language and translate them to system user codes written in C.

These user scripts (written in Automated Test Language) are generated from a
document called, test description document. This document is written by expert
testers and it is written in natural language. So to carry out these tests, they have
to translate the test description document to Automated Test Language (Fig. 2).
This task is made manually but in the future the test description document will
be written in a high level language and this task will be automated. An example
of Automated Test Language is shown in Fig. 3.

Automation of Avionic Systems Testing 33

Fig. 2. Testing process

Example_Script 1000
Procedure P1

Task T1
Step 1

GET Variable INSERT_BOTH
IF WAIT_VALUE VALUE_AVAILABLE TRUE 0
THEN

ADDOUTPUT "IRS1 available"
ELSE

ADDOUTPUT "IRS1 not available"
ENDIF

Procedure P2
Task T2

Step 1
GET Variable INSERT_BOTH

Fig. 3. Example script 1000

The tool must read the scripts specified by the user and translate them into
C code. C functions will be created and grouped into different files in order to
increase modularity. The file structure will follow the scheme shown in Fig. 4:

Some execution levels are considered for system user code execution control.
Each level will call the level immediately below. In the example script 1000
(Fig. 3), the resulting user code will be executed in different nesting levels:

34 D. Cebrián, V. Valero, and F. Cuartero

– Level 0: code in INIT, RUN (not nested switch) and END phase in Main
User Code file.

– Level 1: Example Script 1000 related code: nested switch in RUN phase in
Main User Code file.

– Level 2: P1 and P2 related code. This is the code in ProcedureName Run.cc
files.

– Level 3: T1 and T2 related code.This code is located in
ProcedureName TaskName.cc files.

– Level 4: Step 1 and Step 1 related code (but not the nested code they
contain: IF/ THEN/ ELSE/ ENDIF). This code is also located in Proce-
dureName TaskName.cc files.

– Level 5 and below: code inside IF and ELSE clauses. This code is located
in ProcedureName TaskName.cc files.

Fig. 4. Generated file structure

3.1 General Strategies

This tool has been implemented in a platform independent way. This approach
allows the system to be compiled for several platforms with no changes in the
source code.

The formal syntax of the scripts has been defined by a non-ambiguous context-
free grammar, so each valid input will have only one possible derivation tree. The
complete grammar is omitted, because it is very large, it has 72 production rules,
and it is unimportant for our purposes.

The tool must read the scripts and translate them into C code. For this reason,
a LALR(1) interpreter has been built, which can deal with many context-free
grammars by using small parsing tables. The parsing process of these interpreters
is divided into several levels:

Automation of Avionic Systems Testing 35

Fig. 5. AST associated with Example Script 1000

– Lexical level: This is the simplest and lowest level of the interpreter. In
this level the parser reads the input character by character and translates
these sets of characters into words.

– Syntactic Level: Once the input has been divided into tokens, the pro-
cessing is much easier. This level checks the correctness of a given input
according to the specified grammar. Then, once the words of the input have
been identified (which is done by the lexical level), this level just tests if
there is a derivation tree in the grammar, which leads to the given input.
As this level generates the derivation trees of the given grammar, it is very
important that this grammar has no ambiguity. Each given input will have,
if it has any, only one possible derivation tree.

– Semantic Level: A grammar must define all the correct sequences of the
language. But there are conditions which might be really difficult to repre-
sent in the definition of a language. To avoid this, grammars which define a
superset of the correct sequences accepted are used and some tests to check
that the accepted sequences fulfil these constraints are added. In this step
we check that some features (like the declaration of variables) are consis-
tent. These features have to be checked over the whole test. For this reason,
a structure capturing a logical representation of the scripts has been intro-
duced. Specifically, we have used ASTs (Abstract Syntax Trees). Figure 5
shows an example of AST, in this case that one associated with the Example
Script 1000 (Fig. 3). In this example, we can see how the defined tree has
a structure according to the level division in the scripts. These nodes which

36 D. Cebrián, V. Valero, and F. Cuartero

keep the structure of the test (TestDescription, Procedure, Task, Step) could
be called structural trees. For each of the available instructions in the test
(If-then-else, GET, ADDOUTPUT) there is an appropriate tree too.

For the development of the project, lex and yacc tools have been used. Partic-
ularly, flex 2.5 implementation of lex and bison 2.1 implementation of yacc have
been chosen.

– Flex[13]: with this tool programs whose control flow is directed by instances
of regular expressions in the input stream can be written. It is well suited for
editor-script type transformations and for segmenting input in preparation
for a parsing routine.

– Bison[1]: Yacc provides a general tool for imposing structure on the input
to a computer program. The yacc user must prepare a specification for the
syntax that the input must fulfil: this specification includes rules describing
the input structure (productions from our context free grammar), but also
code to be invoked when these rules are recognized (semantic actions).

4 Case Study

We now use another example (Antenna Selection) to describe the tool opera-
tion (Fig. 6). In practice, the scripts are obtained manually by using the test
description document. Notice that we do not need to know how these scripts
are obtained (which technique is used in particular to generate them), neither
to fully understand their mission because these tasks are carried out by testing
engineers of helicopter company.

Code Generator takes this script as input and translates it to system user
code. The system user code thus obtained consists of some files, the structure of
which is shown in Fig. 7.

The contents of these files are:

– Antenna Selection.x: This is the interface file. It contains imports and
exports of variables from the database.

– CommonFunctions.h: This file contains a set of common functions used
by other files.

– Antenna Selection.cc: This is the main file and controls the test operation.
Below, its source code is shown in Fig. 8:

– Antenna Selection Init.cc: It contains the code for the inicialization of
the test.

– Antenna Selection End.cc: It contains the code for the conclusion of the
test.

– P1 Antena Run.cc,P2 Antena Run.ccandP3 Antena Run.cc:They
contain the related code with proceduresP1, P2 and P3.

– P1 Antena T1.cc, P2 Antena T1.cc, P3 Antena T1.cc,
P1 Antena T2.cc, P1 Antena T3.cc: These files contain the related code
with the diferent tasks.

Automation of Avionic Systems Testing 37

Antenna_Selection 200
PROCEDURE P1_Antena
TASK T1

STEP 0
SET External 5
GET External1 Internal1
SET External1c 6.2
ADDOUTPUT "HELLO"

STEP 1
GET External2 Internal2
FREEZE Proof1
UNFREEZE Proof2
FREEZE Proof3

STEP 2
GET External2 Internal2
ADDOUTPUT hey
INSERT_LABEL hello label1
REMOVE_LABEL hello label1
IF (6==6) THEN

INSERT_LABEL hello label1
ELSE

ADDOUTPUT hey
INFORMATION "proof"

ENDIF
TASK T2
STEP 0

GET External Internal
TASK T3
STEP 0

GET External1 Internal1
SLEEP 10
GET External2 Internal2

PROCEDURE P2_Antena
TASK T1
STEP 0

SLEEP 10
SLEEP 12
GET External3b Internal3b
SLEEP 15
GET External3c Internal3c
GET External3d Internal3d

PROCEDURE P3_Antena
TASK T1
STEP 0

ADDOUTPUT "hello"

Fig. 6. Example script

Fig. 7. Generated files

These files are accepted by the test system as input and they are used to drive
the test. We can observe, in Fig. 8, that the generated code obeys the constraints
imposed by the testing environment as it is divided into some pieces of code by

38 D. Cebrián, V. Valero, and F. Cuartero

#include Antenna_Selection.h"

void CODE (unsigned long inCodeState)
{
switch(inCodeState)
{
case CO_INIT:
Level = 1;
for(int i=0; i<4; i++)

Step[i]=0;
Antenna_Selection_Init();
AnaisEndOfPhase ();
break;

case CO_RUN:
switch (Step[1])
{

case 0:
P1_Antena_Run();
if (Level==1)

Step[Level]
=Step[Level]+1;

case 1:
P2_Antena_Run();
if (Level==1)
Step[Level]

=Step[Level]+1;
case 2:

P3_Antena_Run();
if (Level==1)
Step[Level]

=Step[Level]+1;
break;

}
break;
case CO_END:
Antenna_Selection_End();
fclose(Fout);
AnaisEndOfPhase ();
break;

}
}

Fig. 8. Antenna Selection.cc

means of a set of switchs. Each piece of code will require a time that will not be
greater than the cycle duration (this is controlled by the inCodeState variable).

5 Conclusions and Future Work

In this paper, a first step for helicopter software automated testing has been
shown. We cannot provide real experimental results because the tests are car-
ried out by the helicopter company testing group, and we have no information
comparing the time required for the testing process when it was made manually
and currently, by using our tool.

As future work our intention is to extend the automation of testing to other
aspects of this process. The whole concept of Automated Test will allow gener-
ating a complete test set based on the test description document. It will concern
a complete environment including:

1. Automatic database frame import.
2. Automatic scenario definition.
3. Automatic code generation.

The principle is to define a high-level language with a friendly syntax which
will be used by test teams to describe their tests. A simple way may be to directly
use this high-level language as part of the test description document and to be
able to extract it automatically. The main advantage that we can obtain with

Automation of Avionic Systems Testing 39

this automated testing is to save a lot of time in testing execution and humman
effort to achieve the necessary qualification.

For this purpose, some constraints must be fulfilled:

1. A friendly syntax and format easily generated from the specifications. This
description must be accessible to a test team guy even if he is not an expert
in programming languages.

2. Common format agreed by all test teams. The idea is to use a simple support
which may be provided by test guys using standard editors like: text editors,
Microsoft Office editors, etc.

3. Comprehensive language, not directly mapped on a specific software com-
piler. The idea is that test team guys must be able to describe a test proce-
dure, even if they are not experts in software programming language.

4. The test description language must cover at least all the functionalities ac-
tually covered by the specifics ones already existing.

Our intention for the immediate future is to increase the automation level of
testing environment, by including scenarios in the Code Generation tool, and
even it would be important to replace the Test Description Document by an-
other document which can be automatically interpreted by a tool.

Acknowledgement. We would like to thank to the anonymous referees for
their suggestions and corrections that have contributed to improve this paper
significantly.

References

1. Stallman, R., Donnelly, C.: Bison. The YACC-compatible Parser Generator (1995)
2. Cavalli, A.R., Favreau, J.P., Phalippou, M.: Formal methods for conformance test-

ing: Results and perspectives. In: Proceedings of the IFIP TC6/WG6.1 Sixth In-
ternational Workshop on Protocol Test systems VI, pp. 3–17, Amsterdam, The
Netherlands, The Netherlands, North-Holland Publishing Co (1994)

3. Willcock, C.: Introduction to TTCN-3 (2002)
4. Geilen, M.C.W.: Formal Techniques for Verification of Complex Real-Time Sys-

tems. M.C.W. Geilen (2002)
5. Li, C.L.H., Jin, M., Gao, Z.: Test criteria for context-free grammars. Computer

Software and Applications Conference. COMPSAC 2004. In: Proceedings of the
28th Annual International, pp. 300–305 (2004)

6. Kort, R.L.J., Verhoef, C.: The grammar deployment kit. Electronic Notes in The-
oretical Computer Science 65(3), 7 (2002)

7. Peleska, G.J.J., Brumm, K., Hartmann, T.: Advancement in automated simulation
and testing technology for safety-critical avionic systems. Aerospace Testing 2006
(2006)

8. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)

9. Lämmel, R.: Grammar testing. In: Hussmann, H. (ed.) ETAPS 2001 and FASE
2001. LNCS, vol. 2029, pp. 201–216. Springer, Heidelberg (2001)

40 D. Cebrián, V. Valero, and F. Cuartero

10. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based
testing. TestCom 2006, pp. 19–38 (2006)

11. Maurer, P.M.: Generating test data with enhanced context-free grammars. IEEE
Software 7(4), 50–55 (1990)

12. Núñez, M., Pelayo, F.L., Rodŕıguez, I.: A formal methodology to test complex em-
bedded systems: Application to interactive driving system. In: IFIP TC10 Work-
ing Conf.: International Embedded Systems Symposium, IESS’05, pp. 125–136.
Springer, Heidelberg (2005)

13. Paxson, V.: Flex, version 2.5. A fast scanner generator (1995)
14. Peleska, J.: Test automation for avionic systems and space technology (extended

abstract) (1996)
15. Peleska, J.: Formal methods for test automation - hard real-time testing of con-

trollers for the airbus aircraft family. Integrated Design and Process technology,
IDPT-2002 (2002)

16. Wu, H.: Grammar-driven generation of domain-specific language tools. In: OOP-
SLA ’06: Companion to the 21st ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pp. 772–773, ACM Press, New
York, NY, USA (2006)

Automatic Test Generation from

Interprocedural Specifications

Camille Constant1, Bertrand Jeannet2, and Thierry Jéron1,�

1 IRISA/INRIA, Campus de Beaulieu, Rennes, France
{constant, jeron}@irisa.fr

2 INRIA Rhône-Alpes, Saint Ismier, France
Bertrand.Jeannet@inrialpes.fr

Abstract. This paper adresses the generation of test cases for testing
the conformance of a reactive black-box implementation with respect to
its specification. We aim at extending the principles and algorithms of
model-based testing for recursive interprocedural specifications that can
be modeled by Push-Down Systems (PDS). Such specifications may be
more compact than non-recursive ones and are more expressive.

The generated test cases are selected according to a test purpose, a
(set of) scenario of interest that one wants to observe during test execu-
tion. The test generation method we propose in this paper is based on
program transformations and a coreachability analysis, which allows to
decide whether and how the test purpose can still be satisfied. However,
despite the possibility to perform an exact analysis, the inability of test
cases to inspect their own stack prevents it from using fully the core-
achability information. We discuss this partial observation problem, its
consequences, and how to minimize its impact.

1 Introduction

Testing is the most used validation technique to assess the correctness of reactive
systems. Among the aspects of software that can be tested, e.g. functionality,
performance, timing, robustness, etc, we focus here on conformance testing and
specialize it to reactive systems [1]. Conformance testing compares the observ-
able behaviour of an actual black-box implementation of the system with the
observable behaviour described by a formal specification, according to a con-
formance relation. It is an instance of model-based testing where specifications,
implementations, and the conformance relation between them are formalised.
Test cases are automatically derived from specifications, and the verdicts result-
ing from test execution on an implementation are proved to be consistent with
respect to the conformance relation. Moreover, in addition to checking the con-
formance of the implementation, the goal of the test case is also to guide the test
execution towards the satisfaction of a test purpose, typically a set of scenarii of
interest. The test selection problem consists in finding a strategy that maximizes
the likehood for the test case to realize the test purpose.
� This work was partly supported by France Telecom R&D, contract 46132862.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 41–57, 2007.
c© IFIP- International Federation for Information Processing 2007

42 C. Constant, B. Jeannet, and T. Jéron

LTS STS

PDS Recursive
Programs

+variables

approximated analysis

+recursion partial observation
of state

recursive program
with finite-state variables

single procedure program
with infinite-state variables

Fig. 1. Test selection on various models

This problem has been previously addressed in the case where the specifi-
cations, the test cases and the test purposes are modeled with finite Labelled
Transition Systems (LTS) [2,3]. It was more recently addressed in the case where
the same objects are modeled with Symbolic Transition Systems (STS), which
extend LTS with infinite datatypes and can model non-recursive imperative pro-
grams [4]. The aim of this paper is to address the test selection problem in the
case where the specification is modeled as a Push-Down System (PDS), which
extends LTS with a stack over a finite alphabet and can model recursive pro-
grams manipulating finite datatypes. Such specifications may be more compact
that non-recursive ones and are more expressive than single procedure programs.
Fig. 1 summarizes the different models.

Outline and Contributions. We first illustrate our test selection methodology on
an example in Sect. 2. Then, we recall in Sect. 3 the testing theory framework
we use. Next, we present our contribution which is twofold:

– First, we describe in Sect. 4 a test generation method, that takes as inputs
a recursive specification and a non-recursive test purpose and that returns
a recursive test case. This method is based on program transformations.
Technical choices are guided by theoretical properties of the underlying PDS
and LTS models, but the generation is defined in terms of programming
language concepts.

– Second, we present in Sect. 5 a selection algorithm which takes as input the
previously generated test case and specializes it. This algorithm is based on a
(co)reachability analysis of the test case. We formalize a partial observation
problem, due to the inability of test cases to inspect their own stacks. We
compare its consequences on the generated test cases with the impact of
using a non-exact, over-approximated coreachability analysis as done for test
selection based on symbolic STS models [4]. We also propose an improvement
of the selection algorithm which minimizes the negative impact of this partial
observation aspect on test selection.

2 Introductive Example

We illustrate in this section the concepts we will develop and our testing method-
ology on a running example, before formalizing it in the next sections.

Automatic Test Generation from Interprocedural Specifications 43

main()

m0

m1

τ F()

F()

f0

f1

f2

f3

!x

τ G()

?c

!z

G()

g0

g1

g2

g3

g4

?b

τ t=true

τ G()

!y

?a

A

B

S C

D

E

x

a

y

c

b
�

�

�

�
�

(a) Recursive Specification, (b) Test Purpose,
recognizing the traces xbnaync + z recognizing the traces xb∗ayc

Fig. 2. Control-flow Graphs of Specification and Test Purpose

Specification. In our testing theory, the IUT is considered as a black box reactive
system, and its observations are the messages exchanged with its environment.
The specification we consider as an example is the small recursive program of
Fig. 4. Its control flow graph is given on Fig. 2(a). Double circles denote the
observation points (see Sect. 4). Inputs and outputs are distinguished by the
symbols ? and ! (inputs and outputs alphabets are disjoints). The behavior of
this specification program is the following: the main function calls the function
F (), which either emits the output !z and returns, or emits the output !x, calls
the function G(), then receives the input c and returns to its caller. According to
its first input, the function G() has two different behaviors: if the input is ?a, it
returns to the caller, whereas if the input is ?b, the function G() is called again
(recursively) and after it returns, the output !y is emitted.

What is really important is the traces recognized (or generated) by the spec-
ification, which is here Traces(S) = {!z} ∪ {!x · (?b)n·?a · (!y)n · c? | n ≥ 0}, a
context free language. The (non-)conformance of an IUT w.r.t. a specification
S will be only based on Traces(S). Intuitively, an IUT will be defined as con-
formant to S if after any execution trace which is a prefix of Traces(S), it emits
only outputs that S can emit as well. Note that the global variable t has no
influence on Traces(S), its usefulness will be explained later (see Sect. 5).

void main(){
emit(x) [] receive(p);
emit(y) [] receive(p);

}

Fig. 3. Non-conformant IUT

For instance, the IUT besides (where
[] stands for the non-deterministic choice
operator) is not conformant to S. After the exe-
cution trace !x, it may emit !y, whereas S speci-
fies that no output may be emitted at this point:
one or more ?b and then one ?a should be re-
ceived first). Note that on all states, IUT is ready to receive any input on the
parameter p.

44 C. Constant, B. Jeannet, and T. Jéron

enum out_t { x,y,z };
enum inp_t { a,b,c };

bool t = false;
void main(){

f();
}

void f()
{

f0: emit(p) when (p == x || p == z){

if (p==z) goto f3;
}

f1: g();
f2: receive(p) when (p == c) {};

f3:
}

void g()
{

g0: receive(p) when (p == a || p == b){
if (p == a) goto g4;

};

g1: t = true;
g2: g();
g3: emit(p) when (p == y) {}

g4:
}

Fig. 4. Specification corresponding to
Fig. 2

enum out_t { a,b,c };
enum inp_t { x,y,z };
enum verdict_t { none, fail, pass, inconc };
enum verdict_t verdict = none;
bool t = false;
void main(){

f();
}

void f()
{

f0: receive (p) when true {
if (p != x && p != z)

{ verdict = fail; abort(); }
if (p == z) goto f3;

};
f1: g();
f2: emit(p) when (p == c) {}

[]
receive(p) when true

{ verdict = fail; abort() };
f3:

}

void g()
{

g0: emit(p) when (p == a || p == b){
if (p == a) goto g4;

}
[]
receive(p) when true

{ verdict = fail; abort() };
g1: t = true;
g2: g();
g3: receive(p) when true {

if (p != y){ verdict = fail; abort(); }
}

g4:
}

Fig. 5. Canonical tester associated to
the specification of Fig. 4

Canonical Tester. A tester, called canonical tester can be generated from S very
straightforwardly, according to the (yet intuitive) definition of conformance. The
name canonical tester stems from the fact that it can detect any non-conformant
execution of the implementation. It is actually the most general tester, from
which any sound test case can be derived. The program transformation consists
in mirroring inputs into outputs and vice-versa, and to emit a failure verdict
when the transformed program receives an unexpected input at an observation
point. Fig. 5 gives the canonical tester Can(S) associated to S. A new type and
a global variable verdict have been introduced for storing the verdict. Can(S)
stimulates the IUT by sending to it input messages, and checks that the outputs
of the IUT , which correspond to its own inputs, are conformant w.r.t. S.

If this canonical tester is run in parallel with the non-conformant program of
Fig 3, and if the conformant program chooses to emit !x and then !y, the tester

Automatic Test Generation from Interprocedural Specifications 45

will perform the execution m0
τ−→ f0

?x−→ f1
τ−→ g0 and will reach location g0,

where it will receive an unexpected ?y input and will abort.
Notice that not only the (canonical) tester, but also the example IUT accept

any input at an observation point. These are usual asumptions in the ioco theory.
For the tester, the reason is that it should check any output from the IUT for
conformance. For the IUT , this allows to prevent deadlocks.

Test purpose. For large specifications, the canonical tester is too general. It tests
the IUT in a completely random way. One is often more interested in guiding
the execution of the IUT so as to realize a specific scenario that may reveal an
error, and to stop the test execution successfully when the scenario has been
completed without conformance error.

In this context, a test purpose is a (set of) scenario one wants to observe
during a conformant test execution. The test purpose depicted as an automaton
on Fig. 2 specifies that one is interested in detecting conformance errors occur-
ing along the traces in TracesE(TP) = xb∗ayc. The symbol � means “all other
elements in the alphabet” and the double circle denotes the final state E. This
test purpose indicates that we want to test the case where the IUT emits !x at
control point f0 and performs one recursive call of G from G.

The aim of test selection is to transform the canonical tester so that it is
more likely to produce the execution trace xb∗ayc until completion when exe-
cuted in parallel with the IUT . If a conformance error occurs, the tester aborts
immediately with a fail verdict. For instance, the first time the tester enters
in function G(), it should first emit a !b, because a matching ?y should be later
received to realize the scenario. Moreover, the second time it enters (recursively)
in function G(), it should emit an !a, because only one ?y message should be
observed before !c.

On the other hand, if an IUT starts its execution by emitting one !z (which
is conformant to S), the scenario cannot be completed. The tester should detect
such a case and abort gracefully with an inconclusive verdict.

Selected test case. Fig. 8 depicts the test case we obtain with the method we
will develop in the paper. Compared to the canonical tester of Fig. 5, we have
first inserted at each observation point a call to the function TP() (after having
checked the absence of conformance error at this point). The function TP()
defined on Fig. 6 takes as input the last message exchanged and implements the
automaton of Fig. 2(b). If the final state is reached, it emits the pass verdict.

There are two other modifications to the canonical tester. At control point
f0, when a ?z is received, the inconclusive verdict is emitted. Last, at control
point g0, the condition for emitting a message has been enforced: !a is emitted
iff the variable t is true. Indeed, t allows to distinguish if G() is called for the
first time from f1, in which case t is false, or if it is called recursively from g2,
in which case t is true. Hence, the knowledge of the value of t allows the test
case to realize exactly the scenario defined by the test purpose (once ?x has been
received from the IUT).

46 C. Constant, B. Jeannet, and T. Jéron

enum pc_t { A,B,C,D,E,S };
enum pc_t pc = A;
void TP(enum msg_t p)
{
if (pc == A && p == x) pc = B;
elsif (pc == B && p == b) pc = B;
elsif (pc == B && p == a) pc = C;
elsif (pc == C && p == y) pc = D;
elsif (pc == D && p == c){

pc = E;
verdict = pass;
abort();

}
else pc = S;

}

Fig. 6. Test Purpose corresp. to Fig. 2.(b)

// Type and global variables Declarations
// ...
void main(){

m0: f();
m1:

}

void f()
{

f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }
TP(p);

};
f1: g();
f2: emit(p) when (p == c) {
f2e: TP(p)

}
[]
receive(p) when true

f2r: { verdict = fail; abort(); };
f3:

}

void g()
{

g0: emit(p) when (p == a || p == b){

g0e: TP(p);
if (p == a) goto g4;

}
[]
receive(p) when true

g0r: { verdict = fail; abort(); };
g1: t = true;
g2: g();
g3: receive(p) when true {
g3r: if (p != y)

{ verdict = fail; abort(); }
TP(p);

}
g4:

}

Fig. 7. Product

// Type and global variables Declarations
// ...
void main(){

m0: f();
m1:

}

void f()
{

f0: receive (p) when true {
f0r: if (p != x && p != z)

{ verdict = fail; abort(); }
TP(p);
if (p == z)

{ verdict = inconc; abort(); }
};

f1: g();
f2: emit(p) when (p == c) {
f2e: TP(p)

}
[]
receive(p) when true

f2r: { verdict = fail; abort(); };
f3:

}

void g()
{

g0: emit(p) when ((p == a && t == true)
|| (p == b && t == false)){

g0e: TP(p);
if (p == a) goto g4;

}
[]
receive(p) when true

g0r: { verdict = fail; abort(); };
g1: t = true;
g2: g();
g3: receive(p) when true {
g3r: if (p != y)

{ verdict = fail; abort(); }
TP(p);

}
g4:

}

Fig. 8. Test Case after selection

Automatic Test Generation from Interprocedural Specifications 47

The next sections describe the theoretical fundations of this test selection
scheme sketched on the running example. After having presented the testing
theory on LTS models in Sect. 3, we adapt it on recursive specifications in Sect 4.

3 Testing Theory

The testing theory we consider is based on the notions of specification, implemen-
tation, and conformance relation between them [2] and on the model of Labelled
Transition Systems (LTS). An LTS is defined by a tuple M = (Q,Q0, Λ,→)
where Q is a set of states, Q0 is the set of initial states, Λ = Λv ∪ {τ} is an
alphabet of visible (Λv) and internal ({τ}) actions and →⊆ Q× Λ ×Q is a set
of labelled transitions. The notation p a→ q stands for (p, a, q) ∈→, and p a→
for ∃q : p a→ q. An execution is a sequence q0

a0→ q1
a1→ . . . qn+1 with q0 ∈ Q0.

Traces(M) ⊆ Λ∗
v denotes the projection of the set of executions ofM onto visible

actions. For a subset X ⊆ Q of states, TracesX(M) denotes the projection of
the set of executions of M ending in a state q′ ∈ X onto visible actions. It is
also named the set of traces accepted by X . The set of prefixes (resp. strict pre-
fixes) of a set of traces Y is denoted by pref ≤(Y) (resp. pref <(Y)). M is called
deterministic if Q0 has a single element q0, if p α→ q ∧ p α→ q′ =⇒ q = q′ and
if p τ→ q =⇒ ¬(∃α ∈ Λv : p α→). Note that this definition is not the standard
definition of a deterministic LTS because transitions with internal actions are
possible. M is complete for A ⊆ Λ, if ∀a ∈ A, ∀p ∈ Q, p a→.

The specification is a deterministic LTS S = (QS , QS
0 , Λ,→S), and the Im-

plementation Under Test (IUT) is assumed to be an LTS IUT = (QIUT , QIUT
0 ,

Λ,→IUT) which is unknown except for its alphabet, which is assumed to be the
same as that of the specification. Moreover, it is assumed that the IUT is input-
complete, which reflects the hypothesis that the IUT cannot refuse an input from
its environment.

In this context, a test case for the specification S is a deterministic LTS
TC = (QTC , QTC

0 , Λ,→TC) which is able to interact with an implementation
and to emit verdicts:

– its alphabet is the mirror of that of S (ΛTC
? = ΛS

! and ΛTC
! = ΛS

?)
– it is input-complete (outputs of IUT are not refused) except in verdict states;
– it is equipped with 3 disjoint subsets of sink, verdict states Pass,Fail, Inconc ⊆
QTC . Intuitively, Fail means rejection, Pass that some targetted behavior
has been realized (this will be clarified later), and Inconc that a targetted
behavior cannot be realized any more.

The conformance relation defines which implementations are considered cor-
rect w.r.t. the specification. We will consider the following conformance relation:

Definition 1 (Conformance relation). Let S = (QS , QS
0 , Λ,→S) and IUT =

(QIUT , QIUT
0 , Λ,→IUT) be two LTS with same alphabet. A trace σ of IUT con-

forms to S, denoted by σ conf S, iff

pref ≤(σ) ∩ [Traces(S)·Λ! \ Traces(S)] = ∅

48 C. Constant, B. Jeannet, and T. Jéron

IUT conforms to S, denoted by IUT conf S, iff all its traces are conformant:
Traces(IUT) ∩ [Traces(S)·Λ! \ Traces(S)] = ∅.

Intuitively, IUT conf S if after each trace of S, IUT may emit only outputs that
S can emit as well, while its inputs are unconstrained. Except for the notion of
quiescence (absence of outputs), conf corresponds to the ioco relation of [2].

The set of traces Traces(S)·Λ!\Traces(S) is the set of minimal non-conformant
traces. It is characterized by a test case called the canonical tester, which is
obtained from the specification S by inversion of inputs and outputs, followed
by an input-completion, where each unspecified input leads to Fail.

Definition 2 (Canonical Tester). Let S = (QS , QS
0 , Λ,→S) be the determin-

istic LTS of the specification. The canonical tester of S for conf is the deter-
ministic LTS Can(S) = (QS ∪ Fail, QS

0 , Λ
Can,→Can) such that

– Fail = {qFail}, with qFail �∈ QS a new state;
– its alphabet is the mirror of that of S (ΛCan

? = ΛS
! and ΛCan

! = ΛS
?)

– →Can is defined by the rules:

q, q′ ∈ QS q
α−→S q

′

q
α−→Can q′

q∈QS α ∈ ΛS
! = ΛCan

? ¬(q α−→S)

q
α−→Can qFail

We have Traces(Can(S)) = pref ≤(Traces(S)·Λ!)
TracesFail(Can(S)) = Traces(S)·Λ! \ Traces(S)

Can(S) is already a test case. However, it is typically too large and is not focused
on any part of the system. It is more interesting in practice to test what happens
in the course of a given scenario (or set thereof), and if no error has been detected,
to end the test successfully when the scenario is completed.

Definition 3 (Test Purpose). A test purpose for a specification S is a deter-
ministic LTS TP = (QTP , QTP

0 , Λ,→TP) equipped with a subset Accept ⊆ QTP

of accepting sink states. TP is complete except in these Accept states.

The completeness assumption allows not to constrain S in the product S × TP
(unless the execution trace is accepted).

The test case should now not only detect conformance errors, but also try to
satisfy the test purpose. For this, it has to take into account output choices of
the specification (observable non-determinism) and to detect incorrect outputs
of the IUT w.r.t. the test purpose.

The verdicts and their meanings are summarised as follows. The Fail verdict
is emitted if the implementation does not conform to the specification, so iff TC
observes an unspecified output after a trace of S. Pass means that the behavior
wanted by the test purpose has been realized by the implementation. The verdict
Pass is thus emitted iff TC observes a trace of S accepted by TP . The Fail and
Pass verdicts are uniquely defined, so that they are emitted appropriately and
as soon as possible, whereas the Inconc verdict is not uniquely defined. Indeed,
Inconc, which means that the behavior wanted by TP cannot be realized any

Automatic Test Generation from Interprocedural Specifications 49

more, may be emitted only if the trace observed by TC belongs to S (it is
conformant) but is refused by TP . The test execution can thus be interrupted,
as Pass cannot be emitted any more. We have adopted this definition because
checking whether a trace is refused is not always possible, either because it is
undecidable, for instance with infinite-state symbolic model [4], or because of
partial observation issues as discussed in Sect. 5. We refer to [4] for how optimal
test cases are defined.

Test selection for LTS. We briefly recall how to generate an optimal test case
from a specification S and a test purpose TP given as finite LTS [3]. One first
builds the canonical tester Can(S) using Def. 2. One then builds the product P =
Can(S) × TP combining the information about conformance given by Can(S)
and the information about the wanted scenario given by TP . One defines the
set Pass of verdict states as Pass = QS ×AcceptTP . Adding the Inconc verdict is
done by observing that

pref ≤(TracesPass(P)) = Tracescoreach(Pass)(P)

where coreach(Pass) = {q ∈ QP | ∃q′ ∈ Pass : q →∗ q′} denotes the set of states
that may reach a state in Pass. A valid test case TC is obtained from P by
adding a new state Inconc and by modifying →P as follows:

q
α−→P q

′ q′ ∈ coreach(Pass)
q

α−→TC q
′

q
α−→P q

′ α ∈ ΛCan(S)
? q′ �∈ coreach(Pass)

q
α−→TC Inconc

The first rule keeps only transitions maintaining the execution in coreach(Pass).
In particular, it selects the appropriate outputs w.r.t. TP that should be sent
to the IUT . As TC should remain input-complete, the second rule redirects the
input transitions not selected by the first rule to the Inconc verdict, which is
thus emitted as soon as the execution leaves the prefixes of accepted traces by a
conformant input.

4 Modeling Recursive Specifications and Test Purposes

The previous section recalled our framework for model-based testing, based on
the low-level semantics model of LTS. We already extended these principles and
designed sound algorithms for infinite-state symbolic transition systems in [4].
Our aim here is to do the same for recursive specifications which can be compiled
into (input/output) pushdown automata, PDS. Such specifications manipulate
finite data but may have an infinite control due to the recursion, hence they are
more expressive than finite LTS. In terms of traces, which is a relevant notion for
the conformance relation, they generate context-free languages instead of regular
languages. Moreover, even if there are cases where the recursion is bounded and
the specification may be flattened into a LTS (by inlining), such a process may
result in a huge LTS.

50 C. Constant, B. Jeannet, and T. Jéron

Expressions expr
Atomic Instructions atom ::= var = expr | if (expr) goto label
Interproc. Instructions callret ::= proc() | return
Communications com ::= emit(p) when expr {block}

| receive(p) when expr {block}
| com [] com

Instructions instr ::= atom | callret | com
Sequences block ::= ε | instr ; block

Fig. 9. Language Syntax

Control point k ∈ K
Global environment g ∈ GEnv = GVar → Val
Local environment l ∈ LEnv = LVar → Val
Configuration (g, σ) ∈ C = GEnv × (K × LEnv)+

Fig. 10. Language Semantic domains

Push-Down Systems. A labelled Push-Down System (PDS) is defined by a tuple
P = (G,Γ,Λ, c0, ↪→) where G is a finite set of locations, Γ is a finite stack
alphabet, c0 ∈ G× Γ ∗ is the inital configuration, Λ = Λv ∪ {τ} is a finite set of
visible (Λv) and internal ({τ}) actions, and ↪→⊆ (G×Γ)×Λ×(G×Γ ∗) is a finite
set of labelled transitions. Such a labelled PDS P generates an infinite LTSM =
(QM , QM

0 , Λ,→M) whereQM = G×Γ ∗,QM
0 = {c0}, and→is defined by the rule:

(g, γ)
α
↪→ (g, γ′) ∧ ω ∈ Γ ∗ =⇒ (g, ω · γ) α→ (g, ω · γ′)

The notions of deterministic and complete PDS are defined in terms of LTS.

A small programming language. The syntax and semantics of the small language
we used in the example of Sect. 2 is inspired by Bebop [5], an input language
of the Moped tool, which is a model-checker for linear-time temporal logic on
pushdown systems [6].

Bebop uses a classical imperative language syntax. We assume for the sake
of simplicity that control structures have been transformed into test and branch
intructions, and that parameter passing and returns for procedures are emulated
by using dedicated global variables. This results in the syntax given in Fig. 9.

The features added to Bebop are the communication instructions, and the non
deterministic choice operator between them. Emission and reception instructions
use a special global variable p which contains the message, and which may be
used only in the condition and in the block associated to these instructions.
We assume that emissions and receptions are not nested. The operator [] is
the non-deterministic choice operator. It may be used only for communication
instructions. The reason is that while we allow non-determinism, it should remain
observable, so that to any trace of the program corresponds an unique execution.

Its semantics as a Push-Down System (PDS). We assume that the special vari-
able p takes its values in the alphabet Λ. The semantics of this language is

Automatic Test Generation from Interprocedural Specifications 51

defined using the domains defined on Fig. 10. It is given as a labelled PDS
P = (G,Γ, c0, Λ, ↪→) where G = GEnv , Γ = K × LEnv , c0 = (g0, (k0, l0)) is
the initial configuration, and ↪→ is defined by the following inference rules, using
the control flow graph associated to the program. We just sketch the standard
inference rules and we refer to [6] for more details, as we focus more precisely on
the semantics of the emission and reception instructions.

– An atomic instruction generates a rule of the form
k

atom−−−→ k′

(g, (k, l))
τ
↪→ (g′, (k′, l′))

with a condition on (g, l) in the case of a test and branch instruction.

– A procedure call generates a rule k
proc()−−−−→ k′

(g, (k, l))
τ
↪→ (g, (k′, l) · (sproc, l′0))

where

sproc is the start point of the caller. Such a transition means that a new
activation record is pushed onto the stack, with an initial local environment
l′0, which reflects the assumption that the variables are uninitialized. A pro-

cedure return generates a rule k
proc()−−−−→ k′ eproc

return−−−→ . . .

(g, (k′, l′) · (eproc, l))
τ
↪→ (g, (k′, l′))

where the

activation record is popped and the control goes back to the caller.
– An emission instruction generates a rule

k
emit(p) when expr {k′:block}−−−−−−−−−−−−−−−−−−→ k′′ ∀v �= p : g′(v) = g(v)

(g, (k, l))
p
↪→ (g′, (k′, l)) if �expr�(g′, l) = true

(g, (k, l))
τ
↪→ (g′, (k′′, l)) if �expr�(g′, l) = false

One first forgets the previous value of p when introducing g′, in order to make
it uninitialized, as its real scope is the condition and the block associated to
the emission. Then, if the current environment (g, l) satisfies the condition, p
is emitted and the control passes to the beginning of the block k′. Otherwise,
the control passes to k′′. Notice that an non-deterministic choice is performed
here: the instruction may emit any message p which satisfies the condition.
The semantics of the reception is identical to the emission. Emissions and
receptions need to be distinguished only w.r.t. the conformance relation.

All instructions generate internal transitions labelled by τ , except emission and
reception instructions. The observation points of a program are defined as the
control points at the beginning of communication instructions. They are the only
control points from which a message may be exchanged. Such observation points
may be separated by (sequences of) ordinary control points linked by internal
τ -transitions. Notice that we do not use the term“observation point” in the sense
given to it in the testing community, when refering to the testing architecture.

Interprocedural specification and its canonical tester. An interprocedural speci-
fication S (c.f. Fig. 4) is a program defined with the language of Fig. 9, which is
deterministic, in the sense that the allowed non-determinism should be observ-
able, so that to a trace corresponds a unique possible execution ending in an

52 C. Constant, B. Jeannet, and T. Jéron

observation point. A choice can still exist between two emissions and/or recep-
tions, but we cannot have a choice between two internal instructions (generating
τ -transitions).

This deterministic assumption allows to build easily the canonical tester of S,
which is an executable, hence deterministic observer of Traces(S)·ΛS

? \Traces(S).
The canonical tester Can(S) is obtained from S using the following program
transformation at each observation point:

�
�
�
�
�
�
�
�
�
�
�
�

emit(p) when expre {

blocke

}
[]

receive(p) when exprr {block r}

⇒

�
�
�
�
�
�
�
�
�
�
�
�

receive(p) when true {
if(not expre){verdict = fail ; abort() }
blocke

}
[]

emit(p) when exprr {block r}

This operation mimics the corresponding operation defined for LTS in Sect. 3.
Here, it could be done on the PDS generated by the program, but we prefer to
proceed directly by program transformations.

Test purpose. When performing test generations from LTS, the test purpose is
an LTS that is taken into account by computing the product Can(S)×TP (c.f.
Sect. 3). Now, Can(S) is a PDS. It is known that the product of two PDS is not
a PDS, hence we cannot specify test purposes using PDS if we do not want to
manipulate more expressive computational models. However, as the product of a
PDS with an LTS is still a PDS, we can consider test purposes defined by finite
LTS. We can compute the synchronous product of Can(S) with TP to add the
Pass verdict to the canonical tester.

However, our goal is to proceed by program transformations. This excludes
to work directly on the underlying LTS and PDS models. The solution consists:

– in implementing the LTS TP (which should satisfy Def. 3) by a procedure
TP(p) that takes as input the last exchanged message and implements the
LTS, c.f. Figs. 2(b) and 6;

– and in instrumenting Can(S) by inserting calls to TP at observation points:
�
�
�
�
�
�
�
�
�
�
�
�
�
�

receive(p) when true {
if(not expr r)

{ verdict = fail; abort() }
block r

}
[]

emit(p) when expre {blocke}

⇒

�
�
�
�
�
�
�
�
�
�
�
�
�
�

receive(p) when true{
if(not exprr)

{ verdict = fail ; abort() }
TP(p); blockr

}
[]

emit(p) when expre {TP(p); blocke}

The call to TP is performed after having checked the conformance, because
accepted traces are conformant. The procedure TP is in charge of emitting the
Pass verdict. This transformed canonical tester will be denoted by P . Fig. 7
depicts the obtained program for our running example.

Automatic Test Generation from Interprocedural Specifications 53

Location Coreachable states
from 〈(−, pass, E), ω〉

m0 〈(ff, −, A), ω.m0〉
〈(tt,−, A), ω.m0〉

m1 〈(−, pass, E), ω.m1〉
f0 〈(ff, −, A), ω.f0〉

〈(tt,−, A), ω.f0〉
f0r 〈(ff, −, A, x), ω.f0r〉

〈(tt,−, A, x), ω.f0r〉
f1 〈(ff, −, B), ω.f1〉

〈(tt,−, B), ω.f1〉
f2 〈(ff, −, D), ω.f2〉

〈(tt,−, D), ω.f2〉
f2e 〈(ff, −, D, c), ω.f2e〉

〈(tt,−, D, c), ω.f2e〉
f2r ⊥
f3 〈(−, pass, E), ω.f3〉
g0 〈(ff, −, B), ω.(f1g0 + f1g2g0〉

〈(tt,−, B), ω.(f1g0 + f1g2g0〉
g0e 〈(ff, −, B, a), ω.f1g2g0e〉

〈(ff, −, B, b), ω.f1g0e〉
〈(tt,−, B, a), ω.f1g2g0e〉
〈(tt,−, B, b), ω.f1g0e〉

g0r ⊥
g1 〈(ff, −, B), ω.f1g1〉

〈(tt,−, B), ω.f1g1〉
g2 〈(ff, −, B), ω.f1g2〉

〈(tt,−, B), ω.f1g2〉
g3 〈(ff, −, C), ω.f1g3〉

〈(tt,−, C), ω.f1g3〉
g3r 〈(ff, −, C, y), ω.f1g3r〉

〈(tt,−, C, y), ω.f1g3r〉
g4 〈(ff, −, C), ω.f1g2g4〉

〈(ff, −, D), ω.f1g4〉
〈(tt,−, C), ω.f1g2g4〉
〈(tt,−, D), ω.f1g4〉

(a) Coreachable states

Location Reachable states
from 〈(ff, none, A), m0〉

f0r 〈(ff, none, A, x), m1f0r〉
〈(ff, none, A, z), m1f0r〉

f2e 〈(ff, none, C, c), m1f2e〉
〈(tt, none, D, c), m1f2e〉
〈(tt, none, S, c), m1f2e〉

f2r 〈(ff, none, C,−), m1f2r〉
〈(tt, none, D,−), m1f2r〉
〈(tt, none, S,−), m1f2r〉

g0e 〈(ff, none, B, a), m1f2g0e〉
〈(ff, none, B, b), m1f2g0e〉
〈(tt, none, B, a), m1f2g+

3 g0e〉
〈(tt, none, B, b), m1f2g+

3 g0e〉
g0r 〈(ff, none, B,−), m1f2g0r〉

〈(tt, none, B,−), m1f2g+
3 g0r〉

g3r 〈(tt, none, C, y), m1f2g+
3r〉

〈(tt, none, D, y), m1f2g+
3r〉

〈(tt, none, S, y), m1f2g+
3r〉

(b) Reachable states in observation
points

Location Intersection reachable
and coreachable states

f0r 〈(ff, none, A, x,), m1f0r〉
f2e 〈(ff, none, C, c), m1f2e〉
f2r ⊥
g0e 〈(ff, none, B, a), m1f2g3g0e〉

〈(tt, none, B, b), m1f2g0e〉
g0r ⊥
g3r 〈(tt, none, C, y), m1f2g3r〉

(c) Intersection between reachable
and coreachable states

Fig. 11. Analysis of the program of Fig. 7. The configurations are composed of the
values of global variables (t, verdict , pc, p) and the stack (− means any value, and
ω = K∗). As p is “active” only at observation points, its value is not precised elsewhere.

5 Test Selection on the Recursive Canonical Tester

Test selection is based on the same principle as for LTS, c.f. Sect. 3. In particu-
lar we will exploit the identity pref ≤(TracesPass(P)) = Tracescoreach(Pass)(P) to
recognize (conformant) traces that may be accepted in the future by the test
purpose. However, the inability of test cases to inspect their own stack prevents
it from using fully the coreachability information. We analyse this partial obser-
vation problem in this section.

Coreachability Analysis. In the PDS generated by the semantics of our pro-
gramming language, a configuration is a pair (g, σ) ∈ C of a global environ-
ment and a call-stack. The set of configurations corresponding to the Pass ver-
dict is Pass = {(g, σ) | g(verdict) = Pass)}. The wanted coreachable set is
coreach = {c ∈ C | ∃c′ ∈ Pass : c→∗ c′}.

54 C. Constant, B. Jeannet, and T. Jéron

We will exploit nice theoretical properties of PDS for computing coreach .
These properties justify the choice of PDS as the semantic model of our language,
and the restriction to finite-state variables. Given a PDS P = (G,Γ, c0, Λ, ↪→),
a set of configurations X ∈ ℘(G × Γ ∗) = G → ℘(Γ ∗) is regular if it associates
to each global state a regular language. The first result is that the coreachabil-
ity (resp. reachability) set of a PDS is regular if the final (resp. initial) set of
configurations is regular [7]. The second result is that in this case, the coreach-
ability (resp. reachability) set is computable with polynomial complexity [8,9].
The Moped tool implements efficient symbolic algorithms to compute these sets,
using a model of symbolic PDS where the transition relation ↪→ is represented
with BDDs [6].

As the set Pass is regular, we can provide to Moped the PDS generated
by our recursive program and the set Pass, and we obtain the regular set of
coreachable configurations. Coming back to our running example, the table of
Fig. 11(a) indicates, for every location, the configurations from which we can
reach the final configuration 〈(−, pass, E), ω〉. As there are no local variables in
the example, the stacks contain only control points.

The problem of partial observation. The selection consists in adding tests in the
program P , using coreachability information, for selecting the outputs to emit,
and for detecting the inputs which make P leave the set of accepted traces.
However, in an usual imperative language like ours, a program can only ob-
serve the top of the stack, whereas deciding whether the current configuration
is coreachable or not may require the inspection of the full stack.

Let us define the observation function α : C → GEnv ×K × LEnv
(g, ω · (k, l)) �→ (g, k, l)

extended to sets, and γ = α−1 the corresponding inverse function. (α, γ)
forms a Galois connection. At some location k of the program, given a set
of configurations X , and X(c) = {(c ∈ X | c = (g, ω · (k, l))} its projection
on location k, the program can only decide if the current valuation of vari-
ables (g, l) is included in α(X(c)). This means that in term of configurations,
one can only test inclusionship in γ ◦ α(X) ⊇ X . In particular one may be in a
case with

γ ◦ α(coreach(k)) ∩ γ ◦ α(coreach(k)) �= ∅ (1)

where one cannot decide, using only the observable part of the configuration,
whether the configuration is coreachable or not. For instance, in Fig. 11(a), in
location g0e, α(coreach(g0e)) = (p ∈ {a, b} ∧ pc = B) and α(coreach(g0e)) =
tt.

Selection rules. Because of the partial obervation phenomenon, we have to be
conservative in the selection. Let condco(k)(g, l) be the logical characterization
of α(coreach(k)). We transform the program P as follows:

Automatic Test Generation from Interprocedural Specifications 55

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

receive(p) when true{
if (not exprr)

{ verdict = fail; abort() }
kr :

TP(p); block r

}
[]

emit(p) when expre

{ke : TP(p); blocke}

⇒

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

receive(p) when true{
if (not expr r)

{ verdict = fail ; abort() }
kr : if not (condco(kr))

{ verdict = inconc; abort() }
TP(p); blockr

}
[]
emit(p) when expr eandcond co(ke)

{ke : TP(p); blockr}

For receptions, at location kr, after having checked the conformance, ¬condco(k)
is a sufficient condition to leave the prefixes of accepted traces (γ(¬condco(k)) ⊆
coreach(k)). So if it is satisfied we emit Inconc. For emissions, condco(k) is a neces-
sary condition to stay in prefixes of accepted traces (γ(condco(k)) ⊇ coreach(k)).

The obtained program is a sound test case. There is a strong similarity between
this test selection algorithm and the test selection algorithm for symbolic infinite-
state transition systems defined in [4]. Here partial observation may prevent us
to perform an optimal selection. In [4], it is the impossibility to compute the
exact coreachability set, and the need to resort to an overapproximation.

Improving selection with reachability information. One can improve the selection
algorithm using reachability information. Let reach denote the set of reachable
configurations of the program P . At a point k, we can exploit the knowledge that
the current configuration is anyway included in reach(k), and testing the inclu-
sion in γ◦α(reach(k)∩coreach(k)) instead of γ◦α(coreach(k)).1 The problematic
case identified by Eqn (1) becomes

γ ◦ α(reach(k) ∩ coreach(k)) ∩ γ ◦ α(reach(k) ∩ coreach(k)) �= ∅ (2)

It is clear that Eqn. (2) implies Eqn. (1) but that the converse if false.
Coming back to our example, Fig. 11(b) gives the reachability set of P pro-

jected on observation points, and Fig. 11(c) the intersection reach(k)∩coreach(k)
for these points. If condco(k)(g, l) denotes now a formula characterizing α(reach
(k)∩ coreach(k)), we now have condco(g0a) = (pc = B)∧ (t∧ p = b∨¬t∧ p = a)
instead of just (pc = B). One can check that Eqn. (2) is not true for k = g0e,
thus the selection is optimal at this point. Fig. 8 depicts the test case obtained
by this improved selection algorithm. It should be noted that the presence of
the variable t helps to perform an accurate selection at location g0, because
it allows to distinguish whether G() has been called from f1 or from g2. If we
remove this variable, which does not change the semantics of S w.r.t. the con-
formance relation, one could not select optimally the output a or b to send to
the IUT.

1 As reachability and coreachability sets are regular, so is their intersection.

56 C. Constant, B. Jeannet, and T. Jéron

6 Concluding Remarks

The selection algorithm of Sect. 5 is currently under implementation by the ex-
tension of the Moped tool. Moped acts as a model-checker returning a Boolean
answer, possibly with a counter-example. For our application, we need to get the
sets of configurations computed by Moped, to intersect reachability and core-
achability sets, to project this intersection on the visible part, and to convert
the result in terms of a programming language expression.

It is interesting to note the similarity of the two combinations: partial ob-
servation and exact analysis w.r.t. full observation and approximated analysis.
In case of partial observation, the observation function α we introduced acts
exactly as an abstraction (approximation) function. This means that one could
apply our method to general recursive programs, on which the analysis would be
in general approximated. The non-optimality of the selection would then be a
consequence of the combination of partial observation and inexact analysis. One
gets the diagram of Fig. 1.

Alternative methods. Our selection method described in Sect. 5 is based on (i) an
exact analysis computing full configurations (instead of just visible parts of con-
figurations), and (ii) on pure program transformations. These two choices could
be revised. Concerning (i), one could use a less precise, classical interprocedural
analysis method, which could still be exact for the observable part of the stack
(for instance using the Bebop tool [5]). However it would lead to a less precise
selection scheme. In particular, intersecting the coreachabe set with reachable set
would filter out less values. Concerning (ii), one could instrument the program
so as to get more knowledge about the invisible part of the configuration. For
instance, one could add a data-structure maintaining a stack of procedure return
points, and using it when testing if one is still in a coreachable configuration.
Although the resulting test case could not be any more transformed into a PDS,
the analysis would still be performed on the same intermediate program P as in
Sect. 5. Test case execution would be however slower, as testing for coreachability
would involve more complex datatypes.

References

1. ISO/IEC 9646: Conformance Testing Methodology and Framework (1992)

2. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, vol. 17(3) (1996)

3. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Int. Journal on Software
Tools for Technology Transfer, vol. 6 (2004)

4. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, Springer, Heidelberg (2005)

5. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification. LNCS, vol. 1885, Springer, Heidelberg (2000)

Automatic Test Generation from Interprocedural Specifications 57

6. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Hei-
delberg (2001)

7. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Sci-
ence, vol. 106 (1992)

8. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Electronic Notes on Theoretical Computer Science, vol. 9 (1997)

9. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR
1997. LNCS, vol. 1243, Springer, Heidelberg (1997)

A New Method for Interoperability Test

Generation

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1,
Campus de Beaulieu,

35042 Rennes Cedex, France
{alexandra.desmoulin,viho}@irisa.fr

Abstract. Interoperability testing aims at verifying the possibility for
two or more components to communicate correctly while providing the
foreseen services. In this paper, we describe a new method for gener-
ating interoperability test cases. This method is equivalent to classical
methods in terms of non-interoperability detection. Contrary to classi-
cal approaches, this method avoids the well-known state-space explosion
problem. It has been implemented in the CADP Toolbox and applied to a
simplified version of the ISDN connection protocol. The obtained results
confirm the real contribution of this method: test cases has been derived
while classical approaches face the state-space explosion problem.

1 Introduction

Interoperability testing is used to verify that different protocol implementations
communicate correctly while providing the services described in their respective
specification. Contrary to conformance testing which is precisely characterized
with testing architectures, formal definitions [1, 2] and tools for generating au-
tomatically tests [3, 4], interoperability is not formally defined. Some formal
definitions [5, 6] and methods for generating interoperability tests [7, 8] exist,
but there is no precise characterization of interoperability for the moment, and
consequently no method based on formal definitions.

In this paper, we consider interoperability formal definitions of [9]. These def-
initions, called interoperability criteria, describe the conditions that two imple-
mentations must satisfy to be considered interoperable: providing the expected
service while interacting correctly. Based on a proved equivalence between two
of these criteria, a new method to generate automatically interoperability test
cases is described. This method is equivalent to classical methods in terms of
non-interoperability detection. But it avoids the construction of the specifica-
tion interaction that may lead to the well-known state-explosion problem [6].
Moreover, we apply this method -implemented in the CADP Toolbox [10]- on
a simplified version of the ISDN (Integrated Service Digital Network) connec-
tion protocol [11]. The obtained results show that the proposed method is a real
contribution as we are able to derive interoperability test cases while classical
methods were not applicable because of the state-space explosion problem.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 58–73, 2007.
c© IFIP- International Federation for Information Processing 2007

A New Method for Interoperability Test Generation 59

This paper is structured as follows. First, we present the formal background
including interoperability formal definitions needed in Section 2. Then, Section
3 focuses on methods for generating interoperability test cases. We present first
classical method and then our new method. Section 4 describes the results of
the application of both methods on a simplified version of the ISDN connection
protocol. Conclusion and future work are in Section 5.

2 Formal Background

In this section, we present the different notions that are used in the following.
First, interoperability is defined in Section 2.1. Section 2.2 presents the formal
model (IOLTS) and the related definitions used for interoperability formal ap-
proach. Finally, Section 2.3 describes the interoperability formal definitions (iop
criteria) considered for interoperability test generation.

2.1 Preliminary Definitions

Different kinds of tests exist for testing if protocol implementations will work
correctly in an operational environment. For example, conformance testing veri-
fies that an implementation behaves as described in its specification. It considers
events observed on the interfaces of the Implementation Under Test (IUT), and
compares these events with events foreseen in the specification. The IUT is a
black-box: testers do not have any knowledge of its internal structure.

In this paper, we consider another kind of test: interoperability testing. This
kind of test has two goals. It verifies that different IUTs (two in this study)
can communicate correctly, and that they provide the services described in their
respective specification while communicating. In an interoperability testing ar-
chitecture, we can differentiate two kinds of interfaces. The Lower Interfaces are
the interfaces used for the interaction while the Upper Interfaces are used for the
communication of the implementations with upper layer. Testers are connected
to these interfaces but they can control (send message) only the upper interfaces.
The lower interfaces are only observable.

Depending on the access to the interfaces, different architectures can be distin-
guished. For example, the interoperability testing architecture is called unilateral
if only the interfaces of one IUT are accessible during the interaction, bilateral if
the interfaces of both IUTs are accessible but separately, or global if the interfaces
of both IUTs are accessible with a global view.

2.2 IOLTS Model and Related Definitions

We use IOLTS (Input-Output Labeled Transition System) [12] to model specifi-
cations. As usual in the black-box testing context, we also need to model IUTs,
even though their behaviors are unknown. They are also modeled by an IOLTS.

Definition 1. An IOLTS is a tuple M=(QM ,ΣM ,ΔM , qM0). QM is the set of
states and qM0 ∈ QM the initial state. ΣM denotes the set of observable events on

60 A. Desmoulin and C. Viho

the interfaces: p?m ∈ ΣM (resp. p!m ∈ ΣM) stands for an input (resp. output)
where p is the interface and m the message. ΔM is the transition relation.

Based on this model, Γ (q) is the set of observable events (executed on the in-
terfaces of M) from the state q and Γ (M,σ) the set of observable events for the
system M after the succession of events (trace) σ. In the same way, Out(M,σ)
(resp. In(M,σ)) is the set of possible outputs (resp. inputs) for M after the
trace σ. Traces(q) is the set of possible observable traces from q. We can also
define μ̄ as μ̄=li!a if μ = lj?a and μ̄ = li?a if μ = lj !a.

An implementation can be quiescent in three different situations: either the
IUT can be waiting on an input, either it can be executing a loop of internal
(non-observable) events, or it can be in a state where no event is executable. For
an IOLTS M , a quiescent state q is treated as an observable (practically with
timers) output event. An IOLTS with quiescence modeled is noted Δ(M).

Two other operations need to be modeled: asynchronous interaction and pro-
jection. The asynchronous interaction is used to calculate the IOLTS modeling
the behavior of a system composed by different communicating entities. For
two IOLTS M1 and M2, the asynchronous interaction is noted M1‖AM2. The
way to obtain this model of the interaction is described in [9]. First, M1 and
M2 are transformed into IOLTS representing their behavior in an asynchronous
environment. Then, these two IOLTS are composed to obtain M1‖AM2.

The projection of an IOLTS on a set of events is used to represent the behavior
of the system reduced to specific events (such as events observable on certain
interfaces). The projection of M on the set of events executable on its lower
interface ΣM

L is noted M/ΣM
L .

Conformance formal definition. Contrary to interoperability testing, con-
formance is precisely formalized with formal definitions [1, 2] and tools for gen-
erating automatically tests like TGV [3] or TorX [4]. Among the different formal
definitions existing for conformance, the ioco conformance relation [2] says that
an implementation I is ioco-conformant with respect to its specification S if
I never produces an output which could not be produced by S after the same
trace. Moreover, I may be quiescent only if S can do so. Formally : I ioco
S =Δ ∀σ ∈ Traces(Δ(S)), Out(Δ(I), σ) ⊆ Out(Δ(S), σ).

2.3 Interoperability Formal Definitions: iop Criteria

Even though some formal definitions exist in [9, 13], there is no precise charac-
terization for interoperability (iop for short in the following). Here, we present
some formal definitions, called iop criteria. They consider different possible archi-
tectures for testing the interoperability of two IUTs (one-to-one context) and are
based on both purposes of interoperability: verifying that each entity actually
receives the outputs sent by the peer entity and that the messages sent by the
IUTs on their upper interfaces correspond to the service described in the specifi-
cations. Thus, outputs must be verified on both interfaces. As only outputs can
be observed, verifying that an input μ is actually received by the peer entity

A New Method for Interoperability Test Generation 61

implies to determine the set of outputs that can happen only due to the recep-
tion of μ. This set of outputs is calculated based on causal dependencies. The
set of outputs on M that are causally dependent of the input μ after the trace
σ is noted: CDep(M, σ, μ).

The global iop criterion considers both kinds of interfaces and both IUTS
globally. It says that, after a trace of the interaction of the specifications, all
outputs observed during the interaction of the implementations must be foreseen
in the specifications, and that outputs sent by one IUT via its lower interfaces
must be effectively received by the interacted IUT. This iop criterion corresponds
to the most used testing architecture.

Definition 2 (Global iop criterion iopG). I1iopGI2 =def

∀σ ∈ Traces(S1‖AS2), Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ)
and ∀{i, j} = {1, 2}, i �= j,
∀σ ∈ Traces(Si‖ASj), σi = σ/ΣSi ∈ Traces(Si), σj = σ/ΣSj ∈ Traces(Sj),
∀μ ∈ Out(Ii, σ/ΣSi), ∀σ′ ∈ [(ΣSi ∪ ΣSj ∪ {δ(i), δ(j)}) \ μ̄]∗ ∪ {ε}, σ.μ.σ′.μ̄ ∈
Traces(Si‖ASj), μ̄ ∈ In(Ij , σj .(σ′/ΣIj)) ⇒ Out(Ij , σj .(σ′/ΣIj).μ̄.σk) ∈
CDep(Sj, σj .(σ′/ΣIj), μ̄), σk ∈ (ΣSj

I)∗ ∪ {ε}

In [9], we prove the equivalence of the global criterion with the so-called bilateral
iop criterion iopB (defined below via the unilateral iop criterion iopU) in terms of
non-interoperability detection. This equivalence is used for developing our new
interoperability test generation method.

The unilateral iop criterion iopU (view I1) considers interfaces of IUT I1
while interacting with I2. It says that, after a trace of S1 observed during the
interaction, all outputs observed in I1 must be foreseen in S1, and that I1 must
be able to receive outputs sent by I2 via its lower interfaces.

Definition 3 (Unilateral iop criterion iopU). I1iopUI2 =def

∀σ1 ∈ Traces(Δ(S1)), ∀σ ∈ Traces(S1‖AS2),
σ/ΣS1 = σ1 ⇒ Out((I1‖AI2)/ΣS1, σ1) ⊆ Out(Δ(S1),σ1)
and ∀σ1 = σ/ΣS1 ∈ Traces(Δ(S1)) such that σ ∈ Traces(S1‖AS2), ∀μ ∈
Out(I2, σ/ΣI2), ∀σ′ ∈ [(ΣS1 ∪ΣS2)\ μ̄]∗∪{ε}, σ.μ.σ′.μ̄ ∈ Traces(S1‖AS2), μ̄ ∈
In(I1, σ1.(σ′/ΣI1)) ⇒ Out(I1, σ1.(σ′/ΣI1).μ̄.σi) ∈ CDep(S1, σ1.(σ′/ΣI1), μ̄),
σi ∈ (ΣS1

I)∗ ∪ {ε}

The bilateral total iop criterion iopB is verified iff both (on I1 side and
I2 side) unilateral criteria are verified: I1iopBI2 (= I2iopBI1) =def I1iopUI2 ∧
I2iopUI1.

3 Interoperability Test Generation

3.1 Preliminary Definitions

Iop test purpose. In practice, a test purpose is an informal description of be-
haviors to be tested. Generally it is an incomplete sequence of actions. Formally,
a test purpose TP can be represented by a deterministic and complete IOLTS

62 A. Desmoulin and C. Viho

equipped with trap states used to select targeted behaviors. Complete means
that each state allows all actions. In this study, we consider simplified iop test
purposes with only one possible action after each state (∀ σ, |Γ (TP, σ)| ≤ 1)
and one AcceptTP trap state used to select the targeted behavior.

Iop test cases. During interoperability tests, three kinds of events are pos-
sible for the tester: sending of stimuli to the upper interfaces of the IUTs,
receiving inputs from these interfaces, and observing events (input and out-
put) on the lower interfaces. Thus, a test case TC can be represented by TC
= (QTC , ΣTC , ΔTC , qTC

0), an extended version of IOLTS. {PASS, FAIL, INC}
⊆ QTC are trap states representing interoperability verdicts. ΣTC ⊆ {μ|μ̄ ∈
ΣS1

U ∪ ΣS2
U } ∪ {?(μ)|μ ∈ Σ

S1
L ∪ ΣS2

L }. ?(μ) denotes the observation of the mes-
sage μ (that can be an input or an output) on a lower interface.

Iop verdicts. The execution of the test case TC on the system composed of the
two IUTs gives an interoperability verdicts. PASS means that no interoperability
error was detected during the tests. FAIL stands for the iop criterion is not
verified. INC (for Inconclusive) is for the case where the behavior of the SUT
seems valid but it is not the purpose of the test case.

3.2 Classical Methods

In practice, most of interoperability test suites are written ”by hand”. This is
done by searching ”manually” paths corresponding to the test purpose in the
specifications. Considering the number of possible behaviors contained in the
specification interaction, this ”manual” test derivation is an error-prone task.

Methods for automatic interoperability test generation (as in [7, 8, 14, 15, 16])
also consider algorithms that search paths corresponding to the test purpose in
the composition of the specifications (sometimes called reachability graph). The
study described in [6, 13] considers an interoperability formal definition that
compares events executed by the system composed of the two implementations
with events foreseen in the specifications. Thus, traditional methods for deriving
interoperability test cases are based on a global approach and on a general
interoperability definition corresponding to the formal iop global criterion iopG.
The classical method can be summarized, as in Figure 1(a), by two main steps.
The first one is the calculation of the specification interaction (completely or
based on the defined test purpose depending on the method). The second step
corresponds to the interoperability test case derivation based on the model of
the specification interaction and on the test purpose.

The problem with this (these) classical method(s) is that we can have state
space explosion when calculating the asynchronous interaction of the specifica-
tions [6]. Indeed, the number of states in the specification asynchronous inter-
action is in the order of O((n.mf)2) where n is the number of states in the
specifications, f the size of the input FIFO queue on lower interfaces and m the
number of messages in the alphabet of possible inputs on lower interfaces. This
calculation can be infinite if the size of the input FIFO queues is not bounded.

A New Method for Interoperability Test Generation 63

S1 ||A S 2

global iop test case

Execution on SUT(I1, I2)

verdict

S S TP1 2

Unilateral Test Case Unilateral Test Case

Execution on SUT(I1, I2) Execution on SUT(I1, I2)

verdict V1 verdict V1

Unilateral test purpose derivation

final iop verdict = V1 ^ V2

S 1 2TP1 STP2
 Interoperability test derivation

Global criterion oriented

TP

Interoperability test

derivation based on

 unilateral criterion

Interoperability test

derivation based on

 unilateral criterion

(b)(a)

Fig. 1. Interoperability test generation: classical and new methods

3.3 New Approach: Bilateral Criterion Based Method

The equivalence -in terms of non-interoperability detection- between global and
bilateral iop criteria (cf. theorem 1 in [9]) suggests that iop tests derived based
on the bilateral iop criterion will detect the same non-interoperability situations
as tests generated using classical method. Moreover, the bilateral method (see
Figure 1(b)) avoids the calculation of the specification interaction.

General principles and verdict management. Let us consider an iop test
purpose TP , as described in Section 3.1. The bilateral method can be decom-
posed in two main steps: cf. Figure 1(b). The first step of the bilateral method is
the derivation of two unilateral iop test purposes TPSi from the global interoper-
ability test purpose TP . Each TPSi contains only events of Si and represents the
iop test purpose TP in the point of view of Si. The second step is the unilateral
test case derivation. For this step, we can use a conformance test generation tool
F such that F : (Si, TPSi) → TC′

i, i ∈ {1, 2}. The unilateral test cases TCi

are obtained from TC′
i after some modifications due to differences in interface

controllability between conformance and interoperability contexts.
As bilateral and global iop criteria are equivalent in terms of non-

interoperability detection, we have: verdict(TC, I1‖AI2) = verdict(TC1, I1‖AI2)
∧ verdict(TC2, I1‖AI2). The verdicts verdict(TC,I1‖AI2), verdict(TC1,I1‖AI2)
and verdict(TC2,I1‖AI2) are interoperability verdicts; verdict(TC, I1‖AI2) is
a global interoperability verdict and the two others are unilateral verdicts. The
rules for the combination of these two unilateral verdicts to obtain the final bilat-
eral iopB verdict are obvious: PASS ∧PASS = PASS, PASS ∧ INC = INC,
PASS ∧ FAIL = FAIL, INC ∧ FAIL = FAIL, INC ∧ INC = INC and
FAIL ∧ FAIL = FAIL.

Unilateral Interoperability Test Purposes Derivation. The algorithm of
figure 2 shows how to derive two unilateral interoperability test purposes from

64 A. Desmoulin and C. Viho

one global interoperability test purpose. Let us consider an event μ of the test
purpose. If μ is an event of the considered specification, it is added to the test
purpose. If μ is an event from the other specification, there is two possibilities.
Either μ is an event to be executed on lower interfaces: in this case, the mirror
event μ̄ is added. Either the event is an event to be executed on the upper
interfaces: in this case, the algorithm searches a predecessor of μ, such that this
predecessor is an event to be executable on lower interfaces. The algorithm adds
the mirror of this predecessor to the test purpose.

Input: S1, S2: specification, TP : iop test purpose; Output: {TPSi}i=1,2;
Invariant: Sk = S3−i (* Sk is the other specification *); TP = μ1...μn

Initialization: TPSi = ε ∀i ∈ {1, 2};
for (j = 0;j ≤ n;j++) do

if (μj ∈ ΣSi
L) then TPSi = TPSi .μj ; TPSk = TPSk .μ̄j

if (μj ∈ Σ
Sk
L) then TPSi = TPSi .μ̄j ; TPSk = TPSk .μj

if (μj ∈ ΣSi
U) then TPSi = TPSi .μj ;

TPSk=add precursor(μj , Si, TPSk)

if (μj ∈ ΣSk
U) then TPSk = TPSk .μj ;

TPSi=add precursor(μj , Sk, TPSi)
if (μj /∈ ΣSk ∪ ΣSi)then error(TP not valid : μj /∈ ΣS1 ∪ ΣS2)

function add precursor(μ, S, TP): return TP
σ1 := TP ; aj =last event(σ1)
while aj ∈ ΣS

U do σ1=remove last(σ1);
aj =last event(σ1) end

M = {q ∈ QS; ∃ q’|(q, āj , q
′) ∧ σ = āj .ω.μ ∈ Traces(q)}

if (∀q ∈ M , σ /∈ Traces(q)) then error(no path to μ)
while (e=last event(ω) /∈ ΣS

L ∪ {ε}) do ω=remove last(ω)
if (e ∈ ΣS

L) then TPS = TPSi .ē end

Fig. 2. Algorithm to derive TPSi from TP

Some additional functions are used in the algorithm of figure 2. Let us con-
sider a trace σ and an event a. The function remove last is defined by : re-
move last(σ.a) = σ. The function last event is defined by : last event(σ)= ε if
σ= ε and last event(σ)= a if σ= σ1.a. The error function returns the cause of
the error and exits the algorithm.

Deriving unilateral interoperability test cases. The second step of this
method is the derivation of two unilateral interoperability test cases based on
the obtained test purposes. For this, a conformance test generation tool is used.
It takes as inputs a specification S1 (resp. S2) and the corresponding test purpose
TPS1 (resp. TPS2) and generates two conformance test cases TC′

1 and TC′
2 that

are modified in order to obtain the unilateral iop test cases TC1 and TC2.
These unilateral interoperability test cases will be executed unilaterally on the
corresponding IUT in the SUT.

A New Method for Interoperability Test Generation 65

The modifications on TC′
1 and TC′

2 to obtain TC1 and TC2 are realized to
take into account the differences between upper and lower interfaces in interop-
erability testing. For example, an event l!m (resp. l?m) in the obtained test case
will be replaced by ?(l?m) (resp. ?(l!m)) in the interoperability test case. This
means that the unilateral interoperability tester observes that a message m is
received from (resp. sent to) the other IUT on the lower interface l. No changes
are made on the test cases for events on the upper interfaces as these interfaces
are observable and controllable: a message can be sent (and received) by the
tester to the IUT on these interfaces.

Some words about complexity. The first step of this method (algorithm of
Figure 2) is linear in the maximum size of specifications. Indeed, the first part of
this algorithm is linear as it is a simple traversal of the test purpose graph which
is a small automaton compared to a specification graph. The other part of the
algorithm (search of predecessor - only if the test purpose event is an event to
be executed on a upper interface) is only linear as it is also a simple path search
and is based on a stack structure.

The second step corresponds to the test generation. It uses a conformance
test generation tool. In our case, we use TGV tool. As TGV [3] is linear in
complexity, this step of the method is also linear in complexity.

Thus, the bilateral method costs less than the calculation of S1‖AS2 needed
for classical method. Moreover, if an iop test case can be obtained using classical
approach, the bilateral method can generate an equivalent bilateral iop test case.

Causal dependency algorithm. One objective of interoperability is to verify
the correctness of the communication between the IUTs. Thus, iop test purposes
may end with an input. This latter situation occurs in the unilateral test purposes
derived by bilateral method. For example, if the iop test purpose ends with an
output on lower interface, its mirror event (an input) is added -as last event- to
one of the derived test purpose. The unilateral test case derivation generate a test
case for which the PASS verdict is affected to an input (a non-observable event).
An algorithm based on causal dependencies is used to complete bilateral method.
The purpose of this completion is to produce outputs that help in verifying that
the input is actually received by the corresponding IUT. The algorithm computes
the set of causal dependency events (associated with the paths to these events),
based on breadth-first search algorithms of the graph theory. It can also be used
for refining interoperability test cases generated by classical methods based on
test purpose ending with an input.

4 Applying the New Method to a Connection Protocol

4.1 A Simplified Version of the ISDN Connection Protocol

ISDN (Integrated Services Digital Network) is a set of CCITT/ITU standards
for digital transmission over ordinary telephone wire as well as over other media.

66 A. Desmoulin and C. Viho

This protocol requires a connection. The IUT-T recommendation Q.920 [11] con-
tains the description of the state diagram for sequences of primitives at a point-
to-point data link connection endpoint. The specifications of Figure 3 consider a
simplified version of this connection protocol. This version is simplified so that
it could represent any other communication protocol with request-acknowledge
connection negotiation. Two modes are possible: a client/server mode (S1 and S2
of Figure 3) or a complete client and server mode (specification S of Figure 3).

0

1

2

43

l1!cnr U1!NACK

U1!ACK

U1?CNR

l1?ack l1?nack

0

1

l2?cnr

0

1

3

2

4

5

U!ACK

U!NACK

l?nackl?ack

l!cnr

U?CNR
l?cnr

l!nack

l!ack

S S S1 2

l2!nack l2!ack

Fig. 3. Examples of specifications: S1, S2 and S

Specifications. Let us describe S1 and S2 of Figure 3. U1?CNR is a connec-
tion request from the upper layer, l1!cnr (resp. l2?cnr) the request sent (resp.
received) to the peer entity, l2!ack/l2!nack the positive or negative response,
and U1!ACK/U1!NACK the response forwarded to the upper layer.

ACCEPT

l2?cnr

U1!ACK

1

0

2

TP3

ACCEPT

U1?CNR

l2!ack

0

1

2

TP2

ACCEPT

U1!ACK

U1?CNR

0

2

1

TP1

(a) (b) (c)

Fig. 4. Test Purpose examples: TP1, TP2 and TP3

Test purposes. A test purpose is an informal description of behaviors to be
tested, in general an incomplete sequence of actions. Each state of the test pur-
pose considers a particular event to be executed, but each state allows all actions.
Let us consider the three iop test purposes of figure 4. These iop test purposes are
applicable to the System Under Test (SUT) composed of two IUTs implementing
respectively S1 and S2. For example, TP1 of Figure 4(a) (resp. TP2 of Figure
4(b)) means that, after the reception by I1 (implementing S1) of a connection
request on its upper interface U1, this IUT I1 (resp. I2) must send a connection

A New Method for Interoperability Test Generation 67

acknowledgment on its upper interface U1 (resp. a connection acknowledgment
on its lower interface l2).

The three test purposes of figure 4 are also applicable for deriving interoper-
ability test cases executable on a SUT composed of two IUTs implementing the
specification S (the complete client and server mode).

4.2 CADP Toolbox Used for Implementing the Method

Both classical and new (bilateral) methods were implemented into the CADP
toolbox [10]. CADP is a toolbox for the design of communication protocols and
distributed systems. It includes tools for explicit state space manipulation called
BCG. BCG (Binary-Coded Graphs) is both a format for the representation of
explicit LTSs and a collection of libraries and programs dealing with this format.
The BCG format is used for representing specifications and test purposes and
for manipulating these LTSs.

One step of the bilateral method is the generation of unilateral interoperabil-
ity test cases using a conformance test generation tool. In order to automatize
conformance test generation, different test tools were developed: TorX [4], TVeda
[17], SAMSTAG [18], TGV [3], etc. The conformance tool used in this study is
TGV (Test Generation using Verification techniques). TGV is integrated in the
CADP toolbox and can take as entries a specification and a test purpose in the
BCG format. This conformance test tool is used for the unilateral interoperabil-
ity test case generation of the bilateral method, but also for the global test case
generation of the classical approach with the specification interaction and a test
purpose as entries.

4.3 Applying the Classical Approach on the Client/Server Mode

Specification interaction. The first step of classical methods is the calcu-
lation of a model of the system behavior, that is to say the calculation of the
specification interaction (called also reachability graph). For the interaction of
S1 and S2 of Figure 3, we obtain the IOLTS of Figure 5.

Global interoperability test case derivation. Based on the model of the
behavior of the system composed of the two specifications and on the test pur-
poses of Figure 4, we can derive interoperability global test cases. The TGV tool
was used, taking as entries the specification interaction (Figure 5) and a test
purpose (Figure 4). Results of this test derivation are shown in Figure 6. These
test cases are those obtained after modifications due to controllability differences
between interoperability and conformance contexts. Interface UT 1 is the inter-
face of the tester connected to upper interface U1. Thus, UT 1!CNR means that
a tester sends message CNR to the upper interface U1 of I1. For events on lower
interfaces, ?(μ) corresponds to the observation of the event. However, inputs can
only be deducted from the corresponding output (sent by the other IUT) and
causal-dependency events.

These results are compared with test cases derived for the same test purposes
by the bilateral method in next Section.

68 A. Desmoulin and C. Viho

0

1

2

3

4

6

5

7

U1!ACK U1!NACK

l2!nack

l1?nack

l2!ack

l1?ack

l1!cnr

l2?cnr

U1?CNR

Fig. 5. Interaction of S1 and S2

4

1

0

8

5

6

2

3

7

9

UT1?ACK (PASS)

?(l1?ack)

?(l2!ack)

?(l2?cnr)

?(l1!cnr)

UT1!CNR

UT1!CNR

UT1?NACK

?(l1?nack)
?(l2!nack)

0

1

2

3

4

5

6

7

UT1!CNR

?(l1!cnr)

?(l2?cnr)

?(l2!nack) ?(l1?nack)

UT1?NACK

UT1!CNR

(PASS)
?(l2!ack)

0

1

2

3

4

5

6

7

9

8

10

11

UT1!CNR

?(l1!cnr)

?(l2?cnr)

?(l2?cnr)

?(l2!ack)

?(l1?ack)

UT1?ACK (PASS)

?(l2!nack)

?(l1?nack)

UT1?NACK

UT1!CNR

?(l1!cnr)

TC TCTC 1 2 3

(a) (b) (c)

Fig. 6. Test Cases for the interaction of S1 and S2

4.4 Applying Our New Method on the Client/Server Version

Unilateral test purpose derivation The first step of the bilateral interoper-
ability test generation method is the derivation of the iop global test purposes
into two unilateral iop test purposes. The implemented algorithm corresponds
to the algorithm presented in Figure 2.

Applying this step to the iop test purposes of figure 4 and specifications S1
and S2 gives as result the unilateral iop test purposes of Figure 7. TP 1

1 and
TP 2

1 of Figure 7(a) are the test purposes derived for TP1 (Figure 4(a)) and
respectively specifications S1 and S2. In the same way, TP 1

2 and TP 2
2 of Figure

7(b) (resp. TP 1
3 and TP 2

3 of Figure 7(c)) are derived from TP2 of Figure 4(b)
(resp. TP3 of Figure 4(b)). The same notation will be used for test cases in the
following.

When deriving the unilateral iop test purposes, for events on lower interfaces,
the returned event is either the event itself, either its mirror. For event U1!ACK,
as its predecessor is μ = l1?ack, the returned event is μ̄ = l2!ack (TP 2

1 and

A New Method for Interoperability Test Generation 69

TP 2
3) or U1!ACK (TP 1

1 and TP 1
3). The difficulty is for deriving an event from

U1?CNR for TP 2
1 (Figure 7(a)) and TP 2

2 (Figure 7(b)). In S1, this event is the
first possible event after the initial state. Its predecessor must be found in the
paths bringing back the entity in its initial state. The first predecessor found
is U1!NACK. As this event is not an event of the interaction, the algorithm
continues one more step to find l1?nack as predecessor, and then returns l2!nack
(mirror of l1?nack).

ACCEPT

TP1
1

U1?CNR

U1!ACK

0

1

2

ACCEPT

TP3
2

l2?cnr

l2!ack

0

1

2

ACCEPT

TP3
1

l1!cnr

U1!ACK

0

1

2

TP2

ACCEPT

2

l2!nack

l2!ack

0

1

2

TP2

ACCEPT

1

U1?CNR

l1?ack

0

1

2

TP

ACCEPT

1
2

l2!nack

l2!ack

0

1

2

(a) (b) (c)

Fig. 7. Unilateral Test Purpose derived for specifications S1 and S2

Unilateral test case derivation. The second step of the bilateral interop-
erability test generation method corresponds to the use of a conformance test
tool (here TGV) on a unilateral test purpose and the corresponding specification.
TGV will return conformance test cases that we want to reuse in interoperability
context after some modifications.

A test case is controllable if the tester does not need to choose arbitrarily
between different events. In conformance, inputs on lower interfaces correspond
to outputs of the tester: a controllable conformance test case only considers
one of the possible inputs on lower interfaces. In interoperability testing, inputs
on lower interfaces are sent by the other implementation. An interoperability
test case must take into account all possible inputs on lower interfaces. The
complete test graph is an IOLTS which contains all sequences corresponding
to a test purpose: all the inputs of the implementation that correspond to the
test purposes are considered in this IOLTS. Thus, to have test cases usable in
interoperability context, the conformance tool used in this step (like TGV) for
interoperability test generation must compute the complete test graph.

The main modifications to be applied to the obtained conformance test cases
concern the types of messages. The messages on lower interfaces are observations
in interoperability testing whereas they corresponds to communication with the
tester in conformance testing. The results on Figure 8 gives the test cases mod-
ified for interoperability.

Interoperability ”scenario” and comparison with classical methods. If
we calculate the interaction of two unilateral test cases, we obtain the interoper-
ability test case execution scenarios of Figure 9. The scenario obtained for TP3

70 A. Desmoulin and C. Viho

TC1
3TC1

1

1

2

4

0

3

TC1
2 TC1

2 TC2
2

(a) (b) (c)

0

1

2

4

3

5

6

0

3

1

2

4

0

1

2

4

3

5

6

0

1

2

3

UT1!CNR

UT1!CNR

(PASS)
UT1?ACK

?(l1?ack)

?(l1!cnr)

?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

?(l2?cnr)

UT1?NACK
?(l1?nack)

?(l2!nack)

?(l2!ack)

?(l2?cnr)

0

1

3

2

(PASS)
?(l1?ack)

UT1!CNR

4

?(l1?nack)

5

UT1?NACK
?(l1!cnr)

UT1!CNR

?(l2!ack)
(PASS)

?(l2!nack)

?(l2?cnr) UT1!CNR

UT1?ACK
(PASS)

?(l1?ack)

?(l2!nack)

?(l2!ack)

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)
?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

TC3
2

?(l2?cnr)

Fig. 8. Unilateral Iop Test Cases for specifications S1 and S2

TC1
1

ATC1
2||

5

10

6

2

0

1

8

4

3

7

11

9

0

7

8 11

5

6

2

1

4

3

9

10

12

(PASS_1)

(PASS_2)

2
2TCA||2

1TC TC1
3||ATC2

3

(a) (b) (c)

UT1!CNR

?(l1!cnr)

?(l2?cnr)

?(l2!nack)?(l2!ack)

?(l1?ack)

UT1?ACK
(PASS_1)

?(l1?nack)

UT1?NACK

?(l1!cnr)

UT1!CNR

?(l1?ack)

?(l2!ack)
(PASS_2)

UT1?ACK
(PASS_1)
(PASS_2)

12

13

14

15

?(l2?cnr)

?(l2!nack)

UT1!CNR

?(l1!cnr)

?(l2?cnr)

?(l2!ack) ?(l2!nack)

?(l1?ack)
?(l1?nack) ?(l2!nack)

UT1?NACK

UT1!CNR

?(l1!cnr)

?(l2?cnr)

13

?(l1?ack)
(PASS_1)
(PASS_2)

?(l2!ack)

11

10

9

8

4

?(l1!cnr)

UT1!CNR

?(l2?cnr)

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)

?(l2?cnr)

?(l2!nack)

1

0

2

3

5

6

7

(PASS_2)
(PASS_1)
UT1?ACK

?(l1?ack)

(PASS_2)
?(l2!ack)

Fig. 9. Test Case interactions

(Figure 9(c)) contains only one deadlock (state 7). This state corresponds to a
PASS verdict (PASS 1∧PASS 2=PASS).

The scenario obtained for TP1 (Figure 9(a)) contains two deadlocks: states 15
and 7. State 15 corresponds to a PASS state. But state 7 is only to a verdict state
(PASS 1) of TC1

1 , not to a verdict state of TC2
1 (see test cases on Figure 8(a)).

This means that, in this state, TC1
1 is executed until a verdict state, but TC2

1 has
not reached a such state. The part of TC2

1 not executed was generated because
of the test purpose derivation (calculation of the predecessor of U1?CNR when
deriving TP 2

1). We can also remark that the trace executed until state 7 of
TC1

1‖ATC2
1 verifies the global test purpose TP1. Thus, even though a deadlock

A New Method for Interoperability Test Generation 71

state without both unilateral verdicts exists, the obtained scenario is complete
regarding the iop test purpose TP1.

For TP2 (scenario on Figure 9(c)), the obtained interoperability test cases end
with an input because the unilateral test purpose generated for S1 ends with an
input. To complete these iop test cases (TC1

2 and TC1
2‖ATC2

2), we can either add
a postamble returning to the initial state, either use causal dependency algorithm
(using breadth-first search algorithms). It will add paths until outputs that are
executed only if the input l1?ack is actually executed. In this simple example
(specification S1), only the event U1!ACK (or UT 1?ACK for the tester) will
be added with causal dependency event method.

We can observe that the global iop test case generated for TP3 (Figure 6(c))
corresponds to the scenario obtained by the interaction of the unilateral test
cases generated for this iop test purpose (Figure 9(c)). For TP1 and TP2 (global
test cases on Figures 6 (a) and (b) and scenarios on Figure 9 (a) and (b)), there
are more branches. But a look at glance on the traces contained in both the
global test case and the scenario from bilateral method shows that they are
equivalent in terms of verdicts. Indeed, the same execution paths lead to the
same verdicts. These examples confirm the equivalence of both classical (global)
and new (bilateral) methods in terms of non-interoperability detection.

4.5 Application to the Complete Client and Server Mode

Both methods were also applied on the specification S describing both client
and server parts and using the same test purposes. The interaction S‖AS, calcu-
lated for classical approach, is composed of 454 states and 1026 transitions with
input queues of each system bounded to one message. Results in the following
table are given for a queue size of 3. The table gives the number of states s and
transitions t (noted s/t in the table) for different test cases. The first two lines
correspond to iop test cases derived with the bilateral method (S as specification
1 and 2) and the third line to the interaction of these test cases. The last line
gives results for test cases derived with classical method. For this method, the
generated specification interaction has 47546 states and 114158 transitions.

TP1 TP2 TP3
S as spec. 1 (bilateral method) 9/17 8/16 9/17
S as spec. 2 (bilateral method) 13/24 13/24 12/22

TC1‖ATC2 19546/57746 19468/57614 19405/57386
S‖AS (global method) 54435/120400 18014/40793 54456/120443

We observe that we can derive unilateral test cases via the bilateral method.
These test cases can be used for executing interoperability test cases. For classical
(global) methods, we faced the state space explosion problem. Indeed, we were
not able to compute S‖AS for a queue size limited to 4 messages (on a system
with a 2GHz processor and 1 Gb of memory). This shows that the bilateral
method can be used to generate iop test cases even for specifications that produce

72 A. Desmoulin and C. Viho

state space explosion problem. Moreover, these test cases are not dependent of
the queue size.

4.6 Summary of the Experimentation Results

The result on the examples can be summarized as follows.

1. In terms of non-interoperability detection, the obtained iop test cases con-
firm the equivalence of the bilateral and global iop criteria that was proved
theoretically in [9].

2. The causal-dependency based algorithm can be used to complete iop test
cases generated with both global and bilateral method, particularly when
we have test purposes ending with inputs.

3. The bilateral method can be used to generate interoperability test cases even
for specifications that produce state space explosion problem with classical
methods.

5 Conclusion

In this paper, we present a new method for generating interoperability test cases.
The interoperability criterion on which the presented method is based was proved
equivalent in terms of non-interoperability detection to another interoperability
criterion on which classical methods are generally based. This equivalence was
confirmed by experimental results. Moreover, we show that the so-called bilateral
interoperability test derivation method allows up to generate interoperability
test cases in situations where it would have been impossible with the traditional
methods because of state space explosion problem.

As future work, we will study the generalization of the formal interoperabil-
ity definitions and test generation methods to a context with more than two
implementations. We will also study how to apply the described method to a
distributed testing architecture.

References

[1] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7 (1992) International Standard
ISO/IEC 9646/1-7

[2] Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, Springer, Heidelberg (1999)

[3] Jard, C., Jéron, T.: Tgv: theory, principles and algorithms, a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Software Tools for Technology Transfer (STTT) (October 2004)

[4] Tretmans, J., Brinksma, E.: Torx: Automated model based testing. In: Hart-
man, A., Dussa-Zieger, K. (eds.) Proceedings of the First European Conference
on Model-Driven Software Engineering, Nurnberg, Germany (December 2003)

A New Method for Interoperability Test Generation 73

[5] Desmoulin, A., Viho, C.: Quiescence Management Improves Interoperability Test-
ing. In: 17th IFIP International Conference on Testing of Communicating Systems
(Testcom) Montreal, Canada (May-June 2005)

[6] Castanet, R., Koné, O.: Deriving coordinated testers for interoperability. In: Rafiq,
O. (ed.) Protocol Test Systems, Pau-France, IFIP, vol. VI C-19, pp. 331–345.
Elsevier, North-Holland (1994)

[7] Seol, S., Kim, M., Kang, S., Ryu, J.: Fully automated interoperability test suite
derivation for communication protocols. Comput. Networks 43(6), 735–759 (2003)

[8] El-Fakih, K., Trenkaev, V., Spitsyna, N., Yevtushenko, N.: Fsm based interoper-
ability testing methods for multi stimuli model. In: Groz, R., Hierons, R. (eds.)
TestCom. LNCS, Springer, Heidelberg (2004)

[9] Desmoulin, A., Viho, C.: Formalizing interoperability for test case generation pur-
pose. In: IEEE ISoLA Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation, Columbia, MD, USA (September 2005)

[10] Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. Technical Report
0254, INRIA (2001)

[11] ITU-T. Digital Subscriber Signalling System No.1 - ISDN User-Network Interface
Data Link Layer - General Aspects. ITU-T Recommandation Q.920 (1993)

[12] Verhaard, L., Tretmans, J., Kars, P., Brinksma, E.: On asynchronous testing.
In: Bochman, G.V., Dssouli, R., Das, A. (eds.) Fifth inteernational workshop on
protocol test systems, North-Holland, IFIP Transactions, pp. 55–66 (1993)

[13] Castanet, R., Kone, O.: Test generation for interworking systems. Computer Com-
munications 23, 642–652 (2000)

[14] Griffeth, N.D., Hao, R., Lee, D., Sinha, R.K.: Integrated system interoperability
testing with applications to voip. In: FORTE/PSTV 2000, pp. 69–84. Kluwer,
B.V (2000)

[15] Bochmann, G., Dssouli, R., Zhao, J.: Trace analysis for conformance and arbitra-
tion testing. IEEE transaction on software engeneering 15(11), 1347–1356 (1989)

[16] Gadre, J., Rohrer, C., Summers, C., Symington, S.: A COS study of OSI interop-
erability. Computer standards and interfaces 9(3), 217–237 (1990)

[17] Groz, R., Risser, N.: Eight years of experience in test generation from fdts using
tveda. In: FORTE, Osaka, Japan (November 1997)

[18] Grabowski, J., Hogrefe, D., Nahm, R.: Test case generation with test purpose
specification by mscs. In: SDL Forum, Amsterdam, North-Holland (October 1993)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 74–89, 2007.
© IFIP- International Federation for Information Processing 2007

Component Testing Is Not Enough -
A Study of Software Faults in Telecom Middleware

Sigrid Eldh1,2, Sasikumar Punnekkat2, Hans Hansson2, and Peter Jönsson3

1 Ericsson AB
2 Mälardalens University

3 Combitech
Ericsson AB, Kistagången 26, Stockholm, Sweden

sigrid.eldh@ericsson.com

Abstract. The interrelationship between software faults and failures is quite
intricate and obtaining a meaningful characterization of it would definitely help
the testing community in deciding on efficient and effective test strategies.
Towards this objective, we have investigated and classified failures observed in
a large complex telecommunication industry middleware system during 2003-
2006. In this paper, we describe the process used in our study for tracking faults
from failures along with the details of failure data. We present the distribution
and frequency of the failures along with some interesting findings unravelled
while analyzing the origins of these failures. Firstly, though “simple” faults
happen, together they account for only less than 10%. The majority of faults
come from either missing code or path, or superfluous code, which are all faults
that manifest themselves for the first time at integration/system level; not at
component level. These faults are more frequent in the early versions of the
software, and could very well be attributed to the difficulties in comprehending
and specifying the context (and adjacent code) and its dependencies well
enough, in a large complex system with time to market pressures. This exposes
the limitations of component testing in such complex systems and underlines
the need for allocating more resources for higher level integration and system
testing.

Keywords: Software, Fault Classification, Fault distribution, Testing.

1 Introduction

We have investigated a number of failures in a part of a subsystem of a large complex
middleware system at Ericsson. Based on this investigation, this paper identifies
classes of failures, presents their frequencies, and isolates the failure classes that are
caused by software faults. Our overall motivation and planned future work is to create
a controlled experiment by re-injecting known faults of different types in the code, to
be able to learn more about efficiency and effectiveness of various test techniques [1].
We initially planned to use published information on commonly prevalent software
faults, fault classes and their frequencies, but were unable to find sufficient
information from existing literature. Since failures are related to software faults in

 Component Testing Is Not Enough - A Study of Software Faults 75

complex and intricate manners, we believe that a realistic characterization of their
correlation will be helpful in determining effective as well as cost-efficient testing
strategies. Our objective is to understand how faults and failures manifest themselves,
especially in the context of ‘real’ faults that occurred in commercial or industrial
systems.

Most software industries do not pay enough attention to understand the typical
faults that exists in their software. These industries collect every anomaly and
complaint, from both verification teams and customers, but seldom faults and failures
found by designers. Hence, failures are collected from the later stages in the software
process, saved in databases, classified based on priority, status of management (e.g.
analyzed, fixed, tested, approved) and classified based on organization or software
sub-system where the actual fault is believed to exist. Occasionally deeper analysis
and classifications are done and root cause analysis (RCA) are performed, especially
when major incidents involving customer complaints occur. Most classifications [8, 9,
30, 35] end prematurely by defining the failure on too high level to understand what
software fault caused the failure. We suspect that this is the case in most industry and
commercially available software, with the exception of safety critical software..

In this study, we consider the software in a typical telecom system. We have not
looked at all the reported failures for the entire node, but focused on one particular
part of the software, which we consider to be a typical representative of telecom
middleware. From 4769 reported failures, we have selected a sample of 362 failures,
which can be considered to be important since they were all corrected. This data has
been collected during a period of three years based on 65 different designers and
software integrators across the world. We chose these failures since their labels in the
configuration management system made it easier to locate the corresponding software
fault, compared to repeating the tedious troubleshooting and debugging of the system,
which would otherwise have been required. The questions we primarily try to address
with this case study are:

• What are the real and important faults in software that have propagated to
failures, and subsequently fixed?

• What is the distribution of the failures and faults into various classes? (This
classification will allow us to re-inject faults of the same type in the software,
thereby providing a basis for our planned evaluation of test techniques.)

• Is there any other specific pattern of faults and failures that would guide us into
understanding the software process better?

Our focus is on software faults, but our study has shown that just less than half of
the reported failures are not a direct consequence of a software fault that can possibly
be re-injected in the code. Instead, failures relate to a variety of problems, e.g.
hardware, third party products, process issues, organization, and management issues.
We decided to keep all information to give a better perspective for researchers trying
to understand problems in the software industry, and better explain them as a part of
our case study.

Outline: We discuss and define the terminology used in the next section and then
related work in section 2. Section 3 describes the set-up of our case study and data
selection. In section 4, we discuss our findings of the failure distribution and the
different classes. Validation is discussed in section 5 and future work in section 6.
We will end section 7 with the conclusions that we have derived from this case study.

76 S. Eldh et al.

1.1 Terminology

The related terminology in this area (fault, error, cause or reason, failure, bug, defect,
and anomaly) is often confusing because these terms are used interchangeably and
inconsistently by many in industry and academia; see further discussion in Mohaghegi
et al [27]. Therefore we define the following terms with inspiration from earlier work
from Avižienis & Laprie [10] and Thane [9], where a fault is the static origin in the
code, that during dynamic execution propagates (in Figure 1 described as by a solid
arrow) to an error (which is an intermediate infection of the code). If the error
propagates into output and becomes visible during execution, it has caused a failure.
An error or failure can both cause another fault to occur. At Ericsson, failures are
reported as Trouble Reports (TRs). Occasionally, these TRs gives in their analysis
section a more direct explanation of the cause of the failure, but mostly they only
describe the symptoms. TRs are not uniquely identifying failures (i.e., several TRs
may identify the same failure) and there is not a one to one relationship between a
fault and a failure (i.e. different faults may lead to the same failure and some faults
may cause multiple failures).

Fig. 1. Terminology mapping

A failure can in turn propagate to another part of the software and be the cause of
another fault. One difference compared with Avižienis & Laprie is that we separate
the actual cause of the fault from what manifests itself in the software. As an example,
a faulty specification can lead to a fault in the software, but to find what code to re-
inject in order to represent such a fault is not clear. It might be that the fault
specification misses to define a case not implemented in the code, which leads to
faulty assumptions and not adding extra paths when needed. We occasionally refer to
the term “real fault”, meaning, a fault found in a commercial or industrial system.

2 Related Work

Our purpose is to investigate software test techniques is described in our position
paper [1]. We noticed that most test technique investigations used small code

Fault

Error Failure some effect

2. Dormant,
not yet executed

Infected,
intermediate
state

Causes

Failure, visible
 TR

Fix

1. Hidden,
non-executable

 Component Testing Is Not Enough - A Study of Software Faults 77

samples, often with very few faults injected [2, 4]. The faults used as the basis in test
technique investigations are often invented and “simple” or made to prove a specific
point [20]. This did not match our experience with faults in software for complex
systems. Even if there exist attempts to create better faulty programs to use for test
techniques research [3, 32, 33, 34], they still do not contain enough data from
industry, and are relatively small compared to our complex middleware. Therefore,
we argue that the early stages fault investigations for test technique research [5, 6, 7]
needs to be updated. Andrews et al. [32], share a similar goal, but uses a different
approach. They compared mutant generated faults with hand-seeded real faults, and
concluded that the faults were different in nature, but shows statistical promise.
Analyzing our result in contrast with theirs, it becomes evident that the type, nature of
the fault and fault class, and its distribution is not sufficiently explored to draw strong
conclusions about test techniques. We tried to find examples of classes and types of
code faults to re-inject, but did not find any good list to use, instead we found several
papers investigating real faults (and failures) classified for different purposes [8, 9,
11, 12, 13, 14, 15, 16, 18, 20, 23, 24, 35] and not distinguishing faults from failure or
cause. In particular, for the more commonly used Orthogonal Defect Classification
(ODC) [8], we concluded that the classes are classifying failures, and not faults, e.g.
an interface failure (which is an ODC class) could be caused by several software code
faults. Thus, these classifications are insufficient to support us in our aim. DeMillo
and Marthur [13] have made an attempt to classify real software defects by automatic
means. We have used these fault and failure classifications as inspiration to our
classification and we will discuss them in the section on future work. Rather than
adopting, we strongly propose that different software domains have different sets of
fault and fault distributions, depending on organizations, languages, development and
testing methods, as well as the ways of measurement. Conclusions on test techniques
should be based on first creating a thorough fault analysis particular to the domain,
but with known methods. This will provide better understanding of which typical
failures and related faults that are relevant for this particular software. We realize that
the gap between research and industry is wide [31], but we hope to close this gap by
doing controlled research on commercial software in an isolated environment.

Huffman and Rothermel discuss in [29] the semantics of a fault. This is interesting
research, since it implies that faults have a variety of impact, depending on the fault.
Our research shows that some types of faults that affect the software are a
combination of faults, and are definitely involving more than one file, and more than
one entry in a file. There is a danger in inserting only single semantic faults even if
they are dominating. Single semantic fault injection is the predominant way of
injecting faults (and mutations). One fault can propagate into many different
symptoms (which is one of the explanations to the high number of duplications). One
fault might propagate and behave differently, depending on how “complicated” it is.
Hyonsook and Elbaum [3] have with the work on SIR framework, used files from
industry (SPACE and Siemens program [33, 34]), but also let experienced designers
deliberately insert faults (also used by [32]). There is no way of telling if these faults
are representative of common faults in any system, or if they are too simplistic in
nature. Our initial reaction when analyzing failures have been that faults that

78 S. Eldh et al.

dominate are much more complicated in nature than plain logical or computational
faults, which do occur, but not as frequent. Ishoda [21], argues that basing research by
capture- recapture (inserting faults, and then estimating how many of them are found)
is not a sufficient technique for reliability (and test evaluations) analysis, and that
correct frequency and type of faults must be known for the software in question. We
support this argument, which also lead us to investigate our own frequency and type,
to understand the characteristics of our particular type of software. Ostrand, Weuyker,
and Bell [22] work in the same domain as us, large middleware systems with similar
problems. They have not focused on the fault type in itself, but on occurrences and
location, which is similar to our approach. Since they have classified based on their
MR (similar to Ericsson’s TR), we also assume (but have not verified) that their data
suffer from the same problem as our, what is reported (failure) and the connection to
the actual fault in some code file needs a much further analysis. Yet, they report
interesting results that seem to match our experiences: Most of the faults reside in (or
are reported on) 20% of the software, i.e. 80% of the software is more or less fault-
free. Furthermore, their distribution seems to match ours, with over 50% of the
failures related to missing or spurious code. A comparison with our figures shows that
their distribution and frequency is very similar to ours, even if it is done more than 20
years ago. We will discuss this further in our last section: Dicussions and conclusions.

The key problem we would like to address is that there is no recent industry data
available for research purposes. In addition, people who measure are often using too
high level classifications [8] to be useful for our purpose. We have also studied bug
taxonomies [12, 32], but conclude that they mix cause, fault and failure, and are
seldom providing obvious support for re-injecting faults, even if they give valuable
information about failures.

Our main conclusion is that it is important to regularly collect and report findings
of this nature from real industrial and commercially used systems to keep information
in tune with development approaches, software and faults. We also assume that there
is a large diversity of the frequency of faults, depending on what type of system and
domain they reside in. We also suggest that within a domain – or type of system (e.g.
a large complex operating system middleware with partially proprietary hardware) it
is possible to find similar structures across the entire domain, which could indicate
that the results are not limited to only e.g. telecommunication middleware systems.

3 Case Study Process and Data Selection

The process followed in our case study is described in Fig. 2. We started by selecting
the Trouble Reports (TRs) for which a link to the corresponding code exist; using a
script that automatically linked the fault id into the corrected code as a comment.
Then we compared the corrected code with the original version of the code, to
identify areas in the code where the fault could reside. This is a non-trivial task, since
enhancements and improvements to the code are mixed with corrections. We then
classified each Trouble Report into one of the chosen failure classes.

 Component Testing Is Not Enough - A Study of Software Faults 79

Selection
of TRs

Trouble
Report

Relate TR to Class & to Source Code

Prepare and create distributions

Analyze results

Interviews to validate findings

Conclude findings

Fig. 2. Overview of the classification process

The distribution of failures was then analyzed, followed by some interviews of the
designers, with the aim to validate our findings. The component size was
approximately 180-200 000 lines of non-commented code (measured over the three
year period). For the entire middleware system, there were 4769 TRs reported and of
these we have considered 1191, indicating that it is a central part of the software.
From these reported TRs (and also, from the complete set of 4769 TRs), some of the
TRs have been analyzed to originate from faults elsewhere, or require corrections in
two places. We must understand that not all of the 1191 TRs lead to a correction.
There are 181 TRs reported directly on this component’s code during this period. Our
number is higher (362) which indicates that TRs that reside elsewhere (are reported
on other places in the code) affects this code. The TRs within this target are all using
a particular labeling function that makes it possible to trace the TR to the actual file
(see Fig. 3).

Trouble
Report ID

in ClearDDTS

Code
file

With a lot of a lot
of small text that is not
readable if you are not
using some trick, I thought
this interesting. I cannot se

Code
file

With a lot of a lot
of small text that is not
readable if you are not
using some trick, I thought
this interesting. I cannot se

Code
file

With a lot of a lot
of small text that is not
readable if you are not
using some trick, I thought
this interesting. I cannot se

Label Trouble Report fix ID in ClearCase

Fig. 3. Failure (Trouble Report) – fault/fix relation, where the label points out involved files

How this subset (of labeling) is related to the 1191 TRs we have not been able to
pinpoint, since it would have required serious data mining, taking all change requests
in to account and other factors. From the entire set of 362 TRs, we now withdraw all
faults that are not software related, e.g. duplications and wrong usage, to come up

80 S. Eldh et al.

with our set of 295 unique failures, and of them only 170 (204 adjusted1) are software
failures. This means that approximate 14% (17% adjusted) of the reported failures
(1191 TRs) at least are real software code faults!

Little or no general tool-support exists to trace, categorize and get support in
tracking down the fault causing a failure. Currently this has for non-trivial cases to be
handled by manual work through code inspection. Manual comparisons of two
versions of the source code is often the used method to extract the actual difference,
but this is not enough, since enhances to the software and other modifications must be
excluded and the fault origin or origins must be isolated. The problem is non-trivial
in systems with a multitude of code branches, since it amounts to know where to look
without having to scan through a multitude of files and to separate fault corrections
from any other code modifications, improvements and change requests.

This is the true complication of relating a “unique” failure to a “unique” fault since
they do not have a one to one relationship. What even more complicated our
classification was that the original designers (and troubleshooters) were not available
to ask of the real origin of the fault. Doing a complete trace could take us between 3
days to two weeks, which explains why this route to identify and gather faults from
failures is seldom taken for this type of research. With the labeling function, the
connection between the TR-system id and the actual place in the code where the fault
could reside could be made, and capturing the correct code became a task of analysis
between one hour and 2 days, when done by a person not familiar with the software.
We consider this a great improvement.

4 Identified Failure Distributions

This section presents the fault classification, the distribution of failures observed in
our case study together with the distribution of the software faults over number of
affected code files.

4.1 Fault Classification

In our classification we use the following classes of faults

• Language Pitfall are faults that are specific to the programming languages used,
e.g. pointer being null, pointer pointing to an invalid address, valid address but
pointing at garbage. E.g. arrays is a common type of data structure accessed with
index, and if the value falls outside the boundary of the array then the accessed
element is unknown, or data might be modified that shouldn’t. In addition,
overflow and underflow are categorized in this class.

• Computational/Logical faults are faults inside a computational expression. A
logical fault is similar to a computational fault, except that it is related to a logical
expression.

1 Our investigation showed that for many reported failures, the actual fault (represented by the

corrections in the code) is not unique and failures and faults do not have a one to one
relationship. Therefore, we have adjusted our figure, by adding all software faults that are
contributing to the cause of a failure.

 Component Testing Is Not Enough - A Study of Software Faults 81

• Fault of omission is when a fault happens due to missing functionality, i.e. the
code that is necessary is missing. E.g. a part, an entire statement or a block of
statements missing can be classified as faults of omission, which means missing
either of the following: function call, control flow path, computational or logical
expression.

• Spurious faults are similar to Faults of omission, but in this case there is “too
much code”, and the correction is to remove one or several statements.

• Function faults are faults, such as calling the function with the wrong parameter
or calling the wrong function.

• Data faults including faults of several types: Primitive data faults, which include
defining a variable to the wrong primitive data type, e.g. integer to be unsigned
but should not have been; Composite data fault e.g. structure (in C or C++);
initialization fault and assignment fault.

• Resource faults are faults that deal with some kind of resource, such as memory
or a time, therefore this class handles faults from allocation, de-allocation, race-
conditions, time issues (dead-lock) and space (memory, stack etc).

• Static code fault class is code that does not change after compilation of software
or after the first execution, when using an interpreted language. This code is e.g.
source code or configuration files which the software when executing uses.

• Third party faults are faults in software for which we do not have access to the
source code and hence cannot correct ourselves.

• Hardware faults and Documentation faults are self-explanatory classes, and do
not relate to software.

We have grouped the above into four groups, viz., code, process, configuration
management (CM) and other.

4.2 Fault Distribution

The selected of 362 trouble reports, were distributed as explained in Table 1 below,
where faults of omissions topped the list. The second largest class of Trouble Reports
is Duplicates. One failure out of three non-software related failures reported is a
duplicate. What is interesting is that these duplicates were not identified as duplicates
until they were corrected in the code. This means that the TRs were individually
decided to be fixed, and assumed to be of different fault origin, since they showed
different behavior and were viewed as different failures. Otherwise, these failures
would have been omitted before ordering them to be fixed. The high number of
duplication of failures is also related to the way testing is done on this complex
system, and also to the type of software (which most other parts of the software were
dependent upon). This means that many failures in this particular software will be
found and reported by several persons. Another aspect is that failure reports are
symptoms, and they might not appear in the same way (and be explained similarly) by
two different persons. This problem is recently remedied, by enhancing the pre-test on
the entire system before release (much as a result of the insight gained by this case
study).

82 S. Eldh et al.

Table 1. Failure distribution into classes and their frequency. Second column is the adjusted
value (when translating TR to fault classes).

Group Fault/Failure Class Failures Code Fault adjusted
Code Faults of omission 73 78
Process Duplicate of TR 67 -
Code Data fault 22 26
CM No files associated 21 -
Process Change requests 21 -
Code Static code fault 20 21
Code Spurious faults 17 17
CM SCM 15 -
Code Resource fault 13 13
Code Computational/

 Logical fault
11 28

Code Function fault 11 13
Process Fault not fixed 9 -
CM Compile time fault 8 -
Other Third party fault 5 -
Other Documentation fault 4 -
Code Language Pitfall 3 8
Other Hardware fault 2 -
Process Not a fault 1 -
Code/Other Too difficult to classify 39 -
 Sum 362 204

Disregarding duplicates of failures leading to the same fault, we would focus on

the 295 unique failures. However, the classification needs adjustment, in relation to
how some failures are reported. For example, if a fault needs two corrections to be
fixed, and there are duplicate TRs, there is no way of telling that one TR correction is
assigned to one or the other fault correction, and the “duplicate” vice versa. We see
this as a disturbance of the data, but have reported the adjustment for the fault classes
in software. The adjusted values will if re-inserted cause failures. We have started
further investigations to understand the nuances of how faults actually infect the
software, and when and how visible they are.

The next interesting class of failures was “too difficult to classify” containing 39 of
the failures. The reason is that it is impossible to pinpoint the exact difference, since
the entire unit or file was re-designed, and large portions of the code rewritten. This
also makes it difficult to pinpoint if the change was only due to the failure, or due to
other factors such as updates, expansions, new features etc. We decided that for our
purposes is not worth the effort to sort this out, instead we just conclude that 13% of
the unique failures lead to a major change in the system. Only 8 (of 19) classes can be
considered in our investigation, since these are the ones directly related to software
faults. This is only 170 of 362 reported failures (47%), or 170 out of 295 unique
failures (58%). This means that as much as 53% can be dismissed due to problems
that are either indirect, process or system related, or disturbance in data and that these
failures do not uniquely originate from the software. Third party faults are software
faults, but they cannot be traced into code, since the source code is not always
available to us, and must be corrected by another party. Another category is how the

 Component Testing Is Not Enough - A Study of Software Faults 83

system is built and integrated, including software configuration management (SCM)
failures, compile time failures (during the build) and the category of “no files
associated”. These failures are strongly related to the fact that a major change of build
system and product structure happened during the period of data collection, which
explains why it constitutes 1 out of 5 non-software related faults.

In Table 2, we present distribution of faults together with the number of files which
had to be updated to correct the faults.

Table 2. Distribution of adjusted faults into number of files

Number of files Code fault class Faults %
1 2 3 4 5 6 7 8 9 11 25

Faults of
omission

78 38.2 50 12 8 4 2 1 1

Computational/
Logical fault

28 13.7 24 2 2

Data fault 26 12.7 20 3 1 2
Static Code Fault 21 10.3 4 7 2 1 1 3 1 1 1
Spurious faults 17 8.3 11 2 1 1 1 1
Resource fault 13 6.4 8 5
Function fault 13 6.4 11 1 1
Language Pitfall 8 3.9 6 1 1
Summation 204 99.9 134 32 13 8 6 5 1 2 1 1 1

The failures found in the case study, can involve between 1 to 64 files. The
software faults can be distributed between 1 to 25 files. Analyzing this data shows the
majority (66%) are from 1 file, but e.g. that faults of omission involve more than one
file for 36%. We have not looked at the details, such as the location of the faults
within the file, which is demands a more in depth investigation, or if the files are all
“owned” by the same designer or not.

Our result was not what we expected, since we have had the assumption that e.g.
more than 4% would be language pitfalls. This is why we felt reporting these findings
would aid others in understanding more about the nature of faults. Our most important
findings can be summarized as follows:

• Most of the faults were faults of omission or “missing path”, meaning, not until
execution on higher integration and system levels the lack of code was noted and
the failure visible. A designer could clearly not find this, and the cause is most
likely insufficient specifications available on lower level or lack of knowledge of
the context of the code. A related fault class is spurious faults, where too much
code is written, which might be overlapping or creating the problem.

• More than 34% of the corrections involve more than one file and the maximum
of involved files for a correction is 25 files – the conclusion is that these faults
are not possible to find on component level, and even 100% code-coverage on
component level would not reveal the failure.

• Faults are much more complex than simple mistakes; often complicated logic
confuses the developer. The semantics of faults are complex.

• Resource faults are not as complicated as e.g. static code faults when it comes to
distribution of location.

84 S. Eldh et al.

5 Validation and Threats

This is a case study, which has low control over the environment, we have had some
control over the measurements, but they were selected on the basis of possibility to
gather (based on the labeling feature), which was random and outside our control. The
replication is probably low of the experiment itself, but it should be possible to take
any known failure/fault classes and do the same classification with a different
outcome, depending on the software, process, organization and situation.

The main argument favoring our study is that, all failures and thus faults are from a
live real system, and it is representative of the faults found and fixed, even if it is a
not so huge sample. One possible validity threat is the selection of data is created
based on the labeling function. The obvious way to perform a study on distribution of
failures into fault classes would be to look at all faults, by comparing the difference
between code versions. This is not a viable approach, since in systems, fault
corrections, changes by adding new and modified code are mixed. Secondly, we have
only focused on one small part of the system, since the main purpose was to identify
the faults that we could make a copy of and re-inject the faults to use in controlled
experiments. We investigated that for every reported failure, finding the actual fault,
which represents the correction in the code, is still not completely accurate, since
there is not a one to one relationship and this creates a problem in how to classify a
fault. This is why we have shown two values, one based on the failure data reported,
and one based on the adjusted software fault correction possible to re-inject in the
code. The selection was made out of convenience, to find and create a sample to
reason about. The failures corrections (labels) selection came from a wide
community, of 65 designers from many countries and collected over a long time
period and over many versions and changes in the system (3 years). We draw the
conclusion that this fact lessens the internal threat, since the bias of interpretation has
less impact, but cannot be disregarded.

Conclusion validity relates to subject selection, data collection, measurement
reliability, and the validity of the statistical tests. These issues have been addressed in
the design of the experiment, and we believe there is a disturbance in the data
collection and measure reliability. We have used a nominal scale to classify our
Trouble Reports. The classification is rather simple, which could be indicating
problems with the internal validity. Classification into another system will yield a
different result. Since our distribution is done with little insight of the software and no
insight of history, process and organization and by and external party (thesis worker)
the bias is minimized. There is no researcher bias put into the investigation, since it
was done by a third party, and no guidance was given to what set of faults should be
investigated, how the distribution and classification should be used or chosen. Thus,
the researcher, who is familiar with some aspects of history, organization, process and
software, which could indicate a bias, and a threat to the validity, have made the
conclusions and verified the result.

Discussing the generalization of the result, we must look at external threats. The
faults selected are on one particular product, but the nature of the product is such that
it could probably be representative for lots of industrial software. We cannot conclude
that that the result is generic since the distribution is dependent on organization,
process, quality awareness, and a lot of other factors. However, earlier studies [12]

 Component Testing Is Not Enough - A Study of Software Faults 85

with similar results supports that for these types of systems the results could be
generic and not an isolated result. We do think this is one example of a typical
industry software fault distribution. Using our conclusions for any system might be
pre-mature, but we suggest that this information can serve as an indication for
complex middleware systems, operating systems, and similar large complex systems.
All data is still available to pursue further studies.

6 Future Work

For natural reasons, a lot of the designer faults are found by designers themselves and
are not registered. Depending on industry, designers are usually responsible for a
large amount of the lower-level testing (unit, component, and lower level integration,
and even some functional testing). Therefore, data on failures originates from
independent test at different integration points, (levels), and from customers reports.
We intend to investigate what faults and failures the designers themselves find.

Since we have noticed fault classifications often become failure or cause
classifications, we aim to do a further study and make a fault classification (bug
taxonomy) that are more useful for fault injection purposes. We believe we have
already hinted on a structure (defining our classes and sub-classes), but feel we need
to investigate and possibly expand these further. We also need to provide more clear
rules for how to classify faults, so they cannot be classified in different classes
depending on how the fault is interpreted. The large number of existing fault
classifications will also be juxtaposed in such a new classification.

We would like to investigate automatic ways to classify legacy software, but that is
not our primary concern, and we invite other researchers into a discussion about the
feasibility of automatic classifications, as we have seen a published example of [13].

Our primary concern is to prepare code in many different versions, with real faults
injected. These fault-injected code samples are intended to be used for evaluating test
techniques in a controlled manner. We aim to inject faults into a system to minimize
bias for one test technique over another. This require us to have a clear classification
(with relation to the test technique), and there must be a variety of faults that behave
(propagate) and is viewed differently, if we are to determine where a test technique
would be more efficient. Our interest to find a set of faults that through execution
behaved in different ways, and cause different failures in the software. The faults we
have found, isolated, classified, and understood are to be re-injected in the code for
better comprehension of how each one of them behaves when propagating to failures,
as opposed to debugging. Of course, the variety of faults is more interesting, and we
are to explore mutation techniques as a complement, and study how they behave and
how their fault semantics could look like.

7 Discussions and Conclusions

We now return to the questions posed in the introduction and present our findings
based on the collected data.

86 S. Eldh et al.

1. What are real and important faults in software that have propagated to failures,
and are fixed?

The answer is clearly that faults of omission (38,3% of software faults), together
with spurious faults (8,3 % of all software faults), shows that faults related to unclear
specifications dominates among the real software faults found in the considered sub-
system in a large complex middleware system. The main conclusion and contribution
is the fact that the individual designer at component test level do not find these type of
faults, and that they must be found at later stages in testing. It underlines how difficult
it is for a designer to understand, define, specify and implement code in an
environment of complexity, since not enough knowledge of context available. This is
supported by looking at distribution of the faults over files, where 36% of these two
classes of faults spans over more than one file.

2. What is the distribution of failures and faults into classes?

Our observations were as follows:

• 53% of all failures decided to be corrected are not relating to the software and are
not possible to re-inject into the software

• Faults of omission (lack of code) is the dominating class among the software
faults (38.3%)

• Computational/Logical (13.7%) and Data faults (12.7%) followed by Static Code
faults (10.3%) are the next largest groups.

• Language pitfalls are only contributing with 4% of the software fault distribution

3. Is there any other specific pattern of the faults and failures that would guide us

into understanding the software process better?
• We have found that as much as 19% of all faults are duplicates that still remain to

be corrected (even after management has taken out duplicates). This shows that
software failures are often expressed differently and not identified as duplicates
until code is corrected.

• Software configuration management and build related faults together are
contributing with as much as 15% of the failures.

• Conventional faults in software (computational/logical and functional faults,
language pitfalls and static code faults) are only 39.6% of the software faults in
this complex middleware system.

We think that these findings suggest where effort and cost should be placed. We

know for a fact that this software had a targeted component test improvement (unit
level) during the year 2005, which greatly improved the quality. We know that from
the period 2003-2004 most of the trouble reports came from outside this software
organization (applications, customers), but after the improvement most of the trouble
reports originated from within the organization. We also know that the testing of these
products have improved between 2003 and 2006, with only one test level in 2003, and
now with more than 4 test levels. We can also see this reflecting in the number of
duplications going down. We have noticed that viewing Trouble Reports (failures)
over time, provides us information that many of the changes induced by the trouble
reports that we considered were both re-designs for change and expansions purposes

 Component Testing Is Not Enough - A Study of Software Faults 87

and for fixing bad design, and these problems were more common earlier in the
development than in the later stages of development. We suggest that changing
software configuration and build system will have a great impact on the code (since
our study indicated as much as 15% of faults are due to SCM). We think there is
much information to be utilized from this study. We do believe it is humanly
impossible to understand the entire system, and even if knowing context and teaching
about it, this will only remedy a part of the problem, and that unit and component
testing alone have no chance of finding a majority of these faults, which is of course
already shown and evident. This study strengthens that evidence. Even if we strongly
believe component testing is essential for complex systems that need to be robust, we
must do testing on many other levels in the system to understand where the important
faults hide. Testing is a support to the designer.

We were surprised that the fault categories that are the target of many static
analysis tools had so low frequency, which leads us to suggesting a more cost–
efficient way might be to work on specifications, understanding the software context,
and test-set up. We believe that since the system is build in a “fail-safe” way with the
aim to minimize impact of anything going wrong (by duplication of hardware,
protocol resending, restarting etc) the impact of simple singular faults are often
hidden or dormant. We believe that the improvement on component test are not
reported in the same way in the trouble report system, since designers correct their
own mistakes when they encounter them, rather than report them, which puts a hidden
figure on these types of faults. Most of the component test faults (that is found by e.g.
static analysis tools and component test) are not as visible in this study, but still do
exist.

We have concluded why there is such a lack of information on code faults – and
how good it is to do this analysis and really understand the information, since it gives
Ericsson guidance on where efforts of improvements should be targeted. We
understand the difficulty to gather this information if traceability of the code is not
directly possible from the reported failure. The strength in our study is that it is
unbiased to the code, and based solely on applying clear classification rules. We have
of course encountered problems with classifications, how distinct the classes are, and
how classifications should be applied. We intend to explore this in detail in a future
work.

Acknowledgments. We would like to thank Ericsson for their support. We would
also like to thank our sponsor The Knowledge Foundation, which via their SAVE-IT
program made this research possible.

References

1. Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., Sundmark, D.: A Framework for
Comparing Efficiency, Effectiveness and Applicability of Software Testing Techniques.
In: Proc. TAIC, IEEE, New York (2006)

2. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 Years of Testing Technique
Experiments. Journal of Empirical Softw. Eng., vol. 9(1-2), pp. 7–44. Springer, Heidelberg
(2004)

88 S. Eldh et al.

3. Hyunsook, D., Elbaum, S., Rothermel, G.: Infrastructure support for controlled
experimentation with software testing and regression testing techniques. In: Proc. Int.
Symp. On Empirical Software Engineering, ISESE ’04, pp. 60–70. ACM, New York
(2004)

4. Apiwattanapong, T., Santelices, R., Chittimalli, P.V., Orso, A., Harrold, M.J.: Tata:
MaTRIX: Maintenance-Oriented Test Requirements Identifier and Examiner. In: Proc.
From TAIC, IEEE, New York (2006)

5. Basili, V.R., Selby, R.W.: Comparing the Effectiveness of Software Testing Strategies
original 1985, revised dec. 87. In: Boehm, B., Rombach, H.D., Zelkowitz, M.V. (eds.)
Foundations of Empirical Software Engineering, The Legacy of Victor R. Basili, Springer,
Heidelberg (2005)

6. Myers, G.J.: A controlled experiment in program testing and code walkthroughs
inspections, Comm. ACM, pp. 760–768 (September 1978)

7. Hetzel, W.C.: An experimental analysis of program verification methods, PhD dissertation,
Univ. North Carolina, Chapel Hill (1976)

8. Chillarege, R., Inderpal, S., Bhandari, J.K., Chaar, M.J., Halliday, Moebus, D.S, Ray, B.K,
Wong, M.-Y.: Orthogonal defect classification – a concept for in-process measurements.
IEEE Trans. on Soft. Eng 18(11), 943–956 (1992)

9. Thane, H., Wall, A.: Testing Reusable Software Components in Safety-Critical Real-Time
Systems, vol. 1(1-2) Artech House Publishers (2002)

10. Avižienis, A., Laprie, J.: Dependable computing: From concepts to design diversity. In:
Proceedings of the IEEE, vol. 74, pp. 629–638 (May 1986)

11. Basili, V.R., Perricone, B.T.: Software errors and complexity: An empirical investigation.
Communications of the ACM 27(1), 42–52 (1984)

12. Beizer, B.: Software Testing and Quality Assurance. Van Nostrand Reinhold
electrical/computer science and engineering series. Van Nostrand Reinhold, NY (1984)

13. DeMillo, R.A., Maihur, A.P.: A grammar based fault classification scheme and its
application to the classification of the errors of TEX. Technical Report SERC-TR-165-P,
Purdue University, West Lafayette, IN 47907 (1995)

14. Endres, A.: An analysis of errors and their causes in system programs. Technical report,
IBM Laboratory, Boebligen, Germany (1975)

15. Johnson, C., et al.: Guide to IEEE standard for classification for software anomalies. In:
Technical report, IEEE Computer Society, Washington (1995)

16. Goodenough, J.B., Gerhart, S.L.: Toward a theory of test data selection. In: Proceedings of
the international conference on Reliable software, pp. 493–510. ACM Press, New York,
USA (1975)

17. Gray, J.: Why do computers stop and what can be done about it? Technical Report, vol.
85(7) Tandem Computers (1985)

18. Harrold, M.J., Offutt, A.J., Tewary, K.: An approach to fault modeling and fault seeding
using the program dependence graph. Journal of Systems and Software 36(3), 273–296
(1997)

19. Howden, W.E.: Reliability of the path analysis testing strategy. IEEE Trans. on Software
Engineering 2(3), 208–215 (1976)

20. Knuth, D.E.: The errors of TEX. Software Practice and Experience 7, 607–685 (1989)
21. Ishoda, S.: A criticism on the capture-and-recapture method for software reliability

assurance. In: Proc. Soft. Eng, IEEE, New York (1995)
22. Ostrand, T.J., Weyuker, E.J, Bell, R.M.: Predicting the Location and Number of Faults in

Large Software Systems. IEEE Trans. of Soft. Eng., vol. 31(4) (April 2005)

 Component Testing Is Not Enough - A Study of Software Faults 89

23. Perry, D.E., Steig, C.S.: Software faults in evolving a large, real-time system: a case study.
In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 48–67. Springer,
Heidelberg (1993)

24. Kaner, C. Falk, J., Nguyen, H.Q: Testing Computer Software. 2nd edn. International
Thomson Computer Press (1993)

25. Vaidyanathan, K., Kishor, S., Trivedi, A.: A comprehensive model for software
rejuvenation. IEEE Trans. on Dependable and Secure Computing 2(2), 124–137 (2005)

26. Zeil, S.J.: Perturbation techniques for detecting domain errors. IEEE Transactions on
Software Engineering 15(6), 737–746 (1989)

27. Mohaghegi, P., Conradi, R., Borretzen, J.A.: Revisiting the problem of Using Problem
Reports for Quality Assessments, WQSA, ICSE (2006)

28. Henningsson, K., Wohlin, C.: Assuring fault classification agreement – An Empirical
Evaluation. In: Proc. of ISESE’04, IEEE, New York (2004)

29. Offut, A.J., Huffman- Hayes, J.: A Semantic Model of Program Faults. In: Proceedings of
ISSTA, pp. 195–200 (1996)

30. Damm, L.O, Lundberg, L., Wohlin, C.: Fault-Slip Through - a concept for measuring the
efficiency of the test process. Journal of Software Process: Improvements and Practice,
vol. 11(1), pp. 47–59. John Wiley and Sons, New York (2006)

31. Murphy, B., Garzia, M., Suri, N.: Closing the Gap in Failure Analysis. Workshop on
Applied SW Reliability-DSN (2006)

32. Andrews, J.H., Briand, L.C., Labiche, Y.: Is Mutation an Appropriate Tool for Testing
Experiments? In: ICSE 2005, ACM, New York (2005)

33. Frankl, P.G., Iakounenko, O.: Further Empirical Studies of test Effectiveness. In: Proc. 6th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Orlando, FL, USA, pp. 153–162 (1998)

34. Vokolos, F.I., Frankl, P.G.: Empirical evaluation of the textual differencing regression
testing technique. In: Proc. IEEE Int. Conference on Soft. Maint. USA, pp. 44–53 (1998)

35. IEEE Std. 1044 -1993, Standard for classification for software anomalies. IEEE (1993)

Symbolic Model Based Testing

for Component Oriented Systems

Alain Faivre1, Christophe Gaston1, and Pascale Le Gall2,�

1 CEA LIST Saclay F-91191 Gif sur Yvette
{alain.faivre,christophe.gaston}@cea.fr

2 Université d’Évry, IBISC - FRE CNRS 2873,
523 pl. des Terrasses F-91000 Évry

pascale.legall@ibisc.univ-evry.fr

Abstract. In a component oriented approach, components are designed,
developed and validated in order to be widely used. However one cannot
always foresee which specific uses will be made of components depending
on the system they will constitute. In this paper we propose an approach
to test each component of a system by extracting accurate behaviours
using information given by the system specification. System specifica-
tions are defined as input/output symbolic transition systems structured
by a communication operator (synchronized product) and an encapsula-
tion operator (hiding communication channels). By projecting symbolic
execution of a system on its components, we derive unitary symbolic be-
haviours to be used as test purposes at the component level. In practice,
those behaviours can be seen as typical behaviours of the component in
the context of the system. We will illustrate on an example that those
behaviours could not have been extracted by reasoning uniquely at the
component level.

Keywords: component based system, ioco-based conformance testing,
input/output symbolic transition system, symbolic execution.

1 Introduction

In the framework of reactive systems, a component oriented system is con-
stituted of components continuously interacting together and with their envi-
ronment by means of communication mechanisms. In a first step, basic com-
ponents are usually specified, implemented and tested: this is called unitary
testing. Then, the complete system is specified, implemented and tested tak-
ing into account the component based structure: this is called integration test-
ing. Concerning integration testing, two main approaches can be followed de-
pending on the targeted fault model. In the first approach, the global system
is tested according to behaviors involving communication mechanisms, focus-
ing on cases for which those mechanisms are not observable (i.e internal com-
munications). Obviously, this approach is used when the targeted fault model
� This work was partially supported by the RNRT French project STACS and the

RNTL French project EDEN2 .

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 90–106, 2007.
c© IFIP- International Federation for Information Processing 2007

Symbolic Model Based Testing 91

mainly deals with communication mechanisms as in [9,5,1]. In the second
approach, the global system is tested by selecting behaviors of basic compo-
nents that are typically activated in the system. It amounts to re-enforce
unitary testing with respect to those behaviors. In terms of fault model, the
counterpart of this approach is that communication mechanisms are supposed
to be correctly implemented and correctly used by programmers. Thus, in this
case, a non conformance of the system should only result of uncorrect imple-
mentations of components. [13] has proposed a theoretical framework based
on these assumptions and has stated results concerning preservation of con-
formance through component composition. In this contribution, our objective
is to re-enforce testing of components and intermediate sub-systems. Now, the
question is: how to choose behaviors to re-enforce component and sub-system
testing in order to make them more reliable in the context of the system?
In fact, when a sub-system is involved in a more complex one, it is very prob-
able that all the sub-system behaviors are not activated. In this paper, the
models that we use to denote specifications of communicating systems are made
of simple input/output symbolic transition systems (IOSTS) ([4,6,3]) for de-
noting basic components, and of two structuring operators, namely composition
and hiding (as in [13]). Those models based on input/output symbolic tran-
sition systems are equipped with naming mechanisms that allow us to easily
retrieve all relevant information concerning sub-systems. Those naming mech-
anisms together with symbolic execution technics [7] are used to define rele-
vant behaviors of sub-systems. Moreover, we show how to use those behaviors
as test purposes in an ioco-based [11,12,3,4] conformance testing framework.
From a technical point of view, this contribution is an extension of the one pre-
sented in [4] for component oriented system testing. As we do not make any
assumption concerning the communication mechanisms, a system (implemen-
tation) is considered as conformant with respect to a structured specification
if it has the same structure, if for each intermediate subspecification, there
exists a subsystem corresponding to it, and if each subsystem is conformant
according to the ioco conformance relation with respect to the corresponding
subspecification.

The paper is organized as follows. In Section 2, we present the IOSTS formal-
ism, the notion of basic component based system and the notion of (sub-)system.
In Section 3, we show how to define test purposes from symbolic execution of
such systems and how to project them on any sub-system. In Section 4, we define
our symbolic test purposes. Section 5 is a conclusion.

2 Structured Input/Output Symbolic Transition Systems

IOSTS are used to represent behaviors of reactive systems. Those behaviors are
composed of internal actions and communication actions which are emissions
or receptions of values through channels. Internal states are modeled by assign-
ments of particular variables called attributes.

92 A. Faivre, C. Gaston, and P. Le Gall

2.1 Basic Definitions of IOSTS

We use the following set theory notations. The set of functions of domain A and
codomain B is denoted BA.

∐
stands for the disjoint union.

For any set X , IdentX denotes the identity function on X . For any two
functions f : A→ B and g : C → D such that A ∩C = ∅, f |g : A ∪ C → B ∪D
is the function such that f |g(x) = f(x) if x ∈ A and f |g(x) = g(x) otherwise.
Moreover, for any E ⊆ A, f |E is the restriction of f to E. A data type signature
is a couple Ω = (S,Op) where S is a set of type names, Op is a set of operation
names, each of them being provided with a profile s1 · · · sn−1 → sn (for i ≤ n,
si ∈ S). Let V =

⋃
s∈S Vs be a set of typed variable names. The set of Ω-terms

with variables in V is denoted TΩ(V) =
⋃

s∈S TΩ(V)s and is inductively defined
as usual over Op and V . Type : TΩ(V) → S is the function such that for each
t ∈ TΩ(V)s, Type(t) = s. In the following, we overload the notation Type by
defining Type(X) = s for any set X ⊆ Vs. TΩ(∅) is simply denoted TΩ. An
Ω-substitution is a function of TΩ(V)V preserving types. Any substitution may
be canonically extended to terms. The set SenΩ(V) of all typed equational Ω-
formulae contains the truth values true, false and all formulae built using the
equality predicates t = t′ for t, t′ ∈ TΩ(V)s, and the usual connectives ¬,∨,∧.
A Ω-model is a family M = {Ms}s∈S with, for each f : s1 · · · sn → s ∈ Op, a
function fM : Ms1 × · · · ×Msn → Ms. We define Ω-interpretations over V as
applications of MV preserving types, that are also extended to terms of TΩ(V).
A model M satisfies a formula ϕ, denoted by M |= ϕ, if and only if, for all
interpretations ν, M |=ν ϕ, where M |=ν t = t′ iff ν(t) = ν(t′), and where the
truth values and the connectives are handled as usual. Given a model M and a
formula ϕ, ϕ is said satisfiable inM , if there exists an interpretation ν such that
M |=ν ϕ. In the sequel, we suppose that data types of our IOSTS correspond to
the generic signature Ω = (S,Op) and are interpreted in a fixed model M .
IOSTS-signatures are composed of a set of particular variables called At-

tributes and of a set of Channel names.

Definition 1. (IOSTS-signature) An IOSTS-signature is a couple (Att,
Chan) such that Att =

⋃
s∈S Atts. For any two IOSTS-signatures Σi = (Atti,

Chani) with i ∈ {1, 2}, the union of Σ1 and Σ2, denoted Σ1∪Σ2 is the IOSTS-
signature (Att1

∐
Att2, Chan1 ∪ Chan2).

Union of signatures does not collapse attributes. Even though Att1 and Att2
contain a common variable name x, the union Σ1 ∪ Σ2 distinguishes the two
occurrences of x. On the contrary, channel names are used to synchronize com-
munication actions and thus, are shared by a simple identification in the union.

Definition 2. (Actions) The set of communication actions over Σ = (Att,
Chan), denoted Act(Σ), is the set Input(Σ) ∪Output(Σ) ∪ {τ}, where:
Input(Σ) = {c?Y | c ∈ Chan, ∃s ∈ S, Y ⊂ Atts}
Output(Σ) = {c!t | c ∈ Chan, t ∈ TΩ(Att)}

c?Y denotes the awaiting of a value to be received through the channel c and
to be stored on all variables of Y . In the sequel, when Y is a singleton {y}, we

Symbolic Model Based Testing 93

can note c?y instead of c?{y}. c!t denotes the emission of the value t through
the channel c and τ is an internal action without any communication action.

We enrich basic-IOSTS of [4] with a naming mechanism associating to each
transition a name chosen in a set TN of transition names.

Definition 3. (IOSTS) An IOSTS over a signature Σ = (Att, Chan) is a
triple G = (State, init, T rans) defined by a set State of state names, an initial
state init ∈ State, and a set of transitions Trans ⊆ TN × (State × Act(Σ) ×
SenΩ(Att)× TΩ(Att)Att ×State). ST S denotes the set of all IOSTS.

In the sequel, for any transition tr of the form (n, (q, act, ϕ, ρ, q′)), name(tr)
stands for n and is called the name of tr, source(tr) (resp. target(tr)) stands for
q (resp. q′) and is called the source state of tr (resp. target state of tr), act(tr)
stands for act and is called the communication action of tr, guard(tr) stands
for ϕ and is called the guard of tr, subst(tr) stands for ρ and defines how the
attributes are modified when the transition is fired. Finally, body(tr) stands for
(q, act, ϕ, ρ, q′). For an IOSTS G, Sig(G), Att(G), Chan(G), State(G), init(G)
and Trans(G) resp. stand for Σ, Att, Chan, State, init and Trans.

Definition 4. (Runs of a transition) With notations of Def. 3, let tr ∈
Trans. Let us note Act(M) = (Chan × {?, !} ×M) ∪ {τ}. The set Run(tr) ⊆
MAtt×Act(M)×MAtt of execution runs of tr is s. t. (νi, actM , ν

f) ∈ Run(tr) iff:

– if act(tr) is of the form c!t (resp. τ) then M |=νi guard(tr), νf = νi ◦
subst(tr) and actM = c!νi(t) (resp. actM = τ),

– if act(tr) is of the form c?Y then M |=νi guard(tr), there exists νa such
that νa(z) = νi(z) for all z /∈ Y and for any x, y ∈ Y νa(x) = νa(y),
νf = νa ◦ subst(tr) and actM = c?νa(y) for an arbitrary y ∈ Y .

For r = (νi, actM , ν
f), we note source(r), act(r), target(r) resp. νi, actM , νf .

As in [3], we will use δ! to denote under which semantic conditions an IOSTS
is quiescent: quiescence refers to situations for which it is not possible to fire an
output transition but only possibly input transitions or τ transitions.

Definition 5. (Suspension traces and IOSTS semantics) The set of fi-
nite paths in G, denoted FP (G) contains all finite sequence p = tr1 . . . trn of
transitions in Trans(G) such that source(tr1) = init(G) and for all i < n,
target(tri) = source(tri+1). The set of runs of p denoted Run(p) is the set of
sequences r = r1 . . . rn such that for all i ≤ n, ri is a run of tri and for all
i < n, target(ri) = source(ri+1). We note Tr(r) = act(r1) . . . act(rn). The set
of suspension traces of a run r of a finite path p, with r ∈ Run(p), denoted
STr(p, r) is the least set s. t.:

– If p can be decomposed as p′.tr with tr ∈ Trans(G) and with r of the form
r′.rtr with rtr ∈ Run(tr), then {m.act(rtr)|m ∈ STr(p′, r′)} ⊆ STr(p, r).

– If there exists no finite path p.p′ for which there exists r.r1 · · · rk ∈ Run(p.p′)
with for all i ≤ k − 1, act(ri) = τ and act(rk) = c!m for some c and m, then
for any1 δm ∈ {δ!}∗, Tr(r).δm ∈ STr(p, r).

1 A∗ denotes the set of finite sequences of elements of A.

94 A. Faivre, C. Gaston, and P. Le Gall

The set of suspension traces of a path p is STr(p) =
⋃

r∈Run(p) STr(p, r) and
semantics of G are STr(G) =

⋃
p∈FP (G) STr(p).

2.2 Systems

We introduce the concept of library which intuitively allows us to characterize
a set of IOSTS denoting basic components from which systems can be built.
Formally a library is a set of couples, each of them being constituted of an
IOSTS name and an IOSTS definition. IOSTS names are chosen in a given set
BN whose elements are called basic-IOSTS names.

Definition 6. (Library) A library is a set B whose elements are of the form
(n,G) where n ∈ BN and G ∈ ST S, s. t. for any two (n1, G1), (n2, G2) in B,
n1 = n2 iff G1 = G2. If G1 �= G2, for any t1 ∈ Trans(G1) and t2 ∈ Trans(G2),
name(t1) �= name(t2). Elements of a library are called basic-IOSTS.

In the sequel we consider a library B and we note BN(B) = {n | (n,G) ∈ B}
and Chan(B) = {c | ∃(n,G) ∈ B, c ∈ Chan(G)}. A system over a library B is
built from IOSTS of B using two structuring mechanisms: composition which is
used to aggregate two systems by connecting common channels and hiding is
used to internalize some channels inside the system (they are no more visible
from the environment). As for basic-IOSTS, we denote any system by a name
and an IOSTS. The name associated to a system reflects the structure of the
system. The set SN(B) of system names over B is defined as follows:

– for any n ∈ BN(B), n ∈ SN(B), (a basic-IOSTS is also a system),
– for any n1, n2 ∈ SN(B), (n1 ⊗ n2) ∈ SN(B) (corresponding to the system

obtained by composing two systems named resp. n1 and n2),
– for any n ∈ SN(B) and C ⊆ Chan(B), Hide(C, n) ∈ SN(B) (corresponding

to the system obtained by hiding channels of C in the system named n).

Intuitively, for any system, transitions introduced in its associated IOSTS
are defined over transitions of basic-IOSTSs composing the system, mainly by
synchronization mechanisms. In order to be able to identify basic transitions
involved in system transitions, the name associated to system transitions will
explicit the underlying synchronization mechanism. Therefore, those names are
of the form (o, {i1, · · · , in}) where o is a name of basic output-transition or a
τ -transition and i1, · · · , in are names of basic input-transitions (with possibly
n = 0). Roughly speaking, the name (o, {i1, · · · , in}) generally refers to the syn-
chronization of a basic output-transition named o with basic input-transitions
named i1, · · · , in. Let us point out some particular cases. Any transition obtained
by synchronizing input-transitions named i1, · · · , in with an emission of the en-
vironment is denoted (ε, {i1, · · · , in}) where ε denotes the absence of output-
transition. Any τ -transition in a system has a name of the form (n, ∅) where n
is the name of some underlying basic τ -transition. The set of system transition
names, denoted STN , is then the set (TN ∪ {ε})× 2TN where ε /∈ TN .

We now define systems over a library by means of three constructions: renam-
ing to convert a basic-IOSTS into a system, composition and hiding.

Symbolic Model Based Testing 95

Definition 7. (Systems over B) The set Sys(B) of systems over B is the
subset of SN(B)× IOST S defined as follows:

Renaming: For any (n,G) ∈ B and t ∈ Trans(G), let us define sn(t) =
(name(t), ∅) if act(t) = τ or act(t) ∈ Output(Σ) and sn(t) = (ε, {name(t)})
otherwise. Let us define R(Trans(G)) =

⋃
t∈Trans(G){(sn(t), body(t))}.

(n, (State(G), Init(G), R(Trans(G))) is in Sys(B).
Composition: For any two systems (n1, G1) and (n2, G2) of Sys(B), let us

note G = (State(G1)× State(G2), (init(G1), init(G2)), T rans) the IOSTS
over Sig(G1) ∪ Sig(G2) where Trans is defined as follows:
– If ((o1, i1), (q1, c!t, ϕ1, ρ1, q

′
1)) ∈ Trans(G1) and ((ε, i2), (q2, c?Y, ϕ2, ρ2,

q′2)) ∈ Trans(G2) and such that type(t) = type(Y), then
t = ((o1, i1 ∪ i2), ((q1, q2), c!t, ϕ1 ∧ ϕ2, ρ1 | ρ2[Y ← t], (q′1, q

′
2))) ∈ Trans.

– If ((o1, i1), (q1, c!t, ϕ, ρ, q′1)) ∈ Trans(G1), for all q2 ∈ State(G2) let us
note tr1, · · · , trn all transitions of the form tri = (ni, (q2, c?Yi, ϕi, ρi, q

′′
i))

∈ Trans(G2) for which type(Yi) = type(t). Let us note guard = ∧i≤n¬ϕi

if n > 0 and guard = true otherwise. Then
t = ((o1, i1), ((q1, q2), c!t, ϕ ∧ guard, ρ | IdentAtt(G2), (q′1, q2))) ∈ Trans.

– For any two transitions of the form ((ε, i1), (q1, c?Y1, ϕ1, ρ1, q
′
1)) ∈

Trans(G1), and ((ε, i2), ((q2, c?Y2, ϕ2, ρ2, q
′
2)) ∈ Trans(G2) such that

type(Y1) = type(Y2), then
t = ((ε, i1 ∪ i2), ((q1, q2), c?(Y1 ∪ Y2), ϕ1 ∧ ϕ2, ρ1 | ρ2, (q′1, q′2))) ∈ Trans.

– If ((ε, i1), (q1, c?Y, ϕ, ρ, q′1)) ∈ Trans(G1), for all q2 ∈ State(G2), let us
note tr1, · · · , trn all transitions of the form tri = (ni, (q2, c?Yi, ϕi, ρi, q

′′
i))

∈ Trans(G2) for which type(Yi) = type(Y). Let us note guard=∧i≤n¬ϕi

if n > 0 and guard = true otherwise. Then
t = ((ε, i1), ((q1, q2), c?Y, ϕ ∧ guard, ρ | IdentAtt(G2), (q′1, q2))) ∈ Trans.

– If ((o1, ∅), (q1, τ, ϕ1, ρ, q
′
1)) ∈ Trans1, for all q2 ∈ State(G2), then

((o1, ∅), ((q1, q2), τ, ϕ1, ρ | IdentAtt(G2), (q′1, q2))) ∈ Trans.
– The role of G1 and G2 can be permuted in all rules described above.

((n1 ⊗ n2), G) is in Sys(B).
Hiding: For any (n,G) ∈ Sys(B), for any C ⊆ Chan(G), let us note G′ =

(State(G), init(G), T rans′) where Trans′ is defined as follows:
– For any tr ∈ Trans(G) where act(tr) is either of the form τ , c!t or c?X

for some c /∈ C, then tr ∈ Trans′.
– For any tr ∈ Trans(G) where act(tr) is of the form c!t with c ∈ C, then

(name(tr), (source(tr), τ, guard(tr), subst(tr), target(tr))) ∈ Trans′.
(Hide(C, n), G′) is in Sys(B).

Systems inherit all notations from the underlying IOSTS framework: for any
system sys = (n,G), Sig(sys) stands for Sig(G),Att(Sys) stands forAtt(G)... In
the same way, semantics of sys are the set of suspension traces of G: STr(sys) =
STr(G). Note that for composition, emissions and receptions are not blocking:
if no transition can be synchronized with an input (resp. output)-transition tr,
then tr is synchronized with the environment. A synchronization involves at most
one output-transition: when several output transitions sharing the same source

96 A. Faivre, C. Gaston, and P. Le Gall

state could be considered at the same time to define a synchronization, this leads
to non-determinism. The hiding operation make unobservable actions c!t when
c is in C but this operation is non blocking (the output-transition introducing
c!t is kept by replacing the communication action by τ). The hiding operation is
blocking for inputs c?X for c in C: corresponding transitions are simply removed
in Hiding(C, n). We now define sub-systems involved in a given system.

Definition 8. (Sub-systems) Let (n,G) ∈ Sys(B). The set of sub-systems of
(n,G) denoted SubS((n,G)) ⊆ Sys(B) is inductively defined as follows:

– If n ∈ BN then SubS((n,G)) = {(n,G)},
– If n is of the form n1⊗n2 then SubS((n,G)) = {(n,G)}∪SubS((n1, G1))∪
SubS((n2, G2)) where (n1, G1) and (n2, G2) belongs to Sys(B),

– If n is of the form Hide(C, n′), then SubS((n,G))={(n,G)}∪SubS((n′, G′))
where (n′, G′) belongs to Sys(B).

For any sub-system sys′ of a system sys, we can identify for any transition tr
of sys the underlying transition of sys′ involved in the definition of tr. This
transition when it exists is called the projection of tr on sys′.

Definition 9. (Projection of a transition) Let sys ∈ Sys(B), sys′ ∈ SubS
(sys) and tr = ((o, i), b) ∈ Trans(sys). The projection of tr on sys′ is the
transition, when it is defined, trsys′ = ((o′, i′), b′) ∈ Trans(G′) s. t. o′ = o or
o′ = ε and i′ ⊆ i.

The naming mechanism for system transitions in Definition 7 makes ((o′, i′), b′)
unique when it exists. Intuitively, the name (o, i) captures all the subparts of the
system whose state is modified by firing the transition tr. In particular, if (o, i)
does not include names of transitions issued from the sub-system sys′, it simply
means that there is no modification of the state concerning the sub-system sys′,
and thus that there does not exist a corresponding transition trsys′ .

2.3 An Example of a Slot Machine

We consider a simple slot machine, named S and presented in Figure 1. The
player can enter a bet into the slot machine and if he/she wins, he/she gets
back the amount of his/her bet multiplied by 10. The system S is built from two
basic-IOSTS, named resp. Int and SM for Interface and SlotMachine. Those two
basic-IOSTS are composed and some channels, used for internal communications,
are hidden. Thus the name of S is of the form Hiding(C, Int⊗ SM) where:

– Int corresponds to the basic interface IOSTS between the environment
(player) and the slot machine SM . When the system is reset (reception
on int start), the interface IOSTS waits for a bet from the player. The bet
is refused when its amount is greater than 100. Otherwise, the IOSTS trans-
mits to SM the amount of the bet and then, waits for a result, win or not,
from the SM . Depending of the result, Int transmits to SM which gain
should be given to the player.

Symbolic Model Based Testing 97

– SM corresponds to the internal mechanism of the slot machine. It manages
the different functionalities as appropriately updating the bank amount, de-
ciding whether the player wins or not, and in the relevant cases, delivering
cash to the player. For simplicity sake, the algorithm used to decide whether
the player wins or not, is abstracted by a boolean non initialized variable w.

– C corresponds to all the channels used by Int and SM to communicate.
That is, C = {int start, int bet, int wim, int amount, int cash}.

Fig. 1. An example of a slot machine

3 System Based Test Purposes for Sub-systems

We show how we define for any system, some test purposes dedicated to test its
sub-systems. Those test purposes will capture behaviors of sub-systems that typ-
ically occur in the whole system. This is done by combining symbolic execution
technics and projection mechanisms.

3.1 Symbolic Execution

We call a symbolic behavior of a system sys any finite path p of sys for which
STr(p) �= ∅. In order to characterize the set of suspension traces of a symbolic
behavior we propose to use a symbolic execution mechanism. Symbolic execution
has been first defined for programs [7] and mainly consists in replacing concrete
input values and initialization values of variables by symbolic ones in order to

98 A. Faivre, C. Gaston, and P. Le Gall

compute constraints induced on these variables by the execution of the program.
Symbolic execution applied to IOSTS-based systems follows the same intuition
considering guards of transitions as conditions and assignments together with
communication actions as instructions. Herein, symbolic execution is presented
as an adaptation of [4]. In the sequel, we assume that a set of fresh variables
F =

⋃
s∈S Fs disjoint from the set of attribute variables

∐
(n,G)∈B Att(G) is

given. We now give the intermediate definition of symbolic extended state which is
a structure allowing to store information about a symbolic behavior: the system
current state (target state of the last transition of the symbolic behavior), the
path condition which characterizes a constraint on symbolic variables to reach
this state, and the symbolic values associated to attribute variables. As compared
to [4], we also add a fourth stored information: it is given in the form of a
constraint on symbolic variables which is not computed during the symbolic
execution of the system. It is called an external constraint and in practice it will
be inherited from a projection mechanism.

Definition 10. (Symbolic extended state) A symbolic extended state of
sys is a quadruple η = (q, π, f, σ) where q ∈ State(sys), π ∈ SenΩ(F) is
called a path condition, f ∈ SenΩ(F) is called an external constraint and
σ ∈ TΩ(F)Att(sys) is called a symbolic assignment of variables. η = (q, π, f, σ) is
said to be satisfiable if π ∧ f is satisfiable2. One notes S(sys) (resp. Ssat(sys))
the set of all the (resp. satisfiable) symbolic extended states over F .

For any symbolic extended state η of the form (q, π, f, σ), q is denoted state(η),
π is denoted pc(η), σ is denoted sav(η) (for symbolic assignment of variables)
and f is denoted ec(η). Now, we show how to give symbolic counterparts to
transitions of a system. The idea is to consider any symbolic extended state
defined over the source state of the transition, and to construct a new target
symbolic extended state defined over the target state of the transition. The
external constraint of the target symbolic extended state is a conjunction formed
with the external constraint of the source symbolic extended state and a new
external constraint (denoted ct in the following Definition). In the sequel, for
any system sys, Sig(sys, F) stands for the signature (F,Chan(sys)).

Definition 11. (Symbolic execution of a transition) With notations of
Definition 10, for any η∈ S(sys), for any tr ∈ Trans(sys) such that source(tr)=
state(η), a symbolic execution of tr from η is a triple st = (η, sa, η′) ∈ S(sys)×
Act(Sig(sys, F))× S(sys) such that there exists ct ∈ SenΩ(F) for which:

– if act(tr) = c!t then sa is of the form c!z for some z ∈ F and η′ =
(target(tr), pc(η) ∧ sav(η)(guard(tr)) ∧ z = sav(η)(t), ec(η) ∧ ct, sav(η) ◦
subst(tr)),

– if act(tr) = c?Y then sa is of the form c?z for some z ∈ F and η′ =
(target(tr), pc(η)∧sav(η)(guard(tr)), ec(η)∧ct, sav(η)◦(y �→ z)y∈Y ◦subst(tr)),

– if act(tr)=τ then sa=τ and η′=(target(tr), pc(η)∧sav(η)(guard(tr)), ec(η)
∧ct, sav(η) ◦ subst(tr)).

2 Here π ∧ f is satisfiable if and only if there exists ν ∈ MF such that M |=ν π ∧ f .

Symbolic Model Based Testing 99

The definition of st only depends on tr, η, ct and the chosen variable z. Therefore,
it is conveniently denoted SE(tr, η, ct, z) (if act(tr) = τ , z is useless). For any
st = (η, sa, η′), source(st) stands for η, target(st) stands for η′ and act(st)
stands for sa.

We now define symbolic execution of systems. Intuitively, a symbolic execution
of a system sys is seen as a rooted tree whose paths are composed of sequences
of symbolic executions of transitions which are consecutive in sys. The root is a
symbolic extended state made of the initial state init(sys), the path condition
true, an arbitrary initialization σ0 of variables of Att(sys) in F , and an external
constraint reduced to true (no constraint at the beginning of the execution).
Moreover, if a transition is symbolically executed with an external constraint ct,
then it is also executed with the external constraint ¬ct.
Definition 12. (Symbolic execution of a system) A full symbolic execution
of sys over F is a triple syssymb = (S(sys), init, R) with init = (init(sys), true,
true, σ0) where σ0 is an injective substitution in FAtt(sys) and R ⊆ S(sys) ×
Act(Sig(sys, F))× S(sys) satisfies the following properties:

– for any η ∈ S(sys), for all tr ∈ Trans(sys) such that source(tr) = state(η),
there exists exactly two constrained symbolic executions of tr in R respectively
of the form SE(tr, η, ct, z) and SE(tr, η,¬ct, z). Those two transitions are
said to be complementary.

– for any (ηi, c�x, ηf) ∈ R with � ∈ {!, ?}, ∀a ∈ Att(sys), then σ0(a) �= x,
– for any (ηi, c�x, ηf) ∈ R and (η′i, d�x, η′f) ∈ R with �, � ∈ {!, ?} which are

not complementary, then x �= y.

The symbolic execution of sys over F associated to syssymb is the triple
SE(sys) = (Ssat(sys), init, Rsat) where Rsat is the restriction of R to Ssat(sys)×
Act(Sig(sys, F))× Ssat(sys).

We use the notation FP (SE(sys)) to denote the set of finite paths of SE(sys).
To define a run of a finite path p, we proceed as follows. We choose an inter-
pretation ν : F → M such that M |=ν pc(ηf) ∧ ec(ηf) where ηf is the last
symbolic extended state of p. Then for each (η, act, η′) of p we associate a run
(ν(sav(η)), actM , ν(sav(η′))) where actM = τ if act = τ and actM = c�ν(z) if act
is of the form c�z with � ∈ {!, ?}. The sequence of such formed triples constitute
a run of p. Note that the set of all runs of all finite paths of FP (SE(sys)) is
exactly the set of all runs of all finite paths of sys in the sense of Definition 5 and
this set is independent of the external constraints chosen to execute transitions.
Those external constraints are simply used to partition symbolic behaviors. A
trivial partitioning can be characterized by choosing true as external constraints
for executing any transition from any symbolic state. In this case the obtained
symbolic execution is isomorphic to the one described in [4] which does not con-
tain any external constraint. Besides note that any finite path p of a symbolic
execution of sys characterizes a set of suspension traces obviously determined
by its set of runs and the finite path corresponding to p in sys (See Definition
5). Therefore any symbolic execution of sys characterizes a set of suspension
traces which can be easily proven to be this associated to sys in the sense of

100 A. Faivre, C. Gaston, and P. Le Gall

Definition 5. Now, since internal actions are not observable in black box testing,
we propose to eliminate them as follows.

Definition 13. (τ-reduction of a constrained symbolic execution) The
τ -reduction of SE(sys) is the triple SE(sys)τ = (Ssat(sys), init, Rτ

sat), where
Rτ

sat ⊆ Ssat(sys) × Act(Sig(sys, F)) × Ssat(sys) is such that for any sequence
st1 · · · stn where for all i ≤ n sti ∈ Rsat:
– for all i ≤ n− 1 act(sti) = τ , source(sti+1) = target(sti) and act(stn) �= τ ,
– either source(st1) = init or there exists st ∈ Rsat such that target(st) =
source(st1) and act(st) �= τ ,

then (source(st1), act(stn), target(stn)) ∈ Rτ
sat.

Note that SE(sys) and SE(sys)τ characterize the same suspension traces. How-
ever, we need in the sequel to be able to symbolically identify situations in which
quiescence is allowed. This is done by adding symbolic transitions labeled by δ!
in the SE(sys)τ .

Definition 14. (Quiescence enrichment) Quiescence enrichment of SE(sys)
is the triple SE(sys)δ = (Ssat(sys), init, Rδ) where Rδ = Rτ

sat ∪ ΔRδ with
ΔRδ ⊆ Ssat(sys)×{δ!}×Ssat(sys) is such that for any η ∈ Ssat(sys), if we note
outη = {tr1, · · · , trn} the set of all transitions tri ∈ Rτ

sat such that act(tri) ∈
output(Sig(sys, F)), if we note f ∈ SenΩ(F) the formula of the form true if
outη is empty and of the form

∧
i≤n ¬(pc(target(tri)) ∧ ec(target(tri))) other-

wise, if we note η′ = (state(η), pc(η) ∧ f, ec(η), sav(η)) then (η, δ!, η′) ∈ ΔRδ.

Fig. 2. Symbolic execution of the slot machine

An example of a slot ma-
chine: symbolic execution Fig-
ure 2 shows a sub-tree of the
symbolic execution of the slot
machine system presented in
Figure 1, as carried out by
the AGATHA tool ([8,2]).

External constraints for
any two complementary tran-
sitions are resp. true and
false in the corresponding
full symbolic execution. They
never appear in the figure.
We use the so-called inclu-
sion criteria to end this ex-
ecution. This criteria allows
to stop symbolic execution
when it detects that an en-
countered symbolic extended
state is included in another
already computed one. Intu-
itively, (q, π, f, σ) is included

Symbolic Model Based Testing 101

in (q′, π′, f ′, σ′) if q′ = q and the constraints induced on Att(sys) by σ and π∧f
are stronger than those induced by σ′ and π′ ∧ f ′. The interested readers can
refer to [10,4] for more formal definitions. Let us point out that the symbolic
sub-tree of S computes three characteristic symbolic behaviors. The left path
corresponds to a winning bet, the middle path corresponds to a lost bet, and
finally the right path corresponds to a forbidden bet. The initial and ending
states are annotated with symbolic values of all attribute variables.

3.2 Symbolic Behavior Projections

For any finite path p of a symbolic execution of sys and a sub-system sys′ of
sys, we characterize the symbolic behavior psys′ of sys′ involved in p. For this
purpose, we begin by defining the projection of a symbolic transition.

Definition 15. (Projection of a symbolic transition) Let sys be a system
of Sys(B). Let sys′ ∈ SubS(sys). Let tr ∈ Trans(sys) such that trsys′ is defined.
Let us note st = SE(tr, η, ct, z) a symbolic execution of tr and ηsys′ ∈ Ssat(sys′)
such that state(ηsys′) = source(trsys′). The projection of st on sys′ of source
ηsys′ is SE(trsys′ , ηsys′ , pc(target(st)) ∧ ec(target(st)), z).
The external constraint of the target state of the projection represents the con-
straints induced by the nature of the interactions of the sub-system with the
other parts of the whole system. Now we generalize to symbolic behaviors.

Definition 16. (Projection of a path) Let p ∈ FP (SE(Sys)). The projec-
tion of p on sys′ denoted psys′ ∈ (Ssat(Sys′)× Act(Sig(sys′, F))× Ssat(Sys′))∗

together with its associated target state denoted target(psys′) are inductively mu-
tually defined as follows:

– if p is of the form st = SE(tr, init, ct, z) ∈ Rsat then let us note ηsys′ =
(init(sys′), true, true, sav(init)|Att(sys′)) then psys′ is the projection stsys′ of
st on sys′ of source ηsys′ when it is defined, and in this case target(psys′) =
target(stsys′). Otherwise psys′ is the empty path and target(psys′) = ηsys′ .

– if p is of the form p′.st with st = SE(tr, η, ct, z) then either the projec-
tion stsys′ of st on sys′ of source target(p′sys′) is defined and: psys′ =
p′sys′ .stsys′ and target(psys′) = target(stsys′). Otherwise, psys′ = p′sys′ and
target(psys′) = target(p′sys′).

Thus from any symbolic behavior of a system we can identify by projection
symbolic behaviors of any sub-system whose external constraints reflect a usage
of the sub-system in the whole system. Those projected behaviors are then good
candidates to become behaviors to be tested on sub-systems: thus they will be
chosen to construct test purposes.

4 Symbolic Execution Based Conformance Testing

4.1 Conformance Testing and System-Based Test Purposes

Model-based testing supposes that a conformance relation formally defines how
are linked the specification G and the system under test SUT . Our work is based

102 A. Faivre, C. Gaston, and P. Le Gall

on the widely used ioco relation, initially designed for labeled transition systems
[11] and afterwards adapted for symbolic transition systems [6,3,4]. All the ioco-
based testing settings consider that the SUT is a black-box system which can be
observed only by its behavior given as input/output sequences. These sequences
of observations may include the special output δ! indicating that the SUT is in
a quescient state. The set of all traces, possibly including suspension transitions,
which can be observed from SUT is denoted STr(SUT). When dealing with
IOSTS, data handled in these sequences are concrete values denoted by ground
terms of TΩ. By test hypothesis, the SUT is modeled as a labeled transition
system S for which transitions are emissions (outputs), receptions (inputs) car-
rying concrete values and such that the set of suspension traces of S coincide
with STr(SUT). Moreover, as usual, the SUT is supposed to accept all inputs
in all states (hypothesis of input-enabled system). Intuitively a SUT conforms to
its specification G with respect to ioco if any SUT output (including δ!) is spec-
ified in G provided that the sequence of input/output preceding the considered
observation is also specified in G.

Definition 17. (ioco) An input-enabled system SUT conforms to G iff for any
tra ∈ STr(G) ∩ STr(SUT), if there exists act ∈ Act(M) ∪ {δ!} of the form c!t
or δ! such that tra.act ∈ STr(SUT), then tra.act ∈ STr(G).

A test execution consists in executing a transition system, called a test case,
on the SUT in order to produce test verdicts. The test case and the SUT are
synchronized by coupling emissions and receptions. Test purposes are used to
select some behaviors to be tested. In a previous work [4], we have proposed
to model test purposes as finite trees extracted from symbolic executions of G.
Such a symbolic execution describes all the possible behaviors of G. Therefore it
is equivalent to test the SUT by selecting paths in G or in a symbolic execution
of G. Indeed, we have demonstrated the following completeness result : if an
SUT does not conform to a specification G, then there exists a test purpose
such that our corresponding testing algorithm can emit a verdict FAIL. The
main advantage of characterizing test purposes from a symbolic execution of G
is that the testing process can be expressed as a simultaneous traversal of both
the symbolic execution and the test purpose. Verdicts are emitted according
to the fact that the observed behavior, in the form of a sequence of inputs
(stimulations) and outputs (observations), does or does not belong to the test
purpose and to the symbolic execution. We have defined 4 verdicts:WeakPASS
when the behavior belongs to the test purpose and to at least one path of the
symbolic execution which is not in the test purpose, PASS when the behavior
belongs to the test purpose and not to any path of the symbolic execution which
does not belong to the test purpose, INCONC (for inconclusive) when the
behavior belongs to the symbolic execution and not to the test purpose, and
finally FAIL when the behavior belongs neither to the test purpose nor to the
symbolic execution. In the sequel, we slightly adapt the framework described in
[4] to our purpose. Behaviors of any sub-system sys′ to be tested are obtained
by projecting behaviors of a symbolic execution of the whole system. It remains
to define test purposes dedicated to test such projected behaviors. As basic-

Symbolic Model Based Testing 103

IOSTS and hiding mechanism introduce τ -transitions, then such a projected
behavior psys′ may contain τ -transitions. Since such internal transitions cannot
be observed during testing, we construct test purposes from a τ -reduced symbolic
execution enriched by quiescence. We identify all its finite paths whose last
transitions are output-transitions (including δ-transitions) and which result of
the τ -reduction of a path whose psys′ is a prefix. Those τ -reduced finite paths
become behaviors to be tested.

Definition 18. (Test purpose) Let SE(sys′) be a symbolic execution of sys′

such that psys′ ∈ FP (SE(sys′)). Let us note exto(psys′) the set {psys′} if psys′

is of the form p.(η, act, η′) with act ∈ Output(Sig(sys′, F)) and whose elements
are all paths of the form psys′ .(η1, act1, η′1) · · · (ηn, actn, η′n) with acti = τ for
i < n and actn ∈ Output(Sig(sys′, F)) otherwise. Let us note T ⊆ Ssat(sys′)
the set of all the target states of all the finite paths of exto(psys′). A symbolic test
purpose for psys′ and SE(sys′) is an application TP : Ssat → {skip, accept,�}
such that:

– for all η ∈ T , TP (η) = accept,
– for all finite path st1 · · · stn such that for all i≤n, sti∈Rτ and TP (target(stn))

= accept, then TP (source(sti)) = skip,
– If exto(psys′) = {psys′} then all other states η verify TP (η) = �,
– if exto(psys′) �= {psys′} and the last transition of psys′ is an input-transition
st then if there exists a transition stδ ∈ ΔRδ s. t. source(stδ) = target(st)
then TP (target(stδ)) = accept and all other states η ∈ Rδ verify TP (η) = �,

– if exto(psys′) �= {psys′} and the last transition of psys′ is a τ-transition then
all other states η ∈ Rδ verify TP (η) = �.

Definition 18 introduces the notion of symbolic test purpose, which extends the
notion of test purposes as defined in [4] by considering a symbolic execution
of a system which incorporates constraints issued from a surrounding system.
Let us remark that constraint symbolic executions allow us to characterize test
purposes in the same way: a test purpose is a finite sub-tree of a δ-enriched
symbolic execution whose leaves are target states of output transitions (identified
by means of the labeling function which associates accept to those states). The
algorithm of test case generation given in [4] can directly be applied.

An example of a slot machine: projection Let us consider p the left path of Fig-
ure 2, corresponding to the winning case. In Figure 3, the left path represents
p. The right path is the projection pSM of p on SM . Nearby each symbolic ex-
tended state name Ssi we indicate in the grey box the content of the symbolic
state, up to simplifications in path conditions and external constraints for sake
of readability. The behavior denoted by pSM corresponds intuitively to the fol-
lowing scenario: after the initialization, a bet is received for amount greater to
0 and less or equal to 100 (this is a constraint induced by the interface). Then
SM sends a verdict stating that the player has won, the value to be removed of
the bank account is received and correspond to 10 times the bet. The amount
is sent to the interface and effectively removed from the bank account. Finally,

104 A. Faivre, C. Gaston, and P. Le Gall

SM sends an ending operation message to the Int. A test purpose L for this
behavior would label N6 by accept and N0 to N5 by skip. On the right part of
the figure, N ′2 and N ′4 are target states of the complementary transitions of
respectively (N 1, int bet?bb 0, N 2) and (N 3, int amount?a 0, N4). N ′2 char-
acterizes cases for which the received bet is out of the range allowed by the
interface. N ′

4 characterizes situation for which the gain does not correspond to
10 times the bet contrarily to the information sent by the interface.

Fig. 3. Projection in the example of the slot machine

Those two situations are possible for SM but note relevant in the frame of the
whole system. Therefore L would label N ′2 and N ′4 with �. To conclude, let us
point out that such a test purpose cannot be deduced only from the knowledge
of SM : it clearly depends on the way SM is used in the whole system S. This
exemplifies our initial goal of eliciting from a system dedicated test purposes for
each subsystem.

5 Conclusion and Future Works

We have extended the framework of IOSTS introduced in [4], in order to deal
with component-based system specifications and we have used symbolic execu-
tion mechanisms in order to compute behaviors of sub-systems constrained by
systems in which they are involved. Then, we have defined test purposes from

Symbolic Model Based Testing 105

those constrained behaviors. The definition of dedicated methodologies for com-
ponent based systems should clearly rely on the targeted fault models. We plan
to study fault models that mainly deal with communication mechanisms as in
[5]. For such fault models, a testing methodology would probably preconize to
construct test purposes for behaviors involving a lot of internal communication
synchronizations. Besides, we also plan to target fault models that mainly deal
with basic components. As in [13], we could consider that composition and hiding
mechanisms are well implemented such that an appropriate testing methodology
would only consider test purposes directly defined at the component level. More
generally, our next goal is to provide testing methodologies for component based
systems which take advantage of the fact that some components or subsystems
have been previously intensively tested such that a large class of tests becomes
useless in the context of the whole system.

References

1. Berrada, I., Castanet, R., Félix, P.: Testing Communicating Systems: a Model, a
Methodology, and a Tool. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS,
vol. 3502, pp. 111–128. Springer, Heidelberg (2005)

2. Bigot, C., Faivre, A., Gallois, J.-P., Lapitre, A., Lugato, D., Pierron, J.-Y., Rapin,
N.: Automatic test generation with AGATHA. In: Garavel, H., Hatcliff, J. (eds.)
ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 591–596. Springer, Heidelberg
(2003)

3. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal
Approaches to Software Testing and Runtime Verification. LNCS, vol. 4262, pp.
40–54. Springer, Heidelberg (2006)

4. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic Execution Techniques for
Test Purpose Definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

5. Gotzhein, R., Khendek, F.: Compositional Testing of Communication Systems. In:
Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp.
227–244. Springer, Heidelberg (2006)

6. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 349–364. Springer, Heidelberg (2005)

7. King, J.-C.: A new approach to program testing. In: Proc. of the Int. Conference
on Reliable software, vol. 21(23), pp. 228–233 (1975)

8. Lugato, D., Rapin, N., Gallois, J.-P.: Verification and tests generation for SDL
industrial specifications with the AGATHA toolset. In: Larsen, K.G., Nielsen, M.
(eds.) CONCUR 2001. LNCS, vol. 2154, pp. 1404–3203. Springer, Heidelberg (2001)
ISSN 1404-3203

9. Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: TeStor: Deriving Test
Sequences from Model-based Specification. In: Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 267–282. Springer, Heidelberg (2005)

10. N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioural unfolding of
formal specifications based on communicating automata. In: Proc. of the 1th Int.
Workshop ATVA 2003 (2003)

106 A. Faivre, C. Gaston, and P. Le Gall

11. Tretmans, J.: Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation. Computer Networks and ISDN Systems 29,
49–79 (1996)

12. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

13. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with IOCO. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

A Compositional Testing Framework Driven by

Partial Specifications

Yliès Falcone1, Jean-Claude Fernandez1, Laurent Mounier1, and
Jean-Luc Richier2

1 Vérimag Laboratory, 2 avenue de Vignate 38610 Gières, France
2 LIG Laboratory, 681, rue de la Passerelle, BP 72, 38402 Saint Martin d’Hères

Cedex, France
{Ylies.Falcone,Jean-Claude.Fernandez,Laurent.Mounier,

Jean-Luc.Richier}@imag.fr

Abstract. We present a testing framework using a compositional ap-
proach to generate and execute test cases. Test cases are generated and
combined with respect to a partial specification expressed as a set of
requirements and elementary test cases. These approach and framework
are supported by a prototype tool presented here. The framework is
presented here in its LTL-like application, besides other specification
formalisms can be added.

1 Introduction

Testing is a popular validation technique which purpose is essentially to find
defects on a system implementation, either during its development, or once a
final version has been completed. Therefore, and even if lots of work have already
been carried out on this topic, improving the effectiveness of a testing phase while
reducing its cost and time consumption remains a very important challenge,
sustained by a strong industrial demand.

From a practical point of view, a test campaign consists in producing a test
suite (test generation), and executing it on the target system (test execution).
Automating test generation means deriving the test suite from some initial de-
scription of the system under test. The test suite consists in a set of test cases,
where each test case is a set of interaction sequences to be executed by an exter-
nal tester. Any execution of a test case should lead to a test verdict, indicating
if the system succeeded or not on this particular test (or if the test was not
conclusive).

The initial system description used to produce the test cases may be for
instance the source code of the software, some hypothesis on the sets of inputs
it may receive (user profiles), or some requirements on its expected properties at
run-time (i.e., a characterization of its (in)-correct execution sequences). In this
latter case, when the purpose of the test campaign is to check the correctness
of some behavioral requirements, an interesting approach for automatic test
generation is the so-called model-based testing technique. Model-based testing

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 107–122, 2007.
c© IFIP- International Federation for Information Processing 2007

108 Y. Falcone et al.

is rather successful in the communication protocol area, especially because it
is able to cope with some non-determinism of the system under test. It has
been implemented in several tools, see for example [1] for a survey. However, it
suffers from some drawbacks that may prevent its use in other application areas.
First of all, it strongly relies on the availability of a system specification, which
is not always the case in practice. Moreover, when it exists, this specification
should be complete enough to ensure some relevance of the test suite produced.
Finally, it is likely the case that this specification cannot encompass all the
implementation details, and is restricted to a given abstraction level. Therefore,
to become executable, the test cases produced have to be refined into more
concrete interaction sequences. Automating this process in the general case is
still a challenging problem [2], and most of the time, when performed by hand,
the soundness of the result cannot be fully guaranteed.

We propose here an alternative approach to produce a test suite dedicated
to the validation of behavioral requirements of a software (see Fig. 1). In this
framework the requirements R are expressed by logical formulas ϕ built upon a
set of (abstract) predicates Pi describing (possibly non-atomic) operations per-
formed on the system under test. A typical example of such requirements could
be for instance a security policy, where the abstract predicates would denote
some high-level operations like “user A is authenticated”, or “message M has
been corrupted”. The approach we propose relies on the following consideration:
a perfect knowledge of the implementation details is required to produce ele-
mentary test cases Tci able to decide whether such predicates hold or not at
some state of the software execution. Therefore, writing the test cases dedicated
to these predicates should be left to the programmer (or tester) expertise when
a detailed system specification is not available. However, correctly orchestrating
the execution of these “basic test cases” and combining their results to deduce
the validity of the overall logical formula is much easier to automate since it
depends only of the semantics of the operators used in this formula. This step
can therefore be produced by an automatic test generator, and this test gen-
eration can even be performed in a compositional way (on the structure of the
logical formula). More precisely, from the formula ϕ, a test generation function
automatically produces an (abstract) tester ATϕ. This tester consists of a set
of communicating test controllers, one for each operator appearing in ϕ. Thus,
ATϕ depends only on the structure of formula ϕ. ATϕ is then instantiated using
the elementary test cases Tci to obtain a concrete tester Tϕ for the formula ϕ.
Execution of this tester on the implementation I produces the final verdict.

We believe that this approach is general enough to be instantiated with several
logic formalisms commonly used to express requirements on execution traces
(e.g., extended regular expressions or linear temporal logics).

This works extends some preliminary descriptions on this technique [3,4] in
several directions: first we try to demonstrate that it is general enough to support
several logical formalisms, then we apply it for the well-known LTL temporal
logic, and finally we evaluate it on a small case study using a prototype tool
under development.

A Compositional Testing Framework Driven by Partial Specifications 109

In addition to the numerous works proposed in the context of model-based
test generation for conformance testing, this work also takes credits from the
community of run-time verification. In fact, one of the techniques commonly
used in this area consists in generating a monitor able to check the correctness
of an execution trace with respect to a given logical requirement (see for instance
[5,6] or [7] for a short survey). In practice, this technique needs to instrument
the software under verification with a set of observation points to produce the
traces to be verified by the monitor. This instrumentation should of course be
correlated with the requirement to verify (i.e., the trace produced should contain
enough information). In the approach proposed here, these instrumentation di-
rectives are replaced by the elementary test cases associated to each elementary
predicates. The main difference is that these test cases are not restricted to pure
observation actions, but they may also contain some active testing operations,
like calling some methods, or communicating with some remote process to check
the correctness of an abstract predicate.

The rest of the paper is organized as follows: Sect. 2 introduces the general
approach, while Sect. 3 details its sound-proved application for a particular vari-
ant of the linear temporal logic LTL. Section 4 and 5 respectively describe the
architecture of a prototype tool based on this framework, and its application on
a small case study. The conclusion and perspectives of this work are given is
Sect. 6.

Implementation I

Logic Plug-in

Test Execution

Verdict

Informal Requirements R

Abstract testers {ATϕ}

Formal requirements {ϕ}

Concrete testers {Tϕ}

Elementary test cases {Tci}

(using abstract predicates Pi)

Test InstantiationTest Generation

Fig. 1. Test generation overview

2 The General Approach

We describe here more formally the test generation approach sketched in the in-
troduction. As it has been explained, this approach relies on the following steps:

– generation of an abstract tester ATϕ from a formal requirement ϕ;
– instantiation of ATϕ into a concrete tester Aϕ using the set of elementary

testers associated to each atomic predicate of ϕ;
– execution of Tϕ against the System Under Test (SUT) to obtain a test verdict.

110 Y. Falcone et al.

2.1 Notations

A labelled transition system (LTS, for short) is a quadruplet S = (Q,A, T, q0)
whereQ is a set of states, A a set of labels, T ⊆ Q×A×Q the transition relation
and q0 ∈ Q the initial state. We will denote by p a−→T q (or simply p a−→ q) when
(p, a, q) ∈ T . A finite execution sequence of S is a sequence (pi, ai, qi){0≤i≤m}
where p0 = q0 and pi+1 = qi. For each finite execution sequence λ, the se-
quence of actions (a0, a1, . . . , am) is called a finite execution trace of S. We de-
note by Exec(S) the set of all finite execution traces of S. For an execution
trace σ = (a0, a1, . . . , am), we denote by | σ | the length m+ 1 of σ, by σk...l the
sub-sequence (ak, . . . , al) when 0 ≤ k ≤ l ≤ m, and by σk... the sub-sequence
(ak, . . . , am) when 0 ≤ k ≤ m. Finally, σ↓X denotes the projection of σ on action
setX . Namely, σ↓X = {a0·· · ··am | ∀i·ai ∈ X∧σ = w0 ·a0 · · ·wm ·am ·wm+1∧wi ∈
(A \X)∗}.

2.2 Formal Requirements

We assume in the following that the formal requirements ϕ we consider are
expressed using a logic L . Formulas of L are built upon a finite set of n-ary
operators Fn and a finite set of abstract predicates {p1, p2, . . . , pn} as follows:

formula ::= Fn(formula1, formula2, . . . , formulan) | pi

We suppose that each formula of L is interpreted over a finite execution
trace of a LTS S, and we say that S satisfies ϕ (we note S |= ϕ) iff all sequences
of Exec(S) satisfy ϕ. Relation |= is supposed to be defined inductively on the
syntax of L in the usual way: abstract predicates are interpreted over Exec(S),
and the semantics of each operator Fn(ϕ1, . . . , ϕn) is defined in terms of sets of
execution traces satisfying respectively ϕ1, . . . , ϕn.

2.3 Test Process Algebra

In order to outline the compositionality of our test generation technique, we
express a tester using an algebraic notation. We recall here the dedicated “test
process algebra” introduced in [4], but other existing process algebras could also
be used.

Syntax. Let Act be a set of actions, T be a set of types (with τ ∈ T), Var
a set of variables (with x ∈ Var), and Val a set of values (union of values of
types T). We denote by exprτ (resp. xτ) any expression (resp. variable) of type
τ . In particular, we assume the existence of a special type called Verdict which
associated values are {pass, fail, inconc} and which is used to denote the verdicts
produced during the test execution.The syntax of a test process t is given by the
following grammar:

t ::= [b] γ ◦ t | t+ t | nil | recX t | X
b ::= true | false | b ∨ b | b ∧ b | ¬b | exprτ = exprτ
γ ::= xτ := exprτ | !c(exprτ) | ?c(xτ)

A Compositional Testing Framework Driven by Partial Specifications 111

In this grammar t denotes a basic tester (nil being the empty tester doing
nothing), b a boolean expression, c a channel name, γ an action, ◦ is the prefix-
ing operator, + the choice operator, X a term variable, recX allows recursive
process definition (with X a term variable)1. When the condition b is true, we
abbreviate [true]γ by γ. Atomic actions performed by a basic tester are either in-
ternal assignments (xτ := exprτ), value emissions (!c(exprτ)) or value receptions
(?c(xτ)) over a channel c2.

Semantics. We first give a semantics of basic testers (t) using rewriting rule
between uninterpreted terms in a CCS-like style (see Fig. 2).

γ ∈ Act
(◦)

[b]γ ◦ t
[b]γ
⇀ t

t[recX ◦ t/X]
[b]γ
⇀ t′ γ ∈ Act

(rec)

recX ◦ t
[b]γ
⇀ t′

γ ∈ Act t1
[b]γ
⇀ t′

1 (+)l

t1 + t2
[b]γ
⇀ t′

1

γ ∈ Act t2
[b]γ
⇀ t′

2 (+)r
t1 + t2

[b]γ
⇀ t′

2

Fig. 2. Rules for term rewriting

The semantics of a basic test process t is then given by means of a LTS
St = (Qt, At, T t, qt0) in the usual way: states Qt are “configurations” of the form
(t, ρ), where t is a term and ρ : V ar→ V al is an environment. States and transi-
tion of St (relation −→) are the smallest sets defined by the rules given in Fig. 3
(using the auxiliary relation ⇀ defined in Fig. 2). The initial state qt0 of S is
the configuration (t0, ρ0), where ρ0 maps all the variables to an undefined value.
Finally, note that actions At of St are labelled either by internal assignments
(xτ := v) or external emission (!c(v)). In the following we denote by At

ext ⊆ At

the external emissions and receptions performed by the LTS associated to a test
process t.

Complex testers are obtained by parallel composition of test processes with
synchronisation on a channel set cs (operator ‖cs), or using a so-called “join-
exception” operator (�I), allowing to interrupt a process on reception of a
communication using the interruption channel set I. We note ‖ for ‖∅ and
Act chan(s) all possible actions using a channel in the set s. To tackle with
communication in our semantics, we give two sets of rules specifying how LTSs
are composed relatively to the communication operators (‖cs,�

I). These rules
aim to maintain asynchronous execution, communication by rendez-vous. Let
St

i = (Qt
i, A

t
i, T

t
i , q

t
0i) be two LTSs modelling the behaviours of two processes t1

and t2, we define the LTS S = (Q,A, T, q0) modelling the behaviours of St
1 ‖cs S

t
2

1 We will only consider ground terms: each occurrence of X is bound to recX.
2 To simplify the calculus, we supposed that all channels exchange one value. In the

testers, we also use “synchronisation channels”, without exchanged argument, as a
straightforward extension.

112 Y. Falcone et al.

ρ(exprτ) = v t
[b]xτ :=exprτ

⇀ t′ ρ(b) = true
(:=)

(t, ρ)
xτ :=v−→ (t′, ρ[v/xτ])

ρ(exprτ) = v t
[b]!c(exprτ)

⇀ t′ ρ(b) = true
(!)

(t, ρ)
!c(v)−→ (t′, ρ)

v ∈ Dom(τ) t
[b]?c(xτ)

⇀ t′ ρ(b) = true
(?)

(t, ρ)
!c(v)−→ (t, ρ[v/xτ])

Fig. 3. Rules for environment modification

p1
a−→ p′

1 a /∈ Act chan(cs)
(‖l

cs)
(p1, p2)

a−→ (p′
1, p2)

p2
a−→ p′

2 a /∈ Act chan(cs)
(‖r

cs)
(p1, p2)

a−→ (p1, p
′
2)

p1
a−→ p′

1 p2
a−→ p′

2 a ∈ Act chan(cs)
(‖cs)

(p1, p2)
a−→ (p′

1, p
′
2)

p1
a−→ p′

1 a /∈ Act chan(I)
(�I)

(p1, p2)
a−→ (p′

1, p2)

p2
a−→ p′

2 a ∈ Act chan(I)
(�I)

(p1, p2)
a−→ (⊥, p′

2)

Fig. 4. LTS composition related to ‖cs and �
I

and St
1 �I St

2 as the product of St
1 and St

2 where Q ⊆ (Qt
1 ∪ {⊥})×Qt

2 and the
transition rules are given in Fig. 4.

2.4 Test Generation

Principle. The test generation technique we propose aims to produce a tester
process tϕ associated to a formal requirement ϕ and it can be formalized by
a function called GenTest in the rest of the paper (GenTest(ϕ) = tϕ). This
generation step depends of course of the logical formalism under consideration,
but it is compositionally defined in the following way:

– a basic tester tpi is associated with each abstract predicate pi of ϕ;
– for each sub-formula φ = Fn(φ1, · · · , φn) of ϕ, a test process tφ is produced,

where tφ is a parallel composition between test processes tφ1 , . . . , tφn and a
test process �F n called a test controller for operator Fn.

The purpose of test controllers �F n is both to schedule the test execution
of the tφk

(starting, stopping or restarting their execution), and to combine
their verdicts to produce the overall verdict associated to φ. As a result, the
architecture of a tester tϕ matches the abstract syntax tree corresponding to
formula ϕ: leaves are basic tester processes corresponding to abstract predicates
pi of ϕ, intermediate nodes are controllers associated with operators of ϕ.

A Compositional Testing Framework Driven by Partial Specifications 113

Hypothesis. To allow interactions between the internal sub-processes of a tester
tϕ, we assume the following hypotheses:

Each tester sub-process tφk
(basic tester or controller) owns a special variable

used to store its local verdict. This variable is supposed to be set to one of these
values when the test execution terminates – its intuitive meaning is similar to
the conformance testing case:

• pass means that the test execution of tφk
did not reveal any violation of the

sub-formula associated to tφk
;

• fail means that the test execution of tφk
did reveal a violation of the sub-

formula associated to tφk
;

• inconc (inconclusive) means that the test execution of tφk
did not allow to

conclude about the validity of the sub-formula associated to tφk
.

Each tester process tφk
(basic tester or controller) owns a set of four ded-

icated communication channels csk = {c startk, c stopk, c loopk, c verk} used
respectively to start its execution, to stop it, to resume it from its initial state
and to deliver a verdict. In the following, we denote by �(cs, cs1, · · · , csn) each
controller � where cs is the channel set dedicated to the communication with
the embracing controller whereas the (csi) are the channel sets dedicated to the
communication with the sub-test processes. Finally, a “starter” process is also
required to start the topmost controller associated to t and to read the verdict
it delivered.

Each basic tester process tpi associated to an LTS Stpi
is supposed to have a

subset of actions Atpi
ext ⊆ Atpi used to communicate with the SUT. Considering

t = GenTest(ϕ), the set At
ext is defined as the union of the Atpi

ext where pi is a
basic predicate of ϕ.

Test generation function definition (GenTest). GenTest can then be de-
fined as follows using GT as an intermediate function:

GenTest(ϕ)
def
= GT (ϕ, cs) ‖{c start,c ver} (!c start()◦?c ver(x) ◦ nil)

where cs is the set {c start, c stop, c loop, c ver} of channel names associated to tϕ.

GT (pi, cs)
def
= Test(tpi, cs)

GT (F n(φ1, . . . , φn), cs)
def
= (GT (φ1, cs1) ‖ · · · ‖ GT (φn, csn)) ‖cs′ �F n(cs, cs1, . . . , csn)

where cs1, . . . , csn are sets of fresh channel names and cs′ = cs1 ∪ · · · ∪ csn.

Test(tp, {c start, c stop, c loop, c ver}) def
=

recX (?c start() ◦ tp◦!c ver(ver)◦?c loop() ◦ X) �
{c stop} (?c stop() ◦ nil)

2.5 Test Execution and Test Verdicts

As seen in the previous subsections, the semantics of a tester represented by
a test process t is expressed by a LTS St = (Qt, At, T t, qt0) where At

ext ⊆ At

denotes the external actions it may perform. Although the system under test
I is not described by a formal model, its behaviour can also be expressed by
a LTS SI = (QI , AI , T I , qI0). A test execution is a sequence of interactions (on

114 Y. Falcone et al.

At
ext) between t and I in order to deliver a verdict indicating whether the test

succeeded or not. We define here more precisely these notions of test execution
and test verdict.

Formally speaking, a test execution of a test process t on a SUT I can be
viewed as an execution trace of the parallel product ⊗At

ext
between LTSs St and

SI with synchronizations on actions of At
ext. This product is defined as follows:

St ⊗At
ext
SI is the LTS (Q,A, T, q0) where Q ⊆ Qt × QI , A ⊆ At ∪ AI ,

q0 = (qt0, q
I
0), and

T = {(pt, pI) a−→ (qt, qI) | (pt, a, qt) ∈ T t ∧ (pI , a, qI) ∈ T I ∧ a ∈ At
ext} ∪

{(pt, pI) a−→ (qt, pI) | (pt, a, qt) ∈ T t ∧ a ∈ At \ At
ext} ∪ {(pt, pI) a−→ (pt, qI) |

(pI , a, qI) ∈ T I ∧ a ∈ AI \At
ext}.

For any test execution σ ∈ Exec(St ⊗At
ext
SI), we define the verdict function:

VExec(σ) = pass (resp. fail , inconc) iff σ = c start() · σ′ · c ver(pass) (resp.
σ = c start() · σ′ · c ver(fail), σ = c start() · σ′ · c ver(inconc)) and c start
(resp. c ver) is the starting (resp. the verdict) channel associated to the topmost
controller of t.

3 Application to Variant of LTL

This section presents an instantiation of the previous framework for a (non
atomic) action-based version of LTL-X, the next-free variant of LTL [8].

3.1 The Logic

Syntax. The syntax of a formula ϕ is given by the following grammar, where
the atoms {p1, . . . , pn} are action predicates.

ϕ ::= ¬ϕ | ϕ U ϕ | ϕ ∧ ϕ | pi

Semantics. Formulas ϕ are interpreted over the finite execution traces σ ∈ A∗

of a LTS. We introduce the following notations.
To each atomic predicate pi of ϕ we associate a subset of actions Api and two

subsets Lpi and Lpi of A∗
pi

. Intuitively, Api denotes the actions that influence the
truth value of pi, and Lpi (resp. Lpi) the set of finite execution traces satisfying
(resp. non satisfying) pi. We suppose that the action sets Api are such that
{(Api)i} forms a partition of A, that for all i, j, Lpi ∩Lpi = ∅ and (Lpi ∪Lpi)∩
(Lpj ∪ Lpj) = ∅. The sets of actions for a predicate are easily extended to sets
of actions for a formula: A¬ϕ = Aϕ, Aϕ1∧ϕ2 = Aϕ1Uϕ2 = Aϕ1 ∪Aϕ2 .

The truth value of a formula is given in a three-valued logic matching our no-
tion of test verdicts: a formula ϕ can be evaluated to true on a trace σ (σ |=T ϕ),
or it can be evaluated to false (σ |=F ϕ), or its evaluation may remain inconclu-
sive (σ |=I ϕ).

The semantics for a formula ϕ is defined by three sets. The set of sequences
that satisfy (resp. violate) the formula ϕ is noted [[ϕ]]T (resp. [[ϕ]]F). We also
note [[ϕ]]I the set of sequences for which the satisfaction remains inconclusive.

A Compositional Testing Framework Driven by Partial Specifications 115

– [[pi]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′
↓Api

∈ Lpi}
[[pi]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′

↓Api

∈ Lpi
}

– [[¬ϕ]]T = [[ϕ]]F

[[¬ϕ]]F = [[ϕ]]T

– [[ϕ1 ∧ ϕ2]]T = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′
↓Aϕ1

∈ [[ϕ1]]T ∧ ω′
↓Aϕ2

∈ [[ϕ2]]T }
[[ϕ1 ∧ ϕ2]]F = {ω | ∃ω′, ω′′ · ω = ω′ · ω′′ ∧ ω′

↓Aϕ1
∈ [[ϕ1]]F ∨ ω′

↓Aϕ2
∈ [[ϕ2]]F }

– [[ϕ1Uϕ2]]T = {ω | ∃ω1, . . . , ωn, ω
′ · ω = ω1 · · ·ωn · ω′

∧∀i < n · ωi↓Aϕ1
∈ [[ϕ1]]T ∧ ωn↓Aϕ2

∈ [[ϕ2]]T }
[[ϕ1Uϕ2]]F = {ω | ∃ω1, . . . , ωn, ω

′ · ω = ω1 · · ·ωn · ω′

∧
(
∀i ≤ n·ωi↓Aϕ2

∈ [[ϕ2]]
F ∨(∃l ≤ n·ωl↓Aϕ2

∈ [[ϕ2]]
T ∧∃k < l·ωk↓Aϕ1

∈ [[ϕ1]]
F)

)
}

– [[ϕ]]I = A∗ \ ([[ϕ]]P ∪ [[ϕ]]F)

Finally we note σ |=T ϕ (resp. σ |=F ϕ, σ |=I ϕ) for σ ∈ [[ϕ]]T (resp. σ ∈
[[ϕ]]F ,σ ∈ [[ϕ]]I).

3.2 Test Generation

Following the structural test generation principle given in Sect. 2.4, it is possible
to obtain a GenTest function for our LTL-like logic. The GenTest definition can
be made explicit simply by giving controller definitions. So, we give a graphical
description of each controller used by GenTest. To simplify the presentation, the
stop transitions are not represented: the receptions all lead from each state of the
controller to some “sink” state corresponding to the nil process, and emissions
are sent by controllers to stop sub-tests when their execution is not needed
anymore for the verdict computation.

The �¬({c start, c loop, c ver}, {c start′, c loop′, c ver′}) controller is shown on
Fig. 5. It inverts the verdict received by transforming pass verdict into fail
verdict (and conversely) and keeping inconc verdict unchanged.

!c start′()

?c start()

?c ver′(x′
v) [x′

v = inc]xv := inc

[x′
v = fail]xv := pass

[x′
v = pass]xv := fail

!c ver(xv)

?c loop()

!c loop′()

Fig. 5. The �¬ controller

The �∧({c start, c loop, c ver}, {c startl, c loopl, c verl}, {c startr, c loopr, c verr})
controller is shown on Fig. 6. It starts both controlled sub-tests and waits
for their verdict returns, and sets the global verdict depending on received
values.

116 Y. Falcone et al.

!c startl()

?c verr(xvr)

?c verl(xvl
)

?c verr(xvr)

?c verl(xvl
)

[othercases]xv := inc

[xvl
= fail ∨ xvr = fail]xv := fail

[xvl
= pass ∧ xvr = pass]xv := pass

!c ver(xv)

?c loop()

!c loopr()!c loopl()

!c startr ()

?c start()

Fig. 6. The �∧ controller

The �U ({c start, c loop, c ver}, {c startl, c loopl, c verl}, {c startr, c loopr, c verr})
controller is shown on Fig. 7 and Fig. 8. It is composed of three sub-processes
executing in parallel and starting on the same action ?c start(). The first sub-
process �m is represented on Fig. 7. The second and third ones corresponds to
two instantiations

�l({c start, c loop, c ver}, {c startl, c loopl, c verl}),
�r({c start, c loop, c ver}, {c startr, c loopr, c verr})

of �x({c start, c loop, c ver}, {c startx, c loopx, c verx}) for the two controlled sub-
test for the two sub-formulas. An algebraic expression of this controller could
be

�U(· · ·) = (�l(· · ·) ‖ �r(· · ·)) ‖{r fail,l fail,r pass,l pass} �m(· · ·)
One could understand �l and �r as two sub-controllers in charge of communi-
cating with the controlled tests that send relevant information to the “main”
sub-controller �m deciding the verdict. The reception of an inconclusive verdict
from a sub-test process interrupts the controller which emits an inconclusive
verdict (not represented on the figure). If no answer is received from the sub-
processes after some finite amount of time, then the tester delivers its verdict
(timeout transitions). For the sake of clarity we simplified the controller rep-
resentation. First, we represent the emission of the controller verdict and the
return to the initial state under a reception of a loop signal (?c loop()) by a
state which name represents the value of the emitted verdict. Second, we do not
represent inconc verdict, the controller propagates it.

3.3 Soundness Proposition

We express that an abstract test case produced by the GenTest function is always
sound, i.e. it delivers a pass (resp. fail) verdict when it is executed on a SUT
behavior I only if the formula used to generate it is satisfied (resp. violated) on I.
This proposition relies on one hypothesis, and two intermediate lemmas.

Hypothesis 1. Each test case tpi associated to a predicate pi is strongly sound
in the following sense:

A Compositional Testing Framework Driven by Partial Specifications 117

?c start()

?l fail()

?l pass()
Pass

Fail

?l fail()

Pass

?r pass()

?r fail() ?r pass()

?r fail()

?l pass()

?l pass()
?r pass()

?r fail()

?r pass()

Pass

?l pass()

Fail

?l fail()

?l pass()

?r fail()

Fail

Pass

?l fail()

?r pass()
?l pass()

Fail

?l fail()

Cm

Fig. 7. The �U controller, the �m part

?c start() !c startx() ?c verx(xvx) [vx = fail]!x fail()

�x [xvx = pass]!x pass()

?c loop()

?c loop()

!c loopx()

?c loop()

!c loopx()

Fig. 8. The �U controller, the �x part

∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = pass⇒ σ |=T pi

∀σ ∈ Exec(tpi ⊗Api
I),VExec(σ) = fail⇒ σ |=F pi

The lemmas state that the verdict computed by tϕ on a sequence σ only depends
on actions of σ belonging to Aϕ.

Lemma 1. All execution sequences with the same projection on a formula ϕ
actions have the same satisfaction relation towards ϕ. That is:

∀σ, σ′ · σ↓Aϕ
= σ′↓Aϕ

⇒ (σ |=T ϕ⇔ σ′ |=T ϕ) ∧ (σ |=F ϕ⇔ σ′ |=F ϕ)

Lemma 2. For each formula ϕ, each sequence σ, the verdicts pass and fail of
a sequence do not change if we project it on ϕ’s actions. That is:

∀ϕ, ∀σ · σ |=T ϕ⇒ σ↓Aϕ
|=T ϕ

∀ϕ, ∀σ · σ |=F ϕ⇒ σ↓Aϕ
|=F ϕ

These lemmas come directly from the definition of our logic and the controllers
used in GenTest . Now we can formulate the proposition.

Theorem 1. Let ϕ be a formula, and t=GenTest(ϕ), S a LTS, σ∈Exec(t⊗Aϕ S)
a test execution sequence, the proposition is:

V Exec(σ) = pass =⇒ σ |=T ϕ
V Exec(σ) = fail =⇒ σ |=F ϕ

118 Y. Falcone et al.

Sketch of the soundness proof. The proof is done by structural induction
on ϕ. We give the proof for two cases.

For the predicates. The proof relies directly on predicate strong soundness (Hy-
pothesis 1).

For the negation operator. Let suppose ϕ = ¬ϕ′. We have to prove that:

∀σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I),VExec(σ) = pass⇒ σ |=T ¬ϕ′

∀σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I),VExec(σ) = fail⇒ σ |=F ¬ϕ′

Let σ ∈ Exec(GT (¬ϕ′,L)⊗Aϕ I) suppose that VExec(σ) = pass.
By definition of GT ,

GT (¬ϕ′,L) = GT (ϕ′,L′) ‖L′ C¬(L,L′)

Since controller C¬ does not trigger the c loop transition of its subtest when it
is used as a main tester process, execution sequence σ is necessarily in the form:

c start() · σI · σ′ · σI ·
([xv = pass]xvg := fail | [xv = fail]xvg := pass | [xv = inconc]xvg :=

inconc) · σI · c ver(xvg)

with σ′ ∈ Exec(GT (ϕ′,L′)⊗Aϕ′ I), σI denoting SUT’s actions, and ω · (a | b) · ω′

denoting the sequences ω · a · ω′ and ω · b · ω′.
As the controller emits a pass verdict (!c ver(xvg) with xvg evaluated to pass

in the C¬’s environment) it means that it necessarily received a fail verdict
([xv = fail]xvg := pass) on c ver′ from the sub-test corresponding toGT (ϕ′,L′).
So we have σ′ ∈ Exec(GT (ϕ′,L′)⊗A′

ϕ
I) and VExec(σ′) = fail.

The induction hypothesis implies that σ′ |=F ϕ′. The Lemma 2 gives that
σ′↓A

ϕ′ |=F ϕ
′. And we have:

σ′↓A
ϕ′

= σ′↓Aϕ
(∀ϕ,Aϕ = A¬ϕ)

= σ↓Aϕ
(c start, σI /∈ Aϕ

∗)

So σ↓Aϕ
|=F ϕ

′. We conclude using the Lemma 1 that σ |=F ϕ
′ that is σ |=T ¬ϕ′.

The proof for ∀σ ∈ Exec(GT (¬ϕ′,L) ⊗Aϕ I),VExec(σ) = fail ⇒ σ |=F ¬ϕ′ is
similar.

Others operators. Proofs for the other operators follow the same principle and
can be found in [9].

4 Java-CTPS

We now present Java-CTPS, a prototype of a testing framework tool for the Java
environment which follows our approach. We just describe an abstract view
of the tool. Interested readers can refer to [9] which contains a more detailed
description.

A Compositional Testing Framework Driven by Partial Specifications 119

Java-CTPS contains a test generator using the compositional approach for
Java, i.e. the tester is generated in Java, for a SUT written in the same language.
An interface is provided for the user to write a library of elementary test cases
from the SUT interface. Indeed, the interface defines a set of methods that can
be called. Elementary test cases are terms of our test calculus which external
actions correspond to these methods: execution of an external action on the
tester leads to a complete execution of the method on the SUT (from the call
to the return). An elementary test case execution on the tester leads to the
execution of some methods in the SUT interface.

Afterwards, using our method, the tool transforms a specification in a given
formalism in a abstract test case. Then it is combined with the library to provide
an executable test case.

Synthesis algorithms of controlled tests for different formalisms have been
defined and implemented. Two interfaces are provided to the user: a command-
line mode and a graphic interface. A simplified version of the test generation
and execution is depicted on Fig. 9.

initial

Stub

Java CTPS

SPEC
ERE | LTL

modified SUTTester

ATC

Communication

Messages over Java RMI

ATC
Library

SUT

SUT

Generation

initialATC
Architecture

Device

Engine

Interface

Fig. 9. Simplified working principle

Elementary test cases library establishment. The SUT’s architecture description
provides the set of controllable and observable actions on the system. The user
can compose them, with respect to the test calculus, and write new elemen-
tary test cases. Programming is eased by the abstraction furnished by the SUT
interface.

Specification as a set of requirements. Java-CTPS offers several formalisms to
express requirements on the system.

• Temporal logics. Temporal logics [8] are frequently used to express specifica-
tion for reactive systems. Their use has proved to be useful and appreciated

120 Y. Falcone et al.

for system verification. Our case studies have shown that many concepts in
security policies are in the scope of these logics.

• Regular Expression. Regular expressions [10] allows to define behaviour
schemes expressed on a system traces. They are commonly used and well-
understood by engineers for their practical aspect.

Test of a system. Java-CTPS translates the specification into abstract test cases
following the specification formula structure. Depending on the used specification
formalism and the expressed requirement, the tool generates a test architecture
whose test cases are coming from the controller library in accordance with Gen-
Test. An execution engine is also generated. So, the generated tester can execute
different test cases translated into a unique representation formalism on the test
calculus engine. The initial SUT is also modified by adding a stub to commu-
nicate with the tester. This component provides means to launch method calls
on the reception of specific signals. Thus, abstract test cases executing on the
tester guide concrete test cases execution on the modified SUT. Communication
between tester and SUT is done using the Java-RMI mechanism as we plan to
support distributed SUT in a future evolution of our tool.

5 Case Study

We present a case study illustrating the approach presented above. From some
credit card security documents [11], we established a security policy and a credit
card model. We applied our method with the security policy as a partial speci-
fication and the executable credit card model as a SUT. The credit card model
and part of its security policy are overviewed here.

The card. The architecture of the credit card is presented on Fig. 10. The in-
terface is modeled by the Device component, corresponding to the possible ac-
tion set on the card. Several banking operations are proposed, e.g. provide pin,
change pin, init session, transaction, close session. Choice was made to use a
Java interface to model the banking application one. The Device component in-
teracts with a Memory Abstraction component providing, as its name indicates,
some basic operations on the memory’s areas. The Memory is just the credit
card memory represented as a fixed size integer array.

MemoryDevice

Memory Abstraction

Observations

Controls

Fig. 10. The credit card architecture

A Compositional Testing Framework Driven by Partial Specifications 121

The security policy. Our study allowed us to extract several security require-
ment specific to the credit card security domain. These requirements concerned
several specification formalisms: regular expressions, and temporal logics. Some
examples of properties that we were able to test can be expressed at an informal
level:

1. After three failed authentications, the card is blocked, i.e. no action is per-
mitted anymore.

2. If the card is suddenly removed the number of remaining authentications
tries is set to 0.

3. No action is permitted without an identification.

For example one could see the first property formalised in our logic as several
rules, one for each possible action:

try 3 authentications(all failed) =⇒ action(blocked)

The third one could be reasonably understood as:

action(blocked) U authentication(success)

With this formalisation, these properties were tested with test cases that use
elementary combinations of card interface actions. For example we wrote an ab-
stract test case leading to three failed authentications using actions provide pin
and init session.

6 Conclusion

In this work we have proposed a testing framework allowing to produce and exe-
cute test cases from a partial specification of the system under test. The approach
we follow consists in generating the test cases from some high-level requirements
on the expected system behaviour (expressed in a trace-based temporal logic),
assuming that a concrete elementary tester is provided for each abstract predi-
cate used in these requirements. This “partial specification” plays a similar role
to the instrumentation directives currently used in run-time verification tech-
niques, and we believe that they are easier to obtain in a realistic context than
a complete operational specification. Furthermore, we have illustrated how this
approach could be instantiated on a particular logic (an action-based variant
of LTL-X), while showing that it is general enough to be applied to other sim-
ilar trace-based logics. Finally, a prototype tool implementing this framework
is available and preliminary experiments have been performed on a small case
study.

Our main objective is now to extend this prototype in order to deal with larger
examples. A promising direction is to investigate how the so-called MOP tech-
nology [6] could be used as an implementation platform. In particular, it already
offers useful facilities to translate high-level requirements (expressed in various
logics) into (passive) observers, and to monitor the behaviour of a program under

122 Y. Falcone et al.

test using these monitors. A possible extension would then be to replace these
observers by our active basic testers (using the aspect programming techniques
supported by MOP).

Acknowledgement. The authors thank the referees for their helpful remarks.

References

1. Hartman, A.: Model based test generation tools survey. Technical report, AGEDIS
Consortium (2002)

2. van der Bijl, M., Rensink, A., Tretmans, J.: Action refinement in conformance
testing. In: Khendek, F., Dssouli, R. (eds.) Testing of Communicating Systems
(TESTCOM) LNCS, vol. 3205, pp. 81–96. Springer, Heidelberg (2005)

3. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test gener-
ation for network security rules. In: TestCom, pp. 341–356 (2006)

4. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A test calculus framework
applied to network security policies. In: Havelund, K., Núñez, M., Roşu, G., Wolff,
B. (eds.) Formal Approaches to Software Testing and Runtime Verification. LNCS,
vol. 4262, pp. 55–69. Springer, Heidelberg (2006)

5. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 342–
356. Springer, Heidelberg (2002)

6. Chen, F., D’Amorim, M., Roşu, G.: Checking and correcting behaviors of java pro-
grams at runtime with java-mop. In: Workshop on Runtime Verification (RV’05),
ENTCS, vol. 144(4), pp. 3–20 (2005)

7. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.,
Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test case
generation and runtime verification. Theor. Comput. Sci. 336(2-3), 209–234 (2005)

8. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. New York,
Inc. Springer, Heidelberg (1995)

9. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A partial specification
driven compositional testing method and tool. Technical Report TR-2007-04,
Vérimag Research Report (2007)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton, New Jersey (1956)

11. Mantel, H., Stephan, W., Ullmann, M., Vogt, R.: Guideline for the development
and evaluation of formal security policy models in the scope of itsec and common
criteria. Technical report, BSI,DFKI (2004)

Nodes Self-similarity to Test Wireless Ad Hoc
Routing Protocols

Cyril Grepet and Stephane Maag

Institut National des Télécommunications
CNRS SAMOVAR

9 rue Charles Fourier
F-91011 Evry Cedex

{Cyril.Grepet, Stephane.Maag}@int-evry.fr

Abstract. In this paper we present a new approach to test the con-
formance of a wireless ad hoc routing protocol. This approach is based
on a formal specification of the DSR protocol described by using the
SDL language. Test scenarios are automatically generated by a tool de-
veloped in our laboratory. A method enabling to execute them on an
implementation into a real network is illustrated. Indeed, an important
issue is to execute some generated test scenarios on a dynamic network
in which the links are routinely modified. Therefore, the concept of self-
similarity is presented to reduce the number of nodes by collapsing them
in a real network. This enables to execute the test scenarios in defining
a relationship between the network and specification topologies.

1 Introduction

A wireless mobile ad hoc network (MANET) is a collection of mobile nodes
which are able to communicate with each other without relying on predefined
infrastructures. In these networks, there is no administrative node and each node
participates in the provision of reliable operations in the network. The nodes may
move continuously leading to a volatile network topology with interconnections
between nodes that are often modified. As a consequence of this infrastructure-
less environment, each node communicates using their radio range with open
transmission medium and some of them behave as routers to establish multi-hop
connections. Due to these aspects and the limited resources of the mobile nodes,
efficient routing in ad hoc networks is a crucial and challenging problem for the
quality of the communication systems.

From these unique characteristics of ad hoc networks, many requirements
for routing protocol design are raised. Protocols can be classified mainly into
three categories: the proactive, reactive and hybrid protocols. Classes such as
hierarchical, geographical or multicasting protocols also emerge.

The techniques used by the ad hoc network experts to design and ensure
the quality of their protocols essentially rely on descriptions for simulations
and/or emulations. These methods provide an idea of the real behavior of the

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 123–137, 2007.
c© IFIP- International Federation for Information Processing 2007

124 C. Grepet and S. Maag

implemented protocol in a node. However, the testing coverage is rather low and
is only restricted to the simulation context.

Formal description techniques and their testing tools are rarely applied in
such kind of networks. The main reason is the difficulty to take into account
the MANET protocol characteristics and the mobility of nodes in the test se-
quences generation and their execution. Therefore, our work focuses on a new
testing technique to check the conformance of these ad hoc routing protocols.
We present in this paper a formal specification of the Dynamic Source Routing
(DSR) protocol from which we may generate some test scenarios. Nevertheless,
the execution of these scenarios is currently an issue. Indeed there is often a
gap between the dynamic topology designed in a specification and the one of a
real case study. Therefore, we illustrate in this paper the concept of Node self-
similarity in order to execute generated test scenarios on a real wireless ad hoc
routing protocol taking into account the network topologies.

In the Section 2, we present the related works dealing with formal methods
enabling to test ad hoc routing protocols. In Section 3, our DSR formal model is
described and the conformance testing approach is depicted. Then, in Section 4,
the concept of self-similarity to combine real nodes is illustrated and in Section 5
an example is developed. Finally we conclude the paper.

2 Related Works

Conformance testing for ad hoc routing protocols is crucial to the reliability of
those networks. Paradoxically, few works currently exist on the formal specifica-
tions to analyse routing protocol testing [1]. The majority of these works rely on
non-formal models provided as input to simulators such as NS-2 [2] or OpNet
[3]. However, as is often noted, the simulation and emulation techniques do not
replace a real case study [4]. Indeed, normal or ideal behaviors obtained by sim-
ulation may be proved erroneous in the real case. This is why formal description
techniques are required to test this kind of protocols.

In [5] and [6], two routing protocols are validated using a testbed and analysing
the network performances. But many constraints are applied and no formal
model is used. In [7], a formal validation model named RNS (Relay Node Set) is
studied. It is well suited to the conformance testing but denotes two drawbacks.
First, only experts of the proposed languages may establish the tests which does
not facilitate the test of other protocols. Secondly, only metrics of the protocol
may be tested (overhead control, power consumption, etc.) and no basic func-
tionalities (reception of a RteReply, etc.). Moreover, interactions between nodes
may not be tested with this method.

A formal model using Distributed Abstract Machines allows to specify the
LTLS protocol [8]. Nevertheless, the specifications are not executable and no
functional analysis of the protocol is realized. In addition, the authors do not
consider the testing process of an implementation from these models. Even if the
syntax and the semantic are interesting, this formal description is still unusable
for the conformance testing.

Nodes Self-similarity to Test Wireless Ad Hoc 125

The game theory is also used in order to specify and analyse ad hoc routing
protocols [9]. But two main inconveniences appear. First, non determinism is not
allowed in this model and random behavior of nodes is not specified. Secondly
the inherent constraints of this kind of networks are not considered. Indeed, a
very strong assumption in this work is that every node needs to have a global
knowledge of the network topology which is unusual in real case studies.

In our work we propose a new approach relying on well-known formal methods
in order to enable conformance testing of ad hoc routing protocols.

3 Conformance Testing of an Ad Hoc Routing Protocol

Testing techniques can be divided in two categories: active testing which relies
on stimulation and observation of an implementation, and passive testing which
only observes the system without interactions [10], [11], [12]. Our research focuses
on active testing of ad hoc routing protocols.

Conformance testing usually relies on the comparison between the behavior
of an implementation and the formal specification of a given protocol i.e a con-
formed implementation has to behave as its specification.
The conformance testing procedure follows these steps :

- Step 1. Define a testing architecture with respect to the characteristics of the
system under test and its possible implementations. This step could impact on
each following step and has to be defined according to the context.
- Step 2. Make some assumptions that are sometimes required to enable the
test.
- Step 3. Construct a precise formal specification of the system to be tested.
This specification takes into account the system functionalities as well as the
data specific to the test environment (test architecture, test interface, etc.).
- Step 4. Select the appropriate tests. This step corresponds to the definition of
the test purposes. A test purpose can be a specific property of the system such
as tasks or assignments with regard to values of variables, or the behavior of a
specific component of the system taking into account the current values of the
variables.
- Step 5. Generate the test scenarios. The test purposes are used as a guide by
an algorithm based on simulation to produce the test scenarios. As a result, our
algorithm computes a test scenario that can be applied to the implementation
under test to verify the test purpose. A scenario is a sequence of interactions
(between the system and the environment) that includes the interactions that
represent a test purpose.
- Step 6. Format the test scenarios i.e to produce test scenarios in some accepted
formalism as Message Sequence Charts (MSC), a formalism widely used in in-
dustry to describe message exchanges, or in Testing and Test Control Notation
(TTCN), the ITU-TS standard language used for test specification.

Problematic. The main goal tackled in this paper is to provide a reliable
method to test a routing protocol in a network in which we do not control

126 C. Grepet and S. Maag

neither the number of nodes nor the mobility scenario. Therefore, three main
and relevant problems may be defined.
Mobility representation: The mobility in ad hoc networks implies that a spec-
ification has to represent more than one node communicating with each other.
Thus the specification has to allow the creation or the suppression of a link
between a pair of nodes in order to represent their mobility.
Test sequences generation: Another objective is to try to maximize the automa-
tion of the test sequences generation from classical tools avoiding the well-known
state space explosion problem.
Test execution: The mobility of nodes and the hazard of radio communications
can lead to many inconclusive verdicts or even to prevent the test. Moreover,
the testing architecture to be used is also subject to the same problems. This
problematic has to be study in order to provide a reliable verdict to the imple-
mentation conformity.

In the remaining of the paper we present our solutions to these problems with
respect to the six steps aforementioned.

3.1 Testing Architecture

Some testing architectures are proposed by the ISO standard [13]. The coordi-
nated, remote and distributed test architectures need reliable communications
between the implementation under test (IUT) and the other components of the
test. Due to the nodes mobility and in order to provide a general approach, we
can not ensure that both sites can always communicate with each other. Due to
the inherent constraints of ad hoc networks, a local testing architecture is cho-
sen. We describe the different components of our architecture as follows. First,
in order to observe packets, we need some Points of Observation (PO), whereas
to observe and control these packets (if the IUT allows it (white/grey/black box
testing)) we need Points of Control and Observation (PCO). These points are
connected with the upper and lower testers (UT and LT) which are controlled
by the test coordination procedure (TCP). The PO/PCO connected to UT
aim to control the packets between the IUT and the upper layer (IP for ex-
ample) whereas those connected to LT aim to control communications between
the IUT and the lower layer (the link layer for instance). Each time one of the
testers observes a packet, the TCP checks if it is the one expected regarding the
specification. The testing architecture is depicted in Figure 1.

This architecture enables to observe and to control the message exchanges
between the implementation and the strict upper and lower layers. In our case
study (see section 5) the IUT is a DSR implementation. The UT controls the
packet between DSR implementation and IP layer whereas the LT controls the
communication between DSR implementation and the link layer.

3.2 Testing Assumptions

In order to execute test sequences in a real network and to provide reliable
verdicts, some testing assumptions are required. First, we make the classical

Nodes Self-similarity to Test Wireless Ad Hoc 127

Fig. 1. Local test architecture applied on IUT

assumption that the implementation could be tested, i.e we can install some
Points of Control (PCO) or Points of Observation (PO) (see section 3.1) into the
IUT. The specific constraints of ad hoc networks imply that we have to make
some assumptions to take into account the mobility of the nodes. Six hypothesis
are defined:

1. Existing destination nodes: Each destination node (D) of the packets used
by our test scenarios exists and is or will be connected by the network to the
IUT.

2. Connectivity of node D: We assume that in a reasonable time, one or more
paths will enable to execute the test scenarios between IUT and D.

3. Stability of routes: The routes which allow IUT and D to communicate with
each other will remain stable during the execution of the test scenarios. This
assumption is necessary to realize conformance testing and relies on the fact
that an ad hoc network is created in order to allow communication for a
community. If the communications are reliable enough for this purpose, we
can suppose that the routes will allow to execute the test scenarios.

4. Replay: Despite the connectivity and stability assumptions, the test could
sometimes fail or be inconclusive due to the radio or topological hazards.
Thus, to avoid wrong decisions, we have to replay test scenarios before giving
the verdict.

5. Fail: If the test is too many times "inconclusive" then we may consider that
the test has failed. The testing replay number has to be decided according
to the implementation and the test context.

6. Implementation choices: We assume that the implementation under test has
the same options as the context. Capability testing techniques can be ap-
plied to check that aspect [14]. This assumption is necessary in conformance
testing as well as in interoperability testing to prevent wrong decisions.

These assumptions allow to ensure a reliable testing environment by reducing
wrong final verdicts.

128 C. Grepet and S. Maag

3.3 Formal Specification

The third step is to formally describe the system to be tested. It is necessary
to choose a formal model to reach this objective. We select the Extended Finite
State Machines (EFSMs) [14] that are well adapted to describe communication
protocols.

Definition 1. An EFSM M is defined as : M = (I,O, S,−→x , T) with I, O, S,
−→x and T respectively a set of input symbols, a set of output symbols, a set of
states, a vector of variables and a set of transitions. Each transition t ∈ T is a
6-tuple defined as : t=(st, qt, it, ot, Pt, At) where

– st is the current state,
– qt is the next state,
– it is an input symbol,
– ot is an output symbol,
– Pt (−→x) a predicate on the values of the variables,
– At (−→x) an action on the variables.

The language selected to provide the specification is the Specification and De-
scription Language (SDL) standardized by ITU-T [15]. This is a widely used
language to specify communicating systems and protocols, based on the seman-
tic model of EFSM. Its goal is to specify the behavior of a system from the
representation of its functional aspects. It allows to describe the architecture of
the system i.e the connection and organization of the elements (blocks, processes,
etc.) with the environment and between them. The behaviors of the entities in
terms of their interactions with the environment and among themselves may
also be designed. These interactions are described by tasks, transitions between
states, and are based on the EFSMs.

All along our work, we assume that the conformance testing of a routing
protocol could be performed in an unknown network topology. SDL allows to
describe network topologies by using node instances, although it is impossible to
guarantee that the topology of the real network will match the one of the speci-
fication. In that way, this work aims to reduce the number of nodes required to
generate the test sequences and also to take into account their eventual mobility,
according to the test objectives. The minimization of the specification helps to
avoid the state space explosion problem. Nevertheless it is necessary to map it
with the implementation in a real network.

This is the subject of our next section.

4 Self-similarity of Nodes

In this section we present the self-similarity of nodes used to reduce the number
of nodes in the specification. Furthermore it allows the resulting test sequences
to be executed on large class of real topologies. This approach takes into account
the strong constraint of mobility in MANETs adapting the known self-similarity
to this specific context as it is presented hereafter.

Nodes Self-similarity to Test Wireless Ad Hoc 129

4.1 Definition of Self-similarity

Node self-similarity is inspired by [16] where fixed nodes in a wired network are
merged in one single node with the main assumption that the communications
are reliable between the combined nodes. In our work, we deal with wireless ad
hoc nodes and unreliable links. We take into account these inherent constraints
in the remaining of this work. First we have to define the combination of EFSMs.

Definition 2. Let {Ni}i∈E where E ∈ [1..n] and n ∈ N be a collection of model
that can be described as EFSMs. We note N1 ◦ ... ◦Nn the combination of all Ni

defined as :
O(N) =

⋃
i∈E O(Ni)

I(N) =
⋃

i∈E I(Ni)−
⋃

i∈E O(Ni)
S(N) = Πi∈ES(Ni)−→x (N) = Πi∈E

−→x (Ni)
T (N) = (s, s′, e, o, P (−→x), A(−→x)) if (si, s′i, e, o, Pi(−→x), Ai(−→x)) ∈ T (Ni)
where Pi(−→x) ≡ Pi(−→xi), Ai(−→x) ≡ Ai(−→xi), e ∈ I(Ni) and o ∈ O(Ni)
Let Φ ⊂ O(N), we define ActHideΦ(N) as the obtained EFSM from N where
each action of Φ becomes an internal one. This application transforms the com-
munications between the different components of N into non-observable actions.

Thus we can define the self-similarity of two nodes as :

Definition 3. Let two possible actions for a node be send(Message, n,m) and
receive(Message, n′,m′) where n (respectively m′) the observed node, m (re-
spectively n′) the destination of the packet (respectively sender), and Message
the whole possible contents of a packet. Let N be a node specification. We note
Tr(N) the set of observable traces, a trace being an input/output sequence. Be-
side, Tr(N) is a finite set, indeed the variable domains of the EFSM are discrete
and finite (as most of the communication protocols).

Some Ni∈I are self-similar if :
Tr(ActHideΦ(N1 ◦N2)) ⊆ Tr(N),
where Φ = {send(Message,N1, N2), send(Message,N2, N1),
receive(Message,N1, N2), receive(Message,N2, N1)}

The self-similarity approach is easily applied in a wired network but due to mo-
bility and the unreliable communications in a MANET, it can not be performed
directly. The combination of mobile nodes is impossible, indeed the trace prop-
erty could not exist if for example two consecutive nodes on a route can not
communicate each other anymore.

Therefore, we use the self-similarity with three restrictions:

1. The self-similarity is applied from the point of view of a single node which
is the IUT.

2. The self-similarity is applied each time a packet of the test sequences is
received or sent in order to simplify the possible topologies known by the
IUT.

130 C. Grepet and S. Maag

3. The self-similarity is applied only for a specific communication on a defined
route (not considering all communications in the network) between the IUT
and another node.

The main idea, by reducing the number of nodes in the specification, is to identify
all the different possible node behaviours according to the test purposes to define
a minimal topology required and sufficient to generate test sequences for each
test purpose. In order to illustrate our approach we choose the Dynamic Source
Routing (DSR) protocol as a real case study.

5 A Case Study: DSR

5.1 Dynamic Source Routing Protocol

Dynamic Source Routing (DSR) is a reactive protocol that discovers and main-
tains routes between nodes on demand [17]. It relies on two main mechanisms,
Route Discovery and Route Maintenance. In order to discover a route between
two nodes, DSR floods the network with a Route Request packet. This packet
is forwarded only once by each node after concatenating its own address to the
path. When the targeted node receives the Route Request, it piggybacks a Route
Reply to the sender and a route is established. Each time a packet follows an
established route, each node has to ensure that the link is reliable between itself
and the next node. DSR provides three successive steps to perform this mainte-
nance: link layer acknowledgment, passive acknowledgment, and network layer
acknowledgment. If a route is broken, the node which detects the failure sends
by piggybacking a Route Error packet to the original sender.

5.2 DSR Formal Model

DSR is specified using SDL and the formal model describes the DSR draft 10
with the Flow State Extension (our specification is detailed in [18]). We do not
specify all the possible features. Only some basic features for Route Maintenance,
Route Discovery as the Cached Route Reply and all the main structures required
by DSR (as the Route Cache or the Send Buffer) are described.

In order to represent the different links between nodes, we use a special block,
called Transmission that contains a matrix where we define the connectivity in
the networks. The matrix could be easily updated by sending information to
create or remove a link. It means that we may modify dynamically the topology
of the network in the purpose of representing the node mobility by changing
their neighborhood. Details are given in [18]. Besides, we do not specify how to
support multiple interfaces or security concepts.

5.3 Specification Reduction Using Nodes Self-similarity

First, a node may behave as a source S, a router Ni or a destination D. A route
is defined as a succession of S, Ni where i ∈ [1..n] and D (Figure 2). We consider
the nodes in the route from the point of view of S which is the IUT. Two possible

Nodes Self-similarity to Test Wireless Ad Hoc 131

cases arise during a communication between nodes on a particular route: either
the communication between two successive nodes Ni and Ni+1 succeeds, or it
fails. We consider a communication as a success if a packet received by Ni is
forwarded to Ni+1 and forwarded after to Ni+2 without provoking a RteError
regardless of the meaning used for the acknowledgment. In the following N◦
illustrates the abstract node defined as:

N◦ =

{
N∅ where N∅ is the neutral element.
Nx ◦ Nx+1 where Nx ∈ {N∅} ∪

⋃n
i=1{Ni}.

N∅ represents a node that only forwards the packets without modifying anything
in the packet.

Fig. 2. A simple route between S and D

The process of nodes self-similarity may be illustrated as follows:

– Transmission success: If a transmission between Ni and Ni+1 succeeds, we
combine these two nodes in a new node N◦. The communications between
Ni and Ni+1 are considered as N◦ internal actions. If the communication
between N◦ and Ni+2 succeeds, we iterate the process and so on. Thus, in
case that the packet from S reaches D without causing a RteError, we may
combine all the intermediate nodes as illustrated in Figure 3.

Fig. 3. Combination by self-similarity when all communications succeed

– Transmission failure: If a communication fails between Ni and Ni+1, it
means that all the previous communications have succeeded. So the nodes
between N1 and Ni are combined. Finally, all the nodes after Ni+1, including
D have the same behavior for an observer placed on the IUT. We therefore
combine all the nodes from Ni+1 to D into a new node D (Figure 4).

We can note two exceptions: if the failure occurs between S and N1 or S
and D when a direct link exists.

However, from the point of view of S and with respect to our test se-
quences, the length of the main route does not matter. Indeed, a direct con-
nection or a multi-hop route (except for a route sorting in the RouteCache)
are observationnaly equivalent to S. Therefore, we handle the exceptions as
it follows.

• If a direct link between S and D is broken, we introduce N◦ = N∅ as a
node on the route matching our specification described in section 5.4

132 C. Grepet and S. Maag

Fig. 4. Combination by self-similarity when a communication fails

• if the broken link takes place between S and N1, we have combined all
the Ni and D in a new node D. Thus this leads to a similar situation
than in the first case, we also introduce N◦ = N∅ between S and the
combined node D

The topology is reduced by using self-similarity in each case for the DSR
protocol. The nodes self-similarity allows to represent a large class of topologies
with a small number of nodes and to execute test sequences regardless of the
number of intermediate nodes. Thereby we can reduce the number of nodes used
in our specification in order to generate test scenarios which is an important
issue in the testing activities especially for wireless networks.

5.4 Test Scenarios Equivalence

In order to generate adjustable test scenarios to a large class of topology taking
into account the nodes mobility, we minimize our specification. Due to nodes self-
similarity that allows to reduce a route between two nodes in a two-hop one, we
can keep only the smallest number of nodes required to generate a test sequence
according to specific test objectives. To test functional properties of DSR, no
test objectives requiring more than two routes in the network were found out.
Then, our specification can be reduced into four nodes, S, N0, N1 and D which
compose two routes [S,N0, D] and [S,N1, D] as represented in Figure 5.

S

N0

N1

D

P0 : {S, N0, D}

P1 : {S, N1, D}

Fig. 5. Specification topology

Despite nodes self-similarity allows to reduce the length of route, the specifi-
cation describes only two routes and the real network could have more than two
between the IUT and D. The main idea is therefore to create a relation between
the specification and the implementation by two sets P0 and P1 defined as:

Nodes Self-similarity to Test Wireless Ad Hoc 133

Definition 4. Definition of sets
Let Sspec and Dspec be respectively the representations of S and D in the speci-
fication Spec and Simp, Dimp their representations in the implementation Imp.
Let (pn(x) | (x, n) ∈ N) be the nth route chosen by Simp to reach Dimp and com-
posed by x nodes.

– In Spec:
• P0spec = {(Sspec, N0, Dspec)}
• P1spec = {(Sspec, N1, Dspec)}

– In Imp:
• pn(x) ∈ P (n mod 2)imp i.e all the route with 0 or an even subscript

will be in the set P0imp and those with an odd subscript will be in the
set P1imp. Thus, if there’s a RouteError we preseve the route alternance
between the set.

All along the test execution, the Test Coordination Procedure (TCP , see sec-
tion 3.1) will preserve a relation between P0spec and P0imp, and also between
P1spec and P1imp. For instance, if the routing metric is "minimal hop count"
(assumed in the rest of the paper), TCP will affect in P0imp the shortest path
as p0(x), in P1imp the second as p1(y), in P0imp the third as p2(z) and so on
with x � y � z � ...etc. Both sets save the theoretical RouteCache in the TCP .
Here "theoretical" is used because the RouteCache could eventually be filled in
an other way during the RouteDiscovery mechanism. This problem will not be
discussed in this paper because we focus here our study on functional properties.

With respect to Spec, P0imp and P1imp match possible routes described in the
specification. For instance, if a test sequence implies that P0spec disappears: the
TCP will detect the RouteError packet as an input, will erase the first element of
P0imp i.e p0(x) and will select p1(y) ∈ P1imp as the new route that IUT must use.

We have to underline the fact that a node N could belong to several routes
(a GratuitousRouteReply sent to S by the node involved into different routes).

Fig. 6. Self-Similarity of a node involved in different routes

134 C. Grepet and S. Maag

In this case, with respect to our sets, we have to duplicate this node nbr times
where nbr is the number of routes containing N in the network representation
of the TCP . Thus we create nbr routes in order to apply nodes self-similarity
to each one and to split up these routes into our two sets P0imp and P1imp

(Figure 6).

5.5 Experiment Context

Our approach is applied on a experimentation through the DSR-UU implemen-
tation [19]. The test sequences are provided by one of our tools TESTGEN-SDL
[20] and some test purposes. Direct emulation is used. It allows to use a real
implementation of a protocol stack with a simulator to represent the mobility
and to manage the communications.

The direct emulation is performed on a focal machine with the following
characteristics:

– Pentium c©M 1,6 GHz
– 512 Mo Ram
– Fedora-2.6.15 kernel with skas patch
– TUN/TAP interfaces activated

We use User Mode Linux [21] to create virtual machines with existing pre-
pared kernel and file system [22]. DSR-UU was added in the kernel.

NS-2 patched for emulation was performed to manage mobility and wireless
communication between the virtual machines. We may note that a maximum
of six virtual nodes is possible on a same focal machines. If we want a larger
collection of nodes, it is necessary to distribute the virtual machines on more
than one focal computer. The proposed emulation and testing architecture are
depicted in Figure 7.

UT

TCP/UDP

IP/DSR

ETHERNET

VM

NS-2

VM2 ... VMn

LT

TCP

Host Machine

connect to TAP

Fig. 7. Direct emulation and testing architecture

Nodes Self-similarity to Test Wireless Ad Hoc 135

5.6 Sets Management for Unexpected Messages

In case of a broken link or detected unexpected RouteError from a node belong-
ing to multiple routes, or unexpected RouteError, an inconclusive verdict could
be obtained. The experimentations have shown that despite our assumptions,
the number of inconclusive verdicts is important depending on the mobility.
Thus, we automatize an error recovery for this kind of messages. An algorithm
is defined to maintain the relation between P0imp and P1imp with the routes of
Spec taking into account unexpected RouteError packets. A received RouteError
could be characterized by two criterias:

1. expected/unexpected packet
2. the failure is/is not on the route used by the test scenario

Global Set Management Algorithm receiving a RouteError
Let Pimp = P0imp ∪ P1imp (w.r.t spec). Let P be a pointer in the TCP selecting the
set containing the route of the test scenario and P̄ its complement.
Let p be a pointer in the TCP on the first element of P .
Let lr be a broken link built from the address couple (i,j) of identified nodes carried
by the RouteError packet.
Let a = 1 if the RouteError is expected else 0

1. If lr ∈ p et a = 1 then
(a) Pimp := Pimp \ {pn(x)|lr ∈ pn(x)}.
(b) if P = P0imp then index each route by n ∈ [1..m] else n ∈ [0..m − 1], with

m the number of known routes.
(c) To build sets P0imp and P1imp.
(d) P := P̄ .
(e) p := P (1) the first element of P .
(f) To continue the test if it is possible.(*)

2. If lr ∈ p and a = 0 then
(a) Pimp := Pimp \ {pn(x)|lr ∈ pn(x)}.
(b) if P = P0imp then index each route by n ∈ [0..m − 1] else n ∈ [1..m], with

m the number of known routes.
(c) To build sets P0imp and P1imp.
(d) P := P .
(e) p := P (1).
(f) To restart the test one step before(*)

3. If lr /∈ p and a then
(a) Pimp := Pimp \ {pn(x)|lr ∈ pn(x)}.
(b) if P = P0imp then index each route by n ∈ [0..m − 1] else n ∈ [1..m], with

m the number of known routes.
(c) To build P0imp and P1imp.
(d) P := P .
(e) p := p.
(f) To continue the test.

(*) i.e the previous SourceRoute sent. If the test scenario needs a route to send a
message and Pimp = ∅, an inconclusive verdict will be obtained.

136 C. Grepet and S. Maag

6 Conclusion

In this paper we present a new approach to test the conformance of a wireless
ad hoc routing protocol, namely DSR. This approach is based on a formal speci-
fication of the protocol described in SDL. This work has as a main advantage to
formally test such kind of protocols and to take into account the nodes mobility
and the network volatility aspect as well. Test scenarios are automatically gener-
ated by a tool developed in our laboratory and a method is illustrated enabling
to execute them on a real implementation into a real network. This technique
called the nodes self-similarity allows to bridge the gap between the dynamic
topologies of a real network and the ones of the specification. This allows to
reduce the number of nodes in a specification in order to generate the sequences
and then avoiding the eventual state space explosion. The main advantage of
this method is the possibility to execute a test sequence generated from a usable
specification on an implementation running in a real mobile ad hoc network. An
algorithm is depicted in order to illustrate the relationship during the testing
process between the tester, the specification and the IUT. Finally, an applica-
tion with an emulator is illustrated in which only four nodes are necessary to
generate some test scenarios.

References

1. Obradovic, D.: Formal Analysis of Routing Protocols. PhD thesis, University of
Pennsylvania (2002)

2. NS: The network simulator (2004) http://www.isi.edu/nsnam/ns
3. OPNet: The opnet modeler (2005) http://www.opnet.com/products/modeler/

home.html
4. Bhargavan, K., Gunter, C., Lee, I., Sokolsky, O., Kim, M., Obradovic, D.,

Viswanathan, M.: Verisim: Formal analysis of network simulations. IEEE Trans.
Softw. Eng. 28(2), 129–145 (2002)

5. Yi, Y., Park, J.S., Lee, S., Lee, Y., Gerla, M.: Implementation and validation of
multicast-enabled landmark ad-hoc routing (m-lanmar) protocol. In: IEEE MIL-
CON’03 (2003)

6. Bae, S., Lee, S.J., Gerla, M.: Multicast protocol implementation and validation in
an ad hoc network testbed. In: Proc. IEEE ICC, pp. 3196–3200 (2001)

7. Lin, T., Midkiff, S., Park, J.: A framework for wireless ad hoc routing protocols. In:
Proc. of IEEE Wireless Communications and Networking Conf (WCNC) (2003)

8. Glasser, U., Gu, Q.P.: Formal Description and Analysis of a Distributed Location
Service for Mobile Ad Hoc Networks. Frazer Univ. (2003)

9. Zakkiudin, I.: Towards a game theoretic understanding of ad-hoc routing. In:
ENTCS. vol. 119, pp. 67–92 (2005)

10. Lee, D., Chen, D., Hao, R., Miller, R., Wu, J., Yin, X.: A formal approach for
passive testing of protocol data portions. In: Proceedings of the IEEE International
Conference on Network Protocols, ICNP’02 (2002)

11. Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Network protocol system
passive testing for fault management - a backward checking approach. In: de Frutos-
Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 150–166. Springer,
Heidelberg (2004)

http://www.isi.edu/nsnam/ns
http://www.opnet.com/products/modeler/home.html
http://www.opnet.com/products/modeler/home.html

Nodes Self-similarity to Test Wireless Ad Hoc 137

12. Arnedo, J., Cavalli, A., Nunez, M.: Fast testing of critical properties through pas-
sive testing. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp.
295–310. Springer, Heidelberg (2003)

13. ISO: information technology - Open Systems Interconnections - Conformance test-
ing methodology and framework (1992)

14. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. IEEE Transactions on Computers 84, 1090–1123 (1996)

15. ITU-T: Recommandation Z.100: CCITT Specification and Description Language
(SDL) Technical report, ITU-T (1999)

16. Djouvas, C., Griffeth, N., Lynch, N.: Using self-similarity for effecient network
testing. Technical report, Lehman College (2005)

17. Johnson, D., Maltz, D., Hu, Y.C.: The Dynamic Source Routing Protocol for Mo-
bile Ad Hoc Networks (DSR) - Experimental RFC. IETF MANET Working Group
(2004) http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt

18. Maag, S., Grepet, C., Cavalli, A.: Un Modèle de Validation pour le Protocole de
Routage DSR. In: Hermes, (ed.) CFIP 2005, pp. 85–100. Bordeaux, France (2005)

19. Nordstrom, E.: Dsr-uu v0.1. Uppsala University,
http://core.it.uu.se/core/index.php/DSR-UU

20. Cavalli, A., Lee, D., Rinderknecht, C., Zaidi, F.: Hit-or-jump: An algorithm for
embedded testing with application to IN services. In: Wu, J., Chanson, S., Gao, Q.
(eds.) Formal Method for Protocol Engineering and Distributed Systems, FORTE
XII/PSTV XIX’99. IFIP Conference Proceedings, Beijing, China, vol. 156, Kluwer,
Dordrecht (1999)

21. Dike, J.: user-mode-linux, http://user-mode-linux.sourceforge.net/
22. Wehbi, B.: Dynamic remote access solution to a hot-zone. Master’s thesis, Univer-

sité Pierre et Marie Curie (2005)

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt
http://core.it.uu.se/core/index.php/DSR-UU
http://user-mode-linux.sourceforge.net/

Testing and Model-Checking Techniques for Diagnosis

Maxim Gromov1 and Tim A.C. Willemse2

1 Institute for Computing and Information Sciences (ICIS)
Radboud University Nijmegen – The Netherlands

m.gromov@cs.ru.nl
2 Design and Analysis of Systems Group,

Eindhoven University of Technology – The Netherlands
t.a.c.willemse@tue.nl

Abstract. Black-box testing is a popular technique for assessing the quality of a
system. However, in case of a test failure, only little information is available to
identify the root-cause of the test failure. In such cases, additional diagnostic tests
may help. We present techniques and a methodology for efficiently conducting di-
agnostic tests based on explicit fault models. For this, we rely on Model-Based
Testing techniques for Labelled Transition Systems. Our techniques rely on, and
exploit differences in outputs (or inputs) in fault models, respectively. We char-
acterise the underlying concepts for our techniques both in terms of mathematics
and in terms of the modal μ-calculus, which is a powerful temporal logic. The
latter characterisations permit the use of efficient, off-the-shelf model checking
techniques, leading to provably correct algorithms and pseudo decision proce-
dures for diagnostic testing.

1 Introduction

Testing has proved to be a much-used technique for validating a systems behaviour,
but in itself it is a quite labour-intensive job. Formal approaches to testing, collectively
known as Model-Based Testing, have been touted as effective means for reducing the
required effort of testing by allowing for automation of many of its aspects. However,
MBT provides only a partial answer to the validation problem, as in most cases its
automation ceases at the point where a test failure has been detected; pinpointing the
root-cause of the test failure remains a laborious and time-consuming task. Finding this
root-cause is known as the diagnosis problem, and it is tightly linked to testing.

Formal approaches to the diagnosis problem rely on the use of models of the system-
under-diagnosis, and are often referred to as Model-Based Diagnosis techniques. While
MBD has been studied extensively in the formal domain of Finite State Machines (see
e.g. [3,4,6,11]), the topic is little studied in the setting of Labelled Transition Systems.
The advantage of many LTS-based theories over FSM-based theories is that the assump-
tions under which they operate are more liberal, which makes them easier to apply in
practice. In this paper, we advocate an LTS-based MBD approach for non-deterministic,
reactive systems. The techniques that we put forward in this paper operate under the
liberal LTS-based testing hypothesis of ioco-based testing [13]; our methods rely on
explicit models describing the faulty behaviour, henceforth referred to as fault models.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 138–154, 2007.
c© IFIP- International Federation for Information Processing 2007

Testing and Model-Checking Techniques for Diagnosis 139

The problem that we consider consists of identifying “correct” fault models among
a given (but large) set of possible fault models. By “correct”, we understand that no
evidence of a mismatch between the malfunctioning system and the fault model can
be found. This can be asserted by e.g. testing. Note that even though this problem is
readily solved by testing the malfunctioning system against each fault model separately,
this is a daunting task which is quite expensive in terms of resources, even when fully
automated. The main contributions of this paper are twofold:

1. inspired by classical FSM-based diagnosis approaches we present diagnostic con-
cepts and techniques to make the fault model selection process more effective in an
LTS-based setting. In particular, we adopt and modify the notion of distinguishabil-
ity (see e.g. [11]) from FSMs to fit the framework of LTSs. Secondly, we introduce
a novel notion, called orthogonality which helps to direct test efforts onto isolated
aspects of fault models. Both notions are studied in the setting of ioco-based testing.

2. we link our diagnostic concepts and techniques to model-checking problems. This
gives rise to effective and provably correct automation of our approach, and leads
to a better understanding of all involved concepts.

Note that the problem of constructing the set of fault models is left outside the scope of
this paper; in general, there are an infinite number of fault models per implementation.
While this is indeed a very challenging problem, for the time being, we assume that
these have been obtained by manually modifying e.g. a given specification, based on
modifications of subcomponents of the specifications. Such modifications can be driven
by the observed non-conformance between the specification and the implementation,
but also fault injection is a good strategy.

Related work. In [8], Jéron et al paraphrase the diagnosis problem for discrete event
systems (modelled by LTSs), as the problem of finding whether an observation of a
system contains forbidden sequences of actions. Their approach takes a description of
the structure of a system as input; the sequences of forbidden actions are specified us-
ing patterns. They subsequently propose algorithms for, a.o., synthesising a diagnoser
which tells whether or not a pattern occurred in the system. A variation on this approach
is given in [10], in which all actions are unobservable except for special “warning” ac-
tions. The problem that is solved is finding explanations for the observations of observed
warning actions. Both works view the diagnosis problem as a supervisory problem.

Apart from the above mentioned works in the setting of LTSs, there is ample lit-
erature on diagnosis based on FSMs. Guo et al, in [6] focus on heuristics for fault
diagnosis, which helps to reduce the cost of fault isolation and identification. El-Fakih
et al [4] define a diagnostic algorithm for nets of FSMs, and in [3] these techniques
are extended; the effectiveness of (a minor modification of) that algorithm is assessed
in [5]. Most FSM-based approaches consist of two steps, the first step being the gener-
ation of a number of candidate fault models (often referred to as candidates), and the
second step being a selection of appropriate candidates. The first step relies on strict
assumptions, which in general are not met in an LTS-based setting.

In [12] the emphasis is on diagnosing non-reactive systems, mostly hardware, al-
though their techniques have also been applied to software. Based on the topology of a
system, explanations for a system’s malfunctioning are computed and ranked according

140 M. Gromov and T.A.C. Willemse

to likeliness. The techniques underlying the diagnosis are based on propositional logic
and satisfiability solvers.

Structure of the paper. In Section 2 we repeat the ioco-based testing theory and the
modal μ-calculus [2], the latter being our carrier for linking diagnosis to the problem
of model-checking. The basic concepts for diagnosis, and their link to model-checking
problems is established in Section 3. In Section 4, we provide an algorithm and a semi-
decision procedure that implement the techniques and concepts of Section 3.

2 Background

In this section, we briefly recall the testing theory ioco as defined in [13]. The ioco
framework and its associated testing hypotheses serve as the basic setting for our diag-
nosis techniques. Furthermore, we introduce the modal μ-calculus [2], which is a modal
logic that we will use as a tool for characterising our diagnostic techniques.

Definition 1. A Labelled Transition System (LTS) with inputs ActI and outputs ActU
is a quintuple 〈S,ActI ,ActU ,→, s〉, where S is a non-empty set of states with initial
state s ∈ S; ActI andActU are disjoint finite sets representing the set of input actions
and output actions, respectively. We denote their union by Act. As usual, τ /∈ Act
denotes an internal non-observable action, and we write Actτ for Act ∪ {τ}. The
relation→⊆ S ×Actτ × S is the transition relation.

Let L = 〈S,ActI ,ActU ,→, s〉 be a fixed LTS. Let s, s′, . . . range over S. Throughout
this paper, we use the following conventions: for all actions a, we write s

a−→ s′ iff
(s, a, s′) ∈→, and s � a−→ iff for all s′ ∈ S, not s

a−→ s′.

Ioco-based testing theory. The notion of quiescence is added to an LTS as follows: a
state s is quiescent — notation δ(s) — iff s � τ−→ and for all a ∈ ActU , s � a−→. Informally,
a quiescent state is a state that is “stable” (it does not allow for internal activity) and it
refuses to provide outputs. Let δ /∈ Actτ be a fresh label representing the possibility
to observe quiescence; Actδ abbreviates Act ∪ {δ}. Let σ, σ′, . . . range over Act∗δ ,
actions a range overActδ, and S′, S′′, . . . ⊆ S. We generalise the transition relation→
to =⇒⊆ S × Act∗δ × S, and write s

σ=⇒ s′ iff (s, σ, s′) ∈=⇒. We define =⇒ as the
smallest relation satisfying the following four rules:

s
ε=⇒ s

s
σ=⇒ s′ s′ τ−→ s′′

s
σ=⇒ s′′

s
σ=⇒ s′ s′ a−→ s′′

s
σ·a===⇒ s′′

s
σ=⇒ s′ δ(s′)

s
σ·δ===⇒ s′

Analogously to →, we write s
σ=⇒ for s

σ=⇒ s′ for some s′. For ease of use, we intro-
duce the following functions and operators.

1. [s]σ
def= {s′ ∈ S | s σ=⇒ s′}; generalised: [S′]σ

def=
⋃

s∈S′ [s]σ;

2. out(s) def= {a ∈ ActU | s a−→}∪{δ | δ(s)}; generalised: out(S′)def=
⋃

s∈S′ out(s),

3. s-traces(s) def= {σ ∈ Act∗δ | s
σ=⇒},

4. traces(s) def= s-traces(s) ∩ Act∗,

5. der(s) def=
⋃

σ∈Act∗ [s]σ; generalised: der(S′) def=
⋃

s∈S′ der(s).

Testing and Model-Checking Techniques for Diagnosis 141

Note 1. Our notation [S′]σ is a deviation from the standard ioco-notation, where [S′]σ
is written as S′ after σ. While we are not in favour of changing common notation,
our main motivation for using our notation is brevity in definitions, theorems and algo-
rithms, in support of readability.

Definition 2. We say that:

– L is image finite if for all σ ∈ Act∗, [s]σ is finite,
– L is deterministic if for all s′ ∈ S and all σ ∈ Act∗, |[s′]σ| ≤ 1,
– L is strongly converging if there is no infinite sequence of τ transitions,
– A state s ∈ S is input-enabled if for all s′ ∈ der(s) and all a ∈ ActI , we have
s′ a=⇒ . L is input-enabled if s is input-enabled.

Throughout this paper, we restrict to image finite, strongly converging LTSs. The testing
hypothesis for ioco states that implementations can be modelled using input-enabled
LTSs. Note that this does not imply that the theory requires that this LTS is known. The
conformance relation ioco is defined as follows:

Definition 3. Let Li = 〈Si,ActI ,ActU ,→i, si〉 (for i = 1, 2) be two LTSs. Let s1 ∈
S1 and s2 ∈ S2. Then s1 is ioco-conforming to s2 – notation s1 ioco s2 – when s1 is
input-enabled and

∀σ ∈ s-traces(s2) : out([s1]σ) ⊆ out([s2]σ)

We sometimes write L1 ioco L2 instead of s1 ioco s2.

Note that proving ioco-conformance is generally not feasible, as there is no guarantee
that we have seen all the behaviours of an implementation (because of non-determinism).
In practice, we settle for confidence in ioco-conformance, which is obtained by testing
the implementation with a large set of successfully executed test-cases. A sound and
complete algorithm for ioco for deriving test-cases from a specification is proved correct
in [13]; it is implemented in e.g. TorX [1] and TGV [7].

Modal μ-calculus. The modal μ-calculus is a powerful logic which can be used to
express complex temporal properties over dynamic systems. Next to its modal operators
〈a〉φ and [a]φ, it is equipped with least and greatest fixpoint operators. The grammar
for the modal μ-calculus, given directly in positive form is as follows:

φ ::= tt | ff | X | φ ∧ φ | [a]φ | 〈a〉φ | φ ∨ φ | μX.φ | νX.φ

where a ∈ Actτ is an action and X is a propositional variable from a set of propo-
sitional variables X . A formula φ is said to be in Positive Normal Form (PNF) if all
its propositional binding variables are distinct. We only consider formulae in PNF. A
formula φ is interpreted relative to an LTS L = 〈S,ActI ,ActU ,→, s〉 and a proposi-
tional environment η : X → 2S that maps propositional variables to sets of states. The
semantics of φ is given by [[φ]]Lη , which is defined as follows:

142 M. Gromov and T.A.C. Willemse

[[tt]]Lη = S
[[ff]]Lη = ∅
[[φ1 ∧ φ2]]Lη = [[φ1]]Lη ∩ [[φ2]]Lη
[[φ1 ∨ φ2]]Lη = [[φ1]]Lη ∪ [[φ2]]Lη
[[X]]Lη = η(X)
[[[a]φ]]Lη = {s ∈ S | ∀s′ ∈ S : s a−→ s′ ⇒ s′ ∈ [[φ]]Lη }
[[〈a〉φ]]Lη = {s ∈ S | ∃s′ ∈ S : s a−→ s′ ∧ s′ ∈ [[φ]]Lη }
[[μX.φ]]Lη =

⋂
{S′ ⊆ S | [[φ]]Lη[S′/X] ⊆ S′}

[[νX.φ]]Lη =
⋃
{S′ ⊆ S | S′ ⊆ [[φ]]Lη[S′/X]}

where we write η[S′/X] for the environment that coincides with η on all variables
Y �= X , and maps variable X to value S′. A state s ∈ S satisfies a formula φ, written
s |=L φ when s ∈ [[φ]]Lη . We write L |= φ when s |=L φ.

The operator 〈a〉φ is used to express that there must exist an a transition from the
current state to a state satisfying φ. Dually, the operator [a]φ is used to express that
all states that can be reached by executing an a action satisfy property φ. Remark that
when an a transition is impossible in a state s, the property [a]φ is trivially satisfied in
state s. These operators are well-understood and can be found in early logics such as
Hennessy-Milner Logic. In this paper, we use the following additional conventions: for
sets of actions A we define:

[A]φ def=
∧

a∈A[a] φ 〈A〉φ def=
∨

a∈A 〈a〉φ

Moreover, for a formula φ, we denote its dual by φ. Such a dual formula always exists
and is readily obtained by simple transformations and renamings, see e.g. [2].

The major source for the expressive power of the modal μ-calculus is given by the
fixpoint operators μ and its dual ν. Technically, a least fixpoint μX.φ is used to indicate
the smallest solution of X in formula φ, whereas the greatest fixpoint νX.φ is used
for the greatest solution of X in formula φ. These fixpoint expressions are generally
understood as allowing one to express finite looping and looping, respectively.

Example 1. A system that can always perform at least one action is said to be deadlock-
free (note that we do not require this to be a visible action). This can be expressed in
the modal μ-calculus using a greatest fixpoint: νX. [Actτ]X ∧ 〈Actτ 〉tt. Informally,
the formula expresses that we are interested in the largest set of states (say this would
be X) that satisfies the property that from each reachable state s (s ∈ X), at least one
action is enabled, and all enabled actions lead to states s′ (s′ ∈ X) that also have this
property.

For a more detailed account we refer to [2], which provides an excellent treatment of
the modal μ-calculus.

3 Techniques and Heuristics for Diagnostic Testing

Testing is a much used technique to validate whether an implementation conforms to
its specification. Upon detection of a non-conformance, all that is available is a trace,

Testing and Model-Checking Techniques for Diagnosis 143

also known as a symptom, that led to this non-conformance. Such a symptom is often
insufficient for locating the root-cause (or causes) of the non-conformance; for this,
often additional tests are required. We refer to these additional tests as diagnostic tests.

In a Model-Based Testing setting, the basis for conducting diagnostic tests is given
by a set of fault models. Each fault model provides a possible, formal explanation of
the behaviour of the implementation; one may consider it a possible specification of
the faulty implementation. Remark that we here appeal to the testing hypothesis of
ioco, stating that there is an input enabled LTS model for every implementation. The
different fault models describe different fault situations. The diagnostics problem thus
consists of selecting one or more fault model(s) from the given set of fault models that
best explain the behaviour of the implementation.

Formally, the diagnostics problem we are dealing with is the following: given a spec-
ification S, a non-conforming implementation I and a non-empty set of fault models
F = {F1, F2, . . . , Fn}. A diagnosis of I is given by the largest set D ⊆ F satisfying
I ioco Fi for all Fi ∈ D. The focus of this paper is on two techniques for obtainingD
efficiently, viz. distinguishability and orthogonality. Note that given the partiality of the
ioco-relation, the fault models inD are –generally– all unrelated.

In Sections 3.1 and 3.2, we introduce the notions of (strong and weak) distinguisha-
bility and (strong and weak) orthogonality, respectively. We provide alternative char-
acterisations of all notions in terms of modal logic, which 1) provides a different per-
spective on the technique and, 2) enables the use of efficient commonplace tool support.
The discussion on how exactly the theory and results described in this section can be
utilised for diagnostic testing is deferred to Section 4.

3.1 Distinguishability

Given two fault models F1 and F2 and an implementation I . Chances are that during
naive testing for I ioco F1 and I ioco F2, there is a large overlap between the test-
cases for F1 and F2, as both try to model to a large extent the same implementation.
This means that F1 and F2 often agree on the outcome of most test-cases. An effective
technique for avoiding this redundancy is to exploit the differences between F1 and F2.
In particular, when, after conducting an experiment σ on I , F1 and F2 predict different
outputs, this provides the opportunity to remove at least one of the two fault models
from further consideration. When one or more such experiments exist, we say that the
fault models are distinguishable. Two types of distinguishability are studied: weakly
and strongly distinguishable fault models.

We next formalise the above concepts. At the root of the distinguishability property
is the notion of an intersection of fault models. Intuitively, the intersection of two fault
models contains exactly those behaviours that are shared among the two fault models.

Definition 4. Let Fi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 be two LTSs. Assume
Δ /∈ Act is a fresh constant, and denote ActU ∪ {Δ} by ActΔU . Likewise, ActΔ. The
intersection of F1 and F2, denotedF1||F2, is again an LTS defined by 〈(2S1 \∅)×(2S2 \
∅), ActI ,ActΔU , →, ([s1]ε, [s2]ε) 〉, where→ is defined by the following rules:

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 a ∈ Act
(q1, q2)

a−→ ([q1]a, [q2]a)
∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2

(q1, q2)
Δ−→ ([q1]δ, [q2]δ)

144 M. Gromov and T.A.C. Willemse

Remark that no transitions lead to, or start in an element (q, ∅) or (∅, q) since these are
no elements of the state-space of the intersection of two LTSs.

The intersection of two LTSs extends the alphabet of output actions of both LTSs with
the symbolΔ. This action captures the synchronisation of both LTSs over the observa-
tions of quiescence, which in the ioco-setting is treated as an output of the system. A
“true” quiescent state in the intersection of two LTSs indicates that the output actions
offered by both LTSs are strictly disjoint. In order to facilitate the mapping between
the sets Actδ and ActΔ, we use a relabelling function. Let R : ActΔ → Actδ be the
following bijective function:

R(a) def= a if a �= Δ and δ otherwise

We write R−1 to denote the inverse of R. The mapping R and its inverse extend readily
over sets of actions. The extension of the mapping R (and its inverse) over (sets of)
traces, denoted by the mapping R∗ (resp. R−1∗), is defined in the obvious way.

Property 1. Let F1||F2 be the intersection of F1 and F2, and let s1 be a state of F1, s2
be a state of F2, (q1, q2) be a state of F1||F2 and σ ∈ Act∗δ . Then:

1. F1||F2 is deterministic,
2. [([s1]σ, [s2]σ)]a �= ∅ implies ([s1]σR(a), [s2]σR(a)) ∈ [([s1]σ, [s2]σ)]a,
3. out(([q1]ε, [q2]ε)) \ {δ} = R−1(out([q1]ε) ∩ out([q2]ε)).

Some of the above properties should not come as a surprise: at the basis of the in-
tersection operator is the Suspension Automata transformation of [13], which codes a
non-deterministic specification into a deterministic LTS with explicit suspension tran-
sitions. That transformation is known to retain the exact same ioco testing power as the
original specification, albeit on different domains of specification models.

Strong Distinguishability. Recall that the intersection F1||F2 codes the behaviours
that are shared among the LTSs F1 and F2. This means that in states of F1||F2 that
have no output transitions, both LTSs disagree on the outputs that should occur, provid-
ing the opportunity to eliminate at least one of the two fault models. We say that such a
state is discriminating. If a tester always has a finite “winning strategy” for steering an
implementation to such a discriminating state, the fault models are strongly distinguish-
able. Recall that testing is sometimes portrayed as a (mathematical) game in which the
tester is in control of the inputs and the system is in control of the outputs. We next
formalise the notion of strong distinguishability.

Definition 5. The intersection F1||F2 = 〈S,ActI ,ActΔU ,→, s〉 is said to be root-
discriminating if there exists a natural number k, such that s ∈ DF1||F2(k), where
DF1||F2 : N → 2S is inductively defined by:

⎧
⎪⎪⎨

⎪⎪⎩

DF1||F2(0) = {t ∈ S | out([t]ε) = {δ}}

DF1||F2(n+ 1) =
⋂

a∈ActΔ
U
{t ∈ S | [t]a ⊆ DF1||F2(n)}

∪
⋃

a∈ActI
{t ∈ S | ∅ �= [t]a ⊆ DF1||F2(n)}

Testing and Model-Checking Techniques for Diagnosis 145

A state s ∈ DF1||F2(k) is referred to as a k-discriminating state. If it is clear from
the context, we drop the subscript F1||F2 from the mapping DF1||F2 . We say that fault
models F1 and F2 are strongly distinguishable iff F1||F2 is root-discriminating.

Property 2. For all intersections F1||F2 and all k ≥ 0, we have D(k + 1) ⊇ D(k).

Note that a state s is allowed to be (k+1)-discriminating if there is a strategy to move
from state s to a state which is k-discriminating via some input, even though there are
some outputs that would not lead to a k-discriminating state. This is justified by the fact
that the implementations that we consider are input enabled. This means that they have
to be able to accept inputs at all times, and input may therefore pre-empt possible out-
put of a system. Strong distinguishability is preserved under ioco-conformance which
means that if two fault models are strongly distinguishable, then also the implementa-
tions/refinements they model behave observably differently.

Property 3. LetF1, F2 be fault models, and let I1, I2 be implementations. If I1 ioco F1
and I2 ioco F2 and F1 and F2 are strongly distinguishable, then so are I1 and I2.

Strong distinguishability can be characterised by means of a modal μ-calculus formula.
The formal connection is established by the following theorem.

Theorem 1. Let F1, F2 be two fault models. Then F1 and F2 are strongly distinguish-
able iff F1||F2 |= φsd, where

φsd
def= μX. [ActΔU]X ∨ 〈ActI〉X

Weak Distinguishability. Strong distinguishability as a property is quite powerful, as
it ensures that there is a testing strategy that inevitably leads to a verdict about one of
the two fault models. However, it is often the case that there is no such fail-safe strategy,
even though reachable discriminating states are present in the intersection. We therefore
introduce the notion of weak distinguishability.

Definition 6. Two fault models F1, F2 are said to be weakly distinguishable if and only
if der(F1||F2) ∩ D(0) �= ∅.

The problem of deciding whether two fault models are weakly distinguishable is a stan-
dard reachability property as testified by the following correspondence.

Theorem 2. Let F1, F2 be two fault models. Then F1 and F2 are weakly distinguish-
able iff F1||F2 |= φwd, where

φwd
def= μX. 〈ActΔ〉X ∨ [ActΔU]ff

Unlike strong distinguishability, weak distinguishability is not preserved under ioco.
This is illustrated by the following example:

Example 2. Let F1 and F2 be two fault models and let I be an implementation (see
Fig. 1). Clearly, I ioco F1 and I ioco F2. Moreover,F1 and F2 are weakly distinguish-
able, as illustrated by the trace ?b.!e. However, I is clearly not weakly distinguishable
from itself, as distinguishability is irreflexive.

146 M. Gromov and T.A.C. Willemse

?b

!e
!a

!a

F1

!a
?b

!e
!a

!a

F2

!e
?b

!a

!a

I

?b

?b

Fig. 1. Fault models F1 and F2 and implementation I

3.2 Orthogonality

Whereas distinguishability focuses on the differences in output for two given fault mod-
els, it is equally well possible that there is a difference in the specified inputs. Note that
this is allowed in ioco-testing theory: a specification does not have to be input com-
plete; this partiality with respect to inputs supports a useful form of underspecification.
In practice, a fault hypothesis can often be tested by focusing testing effort on particular
aspects. Exploiting the differences in underspecifications of the fault models gives rise
to a second heuristic, called orthogonality, which we describe in this section. We start
by extending the intersection operator of Def. 4.

Definition 7. Let Fi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 be two fault models.
Assume Θ = {Θa | a ∈ ActI} is a set of fresh constants disjoint from ActΔ. We
denoteAct ∪Θ by ActΔΘ . The orthogonality-aware intersection of F1 and F2, denoted
F1||ΘF2, is an LTS defined by 〈(2S1 \ ∅) × (2S2 \ ∅),ActΘI ,ActΔU ,→, ([s1]ε, [s2]ε)〉,
where→ is defined by the two rules of Def. 4 in addition to the following two rules:

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 [q1]a �= ∅ [q2]a = ∅ a ∈ ActI
(q1, q2)

Θa−−→ (q1, q2)

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 [q2]a �= ∅ [q1]a = ∅ a ∈ ActI
(q1, q2)

Θa−−→ (q1, q2)

Property 4. Let F1||ΘF2 be the orthogonality-aware intersection of F1 and F2, and let
(q1, q2) be a state of F1||ΘF2. Then:

1. F1||ΘF2 is deterministic,

2. For all inputs a ∈ ActI , (q1, q2)
a−→ implies (q1, q2) �

Θa−−→.

Note that the reverse of Property 4, item 2 does not hold exactly because of the input
incompleteness of fault models in general. Intuitively, the occurrence of a label Θa in
the orthogonality-aware intersection models the fact that input a is specified by only
one of the two LTSs and is left unspecified by the other LTS. The presence of such
labels in the orthogonality-aware intersection are therefore pointers to the orthogonal-
ity of two systems. Once an experiment arrives in a state with an orthogonality label
Θa, testing can focus on one of the two fault models exclusively. Any test failure that is

Testing and Model-Checking Techniques for Diagnosis 147

subsequently found is due to the incorrectness of the selected fault model. We next for-
malise the notions of strong and weak orthogonality, analogously to distinguishability.

Definition 8. Let F1||ΘF2 = 〈S,ActΘI ,ActΔU ,→, s〉. F1 andF2 are said to be strongly
orthogonal if there is a natural number k such that s ∈ OF1||ΘF2(k), where OF1||ΘF2 :
N → 2S is inductively defined by:
⎧
⎪⎨

⎪⎩

OF1||ΘF2(0) = {t ∈ S | ∃a ∈ ActI : t Θa−−→}
OF1||ΘF2(n+ 1) =

⋂
a∈ActΔ

U
{t | [t]a ⊆ OF1||ΘF2(n) ∧ ∃a′ ∈ ActU : [t]a′ �= ∅}

∪
⋃

a∈ActI
{t | ∅ �= [t]a ⊆ OF1||ΘF2(n) ∨ t Θa−−−→}

The following theorem recasts strong orthogonality as a modal property.

Theorem 3. Fault modelsF1 and F2 are strongly orthogonal iff F1||ΘF2 |= φso, where

φso
def= μX. (〈ActΔU 〉tt ∧ [ActΔU]X) ∨ 〈ActI〉X ∨ 〈Θ〉tt

Analogously to distinguishability, we define a weak variation of strong orthogonality,
which states that it is possible to reach a state in which an orthogonal label Θa for some
a is enabled.

Definition 9. Given F1||ΘF2 = 〈S,ActΘI ,ActΔU ,→, s〉. F1 and F2 are said to be
weakly orthogonal iff der(F1||ΘF2) ∩ O(0) �= ∅.

A recast of weak orthogonality into the μ-calculus is as follows.

Theorem 4. Fault models F1 and F2 are weakly orthogonal iff F1||ΘF2 |= φwo, where

φwo
def= μX. 〈ActΔ〉X ∨ 〈Θ〉tt

Orthogonality is not preserved under ioco conformance, which is illustrated by the fol-
lowing example.

Example 3. Let F1 and F2 be two fault models and let I1 and I2 be two implementa-
tions, depicted in Fig. 2. Clearly, I1 ioco F1 and I2 ioco F2. Moreover, F1 and F2 are
(strongly and weakly) orthogonal, as illustrated by the trace ?b.?b which is applicable
for F1, but not applicable for F2. However, I1 and I2 are not orthogonal. Note that by
repeatedly executing experiment ?b.?b and subsequently observing output confidence
in the correctness of (aspects of) F1 can increase.

?b

?b
?c

!a

F1

!e

?c

?b

?c

!a

I2

?b

?b ?c

!a

I1

!e

?c

?b

?b

?c

!a

F2

?b, ?c ?b, ?c ?b, ?c

Fig. 2. Fault models F1 and F2 and implementations I1 and I2

148 M. Gromov and T.A.C. Willemse

4 Automating Diagnostic Testing

In the previous section we formalised the notions of distinguishability and orthogonal-
ity, both in terms of set-theory and modal logic. In this section, we rely on the latter
results for defining provably correct algorithms for eliminating fault models and for
isolating behaviours of fault models for further scrutiny.

First, we introduce the basic tools that we rely on for defining our on-the-fly diag-
nostic testing algorithms and semi-decision procedures. Then, in Section 4.2 we define
the algorithms for strong distinguishability and orthogonality, and in Section 4.3, the
semi-decision procedures for weak distinguishability and orthogonality are given.

4.1 Preliminaries

For the remainder of these sections, we assume that I is an implementation that we wish
to subject to diagnostic testing, and Fi = 〈Si,ActI ,ActU ,→i, si〉, for i = 1, 2 are two
given fault models. F1||(Θ)F2 = 〈S,Act(Θ)

I ,ActΔU ,→, s〉 is the (orthogonality-aware)
intersection of F1 and F2. From this time forth, we assume to have the following four
methods at our disposal:

1. Apply(a): send input action a ∈ ActI to an implementation,
2. Observe(): observe some output a ∈ ActU ∪ {δ} from an implementation,
3. Counterexample(L,φ): returns an arbitrary counterexample for L |= φ if one

exists, and returns⊥ otherwise.
4. Counterexamples(L, φ): returns one among possibly many shortest counterex-

amples for L |= φ if a counterexample exists, and returns⊥ otherwise.

We refer to [9] for an explanation of the computation of counterexamples for the modal
μ-calculus. In our ordeals we assume that ⊥ is a special character that we can concate-
nate to sequences of actions.

4.2 Strong Distinguishability and Strong Orthogonality

Suppose F1 and F2 are strongly distinguishable or orthogonal. Algorithm 1 derives and
executes (on-the-fly) an experiment that (see also Theorem 5), depending on the input:

– allows to eliminate at least one fault model from a set of fault models, or
– isolates a fault model for further testing.

Recall that φ denotes the dual of φ (see Section 2). Informally, the algorithm works
as follows for strongly distinguishable fault models F1 and F2 (likewise for strongly
orthogonal fault models): η is the shortest counterexample for F1 and F2 not being
strongly distinguishable. The algorithm tries to replay η on the implementation, and
recomputes a new counterexample when an output produced by the system-under-test
does not agree with the output specified in the counterexample. When the counterexam-
ple has length 0, we can be sure to have reached a discriminating state, and observing
output in this state eliminates at least one of the two considered fault models.

Testing and Model-Checking Techniques for Diagnosis 149

Algorithm 1. Algorithm for exploiting strong distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is a shortest counterexample for P |= φx, φx ∈ {φsd, φso}
Ensure: Returns a sequence executed on I .
1: function A1(P, η, φx)
2: if η = ε then
3: if φx = φsd then return Observe();
4: else choose a from {y ∈ ActI | [P]Θy �= ∅}; return a;
5: end if
6: else � Assume η ≡ e η′ for some action e and sequence η′

7: if e ∈ ActI then Apply(e); return e A1([P]e, η
′, φx);

8: else a := Observe();
9: if a = e then return e A1([P]e, η

′, φx);
10: else if R−1(a) ∈ out(P) then
11: return a A1([P]a,R∗(Counterexamples([P]a, φx)), φx);
12: else return a;
13: end if
14: end if
15: end if
16: end function

Theorem 5. Let F1 and F2 be strongly orthogonal or strongly distinguishable fault
models. Let φ = φsd when F1 and F2 are distinguishable and let φ = φso when F1
and F2 are orthogonal. Then algorithm A1({s}, Counterexamples(F1||ΘF2, φ), φ)
terminates and the sequence σ ≡ σ′ a it returns satisfies:

1. a ∈ Actδ\ActI implies out([I]σ′) �⊆ out([F1]σ′) or out([I]σ′) �⊆ out([F2]σ′),
2. a ∈ ActI implies φ = φso and [F1]σ = ∅ or [F2]σ = ∅.

The sequence that is returned by the algorithm can be used straightforwardly for check-
ing which fault model(s) can be eliminated, or which fault model is selected for further
scrutiny (see also Section 4.5). Such “verdicts” are easily added to our algorithms, but
are left out for readability.

4.3 Weak Distinguishability and Weak Orthogonality

In case F1 and F2 are not strongly but weakly distinguishable (resp. weakly orthogo-
nal), there is no guarantee that a discriminating (resp. orthogonal) state is reached. By
conducting sufficiently many tests, however, chances are that one of such states is even-
tually reached, unless the experiment has run off to a part of the state space in which no
discriminating (resp. orthogonal) states are reachable. Semi-decision procedure 2 con-
ducts experiments on implementation I , and terminates in the following three cases:

1. if a sequence has been executed that led to a discriminating/orthogonal state,
2. if an output was observed that conflicts at least one of the fault models,
3. if discriminating/orthogonal states are no longer reachable.

So long as neither of these cases are met, the procedure does not terminate. The semi-
decision procedure works in roughly the same manner as the algorithm of the previous

150 M. Gromov and T.A.C. Willemse

section. The main differences are in the termination conditions (and the result it returns),
and, secondly the use of arbitrary counterexamples, as shorter counterexamples are not
necessarily more promising for reaching a discriminating/orthogonal state.

Algorithm 2. Procedure for exploiting weak distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is any counterexample for P |= φx, φx∈{φwo, φwd}
Ensure: Returns a sequence executed on I upon termination
1: function A2(P, η, φx)
2: if η = ε then
3: if φx = φwd then return Observe();
4: else choose a from {y ∈ ActI | [P]Θy �= ∅}; return a;
5: end if
6: else � Assume η ≡ e η′ for some action e and sequence η′

7: if e ∈ ActI then Apply(e); return e A2([P]e, η
′, φx);

8: else a := Observe();
9: if a = e then return e A2([P]e, η

′, φx);
10: else if R−1(a) ∈ out(P) ∧ Counterexample([P]a, φx) �= ⊥ then
11: return a A2([P]a,R∗(Counterexample([P]a, φx)), φx);
12: else if R−1(a) ∈ out(P) ∧ Counterexample([P]a, φx) = ⊥ then
13: return ⊥;
14: else return a;
15: end if
16: end if
17: end if
18: end function

Theorem 6. Let F1 and F2 be weakly orthogonal or weakly distinguishable fault mod-
els. Let φ = φwd when F1 and F2 are distinguishable and let φ = φwo when F1 and F2
are orthogonal. If algorithm A2({s}, Counterexample(F1||ΘF2, φ), φ) terminates it
returns a sequence σ ≡ σ′ a satisfying:

1. a ∈ Actδ\ActI implies out([I]σ′) �⊆ out([F1]σ′), or out([I]σ′) �⊆ out([F2]σ′),
2. a ∈ ActI implies φ = φwo and [F1]σ = ∅ or [F2]σ = ∅.
3. a = ⊥ implies either φ = φwo and der([s]σ′) ∩ O(0) = ∅, or φ = φso and

der([s]σ′) ∩ D(0) = ∅.

The following example illustrates that the semi-decision procedure does not necessarily
terminate.

Example 4. Suppose the intersection of two fault models is given by F1||F2 and the
malfunctioning implementation is given by I (see Fig. 3). Clearly,F1 and F2 are weakly
distinguishable, which means semi-decision procedure 2 is applicable. A counterex-
ample to non-weak distinguishability is e.g. ?b!e?b?b!a, so the procedure might try to
execute this sequence. However, termination is not guaranteed, as the implementation
may never execute action !a, but output !e instead, making the semi-decision procedure
recompute new counterexamples.

Testing and Model-Checking Techniques for Diagnosis 151

Δ

?b

!a !e

?b

Δ

F1‖F2

?b

!a
!e

?b

I

?b

Fig. 3. No termination guaranteed for semi-decision procedure 2

4.4 Optimisations

The algorithms for strong distinguishability (resp. strong orthogonality) in the previous
section can be further optimised in a number of ways. First, one can include a minor ad-
dition to the standard model-checking algorithm, marking each k-discriminating (resp.
k-orthogonal) state in the LTS that is checked with its depth k. While this has a neg-
ligible negative impact on the time complexity of the model checking algorithm, the
state markings allow for replacing the method Counterexamples() with a constant-
time operation. Secondly, upon reaching a node in D(k) (O(k), respectively), the semi-
decision procedure for weak distinguishability/orthogonality could continue to behave
as algorithm 1. Furthermore, the orthogonality aware intersection is an extension of the
plain intersection. Computing both is therefore unnecessary: only the former is needed;
in that case, the formulae for strong and weak distinguishability need to be altered to
take the extended set of input actions into account.

4.5 Diagnostic Testing Methodology

Distinguishability and orthogonality, and their associated algorithms, help in reducing
the effort that is required for diagnostic testing. Thus far, we presented these techniques
without addressing the issue of when a particular technique is worth investigating. In
this section, we discuss a methodology for employing these techniques in diagnostic
testing. For the remainder of this section, we assume a faulty implementation I and a
given set of fault models F = {F1, . . . , Fn}.

We propose a stepwise refinement of the diagnostic testing problem using distin-
guishability and orthogonality. The first step in our methodology is to identify the
largest non-symmetric set of pairs of strongly distinguishable fault models G. We next
employ the following strategy: so long as G �= ∅, select a pair (Fi, Fj) ∈ G and pro-
vide this pair as input to algorithm 1. Upon termination of the algorithm, an experiment
σ ≡ σ′a is returned, eliminating Fk from F iff a /∈ out([Fk]σ′) (k = i, j). Moreover,
remove all fault models Fl for which [Fl]σ′ �= ∅ and a /∈ out([Fl]σ′) and recomputeG.
A worst case scenario requires at most |G| iterations to reach G = ∅. The process can
be further optimised by ordering fault models w.r.t. ioco-testing power, but it is beyond
the scope of this paper to elaborate on this.

When G is empty, no strongly distinguishable pair can be found in F . The set
of fault models can be further reduced using the weak distinguishability and strong

152 M. Gromov and T.A.C. Willemse

orthogonality heuristics, in no particular order, as neither allows for a fail-safe strategy
to a conclusive verdict. As a last resort, weak orthogonality is used before conducting
naive testing using the remaining fault models.

5 Example

As an illustration of some of the techniques that we presented in this paper, we consider
a toy example concerning the prototypical coffee machine. The black-box behaviour of
the coffee-machine is defined by specification S in Fig. 4, where action ?c and !c rep-
resent a coffee request and production, ?t and !t represent a tea request and production,
and ?m and !m represent a coffee-cream request and production. Among the set of fault

?c

!c ?t

!t
?m!m

?c, ?t, ?m

!c, !t

?c, ?t

!Δ ?c, ?t
!Δ, ?Θm

?c, ?t

?Θc, ?Θt, ?Θm

S F1 F2 F1||F2 F1||ΘF2

Fig. 4. Specification S and fault models F1, F2 and F3 of a coffee machine

models for a misbehaving implementation of S are fault models F1 (modelling e.g. a
broken keypad in the machine) and F2 (modelling e.g. a broken recipe book). Comput-
ing their intersection and their orthogonal-aware intersection, we find that F1 and F2
are strongly distinguishing and strongly orthogonal. The preferred choice here would
be to run algorithm 1 with arguments setting it to check for strong distinguishability
using e.g. ?t as input for the shortest counterexample. Algorithm 1 would first offer
?t to the implementation (which is accepted by assumption that implementations are
input-enabled). Since then the shortest counterexample to non-strong distinguishability
would be the empty string ε, the algorithm queries the output of the implementation
and terminates. Any output the implementation produces either violates F1 or F2, or
both. In case one would insist on using strong orthogonality, algorithm 1 would be used
with the emtpy string ε as the shortest counterexample to non-strong orthogonality. The
algorithm would return the sequence ?m, indicating that isolated aspects of F1 can be
tested by experiments starting with input ?m.

6 Concluding Remarks

We considered the problem of diagnosis for reactive systems, the problem of finding an
explanation for a detected malfunction of a system. As an input to the diagnosis prob-
lem, we assumed a set of fault models. Each fault model provides a formal explanation
of the behaviour of an implementation in terms of an LTS model. From this set of fault
models, those models that do not correctly describe (aspects of) the implementation
must be eliminated. As may be clear, this can be done naively by testing the implemen-
tation against each fault model separately, but this is quite costly. We have introduced

Testing and Model-Checking Techniques for Diagnosis 153

several methods, based on model-based testing and model checking techniques, to make
this selection process more effective.

Concerning issues for future research, we feel that the techniques that we have de-
scribed in this paper can be further improved upon by casting our techniques in a quan-
titative framework. By quantifying the differences and overlap between the outputs de-
scribed by two fault models, a more effective strategy may be found. The resulting quan-
titative approach can be seen as a generalisation of our notion of weak distinguishability.
Such a quantitative approach may very likely employ techniques developed in model
checking with costs (or rewards). A second issue that we intend to investigate is the
transfer of our results to the setting of real-time, in particular for fault models given by
Timed Automata. In our discussions, we restricted our attention to the problem of se-
lecting the right fault models from a set of explicit fault models by assuming this set was
obtained manually, thereby side-stepping the problem of obtaining such fault models in
the first place. Clearly, identifying techniques for automating this process is required
for a full treatment of diagnosis for LTSs. Lastly, and most importantly, the efficacy of
the techniques that we have developed in this paper must be assessed on real-life case-
studies. There is already some compelling evidence of their effectiveness in [5] where
a notion of distinguishability is successfully exploited in the setting of communicating
FSM nets.

Acknowledgement. The authors would like to thank Vlad Rusu, Jan Tretmans and
René de Vries for stimulating discussions and advice on the subjects of diagnosis and
testing.

References

1. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw, S.,
Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G., Dibuz, S., Tarnay,
K. (eds.) Testcom ’99, pp. 179–196. Kluwer, Dordrecht (1999)

2. Bradfield, J.C., Stirling, C.P.: Modal logics and mu-calculi: an introduction. In: Bergstra, J.,
Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, ch. 4, pp. 293–330. Elsevier,
Amsterdam (2001)

3. El-Fakih, K., Prokopenko, S., Yevtushenko, N., von Bochmann, G.: Fault diagnosis in
extended finite state machines. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS,
vol. 2644, pp. 197–210. Springer, Heidelberg (2003)

4. El-Fakih, K., Yevtushenko, N., von Bochmann, G.: Diagnosing multiple faults in communi-
cating finite state machines. In: Proc. FORTE’01, pp. 85–100. Kluwer, Dordrecht (2001)

5. Gromov, M., Kolomeetz, A., Yevtushenko, N.: Synthesis of diagnostic tests for fsm nets.
Vestnik of TSU 9(1), 204–209 (2004)

6. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Heuristics for fault diagnosis when
testing from finite state machines. Softw. Test. Verif. Reliab. 17, 41–57 (2007)

7. Jard, C., Jéron, T.: Tgv: theory, principles and algorithms. STTT 7(4), 297–315 (2005)
8. Jéron, T., Marchhand, H., Pinchinat, S., Cordier, M.-O.: Supervision patterns in discrete event

systems diagnosis. In: Proc. WODES 2006, IEEE, New York (2006)
9. Kick, A.: Generation of Counterexamples and Witnesses for Model Checking. PhD thesis,

Fakultät für Informatik, Universität Karlsruhe, Germany (July 1996)

154 M. Gromov and T.A.C. Willemse

10. Lamperti, G., Zanella, M., Pogliano, P.: Diagnosis of active systems by automata-based rea-
soning techniques. Applied Intelligence 12(3), 217–237 (2000)

11. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic fsm specifications. IEEE
Trans. Comput. 54(9), 1154–1165 (2005)

12. Pietersma, J., van Gemund, A.J.C., Bos, A.: A model-based approach to sequential fault
diagnosis. In: Proceedings IEEE AUTOTESTCON 2005 (2005)

13. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools 17(3), 103–120 (1996)

Model-Based Testing of

Service Infrastructure Components�

László Gönczy1, Reiko Heckel2, and Dániel Varró1

1 Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Magyar tudósok krt. 2. H-1117, Budapest- Hungary
{gonczy,varro}@mit.bme.hu

2 Department of Computer Science
University of Leicester

University Road, LE1 7RH, Leicester - United Kingdom
reiko@mcs.le.ac.uk

Abstract. We present a methodology for testing service infrastructure
components described in a high-level (UML-like) language. The tech-
nique of graph transformation is used to precisely capture the dynamic
aspect of the protocols which is the basis of state space generation.

Then we use model checking techniques to find adequate test se-
quences for a given requirement. To illustrate our approach, we present
the case study of a fault tolerant service broker which implements a well-
known dependability pattern at the level of services. Finally, a compact
Petri Net representation is derived by workflow mining techniques to gen-
erate faithful test cases in a non-deterministic, distributed environment.

Note that our methodology is applicable at the architectural level
rather than for testing individual service instances only.

Keywords: Model-based testing, Graph Transformation, Model Check-
ing, Fault-Tolerant Services.

1 Introduction

Beyond the usual characteristics of distributed systems, like asynchrony and
communication over potentially lossy channels, service-oriented systems are char-
acterised by a high degree of dynamic reconfiguration. Middleware protocols for
such systems, therefore, have to specify not only the communication behaviour
exhibited by the components involved, but also the potential creation and dele-
tion of their connections, or indeed the components themselves.

This additional focus on structural changes requires an approach to protocol
specification which allows to describe (i) the class of configurations the compo-
nents involved can assume, (ii) their interaction, and (iii) changes to the con-
figuration through actions of either the components under consideration or the
� This work was partially supported by European Research Training Network SegraVis

(on Syntactic and Semantic Integration of Visual Modelling Techniques) and the
SENSORIA European FP6 project (IST-3-016004).

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 155–170, 2007.
c© IFIP- International Federation for Information Processing 2007

156 L. Gönczy, R. Heckel, and D. Varró

environment. In general, such a model (however it is specified) will have an
infinite state space, which makes full automatic verification more problematic.
What is more, to verify the implementation of such protocols, the components
implementing them will have to be tested against their specifications.

In this paper we address the testing of service infrastructure components
against their specifications. By service infrastructure components we refer to
services that are not part a specific application, but play a dedicated role in the
service middleware. A typical example are services acting as proxies for imple-
menting fault-tolerance mechanisms, e.g., by managing redundancy, forwarding
requests to one of a number of available services chosen based on their per-
formance. In our approach, service infrastructure reconfiguration protocols are
specified by dynamic metamodelling [9], a combination of static metamodelling
for describing structures as instances of class diagrams, with graph transfor-
mation rules for modelling changes to these structures. Using a UML-inspired
notation for rules, specifications can be understood at an intuitive level while,
at the same time, a formal semantics, theory, and tools are available to support
verification.

We make use of that background through the state space generation tool
Groove [25] for deriving (a bounded subset of) the transition system described
by the metamodel and graph transformation rules. This transition system is em-
ployed to generate test sequences (i.e. desirable actions and their ordering) by
model checking for a specific test requirement expressed as a reachability prop-
erty. Unfortunately, the direct adaptation of derived test sequences as test cases
in a SOA environment is problematic due to (i) internal (non-observable) steps
in a test sequence, (ii) the distributed test environment where the interleaving
of independent actions is possible, and (iii) not all steps of test execution are
controllable.

For this purpose, we propose a technique to synthesize a compact Petri net
representation for the possible interactions between the service under test and
the test environment by using workflow mining techniques [1]. Concrete test
cases can be defined by a sequence of controllable actions in this Petri net, while
the test oracle accepts an observable action if the corresponding step can be
executed in the Petri net.

The paper is organised as follows. Section 2 presents the structural metamodel
for our case study and its extension by graph transformation rules. Section 3
discusses the specification of requirements for test cases and the generation of
test sequences using model checking. Section 4 presents the architecture of the
test environment and the derivation of test cases. Section 5 describes related
work while Section 6 concludes the paper and discussed future research.

2 Modelling a Solution for Fault-Tolerant Service
Infrastructure

As running example, we first introduce the dynamic metamodel of a service
broker implementing a pattern for fault-tolerant services. The broker acts as a

Model-Based Testing of Service Infrastructure Components 157

proxy for service clients, maintaining a list of available services and forwarding
clients’ requests to individual service variants. The replies of these variants will
be validated by a separate checker before being forwarded to the caller.

During the broker’s lifetime services may be created or disappear, or may be
temporarily unavailable due to loss of connection. Traditionally in the field of
fault-tolerant systems, reconfiguration is captured by semi-formal design pat-
terns. To provide a foundation for test generation, we propose a formal model
which generalises these patterns while retaining the intuitive nature of semi-
formal descriptions.

2.1 Structural Model

Our approach is based on metamodelling. A metamodel describes the ontology of
a domain in the form of UML class diagrams. Domain concepts are denoted by
classes with attributes defining their properties. Inheritance specifies subclass
relations while associations define binary relations between classes. Multiplic-
ities of association ends (at-most-one by default, or arbitrary denoted by an
asterisk) restrict the connectivity along -instances of- an association. The for-
mal interpretation of such a metamodel is a type graph [7], i.e., a graph whose
nodes and edges represent types. Instances of the metamodel are formalised as
corresponding instance graphs.

Fig. 1. Metamodel for Fault-Tolerant Services

The metamodel for fault-tolerant services is shown in Fig. 1. The FTService
(also known as broker or dispatcher) is realised as a service, too. It is respon-
sible for forwarding incoming requests to service components with the required
functionality, designated by the knows association. The number of service com-
ponents receiving the same request is determined by the fault-tolerance strategy
applied. Responses to a particular request are sent back to the FTService, which
sends them to a Checker service (also known as adjudicator).

The Checker service can be provided by a third-party component or by a
local service running on the same machine. An AdjudicatorRequest sent to this
service is composed of the original request of the client and the response of

158 L. Gönczy, R. Heckel, and D. Varró

the variant service. The Checker evaluates the incoming request and decides
about its acceptance. As this step is highly application- or domain-dependent,
we do not intend to give a general description here. Usually a simple comparison
between the expected result, an approximate value, often determined offline,
and the response of the variant service is sufficient. If there are multiple answers,
another possibility is to compare the different values. The answer of the checker is
wrapped in an AdjudicatorResponse and sent back to the FTService. If the answer
is acceptable, it is forwarded to the client. In case of an erroneous answer, the
next action is chosen according to the applied fault-tolerance algorithm and the
number of available variants.

The metamodel presents an overview of the structure of the fault-tolerance
pattern, but it does not specify the protocol executed by the component. This
is described in the following section by graph transformation rules. In partic-
ular, we will model the Recovery Block pattern [24], where requests are sent
to one variant at a time: the “best” one available according to some metrics
gathered over time. This requires to maintain a list of components in the or-
der of preference. More sophisticated strategies (such as load balancing between
components by permuting the available components, etc.) are also possible. To
mention other FT modeling solutions, OMG introduced an UML profile for QoS
and FT [27], however, our solution uses a metamodel specially tailored to needs
of SOA and patterns are modeled in more details (which is obviuosly needed for
test generation).

2.2 Behavioural Rules

This section describes how the dynamic behaviour of service infrastructure com-
ponent is specified in a formally verifiable way by graph transformation rules.
The theory of graph transformation is described in detail e.g. in [7]. Here we
only summarise the background.

A graph transformation rule consists of a Left Hand Side (LHS), a Right Hand
Side (RHS) and (optionally) a Negative Application Condition (NAC), defined
as instances of the type graph representing the metamodel. The LHS is a graph
pattern consisting of the mandatory elements which prescribes a precondition for
the application of the rule. The RHS is a graph pattern containing all elements
which should be present after the application. Elements in RHS ∩ LHS are
left unchanged by the execution of the transformation, elements in LHS \RHS
are deleted while elements in RHS \ LHS are newly created by the rule. The
negative condition prevents the rule from being applied in a situation where
undesirable elements are present in the graph. Formally, we follow the Single
Pushout (SPO) Approach with negative application conditions.

A graph grammar (GG) consists of a start graph and a set of graph trans-
formation rules. A graph transition system is a labelled transition system whose
states are all the graphs reachable from the start graph by the application of
rules, and whose transitions are given by rule applications labelled rule names.

We use the tool Groove [25] for creating graph transformation systems and
generating their transition systems [25]. The “traditional” representation of rules

Model-Based Testing of Service Infrastructure Components 159

separates LHS from RHS and shows the negative condition as part of the left-
hand side (crossed out). The compact representation of Groove, on the other
hand, uses a single graph only, with tags on the nodes and arcs to distinguish
new ly created elements deleted elements and elements that must not be present,
forming part of a negative application condition.

Fig. 2 shows the compact representa-

Fig. 2. Compact representation

tion of a sample transformation rule. This
rule expresses the behaviour of the proxy
when a decision has arrived from the ad-
judicator, reporting that the response of
a particular service variant has passed the
acceptance check. In this case, the proxy
will send the response of the variant back
to the client. In this simplified model, we
abstract from changes to the original mes-
sages, however, in a real life system, tech-

nical changes can be performed on the reply (e.g., the sender of the message can
be substituted).

Altogether we have identified four classes of transformation rules according
to the nature of the behaviour they describe:

Reconfiguration rules determine the behaviour of the service under test. In our
case, these are the rules which identify the actions of the FT proxy (forwarding
requests to variant, register a new variant, etc.).

Environmental rules describe the dynamic behaviour of the other components
in the infrastructure, still at a high level of abstraction (ignoring implementation-
dependent steps). In our case, rules for service variant and checker components
will belong to this set. The main difference between these and the reconfigura-
tion rules is that these are possible ”intervention points” where the concrete test
case may affect the system since they relate to the behaviour of the tester com-
ponent(s). However, if the System Under Test (SUT) changes (e.g., the checker
component is the subject of testing), then the classification of rules may change.

Platform-dependent implement low-level operations, such as sending a SOAP
message. They are needed to create a connection between the behaviour of dif-
ferent infrastructure components, e.g. to model that a message can be received
by the target component only after the source has sent it. They also provide
flexibility as other middleware-related aspects can easily be integrated. For in-
stance, if one would like to extend the model by logging or reliable messaging
features (e.g. creating acknowledgements for each messages), these extensions
can be separated from the main component’s high level logic. An example for
such an extension was described in [13].

Test-related rules express actions which influence the tests but happen outside
the system, including fault injection rules. In the case study, rules describing
actions of the client are considered to be clearly test-related. In our fault model
we consider external service faults representing an incorrect response which will
fail the acceptance check. The checker component is considered to be always

160 L. Gönczy, R. Heckel, and D. Varró

correct, but the model is extendable to deal with a possibly unavailable/wrong
checker.

The rules of the example are listed in Fig. 3 with their classification and a brief
description. The rule classification has an impact on the test case generation, as
rules of the above classes will affect test cases in different ways, as described in
Sect. 3.

Fig. 3. Rules of the fault-tolerant proxy case study

3 Generation of Execution Sequences by Model Checking

This section describes the use of state space generation and model checking to
derive executable test cases for the service broker. An architectural overview of
our approach is presented in Fig. 4. Conceptually, we follow the principles of
[4] to generate test cases as counterexamples for a given property using model
checking. The properties are derived from test requirements specifying sequences
of transformation steps to be used as test cases.

Given the counterexamples in form of rule sequences, we build a structure rep-
resenting the possible combination of test sequences. This way non-determinism
introduced by distributed computing is included in our model, and the test or-
acle will be able to treat all possible branches (with the restriction that we will
manage only test cases given as a result of the model checking).

For representing test cases we use the formalism of Petri Nets. We use critical
pair analysis of the GT rules to find non-determinism in the system. Once we
have the rule dependencies and test cases, the α-algorithm of [1] is performed to

Model-Based Testing of Service Infrastructure Components 161

synthesize a complex Petri Net. Finally we reduce this Petri Net by filtering the
rules which are neither observable nor controllable and therefore are not needed
for the test oracle. Rules corresponding to middleware behavior and internal
operations of the SUT are typically erased from the net.

Fig. 4. High-level architectural view of the testing framework

3.1 Test Requirements

The test requirements we express can prescribe a desired action, following a spec-
ified sequence as a precondition. More formally in EBNF, our simple property
language is defined as follows.

<requirement> ::= <sequence> => <rule>
<sequence> ::= <rule> | <rule>.<sequence>

Here, arrow (=>) means implication, dot (.) concatenation, while | and ::=
are the usual EBNF (meta) operators. Note that although the conclusion of a
requirement consists of the application of a single rule, a choice between multiple
actions can be modelled by describing requirements for several test cases.

To illustrate our approach, we describe test case generation for a sample re-
quirement: If a variant response passed the acceptance test, the proxy will forward
it to the client. In terms of graph transformation, this translates to the following
rule sequence, using the rule names of Fig. 3.

callAdjudicator.makePositiveDecision => createProxyResponse

Typical requirements correspond to forbidden behavior (such as, ”If there is a
variant which has not been asked, no failure message can be sent to the client”)
and required actions, e.g., ”If a checker accepts a result, the proxy must forward
it to the client”.

The rules used in requirements will typically belong to the classes of reconfig-
uration, environmental, or test-related rules, expressing high-level functionality

162 L. Gönczy, R. Heckel, and D. Varró

observable at the application level. Platform-dependent steps are normally
neglected, which results in reusable requirement patterns. For example, message-
based communication could be replaced by remote procedure calls without af-
fecting these requirements.

3.2 State Space Generation and Model Checking

Given the transformation rules described in Sect. 2.2 and an initial configuration
(e.g., a proxy, a number of service variants not registered with the proxy and
a client) one can generate the entire state space of the graph transition system
using the GROOVE tool [25]. Groove performs a bounded state space generation
by applying graph transformation rules in all possible ways to the start graph,
up to a given search depth. Unfortunately, the implementation of model checking
of temporal logic formulae is still in an early stage for GROOVE, therefore we
use a separate model checking tool.

We transfer both the graph transition system generated by Groove and the
requirements into the Labelled Transition System Analyzer (LTSA) tool [18].
For model checking, LTSA composes an automaton from the LTS of the original
system and the property automaton of the requirement. The analysis will find a
violation trace if the property automaton reaches an error state.

Thus, a requirement has to be translated into a property automaton with
the obvious modification that the ”required action” is considered as an error
state. Moreover, a separate automaton is derived from the state space of the
graph transformation system generated by Groove. In the process, all infor-
mation about the internal structure of states and transformation steps is lost.
Therefore, we have to restrict our execution path retrieved by the LTSA analysis
to handle one request at a time. However, this does not prevent to apply our test
generation technique of Sec. 4 to be used for concurrent messages.

Fig. 5. Requirement expressing the behavior of the proxy

Given such an input, the LTSA tool is able to find low-level rule sequences in
the state space of the system which ”violate” the property automaton derived
from the original requirement by negating the required action. These sequences
will serve as the basis for deriving the actual test cases.

As an example, we examine the rule set (of Fig. 3) for a sample configuration
consisting of one client, one proxy, one checker and three service variants. The
formulation of our sample requirement as a property automaton is given in Fig. 5.
The sequence which is found as a “counterexample” for this property is shown

Model-Based Testing of Service Infrastructure Components 163

in the following example. (We modified the output format of LTSA to make the
sequence more readable.)

newSubscription => sendMessage => receiveMessage =>
registerFirstVariant => newRequest => sendMessage =>
receiveMessage => callFirstVariant => sendMessage =>
receiveMessage => createResponse => sendMessage =>
receiveMessage => callAdjudicator => sendMessage =>
receiveMessage => createPositiveDecision => sendMessage
=> receiveMessage => createProxyResponse

This corresponds to a sequence describing the desired functionality of the
system, and it will serve as the basis for a test cases for this requirement. This
sequence is one of the shortest possible rule sequences since the execution of
some of the steps can be carried out in parallel (e.g. the subscription of a variant
and the creation of a client request). That means, although the test case could
contain concurrent steps, the model checker will return only a sequence.

Note that although we focus on the generation of test sequences, the same
technique can also be used to verify the dynamic behaviour of the model as
described in [13]. In this case the output of the model checker represents a
decision about whether the system meets a particular requirement. If not, a
sequence of events is provided that violates the requirement.

In our case, if the analysis results in a positive decision about the negated
requirement, the original requirement is not satisfied by the rules of the model.
This provides, almost as a side effect, with a verification of the model (e.g. as
described in [13]) possibly leading to a re-design of the rules according to the
results of the test case generation.

4 Derivation of Test Cases

At this point, execution sequences derived by the LTSA model checker are avail-
able. However, their direct adaptation for test cases in a SOA environment is not
at all straightforward as (i) certain steps in the execution sequence are internal
to the proxy thus they are not observable, (ii) the tests need to be executed
in a distributed environment where the interleaving of independent actions is
possible, and (iii) we cannot deterministically control all steps of test execution
(non-deterministic testing [22]).

For the first problem, many existing approaches [22,5] typically use an abstract
representation of the test case which only includes controllable and observable
actions. For the second problem, one may ask the model checker to derive all
possible execution paths which satisfies a given requirement [14]. However, this
results in a huge set of test sequences, i.e. a different sequence for each inter-
leaving, which can be infeasible in practice. For the third problem, a test oracle
needs to be derived which identifies if one of the correct execution paths were
executed by the FT proxy (i.e. service under test, SUT) for a given input.

164 L. Gönczy, R. Heckel, and D. Varró

After discussing the architecture of the test environment, we propose a tech-
nique to synthesize a compact Petri net representation for the possible interac-
tion between the FT proxy and the test environment by using workflow mining
techniques [1]. Concrete test cases can be defined by a sequence of controllable
actions in this Petri net, while the test oracle accepts an observable action if the
corresponding step can be executed in the Petri net.

4.1 A Distributed Test Architecture

The component architecture of the test framework is shown in Fig. 6 with the
interfaces of messages arriving to each component and potential interactions
between the components.

Fig. 6. Architecture of test components

Since in a service-oriented architecture the server will be unaware of the client
implementation and communicate only via messages, thus the TestClient does not
have to implement any method of the FT proxy (SUT).

Methods of Variant and Checker will be forwarded to the TestCoordinator,
thus the test coordinator implements the interfaces of all the other components
in the test environment. Operations on these interfaces will be interaction points
or controllable and observable actions (see later in Sec. 4.2). This way, no mod-
ifications are made to the SUT (the FT proxy) for testing purposes as services
implementing other infrastructural elements can replace the interfaces of the
coordinator.

The execution of a test case requires to make certain decisions available
as test configuration parameters, which are application-dependent during nor-
mal operation. For instance, decisions like the result of an acceptance test or
the availability of a variant will be influenced by pre-defined test parameters
for each decision in the test. For instance, if multiple variants will be asked
by the proxy, each of them will ask the coordinator whether to answer the
request.

In the paper, we assume that tests components are stand-alone services in a
distributed SOA environment, but no further implementation details are pro-
vided to better concentrate on presenting the test generation approach itself.

Model-Based Testing of Service Infrastructure Components 165

4.2 Creating the Test Suite

In the field of model based testing, generating executable test sets from abstract
test sequences is a well-known problem. Actions in a sequence can be controllable,
observable or hidden. These categories respectively correspond to decision points
to set up a certain test case (controllable), automatically executed actions within
the test framework (observable) and actions inside the SUT (hidden).

In our case, a rule sequence produced by the model checker may contain many
rules to be executed automatically, without any test-case specific intervention.
Reconfiguration rules (like registerVariant) are obviously part of the SUT, i.e.,
the FT proxy. Platform-dependent rules can be observable or hidden, depending
on whether they are executed in the SUT or in the tester. However, as the mid-
dleware rules are not directly affected during testing, we consider them hidden.
Hence, only controllable test and environmental rules will included in a test case.

Our goal is to build a combined representation of multiple test cases and
test oracles in the form of Petri nets. Petri Nets (PN) are a special class of
bipartite graphs used to formally model and analyze concurrent systems with a
wide range of available tool support. The reader is referred, for instance, to [23]
for the theory and application of PN.

For this purpose, we combine critical pair analysis of graph transformation
rules with the α-algorithm used for workflow mining in [1]. The former technique
aims at statically detecting conflicts and causal dependency between graph trans-
formation rules, while the latter method is used for building instances of a special
class of Petri Nets (called Workflow Nets) from workflow logs.

Step 1: Partial ordering of an execution path. First, we build a Petri
Net of each individual test case which makes concurrent behaviour explicit by
de-sequencing (totally ordered) actions in the execution path derived by the
model checker into a partially ordered transitions in the PN.

In order to detect concurrent actions, we use basic concepts of graph trans-
formation theory. Two rules are in conflict with each other, if the execution of
a rule does disables the execution of the other rule (otherwise, they are parallel
independent). A rule is causally dependent on another rule, if the first rule en-
ables the other (e.g. by creating new matchings for it), otherwise, they are called
sequentially independent.

A partial ordering between actions can be derived by performing critical pair
analysis [19] of our rules, which is a well-known static analysis technique in the
field of graph transformation to detect potential conflicts and causalities of graph
transformation rules. Critical pair analysis is able to show minimal conflicting
(or causal dependent) situations between two graph transformation rules. These
suspicious situations can be inspected by the user to decide if they arise in a
certain application or not.

In our case, a critical pair analysis will detect some trivial conflicts due to
the semantics of Groove which always explicitly requires a NAC to prevent the
system from getting to an infinite loop. After eliminating such trivial dependen-
cies, the result of the analysis for an execution sequence will reveal those parts

166 L. Gönczy, R. Heckel, and D. Varró

of the sequence which can be executed concurrently. These will correspond to
the behavior of distributed components and the middleware, the order of which
cannot be determined. Fig. 7 shows a partially ordered version of rule sequence
in Sect. 3.2 as a PN where controllable and observable actions are highlighted.

Fig. 7. Petri Net representing a test case

Step 2: Constructing workflow nets from partially ordered paths.
Using the method of [1] the system model is reconstructed by workflow mining
techniques from individual observations (cases). Our problem is very similar: we
have to create an abstract model of observable and controllable actions, which
explicitly contains concurrent behavior and potential non-determinism.

This workflow mining technique groups relations between pairs of actions
into the following categories: potential parallelism, direct causality, precedence
and concurrency. These relations can be derived from the critical pair analysis
in the previous step. We also have the restriction that the net will be of class
Free Choice Net. The only difference is that we do not expect the final model to
be a valid WF-Net. The result of the algorithm is shown in Fig. 8.

Fig. 8. The Petri Net created after the combination of test sequences

Step 3: Reduction of an observable Petri net. The net is then reduced
using standard PN reduction rules described for instance in [23]. The main prin-
ciple of the reduction is that we erase all sequences and parallel constructs which
do not contain any controllable or observable actions, since these correspond to
internal behavior of SUT (this case, the proxy) and therefore will not affect the

Model-Based Testing of Service Infrastructure Components 167

Fig. 9. The Abstract Petri Net created after reduction

tester. The result of the reduction is shown in Fig. 9. The resulting abstract PN
can be used as a combined test suite and test oracle for a set of given requirements.

4.3 Discussion

Our approach relies on a combination of various formal techniques. Now we
discuss the role of each individual technique in the overall approach.

Why to combine two model checkers? At this point, the official Groove re-
lease does not yet support model checking facilities, only state space generation.
However, this feature of the tool is strong enough because dynamically chang-
ing models are supported. Therefore, we project the state space generated by
Groove into the LTSA tool to derive actual execution sequences for a given test
criterion (this is practically renaming an LTS structure).

Why to use a Petri Net representation for a test case? The final Petri net
representation offers two advantages: (i) a compact representation of test case
with explicit concurrency and without interleavings (which is not the case of the
original GTS state space) (ii) mining techniques are available to derive the PN.

Direct bridging of graph transformation and Petri nets. There are existing
approaches to generate a Petri net representation of a graph transformation
system on various levels of abstraction [2,28]. In the future, we plan to investigate
more on their applicability in a testing environment. However, we believe that
the Petri net representation of a test case is more simple compared to them.

5 Related Work

The modelling technique in our paper is conceptually derived from [3] where
SOA-specific reconfigurations where first defined by a combination of graph
transformation and metamodelling techniques.

Graph transformation is used as a specification technique for dynamic ar-
chitectural reconfigurations in [10] using the algebraic framework CommUnity.
Executable visual contracts derived from graph transformation rules are facili-
tated in [20] where JML code is generated for the run-time checking of (manual)

168 L. Gönczy, R. Heckel, and D. Varró

service implementations. In [6] the same contracts are used for specification
matching. Graph transformation rules guided the model-based discovery of web
services in [15].

The specification and analysis of fault behaviors have been carried out in [8]
using graph grammars. While this approach is not directly related to SOA, it
uses similar techniques for modeling the behaviour of the system, and also applies
model checking techniques for verifying the behavioural specification. However,
the behaviour of SOA components typically induces an infinite state space, such
a full verification is problematic.

In [16], one of the authors applies graph transformation-based modelling for
conformance testing. The novel contribution of the current paper is that (i) we
use model checking to generate test sequences, which leads to a higher level of
automation (ii) our models focus on changes at the architectural level rather
than on the data state transformation with a single service.

The work presented in [17] aims at test generation for processes described
in OWL-S. Our work is different as our test cases are derived from high-level
formal specification of the dynamic behaviour, rather than being abstracted from
its implementation. The same applies to [12] where the SPIN model checker is
used to generate test cases for BPEL workflows. Authors of [21] also use SPIN
to create test sequences to meet coverage criteria. Categories of actions and
formalisms for describing test cases are defined among others in [22] and [5].
However, synthesis of test cases is still an open issue. We already discussed the
work described in [22] and [5].

LTSA [18] has already been applied successfully in a SOA context for the
formal analysis of business processes given in the form of BPEL specifications in
[11]. However, the direct adaptation of this approach is problematic, since the
inherent dynamism in the reconfiguration behaviour of the service infrastructure
is difficult to be captured in BPEL.

A de-facto industrial standard in the telecommunications domain for a highly
available service middleware is the Application Interface Specification (AIS) of
SA Forum [26]. Our future work includes the application of our approach to
testing of components of the AIS infrastructure.

6 Conclusions and Future Work

We proposed a model-based approach for generating test cases for service infras-
tructure components exemplified by testing a fault-tolerant proxy. The reconfig-
uration behaviour of the service infrastructure was captured by a combination of
static metamodels and graph transformation rules. The (bounded) state space of
the service infrastructure was derived by the Groove tool [25], and post-processed
by the LTSA model checker to derive an execution sequence for a given require-
ment. In order to generated faithful test cases to be executed in a distributed
service environment, a compact Petri net representation was derived by workflow
mining techniques. At the final step, this Petri net was reduced by abstracting
from internal actions.

Model-Based Testing of Service Infrastructure Components 169

The scalability of our method is at the moment mainly limited by the states-
pace generation feature of Groove which is the range of 100 thousand states;
however, these states represent a dynamically changing structure (vs. a BDD
with predefined state variables). The quality of our generated test cases strongly
corresponds to the requirements which are under investigation (as usual in
requirement-based testing).

In the paper, we limited our tests to configurations with one proxy and one
service type only. That means, all variants implement the same service. This,
however, is only a limitation for illustration purposes, since the rules can easily be
extended to model a proxy maintaining multiple variant lists, one for each type of
service. Multiple requests can also be tested by starting a corresponding Petri net
for observing each request. On the other hand, in case of more sophisticated re-
quirements information about the structure of the graphs needs to be expressed.
This is currently is not supported by the state space generation and model-
checking tools we use. Future developments in model checking for graph trans-
formation systems are likely to ameliorate this problem. Our long-term purpose
is to develop a methodology for testing automatically generated components,
modelled by a visual notation that enables (semi-) automatic code generation.

References

1. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. In: IEEE Trans. on Knowledge and Data Engineering,
vol.16(9) (2004)

2. Baldan, P.B., König, B., Stürmer, I.: Generating Test Cases for Code Generators
by Unfolding Graph Transformation Systems. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 194–209.
Springer, Heidelberg (2004)

3. Baresi, L.R., Heckel, S., Thöne, S., Varró, D.: Style-Based Modeling and Refine-
ment of Service-Oriented Architectures. Journal of Software and Systems Mod-
elling 5(2), 187–207 (2006)

4. Beyer, D., Chlipala, A.J., Majumadr, R.: Generating Tests from Counterexamples.
In: Proc. 26th Intern. Conf. on Software Engineering, pp. 326–335 (2004)

5. Campbell, C., Grieskamp, W., Nachmanson, L.: Model-Based Testing of Object-
Oriented Reactive Systems with Spec Explorer. Technical Report MSR-TR-2005-
59, Microsoft Research (2005)

6. Cherchago, A., Heckel, R.: Specification Matching of WebServices UsingConditional
Graph Transformation Rules. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozen-
berg,G. (eds.) ICGT2004.LNCS,vol. 3256,pp. 304–318.Springer,Heidelberg (2004)

7. Corradini, A., Montanari, U., Rossi, F.: Graph Processes. Special Issue of Funda-
menta Informaticae 26(3-4), 241–266 (1996)

8. Dotti, L., Ribeiro, L., dos Santos, O.M.: Specification and analysis of fault be-
haviours using graph grammars. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AG-
TIVE 2003. LNCS, vol. 3062, pp. 120–133. Springer, Heidelberg (2004)

9. Engels, G.J., Hausmann, J., Heckel, R., Sauer, S.: Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000)

170 L. Gönczy, R. Heckel, and D. Varró

10. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software
architecture reconfiguration. Science of Comp. Progr. 44(2), 133–155 (2002)

11. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web ser-
vice compositions. In: 18th IEEE Intern. Conf. on Automated Software Engineering
(ASE 2003), Montreal, Canada, pp. 152–163. IEEE, New York (2003)

12. Garca-Fanjul, J., Tuya, J., de la Riva, C.: Generating Test Cases Specifications for
BPEL Compositions of Web Services Using SPIN. In: Proc. Intern. Workshop on
Web Service Modeling and Testing (WS-MATE 2006), pp. 83–85 (2006)

13. Gönczy, L., Kovács, M., Varró, D.: Modeling and verification of reliable messaging
by graph transformation systems. In: Proc. of the Workshop on Graph Trans-
formation for Verification and Concurrency (GT-VC 2006), Elsevier, Amsterdam
(2006)

14. Hamon, G., de Moura, L., Rushby, J.: Generating Efficient Test Sets with a Model
Checker. In: Proc. of SEFM 04, Beijing, China (September 2004)

15. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based Discovery of Web Ser-
vices. In: IEEE Intern. Conf. on Web Services (ICWS), USA (June 6-9, 2004)

16. Heckel, R., Mariani, L.: Automated Conformance Testing of Web Services. In:
Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg
(2005)

17. Huang, H., Tsai, W.-T., Paul, R., Chen, Y.: Automated Model Checking and Test-
ing for Composite Web Services. In: Proc. of 8th IEEE Intern. Symp. on Object-
Oriented Real-Time System Computing (ISORC’05) pp. 300–307 (2005)

18. Labelled Transition System Analyser (Version 2.2)
http://www-dse.doc.ic.ac.uk/concurrency/ltsa-v2/index.html

19. Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation
with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006)

20. Lohmann, M., Sauer, S., Engels, G.: Executable Visual Contracts. In: Proc. IEEE
Symposium on Visual Languages and Human Centric Computing (VL/HCC 05),
pp. 63–70 (2005)

21. Micskei, Z., Majzik, I.: Model-based Automatic Test Generation for Event-Driven
Embedded Systems using Model Checkers. In: Proc. of lnt’l Conf. on Dependability
of Computer Systems (DEPCOS-RELCOMEX’06), pp. 191–198 (2006)

22. Muccini, H.: Software Architecture for Testing, Coordination and Views Model
Checking. PhD Thesis (2002)

23. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proc. of IEEE,
vol. 77(4) (1989)

24. Randell, B., Xu, J.: The Evolution of the Recovery Block Concept, in Software
Fault Tolerance. In: Lyu, M. (ed.) Trends in Software, pp. 1–22. J. Wiley, New
York (1994)

25. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

26. S.A. Forum: Application Interface Specification. http://www.saforum.org
27. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics

and mechanisms.
28. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination

Analysis of Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
260–274. Springer, Heidelberg (2006)

http://www-dse.doc.ic.ac.uk/concurrency/ltsa-v2/index.html
http://www.saforum.org

Testing Input/Output Partial Order Automata

Stefan Haar1, Claude Jard2, and Guy-Vincent Jourdan3

1 IRISA/INRIA
Rennes, France

Stefan.Haar@irisa.fr
2 IRISA, ENS Cachan Bretagne

Campus de Ker-Lann, F-35170 Bruz, France
Claude.Jard@bretagne.ens-cachan.fr

3 School of Information Technology and Engineering (SITE)
University of Ottawa

800 King Edward Avenue
Ottawa, Ontario, Canada, K1N 6N5

gvj@site.uottawa.ca

Abstract. We propose an extension of the Finite State Machine frame-
work in distributed systems, using input/output partial order automata
(IOPOA). In this model, transitions can be executed non-atomically,
reacting to asynchronous inputs on several ports, and producing asyn-
chronous output on those ports. We develop the formal framework for
distributed testing in this architecture and compare with the synchronous
I/O automaton setting. The advantage of the compact modelling by
IOPOA combines with low complexity : the number of tests required
for concurrent input in our model is polynomial in the number of inputs.

1 Introduction

Finite State Machines (FSMs) have been used to model many types of sequential
systems. However, it is distributed applications over networks that become in-
creasingly important; they do not fit into this sequential model, because inputs
may be applied simultaneously and events are not necessarily totally ordered.
In the context of testing, distributed testing models use multi-port automata in
which each transition is guarded by a required vector of inputs (possibly ⊥, i.e.
no input on some channels) on a collection of channels, and produces a vector of
outputs (possibly ⊥) on those channels. This model, often called Multiports De-
terministic FSM in the literature, but that we call sequential input automata in
this paper, has been widely studied from a distributed system testing perspective;
emphasis is given in that work to the coordination messages, between testers at
different ports, that are necessary to avoid controllability and observability prob-
lems in distributed systems testing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
However, this model is intrinsically sequential regarding the inputs, which must
be specified one at a time (although one such single input can generate several,
concurrent outputs on different ports). In order to specify that from a given
state, two concurrent inputs a and b are required, one has to specify either ’a

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 171–185, 2007.
c© IFIP- International Federation for Information Processing 2007

172 S. Haar, C. Jard, and G.-V. Jourdan

then b’ or ’b then a’. Consider the more detailed example in Figure 1. In that
context, we need to specify that in order to go from state si to state sf , we need
to input i1, i2 and i3 on ports 1, 2 and 3 respectively. On port 1, the output o1
should be produced after i1 was input. On port 3, output o3 should be produced
after i3 was input, and on port 2, o2 should be produced after i1, i2 and i3 have
all been input. In general, when n inputs must be provided concurrently, the only
option is to enumerate all n! ordering for the inputs, leading to a specification
that is large and difficult to create, hard to interpret and thus to understand, and
whose size makes it difficult to test. Another approach would be to arbitrarily
impose a given ordering for the inputs, which seems a poor option and which
adds needless constraints at the implementation level.

Si

S1

i1/<o1,-,->

S2

i2/<-,-,->

S3

i3/<-,-,o3>

S6

i1/<o1,-,->

S4

i2/<-,-,->

S5

i3/<-,-,o3>

Sf

i3/<-,-,o3>
i2/<-,-,->

i1/<o1,-,->

i3/<-,o2,o3> i1/<o1,o2,->i2/<-,o2,->

Fig. 1. (Partial) Multiports Deterministic FSM

We therefore endeavour to explore a model that allows specifications to relax
synchronization constraints: equipping partial order automata with input/output
capabilities. We define a class of IO-PO-automata (IOPOA) in which

– inputs can arrive asynchronously, and
– transitions may occur partially, and in several steps, reacting to inputs as

they arrive and producing outputs as soon as they are ready, without dedi-
cated synchronization.

The important additional feature (in addition to state transition and output
production) of transitions is then a causal order : for p channels, we have a
bipartite graph of (p inputs) ∗ (p outputs) such that input on channel i precedes
output on channel i produced by that transition. Cross-channel dependencies
may persist between input on some channel j and output on channel i �= j; at
most, the input on j can trigger a broadcast to all channels. However, inputs are
not ordered among one another, neither are outputs.

Testing Input/Output Partial Order Automata 173

S i

S f

i1 i2 i3

o 1 o 2 o 3

Fig. 2. The IOPOA corresponding to the multiports deterministic FSM of Figure 1

Figure 2 shows the IOPOA corresponding to the set of transitions of Fig-
ure 1. Clearly, the result is a much simpler model, with two states and one
transition. The role of states for testing in this model will be redefined, and
a new role emerges for the partially ordered patterns ; the theoretical toolbox
of distinguishing sequences etc. needs to be adapted, yet keeps its importance.
Concerning the complexity of checking, one might have expected that the new
model were just a concise way of specifying the same behavior, and thus that
testing would be the same in both cases (that is, that all combinations of con-
current inputs would have to be tested anyways). It turns out not to be the
case; in fact, the number of tests required for concurrent input in our model is
polynomial in the number of inputs.

The rest of the paper is structured as follows. In section 2, the IOPOA Frame-
work is introduced, section 3 focuses on the differences between the partial order
model and the classical one regarding conformance testing. Finally, section 4 dis-
cusses future extensions to more general IOPOA classes, and shows that IOPOA
can have homing and synchronizing sequences, but may not have state identifi-
cation or state verification sequences. Section 5 concludes.

2 IOPOA Framework

We introduce the model of IOPO Automaton with I/O vector sequences. The
definition of conformance, given in 2.3 in this framework needs the notions of
well-behavedness and of completion, which we discuss in 2.4.

2.1 IOPO Automata

Definition 1. An Input/Output Partial Order Automaton (or IOPO Automa-
ton, IOPOA) is a tuple M = (S, sin,Chn , I,O, δ, λ, ω), where

1. S is a finite set of states and s1 = sin ∈ S is the initial state; the number of
states of M is denoted n � |S| and the states of M are enumerated, giving
S = {s1, . . . , sn};

2. Chn = π1, . . . , πp is the set of I/O channels (ports),

174 S. Haar, C. Jard, and G.-V. Jourdan

3. I is the common input alphabet, and O the common output alphabet for all
channels. Note that the literature often notes different alphabets I1, . . . , Ip

for different channels ; the above implies no loss of generality provided that
the port to which an input is applied is uniquely identifiable. Taking

I �
p⋃

i=1

Ii ; I � I × Chn ,

such that (a, i) denotes input a on port i, one can switch from one repre-
sentation to the other. We require a special symbol ⊥ ∈ I ∩ O to represent
empty input/output. Let Θ be the p-tuple Θ � (⊥, . . . ,⊥), and

X � Ip\{Θ}, XΘ � X ∪ {Θ}
Y � Op

be the sets of input/output p-vectors, respectively.
4. δ : S × X → S is a (partial) next state function: s′ = δ(s,x) for states
s, s′ ∈ S and x = (x1,x2, . . . ,xp) ∈ X means that if M is in state s, and
inputs x1,x2, . . . ,xp are applied to ports 1, 2, . . . , p, respectively, then M will
enter state s′;

5. λ : S × X → Y is the output function; if M is in state s, and input
x = (x1,x2, . . . ,xp) ∈ X is applied, then the output λ(s,x) = (y1,y2, . . . ,yp)
is observed; write λi(s,x) = yi to indicate that yi is observed at port i;

6. ω is a PO transition label function: For any (s,x) ∈ S × X such that
δ(s,x) = s′ and λ(s,x) = y ∈ Y, ω(s,x) ⊆ ({x1, . . . ,xp} × {y1, . . . ,yp}) is
a partial order that satisfies
(a) xi < yi for all i ∈ {1, . . . , p} such that xi �= ⊥ and yi �= ⊥, and
(b) if xi = ⊥, then xi �≤ yj for all j ∈ Chn.

We assume throughout this paper that the underlying transition graph is
strongly connected for all IOPOA considered. δ and λ extend to sequence-valued
functions S×X ∗ → S∗ and S×X ∗ → Y∗, which we denote by the same function
names.

2.2 I/O Vector Sequences

We allow I/O with restricted concurrency. That is, in each round, one input
may be given and one output be received on each channel, and I/O on different
channels in that round are pairwise concurrent; in particular, inputs can be made
in any order. By contrast, I/Os in different rounds are never concurrent: earlier
rounds strictly precede all subsequent ones, for all channels.

For x,x′ ∈ XΘ, say that x ≤ x′ iff for all i ∈ {1, . . . , p}, xi �= x′
i implies

xi = ⊥. Write x < x′ iff x ≤ x′ and x �= x′. Intuitively, if x < x′, x can be seen
as an incomplete input of x′; one may ”enter x first, and later add the rest of
x′”. This is in fact a key to our technique for transition identification, see below.
For vector sequences α, β ∈ X ∗, write α β iff
1. α1 . . . α|α|−1 is a prefix of β, and
2. α|α| ≤ β|α|.

Note that this is more restrictive than the general partial order prefix relation.

Testing Input/Output Partial Order Automata 175

Subtraction:

– For vectors x ≤ x′, let x′ ! x be the vector w such that wi = x′
i iff xi = ⊥,

and wi = ⊥ otherwise.
– For vector sequences α β, let

β ! α � (β|α| ! α|α|) ◦ β|α|+1 . . . β|β|.

2.3 Completion of an IOPOA

Intermediate states: Suppose states s, s′ and vectors x,x′ ∈ X such that
δ(s,x) = s′ and Θ < x′ < x. In general, δ(s,x′) may be undefined; remedy this
by using an extended state space, with an intermediate state sx

′ �∈ S such that
input x′ leads from s to sx

′
, and input x ! x′ leads from sx

′
to s′. Formally,

we extend S to a superset S and assume δ, λ, ω extend to partial functions
δ : (S × X) → S, λ : (S × X) → Y and ω : (S × X) → 2(X×Y) such that the
following properties hold:

1. δ|(S×X) ≡ δ, λ|(S×X) ≡ λ, and ω|(S×X) ≡ ω;
2. Monotonicity: Changing the order in which inputs are received must not

alter the behavior of δ, λ and ω. Formally, α β must imply for all s ∈ S
(◦ denotes concatenation):
(a) δ(s, β) = δ(δ(s, α), β ! α);
(b) λ(s, β) = λ(s, α) ◦ λ(δ(s, α), β ! α);
(c) ω(s, β) = ω(s, α) ◦ λ(δ(s, α), β ! α);

If the above are satisfied by M, we say that M is well-behaved. If M �
(S, sin, I,O,Chn , δ, λ, ω) is well-behaved, call M � (S, sin, I,O,Chn , δ, λ, ω) its
completion.

Well-behavedness captures the strong input determinism of a transition in a
IOPOA. If one transition specifies several inputs, then necessarily these inputs
are concurrent, and thus can be input in the system in any order without impact
on the state reached at the end of the transition. This is a reasonable assumption
since if the state reached was different for different orderings of the input, it
would imply that the inputs were in fact causally related, and therefore the
specification should not have treated them as concurrent.

Thus, in the following, we require all IOPOAs to be well-behaved, thus we
are dealing with strongly deterministic IOPOAs for which no order needs to be
enforced for concurrent inputs.

2.4 Morphisms and Conformance

Let M and M′ be two IOPO automata over the same in/output alphabets:

M = (S, s1, I,O,Chn , δ, λ, ω)
and M′ = (S′, s2, I,O,Chn , δ′, λ′, ω′).

A morphism from M to M′ is a total mapping Φ : S → S′ with the property
that for all (s,x) ∈ S ×X such that δ(s,x) is defined,

176 S. Haar, C. Jard, and G.-V. Jourdan

1. δ′(Φ(s),x) is defined, and δ′(Φ(s),x) = Φ(δ(s,x));
2. λ′(Φ(s),x) = λ(s,x);
3. Φ induces a partial order isomorphism ω(s,x) → ω′(Φ(s),x).

We say thatM′ conforms toM iff there exists a bijective morphism Φ : S → S′,
called a conformal map. Φ is an isomorphism iff (i) it is bijective and (ii) Φ−1 is
a morphism from M′ to M. Note that conformance is not a symmetric relation,
and strictly weaker than isomorphism. We note that:

Lemma 1. The composition of conformal maps yields a conformal map, i.e.
conformance is transitive.

Theorem 1. LetM1 andM2 be well-behaved IOPO automata. IfM2 conforms
to M1 under Φ : S2 → S1, then M2 conforms to M1.

Proof. SupposeM2 conforms toM1 under Φ : S2 → S1. Let u1 be an intermedi-
ate state of M, and (s1, α) ∈ S1×X ∗ such that δ1(s1, α) = u1. By construction
of M1, there exists s′1 ∈ S1 and α′ ∈ X ∗ such that α α′ and

δ1(s1, α′) = δ1(s1, α′) = u′1. (1)

Isomorphism of M1 and M2 implies that

δ2(s2, α′) = δ2(s2, α′) = u′2, (2)

where s2 � Φ(s1), s′2 � Φ(s′1), and u′2 � Φ(u′1). By construction of M2, there
exists an intermediate state u′ ofM′ such that δ2(s2, α) = u2. Input determinism
implies that u2 is unique with this property. Set Φ(u1) � u2. One obtains an
extension Φ : S1 → S2 of Φ : S1 → S2, and checks that Φ is bijective and defines
a morphism M1 →M2.

3 Conformance Testing for Automata with Distinguishing
Sequences

The utility of the theorem 1 lies in the following application: Suppose we are given
an implementation M = (S, sin,Chn , I,O, δ, λ, ω) and a specification M1 =
(S1, sin1 ,Chn , I,O, δ1, λ, ω). Let L1 ⊆ X ∗ be the set of all input vector sequences
α such that δ1(sin1 , α) is defined, i.e. application of α in sin takes M1 to some
specification state sα = δ(sin1 , α) ∈ S1. LetM2 be the IOPO automaton obtained
by applying L1 in M, i.e. let

M2 � (S2, sin1 , I,O,Chn , δ2, λ2, ω2),
where : S2 �

{
s ∈ S | ∃ α ∈ L1 : δ(sin, α) = s

}
,

δ2 � δ|S2×L1 ,

λ2 � λ|S2×L1 ,

ω2 � ω|S2×L1 .

Testing Input/Output Partial Order Automata 177

Here, L1 denotes the closure of L1 under subtraction of prefixes. By construction,
M conforms to M2. Using well-known techniques [17], conformance of M2 to
M1 can be tested. If the test is passed, we know by Theorem 1 thatM2 conforms
to M1; thus Lemma 1 yields that M conforms to M1. Hence the task of testing
conformance for IOPO automata is indeed completed.

In order to actually perform a test of conformance, we use a checking sequence.
Let C(M) be the set of IOPOA having no more states thanM, the same number
of ports and the same input and output alphabet.

Definition 2 (Checking Sequence). Let M1 = (S1, sin1 ,Chn, I,O, δ1, λ1, ω1)
be an IOPOA. A checking sequence of M1 is an input sequence I which dis-
tinguishes M1 from any IOPOA M2 = (S2, sin2 , I,O,Chn , δ2, λ2, ω2) in C(M1)
that does not conform to M1, i.e. such that ∀s ∈ S2, λ1(sin1 , I) �= λ2(s, I) or
ω1(sin1 , I) �= ω2(s, I).

Distinguishing sequences are usually defined as a sequence of inputs that will
produce a different output for every state [17]. In the case of IOPOAs, we need
to expand this definition to include the possibility of having the same output
but different partial order labels.

Definition 3 (Distinguishing Sequence). An IOPOA M admits an adap-
tive distinguishing sequence if there is a set of n input sequences {ξ1, . . . , ξn},
one per state of S, such that for all i, j ∈ [1, . . . , n], i �= j, ξi and ξj have a
non-empty common prefix ξijand λ(si, ξij) �= λ(sj , ξij) or ω(si, ξij) �= ω(sj , ξij).

The automaton has a preset distinguishing sequence if there is an adaptive
one such that for all i, j ∈ [1, . . . , n], ξi = ξj ; in that case, ξi distinguishes state
si.

Not all automata have adaptive distinguishing sequences, but by definition, if
an automaton has a preset checking sequence, it has an adaptive one.

3.1 Assumptions

In the following, we assume that the number q of states in the implementation
does not exceed the number of states in the specification, i.e. q ≤ n. We also
assume that the directed graph induced by δ on S in strongly connected (and
thus, by construction, the directed graph induced by δ̄ on S̄ is also strongly
connected). We finally assume that the IOPOA has an adaptive distinguishing
sequence.

3.2 Sequential Input Automata

Since sequential input automata form a special case of IOPOA, it is instructive to
look at that class first. It is known that we can construct a checking sequences
of polynomial length [18, 19, 17], using polynomial time algorithms [20]. One
example of such an algorithm is the following [19]. We call a transfer sequence
τ(si, sj) a sequence taking the machine from state si to state sj . Such a sequence

178 S. Haar, C. Jard, and G.-V. Jourdan

always exists, since the state graph is strongly connected. In order to prove the
morphism between the specification and the implementation, we need to show
that every state on the specification exists in the implementation, and that every
transition of the specification is in the implementation as well, going from the
correct state to the correct state and generating the correct output when given
the correct input.

Assuming that the machine starts in its initial state sin = s1 and that we
have a distinguishing sequence ξi for every state si, the following test sequence
checks that the implementation has n states, each of which reacts correctly when
input the distinguishing sequence for that state:

ξ1 ◦ τ(δ(s1, ξ1), s2) ◦ ξ2 ◦ τ(δ(s2, ξ2), s3) ◦ . . . ◦ ξn ◦ τ(δ(sn, ξn), s1) ◦ ξ1 (3)

In order to test a transition a/b going from state si to sj , assuming the imple-
mentation is currently in a state sk, we can use the following test sequence:

τ(sk, si−1) ◦ ξi−1 ◦ τ(δ(si−1, ξi−1), si) ◦ a ◦ ξj (4)

Applying the test sequence 3, then applying the test sequence 4 for each
transition provides a checking sequence. Unfortunately, this simple approach will
not directly work with IOPOAs, because causal relationships between inputs and
outputs between processes are not directly observable. In order to overcome this
issue, we need to create longer test sequences that check causal relationships as
well.

In order to explain our solution, we first illustrate our technique on a single
transition, assuming that the implementation is correct.

3.3 Complete Transition Identification

We will test transitions by delaying input on only one channel, i; let us formalize
this as input in the i-test mode: Let 1 ≤ i ≤ p, and suppose an input vector
x ∈ X given. Then define input vector x̌i as

x̌i
j �

{
⊥ : i = j
xj : i �= j,

and let x̂i � x! x̌i; i.e.

x̂i
j �

{
xi : i = j
⊥ : i �= j.

Let x be an input vector occurring in some input sequence α = α1 . . ., such that
αm = x for some m. Applying x in i-test mode in α means applying, instead
of α, the sequence α′ � α1 . . . αm−1x̌ix̂iαm+1

Denote as Δi(α) the sequence obtained from α = α1 . . . by replacing each αk

by the pair α̌i
kα̂

i
k, i.e. in Δi(α), input i is delayed in all rounds. It is important

Testing Input/Output Partial Order Automata 179

to note that delaying creates equivalent sequences, in the sense that for all α
and i,

λ (Δi(α)) = λ(α),
δ (Δi(α)) = δ(α),

and ω (Δi(α)) = ω(α).

Fix some input vector x and state s, and set y � λ(s,x). Assume we are inter-
ested in the label ω(s,x); more precisely, since input and output are given, look
for the partial order <ω⊆ (x× y). Denote as τxs � τ(δ(s,x), s) a sequence that
brings the machine back to state s after having input x from state s. The test
is now performed by inputting

σ � x̌1x̂1τxs x̌2x̂2τxs . . . τ
x
s x̌px̂pτxs , (5)

that is, return to state s and test the same input vector x, delaying a different
channel in each round. Call si � δ(x̌i, s) and y̌i � λ(x̌i, s). Now, exactly those
outputs that are generated only after input xi are causal consequences of xi.
That is, we obtain <ω as follows:

<ω � {(xi,yi) | i ∈ Chn,xi �= ⊥ and yi �= ⊥} (6)
∪

{
(xi,yj) | j ∈ Chn − {i} ∧ y̌i

j = ⊥ ∧ yj �= ⊥
}
. (7)

In fact, consider i �= j and xi �= ⊥ and yj �= ⊥.

– If xi <ω yj , then output yj cannot be produced before input xi arrives,
hence y̌i

j = ⊥; and
– conversely, if xi �<ω yj , then yj = ⊥.

Note that we assume here that all enabled outputs are produced and observed
immediately, that is, we can actually decide whether or not output has been
produced; reading ⊥ means that no output was produced, we do not consider
delayed outputs (where ⊥ could mean ’no output yet ’).

3.4 Algorithm for IOPOA Conformance Testing

Single State Identifying Sequence: The implementation can be said to have
implemented a state sk if it can be shown that there is a state in the implemen-
tation that behaves like sk when the input ξk is entered. The state sk has been
identified in the implementation. As already pointed out, the difficulty lies in
the inter-channels causal relationships: We can easily observe that λ(sk, ξk) is
produced by the implementation, but checking that ω(sk, ξk) is correct requires
more work.

Theorem 2. An implementation of an IOPOA, assumed to be in a state sk for
which ξk is a distinguishing sequence, can be verified to have implemented sk

with the following test sequence:

[
Δ1 (ξk) ◦ τξk

sk

]n ◦
[
Δ2 (ξk) ◦ τξk

sk

]n ◦ . . . ◦
[
Δp (ξk) ◦ τξk

sk

]n
, (8)

where [I]n stands for the application of input sequence I n times.

180 S. Haar, C. Jard, and G.-V. Jourdan

Proof. By assumption, the IOPOA is deterministic and the implementation has
at most n states. Thus, after entering the same input n times, the implementation
is necessarily “locked” in a cycle of states and will not leave that cycle while the
same input is entered. The input sequence will thus clearly loop between states
that output λ(sk, ξk) when input ξk. There are between 1 and n such states.
By entering [Δi (ξk) .τ(δ(sk, ξk), sk)]n for some i ∈ [1, . . . , p], we can verify that
the (at most n) states we are looping through do exhibit the correct causal
relationships on port i. Since we test all ports, at the end of the test sequence
we have identified in the implementation between 1 and n states that produce
λ(sk, ξk) and ω(sk, ξk) when input ξk.

Denote by Γ (si) the input sequence (8) for state si. When adaptive distinguishing
sequences exist, it is possible to find one of size O(n2) [21]. Moreover, transfer
sequences have size O(n), so the entire test sequence is of size O(pn3) when using
adaptive distinguishing sequence.

3.5 Checking Sequence Construction

As a direct consequence of Theorem 2, it is easy to see that, assuming that
the machine starts in its initial state sin = s1 and that {ξ1, . . . , ξn} is a set
of adaptive distinguishing sequences, the following test sequence checks that
the implementation has n states, each of which reacts correctly when input the
corresponding distinguishing sequence:

Γ (s1) ◦ τ(s1, s2) ◦ Γ (s2) ◦ τ(s2, s3) ◦ . . . ◦ Γ (sn) ◦ τ(sn, s1) ◦ Γ (s1) (9)

When using adaptive checking sequences, this test sequence is of size O(pn4),
since we have seen that a state identification sequence Γ (si) can be executed
in size O(pn3) and a transfer sequence in O(n), and since we have n states to
verify.

In order to check the transitions, let us assume that in the IOPOA we have
x ∈ X , si, sj ∈ S such that sj = δ(si,x). We need to test that when the imple-
mentation is in a state identified as si, if x is input the implementation outputs
λ(si,x) to move into a state identified as sj , while respecting ω(si,x).

The test sequence Γ (si).x.Γ (sj) can be used to check the transition’s end
states and λ(si,x). In order to verify ω(si,x), the test sequence (5) can be
used, but we have to ensure that τ(δ(si,x), si) brings indeed the implementation
back to a state identified as si, which can be achieved by the test sequence
Γ (si).x.τ(δ(si,x), si).Γ (si). So, writing τxsi

= τ(δ(si,x), si), the entire test of
the transition x can be done with the test sequence:

Γ (si) ◦ x ◦ Γ (sj) ◦ τxsi
◦ Γ (si) ◦Δ1 (x) ◦ τxsi

◦Δ2 (x) ◦ τxsi
◦ . . . ◦Δp (x) ◦ τxsi

(10)

When using adaptive checking sequences, this test sequence is of size O(pn3).
It must be done for every transition. If we assume t transitions, and since it is
possible to go from any state to any other state in O(n), testing every transition
can be done in O(tpn3). The following result immediately follows:

Testing Input/Output Partial Order Automata 181

Theorem 3. Given an IOPOA of n states and t transitions having an adaptive
checking sequence, assuming that the implementation is in the initial state, the
following test sequence is a checking sequence of size O(tpn3 + pn4):

1. Check all states with the test sequence (9)
2. For all transitions do:

(a) transfer to the starting state of the transition
(b) check the transition with the test sequence (10)

Note that given that the IOPOA modeling leads to an exponential reduction
of the size of the model compared to the multiport deterministic model, the
checking sequence constructed with theorem 3 is also considerably shorter than
one for a multiport deterministic model of the same system when dealing with
sufficiently large and concurrent systegms.

4 Extensions and Outlook

4.1 Conformance Testing for Automata Without Distinguishing
Sequences

Not every automaton has distinguishing sequences. In the absence of distinguish-
ing sequences, one can always create checking sequences based on separating
families of sequences. Adapting the definition of [17] to IOPOAs, a separating
family of sequences for an IOPOA is a collection of n sets Z1, Z2, . . . , Zn, one
collection per state. Each collection is made of up to n− 1 sequences, such that
for every pair of states si, sj ∈ S, there is an input string α such that α is a
prefix of some sequence of Zi and of some sequence of Zj and λ(si, α) �= λ(sj , α)
or ω(si, α) �= ω(sj , α).

Separating families always exist for minimized automata, and can be used
to create checking sequences based on identifying sequences; these checking se-
quences are in the worst case of exponential length in the number of separating
sequences.

The construction carries over to the IOPOA case; the details will be given in
an extended version of the present paper.

4.2 State Identification and State Verification

The state identification and state verification problems are two common and well
known questions: find out the state the implementation is in (state identification)
and verify that the implementation is indeed in a given state (state verification).
With sequential input automata, the former can be answered if the automata
has a distinguishing sequence, while the latter can be answered if the state has
a unique input output (UIO).

Unfortunately, neither questions can be answered with IOPOAs, even with
a distinguishing sequence. The problem lies again in the inter-channel causal
relationships that cannot be directly observed, and yet can be the only difference

182 S. Haar, C. Jard, and G.-V. Jourdan

between two states. In order to uncover these differences, several tests of the
states can be necessary, which is simply impossible when the state is unknown
or unsure.

a

S1 S2 S3

S4

b

c d

a b

c d

a b

c d

a b

c d

x

u v

y

q r

Fig. 3. An IOPOA for which states can neither be identified nor verified

The figure 3 illustrate the problem. In this IOPOA, the simple input (a, b)
is a distinguishing sequence. Yet, the only strategies, a then b or b then a can-
not distinguish between states s2 and s3 or s1 and s3 respectively. And since,
whatever strategy, the implementation should be in state s4 afterward, it is not
possible to extend the test any further to clarify the situation, and thus state
identification is not possible. For the same reason, it is not possible to ensure
that the implementation is currently in state s3.

4.3 Homing and Synchronizing Sequences

As opposed to the state identification and verification problems outlined in Sec-
tion 4.2, homing sequences and synchronizing sequences are not difficult with
IOPOAs.

A synchronizing sequence is a sequence that always takes the implementation
to a particular state regardless of the state it was in when the sequence was
entered. Clearly, not every automaton has such a synchronizing sequence. On
the other hand, a synchronizing sequence does not involve any observation of
the outputs of the implementation. Thus, if such a sequence exists, it can be
used even with an IOPOA.

A homing sequence has the weaker property of taking the implementation
to some known state, although not necessarily the same state depending on the
unknown initial state. If the automaton is reduced, then such a homing sequence
necessarily exists. In this case, the output plays a key role, since allows us to
know the ending state. Yet, the classical way of constructing such an homing

Testing Input/Output Partial Order Automata 183

sequence is to pick two random states and build a sequence that tells them apart
(such a sequence always exists in a reduced machine), and keep going until we
have told all states pairwise apart. This can be easily achieved with IOPOAs,
even if the two states differ only by non directly observable inter channels causal
relationships, since we know what we are trying to uncover, and we can thus test
for it. As an example, consider the IOPOA of Figure 4. Initially, we do not know
the current steate, so it could be {s1, s2, s3, s4}. Say we want to separate s1 from
s2; this can been done by delaying input a and observe whether d is output. Thus,
the input sequence < ⊥, b >,< a,⊥ > will generate either < ⊥,⊥ >< c, d >
or < ⊥, d >< c,⊥ >. In the first case, we were on s1 or s4, and we are now on
{s2, s1}, and in the other case we were on s2 or s3, and we are now on {s3, s4}.
The very same input again will tell apart the elements of these two sets.

So, the homing sequence is < ⊥, b >,< a,⊥ >,< ⊥, b >,< a,⊥ >, and the
interpretation of the observation is, for the final state:

< ⊥,⊥ >< c, d >< ⊥,⊥ >< c, d >⇒ s2
< ⊥,⊥ >< c, d >< ⊥, d >< c,⊥ >⇒ s3
< ⊥, d >< c,⊥ >< ⊥,⊥ >< c, d >⇒ s1
< ⊥, d >< c,⊥ >< ⊥, d >< c,⊥ >⇒ s4

a

S1 S2

S3S4

b

c d

a b

c d

a b

c d

a b

c d

Fig. 4. Homing sequences can be found for IOPOA

5 Conclusion

We have introduced a generalized testing framework that includes and gener-
alizes the classical I/O automaton setup. Using I/O partial order automata,
asynchrony in inputs can be easily and concisely specified. Where a listing of
all possible combinations of concurrent inputs is required with the Multiports
Deterministic FSM model usually seen in the literature, a single transition is
necessary with I/O partial order automata, leading to a model that can be ex-
ponentially smaller. I/O partial order automata allow also to specify the causal

184 S. Haar, C. Jard, and G.-V. Jourdan

order between inputs and outputs, including unobservable interprocess causal
relationships.

We have provided a test method to check the correctness of an implementation
for a specification provided with an I/O partial order automata that has an
adaptive distinguishing sequence. We show that in this case, we can produce a
checking sequence of polynomial size in the number of transitions and the number
of ports, thus we are not “paying back” the exponential reduction achieved by
the model. This non intuitive result shows that I/O partial order automata
are a powerful model when it comes to specifying and testing concurrency in
distributed systems.

References

1. Chen, J., Hierons, R., Ural, H.: Conditions for resolving observability problems in
distributed testing. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS,
vol. 3235, pp. 229–242. Springer, Heidelberg (2004)

2. Chen, X.J., Hierons, R.M., Ural, H.: Resolving observability problems in dis-
tributed test architecture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp.
219–232. Springer, Heidelberg (2005)

3. Sarikaya, B., Bochmann, G.v.: Synchronization and specification issues in protocol
testing. IEEE Transactions on Communications 32, 389–395 (1984)

4. Luo, G., Dssouli, R., Bochmann, G.V., Venkataram, P., Ghedamsi, A.: Test gener-
ation with respect to distributed interfaces. Comput. Stand. Interfaces 16, 119–132
(1994)

5. Tai, K., Young, Y.: Synchronizable test sequences of finite state machines. Com-
puter Networks and ISDN Systems 30, 1111–1134 (1998)

6. Hierons, R.M.: Testing a distributed system: Generating minimal synchronised
test sequences that detect output-shifting faults. Information and Software Tech-
nology 43, 551–560 (2001)

7. Khoumsi, A.: A temporal approach for testing distributed systems. Software En-
gineering, IEEE Transactions on 28, 1085–1103 (2002)

8. Wu, W.J., Chen, W.H., Tang, C.Y.: Synchronizable for multi-party protocol con-
formance testing. Computer Communications 21, 1177–1183 (1998)

9. Cacciari, L., Rafiq, O.: Controllability and observability in distributed testing.
Inform. Software Technol. 41, 767–780 (1999)

10. Boyd, S., Ural, H.: The synchronization problem in protocol testing and its com-
plexity. Information Processing Letters 40, 131–136 (1991)

11. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: Pro-
tocol Specification, Testing and Verification, vol. V, pp. 483–494. Elsevier, North
Holland (1985)

12. Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers. In:
Protocol Specification, Testing and Verification, vol. VI, pp. 217–229. Elsevier,
North Holland (1986)

13. Rafiq, O., Cacciari, L.: Coordination algorithm for distributed testing. The. Journal
of Supercomputing 24, 203–211 (2003)

14. Hierons, R.M., Ural, H.: Uio sequence based checking sequence for distributed test
architectures. Information and Software Technology 45, 798–803 (2003)

15. Chen, J., abd, H.U., R.M.H.: Overcoming observability problems in distributed
test architectures (Information Processing Letters) (to appear)

Testing Input/Output Partial Order Automata 185

16. Jourdan, G.V., Ural, H., Yenigün, H.: Minimizing coordination channels in dis-
tributed testing. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 451–466. Springer, Heidelberg (2006)

17. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. In: Proceedings of the IEEE, vol. 84, pp. 1089–1123 (1996)

18. Gill, A.: Introduction to The Theory of Finite State Machines. McGraw Hill, New
York (1962)

19. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceedings
of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey, pp. 95–110 (1964)

20. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43, 306–320 (1994)

21. Sokolovskii, M.N.: Diagnostic experiments with automata. Journal Cybernetics and
Systems Analysis 7, 988–994 (1971)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 186–198, 2007.
© IFIP- International Federation for Information Processing 2007

A Framework for Testing AIS Implementations

Tamás Horváth and Tibor Sulyán

Dept. of Control Engineering and Information Technology, Budapest University of
Technology and Economics, Budapest, Hungary

{tom, stibi}@iit.bme.hu

Abstract. Service availability has become one of the most crucial parameter of
telecommunications infrastructure and other IT applications. Service
Availability Forum (SAF) is a leading organization in publishing open
specifications for Highly Available (HA) systems. Its Application Interface
Specification (AIS) is a widely accepted standard for application developers.
Conformance to the standard is one of the most important quality metrics of
AIS implementations. However, implementers of the standard usually perform
testing on proprietary test suites, which makes difficult to compare the quality
of various AIS middleware. This paper presents a testing environment which
can be used to perform both conformance and functional tests on AIS
implementations. The results and experiences of testing a particular AIS
middleware are also summarized. Finally we show how to integrate our testing
environment to be part of a comprehensive TTCN-3 based AIS implementation
testing framework.

Keywords: Application Interface Specification (AIS), Conformance Testing,
Functional Testing, Service Availability.

1 Introduction

Service Availability Forum’s Application Interface Specification (SAF AIS) [1]
defines a standard for a distributed middleware which can be used to implement
highly available carrier-grade services. Several implementations of the specification,
both commercial and open-source, are available to developers. To select the most
appropriate product, thorough testing is required. One of the most important quality
parameter of AIS implementations is standard compliance, but performance
characteristics have to be taken into consideration when choosing the appropriate
middleware.

Due to the complexity and distributed nature of AIS services, testing of the
implementations of the standard requires specialized test systems. Implementers of
AIS usually perform functional and performance testing on proprietary environments.
However, these systems cannot test other implementations, thus they are unable to
perform comparative examinations.

In this paper we present a new test suite which can be used to perform
conformance, functional and performance tests on various AIS implementations.
First, we give a short summary of the specification and the services it provides. Next,

 A Framework for Testing AIS Implementations 187

we evaluate some public test systems designed for AIS implementation testing. In the
second part of the paper, the high level design of our proposed framework is
introduced, followed by the test experiences and results of a particular AIS
middleware product. Finally, we sketch the development direction of the system to
become part of a TTCN-3-based testing framework.

2 Application Interface Specification Overview

Application Interface Specification defines Availability Management Framework
(AMF) and a set of services offering functionality which supports the development of
highly available applications. AMF provides a logical view of the cluster and supports
the management of redundant resources and services on it. To build highly available
services, AMF functionality is extended by a set of basic services, grouped into
service areas:

− Cluster Membership Service (CLM) maintains information about the logical cluster
and dynamically keeps track of the cluster membership status as nodes join or
leave. CLM can be notify the application process when the status changes.

− Event Service (EVT) offers a publish-subscribe communication mechanism based
on event channels which provide multipoint-to-multipoint event delivery.

− Message Service (MSG) is a reliable messaging infrastructure based on message
queues. MSG service enables multipoint-to-point communication.

− Checkpoint Service (CKPT) supports the creation of distributed checkpoints and
the incremental recording of checkpoint data. Application failure impact can be
minimized by resuming to a state recorded before the failure.

− Lock service (LCK) provides lock entities in the cluster to synchronize access to
shared resources.

Node 1 Node 2

Process 1 Process 2 Process 3

AMF

Interface

AMF

Interface

CLM

Interface

Application Interface

Implementation Library

Application Interface

Implementation Library

AMF

Implementation

Component

CLM

Implementation

Component

AIS Middleware Implementation

AMF

Interface

Fig. 1. Interaction between the AIS middleware implementation and the application processes
on a two-node cluster

188 T. Horváth and T. Sulyán

The detailed description of AIS services is out of the scope of this paper, an in-
depth overview can be found in [1]. Nevertheless, the interfaces defined by the
specification needs to be discussed here, because these interfaces can be considered as
the only points of control and observation (PCO) of the AIS implementation. The
relation of the middleware and its clients is shown on Figure 1.

Services provided by the middleware implementation are used by application
processes. The term process can be considered equivalent to that defined in the
POSIX standard. Communication between the application processes and AIS
implementation is managed by Application Interface Implementation Library (AIIL).
Interfaces and implementations of the service areas are separated. Moreover,
Implementation Components are not covered by the standard; the internal design of
the middleware is unknown to the middleware tester. Service area interfaces (AMF
and CLM interface) represent a logical communication channel between processes
and the AIS implementation. The logical nature of interface connections is
emphasized on Figure 2 by displaying two AMF interface objects. The standard
provides both synchronous and asynchronous programming models for the
communication. Moreover, certain requests can be performed either ways.

In general the synchronous API is much easier to use. Synchronous communication
is based on blocking API function calls. The user invokes a request by calling an API
function. The request is considered performed by the time the function has been
returned. Data exchange between the application process and the AIS middleware is
realized by the parameters and the return value of the API function. Although the
synchronous model greatly simplifies the programming tasks, certain services cannot
be used this way. For example, cluster membership change notifications require a

Application

Process
AIIL

Area Implementation

Component

Wait on selection object

Command
Wait complete

Call appropriate dispatch function

Invoke appropriate callback

Response to callback

Request Forwarded request

Fig. 2. Sequence diagram of a typical asynchronous communication scenario between the AIS
implementation and the application process

 A Framework for Testing AIS Implementations 189

mechanism that permits the middleware to send information to the application
asynchronously. Long-running requests are another example where synchronous
requests are not recommended.

To support asynchronous communication, the standard employs a callback
mechanism. The request API function returns immediately to the caller, and a
standard-defined callback function is called when the request has been completed.
Callback functions are standard-defined, but implemented by the process. Since the
middleware cannot invoke a function directly in the application process, a notification
is sent first on a selection object by the AIIL. In response, the process invokes an
area-specific dispatcher function which finally invokes the appropriate callback
function of the application process. The body of callback functions usually concludes
in a response call carrying status information to the middleware. An illustration of a
typical asynchronous communication scenario is presented on Figure 2.

This communication model has high importance considering AIS implementation
testing, because all kinds of control and observation tasks can be derived to a series of
the following extensions to the model:

− Addition of control operations, such as AIS service requests;
− Inspection of callback function parameters;
− Addition of administrative code (result evaluation, logging, communication with

other test components).

3 Current AIS Implementation Testing Systems

Our research covered a survey of currently available AIS testing frameworks. We
examined two open source systems considering the following quality parameters:

− Executable test types. The most natural expectation from a test system is that it
should support multiple test types. We distinguish four classes of tests when testing
AIS implementations. Conformance tests address the verification of the API
implemented in the middleware product. Functional tests verify that the behavior
of the middleware conforms to the standard. Performance tests mean any
performance measurements. Robustness tests examine the operation of the system
under extreme conditions, for example operation system crashes or hardware
failures. In our research, we primarily focus on conformance, functional and
performance tests.

− Capability of automated testing. This criterion is also a common expectation
from a testing tool. Automated testing means not only automatic test case
execution, but also automatic evaluation of results and run-time reconfiguration of
the IUT. AIS doesn’t define the configuration methods of the cluster, so it can be
different in various middleware products.

− Availability of test results. The test system should report not only the test verdict,
but also additional information about the test case execution. Performance tests for
example may require timing information. Additional information is also needed to
determine the cause of a particular test execution failure.

− Adaptability. This is a requirement specific to AIS standard. The standard evolves
constantly, and has multiple versions. Different products realize different versions;

190 T. Horváth and T. Sulyán

even the same middleware may implement different versions of particular service
areas. A universal test framework must support this diversity to be able to test
multiple implementations.

Based on the criteria above, we shortly describe and evaluate the test suites
examined.

3.1 SAFtest

SAFtest [2] is a test execution framework for running AIS and HPI (Hardware
Platform Interface) conformance tests. SAFtest test cases are small C programs that
implement the procedure shown on Figure 2. In addition, this sequence is extended by
calls of AIS API functions with correct and incorrect parameters and execution order.
The main purpose of the test cases is to verify that particular API functions exist and
yield the expected result when called with different parameters. The framework itself
is a collection of makefiles and shell scripts which can configure the IUT, run test
cases and collect results. Test cases can be extended with meta-information such as
test case description or reference to the specification fragment tested. This meta-
information is used by SAFtest to create test coverage reports automatically.

Example test case metadata containing the name of the function under test, assertion description
and specification coverage information.

<assertions spec="AIS-B.01.01"
 function="saClmSelectionObjectGet">
 <assertion id="1-1" line="P21-38: P22-1">
 Call saClmSelectionObjectGet(), before
 saClmFinalize() is invoked, check if the returned
 selection object is valid.
 </assertion>
 <assertion id="1-2" line="P21-38: P22-1">
 Call saClmSelectionObjectGet(), then invoke
 saClmFinalize(), check if the returned selection
 object is invalid.
 </assertion>
</assertions>

This snippet also shows that SAFtest is primarily designed for AIS API function
testing as assertions are grouped by the AIS function under test. The range of
executable test cases is limited to API conformance tests. The most important flaw of
this framework is that test cases of SAFtest ignore the distributed nature of the
middleware. Test cases run on a single computer, not on a cluster. This way the
majority of the AIS functionality cannot be tested properly.

To summarize, SAFtest is a compact test framework well suited for testing API
conformance. It can run tests and generate test result summary automatically.
Automatic configuration is not necessary in this case since tests run on a single host.
However, this means that most of the AIS functionality cannot be tested with this
framework. In addition, testing a different specification version requires a different
test case set.

 A Framework for Testing AIS Implementations 191

3.2 SAFtest Next Generation

SAFtest-NG [3] is a recent test suite which tries to eliminate most of the limitations of
the SAFtest system. Figure 3 shows the main system components of the test suite. The
main objectives of this framework are the following:

− To offer a general-purpose AIS test framework which supports not only API
conformance but functional and performance tests as well.

− To support fully automatic test execution including automated test environment
configuration.

− To be able to test multiple AIS implementations with a minimum amount of
reconfiguration overhead.

Node 1 Node 2

LCK
Interface

CLM
Interface

Application Interface
Implementation Library

Application Interface
Implementation Library

AIS Middleware Implementation

SAFtest-NG Driver
Daemon

SAFtest-NG Driver
Daemon

SAFtest-NG Driver
Client

SAFtest-NG Driver
Client

CLM
Interface

Testcase

Implementation
Specific

Commands
lck_driver

clm_driver

clm_driver

Fig. 3. A sample SAFtest-NG test suite configuration on a two-node cluster. It illustrates
relationship between the test case and the various driver components.

Test cases in SAFtest-NG are written in Ruby, a high-level object-oriented script-
like language. The abstraction level Ruby enables very clean and straightforward test
case implementation. Test cases do not run directly on the AIS middleware, they
control drivers. Drivers are the main components of the SAFtest-NG architecture. A
driver consists of three parts. Driver clients or short-lived drivers are accepting high-
level test case instructions, converting and relaying them to Driver daemons. By using
this indirection, a single test case is able to drive the whole cluster which AIS
implementation manages. Driver daemons or long-lived drivers communicate with
the AIS middleware via one or more service area interface. Driver daemons
implement the communication process shown on Figure 2, and execute AIS function

192 T. Horváth and T. Sulyán

calls. The actual API calling is implemented in separate shared libraries (clm_driver,
lck_driver). This decomposition enables the testing of special implementations, where
the service areas are realized according to different versions of the standard.
Moreover, this design enhances the reusability of driver libraries when adapting to a
new version of the specification.

SAFtest-NG offers a solution to test environment setup as well by using
implementation hooks. These hooks describe the implementation specific commands
for each particular AIS middleware implementation to perform any operation which is
not defined by the standard. These operations include cluster management (addition
or removal of nodes), and information retrieval commands (for example, gathering
information about the current cluster membership status). AIS middleware vendors
only need to provide these hooks to test their product.

SAFtest-NG enhances the executable test range with functional and performance
tests. It also supports automated IUT configuration, which SAFtest supported only
partially. Support for test result collection is only partial, so test evaluation (especially
in case of performance tests) requires log analyzer tools. Unfortunately, SAFtest-NG
is an incomplete system, and it seems to be an abandoned project. As Figure 3
suggests, driver libraries are available only for the CLM and LCK service areas, and
only for the specification version B.01.01. Consequently, SAFtest-NG cannot be used
for a complete in-depth test of AIS middleware.

4 The Message-Based AIS Testing Framework (MATF)

In this chapter we introduce the test system (Message-based AIS Testing Framework -
MATF) we developed to examine AIS implementations. Our primary design goals
were to meet the requirements we enumerated in chapter 3. In addition, future
integration of the system into a TTCN-3 based framework was also an important
design consideration. The architectural components of the framework are shown on
Figure 4.

The architecture enables remote testing of the AIS middleware as defined in ISO
9646 [4]. The main idea of MATF is to convert the procedural AIS API into a
message-based interface. Test Coordinator (TC) sends test control messages to the
Local Test Components (LTC). LTC then interprets the message with Message Parser
and either communicates with the middleware (via Dispatcher) or controls the cluster
node itself (via LC). Middleware responses are forwarded to the Remote Log Server
and potentially to other log servers. Test Coordinator evaluates the results based on
the entries of the remote log. In the following chapters we summarize the roles of the
components of MATF.

4.1 Test Coordination

Test case messages are sent by the Test Coordinator component. Messages can be
transmitted through any reliable communications channel, for example TCP/IP. The
TC component implements a log server, which collects incoming data from all Local
Test Components. Test case verdict is evaluated based on this data. The format of
messages is analogous to function signatures. A message has an identifier and zero or

 A Framework for Testing AIS Implementations 193

Test Coordinator

Node 1 Node 2

Application Interface
Implementation Library

AIS Middleware Implementation

Dispatcher

Message
Parser Log Client Local Log

Server

Remote
Log Server

LC

Application Interface
Implementation Library

Implementation
Specific

Parameters

Local Test Component

Fig. 4. Components of the proposed Message-based AIS Testing Framework. Local Test
Component consists of four modules: the Local Controller (LC), the Dispatcher, the Message
Parser and the Log Client.

more parameters. This allows the direct mapping of the AIS functions into messages.
Although the use of messages introduces an indirection between the tester and the
implementation under test, message-based testing has several advantages over the
direct use of AIS API.

The most important among them is the capability of abstraction. Common tasks
which require multiple AIS function calls can be encoded in a single message. These
tasks include for example connection initiation between the application process and
the middleware. Another aspect of abstraction is detail hiding. Messages can hide
details of API functions by using default message parameters analogous to C++
default function parameters. When adapting to a new version of the specification,
only incremental changes are needed to be performed on the previous Message Parser
module. This incremental nature applies also to the test cases. The format of a specific
message can be the same for different versions of the specification. Consider two
versions of the message queue opening API call [5] [6]:

These function specifications have three differences. The return type has changed,
the passing form of the msgHandle parameter has been altered, and the two last
parameters have been swapped. These changes can be hidden from the test case
developer. Different versions of the Message Parser modules may translate them to
the appropriate AIS function calls.

Another important advantage of the message-based testing is that messages can
transparently extend test control instructions by operations that are not covered by the
standard, but are necessary to perform successful testing. For example the details of

194 T. Horváth and T. Sulyán

Fig. 5. The same API functions from version A.01.01 (left) and version B.01.01 (right) of the
specification

adding a new node to a cluster or completely shutting down a node are not defined in
the AIS standard. Specific messages can be implemented in MATF to these
operations.

4.2 Message Processing

Messages sent by the Test Coordinator are processed by the Message Parser. MP
interprets messages and forwards them to the appropriate communication module
(Local Controller or Dispatcher). The Message Parser is an object-oriented recursive-
descent parser, which provides high reusability of the parser components, since
parsing of different message entities are encapsulated in different parser objects.

Messages specific to local node control are not translated to API functions; rather
they are passed to the Local Controller component. The LC will execute operating
system commands to control the cluster or the middleware implementation itself. The
concrete effect of control messages can be configured by Implementation Specific
Parameters, a configuration mechanism similar to implementation hooks in SAFtest-
NG. This way the test suite can be adapted to test multiple IUTs.

4.3 Controlling and Observing the IUT

Messages that drive the AIS implementation are handled by the Dispatcher
component. The Dispatcher performs two main tasks.

Primarily the component provides synchronous and asynchronous interfaces for the
Message Parser to enable communication with the AIS middleware. This is
implemented by running a dispatch loop, which is a generalized version of the
communication sequence shown on Figure 2. By default, all requests run on a single
thread. However, to test the multi-threaded operation of the middleware,

Dispatcher also has to maintain all session information required to the
communication. Session information includes handles, identifiers, or any
specification-defined object that persists between multiple API calls. For example,
message handle, message queue name and handle parameters on Figure 5 are session
information.

After a synchronous operation, the results of the request are immediately available,
so dispatcher can forward the results to the Log Client. Logging of the results of
asynchronous operations is performed in the callback functions. According to its
configuration, the Log Client sends the messages to multiple Log Servers. A Log

 A Framework for Testing AIS Implementations 195

Server can be a local file or a process, either local or remote, which collects log data
and maintains correct order between log entries. The Remote Log Server collects all
incoming information from all local test components. Overall test results can be
evaluated based on the data collected by the Remote Log Server.

5 Testing Experiments

To verify the operability of the architecture above, we executed a set of test cases on
OpenAIS [7], an open-source AIS middleware implementation. This chapter
summarizes the test results and the experiments we gained during the testing process.

5.1 Test Suite Configuration

The structure of OpenAIS is a straightforward mapping of the standard. Each service
area is implemented in a separate process, interconnected by a private communication
protocol. The Application Interface Implementation Library (see Figure 1) is
implemented by a process called AIS executive or aisexec. The middleware can be
configured by two configuration files, openais.conf and amf.conf. The former contains
operational settings such as network setting or node authorization information. Since
this data is implementation-specific, we don’t need to alter its contents during testing.
As the name suggests, amf.conf is used by the Availability Management Framework.
The file stores the actual redundancy model of the cluster. To configure OpenAIS, the
behavior of Control Component of MATF has been defined as:

− Adding or removing a node is equivalent to starting or shutting down aisexec on
that particular node;

− AMF Redundancy model setting is equivalent to the replacement of amf.conf on all
nodes, followed by a cluster restart. The latter step is needed because OpenAIS
doesn’t support dynamic redundancy model modification.

To examine OpenAIS, we set up a test suite consisting of three cluster nodes. Test
Coordinator and Remote Log Server relied on a separate controller host. Clocks on all
nodes were synchronized from a Network Time Protocol server.

5.2 Test Execution

We have tested OpenAIS version 0.70.1, the latest production ready version available
at the time. This release implements version A.01.01 of the Availability Management
Framework, and version B.01.01 of the CLM, EVT and CKPT service areas.
Distributed Locks (LCK) and Message Service (MSG) are not implemented at all. To
test OpenAIS, we established 8 possible configurations of the cluster. The
configuration included the number of clusters, the number of local test components
and middleware configuration, such as AMF redundancy model.

A total number of 113 test cases had been elaborated based on the specification
versions OpenAIS implements. Although the test cases don’t provide an exhaustive
evaluation of the IUT, they inspect all functionality of the service areas implemented.

Passed test cases row requires no explanation. Passed with conformance issue
means that although the functionality under test is correctly implemented, some

196 T. Horváth and T. Sulyán

Table 1. Summary of the test results

Total number of test cases 113
Test cases passed 53

Test cases passed but conformance issues encountered 6
Functionality not implemented 31

Test cases failed 21
Test verdict cannot be determined 2

output function parameters or return values were unexpected. Failed test cases include
incorrectly implemented functionality and critical errors of test case execution.
Incorrect functionality manifested in invalid data or missing callback invocations.
Critical error means unexpected aisexec termination which is equivalent to node
shutdown. Finally, in two cases the information gathered after the test case execution
were insufficient to evaluate the result.

6 Future Work

The test system we developed is far from being a complete framework. We
implemented only a prototype version of the architectural elements described above.
This prototype system is not capable to perform automated test execution, because of
the rudimentary Test Controller and the Log components. The actual purpose of these
components is to provide a primitive front-end to the Message Parser and Dispatcher
components and to perform actual testing with it.

Node 1 Node 2

AIS Middleware Implementation

Parallel Test

Component

Parallel Test

Component

Main Test

Component

Dispatcher

Message Parser

LC Dispatcher

Message Parser

LC

Application Interface

Implementation Library

Application Interface

Implementation Library

System Under
Test (SUT)

Real Test System
Interface

SUT Adapters

Abstract Test
System Interface

Executable Test
Suite

Fig. 6. Integration of MATF components into a TTCN-3 based environment. Circles denote
TTCN-3 test ports.

 A Framework for Testing AIS Implementations 197

Nevertheless, the prototypical implementation of the front-end is intentional. The
next step of our development is the design and implementation of a TTCN-3 [8] based
front end which will replace the Test Controller and the logging components. The
new components of the framework are shown on Figure 6.

The rightmost column of the figure denotes the corresponding elements of the
TTCN-3 runtime system architecture [9]. TTCN-3 provides highly sophisticated test
coordination and evaluation mechanisms. The Executable Test Suite (ETS) can be
considered as an advanced replacement of the prototype front-end described in the
previous chapter. ETS supports the automation of test execution, test result collection
and evaluation. The main modules of MATF (LC, Dispatcher and Message Parser)
can be integrated with minor modification into this architecture as SUT adapters.
Abstract Test System Interface is the interface defined by Message Parser and Local
Controller. Although this interface already exists, TTCN-3 requires its adaptation to
function as TTCN-3 test ports. By the introduction of test ports, the test configuration
messages and the actual test messages can be separated. The middleware
configuration messages are sent through a configuration port, while the test messages
are sent to Message Parser via a separate port. This is possible because Main Test
Component not only coordinates Parallel Test Components, but can directly send
messages to SUT adapters via the Abstract Test System Interface.

7 Conclusion

In this paper we examined two currently available AIS implementation testing
frameworks. We found that both systems can be used for particular testing tasks.
Nevertheless both systems have certain flaws that prevent them from being general
purpose test frameworks. We presented the architecture of a new framework which
can be used for comprehensive testing of AIS middleware. To test the usability of the
new system we implemented a prototype of the framework and a set of functional test
cases. We executed these tests on an open source AIS implementation and
summarized the results. The success of the testing process showed that MATF can be
used to test AIS middleware. The next step of development is the TTCN-3 integration
of the framework. We presented the architectural design of the future test system
which highly reuses the actual components of MATF.

References

1. Service Availability Forum, Application Interface Specification, vol. 1, Overview and
Models, SAI-AIS-B.01.01

2. SAFTest, http://www.saf-test.org/
3. SAFTest Next Generation, http://saftest.berlios.de/
4. International Organization for Standardization, Information technology – Open Systems

Interconnection – Conformance testing methodology and framework – Part 1: General
concepts, ISO/IEC 9646-1:1994

5. Service Availability Forum, Application Interface Specification, SAI-AIS-A.01.01
6. Service Availability Forum, Application Interface Specification, vol. 6: Message Service

SAI-AIS-MSG-B.01.01

198 T. Horváth and T. Sulyán

7. OpenAIS: Standards-Based Cluster Framework. http://developer.osdl.org/dev/openais/
8. European Telecommunications Standards Institute, Methods for Testing and Specification

(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language,
ETSI ES 201 873-1 (v3.1.1), Sophia Antipolis (June 2005)

9. European Telecommunications Standards Institute, Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime
Interface, ETSI ES 201 873-1 (v3.1.1), Sophia Antipolis (June 2005)

An Object-Oriented Framework for Improving

Software Reuse on Automated Testing of
Mobile Phones

Luiz Kawakami1, André Knabben1, Douglas Rechia2, Denise Bastos2,
Otavio Pereira2, Ricardo Pereira e Silva2, and Luiz C.V. dos Santos2

1 Motorola - Brasil Test Center
{wlk023,wak023}@motorola.com

2 Computer Science Department - Federal University of Santa Catarina, Brazil
{rechia,denise,otavio,ricardo,santos}@labsoft.ufsc.br

Abstract. To be cost effective, the decision to automate tests that are
usually hand-executed has to rely on a tradeoff between the time con-
sumed to build the automation infrastructure and the time actually saved
by the automated tests. Techniques which improve software reuse not
only reduce the cost of automation, but the resulting productivity gain
speeds up development. Such issues are specially relevant to the software
development for mobile phones, where the time-to-market pressure asks
for faster design and requires quicker deployment of new products. This
paper presents a novel object-oriented framework tailored to support the
automation of user-level test cases so as to improve the rate of deploy-
ment of mobile phones. Despite inherent test automation limitations,
experimental results show that, with automation, the overall testing ef-
fort is about three times less than the manual effort, when measured
within a one-year interval.

Keywords: Software verification, Software reusability, Software metrics.

1 Introduction

Many mobile phone models are released to the market every year with improved
or brand new features. Examples of common phone features are messaging (short
messages – SMS, multimedia messages – MMS and E-mail), phone and appoint-
ment books, alarm, embedded camera and so on. These functionalities are largely
implemented in software. Every feature of each new phone model must be tested
prior to its release to the end users. Also, the interaction among features must
be checked, so as to ensure their proper integration. Such user-level functional
tests are crucial to reduce both customer dissatisfaction and technical assistance
costs.

Functional testing relies on checking many use-case scenarios. Each test case
(TC) is a sequence of steps that performs a specific task or a group of tasks.
TCs not only specify the steps, but also the expected results.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 199–211, 2007.
c© IFIP- International Federation for Information Processing 2007

200 L. Kawakami et al.

Test engineers usually execute TCs manually. A TC may be repeated several
times during successive software development life cycles. Manual test execution
is both time-consuming and error prone, especially because exact TC repro-
duction cannot be guaranteed through different phone software versions. Such
inadequacy leads to the use of software to automate TC execution. An automated
test case (ATC) can automatically reproduce the steps that would be performed
manually by the test engineer.

This paper presents a novel object-oriented framework tailored to support
ATC creation for user-level functional testing of mobile phones. Our test au-
tomation framework, from now on called TAF, was designed to allow as much
ATC reuse as possible across distinct phone models of a given product family.
Essentially, TAF allows the automation of functional TCs and the efficient retar-
geting of pre-existing ATCs to distinct phone models. Such a retargeting within
a product family is the very key to achieving productivity gain. Once a TC is au-
tomated, it is ready to be executed as many times as needed, through all phone
development life cycles, reducing the time-to-market. The main contribution of
this paper consists in the analysis of solid experimental results which show the
actual impact of software reuse on test automation. The reuse achieved with our
framework makes it worthy to be employed in the corporate environment, given
certain conditions described later in this paper.

The remainder of this paper is organized as follows: Section 2 reviews related
work; the structure of the automation framework is described in Section 3;
Section 4 summarizes experimental results and finally our conclusions are drawn
in Section 5.

2 Related Work

2.1 Practices in the Corporate Environment

While TC manual execution is still current practice, many companies are widely
adopting test automation for unit and regression testing, since they are recurrent
during software development life cycles, despite the inherent limitations imposed
upon automation (for instance, 50% of the TCs within typical user-level test
suites are not suitable for automation).

Although the approaches vary from one company to another, test automation
has been progressively adopted at the user-level as a way of reducing the required
effort for test execution. At this level, the main approaches employ either in-
house developed test ware, such as PTF [1], or third party test systems, such as
TestQuest Pro (R) [2].

Motorola relies on in-house test automation infrastructure. TAF, which will
be described in Section 3, is the keystone of such infrastructure.

2.2 Related Research Topics

Related approaches on test automation address two basic goals: test case gener-
ation, and test execution and analysis.

An Object-Oriented Framework for Improving Software Reuse 201

Test suite generation focuses on finding ways of capturing test cases from code
or design specifications. As an example, model-based testing is an approach in
which the behavior of the software under test is described by means of formal
models (such as Petri nets, state charts and so forth) as a starting point to au-
tomatic or semi-automatic TC generation [3] [4] [5] [6]. Other approach relies on
algorithms able to create test cases which cover the interaction among different
applications in rich-feature communicating systems [7].

The automation of test execution and result analysis aims to produce software
artifacts able to execute test suites (automatically generated or not) and to
compare the obtained results to the expected ones [8].

Recent work seems to indicate that there is not so far an ultimate solution
for software test automation challenges [9]. On the contrary, distinct successful
approaches are reported [8], [10], [11], [12], [13].

To assess the economic viability of test automation, a preliminary trade-
off analysis [14] should be performed. Since high frequency of invocation is a
prerequisite for automating a TC, common pitfalls should be avoided, such as
overestimating the required effort for manual execution or underestimating the
percentage of tests that are actually suitable for automation [15] [16].

As test automation often consists in producing software to test software, an
alternative approach to achieve a better trade-off is to promote software reuse
when constructing testware. Object-oriented frameworks are reusable software
artifacts able to support testware development [17]. JUnit is a well-known ex-
ample of framework applied to the domain of test development [18].

Since there is a trade-off between generality and effectiveness of reuse, domain-
specific frameworks (such as JUnit) are expected to lead to a lower percentage of
reuse than application-specific ones. That was the motivation to the development
of a novel application-specific framework tailored to mobile phones.

There is lack of evidence in the literature quantifying the impact of software
reuse on test automation. That’s why the main contribution of this paper is to
report the quantitative impact of an application-specific framework on real-life
state-of-the-art product deployment.

3 TAF Design Description

TAF is an object-oriented framework tailored to automate functional user-level
test-case execution for mobile phones. TAF provides the proper infrastructure
to automate a test, but this process is essentially manual. In other words, TAF
addresses the automation of test execution, not the automatic generation of
tests.

TAF enables reuse by raising the abstraction level so as to make ATCs largely
independent of model-specific phone properties. Therefore, it has to rely on a
lower-level infrastructure, as described in the following subsection.

202 L. Kawakami et al.

TAF was developed by Brasil Test Center (BTC), an R&D network of research
institutes under Motorola’s leadership1.

3.1 Low-Level Implementation Infrastructure

In order to interface with the phone, TAF relies on a Motorola proprietary arti-
fact, the so-called phone test framework (PTF) [1]. PTF provides an application-
programming interface (API) that allows the user to simulate events from the
phone’s input/output behavior, like key pressing and display capture. Since most
API methods are encoded at low abstraction levels, PTF leads to test scripts
that are hard to read, difficult to maintain and inefficient to port to other phones.
However, PTF represents a highly appropriate basis for test automation imple-
mentation.

3.2 High-Level ATC Encoding

The key to raising the abstraction level is to encapsulate lower-level test input
actions (such as sequence of key pressings) and test output analysis (such as
checking the phone display contents) into a so-called utility function (UF). UFs
are primitive entities that hierarchically isolate functionality from implementa-
tion, leading to high-level ATCs. An ATC tells “what” to test, but not “how”
to perform some input action or output analysis. As a result, UFs must rely on
PTF components for actual test implementation.

Fig. 1 shows an example of a high-level ATC using utility functions. This
ATC fragment performs the following sequence of steps: first, it takes a pic-
ture and stores it as a file (Steps 1 to 3); then, it checks some attributes and
deletes the file (Steps 4 to 8). Note that seven UFs are employed: LaunchApp
(it launches the camera application), CapturePictureFromCamera (it takes the
picture), storeMultimediaFileAs (it stores the picture into the phone file sys-
tem), scrollToAndSelectMultimediaFile (it scrolls through a list and opens a
specific multimedia file), openCurrentFileDetails (it opens the screen which dis-
plays file attributes such as type, size, etc), verifyAllMultimediaFileDetails (it
checks whether the picture file has the expected properties) and DeleteFile (it
simply deletes the file from the phone file system).

Although different phones exhibit distinct input/output behavior, a same
high-level ATC is applicable to several phone models of a given product family,
since they basically implement the same features. Therefore, a TC is automated
only once for a product family and the resulting high-level ATC must be retar-
geted to every distinct phone model within the family. This retargeting process
is called porting.

TAF was designed to allow efficient porting of high-level ATCs, as will be
described in the next subsection.
1 TAF’s initial design and development involved the Computer Science Department of

Federal University of Santa Catarina (INE–UFSC) and the Center for Informatics
of Federal University of Pernambuco (CIn–UFPE).

An Object-Oriented Framework for Improving Software Reuse 203

...
// Step 1: launch Camera application

navigationTk.launchApp(PhoneApplication.CAMERA);

// Step 2: take the picture
multimediaTk.capturePictureFromCamera();

// Step 3: store the picture and hold its file name in variable picture
MultimediaFile picture =

multimediaTk.storeMultimediaFileAs(MultimediaItem.STORE_ONLY);

// Step 4: take the phone to PICTURES_FILE_LIST screen
navigationTk.launchApp(PhoneApplication.PICTURES);

// Step 5: open the picture
multimediaTk.scrollToAndSelectMultimediaFile(picture);

// Step 6: open the file details screen
multimediaTk.openCurrentFileDetails();

// Step 7: verify picture file attributes
multimediaTk.verifyAllMultimediaFileDetails(picture);

// Step 8: return to PICTURE_VIEWER
phoneTk.returnToPreviousScreen();

multimediaTk.deleteFile(picture, true);
...

Fig. 1. An ATC fragment

3.3 TAF Organization

To enable the reuse of ATCs, TAF was designed to overcome the issues that are
raised by PTF’s low-level APIs, such as creating scripts that are hard to read
and difficult to maintain.

Fig. 2 summarizes the organization of TAF in terms of class relations.
The interface Step lies at the top of the diagram. It provides a generic method

(execute) allowing ATCs to invoke the functionality of distinct UFs.
The class BaseTestCase stores a collection of objects of type Step. It is ex-

tended to give rise to a test case (e.g. Test1).
On the one hand, the framework relies on key abstract classes that define

distinct UF APIs that implement the interface Step (e.g. LaunchApp and Cap-
turePictureFromCamera). They define additional methods to convey UF-specific
information (e.g. setApplication and setResolution).

On the other hand, TAF employs concrete classes to extend UF APIs. UF imple-
mentations invokePTF APIs, thereby enclosing the low-level input/output behav-
ior of a specific phone (e.g. LaunchAppImp and CapturePictureFromCameraImp).

204 L. Kawakami et al.

Fig. 2. A TAF class diagram

Target-independent and target-dependent classes are organized in distinct pack-
ages (e.g. Common Implementation and Phone XYZ).

To allow proper instantiation of UF implementations for a given phone, TAF
relies on the notion of Feature Toolkit (e.g. Phone Toolkit, Navigation Toolkit,
Multimedia Toolkit), as illustrated in Fig. 2, at the bottom. Since TAF has
potentially more than one implementation for each UF API, this class must know
the appropriate UF implementation for the phone under test. This information
is encoded within an XML file, which is maintained by TAF developers. Another
role of a Feature Toolkit is to add the instantiated UF to the list of test case
steps, and to launch their execution. As soon as the step list is created, the
test case execution can be started. In brief, an ATC consists of several calls to
methods encapsulated within Feature Toolkits. Fig. 3 summarizes the hierarchy
of TAF layers from the highest to the lowest level.

3.4 Automating a Test Case with the Aid of TAF

The structure of TAF has facilities to create an ATC from a TC written in natu-
ral language and conceived to be manually executed. First, a subclass BaseTest-
Case has to be created as a template for the new ATC. Three of its abstract
methods – buildPreConditions(), buildProcedures() and buildPostConditions() –
must be overwritten. Such methods define the functional structure of a test: the
phone configuration actions required for the test (e.g. date and hour settings,
web browser set-up, e-mail accounts, etc.), the actual test steps and post-test
clean-up procedures (e.g. the rollback of side effects that could possibly affect
further tests). The next step consists in inserting calls to methods of Feature
Toolkits. The code to be inserted within the overwritten methods ressembles the

An Object-Oriented Framework for Improving Software Reuse 205

Fig. 3. TAF layer view

one shown in Fig. 1. Once the subclass is created (i.e. the new ATC), a prelimi-
nary checking is performed to verify if there are suitable implementations of the
required UF APIs for the target-phone. If a proper implementation is found, it
will be reused as it is; otherwise, a new one will be created.

3.5 Object-Oriented Framework: A Keystone for Worthy
Automation

The object-oriented approach adopted by TAF achieves significant software reuse
through three distinct mechanisms: inheritance-based creation of ATCs, reuse of
available UFs and porting of pre-existent ATCs to other phones.

Inheritance-Based Creation of ATCs. Remember that the methods men-
tioned in Section 3.4 provide an interface between the ATC and the UF APIs.
Since TAF currently has hundreds of distinct UF APIs available, suitable APIs
are very likely to be found for a new test.

Note that, in the worst case, the implementation of a specific UF would re-
quire the creation of a subclass of the abstract class in which the UF API is
defined, as illustrated in Fig. 2, where the specific implementation CapturePic-
tureFromCamera is created when targeting phone XYZ. Note that, even in the
worst case (no implementation reuse at all), the process of UF creation is still
guided by TAF through the inheritance mechanism.

Reuse of Pre-existent UF Implementations. A new implementation is
rarely created from scratch. Sometimes, it may be obtained through the creation
of a subclass of a pre-existent UF by partially reusing its code. A non-negligible
amount of reuse should be expected in this way, as explained in the following.
Consider the classes within the Common implementation package (see Fig. 2).
Their method execute() is a template that invokes several hooks [19]. Since an
implementation inheriting another implementation must only re-implement the
hook methods required by a specific phone, all the other methods already en-
coded in the superclass are reused.

In the best case, an untouched UF implementation is reused. Fortunately, the
best case is dominant, as it will be seen in Section 4.1.

206 L. Kawakami et al.

Porting ATCs to Other Phones. Given a set of pre-existing ATCs, let’s
analyze how TAF supports the porting of a test case to another phone. First, in
the same way as described in the previous section, it should be checked if every
UF in that ATC matches the expected behavior for the phone under porting. If
not, a new low-level implementation for this UF must be created. Since UFs are
extended only if no compatible UF could be found, TAF maximizes the amount
of software reuse. In such a way, the whole code of the ATC is reused for different
phone models.

4 Experimental Results

This section presents real-life values collected from BTC’s Test Automation
Project. Three classes of experiments were performed to assess how effective
and sustainable is the impact of TAF on test automation. First, we provide a
quantitative breakdown of software reuse induced by the framework (Section
4.1). Second, we quantify the impact of reuse in the process of porting new
phones (Section 4.2). Later, we quantify the actual productivity gain by first
adding the effort of automating TCs to the effort of executing ATCs and then
comparing the overall effort with manual TC execution (Section 4.3).

4.1 Quantifying Reuse Upon TAF

Table 1 displays reuse figures measured for a set of 10 phones, each submit-
ted to a same test suite containing 67 TCs. Such suite employs 246 distinct
UFs. The second column shows the number of phone-specific UF implementa-
tions required to perform the porting to each phone (i.e. the number of new
UF implementations created either extending the UF API or extending other
UF implementation). The third column shows the number of UFs whose im-
plementations were untouched when reused. The fourth column summarizes the
percentage of untouched UFs with respect to the total number of invoked UFs.

The high amount of achieved reuse (84.8% on average) contributes to attenu-
ate the TC automation effort required as a result of the ATC-generation learning
curve, as will be discussed in the next section.

4.2 The Impact of Software Reuse

Fig. 4 and Fig. 5 show the evolution of TC automation for two product families
during a period of seven months.

Fig. 4 shows the average number of hours required per ATC per developer,
normalized to the number of hours required when automation was launched
(Month 1). In practice, since the simplest TCs are automated first and the
most complex ones later, the TC automation effort increases with time. The
minimum effort corresponds to the simplest and shortest TCs. The maximum
effort corresponds to the most complex TCs (requiring 1.8 times more effort
than in Month 1). On average, the effort is about 1.4 times larger than at the

An Object-Oriented Framework for Improving Software Reuse 207

Table 1. UF reuse breakdown

Phone ID # phone-specific UF Imps # UFs reused % of reuse

1 56 190 77.24%
2 48 198 80.49%
3 44 202 82.11%
4 44 202 82.11%
5 52 194 78.86%
6 54 192 78.05%
7 58 188 76.42%
8 6 240 97.56%
9 7 239 97.15%
10 5 241 97.97%

Fig. 4. TC automation effort

time automation was launched. In brief, Fig. 4 could be seen as a learning curve
for ATC generation within typical product families. This is the price to pay to
obtain a first ATC, which will be hopefully reused with the help of TAF.

Fig. 5 shows the average number of hours required per porting per developer,
normalized to the same reference adopted in Fig. 4. Note that the ATC porting
effort decreases with time as a consequence of software reuse. The minimum
porting effort is approximately 1/4 of the effort required to automate the first
TCs. On average, the time to port an ATC to a new phone is about 1/3 of the
time to create a new ATC. This is a strong evidence that the TAF architecture
effectively enables test reuse.

By correlating the average values extracted from Fig. 4 and Fig. 5, we conclude
that porting is on average 4 times faster than building an ATC from scratch.

208 L. Kawakami et al.

Fig. 5. ATC porting effort

This speed up is the very key to achieving productivity gain, as will be shown
in the next subsection.

4.3 The Overall Impact of Test Automation

To be worth doing, the overall effort spent in all tasks involved in automation
(TC automation, ATC porting, ATC execution and TAF maintenance) must
be smaller than executing the same tests manually. In this section, we provide
quantitative evidence that, despite the automation limitations at the user level,
the adoption of a test framework does pay off.

Experimental Set up. The values summarized in next subsection were mea-
sured while testing 15 different phone models belonging to a same product family.
Given a phone model, a test suite consisting of 60 TCs (suitable for automation)
was selected. First, the TCs were automated gradually, giving rise to ATCs.
While an ATC is not completed, its original TC is manually executed instead.
The cumulative effort of testing with the aid of automation was measured along
a fourteen-month interval. Since the selected TCs were invoked many times in
distinct development life cycles, this procedure captured the overall effort spent
with testing.

To assess the impact of automation as compared to purely manual text ex-
ecution, we performed an estimation of how much time would be spent to run
those TCs manually. An estimate of the effort required under purely manual
test execution was obtained by multiplying the average manual execution time
by the number of TCs that would be invoked for the same test suite during the
same period. Such a manual test execution estimate will be used from now on
as a reference for effort normalization.

An Object-Oriented Framework for Improving Software Reuse 209

Fig. 6. The impact of automation on effort

Fig. 7. Test execution speed-up with automation

Assessment of Productivity Gain. Fig. 6 depicts the overall testing effort
along the monitored period, normalized to the manual test execution effort.

Note that the effort to manually execute the test suite for all phones under
development within the product family would be 2.8 times larger, if automation
was not employed. Therefore, a productivity gain of approximately 3 times was
reached within about slightly more than one year. Note also that it took about
three months to reach a breakeven point (that is, the time after which automation
starts paying off). This indicates that, to deserve automation, TCs must be
selected among the highest recurrent ones.

210 L. Kawakami et al.

Let’s now analyze the impact of automation on each software development
cycle. Instead of reporting the cumulative value (as it was shown in Fig. 6),
let’s now focus only on actual test execution speed-up (i.e. the ratio between the
estimated time that the manual test execution team would spend to execute the
whole test suite and the actual time spent to execute the same suite with the
aid of automation).

In Fig. 7, dots represent speed-up values obtained within distinct development
cycles of various phone models. Note that, the speed-up is 2 on average. This
means that, with automation, the whole test suite is executed twice as fast as
compared to purely manual test execution. In other words, assuming a constant
number of test engineers, manual test execution takes twice as much time to
deliver test results.

5 Conclusions and Future Work

We reported an object-oriented framework granting significant test productivity
gain by means of software reuse.

As opposed to most reported approaches, we present abundant quantitative
evidence of the impact of test automation on real-life state-of-the-art mobile
phones. Experimental results indicate that a productivity gain of three times can
be achieved in about one year. To reach such a gain, it was shown that the porting
of a pre-existing ATC should be around four times faster than automating an
equivalent TC from scratch.

As future work, our framework will be extended to support other mobile phone
platforms. We also intend to employ Aspect-Oriented Programming and Formal
Verification so as to detect possible flaws in the test software.

References

1. Esipchuk, I., Validov, D.: PTF-based Test Automation for JAVA Applications on
Mobile Phones. In: Proc. IEEE 10th International Symposium on Consumer Elec-
tronics (ISCE), pp. 1–3 (2006)

2. Test Quest, Test Quest Pro (2006) available at http://www.testquest.com
3. Pretschner, A., et al.: One Evaluation of Model-Based Testing and its Automation.

In: Proc. International Conference on Software Engineering, pp. 392–401 (2005)
4. Dalal, S.R., et al.: Model-Based Testing in Practice. In: Proc. International Con-

ference on Software Engineering, pp. 1–6 (1999)
5. Bredereke, J., Schlingloff, B.: An automated, Flexible Testing Environment for

UMTS. In: Proc. 14th IFIP TC6/WG 6.1 International Conference on Testing of
Communicating Systems, pp. 79–94 (2002)

6. Heikkilä, T., Tenno, P., Väänänen, J.: Testing Automation with Computer Aided
Test Case Generation. In: Proc. 14th IFIP TC6/WG 6.1 International Conference
on Testing of Communicating Systems, pp. 209–216 (2002)

7. Chi, C., Hao, R.: Test Generation for Interaction Detection in Feature-Rich Com-
munication Systems. In: Proc. 17th IFIP TC6/WG 6.1 International Conference,
TestCom, pp. 242–257 (2005)

http://www.testquest.com

An Object-Oriented Framework for Improving Software Reuse 211

8. Tkachuk, O., Rajan.: Application of automated environment generation to commer-
cial software. In: Proc. International Symposium on Software Testing and Analysis,
pp. 203–214 (2006)

9. Zhu, H., et al.: The first international workshop on automation of software test.
In: Proc. International Conference on Software Engineering, pp. 1028–1029 (2006)

10. Gallagher, L., Offutt, J.: Automatically Testing Interacting Software Components.
In: Proc. International Workshop on Automation of Software Test, pp. 57–63 (2006)

11. Okika, J.C., et al.: Developing a TTCN3 Test Harness for Legacy Software. In:
Proc. International Workshop on Automation of Software Test, pp. 104–110 (2006)

12. Xia, S., et al.: Automated Test Generation for Engineering Applications. In: Proc.
International Conference on Automated Software Engineering, pp. 283–286 (2005)

13. Kansomkeat, S., Rivepiboon, W.: Automated-Generating Test Case Using UML
Statechart Diagrams. In: Proc. of the Annual Research Conference of the South
African Institute of Computer Scientists and Information Technologists on Enable-
ment Through Technology, pp. 296–300 (2003)

14. Ramler, R., Wolfmaier, K.: Economic Perspectives in Test Automation: Balancing
Automated and Manual Testing with Opportunity Cost. In: Proc. International
Workshop on Automation of Software Test, pp. 85–91 (2006)

15. Berner, S., et al.: Observations and Lessons Learned from Automated Testing. In:
Proc. International Conference on Software Engineering, pp. 571–579 (2005)

16. Oliveira, J., et al.: Test Automation Viability Analysis Method. In: Proc. VII IEEE
Latin-American Test WorkShop (LATW 2006) (2006)

17. Fayad, M.E., et al.: Building Application Frameworks: Object-Oriented Founda-
tions of Framework Design. Prentice Hall, Englewood Cliffs (1999)

18. Gamma, E., Beck, K.: JUnit specification (2006) available at
http://www.junit.org

19. Gamma, E., et al.: Design patterns: elements of reusable object-oriented software.
Addison-Wesly, London (1994)

http://www.junit.org

Model Based Testing of an Embedded Session

and Transport Protocol

Vesa Luukkala and Ian Oliver

Nokia Research Center
Helsinki, Finland

{vesa.luukkala,ian.oliver}@nokia.com

Abstract. We describe an experience in applying model based testing
in verifying especially the parallel behavior of a device level service and
discovery protocol. Our approach is two phased: we first define a high
level domain model in B and use cases in CSP that can be verified and
then create a more detailed reference model that we use for testing the
implementation on-the-fly. The use cases are used to drive both the B
model and the reference model.

1 Introduction

This paper documents our experiences in applying formal methods and model-
based testing approaches in an industrial, semi-formal environment. We were
tasked with testing an embedded session and transport protocol for mobile de-
vices based on SOA [1] principles. It is expected that subsystems connected by
such a protocol would be provided by an external vendor and must be tested as
black box implementations.

We were expected to construct the tester during development of the system,
the implementation work had already started and there were no formal specifi-
cations for the system. Our main goal was to find bugs arising from concurrency.
Experiences of the modeling work and some empirical evidence related to this is
described in [2]. During the development the requirements and the the environ-
ment evolved forcing us to attempt a less formal and more pragmatic approach.

It is well known that parallel systems are hard to verify and test. Exhaustive
verification and proving of correctness are options for systems that are con-
structed in well controlled environments and often with specialized languages.
When testing parallel systems the above problems are augmented by the fact
that it is not possible to force an executing parallel system to a certain state
as timing and scheduling issues that cannot be influenced from outside of the
implementation affect the behavior of the system under test.

We attempted a rigorous approach where we specified requirements at a high
level, dividing them into use cases and system model and then refined that
model strictly to a concrete model that could then be used as basis for auto-
mated testing which would partly alleviate the problems of testing a parallel
system. Especially we planned to rely on on-the-fly testing technique to cope
with parallelism.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 212–227, 2007.
c© IFIP- International Federation for Information Processing 2007

Model Based Testing of an Embedded Session and Transport Protocol 213

Our experience was that maintaining the refinement between a high level
model and a more concrete model that was used for testing was too laborious,
thus maintaining that was abandoned. Use cases remained the only link between
those two models. To measure the coverage of the use cases we initially limited
the model used for testing so that it would execute according to the use cases.
We also post-processed traces of random execution of the model to recognize use
case behaviors. Eventually tool support allowed us to drive the model directly
with use cases.

We attempted to measure the quality of the testing by comparing function call
counts from an instrumented implementation that was tested by our approach
and with existing “traditional” style testers, but we noted that this kind of
coverage values do not reflect quality of testing. Although on-the-fly testing
typically gives higher values it is easy to create a traditional test suite that
produces values of same or higher magnitude by blind repetition. For same call
count values the model-based on-the-fly tester is able to order the sequence of
calls in more different ways, which is useful especially in uncovering errors arising
from concurrency. At the same time we note that it is usually not feasible to
be able to exhaustively test all possible parallel combinations, thus we propose
that a way to ensure uncovering parallel errors is to drive the model with a
use case to a situation with high parallelism and then letting the tester tool
execute unguided after that. The produced traces can be postprocessed to obtain
a measure on how many of the possible parallel executions have been covered.

The rest of the paper is arranged as follows: section 2 describes our approach,
section 3 describes the system that we are testing, section 4 elaborates on the
construction of the tester, including modeling and other decisions during devel-
opment, section 5 describes the results of testing and finally section 6 presents
our conclusions.

2 The Approach

Our initial approach is outlined in figure 1: the system requirements (1) are split
into use cases (2) and an abstract system (3). We have chosen to design the use
cases as CSP (4) and the abstract domain model of the system in B [3] (5).The B
model can be checked for consistency by theorem proving and further validated
against the use cases by model checking. Another view of the same thing is that
the CSP can drive the B model, which acts as an oracle.

Then we ideally construct a concrete reference model (6) based on the abstract
B model using the B method and refinement. The CSP can be used to drive the
reference model as well so in addition to the construction method the CSP is
used as another mechanism for ensuring the validity of the reference model.

The reference model is concrete enough that it contains necessary information
for testing an implementation of the defined system without adding behavior
outside of the model. Note that the reference model is really a model of the
system rather than model of the tests, we rely on tools to be able to infer the
tests from the system model. We assumed that it would be less effort to operate

214 V. Luukkala and I. Oliver

 2. Use cases

1.Requirements

3. Abstract System

 4.CSP properties 5.B-model

 6.LISP model

drives

Concretize

7.Implementation
Testing

Fig. 1. The attempted process

on the same terms as the system design rather than having a completely separate
tester. Also we are especially interested in testing of the parallel features and thus
we wanted to perform on-the-fly testing [4] under the assumption that it would
be easier to have the tester adapt to the parallel behavior of the system rather
than to have test cases that would contain essentially the same functionality.
These assumptions led us to use the commercial Conformiq Qtronic [5] tool for
testing.

3 NoTA Architecture, Session and Transport Protocol
Layer

The system under test is the “high interconnect” (H IN) part of the Network
on Terminal Architecture (NoTA) [6,7]. The driving force behind NoTA is to
produce a device which supports “horizontalisation” of technology in the most
extreme form currently available while adhering to the constraints of very small,
embedded devices - namely, but not limited to, the mobile phone as we cur-
rently know today. The two goals that drive NoTA are modularity and service
orientation.

Modularity is seen in the way devices are physically (and possibly logically)
constructed while service orientation allows the functionality of the device to be
abstracted away from that functionality’s implementation and physical location.
What this achieves is a complete separation of the functionality from the con-
struction of the device. In other words the whole product line [8] based upon the
Network on Terminal Architecture concepts becomes simply the choice of what
functionality is required and then the choice of the most suitable implementation
technologies; or even possibly vice versa.

A NoTA device is constructed in a modular fashion from components which
are termed subsystems. A subsystem is simply a self-contained, independent

Model Based Testing of an Embedded Session and Transport Protocol 215

unit of the device which provides processing capabilities. Typically a subsystem
manifests itself as a unit containing a processor, local memory and a set of local
devices, for example, a camera, solid state storage and so on. A subsystem must
also provide communication to the NoTA Interconnect allowing the services that
run upon that subsystem to communicate with other services elsewhere in the
whole NoTA device. Figure 2 shows this pictorially with a device containing two
subsystems of various configurations.

Fig. 2. Pictorial Representation of a NoTA Device

The Interconnect can be any suitable communication medium, although in a
mobile device this means some kind of high speed bus. In the simplest design, the
interconnect is either of star or bus topology, although any particular network
topology is possible.

The interconnect is divided into three layers: High Interconnect (H IN), Low
Interconnect (L IN) and Network (TCP/IP, MipiUnipro etc) layer.

The H IN provides services with resource discovery and management, session
and upper level transport facilities. It is into this layer that services and applica-
tions request communication channels to other services and applications, while
services themselves announce and register their existence and provide functional-
ity to the world. The communication mechanism provided by the H IN is connec-
tion oriented and provides asynchronous message based passing and streaming
data communication possibilities:

Typically the asynchronous message based type of communication is reserved
for control commands and general interaction between services, while large quan-
tities of data, eg: multimedia, are sent via the streaming connections. The L IN
is more of a device driver level which abstracts the underlying communication
network away from the H IN.

While devices are constructed out of subsystems and an interconnect, without
services the device is not capable of providing any end-user functionality. The sub-
systems and interconnect serve to support the provision of services. The notion
of service in NoTA is an abstraction of some logical grouping of functionality [9].

216 V. Luukkala and I. Oliver

4 Modeling the System and Constructing the Tester

There are two requirements for testing of a NoTA system that we focus on:
the parallel nature of the system and testing of third party provided subsystem
implementations. Each subsystem must be able to communicate with entities
(services or applications) on the H IN network regardless of which subsystem
they reside on. Each subsystem may be a separate computing entity and there
is no global scheduling mechanism for the whole system, which means that even
if there is a deterministic behavior for a single subsystem, the behavior of all
the subsystems executing in parallel most likely does not have one. We wanted
to flush out bugs in the H IN arising from this parallel complexity. Secondly
we wanted to test that a third party subsystem implementation would work
properly in the H IN network.

While not covered in this work, we also wanted to be able to test the services
themselves as they also may have parallel behavior and hopefully use the same
approach as described in this work.

We decided to model the H IN layer itself rather than the protocol between
the subsystems or the individual services and applications using the H IN. The
reason for this was that we wanted to concentrate our effort on the system itself
and then derive the possible correct behaviors from the system model automat-
ically to cope with the expected complexity. The downside of this decision is
that the system model as such treats all of the entities using H IN the same
data-wise, that is, the model of the system (or the real implementation itself)
does not contain any specific information about the content of the data that it
passes. When needed, we planned to provide this data by use cases or as a more
drastic measure, model the particular services in the same model as the H IN.

Also, we are modeling the system (H IN layer) and we want to test based on
the same or refined model of the system rather than construct a separate model
of the tester for the system. This is because after constructing a valid model
of the parallel system we want to reuse this effort in automatically deriving
the tests from this model. The difference between a tester model and a system
model is that the tester exists outside of the system acting as a user whereas
the system model describes the behavior from the system point of view. So
when a tester model sends a message, the system model expects a message. One
way of thinking about this is that we want to compare the system model with
the implementation. Here the system model acts as a reference implementation.
Another view is that the tester is an “inverse” of the system.

The model communicates with the outside world by sending messages to
named ports and receiving messages from them. The number of ports that allow
communication to the outside world is fixed, but easily parameterizable. Each
of these ports corresponds to an entity offering a service or using some service
on top of the H IN layer, so the chosen number of ports determines the maximal
parallelism for the model. When the model sends a message to the outside world,
it means that we expect the system to produce that kind of message and when
the model receives a message we expect the implementation to accept that kind
of message.

Model Based Testing of an Embedded Session and Transport Protocol 217

For high level modeling of the H IN layer we chose the B language because
we had previous experience in building systems using that methodology [10] and
using CSP for use cases followed from the available B tool support. Furthermore
the B method has the notion of refinement which allows stepwise generation
of less abstract models until B0 subset of B for which there exist mappings
to imperative programming languages. We used the ProB animator and model
checker [11] and the commercial ClearSy Atelier B for analyzing the B.

Also, since we expected to be testing a parallel system, we wanted to be able to
perform testing on-the-fly, that is we wanted to “execute” the model in parallel
with the implementation and adapt to the behavior of the implementation. It is
possible to use the system model to generate a set of linear test cases, but using
this mechanism to attempt testing of parallel systems is cumbersome. Firstly
because attempting to generate all possible linear test cases covering all parallel
interleavings becomes infeasible for nontrivial systems due to the state explosion
problem. Secondly, a parallel system may execute correctly but differently than
what a test case expects, which means that the test case signals “inconclusive”
or “fail” and the effort spent for that test case is wasted. Finally, while typically
testing languages have the possibility of branching based on replies from the
implementation, constructing a test case that would attempt to adapt to the
implementation would lead to implementing an on-the-fly tool using the testing
language. We expect that on-the-fly testing alleviates these problems. There
is existing work on generation of test cases from a model [12,13] and also on
various test selection heuristics [14,15] which attempt to produce a subset of
possible testing for best possible coverage of the model. We expect that the
most successful of these heuristics will be applicable for test case generation as
well as on-the-fly testing and that support for them will appear in tools.

The two particular requirements of the ability to base its testing on the model
of the system and ability to execute testing on-the-fly led us to use the Conformiq
Qtronic tool for testing. At the time of this decision Qtronic supported a variant
of LISP to define the models. Qtronic executes the the LISP model symbolically
in parallel with the executing system under test causing messages to be sent to
the system under test. The feedack from the tested system is taken into account
by the symbolic executor and influences the permissible behavior later on. The
tool also has possiblity of guiding the testing by various coverage criteria: there is
structural criteria, such as branch, condition and boundary value coverage over
the LISP model and coverage over user specified checkpoints that are entries in
the LISP model. In addition there is notion of coverage over use cases, which are
also defined in LISP.

4.1 The Models

The B machine contains operations for each H IN primitive and the CSP is then
used to express the use cases that specify the desired behavior of the system over
those primitives. The CSP can be then verified against the B model as described
in [16]. For example, figure 3 shows the B operations for registering a service
and the CSP for a use case that shows that after a service has registered under

218 V. Luukkala and I. Oliver

some service identifier, another entity may connect to that particular identifier.
Effectively this is one possible and desired linear trace in the system.

The first two events in the CSP are internal to the used ProB tool and thus
implementation details, but the register with ResourceManager?Sname?Sid!
REGISTRATION OK event is the first H IN specific one and expresses that the
particular event can occur successfully for some service id Sid and service name
Sname. The register event is then followed eventually by a connect event that
uses the same service id Sid to connect successfully. The RUN process that is
executed concurrently states that all the events that are passed as its parameters
do not constrain the CSP process (the list of events here is truncated). In effect
we are saying that the events in the RUN process are ignored until the desired
connect event with desired arguments is encountered. This same mechanism is
also used to hide operations that are purely internal to the B machine, such as
the rm register above, so that only H IN primitives are used to build the use
cases. This way the use cases should be applicable to any system that has the
same set of primitives.

sid,err <-- register_with_ResourceManager(nn) =

PRE

 nn : SERVICE_NAME &

 icnode_state = RUNNING

THEN

 sid,err <-- rm_register(nn,icnode_address)

END ;

ss,err <-- rm_register(nn,aa) =

 PRE

 nn : SERVICE_NAME &

 aa <: ICNODE_ADDRESS

 THEN

 CHOICE

 err := REGISTRATION_ERROR ||

 ss :: SID

 OR

 ANY

 newsid

 WHERE

 newsid : SID - rmsids

 THEN

 ss := newsid ||

 rmsids := rmsids \/ { newsid } ||

 err := REGISTRATION_OK

 END

 END

 END ;

MAIN = initialise -> notify_resource_manager_location -> REGISTER;;

REGISTER = register_with_ResourceManager?Sname?Sid!REGISTRATION_OK ->

 (CONNECT ||| RUN[register_with_ResourceManager,send,nm_register,...]);;

CONNECT(SS) = connect!SS!CONNECT_OK -> skip;;

CSP:

Fig. 3. The “register” primitive expressed in B and a CSP property

By the time we completed this model, the specifications had already changed
somewhat and the initial test model had turned out to be complex enough that
we felt that constructing the chain of refinements between these models would
be too time consuming, especially as this process might have to be repeated.
Thus we decided to develop the models separately but nevertheless make an
effort to make sure that the CSP use cases would be compatible with both.

Model Based Testing of an Embedded Session and Transport Protocol 219

We felt that it was still worth the while to continue, as a correct - in terms of
verification - system does not guarantee that the system would have behaved in
accordance with the customer’s wishes - hence the need for testing at all levels
of development.

It can be argued that correct development of the system would have been
achieved if we had followed the refinement rules and constructed a concrete
specification in the B0 subset of B which is translatable to a ‘normal’ imperative
language (B0 sequentializes actions and removes non-determinism). There do ex-
ist code generators from B0 to C, C++ (and also Java and Ada). We faced three
problems here, firstly the time spent developing and refining the specification
would have been considerable and secondly we would have to have developed a
code generator to LISP and ensured that it preserved the semantics of the model.
Finally we felt that there would certainly be changes that would result from con-
necting the LISP system to the tester and all of these changes could not be done
at the LISP level but higher up in the refinements chain. These facts together
outweighed the potential benefits - of course if B (and it has now been super-
seded) would have been taken into more general use then this route might pay off
in the future. Additionally, strict refinement based approaches do not cope with
change in the specification well resulting in techniques such as retrenchment to
preserve the mathematical link between now differing specifications.

The LISP model was constructed essentially as an event loop: the system
reads in messages from incoming ports and these events are then processed.
These events match the H IN primitives. Notably, initially all H IN events were
accepted by the event loop. Since this model is used for testing this meant
that given this model to a model based tester, it would generate any of these
primitives to be sent to the implementation. The effects of this are described
further below in section 4.2.

Figure 4 shows the LISP code that corresponds to the “register” primitive in
figure 3. This function is called from the event loop after an event Hactivate
Service with one parameter sid of integer type has been received.

If the parameter sid has been registered before (1), the event
HactivateService ret is sent back with parameter value zero signaling failure
(3) and the event loop is re-entered. The model has been augmented with a tool
specific checkpoint mechanism (2), which allows tagging parts of the model so that
the tags are reported in test traces, but they can also be used as coverage guides. If
the sid is new, it is then associated with the port from which the original message
came from (4) and a new internal interface is created (5) and also associated with
the sid (6) for later use. Then a random value non-zero is generated (7) and after
some more bookkeeping and checkpoints (8), the return message is sent back (9)
containing the random value. Again, since this is a model of the system, emitting
a message with a random value means that the tester expects the implementation
to produce that message with any value in place of the random value.

Each H IN primitive has a similar function and furthermore there are func-
tions for bookkeeping and internal data structures as well as functions whose
purpose is to enforce the typing of the primitive parameters.

220 V. Luukkala and I. Oliver

(define HandleActivateService

 (lambda (msg env in_port ret_port)

 (let*

 ((msg_name (ref msg 0)) (sid (ref msg 1))

1 (known_sid (r_known_sid? (env_rmap_port env) sid)))

 (if (known_sid)

 (begin

2 (checkpoint (tuple ’unable-to-register sid)) ; a named checkpoint

3 (output ret_port (tuple ’HactivateService_ret sid 0)) ; sending a message

 (h_in_router env))

 (begin

4 (r_dict_add (env_sid_to_outport env) sid ret_port)

5 (let ((sid_port (make-interface)))

 (begin

6 (r_dict_add (env_rmap_port env) sid sid_port)

7 (let ((pid (+ (random 254) 1))) ; make up a value

 (begin

 (r_dict_add (env_s2p_port env) sid pid)

 (env_incr_service_ctr env)

8 (checkpoint (tuple ’service-activated (print-pname in_port) sid))

9 (output ret_port (tuple ’HactivateService_ret sid pid))))

 (h_in_router env))))))))

Fig. 4. The LISP code corresponding to the “register” primitive

(define send-hactivate

 (lambda ()

 (let* ((oport (any-oport)) (sid (random 254)))

 (begin

 (output oport (tuple ’HactivateService sid))

 (tuple oport sid)))))

(define receive-hactivate_ret

 (lambda (send-port sid)

 (let ((receive-port (oport-to-iport send-port)))

 (let ((inmsg (handshake receive-port #f)))

 (let* ((iport (gp inmsg)) (msg (gm inmsg)))

 (begin

 ;; We make sure that message is what we want

 (require (equal? (ref msg 0) ’HactivateService_ret) #f)

 (require (equal? (ref msg 1) sid) #f)

 (require (> (ref msg 2) 0) #f)))))))

(define send-connect

 (lambda (sid)

 (let ((oport (any-oport)))

 (begin

 (output oport (tuple ’Hconnect_req sid))

 #t)))) ;; we have reached our goal

(define main

 (lambda ()

 (if |usecase:use case 2|

 (let ((a (send-hactivate)))

 (let* ((s_oport (ref a 0))

 (sid (ref a 1)))

 (begin

 (receive-hactivate_ret s_oport sid)

 (send-connect sid)))))))

Fig. 5. The LISP use case corresponding to the B use case

The use cases are also written in LISP and they are similar to the CSP ones
in that they are essentially sequences of events. Figure 5 shows the same use case
as earlier in figure 3: the main function calls three functions, that perform the
communication. This use case is expected to be running as an observer in parallel
with the system model. The way this use case either influences the testing or
adapts to it is elaborated below.

4.2 Use Cases, Data and Control of the System

As mentioned earlier, the model of the system contains no information about
the content of the data it is handling, the only properties the model deals with

Model Based Testing of an Embedded Session and Transport Protocol 221

is the size of the data. This is consistent with the B model where the structure
of the data was abstracted out using a generic DATA type.

For instance, a camera service has registered itself to the system under the
name cam. In order to use that service, an application must know that name and
furthermore be able to send across correct commands, potentially in a certain
order. For H IN the name of the service is any sequence of characters with a
maximum length that is associated with some port. If someone asks for that
particular string then H IN can freely choose a number within some bounds to
represent a connection to that service and then transmit data, which from H IN
point of view is a sequence of items in a buffer.

For theorem proving and model checking purposes this generality is not a
problem and also if the H IN can be tested in a test bench where no real world en-
tities are running it is possible to use essentially random data. However, if there
is a service implementation in the network, it becomes necessary to know its
identity and also how to maintain communication with it by sending compatible
messages in right order. So there should be a mechanism of dealing with the data.

Also, the system is built with a certain purpose in mind: H IN should connect
entities and transport data between them. The information how to do this is
contained in the model, but the sequence of primitives that performs the data
transfer is just as probable as any other sequence. For example a valid sequence
of primitives always starts with a “register” primitive and is then followed by a
“connect” primitive, but the model may always enable sending a “send” message
with bogus arguments first. Of course this is due to the way the model has
been constructed: all primitives should always be accepted. This generation of
unexpected behavior is partly the reason why model based testing is powerful,
but it also has the risk that the intended behavior is never completely exercised
as there is always a high possibility of choosing a bogus message.

Both the data issue and sequencing of primitives can be resolved by modifying
the model. The expected data can be hard-coded in the model so that whenever
a message is to be sent or received from a given address, it has the desired format.
The major downside of this is that this is completely bound to the particular
application. The sequencing can also be enforced in the model: a boolean flag
in the event loop can ensure that a “send” can only occur after a successful
“connect”. This is more general than the data hard-coding but it seems clear
that if more complex sequences than two messages are considered, the system
quickly becomes complex.

Both of these clearly limit the state space of the system so it might be possible
to consider these models a refinement of the “generic” model, but the loss of
generality is unappealing.

To solve this we put the application specific information to use cases and then
count on the testing tool to be able to utilize the information in them. The use
cases are used in two ways: to influence the test execution and to observe the
test execution.

Figure 6 gives an example of both cases. This is part of the use case shown in
figure 5 and on the left hand side of figure 6 the use case adapts and observes the

222 V. Luukkala and I. Oliver

(define send-hactivate

 (lambda ()

 (let* ((oport (any-oport)) (sid (random 254)))

 (begin

 (output oport (tuple ’HactivateService sid))

 (tuple oport sid)))))

(define send-hactivate

 (lambda ()

 (let* ((oport port1) (sid 12))

 (begin

 (output oport (tuple ’HactivateService sid))

 (tuple oport sid)))))

Fig. 6. A use case that observes and another that influences

test run, here the HactivateService primitive that is used to register the sender
of this primitive under the id given as parameter. There are parameter values
that are both chosen randomly, the port where the message occurs and an inte-
ger variable corresponding to the service id. As we explained earlier, the random
value indicates that any value produced by the test tool can occur here. So this
states that we want to be able to observe primitive HactivateService for any
port and service id and that we want to remember both for later use. The version
the right hand side of figure 6 is similar, but both the port and service id have
fixed values; we expect this use case to influence the tester tool so that it is able
to generate the values given in the use case. For payload data, this is the mech-
anism we force the service commands to comply with possible existing systems.

For control flow, we can explicitly guide the implementation event by event, but
we’d prefer to encode the same use case as in figure 3 and let the tester tool find
the path to such a state. This allows us to guide the implementation to a state
of high concurrency or otherwise unlikely situations and then let the tester tool
proceed (semi-)randomly. Unfortunately the tester tool did not support this kind
of use cases at the time so we could not try this approach. We expect this feature
to appear in future. The potential downside of this feature is that it might require
heavy computations, which are problematic when performing on-the-fly testing.

While not obvious from the use case listings, we expect that tool support will
remove the work needed to write the use cases as code. The primitives for com-
municating with the implementation can be derived from interface specification,
resulting in a user interface that allows specifying the use cases in an MSC-like
format. The user only needs to fill in the sequence of actions and constraints on
the data values.

4.3 Test Configuration

There are multiple parallel entities that operate over the H IN layer, but the
H IN layer itself may cover several subsystems as described in section 3, so there
needs to be a way of connecting the tester tool to all of them. The model considers
H IN as a single system: there may be several points of communication, but they
all reside on the same H IN layer and are independent of each other.

In practice each entity on the H IN layer must reside on some subsystem.
Also, every subsystem must implement part of the H IN network that offers
primitives to the users and is able to communicate to other similar subsystems
within the H IN network. There exists a C-language interface for these primitives
and when model communicates with the outside world via port, this communi-
cation in terms of the tool run time system must be mapped to these C data

Model Based Testing of an Embedded Session and Transport Protocol 223

Fig. 7. Test configuration for a H IN system consisting of three subsystems

types and function calls and back. Our aim was to construct the model used
for testing at detailed enough level that we could claim that no information loss
or information generation would be needed in these adapters. The only part
where we are not entirely convinced about meeting this goal is the handling of
asynchronous messages, which required its own bookkeeping mechanism.

Qtronic has the notion of an “adapter process” which communicates with
the tester tool using a specific protocol, in this case over TCP/IP, and contains
the user produced adaptation between the implementation and the Qtronic run
time system. We have decided to make each adapter process correspond to one
model port, rather than have one adapter process for each subsystem. This gives
more flexibility in at the price of more overhead, which may be a problem for
subsystems with low processing capabilities.

The traffic between different adapter processes is routed via a special “com-
biner adapter” that is configured with the address information of the port specific
adapters. This configuration has to match the real world subsystem configura-
tion. Figure 7 shows an example configuration, where the model has four ports
and the system under test consists of three subsystems. Two of the ports have
been mapped on the same subsystem, while other two are mapped to two differ-
ent susbsytems.

We assume that we are able to execute the adapter processes on the subsys-
tems, which is a valid assumption for in-house testing. However, if we want to
test a subsystem implementation we have two possibilities: either demand the
producer of the subsystem that there is an access to H IN or then we must be
able to exercise the service that exists on the subsystem using its own primitives.
Use cases that contain the service specific data is one possibility, another one is
to model the service in addition to the H IN model.

5 Results and Conclusions

The abstract B model has 800 +/- 100 lines of code, the LISP model has 2100
+/- 200 lines of code and the C implementation of the H IN has 20000 +/-
1000 lines of code. As usual, the modeling phase already uncovered some errors

224 V. Luukkala and I. Oliver

Fig. 8. An error trace involving three entities

and assumptions in the implementation. The modelling process (including re-
quirements elicitation and revision, plus various versions of the model) took 4
man months to produce the first major release of the specification and the first
feature complete tester also took about 4 man months.

During testing, one bug was found that essentially was due to the imple-
mentation not expecting out-of-band messages, for example a “send” before a
“connect” had been made. These could have been found by writing a tester that
would have produced messages randomly.

We found four bugs that were of a concurrent nature, the earliest one is shown
in figure 8, where two services on same subsystem register themselves and then
an application tries to connect to both producing a connect request only for the
other one. This trace is the shortest one to that error.

Another error of a similar kind, occurred with the same configuration where
the indication of arrived data was given to the wrong entity. The third error was

Model Based Testing of an Embedded Session and Transport Protocol 225

related to closing down of connections when two entities on different subsystems
closed down the connection at same time and the fourth error occurred when two
connections were sending data in both directions requiring four entities where
connections were across subsystems. Furthermore we found errors that had no
concurrent cause and most likely would have been caught by any kind reason-
able testing. Typically the faults were such that they manifested themselves as
multiple reported errors and identifying the root cause took some human work.
Also, at times it was necessary to modify the model so that these errors could
be circumvented and testing could be continued.

The implementation under test had simple test programs that set up a service
and then a client would connect to that service to transfer simple data and this
could be repeated. There were three scenarios: client connects and sends data,
client connects and receives data and client connects and both client and service
send and receive data.

Our assumption was that model-based testing would be able to exercise the
system better and that our approach would be more efficient when compared to
taking the “traditional” approach of writing linear test cases or test programs,
especially for errors that arise from concurrency.

Bugs were found and the mentioned parallel errors were such that save for
the first one there were no explicit requirements that would have led to test
cases uncovering the errors. In the first case, the requirement existed, but there
were multiple potential configurations of subsystems which were not explicitly
noted down. We feel that it is unlikely that there would have been hand written
sequential test cases that would have caught these errors. Furthermore, we note
that they would not have been repicated by repeated executions of the existing
test programs.

However measuring the parallel goodness of the testing is not straightforward
as complete coverage is most likely not going to be achieved. Given this, would
it be possible to identify the part that was not tested and guide later testing to
cover that?

We used gprof utility to obtain call information for C functions for the indi-
vidual H IN components on subsystems, but it seemed that while the results of
the longer on-the-fly produced more coverage data, this could always be matched
simply by running the existing simple tests more times. It may be that a coverage
analysis with smaller granularity than function level is needed to note the changes.
However, the C implementation relies on threads and callbacks, which means that
the branching is not detectable on the C-code level. It seems that measuring the
parallel quality of the testing based on this kind of metrics is not good enough.

Another possibility we considered is using the traces produced by testing
to deduce how much of the potential state space has been exercised. We im-
plemented a prototype tool that takes in a description of a use-case and then
attempts to show how many of the potential parallel executions of those were
seen in the testing. Other approach would have been feeding the traces back to
the B model checker and obtaining relevant information there. However, both of
these approaches required tool development for which we didn’t have resources.

226 V. Luukkala and I. Oliver

Yet another way is to add the desired information to the model or the use
cases. The Qtronic test tool has its own coverage criteria which aims to cover
the model as well as possible and as the model has been constructed so that
observable events are part of the coverage, the tool is able to produce meaningful
testing and report checkpoints that may have metadata associated with them.
It is possible to modify the model with auxiliary constructs that keep track of
its own parallel state and produce that as output. The downside here is that
another model is embedded in the model of the actual system.

Our preferred approach would have been to drive the model to a desired state
with high concurrency using a use case and then let the tester tool proceed with
a random walk. Unfortunately the tool support for this feature was not available
at the time.

Our approach managed to uncover errors that would otherwise most likely not
been found, but at the price of creating the system essentially twice. Construct-
ing the models is a different skill when compared to writing test cases and this
may be the greatest obstacle in adoption of this kind of testing. Nevertheless the
possibility of using use cases to drive the model may be useful in demonstrat-
ing the value in terms that are understandable to traditional testers. The tool
support is nearly there to allow the use cases to act as a loose template for test
execution which would allow the test engineer to write testcase-like constructs
to exercise the implementation.

We did not set out to do comparisons with other existing approaches and tools,
rather we were looking for experiences in combining components in a toolchain.
There are alternative approaches for both the specification and the tester tool side,
especially ToRX [17] and the Spec Explorer [18], but we did not evaluate these.

It is inevitable that errors, especially of a concurrent nature, are introduced
during development through decisions (primarily architectural) made while im-
plementing. In addition we see errors introduced through requirements change
which can not be adequately modelled and verified at the more abstract levels
of modelling. Even though we have had to take a pragmatic approach which has
compromised some “formal methods ideals” we have seen our approach uncover
errors earlier and provide more detail about those errors.

Acknowledgments

This work has been made in cooperation with the EU Rodin Project (IST-
511599). We would like to thank Kimmo Nupponen and Antti Huima from Con-
formiq for valuable help.

References

1. Erl, T.: Service-Oriented Architecture. Prentice-Hall, Englewood Cliffs (2005) 0-
13-185858-0.

2. Oliver, I.: Experiences in using B and UML in industrial development. In: Jul-
liand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 248–251. Springer,
Heidelberg (2006)

Model Based Testing of an Embedded Session and Transport Protocol 227

3. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York, USA (1996)

4. Vries, R.d., Tretmans, J.: On-the-Fly Conformance Testing using Spin. In: Holz-
mann, G., Najm, E., Serhrouchni, A. (eds.) Fourth Workshop on Automata The-
oretic Verification with the Spin Model Checker. ENST 98 S 002, Paris, France,
Ecole Nationale Supérieure des Télécommunications, pp. 115–128 (1998)

5. Conformiq Software Ltd.: Conformiq Qtronic, a model driven testing tool (2006–
2007) http://www.conformiq.com/qtronic.php

6. Suoranta, R.: New directions in mobile device architectures. In: Ninth Euromi-
cro Conference on Digital System Design: Architectures, Methods and Tools (DSD
2006) (30 August - 1 September 2006), Dubrovnik, Croatia, pp. 17–26. IEEE Com-
puter Society, Los Alamitos (2006)

7. Suoranta, R.: Modular service-oriented platform architecture - a key enabler to
soc design quality. In: 7th International Symposium on Quality of Electronic De-
sign (ISQED 2006) (March 27-29, 2006), San Jose, CA, USA, pp. 11–13. IEEE
Computer Society, Los Alamitos (2006)

8. Savolainen, J., Oliver, I., Mannion, M., Zuo, H.: Transitioning from product line
requirements to product line architecture. compsac 01, 186–195 (2005)

9. Kruger, I.H., Mathew, R.: Systematic development and exploration of service-
oriented software architectures. In: Proceedings of Fourth Working IEEE/IFIP
Conference on Software Architecture WICSA 2004, pp. 177–187 (2004)

10. Kronlof, K., Kontinen, S., Oliver, I., Eriksson, T.: A method for mobile terminal
platform architecture development. In: Proceedings of Forum on Design Languages
2006. Darmstadt, Germany (2006)

11. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

12. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. In: Proceedings of the IEEE. vol. 84, pp. 1090–1126 (1996)

13. Gnesi, S., Latella, D., Massink, M.: Formal test-case generation for uml statecharts.
iceccs 00, 75–84 (2004)

14. Feijs, L., Goga, N.S.M., Tretmans, J.: Test Selection, Trace Distance and Heuris-
tics. In: Schieferdecker, I., König, H., Wolisz, A. (eds.) Testing of Communicating
Systems XIV, pp. 267–282. Kluwer Academic Publishers, Dordrecht (2002)

15. Pyhälä, T., Heljanko, K.: Specification coverage aided test selection. In: Lilius, J.,
Balarin, F., Machado, R.J. (eds.) Proceeding of the 3rd International Conference
onApplication of Concurrency to System Design (ACSD’2003), Guimaraes, Portu-
gal, IEEE Computer Society, Guimaraes, Portugal, pp. 187–195. IEEE Computer
Society, Los Alamitos (2003)

16. Leuschel, M., Butler, M.: Combining CSP and B for Specification and Property
Verification. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

17. Tretmans, G.J., Brinksma, H.: Torx: Automated model-based testing. In: Hartman,
A., Dussa-Ziegler, K. (eds.) First European Conference on Model-Driven Software
Engineering, Nuremberg, Germany, pp. 31–43 (2003)

18. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: ESEC/FSE-13: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, pp. 273–282. ACM Press, New York, USA
(2005)

http://www.conformiq.com/qtronic.php

Utilising Code Smells to Detect Quality

Problems in TTCN-3 Test Suites

Helmut Neukirchen1 and Martin Bisanz2

1 Software Engineering for Distributed Systems Group,
Institute for Informatics, University of Göttingen,

Lotzestr. 16–18, 37083 Göttingen, Germany
neukirchen@cs.uni-goettingen.de

2 PRODYNA GmbH, Eschborner Landstr. 42–50, 60489 Frankfurt, Germany
martin.bisanz@prodyna.de

Abstract. Today, test suites of several ten thousand lines of code are
specified using the Testing and Test Control Notation (TTCN-3). Expe-
rience shows that the resulting test suites suffer from quality problems
with respect to internal quality aspects like usability, maintainability, or
reusability. Therefore, a quality assessment of TTCN-3 test suites is de-
sirable. A powerful approach to detect quality problems in source code
is the identification of code smells. Code smells are patterns of inappro-
priate language usage that is error-prone or may lead to quality prob-
lems. This paper presents a quality assessment approach for TTCN-3
test suites which is based on TTCN-3 code smells: To this aim, various
TTCN-3 code smells have been identified and collected in a catalogue;
the detection of instances of TTCN-3 code smells in test suites has been
automated by a tool. The applicability of this approach is demonstrated
by providing results from the quality assessment of several standardised
TTCN-3 test suites.

1 Introduction

Current test suites from industry and standardisation that are specified using
the Testing and Test Control Notation (TTCN-3) [1,2] reach sizes of around
40–60 thousand lines of code [3,4,5]. These test suites are either generated or
respectively migrated automatically [6] or they are created manually [4,5]. In
both cases, the resulting test suites need to be maintained afterwards. The
maintenance of test suites is an important issue for industry [6] and standardisa-
tion [7,8]. A burden is put on the maintainers if the test suites have a low internal
quality resulting from badly generated code or from inexperienced developers [6].
Hence, it is desirable to assess the quality of TTCN-3 test specifications.

According to the ISO/IEC standard 9126 [9], a software product can be eval-
uated with respect to three different types of quality: internal quality is assessed
using static analysis of source code. External quality refers to properties of soft-
ware interacting with its environment. In contrast, quality in use refers to the
quality perceived by an end user who executes a software product in a specific
context. In the remainder, we will focus on internal quality problems.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 228–243, 2007.
c© IFIP- International Federation for Information Processing 2007

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 229

A simple approach for the quality assessment of source code are metrics [10].
In earlier work, we have experienced that metrics are suitable to assess either
very local [3] or very global [11] internal quality aspects of TTCN-3 test suites.
However, properties of language constructs which are, for example, related but
distributed all over the source code are hard to assess using simple metrics.
Instead, a more powerful pattern-based approach is required to detect patterns of
inappropriate language usage that is error-prone or may lead to quality problems.
These patterns in source code are described by so called code smells.

This paper introduces TTCN-3 code smells and utilises them to detect internal
quality problems in TTCN-3 test suites. The located quality problems can be
used as input for the plain quality assessment of test suites and as well as a
starting point for the quality improvement of test suites.

The structure of this paper is as follows: subsequent to this introduction,
foundations and work related to smells in software are presented in Section 2.
A survey of work concerning smells in tests is given in Section 3. As the main
contribution, a catalogue of TTCN-3 code smells is introduced in Section 4.
Then, in Section 5, a tool is described which is able to automatically detect
instances of TTCN-3 code smells in test suites. Section 6 provides results from
applying this tool to several huge standardised test suites. Finally, this paper
concludes with a summary and an outlook.

2 Foundations

The metaphor of “bad smells in code” has been coined by Beck and Fowler in
the context of refactoring [12]. Refactoring is a technique to improve the internal
quality of software by restructuring it without changing its observable behaviour.
As an aid to decide where the application of a refactoring is worthwhile, Beck and
Fowler introduce the notion of smell: they define smells in source code as “certain
structures in the code that suggest (sometimes they scream for) the possibility of
refactoring” [12]. According to this definition, defects with respect to program
logic, syntax, or static semantics are not smells, because these defects cannot be
removed by a behaviour-preserving refactoring. This means, smells are indicators
of bad internal quality with respect to (re-)usability, maintainability, efficiency,
and portability.

Smells provide only hints: whether the occurrence of an instance of a certain
smell in a source code is considered as a sign of low quality may be a matter
that depends on preferences and experiences. For the same reason, a list of code
structures which are considered as smell is never complete, but may vary from
project to project and from domain to domain [13].

Beck and Fowler provide a list of 22 smells which may occur in Java source
code. They describe their smells using unstructured English text. The most
prominent smell is Duplicated Code. Code duplication deteriorates in particular
the changeability of a source code: if code that is duplicated needs to be modi-
fied, it usually needs to be changed in all duplicated locations as well. Another
example from Beck’s and Fowler’s list of smells is Long Method which relates

230 H. Neukirchen and M. Bisanz

to the fact that short methods are easier to understand and to reuse, because
they do exactly one thing. A further example is the smell called Data Class
which characterises classes that only have attributes and accessor methods, but
the actual algorithms working on these data are wrongly located in methods of
other classes.

Most of the smells from Beck and Fowler relate to pathological structures in
the source code. Thus, to detect such structures, a pattern-based approach is
required: for example, to identify duplicated code, pattern-matching is required;
to detect data classes, it has to be identified whether the methods of a class
are only simple get and set methods and whether methods in other classes do
excessively manipulate data from that particular class. Such patterns cannot be
detected by metrics — however, the notion of metrics and smells is not disjoint:
each smell can be turned into a metric by counting the occurrences of a smell,
and sometimes, a metric can be used to detect and locate an instance of a smell.
The latter is, for example, the case for the Long Method smell which can be
expressed by a metric which counts the lines of code of a method.1

Bad smells are also related to anti-patterns [14]. Anti-patterns describe solu-
tions to recurring problems that are wrong and bad practice and shall thus be
avoided. A well-known anti-pattern is the one called Spaghetti Code, i.e. software
with little structure. Even though this and other anti-patterns relate to source
code, anti-patterns do not refer to low-level code details as code smells do. In
fact, the majority of the anti-patterns do not relate to source code at all, but to
common mistakes in project management.

The awareness of problematic source code structures is older than the notion of
smells in source code. For example, patterns of data flow anomalies which can be
detected by static analysis have been known for a long time [15]. However, these
older works mainly relate to erroneous, inconsistent, inefficient, and wasteful code
constructs. The added value of smells is to consider also more abstract source
code quality problems, for example those which lead to maintenance problems.

3 Smells in Tests

As stated in the previous section, the perception of what is considered as a smell
may vary from domain to domain. Hence, for the testing domain, a separate
investigation of smells is required. Van Deursen et al. and Meszaros studied
smells in the context of tests that are based on the Java unit test framework
JUnit [16].

Van Deursen et al. [17] introduce the term test smell for smells that are specific
to the usage of JUnit as well as for more general JUnit-independent issues in test

1 It has to be noted that Beck and Fowler state that for detecting instances of a
smell “no set of metrics rivals informed human intuition”. This is obviously true
for those smells where no corresponding metric exists. However, in the cases, where
such a metric exists, this statement does in our opinion rather relate to the fact that
reasonable boundary values for such a metric may vary from case to case and thus
it is hard to provide a universally valid boundary value for that metric.

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 231

behaviour that can be removed by a refactoring. An example for a JUnit-specific
test smell is General Fixture which refers to test cases that share unnecessarily
the same fixture (i.e. test preamble), just because the test cases are collected in
the same JUnit testcase class. A more general test smell is, for example, Test
Run War which relates to the fact that test cases may behave non-deterministic
due to shared test resources when several test campaigns run in parallel.

Meszaros [18] refines the notion of test smell by distinguishing between three
kinds of smells that concern tests: code smells relate to test issues that can be
detected when looking at source code, behaviour smells affect the outcome of
tests as they execute, and project smells are indicators of the overall health of
a project which do not involve looking at code or executing tests. Within this
classification, smells of different kinds may affect each other; for example, the
root cause of a behaviour smell may be a problem in the code. We regard this
classification of test smells as reasonable and adopt this terminology as well.

Those test smells from Van Deursen et al. that are JUnit-specific (e.g. General
Fixture) can be considered as code smells while others are more general (e.g. Test
Run War) and can thus be regarded as behaviour smells. Meszaros does not
only refine the notion of test smells, but also extends the list of test smells from
Van Deursen et al. by further smells. An example for an additional code smell
is Conditional Test Logic which refers to tests which are error-prone because
they use complex algorithms to calculate test data and to steer test behaviour.
A behaviour smell identified by Meszaros is, for example, Fragile Tests, which
are tests that fail after non-relevant changes of the System Under Test (SUT).
An example of a project smell is Developers Not Writing Tests.

4 A TTCN-3 Code Smell Catalogue

While code smells have been identified for tests written using the JUnit frame-
work, smells have not yet been investigated in the context of TTCN-3. The
project smells identified by Meszaros [18] are independent from any test lan-
guage and can thus be used as well in projects that involve TTCN-3. Most of
Meszaros’ behaviour smells apply to TTCN-3 tests without change, however
those behaviour smells whose root cause is a JUnit related code smell are only
applicable after a reinterpretation. Only a subset of the JUnit related code smells
can be reinterpreted in a way that they are applicable to TTCN-3. Hence, code
smells related to TTCN-3 need further investigation.

We have started to identify TTCN-3 code smells which we use to assess the
internal quality of TTCN-3 test specifications. When investigating possible smell
candidates we have relaxed Beck’s and Fowler’s definition of smells in source
code: We include not only internal quality problems in TTCN-3 source code
that can be improved by a behaviour preserving refactoring, but we consider as
well quality problems which obviously require a change of the behaviour. One
example is a test case which never sets a test verdict. In this case, a statement
that sets a verdict needs to be added. This cannot be achieved by applying
a refactoring, since this is a change that would not be behaviour-preserving.

232 H. Neukirchen and M. Bisanz

Though, we still adhere to the definition of code smell, in that we do not consider
errors in TTCN-3 source code with respect to syntax or static semantics as a
smell.

As a starting point for our investigations, we examined those code smells that
were already known for implementation and testing languages. Even though the
smells listed by Beck and Fowler [12] are intended for Java code, some of them
proved to be suitable for TTCN-3 code. A further source was the TTCN-3 refac-
toring catalogue [3,19,20] which was in turn inspired by the JUnit refactorings
and JUnit code smells published by Van Deursen et al. [17]. The refactorings
collected in the TTCN-3 refactoring catalogue already refer briefly to code smell-
like quality issues as a motivation for each refactoring.

In contrast to the plain listing of unstructured smell descriptions that is used
by Beck and Fowler or by Van Deursen et al., we have catalogued our TTCN-3
code smells in a structured way. This structured presentation allows a more sys-
tematic and faster access to the smell descriptions. The entries in our TTCN-3
code smell catalogue are listed in the following format: each smell has a name;
those smells which are derived from other sources have a derived from section
which lists the corresponding references; a description provides a prose sum-
mary of the issue described by the smell; the motivation part explains why the
described code structure is considered to have low quality; if several variants
of a smell are possible (e.g. by relaxing or tightening certain requirements on
a code structure), this is mentioned in an options section; one or more actions
(typically refactorings) which are applicable to remove a smell are listed in the
related actions section; finally, a TTCN-3 source code snippet is provided for
each smell in the example section.

In our smell catalogue, the names of TTCN-3 code smells are emphasised
using slanted type and TTCN-3 keywords are printed using bold type. The
following overview on our TTCN-3 code smell catalogue gives an impression of
the so far identified 38 TTCN-3 code smells. The overview provides the name
and the summary of each smell and uses the same division into 10 sections as
our TTCN-3 code smell catalogue:

Duplicated Code

– Duplicate Statements: A duplicate sequence of statements occurs in the
statement block of one or multiple behavioural entities (functions, test cases,
and altsteps).

– Duplicate Alt Branches: Different alt constructs contain duplicate branches.
– Duplicated Code in Conditional: Duplicated code is found in the branches

of a series of conditionals.
– Duplicate In-Line Templates: Two or more in-line templates are very similar

or identical.
– Duplicate Template Fields: The fields of two or more templates are identical

or very similar.
– Duplicate Component Definition: Two or more test components declare iden-

tical variables, constants, timers, or ports.

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 233

– Duplicate Local Variable/Constant/Timer: The same local variable, con-
stant, or timer is defined in two or more functions, test cases, or altsteps
running on the same test component.

References

– Singular Template Reference: A template definition is referenced only once.
– Singular Component Variable/Constant/Timer Reference: A component

variable, constant, or timer is referenced by one single function, test case, or
altstep only, although other behaviour runs on the component as well.

– Unused Definition: A definition is never referenced.
– Unused Imports: An import from another module is never used.
– Unrestricted Imports: A module imports more than needed.

Parameters

– Unused Parameter: A parameter is never used within the declaring unit:
in-parameters are never read, out-parameters are never assigned, inout-
parameters are never accessed at all.

– Constant Actual Parameter Value: The actual parameter values for a formal
parameter are the same for all references.

– Fully-Parametrised Template: All fields of a template are defined by formal
parameters.

Complexity

– Long Statement Block: A function, test case, or altstep has a long statement
block.

– Long Parameter List: The number of formal parameters is high.
– Complex Conditional: A conditional expression is composed of many Boolean

conjunctions.
– Nested Conditional: A conditional expression is unnecessarily nested.
– Short Template: A template definition is very short.

Default Anomalies

– Activation Asymmetry: A default activation has no matching subsequent
deactivation in the same statement block, or a deactivation has no matching
previous activation.

– Unreachable Default: An alt statement contains an else branch while a
default is active.

Test Behaviour

– Missing Verdict: A test case does not set a verdict.
– Missing Log: setverdict sets the verdict inconc or fail without calling log.
– Stop in Function: A function contains a stop statement.

234 H. Neukirchen and M. Bisanz

Test Configuration

– Idle PTC: A Parallel Test Component (PTC) is created, but never started.
– Isolated PTC: A PTC is created and started, but its ports are not connected

to other ports.

Coding Standards

– Magic Values: A literal is not defined as a TTCN-3 constant.
– Bad Naming: An identifier does not conform to a given naming convention.
– Disorder: The sequence of elements within a module does not conform to a

given order.
– Insufficient Grouping: A module or group contains too many elements.
– Bad Comment Rate: The comment rate is too high or too low.
– Bad Documentation Comment: A documentation comment does not conform

to a given format, e.g. T3Doc [21].

Data Flow Anomalies

– Missing Variable Definition: A variable or out parameter is read before a
value has been assigned.

– Unused Variable Definition: An assigned variable or in-parameter is not read
before it becomes undefined.

– Wasted Variable Definition: A variable is assigned and assigned again before
it is read.

Miscellaneous

– Over-specific Runs On: A behavioural entity runs on a component but uses
only elements of the super-component or no component elements at all.

– Goto: A goto statement is used.

To give an impression of how the entries in our TTCN-3 code smell catalogue
look like, the smells Duplicate Alt Branches and Activation Asymmetry are
subsequently presented in detail. In addition to the already mentioned style of
typesetting TTCN-3 keywords and names of smells, references to refactorings
from the TTCN-3 refactoring catalogue [3,19,20] are printed in slanted type
as well.2 Please refer to our complete TTCN-3 code smell catalogue [22] for a
detailed description of all so far identified TTCN-3 code smells.

4.1 TTCN-3 Code Smell: Duplicate Alt Branches

Derived from: TTCN-3 refactoring catalogue [3,19,20].
Description: Different alt constructs contain duplicate branches.
2 References to refactorings and to smells can still be distinguished, because the names

of refactorings usually start with a verb followed by a noun, whereas the names of
smells usually consist of an adjective and a noun.

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 235

Motivation: Code duplication in branches of alt constructs should be avoided
just as well as any other duplicated code, because duplication deteriorates
changeability. In particular, common branches for error handling can often
be handled by default altsteps if extracted into an own altstep beforehand.

Options: Since analysability is increased if the path leading to a pass verdict is
explicitly visible in a test case, alt branches leading to pass can be excluded
optionally.

Related action(s): Use Extract Altstep refactoring to separate the duplicate
branches into an own altstep. Consider refactoring Split Altstep if the ex-
tracted altstep contains branches which are not closely related to each other
and refactoring Replace Altstep with Default if the duplicate branches are
invariably used at the end of the alt construct.

Example: In Listing 1.1, both test cases contain an alt construct where the
last branch (lines 6–10 and lines 19–23) can be found as well in the other
alt construct.

1 testcase myTestcase1() runs on myComponent {
2 alt {
3 [] pt.receive(messageOne) {
4 pt.send(messageTwo);
5 }
6 [] any port.receive {
7 log(”unexpected message”);
8 setverdict(inconc);
9 stop;

10 }
11 }
12 }
13
14 testcase myTestcase2() runs on myComponent {
15 alt {
16 [] pt.receive(messageThree) {
17 pt.send(messageFour);
18 }
19 [] any port.receive {
20 log(”unexpected message”);
21 setverdict(inconc);
22 stop;
23 }
24 }
25 }

Listing 1.1. Duplicate Alt Branches

4.2 TTCN-3 Code Smell: Activation Asymmetry

Description: A default activation has no matching subsequent deactivation
in the same statement block, or a deactivation has no matching previous
activation.

Motivation: The analysability with respect to active defaults is improved if
default activation and deactivation is done on the same “level”, usually at
the very beginning and end of the same statement block. Furthermore, this
enables a static analysis of matching activation and deactivation.

236 H. Neukirchen and M. Bisanz

Options: Because defaults are implicitly deactivated at the end of a test case
run, statement blocks in test cases can be excluded optionally.

Related action(s): Default activation or deactivation should be added if miss-
ing, and matching default activation and deactivation should be moved to
the same statement block.

Example: In Listing 1.2, the altstep “myAltstep” (lines 1–6) is used as default.
Function “myFunction” (lines 8–10) activates this altstep as default, but no
deactivate statement is contained in the statement block of this function.
Even though it might be reasonable in some situations to move activation and
deactivation of defaults into separate functions, this has to be considered as
an asymmetric default activation. A further asymmetry can be found in the
test case “myTestcase”: the statement block of the deactivate statement in
Line 20 consists of lines 13–15 and Line 20. This statement block contains no
activate statement, since the activation of the default is performed within
the statement block of the function “myFunction” that is called in Line 14.

1 altstep myAltstep() runs on myComponent {
2 [] any port.receive {
3 log(”unexpected message”);
4 setverdict(inconc);
5 }
6 }
7
8 function myFunction() return default {
9 return activate(myAltstep());

10 }
11
12 testcase myTestcase() runs on myComponent {
13 var default myDefaultVar := null;
14 myDefaultVar := myFunction();
15 alt {
16 [] pt.receive(messageOne) {
17 pt.send(messageTwo);
18 }
19 }
20 deactivate(myDefaultVar);
21 }

Listing 1.2. Activation Asymmetry

5 A Tool for Detecting TTCN-3 Code Smell Instances

Our TTCN-3 code smell catalogue can be utilised for the quality assessment
of TTCN-3 test suites. One possibility is to use it as part of a checklist in
a manual inspection of TTCN-3 code. However, the efficiency of such a code
inspection can be significantly improved if the detection of instances of TTCN-3
code smells is automated by a tool.3 This allows the code reviewers to focus
3 All of our TTCN-3 code smells are intended to be detected by static analysis; how-

ever, those analyses required for smells related to test behaviour and data flow
anomalies are —in the general case— undecidable and can thus only solved by static
analysis heuristics (in the simplest case by neglecting any branching and assuming
a linear control flow instead).

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 237

on high-level logical errors in the test suite, since instances of low-level code
smells have already been detected automatically. However, in our experience an
everyday usage of an automated issue detection outside of a formal inspection
is even more beneficial: the push-button detection of smell instances allows test
engineers to easily obtain feedback on the internal quality of the TTCN-3 test
suites that they are currently developing.

We have implemented the automated detection of instances of TTCN-3 code
smells into our open-source TTCN-3 Refactoring and Metrics tool TRex [20].
The initial version of TRex [23] has been developed in collaboration with the
Motorola Labs, UK, to provide an Integrated Development Environment (IDE)
for the quality assessment and improvement of TTCN-3 test suites. In that ver-
sion, the quality assessment was based on metrics; for the quality improvement,
refactoring is used [3]. Since then, we have extended the quality assessment ca-
pabilities of TRex by an additional automated detection of TTCN-3 code smell
instances. So far, TRex provides rules to detect by static analysis instances of
the following 11 TTCN-3 code smells:

– Activation Asymmetry,
– Constant Actual Parameter Value smells for templates,
– Duplicate Alt Branches,
– Fully-Parametrised Template,
– Magic Values of numeric or string types with configurable tolerable magic

numbers,
– Short Template smells with configurable character lengths,
– Singular Component Variable/Constant/Timer Reference,
– Singular Template Reference,
– Duplicate Template Fields,
– instances of any local Unused Definition,
– an Unused Definition of a global template instance.

As stated in Section 2, whether a certain code structure is considered as a smell
or not, may vary from project to project. Therefore, TRex supports enabling
and disabling individual TTCN-3 code smell detection rules and to store these
preferences as customised analysis configurations (Figure 1). Furthermore, it is
possible to parametrise some smell detection rules. For example, for detecting
instances of the Magic Values smell, a Magic Number detection rule and a Magic
String detection rule are available; the Magic Number detection rule can be
parametrised to exclude user defined values (e.g. 0 and 1 which are usually
considered to be tolerable magic numbers) from the smell instance detection.

The results of the smell analysis are displayed as a tree in the Analysis Re-
sults view (Figure 2). The results are collected in a history, which allows to
compare analysis results. Clicking on an entry of the analysis result jumps to
the corresponding location in the TTCN-3 source code to allow a further manual
inspection. Some rules, for example Unused Definitions, offer the possibility of
invoking so called Quick Fixes. Quick Fixes automatically suggest the invoca-
tion of TTCN-3 refactoring to remove a detected instance of a smell. Since a
couple of refactorings are implemented in TRex [23], this does not only allow an

238 H. Neukirchen and M. Bisanz

Fig. 1. TRex Smell Analysis Configuration

Fig. 2. TRex Smell Analysis Results View

automated quality assessment, but as well an automated quality improvement
of TTCN-3 test suites.

5.1 Implementation

The implementation of the TRex tool is based on the Eclipse platform [24]
as shown in Figure 3. Eclipse provides generic user interface and text editor
components as well as a language toolkit for behaviour preserving source code
transformation. As an infrastructure for the automated quality assessment and
quality improvement functionality of TRex (blocks (2) and (3) of Figure 3),
TRex creates a syntax tree and a symbol table of the currently opened test
suites (Block (1) of Figure 3). For lexing and parsing the TTCN-3 core nota-
tion, ‘ANother Tool for Language Recognition’ (ANTLR) [25] is used. A further
description of the implementation of the quality improvement based on refactor-

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 239

Fig. 3. The TRex Toolchain

ings and of the implementation of the quality assessment based on metrics can
be found in earlier papers [3,23].

The smell analysis configuration dialogue and the smell analysis results view
are provided by the static analysis framework which is part of the Eclipse Test
& Performance Tools Platform (TPTP) [26]. In the context of the TPTP static
analysis framework, each smell detection capability is represented by a rule.
TPTP provides the underlying programming interface to add and implement
rules and to call and apply the rules to files according to the user-defined analysis
configuration. The actual smell instance detection is based on syntax tree traver-
sals and symbol table lookups. For example, to detect Duplicate Alt Branches,
the sub-syntaxtrees of all branches of alt and altstep constructs of a TTCN-3
module are compared. Currently, only exact sub-tree matches are detected; how-
ever, since the syntax tree does not contain tokens which do not have any seman-
tical meaning, the detection of duplicates is tolerant with respect to formatting
and comments. The Unused Definition rules make intensively use of the symbol
table to check for every symbol whether it is referenced at least once or not.
To ease the implementation of future smell detection rules, we have extracted
frequently used helper algorithms into methods of a smell detection library.

5.2 Related Work

Approaches for the automatic detection of source code issues that are detectable
by static analysis and go beyond the application of metrics have been known for
a long time. The most prominent example is probably the Lint tool [27]. Even
though Lint is older than the notion of smells, it detects issues which are nowa-
days considered as code smell. Current research shows that automatic detection
of instances of a smell is still relevant [13,28]. In addition to this research, mature
tools for detecting instances of smells in Java programs do already exist. Exam-
ples are tools like FindBugs [29] or PMD [30]. All the mentioned work deals with
the detection of instances of smells in source code written in implementation lan-
guages like C or Java. Hence, this work does neither consider TTCN-3 related
smells nor more general test specific smells at all. The only known work on the
automated detection of instances of test smells is restricted to the detection of
JUnit code smells [31].

240 H. Neukirchen and M. Bisanz

6 Application

To evaluate the practicability of our approach, we applied TRex to several huge
test suites that have been standardised by the European Telecommunications
Standards Institute (ETSI). The first considered test suite is Version 3.2.1 of the
test suite for the Session Initiation Protocol (SIP) [4], the second is a prelimi-
nary version of a test suite for the Internet Protocol Version 6 (IPv6) [5]. Table 1
shows the number of detected instances of TTCN-3 code smells and provides as
well some simple size metrics to give an impression of the size of these test suites.

Both test suites are comparable in size and in both, the same types of smells
can be found. Magic numbers can be found quite often in both test suites. An
excerpt from the SIP test suite is shown in Listing 1.3: the magic number “65.0”
used in Line 10 occurs several times throughout the test suite. If that number
must be changed during maintenance, it must probably changed at all other
places as well which is very tedious.

The number of detected instances of the Activation Asymmetry smell is as
well very high in both test suites. However, the number drops, if test cases are
excluded from the detection. Even though the SIP test suite has less Activation
Asymmetry smell instances, they still deteriorate the analysability of this test
suite as shown in Listing 1.3: the altstep “defaultCCPRPTC” is activated in
Line 6 and remains activated after leaving this function. Hence, calling this
function leads to side effects that are difficult to analyse.

Finally, Listing 1.3 can be used to demonstrate occurrences of the Unused
Definition smell in the SIP test suite: the local variable “v BYE Request” defined
in Line 3 is never used in the function and thus just bloats the code, making it
harder to analyse.

The instances of Singular Component Variable/Constant/Timer Reference
smells can be neglected in both test suites. However, the high number of Dupli-
cate Alt Branches in both test suites indicates that the introduction of further
altsteps is worthwhile. For example, the branch in lines 9–11 of Listing 1.4 can
be found as duplicate in several alt statements of the IPv6 tests suite.

Table 1. Instances of TTCN-3 Code Smells Found in ETSI Test Suites

Metric/TTCN-3 Code Smell SIP IPv6
Lines of code 42397 46163
Number of functions 785 643
Number of test cases 528 295
Number of altsteps 10 11
Number of components 2 10

Instances of Magic Values (Magic numbers only, 0 and 1 excluded) 543 368
Instances of Activation Asymmetry (Test cases included) 602 801
Instances of Activation Asymmetry (Test cases excluded) 73 317
Instances of Duplicate Alt Branches (Inside the same module only) 938 224
Instances of Singular Component Variable/Constant/Timer Reference 2 15
Instances of Unused Definition (Local definitions only) 50 156

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 241

This and our further analysis [22] of the detected smell instances give evidence
that these instances are correctly considered as issues and can thus be used for
quality assessment and as starting point to improve the internal quality of the
respective test suites.

1 function ptc CC PR TR CL TI 015(CSeq loc CSeq s) runs on SipComponent
2 {
3 var Request v BYE Request;
4
5 initPTC(loc CSeq s);
6 v Default := activate(defaultCCPRPTC());
7
8 tryingPTCBYE();
9

10 waitForTimeout(65.0∗PX T1);
11
12 notRepeatBYE(PX TACK);
13
14 } //end ptc CC PR TR CL TI 015

Listing 1.3. Magic Values, Activation Asymmetry, Unused Definition (SIP)

1 tc ac.start;
2 alt {
3 [] ipPort.receive (mw nbrAdv noExtHdr (
4 p paramsIut.lla,
5 p paramsRt01.lla)) {
6 tc ac.stop;
7 v ret := e success;
8 }
9 [] tc ac.timeout{

10 v ret := e timeout;
11 }
12 } // end alt

Listing 1.4. Duplicate Alt Branches (IPv6)

7 Conclusion

We presented a catalogue of 38 TTCN-3 code smells that can be utilised to de-
tect code-level problems in TTCN-3 test suites with respect to internal quality
characteristics like usability, maintainability, or reusability. Each of our entries in
the TTCN-3 code smell catalogue provides a description of the considered code
issue, a motivation why it is considered to have low quality, an action to remove
the smell (typically using a TTCN-3 refactoring [3]), and an example. In this
paper, we gave an overview of our TTCN-3 code smell catalogue and presented
excerpts from the full version [22]. We have implemented the automated detec-
tion of instances of TTCN-3 code smells in our TRex tool and demonstrated the
applicability of our approach by assessing the internal quality of standardised
test suites.

In future, we intend to extend our TTCN-3 smell catalogue by further code
smells and also by more sophisticated high-level smells (e.g. smells related to
issues in a test architecture). In parallel, we will implement further smell de-
tection rules in TRex and evaluate their validity. The current smell detection

242 H. Neukirchen and M. Bisanz

rules are implemented in an imperative style in Java. To ease the implementa-
tion of further smell detection rules it is desirable to specify the code pattern
that is described by a smell in a declarative way like the PMD tool [30] supports
for Java-specific smells. Finally, we believe that it is worthwhile to investigate
smells for other test specification languages, for example the UML 2.0 Testing
Profile (U2TP) [32].

Acknowledgements. The authors like to thank Jens Grabowski and the anony-
mous reviewers for valuable comments on improving this paper.

References

1. ETSI: ETSI Standard (ES) 201 873-1 V3.2.1 (2007-02): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis, France, also published
as ITU-T Recommendation Z.140 (February 2007)

2. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An introduction to the testing and test control notation (TTCN-3). Computer
Networks 42(3), 375–403 (2003)

3. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and
Metrics for TTCN-3 Test Suites. In: Gotzhein, R., Reed, R. (eds.) SAM 2006.
LNCS, vol. 4320, pp. 148–165. Springer, Heidelberg (2006)

4. ETSI: Technical Specification (TS) 102 027-3 V3.2.1 (2005-07): SIP ATS & PIXIT;
Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra In-
formation for Testing (PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (July 2005)

5. ETSI: Technical Specification (TS) 102 516 V1.1 (2006-04): IPv6 Core Protocol;
Conformance Abstract Test Suite (ATS) and partial Protocol Implementation eX-
tra Information for Testing (PIXIT). European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France (April 2006)

6. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-
text – Motorola Case Study. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 476–491. Springer, Heidelberg (2005)

7. ETSI: Specialist Task Force 296: Maintenance of SIP Test Specifications. European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France (2007)

8. ETSI: Specialist Task Force 320: Upgrading and maintenance of IPv6 test spec-
ifications. European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (2007)

9. ISO/IEC: ISO/IEC Standard No. 9126: Software engineering – Product quality;
Parts 1–4. International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC), Geneva, Switzerland (2001-2004)

10. Fenton, N.E., Pfleeger, S.L.: Software Metrics. PWS Publishing, Boston (1997)

11. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the
ISO 9126 Quality Model to Test Specifications – Exemplified for TTCN-3 Test
Specifications. In: Bleek, W.G., Raasch, J., Züllighoven, H. (eds.) Proceedings of
Software Engineering 2007 (SE 2007), Bonn, Gesellschaft für Informatik. Lecture
Notes in Informatics, vol. 105, pp. 231–242. Köllen Verlag (2007)

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites 243

12. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

13. van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells. In:
Proceedings of the 9th Working Conference on Reverse Engineering, pp. 97–106.
IEEE Computer Society Press, Los Alamitos (2002)

14. Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: Anti-Patterns.
Wiley, New York (1998)

15. Fosdick, L.D., Osterweil, L.J.: Data Flow Analysis in Software Reliability. ACM
Computing Surveys 8(3), 305–330 (1976)

16. Gamma, E., Beck, K.: JUnit (February 2007) http://junit.sourceforge.net
17. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring Test Code.

In: Extreme Programming Perspectives, pp. 141–152. Addison-Wesley, Boston
(2002)

18. Meszaros, G.: XUnit Test Patterns. Addison-Wesley, Boston (to appear, 2007)
19. Zeiss, B.: A Refactoring Tool for TTCN-3. Master’s thesis, Institute for Informatics,

University of Göttingen, Germany (March 2006) ZFI-BM-2006-05
20. TRex Team: TRex Website (February 2007)

http://www.trex.informatik.uni-goettingen.de
21. ETSI: ETSI Standard (ES) 201 873-10 V3.2.1: TTCN-3 Documentation Comment

Specification. European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France (to appear, 2007)

22. Bisanz, M.: Pattern-based Smell Detection in TTCN-3 Test Suites. Master’s thesis,
Institute for Informatics, University of Göttingen, Germany (December 2006) ZFI-
BM-2006-44

23. Baker, P., Evans, D., Grabowski, J., Neukirchen, H., Zeiss, B.: TRex – The Refac-
toring and Metrics Tool for TTCN-3 Test Specifications. In: Proceedings of TAIC
PART 2006 (Testing: Academic & Industrial Conference – Practice And Research
Techniques), Cumberland Lodge, Windsor Great Park, UK, pp. 90–94. IEEE Com-
puter Society, Los Alamitos (29th–31st August 2006)

24. Eclipse Foundation: Eclipse (February 2007) http://www.eclipse.org
25. Parr, T.: ANTLR parser generator (February 2007) http://www.antlr.org
26. Eclipse Foundation: Eclipse Test & Performance Tools Platform Project (TPTP)

(February 2007) http://www.eclipse.org/tptp
27. Johnson, S.: Lint, a C Program Checker. Unix Programmer’s Manual, AT&T Bell

Laboratories (1978)
28. Moha, N., Gueheneuc, Y.G.: On the Automatic Detection and Correction of Design

Defects. In: Demeyer, S., Mens, K., Wuyts, R., Ducasse, S. (eds.) Proceedings of
the 6th ECOOP Workshop on Object-Oriented Reengineering. LNCS, Springer,
Heidelberg (to appear)

29. Pugh, B.: FindBugs (February 2007) http://findbugs.sourceforge.net
30. Dixon-Peugh, D.: PMD (February 2007) http://pmd.sourceforge.net
31. van Rompaey, B., du Bois, B., Demeyer, S.: Characterizing the Relative Signifi-

cance of a Test Smell. In: Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM 2006), Philadelphia, Pennsylvania, pp. 391–400.
IEEE Computer Society, Los Alamitos (September 25–27, 2006)

32. OMG: UML Testing Profile (Version 1.0 formal/05-07-07). Object Management
Group (OMG) (July 2005)

http://junit.sourceforge.net
http://www.trex.informatik.uni-goettingen.de
http://www.eclipse.org
http://www.antlr.org
http://www.eclipse.org/tptp
http://findbugs.sourceforge.net
http://pmd.sourceforge.net

A Bounded Incremental Test Generation

Algorithm for Finite State Machines

Zoltán Pap1, Mahadevan Subramaniam2, Gábor Kovács3,
and Gábor Árpád Németh3

1 Ericsson Telecomm. Hungary, H-1117 Budapest, Irinyi J. u. 4-20, Hungary
zoltan.pap@ericsson.com

2 Computer Science Department, University of Nebraska at Omaha
Omaha, NE 68182, USA

msubramaniam@mail.unomaha.edu
3 Department of Telecommunications and Media Informatics – ETIK,

Budapest University of Technology and Economics,
Magyar tudósok körútja 2, H-1117, Budapest, Hungary

kovacsg@tmit.bme.hu, rubrika@gmail.com

Abstract. We propose a bounded incremental algorithm to generate
test cases for deterministic finite state machine models. Our approach,
in contrast to the traditional view, is based on the observation that
system specifications are in most cases modified incrementally in practice
as requirements evolve. We utilize an existing test set available for a
previous version of the system to efficiently generate tests for the current
– modified – system.

We use a widely accepted framework to evaluate the complexity of the
proposed incremental algorithm, and show that it is a function of the size
of the change in the specification rather than the size of the specification
itself. Thus, the method is very efficient in the case of small changes,
and never performs worse than the relevant traditional algorithm – the
HIS-method. We also demonstrate our algorithm through an example.

Keywords: conformance testing, finite state machine, test generation
algorithms, incremental algorithms.

1 Introduction

Large, complex systems continuously evolve to incorporate new features and new
requirements. In each evolution step – in addition to changing the specification
of the system and producing a corresponding implementation – it may also be
necessary to modify the testing infrastructure. Manual modification is an ad hoc
and error prone process that should be avoided, and automatic specification-
based test generation methods should be applied.

Although testing theory is especially well developed for finite state machine
(FSM)-based system specifications, existing algorithms handle changing speci-
fications quite inefficiently. Most research has been focusing on the analysis of
rigid, unchanging descriptions. Virtually all proposed methods rely solely on a

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 244–259, 2007.
c© IFIP- International Federation for Information Processing 2007

A Bounded Incremental Test Generation Algorithm 245

given specification machine to generate tests. These approaches are therefore in-
capable of utilizing any auxiliary information, such as existing tests created for
the previous version of the given system. All test sequences have to be created
from scratch in each evolution step, no matter how small the change has been.

In this paper we develop a novel, bounded incremental algorithm to auto-
matically re-generate tests in response to changes to a system specification. In
its essence the algorithm maintains two sets incrementally; a prefix-closed state
cover set responsible for reaching all states of the finite state machine, and a
separating family of sequences applied to verify the next state of transitions.
The complexity of the algorithm is evaluated based on the bounded incremen-
tal model of computation of Ramalingam and Reps [1]. It is shown that the
time complexity of the proposed algorithm depends on the size of the change
to the specification rather than the size of the specification itself. Furthermore,
it is never worse than the complexity of the most traditional algorithm – the
HIS-method [2] [3] [4].

This research builds on our earlier work in [5] where we have developed a
framework to analyze the effects of changes on tests based on the notion of
consistency between tests and protocol descriptions. In the current paper, we
have extended our focus to the test generation problem, which is a major step
both in terms of complexity and practical importance.

The rest of the paper is organized as follows. A brief overview of our as-
sumptions and notations is given in Section 2. In Section 3, we describe some
relevant FSM test generation algorithms and the HIS-Method in particular. Sec-
tion 4 describes the model of incremental computation. In Section 5 we introduce
the incremental algorithm for maintaining a checking sequence across changes,
provide a thorough analysis of its complexity and demonstrate it through an
example. Sections 6 and 7 describe related work and conclusions, respectively.

2 Finite State Machines

Finite state machines have been widely used for decades to model systems in
various areas. These include sequential circuits [6], some types of programs [7] (in
lexical analysis, pattern matching etc.), and communication protocols [8]. Several
specification languages, such as SDL [9] and ESTELLE [10], are extensions of
the FSM formalism.

A finite state machineM is a quadrupleM = (I,O, S, T) where I is the finite
set of input symbols, O is the finite set of output symbols, S is the finite set
of states, and T ⊆ S × I × O × S is the finite set of (state) transitions. Each
transition t ∈ T is a 4-tuple t = (sj , i, o, sk) consisting of start state sj ∈ S,
input symbol i ∈ I, output symbol o ∈ O and next state sk ∈ S.

An FSM can be represented by a state transition graph, a directed edge-
labeled graph whose vertices are labeled as the states of the machine and whose
edges correspond to the state transitions. Each edge is labeled with the input
and output associated with the transition.

FSM M is said to be deterministic if for each start state – input pair (s, i)
there is at most one transition in T . In the case of deterministic FSMs both the

246 Z. Pap et al.

output and the next state of a transition may be given as a function of the start
state and the input of the transition. These functions are referred to as the next
state function δ: S × I → S and the output function λ: S × I → O. Thus a
transition of a deterministic machine may be given as t = (sj , i, λ(sj , i), δ(sj , i)).

For a given set of symbols A, A∗ is used to denote the set of all finite sequences
(words) over A. Let K ⊆ A∗ be a set of sequences over A. The prefix closure of
K, written Pref(K), includes all the prefixes of all sequences in K. The set K
is prefix-closed if Pref(K) = K.

We extend the next state function δ and output function λ from input sym-
bols to finite input sequences I∗ as follows: For a state s1, an input sequence
x = i1, ..., ik takes the machine successively to states sj+1 = δ(sj , ij), j =
1, ..., k with the final state δ(s1, x) = sk+1, and produces an output sequence
λ(s1, x) = o1, ..., ok, where oj = λ(sj , ij), j = 1, ..., k. The input/output sequence
i1o1i2o2...ikok is then called a trace of M .

FSMM is said to be strongly connected if, for each pair of states (sj , sl), there
exists an input sequence which takes M from sj to sl. If there is at least one
transition t ∈ T for all start state – input pairs, the FSM is said to be completely
specified (or completely defined); otherwise,M is a said to be partially specified
or simply a partial FSM.

We say that machineM has a reset capability if there is an initial state s0 ∈ S
and an input symbol r ∈ I that takes the machine from any state back to s0.
That is, ∃r ∈ I : ∀sj ∈ S : δ(sj , r) = s0. The reset is reliable if it is guaranteed
to work properly in any implementation machine M I , i.e., δI(sIj , r) = sI0 for all
states sIj ∈ SI , and sI0 is the initial state of M I ; otherwise it is unreliable.

Finite state machines may contain redundant states. State minimization is
a transformation into an equivalent state machine to remove redundant states.
Two states are equivalent written sj ∼= sl iff for all input sequences x ∈ I∗,
λ(sj , x) = λ(sl, x). Two states, sj and sl are distinguishable (inequivalent), iff
∃x ∈ I∗, λ(sj , x) �= λ(sl, x). Such an input sequence x is called a separating
sequence of the two inequivalent states. A FSM M is reduced (minimized), if no
two states are equivalent, that is, each pair of states (sj , sl) are distinguishable.

For the rest of the paper, we focus on strongly connected, completely specified
and reduced deterministic machines with reliable reset capability. We will denote
the number of states and inputs by n = |S| and p = |I|, respectively.1

2.1 Representing Changes to FSMs

Although the FSM modeling technique has been used extensively in various
fields, impact of changes on FSM models and their effects on test sets have only
been studied recently following the observation that system specifications are in
most cases modified incrementally in practice as requirements evolve. (See some
of our earlier papers [11] [12] [5]).

A consistent approach for representing changes to FSM systems has been
proposed in [12]. Atomic changes to a finite state machine M are represented by

1 Therefore, |T | = p ∗ n.

A Bounded Incremental Test Generation Algorithm 247

the means of edit operators ωM : T → T .2 An edit operator turns FSM M =
(I,O, S, T) into FSM M ′ = (I,O, S′, T ′) with the same input and output sets.
We use the term “same states” written sj = s′j for states that are labeled alike in
different machines. Obviously, these states are not necessarily equivalent, written
sj ∼= s′j .

For deterministic finite state machines two types of edit operators have been
proposed based on widely accepted fault models. A next state change operator
is ωn(sj , i, ox, sk) = (s′j , i, ox, s

′
l), where δ(sj , i) = sk �= s′l = δ′(s′j , i). An output

change operator is ωo(sj , i, ox, sk) = (s′j , i, oy, s
′
k), where λ(sj , i) = ox �= oy =

λ′(s′j , i). It has been shown in [12], that with some assumptions the set of deter-
ministic finite state machines with a given number of states is closed under the
edit operations defined above. Furthermore, for any two deterministic FSMs M1

and M2 there is always a sequence of edit operations changing M1 to M2, i.e.,
to a machine isomorphic to M2.

3 FSM Test Generation and the HIS-Method

Given a completely specifieddeterministicFSMM withn states, an input sequence
x that distinguishesM from all other machines with n states is called a checking
sequence ofM . Any implementation machine Implwith atmostn states not equiv-
alent toM produces an output different fromM on checking sequence x.

Several algorithms have been proposed to generate checking sequences for
machines with reliable reset capability [13] [14], including the W-method [15],
the Wp-method [16] and the HIS-method [2] [3] [4]. They all share the same
fundamental structure consisting of two stages: Tests derived for the first – state
identification – stage check that each state presented in the specification also
exists in the implementation. Tests for the second – transition testing – stage
check all remaining transitions of the implementation for correct output and
ending state as defined by the specification. The methods, however, use different
approaches to identify a state during the first stage, and to check the ending
state of the transitions in the second stage. In the following we concentrate on
the HIS-method as it is the most general approach of the three.

The HIS-method derives a family of harmonized identifiers [4], also referred to
as a separating family of sequences [3]. A separating family of sequences of FSM
M is a collection of n sets Zi, i = 1, ..., n of sequences (one set for each state)
satisfying the following two conditions: For every pair of states si, sj: (I) there is
an input sequence x that separates them, i.e., ∃x ∈ I∗, λ(si, x) �= λ(sj , x); (II) x is
a prefix of some sequence inZi and some sequence inZj.Zi is called the separating
set of state si. The HIS-method uses appropriate members of the separating family
in both stages of the algorithm to check states of the implementation.

3.1 The HIS-Method

Consider FSM M with |S| = n states, and implementation Impl with at most
n states. Let Z = {Z1, ..., Zn} be a separating family of sequences of FSM
2 ω(t) is used instead of ωM (t) if M can be omitted without causing confusion.

248 Z. Pap et al.

M . Such family may be constructed for a reduced FSM the following way: For
any pair of states si, sj we generate a sequence zij that separates them using
for example a minimization method [17]. Then define the separating sets as
Zi = {zij}, j = 1...n.

The state identification stage of the HIS-method requires a prefix-closed state
cover set Q = {q1, ..., qn} of FSM M , and generates test sequences r · qi · Zi,
i = 1...n based on it, where r is the reliable reset symbol and “·” is the string
concatenation operator. A Q set may be created by constructing a spanning tree3

of the state transition graph of the specification machineM from the initial state
s0. Such a spanning tree is presented on Figure 1(a) in Section 5.1. A prefix-
closed state cover set Q is the concatenation of the input symbols on all partial
paths of the spanning tree, i.e., sequences of input symbols on all consecutive
branches from the root of the tree to a state.

If Impl passes the first stage of the algorithm for all states, then we know
that Impl is similar to M , furthermore this portion of the test also verifies all
the transitions of the spanning tree. The second, transition testing stage is used
to check non-tree transitions. That is, for each transition (sj , i, o, sk) not in the
spanning tree the following test sequences are generated: r · qj · i · Zk.

The resulting sequence is a checking sequence, starting at the initial state
(first a reset input is applied) and consisting of no more than pn2 test sequences
of length less than 2n interposed with reset [3]. Thus the total complexity of the
algorithm is O(pn3), where p = |I| and n = |S|.

4 Incremental Computation Model

A batch algorithm for a given problem is an algorithm capable of computing
the solution of the problem f(x′) – the output – on some input x′. Virtually all
traditional FSM-based conformance test generation algorithms [13] [14] are such
batch algorithms. Their input is the specification of a system in form of an FSM
model and the output is a checking sequence that is (under some assumptions)
capable of determining if an implementation conforms to the specification FSM.

An incremental algorithm intends to solve a given problem by computing
an output f(x′) just as a batch algorithm. Incremental computation, however,
assumes that the same problem has been solved previously on a slightly different
input x providing output f(x), and that the input has undergone some changes
since, resulting in the current input x + dx = x′. An incremental algorithm
takes the input x and the output f(x) of the previous computation, along with
the change in the input dx. From that it computes the new output f(x + dx),
where x + dx denotes the modified input. A batch algorithm can be used as
an incremental algorithm, furthermore, in case of a fundamental change (take

3 A spanning tree of FSM M rooted from the initial state is an acyclic subgraph (a
partial FSM) of its state transition graph composed of all the reachable vertices
(states) and some of the edges (transitions) of M such that there is exactly one path
from the initial state s0 to any other state.

A Bounded Incremental Test Generation Algorithm 249

x = null input for example) the batch algorithm will be the most efficient
incremental algorithm.

4.1 Evaluating the Complexity of an Incremental Algorithm

The complexity of an algorithm is commonly evaluated using asymptotic worst-
case analysis; by expressing the maximum cost of the computation as a function
of the size of the input. While this approach is adequate for most batch algo-
rithms, worst-case analysis is often not very informative for incremental algo-
rithms. Thus, alternative ways have been proposed in the literature to express
the complexity of incremental algorithms. The most widely accepted approach
has been proposed in [1]. Instead of analyzing the complexity of incremental
algorithms in terms of the size of the entire current input, the authors suggest
the use of an adaptive parameter capturing the extent of the changes in the in-
put and output. The parameter Δ or “CHANGED” represents the size of the
“MODIFIED” part of the input and the size of the “AFFECTED” part of
the previous output. ThusΔ represents the minimal amount of work necessary to
calculate the new output. The complexity of incremental algorithm is analyzed
in terms of Δ, which is not known a priori, but calculated during the update
process. This approach will be used in this paper to evaluate the complexity of
the presented algorithm and to compare it to existing batch and incremental
methods.

5 Incremental Test Generation Method

This section presents a novel incremental test generation algorithm. The algo-
rithm – in contrast to traditional (batch) test generation methods – is capable of
maintaining a checking sequence across changes in the specification, thus avoid-
ing the need of regenerating a checking sequence from scratch at each stage of
an incremental development.

We focus on the following problem: Consider a system specification given as a
reduced, completely specified and deterministic FSMM . There exists a complete
checking sequence for M capable of detecting any fault in an implementation
Impl, which has the same input I and output O alphabet as M and has no
more states than M . The specification is modified to M ′ by a unit change, i.e.,
by applying a single – output or a next state – change operator. The problem
is to create a complete checking sequence for the new specification M ′ if such
exists.

We concentrate on systems with reliable reset capability, and we assume the
HIS-Method as a reference point in creating an incremental algorithm and eval-
uating its performance. The HIS-method is essentially the superposition of two
completely independent algorithms. One is used to build a set of input sequences
responsible for reaching all states of the finite state machine (a prefix-closed state
cover set). The other is applied to create a set of input sequences to verify the
next state of the transition (a separating family of sequences).

250 Z. Pap et al.

Our incremental test generation method likewise involves two completely au-
tonomous incremental algorithms. Note that these algorithms may also be ap-
plied independently for various purposes. They could be used to detect unde-
sirable effects of a planned modification during development, such as subsets of
states becoming equivalent or unreachable.

It has to be emphasized that a given change to the specification FSM may
affect the two algorithms differently. Therefore two separate Δ parameters (see
Section 4.1) have to be used to capture the extent in which the changes affect
the two algorithms.

5.1 Incremental Algorithm for Maintaining a Prefix-Closed State
Cover Set

Given a specification FSM M , a prefix-closed state cover set Q of M and a
change ω(sm, i, o, sj) to FSM M turning it to M ′ our purpose is to create a new
valid prefix-closed state cover set Q′ for M ′.

The problem can be reduced to maintaining a spanning tree of the state
transition graph of the specification machine rooted from the initial state s0 (see
Section 3.1). Assuming the spanning tree ST of FSM M representing the Q set
– i.e., input sequences on all partial paths of ST are in Q – we intend to produce
a new valid spanning tree ST ′ of FSM M ′.

Let us call a transition an ST -transition iff it is in ST . A subtree of ST rooted
from a state si �= s0 is a proper subtree of the spanning tree ST and will be
referred to as STsi .

Given the change ω(sm, i, o, sj) we will refer to state s′m of FSMM ′ as modified
state, since a transition originating from state sm of FSM M is modified by
the change. In this paper we focus on unit changes; at each incremental step
there is a single modified state, i.e., the cardinality of the set of modified states
MODIFIED abbreviated as MOD is one: |MOD| = 1.

A state s′i of FSM M ′ is affected by the change with respect to the Q set iff
for input sequence qi ∈ Q corresponding to state si: δ(s0, qi) �= δ′(s′0, qi). Such
a state is said to be a q-affected state.4 The algorithm identifies the set of q-
affected states AFFECTEDQ abbreviated as AFFQ, where 0 ≤ |AFFQ| ≤ n.
If AFFQ is not an empty set – |AFFQ| > 0 – then ST must be adapted to M ′.

We define the set CHANGEDQ ⊆ S′ to be MOD ∪ AFFQ and denote
|CHANGEDQ| as ΔQ. The set CHANGEDQ will be used as a measure of the
size of the change to the specification, and the complexity of the incremental
algorithm will be expressed as a function of parameter ΔQ, where 1 ≤ ΔQ ≤ n.

The input of the algorithm is the original machine M , the change operator
and the spanning tree ST of M . It provides M ′, the new spanning tree ST ′ of
4 Other definitions of q-affected state could be used depending on the assumed testing

algorithm. A more relaxed definition could be for example the following: A state s′
i

of FSM M ′ is affected by the change with respect to the Q set iff there exists no
path from s′

0 to s′
i in ST ′ after the change. This definition should be assumed in

case the same set (for example a distinguishing sequence or W -set) is used to check
each ending state.

A Bounded Incremental Test Generation Algorithm 251

M ′ and the set of unreachable states as output. The algorithm consists of two
phases and handles output and next state changes separately in the first phase.
The first phase marks all q-affected states of FSM M ′ then collects them in
the set AFFQ. If |AFFQ| = 0 then ST is a valid spanning tree of M ′ and the
algorithm terminates, otherwise the second phase completes the spanning tree
for all q-affected states.

Phase 1 – Output Change. Take output change ωo(sm, i, ox, sj)=(s′m, i, oy, s
′
j),

ox �= oy. Create FSMM ′ by applying the change operator. Initialize AFFQ as an
empty set, and the spanning tree ST ′ ofM ′ as ST ′ := ST .

As an output change operator is applied to FSM M , it only changes an edge
label of the state transition graph of FSM M , but does not affect its structure.
That is, δ(sm, i) = δ′(s′m, i), and the change does not affect any states with
respect to the Q set. AFFQ is not extended.

Phase 1 – Next State Change. Take next state change ωn(sm, i, ox, sj) =
(s′m, i, ox, s′k), sj �= s′k. Create FSM M ′ by applying the change operator. Initial-
ize AFFQ as an empty set, and the spanning tree ST ′ of M ′ as ST ′ := ST .

– (sm, i, o, sj) �∈ ST : If the transition upon input i at state sm is not an ST -
transition then any change to it can not affect the spanning tree of FSM M .
AFFQ is not extended.

– (sm, i, o, sj) ∈ ST : If the transition upon input i at state sm is an ST -
transition then the change affects the spanning tree. The q-affected states
are identified walking the ST ′

s′
j

subtree. All states of ST ′
s′

j
(including s′j)

are marked as q-affected states. The AFFQ set can be determined using a
simple breadth-first search of the ST ′

s′
j

subtree with a worst case complexity
of |AFFQ|.

Phase 2: Determining a spanning tree of M ′. Phase 2 of the algorithm
takes the set AFFQ from Phase 1 and completes the spanning tree for each
member of AFFQ to create a spanning tree ST ′ of M ′.

If |AFFQ| = 0 (there are no q-affected states) then ST is a spanning tree of
M ′. Return ST ′ and the algorithm terminates.

If |AFFQ| > 0 then we apply the following method: All transitions of ST ′

leading to q-affected states are removed from ST ′ along with the modified tran-
sition (s′m, i, o, s

′
k). Then we extend ST ′ as follows.

For all s′x in AFFQ we start checking the transitions leading to s′x inM ′ until
either a transition originating from an unaffected state is found or there are no
more inbound transitions left. If a transition (s′i, i, o, s

′
x) such that s′i �∈ AFF ′

Q

is found then: (I) ST ′ := ST ′ ∪ (s′i, i, o, s
′
x), (II) AFFQ := AFFQ \ {s′x}, (III) if

there is transition (s′x, i, o, s
′
y) where s′y ∈ AFFQ then repeat Steps I-III on s′y.

The algorithm stops after all s′x inAFFQ has been checked, then returnST ′ and
AFFQ; the algorithm terminates. At the end of the last turnST ′ will be a spanning
tree ofM ′, and any s′z remaining in AFFQ is unreachable from s′0 inM ′.

Q-set example. Take FSM M on Figure 1(a) where bold edges represent the
spanning tree and the double circle denotes the initial state.

252 Z. Pap et al.

s0 s1
a/x

s2

b/x
 b/x

s3
a/y

a/x
b/x

b/x

a/x

(a) FSM M with its spanning tree ST

s0’

a/x

s1’

s2’
b/x

 b/x

s3’
a/y

a/x
b/x

b/x

a/x

(b) Modified FSM M ′ with the updated
spanning tree ST ′

Fig. 1. Example for maintaining the preamble

Initially let ST ′ = ST and AFFQ = ∅. The modification ωn(s0, a, x, s1) =
(s′0, a, x, s

′
0) is a next state change. As transition (s0, a, x, s1) is in ST , we

need to determine the set of q-affected states by walking the ST ′
s′
1

subtree.
We get AFFQ = {s′1, s′3}. In Phase 2 transitions leading to q-affected states
– (s′0, a, x, s

′
1) and (s′1, a, y, s

′
3) – are removed from ST ′. Then one of the states

– say s′1 – is selected from AFFQ. Transition (s′2, a, x, s
′
1) is identified, which is

a link originating from a not affected state s′2. We add it to ST ′ and remove s′1
from AFFQ. We then check transitions originating from s′1 and find (s′1, a, y, s

′
3)

that leads to a q-affected state. We add (s′1, a, y, s′3) to ST ′ and remove s′3 from
AFFQ. Now, AFFQ = ∅, so the algorithm terminates and returns ST ′, see
Figure 1(b).

Theorem 1. The incremental algorithm for maintaining a spanning tree de-
scribed above has a time complexity of O(p ∗ΔQ), where 1 ≤ ΔQ ≤ n.

Proof. Phase 1 of the algorithm has worst case complexity of O(|AFFQ|).
Phase 2 of the algorithm first searches a path from the unaffected states of

M ′ to the q-affected states. There are exactly p ∗ |AFFQ| transitions originating
from the q-affected states. Therefore there can be at most p ∗ |AFFQ| steps
that do not provide a path from unaffected states of M ′ to the q-affected states
summarized over all backward check turns of Phase 2. Thus there are no more
than (p+ 1) ∗ |AFFQ| backward check turns.

If a link is found from an unaffected state to an affected state s′x then the
algorithm adds all states of AFFQ reachable from s′x via affected states. Again,
there can be at most p ∗ |AFFQ| such steps summarized over all forward check
turns of Phase 2.

As any of the p ∗ |AFFQ| transitions are processed at most twice by the
algorithm, less than 2 ∗ (p + 1) ∗ |AFFQ| ≈ O(p ∗ |AFFQ|) steps are necessary
to complete Phase 2. The total complexity of the algorithm is O(p ∗ |AFFQ|) ≤
O(p ∗ΔQ) $%

The new set Q′ of M ′ contains |AFFQ| modified sequences: Input sequences of
ST ′ leading from s′0 to s′i for all s′i in AFFQ.

A Bounded Incremental Test Generation Algorithm 253

5.2 Incremental Algorithm for Maintaining a Separating Family of
Sequences

We are again given the specification FSM M , and the change ω(sm, i, o, sj)
turning M to M ′. We also have a separating family of sequences of FSM M (a
separating set for each state): Z = {Z1, ..., Zn}|Zi = {zij}, j = 1...n, where zij
is a separating sequence of states si, sj of FSM M . Our objective is to create a
new separating family of sequences Z ′ forM ′. Note that we consider a somewhat
structured separating family of sequences as discussed later. This, however, does
not restrict the generality of the approach as each incremental step generates a
separating family according the assumed structure.

Informally speaking, to maintain a separating family of sequences we have to
identify all separating sequences affected by the change. Then for all such state
pairs a new separating sequence has to be generated. Notice that this is a problem
over state pairs rather than states. Therefore we introduce an auxiliary directed
graph AM with n(n+1)/2 nodes, one for each unordered pair (sj , sk) of states of
M including identical state pairs (sj , sj). There is a directed edge from (sj , sk)
to (sl, sm) labeled with input symbol i iff δ(sj , i) = sl and δ(sk, i) = sm in M .
The auxiliary directed graph AM is used to represent and maintain separating
sequences of FSMM . The graph is updated by our algorithm at each incremental
step.

We define a separating state pair as an unordered pair of states (sx, sy) such
that λ(sx, i) �= λ(sy, i) for some i ∈ I. A machineM is minimal iff there is a path
from each non-identical state pair (sj , sk), j �= k to a separating state pair in its
auxiliary directed graph AM . The input labels along the route concatenated by
the input distinguishing the separating state pair form a separating sequence of
states sj and sk.

We make the following assumptions on the separating sequences of FSM M :
(I) Each separating state pair (sx, sy) has a single separating input i|λ(sx, i) �=
λ(sy, i) associated to it. If a given pair has multiple such inputs, then the input
to be associated is chosen randomly. (II)The set of separating sequences of FSM
M is prefix-closed.

Then separating sequences of FSM M form an acyclic subgraph of the auxil-
iary directed graph AM , such that there is exactly one path from each state pair
(sx, sy), x �= y to a separating state pair. That is, separating sequences form a
forest over the non-identical state pairs of AM , such that each tree has a sepa-
rating state pair as root and all edges of the given tree are directed toward the
root – see Figure 2(a) below for example. Let us refer to this forest (a subgraph
of AM) as SF . We call an edge of AM an SF -edge iff it is in SF . A subtree of
SF having state pair (si, sj) as root is a proper subtree of the forest SF and
will be referred to as SFsi,sj . Note that by walking such a tree (or its subtree)
we always assume that it is explored opposing edge directions from the root (or
an inner node) toward leaves.

Thus the problem of deriving the separating family of sequences for FSM M
can be reduced to maintaining separating state pairs, their associated separating
input and a forest SF over non-identical state pairs of AM across changes.

254 Z. Pap et al.

Given the change ω(sm, i, o, sj) turning M to M ′ all state pairs that include
state sm are modified to construct the auxiliary directed graph AM ′

of FSM
M ′. Accordingly all unordered state pairs of AM ′

involving s′m are referred to as
z-modified state pairs. As a result of the unit change assumption the cardinality
of the set of z-modified state pairs MODIFIEDZ abbreviated as MODZ is n:
|MODZ | = n.5

The algorithm derives the set of state pairs affected by the change. Such state
pairs are said to be z-affected. The set of z-affected state pairs is referred to as
AFFECTEDZ abbreviated as AFFZ , where 0 ≤ |AFFZ | ≤ n(n − 1)/2. We
define the set CHANGEDZ ⊆ S′ × S′ as MODZ ∪ AFFZ . The complex-
ity of the incremental algorithm will be expressed as a function of parameter
|CHANGEDZ | referred to as ΔZ , where n ≤ ΔZ ≤ n(n− 1)/2.

The input of the algorithm is the auxiliary directed graph AM of FSM M ,
the change operator and the forest SF of AM representing separating sequences
of M . The output is AM ′

, the new forest SF ′ of AM ′
and a set containing pairs

of equivalent states.
The algorithm consists of two phases and handles output and next state

changes separately in the first phase.

Phase 1 – Output Change. Take output change ωo(sm, i, ox, sk) = (s′m, i,
oy, s

′
k), ox �= oy. Initialize AFFZ as an empty set, AM ′

:= AM and SF ′ := SF .
For state pairs ∀s′i ∈ S′ : (s′m, s′i) apply the change to AM ′

and:

– If state pair (s′m, s
′
i) is a new separating state pair then mark it and associate

i as separating input.
– If i has been the separating input of separating state pair (sm, si) in AM but
λ′(s′m, i) = λ′(s′i, i) = oy then all state pairs of the tree with (s′m, s′i) root –
including (s′m, s

′
i) – are added to AFFZ (marked as z-affected). These states

can be identified by walking the given tree from the root.
• If there is another input i1|λ′(s′m, i1) �= λ′(s′i, i1) then (s′m, s′i) remains a

separating state pair with i1 associated as separating input. State pair
(s′m, s

′
i) is removed from AFFZ .

• If ∀i ∈ I : λ′(s′m, i) = λ′(s′i, i) then (s′m, s
′
i) is no longer a separating state

pair, thus the separating state pair marking is removed from (s′m, s′i).
– Do nothing otherwise.6

Phase 1 – Next State Change. Take next state change ωn(sm, i, ox, sk) =
(s′m, i, ox, s

′
l), sk �= s′l. Initialize AFFZ as an empty set, AM ′

:= AM and SF ′ :=
SF .

For state pairs ∀s′i ∈ S : (s′m, s′i) apply the change to AM ′
and:

– If the edge of AM marked by input i at state pair (sm, si) is an SF -edge
then the modification affects the given tree of the spanning forest. All state
pairs of the SF ′

s′
m,s′

i
subtree are z-affected states (including (s′m, s

′
i)). Thus

5 Pairs s′
i, s

′
i of identical states are also modified here.

6 One could assume different definitions for affected state pairs as a design choice.

A Bounded Incremental Test Generation Algorithm 255

the SF ′
s′

m,s′
i

subtree is explored using a simple breadth-first search, all state
pairs are added to AFFZ (marked as z-affected).

– Do nothing otherwise.

Phase 2. Phase 2 of the algorithm takes the set AFFZ from Phase 1 and
updates the forest SF ′ for each member of AFFZ .

If |AFFZ | = 0 then SF is a valid forest over AM ′
representing a separating

sequence for each non-identical state pair of M ′. Return SF ′ and the algorithm
terminates.

If |AFFZ | > 0 then the following method is applied: All edges of SF ′ origi-
nating from z-affected state pairs are removed from SF ′. Then we extend SF ′

as follows. We examine all edges of AM ′
originating from a z-affected state pair

and construct a subgraph of AM ′
denoted as AM ′

AFF the following way: (I) For
each z-affected state pair there is a corresponding node in AM ′

AFF . (II) For each
edge between z-affected state pairs there is an edge in AM ′

AFF . (III) If there is an
edge originating from a z-affected state pair leading to a not affected state pair
then we mark the given z-affected state pair at the head of the edge.

Next we explore AM ′

AFF opposing edge directions from marked state pairs us-
ing breadth-first search to create a spanning forest over AM ′

AFF with marked
state as root nodes. All state pairs covered by the spanning forest are removed
from AFFZ . Finally SF ′ is expanded simply appending the spanning forest of
AM ′

AFF . Each tree of the forest of AM ′

AFF is linked to SF ′ by an edge leading to a
not affected state pair from its marked root node. Return SF ′ and AFFZ ; the
algorithm terminates.

At the end of the algorithm AFFZ contains any pairs of equivalent states
for which no separating sequence exists. Each partial path of SF ′ represents a
separating sequence of M ′: Given a path from node (s′i, s

′
j) to separating state

pair (s′x, s′y) the input labels along the route concatenated by the separating
input of s′x, s

′
y form a separating sequence z′ij of states s′i and s′j . The separating

family of sequences of FSMM ′ is given as Z ′ = {Z ′
1, ..., Z

′
n}|Z ′

i = {z′ij}, j = 1...n.

Z set example. The auxiliary graph AM of M is presented on Figure 2(a). Bold
edges represent the forest SF of M , separating state pairs are shown in bold
ellipses, separating inputs are represented by bigger sized edge labels, while the
dotted edges between identical state pairs are maintained but have no impor-
tance for the algorithm.

Initially AFFZ = ∅ and let SF ′ = SF . Edges labeled with input a originating
from state pairs (s′0, s

′
0), (s′0, s

′
1), (s′0, s

′
2), (s′0, s

′
3) are modified to create AM ′

.
(s′0, s

′
1) is a separating state pair and is therefore not affected. The a-labeled

edge originating from state pair (s0, s2) is not in SF thus (s′0, s′2) is not af-
fected either. (s′0, s

′
0) is irrelevant. Therefore only state pair (s′0, s

′
3) is z-affected :

AFFZ = {(s′0, s′3)}. In Phase 2 the a-labeled edge originating from (s′0, s
′
3) is re-

moved from SF ′. Then edges originating from (s′0, s′3) are checked and an edge
〈(s′0, s′3), (s′0, s′2)〉 leading to a non-affected state pair is found. The given edge
is added to SF ′ and (s′0, s′3) is removed from AFFZ . Now, AFFZ = ∅, thus the
algorithm terminates and returns SF ′, see Figure 2(b). All separating sequences

256 Z. Pap et al.

s0, s1 s0, s3 s2, s2

b

s1, s3

a

s0, s2 s1, s1
a

s2, s3

b

b

 a

b

s3, s3

 a

a

b

s1, s2

ab b

a

b

a
s0, s0

a b

b

a

(a) The auxiliary graph AM of FSM M

s0’, s1’ s0’, s3’
a

s2’, s2’

b

s1’, s3’

s0’, s2’

a

s1’, s1’

s2’, s3’

b

b

a

b

s3’, s3’

 a

a

b

s1’, s2’

ab b

a

b

a
s0’, s0’

b

a
b

a

(b) The updated auxiliary graph AM′
of

FSM M ′

Fig. 2. Auxiliary graphs

are unchanged except the one of states s′0 s
′
3, which is changed from a · a to

b · b · a · a.

Theorem 2. The incremental algorithm for maintaining a separating family of
sequences described above has a time complexity of O(p ∗ΔZ), where n ≤ ΔZ ≤
n2.

Proof. Regardless of change operator type Phase 1 of the algorithm involves
|MODZ |modification steps and O(|AFFZ |) steps to identify affected state pairs.
Phase 2 of the algorithm first creates a subgraph in p ∗ |AFFZ | steps and then
creates a spanning forest over it with O(p ∗ |AFFZ |) complexity. Thus the total
complexity of the algorithm is O(p ∗ΔZ). $%

5.3 Total Complexity of the Incremental Testing

Our algorithm – just as the original HIS-method – derives actual test sequences in
two stages by concatenating sequences from the setsQ and Zi. Each test sequence
– a part of the checking sequence – is either a sequence r · qi · zij (stage 1) or a
sequence r·qi ·i·zxy (stage 2). A test sequence must be regenerated after a change
if either the q-sequence, or the z-sequence of the given test sequence is modified
by our incremental algorithms above. That is, a test sequence r · qi · ... · zij of
M is modified iff s′i ∈ AFFQ or (s′i, s

′
j) ∈ AFFZ . Such sequences are identified

using links between the sets Q′, Z ′
i, i = 1...n and test sequences. The number

of modified test sequences is less or equal than p ∗ n2, i.e., in worst case the
number of test cases to be generated is equivalent to those generated by a batch
algorithm. The resulting test set is a complete test set of M ′ that is no different
than one generated using the batch HIS-method. It consists of the same set of
test sequences generated using valid Q′ and Z ′ sets of M ′.

Note that the concatenation operation is – from the complexity point of view
– a quite expensive step. Concatenation, however, only has to be performed as a

A Bounded Incremental Test Generation Algorithm 257

part of the testing procedure itself. If no actual testing is needed after a change
to the specification then we should only – very efficiently – maintain the sets Q
and Z according to each modification and do the concatenation just as necessary.

6 Related Work

Nearly all test generation approaches in the FSM test generation literature pro-
pose batch algorithms, i.e., they focus on building test sets for a system from
scratch without utilizing any information from tests created for previous versions
of the given system. One of the few exceptions – the most relevant research –
has been the work of El-Fakih at al. [18]. Similarly to our approach, the au-
thors assume a specification in form of a complete deterministic FSM M , which
is modified to a new specification M ′. The problem in both cases is to gen-
erate a checking sequence to test if an implementation Impl conforms to M ′.
Our approach, however, involves some fundamental improvements on El-Fakih’s
method. The most important are:

1. El-Fakih’s algorithm does not intend to create a complete test set for the
modified specification M ′, instead it may be used to “generate tests that
would only test the parts of the new implementation that correspond to
the modified parts of the specification” [18]. This necessitates the follow-
ing quite restrictive assumption: “the parts of the system implementation
that correspond to the unmodified parts of the specification have not been
changed” [18]. Thus, it is presumed that no accidental or intentional (mali-
cious) changes are introduced to supposedly unmodified parts of the imple-
mentation. Such faults could remain undetected as the test set generated by
the algorithm is not complete. Note that the assumption above is unavoid-
able as not even the union of the existing test set of M and the incremental
test set generated by the algorithm provide a complete test set for M ′.

Our algorithm, on the other hand, maintains a complete test set across
the changes to the specification. The algorithm modifies the existing test
set of M to create a complete test set for M ′ – if such exists – capable of
detecting any fault in Impl.

2. El-Fakih’s algorithm is not a bounded incremental algorithm in the sense
that it uses traditional batch algorithms to create a state cover set and a
separating family of sequences for a given FSM upon each modification.
Therefore its complexity is the function of the size of the input FSM, not
the extent of the change.

Our method in turn is a bounded incremental algorithm, its complexity
is dependent on the extent of the change. It identifies how the modification
affects the existing test set of the original specification machineM . New tests
are only generated for the affected part and the calculation is independent
of the unaffected part. The complexity of our algorithm is no worse than the
complexity of the corresponding batch algorithm.

258 Z. Pap et al.

7 Conclusion

We have presented a bounded incremental algorithm to generate test cases for
deterministic finite state machine models. Our approach assumes a changing
specification and utilizes an existing test set of the previous version to efficiently
maintain a complete test set across the changes to the specification. For each
update of the system a complete test set is generated with the same fault detec-
tion capability as that of a traditional batch algorithm. The complexity of the
algorithm is evaluated based on the bounded incremental model of computation
of Ramalingam and Reps [1]. The time complexity of the proposed algorithm
is shown to be bounded; it is a function of the size of the change to the spec-
ification rather than the size of the specification itself. It is never worse than
the complexity of the relevant traditional algorithm – the HIS-method. Further-
more, the two autonomous incremental algorithms building up the incremental
test generation method may also be applied independently for various purposes
during development.

In the future we plan to further experiment with the presented algorithm to
gain sufficient performance data for practical analysis. Our current focus has
been on time complexity but the approach leaves space for fine-tuning and opti-
mizations in several aspects that will have to be studied. The research reported
here is regarded as a first step in developing efficient incremental testing al-
gorithms. We plan to investigate if this approach can be extended to different
problems and models.

References

1. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph
problems. Theoretical Computer Science 158(1-2), 233–277 (1996)

2. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works and ISDN Systems 15(4), 285–297 (1988)

3. Yannakakis, M., Lee, D.: Testing finite state machines: fault detection. In: Selected
papers of the 23rd annual ACM symposium on Theory of computing, pp. 209–227
(1995)

4. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic state ma-
chines in protocol conformance testing. In: Proceedings of the IFIP TC6/WG6.1
Sixth International Workshop on Protocol Test systems, vol. VI, pp. 363–378 (1994)

5. Subramaniam, M., Pap, Z.: Analyzing the impact of protocol changes on tests.
In: Proceedings of the IFIP International Conference on Testing Communicating
Systems, TestCom, pp. 197–212 (2006)

6. Friedman, A.D., Menon, P.R.: Fault Detection in Digital Circuits. Prentice-Hall,
Englewood Cliffs (1971)

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, London (1986)

8. Holzmann, G.J.: Design and Validation of Protocols. Prentice-Hall, Englewood
Cliffs (1990)

9. ITU-T: Recommendation Z.100: Specification and description language (2000)
10. TC97/SC21, I.: Estelle – a formal description technique based on an extended state

transition model. international standard 9074 (1988)

A Bounded Incremental Test Generation Algorithm 259

11. Subramaniam, M., Chundi, P.: An approach to preserve protocol consistency and
executability across updates. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM
2004. LNCS, vol. 3308, pp. 341–356. Springer, Heidelberg (2004)

12. Pap, Z., Csopaki, G., Dibuz, S.: On the theory of patching. In: Proceedings of the
3rd IEEE International Conference on Software Engineering and Formal Methods,
SEFM, pp. 263–271 (2005)

13. Lee, D., Yiannakakis, M.: Principles and methods of testing finite state machines
– a survey. In: Proceedings of the IEEE, vol. 84(8), pp. 1090–1123 (1996)

14. Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance
for software testing. In: ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT in-
ternational symposium on Software testing and analysis, pp. 109–124. ACM Press,
New York, USA (1994)

15. Chow, T.: Testing software design modelled by finite-state machines. IEEE Trans-
actions on Software Engineering 4(3), 178–187 (1978)

16. Fujiwara, S., Bochmann, G.v., Khendec, F., Amalou, M., Ghedamsi, A.: Test selec-
tion based on finite state model. IEEE Transactions on Software Engenieering 17,
591–603 (1991)

17. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
18. El-Fakih, K., Yevtushenko, N., von Bochmann, G.: FSM-based incremental confor-

mance testing methods. IEEE Transactions on Software Engineering 30(7), 425–436
(2004)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 260–275, 2007.
© IFIP- International Federation for Information Processing 2007

Experimental Testing of TCP/IP/Ethernet
Communication for Automatic Control

Przemyslaw Plesowicz and Mieczyslaw Metzger

Faculty of Automatic Control, Electronics and Computer Science,
Silesian University of Technology,

ul. Akademicka 16, 44-100 Gliwice, Poland
{przemyslaw.plesowicz, mieczyslaw.metzger}@polsl.pl

Abstract. The TCP/IP/Ethernet protocol is considered not suitable for use in
real-time control systems. It deals with a lack of time determinism, which
characterizes fieldbuses. Nevertheless several corporations propose networking
based on the TCP/IP/Ethernet even for control purposes with some
modifications of the standard however. This paper examines possibility of
application of the TCP/IP/Ethernet communication without modifications
(introducing also Internet as one of tested cases) for feedback control purposes.
Experimental investigations have been performed in four stages. In the
beginning tests of network properties, including tests of transmission time and
packet loss measurements have been performed. Three following stages show
experimental testing of feedback control, when TCP/IP transmission occurs
between PI controller and control plant. Three representative platforms have
been chosen for testing: LabVIEW, RSLogix and Simatic. The main and
original contribution presented in this paper is design and construction of three
test stands as well as methodology of testing experiments. Standard control over
analog channel has been also presented as comparison. The results of testing
show acceptable performance of control via TCP/IP/Ethernet networking.

Keywords: TCP/IP communication testing, Ethernet TCP/IP, networks,
network-based feedback control.

1 Introduction

Nowadays automation systems designed for industrial plants became complex and
usually consist of many components such as instrumentation, software and
networking. A growing need for advanced industrial networking techniques for
complex applications in engineering and research results in more and more
sophisticated technologies such as Profibus, Modbus, ControlNet, DeviceNet, CAN,
FIP and many others. Mentioned standards have an important advantage over the
widely used Ethernet standard — they are time-deterministic. Unfortunately, the
application of fieldbuses has been limited due to very high cost of appropriate
hardware and software and due to incompatibility of multivendor products. This
situation has pushed engineers toward attempts to apply worldwide-used and in
consequence inexpensive Ethernet standard. This is the reason, why appropriate

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 261

testing techniques are crucial for such based on instrumentation, software and
networks control systems.

Fundamentals of basic testing techniques for communication systems are well
defined in recent publications over the last decade (see for example [1], [2], [3]).
Although such methods are very convenient for complex communication systems in a
general case, the specialised experimental tests dealing with development of
laboratory stands seems to be more adequate for testing communication in automatic
control. This paper presents such instrumentation and tests — designed, developed
and carried out for testing TCP/IP/Ethernet communication in feedback control.

Remote data-acquisition and monitoring of non-critical plants can be achieved
without deterministic characteristics, hence the TCP/IP/Ethernet can be used for
remote monitoring without problems, with some requirements and modifications of
the standard however — see for example [4], [5], [6]. The control theory proposes
some analytical discussions of the problem of delays introduced by networking in
control systems — see e.g. [7], [8], [9], [10].

This paper examines possibility of application of the TCP/IP/Ethernet
communication without modifications (introducing also Internet as one of tested
cases) for feedback control purposes. Experimental investigations have been
performed in four stages. In the beginning, tests of network properties have been
performed (including measurements of transmission time and packet loss). Three
following stages show experimental testing of feedback control, in which TCP/IP
transmission occurs between PI controller and control plant. Three representative
platforms have been chosen for testing: LabVIEW (National Instruments), RSLogix
(Rockwell-Allen-Bradley) and Simatic (Siemens). The hardware (PLC and distributed
I/O) used during experiments was especially chosen, to represent solutions most
popular in industry (Rockwell-Allen-Bradley, Siemens) and most popular in scientific
research and education (National Instruments). The main and original contribution
presented in this paper is design and construction of three test stands as well as
methodology of testing experiments. As comparison, standard control over analog
channel has been also presented. The results of testing show acceptable performance
of control via TCP/IP/Ethernet networks.

2 Motivation

Using TCP/IP protocols, it is possible to build modular automatic control systems,
where controllers are connected with plant using TCP/IP through SCADA
(supervisory control and data acquisition) mediating software [11] (Fig. 1). Modular
design of plant-controller system allows easy testing of various automatic control
algorithms. Using more sophisticated mediating software, it is possible to connect
more clients to the plant: remote automatic controllers, own SCADA systems,
historical modules, databases and other applications using control/measurement data
(Fig. 3). Usually however, such testing activities are preceded by simulation. Using
simulator (Fig. 2) in place of real plant assures similar conditions during experiments,
but also additionally repeatability of testing conditions. Using TCP/IP also in this case
allows taking advantage of modular system design. Additionally, plant simulation for
educational purposes provides protection against physical damage due to improper
control of real (physical) plant. During tests presented in this paper, use of real

262 P. Plesowicz and M. Metzger

(physical) plants was possible, taking however above presented statements in
consideration, presented tests have been performed using virtual (simulated) plants.

Process

 SCADA
TCP/IP - server for chosen signals

 localhost
TCP/IP port

...

PID

GMC

PFC

Fig. 1. Plant with SCADA software and .con
trollers connected [11]

Process simulator
TCP/IP - server for chosen signals

 localhost
TCP/IP port

...

PID

GMC

PFC

Fig. 2. Process (plant) simulator

Remote operating panel
 for main SCADA (http)

Process

main SCADA
TCP/IP - server for chosen signals

 localhost
TCP/IP port

...
TCP/IP port A

Operator defined

Remote operating panel
for real-time web-cam
(having TCP/IP server)

 Remote SCADA
with manual controls

 (client for
main SCADA)

 (client for
main SCADA)

TCP/IP port B
Operator defined

...
...

Remote SCADA
 with server for
virtual controllers

Remote SCADA
with embedded
virtual controllers
 (client for
main SCADA)

PID

GMC

PFC

Fig. 3. Advanced architecture, allowing creation
of individual SCADA systems [11]

3 Tests of TCP/IP/Ethernet network Properties

3.1 Tests of Transmission Time

One of the most important parameters describing the operation of computer network
as a part of automatic control system is transmission delay. The purpose of these
experiments was to measure the influence of software (operating system) and
hardware on transport delay of TCP/IP/Ethernet-based local area network.

Materials and methods: The test environment consisted of two PCs, equipped with
FastEthernet network cards, Ethernet switch, and crossed cable. All connections have
been configured to 100Mb/s, Full Duplex. During the experiments operation of
Microsoft Windows XP, QNX v.6.2 and Linux (kernel 2.4) have been tested.

Experiments: To minimize measurement errors, tests have been conducted with
minimal load of tested systems (absolute minimal number of process running). Round
Trip Time has been measured (using ping tool) for the following parameters:

• packet size: 64[B],
• packet sending frequency: 1,10,100,1000[s-1],
• connection via: Ethernet switch (“switch”), crossed cable (“cross”),
• operating system: Windows XP – “win”, Linux – “lin”, QNX 6.2 – “qnx”.

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 263

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.001 0.01 0.1 1

re
sp

on
se

 ti
m

e
[m

s]

delay between transmissions [s]

linux - cross
qnx - cross

windows - cross
linux - switch
qnx - switch

windows - switch

Fig. 4. Comparison of mean response time of Linux, QNX, Windows XP, operating systems

Results: Table 1 shows comparison of measured RTTs for different operating systems
and different connections. Considering the results it is possible to conclude that:

• transmission time changes in obvious way for different operation system,
• opposed to anticipations, QNX operating system advertised as real-time OS

required the longest time to respond. Analyzing time deviations, it is possible
to state that QNX does not present higher determinism than other operating
systems (in area of network transmission),

• for higher packet sending rate, transmission time is even 40% ÷ 50% shorter
compared to slower sending rates. This phenomenon occurs in both cases
(“cross” and “switch”), and is caused probably by operating system
allocating more resources for more resource demanding processes (or not
removing the process code from cache memory),

• the delay of 15 ÷ 25μs — introduced by Ethernet switch is clearly visible,
• in case of unmodified version of Linux, removing unnecessary processes and

using closed network enables shortening bidirectional transmission time to
<0.15[ms], where deviation is lower than 0.05[ms],

3.2 Packet Loss Measurement

Second important factor influencing operation of transmission channel is the number
of errors occurring. Knowledge of error ratio and transmission time (without
acknowledgments) allows calculation of effective transmission time when
retransmission occurs.

264 P. Plesowicz and M. Metzger

Table 1. Comparison of Round Trip Time — various operating systems

connection sending speed
[packet/s]

operating
system

time (min/mean/max/dev)

cross 1 lin 0.073 0.081 0.109 0.013
 qnx 0.100 0.110 0.159 0.016
 win 0.098 0.135 0.147 0.008
 10 lin 0.062 0.071 0.093 0.011
 qnx 0.086 0.094 0.156 0.011
 win 0.089 0.103 0.119 0.008
 100 lin 0.060 0.064 0.081 0.010
 qnx 0.075 0.082 0.102 0.009
 win 0.071 0.081 0.106 0.010
 1000 lin 0.057 0.059 0.093 0.009
 qnx 0.075 0.079 0.131 0.008
 win 0.070 0.073 0.164 0.013

switch 1 lin 0.092 0.104 0.115 0.014
 qnx 0.120 0.132 0.167 0.015
 win 0.114 0.155 0.166 0.009
 10 lin 0.089 0.095 0.110 0.009
 qnx 0.108 0.116 0.132 0.010
 win 0.107 0.119 0.137 0.015
 100 lin 0.083 0.088 0.107 0.012
 qnx 0.099 0.106 0.128 0.005
 win 0.091 0.101 0.122 0.010
 1000 lin 0.079 0.082 0.122 0.010
 qnx 0.099 0.104 0.167 0.006
 win 0.088 0.092 0.166 0.009

Table 2. Comparison of transmission errors

connection sending speed
[packet/s]

packet number
(sent/lost)

time (min/mean/max) [ms]

switch 103 108 388 0.072 0.076 2.088
102 107 39 0.072 0.084 0.864
101 106 4 0.090 0.106 0.243
100 105 1 0.126 0.137 0.261

cross 103 108 1 0.058 0.062 1.890
102 107 0 0.058 0.070 0.857
101 106 0 0.075 0.091 0.207
100 105 0 0.111 0.122 0.216

Materials and methods. To minimize measurement errors, tests have been conducted
with minimal load of tested systems (absolute minimal number of process running).
Number of lost packets (and Round Trip Time) has been measured (using ping tool)
for the following parameters:

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 265

• packet size: 36[B],
• packet number: 100,
• packet sending frequency: 1,10,100,1000[s-1],
• connection via: Ethernet switch (“switch”), crossed cable (“cross”),

Results and conclusions. Because of the test formula, it is necessary to remember,
that single measurement consists of bidirectional packet transmission, so the real error
ratio is equal approximately 0.5 of measured value. Analyzing the results, several
phenomena are observable:

• Ethernet switch is main cause of packet loss — the ratio of packet lost when
using switch compared to transmission using crossed cable is ≈ 400 to 1,

• during switched packet transmission, probability of error (packet loss) is
≈2*10-6 (2 ppm), but probability of error in transmission using crossed
should be considered as value under measurement accuracy.

• there is no observable influence of transmission speed on amount of errors in
tested range (1 ÷ 1000 packets/s).

Additionally, result similar to shown in subsection (3.1) has been observed:
• using switch, the packet transmission time is approximately 15÷25μs longer,

than in case of crossed cable,

Final conclusion is, that in real switch-based local area network expected value of
packet loss is approximately 1 ÷ 10ppm on every switch. For higher packet
sending rate, transmission time is even 40% ÷ 50% shorter compared to slower
sending rates. This phenomenon occurs in both cases (“cross” and “switch”), and
is caused probably by operating system allocating more resources for more
resource demanding processes (or not removing the process code from cache
memory). Occurrence of longer transmission time for lower packet sending
frequency shows clearly, that it is not only TCP/IP/Ethernet what contributes to
longer transmission delays. Longer and unpredictable delays are caused mainly by
resource management strategy and timesharing (multitasking) procedures of
operating system.

4 Influence of Transmission Time on Control Quality (LabVIEW
Platform)

To evaluate applicability of TCP/IP/Ethernet based networks for automatic control
purposes, several tests have been performed. During tests, influence of transmission
delay introduced by computer network on control quality in automatic control system
(Plant-Controller) has been measured.

The first-order plus dead-time (FOPDT) dynamics has been chosen as control
plant. Most of process control plants have or can be approximated by this form of the
model. Also PI controller has been chosen because its simplicity and popularity in
industry.

266 P. Plesowicz and M. Metzger

4.1 Materials and Methods

The test environment consisted of two PCs, equipped with FastEthernet network cards
and AD/DA interface cards (National Instruments). The test applications used during
experiments (virtual plant, virtual controller and TCP/IP networks) have been built
using LabVIEW environment (National Instruments). Standard, unmodified
TCP/IP/Ethernet has been used for signal transmission.

LabVIEW has been chosen, during the test software design process, because its
position as de facto standard in area of automatic control test software.

-sT 4e

+

-x ye

T1

-sT2e

T3
TCP/IP

controller plant

Fig. 5. PI controller connected via TCP/IP to FOPDT plant

When the controller and the plant are realized as real-time applications (in

LabVIEW or LabVIEW-RT environments) the control system under consideration
can be treated as a virtual control system. Such a way of simulations is very helpful
for testing of control algorithms in conditions closest to the industrial reality.
Additionally the virtual parts of the system can be replaced by corresponding
commercial real-world components. In standard applications investigated controller
and plant should be connected by industry standard signals (4-20 mA). Such a way of
testing requires very expensive I/O hardware. The connection based on the TCP/IP
can be low-cost alternative of automatic control systems testing. When values
transmitted via digital channel are equal to values of the industry standard, the tested
automation component can be easily used for connection with real-world component
by industry standard.

The process model and controller have been realized as real-time simulator in the
LabVIEW environment. A more detailed description of how to realize real-time
simulation of the system (presented in Fig. 5) can be found in [12].

The term ”virtual controller” seems to be well defined. The virtual controller
must include at least all professional controller features, such as anti-reset windup
action as well as bumpless switching between manual and automatic control.
Without possibility of I/O connection, such a controller should be treated as only
simulated controller (for simulation of control systems). For use as the virtual
controller, this controller must include the connections with an I/O-PC-board or I/O
modular system. For investigations presented here, the controller must include the

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 267

TCP/IP socket as well. The PI controller has been built using the NI-LabVIEW
environment.

4.2 Experimental Tests

Several experimental tests have been made, to discover possible differences between
automatic control qualities. For a comparison, additional test without TCP/IP has been
performed (communication using local variables).
Following connection channels have been tested:

• locally connected (in one computer, without TCP/IP) –”no-net”
• locally TCP/IP-connected (in one computer) – ”localhost”
• TCP/IP-connected in intranet (local based network) – ”local-net”
• TCP/IP-connected in Internet – ”internet”
• TCP/IP-connected via network simulator –”netsim”

Following connection channels have been tested:

• time constant of the plant: T1 = 1[s]; 20[s]
• plant dead-time: T0 = 0; 0.25T1; 0.5T1
• process variable sampling time: RTi = 0.05[s]; 0.2[s]
• selected pairs of controller gain and integration time: (kR;Ti)

The data for charts has been collected with rate of 40 samples per second. Round Trip
Time in tested intranet was measured: ≈ 0.3ms, and Internet: ≈ 35ms.

The Wide Area Network connection (Gliwice-Warsaw, Poland; 350 km distance)
used in these experiments was low quality link — with high packet loss, and long
maximal transmission time (up to ≈ 1500ms).

4.3 Observations and Conclusions

The results presented in Fig. 6,7 show the system response after step change of set
point from 40% to 50%.

Presented results show the satisfactory control quality in all cases except the
Internet, however by making additional assumptions it is also possible to obtain
satisfactory control quality using Internet. It is noticeable, that there are almost no
differences present between the first three characteristics (”no-net”, ”localhost”,
”local-net”). Thus, it is possible, to make the following conclusion: for not too fast
plants (time constant higher than 1s), TCP/IP based feedback loop in intranet offers
control performance and quality very similar to the best performance available for
discrete systems. This can be derived from the fact, that in most cases no difference
between control over LAN and control in one computer (even without use of TCP
protocol stack) is observed.

Problems with satisfactory control quality occurred, only in case of Internet
connection (very low link quality) of controller and fast plant (time constant of 1s,
Fig. 6). Having tested plant with longer time constant (20s and higher), almost no
difference in control quality had been observed compared to local area network —
even when low quality WAN link had been used (see Fig.7).

268 P. Plesowicz and M. Metzger

 38

 40

 42

 44

 46

 48

 50

 52

 54

 0 100 200 300 400 500 600

pr
oc

es
s

va
lu

e
[0

-1
]

time [0.01 s]

no-net
via-4-20

localhost
local-net
internet
netsim

Fig. 6. Typical system response. Parameters: kR = 12.0; Ti = 0.6[s]; RTi = 0.05[s]; T1 = 1.0[s];
T0 = 0.

 38

 40

 42

 44

 46

 48

 50

 52

 54

 0 2000 4000 6000 8000 10000 12000

pr
oc

es
s

va
lu

e
[0

-1
]

time [0.01 s]

no-net
via-4-20

localhost
local-net
internet
netsim

Fig. 7. Selected worst-case system response. Parameters: kR = 3.0; Ti = 24[s]; RTi = 0.05[s]; T1
= 20.0[s]; T0 = 5.00[s].

5 Influence of Transmission Time on Control Quality (Logix
Platform)

Use of Logix platform (Rockwell Automation) was caused by desire to test highest-
class automation hardware and software widely used in industry, with communication

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 269

channels based on CIP — EtherNet/IP — TCP/IP protocols and Ethernet devices.
Results here presented, have also been initially signalized in [13].

5.1 Materials and Methods

A special laboratory stand has been developed for experimental testing. The test
environment consisted of one PC, equipped with FastEthernet network card and
AD/DA interface cards (National Instruments), programmable logic controller
FlexLogix 5434 (Rockwell Automation), with Ethernet/IP communication module and
Ethernet/IP-equipped distributed I/O — FlexIO. As OPC server RS-Linx has been
used.

-sT 4e

+

-x ye

FlexIO

links

4-20mA

0-10V
or

OPC server

analog I/O
interface

computer
simulated

plant

1794-AENT/A
interface

1788-ENBT/A interface

T1

-sT2e

T3
TCP/IP

controller object

FlexLogix 5434

EtherNet/IP link

E
th

er
N

et
/IP

 li
nk

Fig. 8. Architecture of comparative test setup (Logix, EtherNet/IP) [13]

The applications used during testing experiments (plant simulator) have already

been described in section (3.1), but additionally OPC communication routines have
been added. For plant control, standard PID controller available in FlexLogix 5434
PLC has been used.

270 P. Plesowicz and M. Metzger

Because of earlier made thesis, stating that speed instabilities of PLC’s and
computers has got significant influence on tests, special test environment has been
prepared to eliminate this influence. This resulted in design presented in Fig. 8, in
which signal transmission occurred via 0-10V, or EtherNet/IP+0-10V (to allow
differential measurements). This solution allows also obtaining independence from
AD/DA converters delay and other delays not associated with transmission. Thus, the
tests have been performed in following setups:

• no tests with local connection (in one computer) have been made —
simulation of PLC’s internal PID controller characteristics was not
possible,

• plant and controller connected using 0-10V channel,
• plant and controller connected using EtherNet/IP and 0-10V channel,
• plant and controller connected using OPC protocol based channel,

Results of tests presented in section 4 showed, that TCP/IP/Ethernet influence
becomes significant only in case of short plant time constants, thus the experiments
have been performed for all defined parameters with special attention to ”bad” plant
dynamics. In this case biggest differences between control responses can be expected.

Following preset values have been taken into consideration.

• plant time constant: T1 = 1[s]
• plant dead-time: T0 = 0; 0.25T1; 0.5T1
• process variable sampling time: RTi = 0.01[s]
• selected pairs of regulator gain and integration time: (kR;Ti)
• data for charts has been collected with rate of 100 samples per second,
• Round-Trip-Time in tested intranet was measured: ≈ 0.3ms.

5.2 Results and Conclusions

The responses, which are presented in Fig. 9, are the selected, worst-case system
responses after step change of set point from 0 to 0.5.

It should be noticed, that there are almost no differences present between the first
two control responses (”0–10V”, ”EtherNet/IP+0–10V”). Thus, it is possible, to
make following conclusion: for not too fast plants (plant time constant higher than
1s), Ethernet/IP based feedback via intranet offers control performance and quality
very similar to the best performance available (”0–10V” — analog connection). In
case of signal transmission using OPC protocol — even with the best parameters
chosen — the control quality degrades significantly. This fact is probably caused by
data exchange desynchronization in OPC server. Hence, it is possible to conclude,
that OPC protocol server (in case of RS-linx) is not suitable as feedback transmission
channel of systems with short time constant. It should be noted however, that this
statement should be verified with experiment — the control quality degradation could
have been caused by OPC server version of particular vendor (Rockwell Automation-
Allen-Bradley).

As shown in this paper, even though Ethernet-TCP/IP network (and consequently
Allen-Bradley’s EtherNet/IP) is considered to be time-nondeterministic — it is
possible to build automatic control system using this type of intranet. In local area

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 271

networks (intranets), with Ethernet switch used for collision domains separation
EtherNet/IP seems to be good communication medium for automatic control.

Presented experimental results show, that considering typical local network time
delays and plant time constants, automatic control using EtherNet/IP channel is
similar to the quality of system using analog channel. The use of OPC protocol for
control of plants having short time constants seems to be problematic however.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 500 1000 1500 2000 2500 3000

pr
oc

es
s

va
lu

e
[0

-1
]

time [0.01 s]

4-20mA
EtherNet/IP + 4-20mA

OPC

Fig. 9. Selected worst-case system response. Parameters: kR = 1.4; Ti = 18[s]; RTi = 0.01[s]; T1
= 1.0[s]; T0 = 0.5[s].

During the tests interesting phenomena have been observed — large execution
time instabilities of main program loop. In case of FlexLogix 5434, execution time
(and its variation) of the same program was much bigger (0.2 – 2.3ms) than
transmission time in local area network (0.07 – 0.15ms). This leads to conclusion, that
often it is not computer network that causes control quality deterioration. Another fact
has also been observable — due to low computational power of PLC hardware, their
response time was much longer than PC with the same communication interfaces.

6 Influence of Transmission Time on Control Quality in Simatic
Platform

In this section, results of Simatic (Siemens) hardware and software have been
presented. Hardware and software of this manufacturer was chosen because of its
popularity in European industry.

6.1 Materials and Methods

A special laboratory stand has been developed for experimental testing. The test
environment consisted of one PC, equipped with FastEthernet network cards and

272 P. Plesowicz and M. Metzger

AD/DA interface card (National Instruments Lab-PC+), Simatic S7-300
programmable logic controller (Siemens).

The test applications used during experiments (plant simulator) have already been
described in section (3.1). Standard, unmodified TCP/IP/Ethernet was used for signal
transmission. For plant control, standard PID controller available in Simatic S7-300
PLC had been used.

Because of earlier statement that speed instabilities of PLCs and computers has got
significant influence on tests, special test environment has been prepared to eliminate
this influence. This resulted in design presented in Fig. 10, in which signal
transmission occurred via 0-10V, TCP/IP+0-10V, and TCP/IP — connected via proxy
in industrial computer — for analog (0-10V) digital conversion (TCP/IP/Ethernet).

-sT 4e

+

-x ye

0-10V --TCP/IP proxy
plant simulator +

Simatic S7-300

plant simulator

plant simulatoranalog I/O cards

4-20mA
or 0-10V

connections

4-20mA
or 0-10V

connections

"proxy" server
(industrial computer)

TCP/IP/Ethernet link

T1

-sT2e

T3
TCP/IP

controller object

Fig. 10. Architecture of comparative test setup (Simatic)

This solution allows differential measurements and obtaining independence from

AD/DA converters delay and other delays not associated with transmission.

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 273

The tests have been performed in following setups (Fig. 10):

• no tests with local connection (in one computer) have been made —
simulation of PLC’s internal PID controller characteristics was not possible,

• plant and controller connected using 0-10V channel (“localhost” in figure),
• plant and controller connected using 0-10V and TCP/IP channel, in one

operating system, using proxy (“proxy” in figure),
• plant and controller connected using 0-10V and TCP/IP channel, in local area

network, using proxy (“intranet” in figure),
Because results of tests presented in section (3) showed, that TCP/IP/Ethernet
influence becomes significant only in case of short plant time constants, the
experiments have been performed for all defined parameters with special attention to
”bad” plant dynamics (similar to those presented in section 3). In this case biggest
differences between control responses can be expected.

Following preset values have been taken into consideration.

• plant time constant: T1 = 1[s]
• plant dead-time: T0 = 0; 0.25T1; 0.5T1
• process variable sampling time: RTi = 0.01[s]
• selected pairs of regulator gain and integration time: (kR;Ti)
• data for charts has been collected with rate of 100 samples per second,

6.2 Results and Conclusions

The result presented in Fig. 11 is the selected, worst-case system response after step
change of set point from 0 to 0.5.

It is noticeable, that control quality of system using TCP/IP+0-10V connection is
worse than system using analog connection only (0-10V).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

pr
oc

es
s

va
lu

e
[%

]

time [0.01 s]

0-10V
TCP-localhost + 0-10V

TCP-intranet + 0-10V

Fig. 11. Selected worst-case system response. Parameters: kR = 1.4; Ti = 3s]; RTi = 0.01[s]; T1
= 1.0[s]; T0 = 0.5[s].

274 P. Plesowicz and M. Metzger

Deterioration of control quality occurs not only because of transmission delays in
computer network, but also due to delays and desynchronization of data exchange in
proxying software.

Thus, the final conclusion is, that during designing of automatic control systems,
unless inevitable, it is better to avoid excessive data passing.

7 Concluding Remarks

Currently the analog transmission is the most popular transmission in the industrial
feedback loops. Although the networked communication is used in higher-level
automatic control (monitoring, SCADA systems) such kind of transmission is too
expensive for application in control loops. That is why an effort to apply the most
popular Ethernet TCP/IP transmission is very promising. In the paper this kind of
transmission has been tested experimentally. Opposed to majority of papers dealing
with transmission in control and computer science this paper focuses rather on
presenting method for testing of automatic control systems, and showing example test
results. The main contribution presented in this paper is design and construction of
three test stands as well as methodology of testing experiments. Each test stand
consists of plant, communication channel and automatic controller.

Based on the experiments, it is possible, to make the following conclusion: for not
too fast plants (time constant higher than 1s), TCP/IP based feedback loop in intranet
offers control performance and quality very similar to the best performance available
for discrete systems. It also is possible to control plants with longer time constant (20s
and higher) via the Internet with almost no signs of control quality deterioration.

In general, presented results show promising perspectives not only for intranets,
but also for Wide Area Networks (Internet) for plants with medium and long time
constants.

Acknowledgments. This work has been supported by the Polish Ministry of
Scientific Research and Information Technology.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software
Concepts and Tools 17(3), 103–120 (1996)

2. Petrenko, A., Yevtushenko, N., Bochman, G.v., Dssouli, R.: Testing in context: framework
and test derivation. Computer Communications 19, 1236–1249 (1996)

3. Grieskamp, W., Tillmann, N., Veanes, M.: Instrumenting scenarios in a model-driven
development environment. Information and Software Technology 46, 1027–1036 (2004)

4. Flammini, A., Ferrari, P., Sisinni, E., Marioli, D., Taroni, A.: Sensor interfaces: from field-
bus to Ethernet and Internet. Sensors and Actuators A 101, 194–202 (2002)

5. Maciel, C.D., Ritter, C.M.: TCP/IP Networking in Process Control Plants. Computer
Industrial Engineering, vol. 35(3-4), pp. 611–614

6. Vitturi, S.: On the Use of Ethernet at Low Level of Factory Communication System.
Computer Standards & Interfaces 23, 267–277 (2001)

7. Belle Isle, A.P.: Stability of Systems with Nonlinear Feedback Through Randomly Time-
Varying Delays. IEEE Transactions On. Automatic Control AC-20(1), 67–75 (1975)

 Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control 275

8. Krtolica, R., Özgüner, Ü., Chan, H., Göktaş, H., Winkelman, J., Liubakka, M.: Stability of
Linear Feedback Systems with Random Communication Delays. International Journal of
Control 59(4), 925–953 (1994)

9. Lee, K.C., Lee, S.: Performance evaluation of switched Ethernet for real-time industrial
communications. Computer Standards & Interfaces 24, 411–423 (2002)

10. Decotignie, J-D.: Etherne-Based Real-Time and Industrial Communications. In:
Proceedings of the IEEE, vol. 93(6), pp. 1102–1117 (2005)

11. Metzger, M.: Virtual controllers improve Internet-based experiments on semi-industrial
pilot plants. In: Proceedings of the 16-th IFAC Triennal World Congress, CD, Elsevier,
Amsterdam (2005)

12. Metzger, M.: Modelling and simulation of the sampled-data control of the nonlinear,
continuous, distributed parameter plant. 15th IMACS World Congress, Wissenschaft und
Technik Verlag, Berlin, Systems Engineering, vol. 5, pp. 161–166 (1997)

13. Plesowicz, P., Metzger, M.: Experimental Evaluation Of Ethernet/IP-Interconnected
Control Systems. In: Proceedings of the IFAC Workshop on Programmable Devices and
Systems (2006)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 276–291, 2007.
© IFIP- International Federation for Information Processing 2007

Towards Systematic Signature Testing

Sebastian Schmerl and Hartmut Koenig

Department of Computer Science
Brandenburg University of Technology Cottbus

PF 10 13 44, 03013 Cottbus, Germany
{sbs, koenig}@informatik.tu-cottbus.de

Abstract. The success and the acceptance of intrusion detection systems
essentially depend on the accuracy of their analysis. Inaccurate signatures
strongly trigger false alarms. In practice several thousand false alarms per
month are reported which limit the successful deployment of intrusion detection
systems. Most today deployed intrusion detection systems apply misuse detec-
tion as detection procedure. Misuse detection compares the recorded audit data
with predefined patterns, the signatures. These are mostly empirically deve-
loped based on experience and knowledge of experts. Methods for a systematic
development have been scarcely reported yet. A testing and correcting phase is
required to improve the quality of the signatures. Signature testing is still a
rather empirical process like signature development itself. There exists no test
methodology so far. In this paper we present first approaches for a systematic
test of signatures. We characterize the test objectives and present different test
methods.

1 Motivation

The increasing dependence of human society on information technology (IT) systems
requires appropriate measures to cope with their misuse. The enlarging technological
complexity of IT systems increases the range of threats to endanger them. Besides
preventive security measures reactive approaches are more and more applied to
counter these threats. Reactive approaches allow responses and counter measures
when security violations happened to prevent further damage. Complementary to
preventive measures intrusion detection and prevention systems have proved as
important means to protect IT resources. Meanwhile a wide range of commercial
intrusion detection products is offered, especially for misuse detection. Nevertheless
intrusion detection systems (IDSs) are not still deployed in a large scale. The reason is
that the technology is considered not matured enough. Lacking reliability often
resulting in high false alarm rates questions the practicability of intrusion detection
systems [9].

The security function intrusion detection deals with the monitoring of IT systems
to detect security violations. The decision which activities have to be considered as
security violations in a given context is defined by the applied security policy. Two
main complementary approaches are applied: anomaly and misuse detection. Anomaly
detection aims at the exposure of abnormal user behavior. It requires a comprehensive

 Towards Systematic Signature Testing 277

set of data describing the normal user behavior. Although much research is done in
this area it is difficult to achieve so that anomaly detection has currently still a limited
practical importance. Misuse detection focuses on the (automated) detection of known
attacks described by patterns, called signatures. These patterns are used to identify an
attack in an audit data stream. This approach is applied by the majority of the systems
used in practice. Their effectiveness, however, is also still limited. There are several
reasons for this. On the one hand, many systems mainly confine themselves to
detecting simply structured network based attacks, often still in a post-mortem mode.
Multi-step or distributed attacks which are getting an increasing importance are not
covered. On the other hand, the success and the acceptance of misuse detection
systems essentially strongly depend on the conciseness and the topicality of the
applied signatures. Imprecise signatures heavily confine the detection capability of the
intrusion detection systems and lead to false alarms. The reasons of this detection in-
accuracy can only in part imputed to qualitative restrictions of the audit functions of
the monitored system or network. They must be rather sought in the signature
derivation process itself. In particular, the derivation of signatures starting from given
exploits often appears as weak point. An attack represents a sequence of actions that
exploits a vulnerability in a program, operating system, or network. The derivation of
a signature to detect the attack is mostly based on experience and expert knowledge.
Methods for a systematic derivation have scarcely reported yet. Automated
approaches to reusing design and modeling decisions of available signatures also do
not exist. This results in relative long development times for signatures causing
inappropriate vulnerability intervals [9].

In order to improve the accuracy of the derived signatures the signatures must be
tested and corrected. The objective of a signature test is to prove, whether the derived
signature is capable to exactly detect an attack in an audit trail. As the derivation
process itself the testing of signatures is still rather empirical. There exist no test
approaches and methods yet. This paper focuses on the testing of signatures. It present
first approaches for a systematic test of signatures. The paper is structured as follows.
In Section 2 we consider the signature derivation process and outline the reasons for
the detection shakiness of current signatures. Section 3 backs up the need for a
signature tests and outlines the two main issues signature tests have to cope with. In
Section 4 we present four test strategies to testing signatures and describe their
procedures. Section 5 sketches the application of one test strategy to a concrete
signature. Some final remarks conclude the paper.

2 On the Derivation of Signatures

An Attack consists of a set of related security relevant actions or events in a system,
e.g. a sequence of system calls or network packets. The task of an audit function is to
capture information about the execution of each of these actions by generating audit
data records that can be used for analysis. Misuse detection systems try to detect se-
quences that correspond to known signatures. Thereby it is assumed that security
violations do manifest themselves in distinct audit data records, i.e. they are
observable, and that they can be detected on the basis of these audit data, i.e. they are
detectable.

278 S. Schmerl and H. Koenig

Fig. 1 depicts these relations. To run an attack the attacker uses exploits which are
usually known shortly after their appearance. These are programs or pieces of codes
to execute an attack which exploit vulnerabilities (e.g. coding faults, configuration
errors etc) of the target system. Exploits have various appearances, e.g. program code,
protocol packets or scripts. They contain of a sequence of operations or actions (at
least one) which cause an abnormal behavior of the attacked host or network.

Audit trail and signature Exploit and associated events

attack 1:
vi script
chmod a+s script
ln –s link script
rn link –link
-link

program 1:
fopen(...);
fprintf(...);
fread();
fork();
exec();

program 2:
file << “...”;
fuf = file.getline();
fork();

open, script,10,141,…
write, 4, 10, 400, ...;
open ..., 12, 200, ...;
read, 4, 10, 400, ...;
chmod, s, script,11,129,…
write, 2, 12, 200, ...;
clink, link, script,18,13,…
read, 2, 12, 200, ...;
rename, link,–link,10,11,…
fork, 12, 200, 201, ...;
exec, –link,11,51,…
fork, 10, 400, 401, ...;
exec, 3, 12, 201, ...;

Cursive lines indicate
the attack manifestation

…

…

…

create script

chmod script

rename link

create link

execute link and script

initial place

exit place

actions audit events audit trail

S
e
n
s
o
r

attack 1:
open, script,10,141,…
chmod, s, script,11,129,…
clink, link, script,18,13,…
rename, link,–link,10,11,…
exec, –link,11,51,…

program 1:
open ..., 12, 200, ...;
write, 2, 12, 200, ...;
read, 2, 12, 200, ...;
fork, 12, 200, 201, ...;
exec, 3, 12, 201, ...;

program 2:
write, 4, 10, 400, ...;
read, 4, 10, 400, ...;
fork, 10, 400, 401, ...;

signature

Fig. 1. Exploits, attack manifestations, and signatures

An attack represents a sequence of security relevant actions. They can be usually
divided in three steps:

(1) to transfer the attacked system in a vulnerable state,
(2) to exploit the vulnerability to intrude the system, and
(3) to access to the compromised system and/or to change its system data. (This

is the proper objective of the attack.)

A signature can only detect step (1) and (2) of the attack. They are predictable and
describable based on the knowledge about the vulnerability. The proper concern of
the attacker cannot be described because it is not predictable. Thus signatures
comprise only the first two steps of an attack.

The execution of attacks leaves traces which can be audited by IDS sensors. These
traces are called manifestations of the attacks. Fig. 1 shows the traces for the example
exploits. The traces are not stated separately. They are hidden in the audit trail. The
latter consists of a sequence of records which contain the traces of all actions
executed by the system. In order to separate the attack manifestations the audit trail is
searched for attack patterns. These patterns are defined by signatures. A signature of
an attack describes the criteria (patterns) required to identify the manifestation of an
attack in an audit trail. It is possible that several attacks of the same type are executed
simultaneously and proceed independently. Therefore it is necessary to be able to

 Towards Systematic Signature Testing 279

distinguish different instances of an attack. A signature instance identifies the
manifestation of an attack instance in the audit data stream. Signatures are usually
described by means of finite state automata, Petri nets, or special attack description
languages [7]. Typically each intrusion detection system uses its own language which
is customized to the applied analysis method. Fig. 2 shows an example of a signature
modeling in a Petri net like languages described in [8].

Actions

Events

vi script.sh

chmod(script.sh) link(link, script.sh) rename(link, -link) exec(-link)

T9

T1

init_place_1 escape_place

link_with_prefix

T2

T3

T4 T5

link_no_prefix

T6

exit_place

T7

T8

+

+

-

-

-

-

-

-
+3

4

6
create link without -

create link with -

rename link

rename link

rename link

execute link
delete link

delete link

rename link

Script created T11 +
2

chmod script

SUID_script

T13

+

rename script

T14

-

delete script

chmod a+s script.sh ln -s link script.sh rn link -link Execute -link…

open(script.sh)

… … …

IDS sensor
Mapping of actions in audit events

init_place_2

T10
+

1
create script

IDS analysis
Correlation of audit events

T12

+

copy script

Fig. 2. Modeling of a signature in a Petri net like language [8]

The detection power of signature analysis depends on the accuracy of the
signatures applied. To estimate the detection quality of intrusion detection systems
usually two measures are applied: the number of security violations not detected
(false negatives) and the frequency of false alarms (false positives). Not detected
security violations are caused by over specification of the signatures, whilst false
alarms are triggered by inaccurate specifications. The experience shows that not
detected security violations have a more grave impact on the systems behaviour than
false alarms. Nevertheless, a high false positives rate reveals as a severe problem for
running intrusion detection systems in practice. Since misuse detection systems apply
deterministic methods, the search for signature patterns, strictly speaking, excludes
false positives per definition (assuming an effective audit function). The reality,
however, is different, e.g. [3] reports about 10.000 false alarms per month for the use
of commercial intrusion detection systems. Other evaluations [2], [5], confirm this

280 S. Schmerl and H. Koenig

experience. Small false positive rates are an important presumption for the acceptance
of misuse detection systems in practice. Inaccurate signatures, therefore, strongly
confine the detection power and acceptance of misuse detection systems.

The reasons for the detection shakiness of signatures are only in part caused by
qualitative shortages of the used audit functions. They lie in the signature derivation
process itself. The derivation of signatures from exploits is the actual weak point.
Signatures are mostly empirically derived based on long-term experience of the
security administrators. There are scarcely heuristics and methods for a systematic
derivation. This often results in inaccurate signatures which have to be step-by-step
refined during practical deployment. Therefore, relative long periods for the
derivation of good, practically valuable signatures are needed. This means, on the
other hand, long vulnerability intervals of the respective systems which cannot be
accepted in practice (see [6]). Even if accurate signatures are found further
adaptations may be required. This is due to the diversity of today IT environments
which force further adaptations to the given deployment environment and the security
policies applied. Additional adaptations and enhancements of the signatures are
needed when new vulnerabilities or attack mutations become known. The derivation
and the maintenance of signatures, therefore, represent one of the most complex tasks
for the development and deployment of misuse detection systems.

Only a few approaches have been reported up to now on the systematic derivation
of signatures from exploits. Cheung et al. try to simplify the signature design by
applying attack models [1]. This approach corresponds to the design patterns of
software engineering. It allows the reuse of architectural design decisions. The reuse
of concrete modeled signatures or signature fragments is, however, not possible.
Rubin et al. describe how mutants can be generated for a given attack [10]. Attack
mutants exploit the same vulnerabilities as basis attack without, however, performing
the same security relevant actions. If a signature for an attack mutant is supposed to
be developed the signature of the basis attack could be reused, if available. Rubin et
al. further describe in [11] a refinement of signatures based on formal languages. This
approach can help the signature developer to remove triggers for false positives
caused by imprecise signatures. The procedure, however, assumes an almost error-
free reference signature. In [13] an approach is proposed to use diversity to modeling
an implicit complete attack model. This has the advantage of an improved model,
however multiple specifications are needed. Larson et al. [4] present a tool for
extracting the significant events of an attack from the audit trail. It executes the attack
and records the respective audit data. Then the differences between these audit data
and an attack free audit trail are derived. The problem of deriving a signature from
this difference, however, remains unsolved. In [12] the authors presented an approach
to reusing patterns of existing signatures for the development of new signatures. It
exploits the fact that similar attacks produces similar traces so that existing signatures
may provide an informative basis for the development of new signatures. The
approach is based on an iterative abstraction of signatures. Based on a weighted ab-
straction tree it selects those signatures or signature fragments, respectively, which
possess similarities with the novel attack. The reuse of proved structures may not only
reduce the efforts of the signature derivation process but it can also considerably
shorten the costly test and correction phase.

 Towards Systematic Signature Testing 281

3 On the Test of Signatures

Inaccurate signatures strongly limit the detection power of misuse detection systems
as well as their economic profitability. As discussed the signature development
process is complicated and tedious. Systematic derivation procedures are scarcely
available. A certain inaccuracy is, therefore, inherent to the derived signatures. A
testing and correcting phase is indispensable to improve the quality of the signatures.
This phase is an essential part of the signature development process independently of
the fact, whether the signatures are derived systematically or by experience.

The objective of a signature test is to prove the accuracy of the given signature by
applying it to an audit trail which contains traces of the respective attack. If the sig-
nature does not completely detect all traces it must be corrected to approximate the
ideal signature, i.e. the signature which describes all manifestations MI of the attack.
Normally the signature derivation process does not induce ideal signatures. The
derived signatures are either under or over specified.

Under specified signatures describe beside action sequences which are required for
a successful attack also actions which either correspond to legitimate behavior or
which do not exploit the vulnerability. That means they describe a manifestation set
MU which represents a superset of the manifestations of the ideal signature MI, i.e. MI
⊂ MU. Under specified signatures thus increase the false positives rate. A test
strategy to detect under specified signatures has to investigate, whether the actions
recorded in the audit trail really exploit the vulnerability. To derive test data actions
have complementarily to be assigned to the audit events. These action sequences are
then tested on a dedicated system concerning the exploitation of the vulnerability. If
the vulnerability is not exploited a specification error exists and the signature must be
corrected. The difficulties and limits of this approach lie beside the derivation of the
action sequence in the assessment, whether the vulnerability is really exploited.

Over specified signatures do not detect all variants of the attack, i.e. there exist
action sequences which successfully exploit the vulnerability but are not captured by
the signature. The set of detected manifestations MO is a subset of the manifestations
of the ideal signature MI, i.e. MO ⊂ MI ⊂ MU. Over specified signatures induce not
detected security violations, i.e. they increase the false negatives rate. The objective
of a test and correction strategy for detecting over specified signatures is to enhance
the signature to approximate the ideal signature. This can be achieved by extending
the signature, by substituting actions, and by changing the order of the actions. The
test strategy has to ensure that the detection of the attack remains guaranteed, if some
actions are replaced by semantically equivalent actions, and that the vulnerability is
further exploited.

4 Methods for the Test of Signatures

In this section we present four methods for testing signatures. The main approaches
deal with the tests for under and over specified signatures. Furthermore, we present a
preliminary test and a test of escape events.

282 S. Schmerl and H. Koenig

4.1 Preliminary Test

The objective of preliminary tests is to ensure that the derived signatures do not
contain grave errors.

Test method: The test consists of two steps. Test step (1): Assuming a newly derived
signature S of attack A. This attack is first executed on a dedicated system. The
resulting audit trail T is recorded and analyzed to determine the events representing
traces of A. We call these events characterizing events CE⊂T here. In test step (1) S
is tested against CE, i.e. it is proved, whether a misuse detection systems containing
signature S detects A. If the test fails a grave error in the signature specification can be
assumed.

Test step (2): Now S is tested against the whole audit trail T, i.e. it is proved, whether
the misuse detection system triggers an alarm when A is executed. If the test passes
the test procedure can be continued. A negative test outcome usually indicates that the
newly derived signature does not correctly correlate the characterizing events CE in T.
Reasons for this are not exactly or too weakly specified signature conditions.

The test method can be mostly automated depending on the applied attack
description language.

4.2 Tests for Under Specified Signatures

Under specified signatures contain specifications of action or event sequences which
correspond to legitimate behavior or which do not exploit system vulnerabilities.
They cause false positives.

The test methods presented in the following to detect under specified signatures is
based on the mapping relation δ of the IDS sensor which maps the various security
relevant actions into audit events. This relation is usually bijective realized in in-
trusion detection systems, i.e. there is a δ-1. This means that the corresponding action
sequences of the attack can be derived from the audit events demanded by the
signature. The objective of the tests is to validate whether these action sequences
corresponds to a successful attack. If not, the signature contains a specification error
which triggers a false alarm.

Test method: The proposed test method comprises 3 steps. In step (1) appropriate
test cases are derived. Since there is a wide range of conditions which have to be
fulfilled between the correlating audit events it is not possible like in many other tests
to exhaustively test all possible action sequences. Therefore an appropriate subset of
test cases has to be selected depending of the coverage aimed at. Here either path or
test coverage criteria can be applied as in software testing.

Step (2) derives for the selected test cases the corresponding action sequences from
the signatures by means of δ-1. Signatures specify the properties of the audit events,
e.g. type, parameters etc during the attack. They also define conditions regarding the
appearance and the context of the correlated audit events. Furthermore, the temporal
order of the audit events can be demanded. If these conditions are taken into account
the corresponding attack can be re-established.

In step (3) each derived action sequence is executed on a vulnerable system to
prove whether they correspond to attacks. This first requires that correct attack

 Towards Systematic Signature Testing 283

conditions are established, especially temporal constraints have to be preserved if
necessary. This is a decisive precondition because attacks are only successful, when
certain conditions are fulfilled, e.g. a load situation. However, not all attacks depend
on additional conditions. We distinguish deterministic successful attacks, attacks with
preconditions and brute force attacks. Former attacks are independent of special
system or application circumstances, therefore correct execution of a deterministic
attack is always successful. Consequently this class of attacks is unrestricted testable
with this test strategy. In the case of attacks with preconditions, the vulnerability is
only exploitable if specific system parameters are fulfilled, e.g. special system load
situations. Therefore the necessary preconditions must be synthesized before the test.
The class of brute force attacks summarizes all attacks which do not exploiting a
concrete vulnerability, e.g. brute force attacks of single authentication systems.
Signatures for this kind of attacks are not testable with this test strategy.

The detection of a successful attack execution depends on the attack strategy and
the exploited vulnerability, respectively. For disclosing this, four approaches may be
generally applied. (a) Instrumentation of the exploit, i.e. the derived action sequence
has to be changed so that a significant system change is observable. This can be done,
for instance, by appending additional actions to the derived attack actions, e.g. setting
up a root file or starting/terminating a privileged system process. (b) Instrumentation
of the vulnerability, i.e. the vulnerable system or code is changed so that the
exploitation of the vulnerability becomes observable. This is, for instance, useful, if
the program code is available but the vulnerable system (e.g. a technical facility)
cannot be patched. (c) Instrumentation of the whole system: This approach compares
normal system behaviour recorded by an appropriate audit component with the system
behaviour after executing an attack. Unlike the other approaches a detailed
observation of the system is required. On the other hand, no interference of the attack
and the system is needed. (d) Using a test oracle which passively examines the
system behaviour. This approach though is not able to detect attacks which do not
destroy systems functions, e.g. backdoors.

The test method can be automated if certain constraints are fulfilled which is often
given. Table 1 contains these constraints. However, there are also shortages which
limit the practicality of the method. One problem is that not every action generates an
audit event so that δ-1 does not always re-establish the complete action sequence. It is
not always required to correlate all events of an attack to detect the attack. The crucial
issue, however, is to re-establish the attack preconditions. This requires a detailed
knowledge of the system behaviour and the attack strategy by the test engineer.

Table 1. Automation degree of test steps

Step Objective Can be automated?
1 Test case selection yes, using typical approaches of software testing

2 Derivation of action
sequences yes, if bijective IDS sensors are deployed

3

I Establishing the correct
attack conditions

yes, for deterministic attacks
yes, if constraints can be automated re-established

II Execution of action
sequences yes

III Test of success yes, if detection of a successful attack can be automated

284 S. Schmerl and H. Koenig

4.3 Tests for over Specified Signatures

Over specified signatures do not capture all action sequences which successfully
exploit a given vulnerability. Attackers often replace one or more actions of the attack
by semantically equal actions. The aim of this transformation is to change the traces
of the attack so significantly that the attack is not detected by the intrusion detection
system. The proper attack strategy, however, remains preserved, i.e. the given
vulnerability is further exploited for running the attack. If the signature does not
recognize these attacks it produces false negatives. Test strategies for over specified
signatures aim at detecting this detection weakness. Before describing the test strategy
we first have to introduce the different types of transformations to change the attack.

There are three types of transforming an attack: No-Op insertion, permutation of
actions, and action substitution.

No-Op insertion: In this transformation redundant actions are added which do not
change the attack but its traces in the audit trail. This transformation tries to exploit
deficiencies of the intrusion detection system to correlate audit events. The evasion of
intrusion detection by means of No-Op insertion due to a signature error can be
excluded as long as the signature does not strictly demand a direct timed sequence of
certain audit events. This demand is only useful in very seldom, specific scenarios.
Therefore a signature test can be waived for this transformation.

Permutation of actions: This transformation changes the order of certain actions of
the attack and thus the sequence of their related audit events. Two actions can be
changed if their execution and their influence on the attack do not depend on each
other. These transformations allow bypassing signatures with over specified event
sequences. The reason for this kind of over specification is mostly a not correct under-
standing of the semantics of the attack actions.

Action substitution: This transformation replaces single actions or action sequences
by semantically equal action sequences. Thus the IDS sensor registers different
actions and events, respectively, although the result of the actions remains the same.
A simple example is the substitution of the file renaming operation mv file1 file2 by a
copy and an erase operation: cp file1 file2; rm file1.

Permutations and substitutions of attack actions produce isomorphic action
sequences without enlarging the attack/exploit by redundant actions. Now we present
a strategy to test a signature on the detection of isomorphic attack sequences. First we
introduce some needed basic notions.

An action a of an attack changes, erases, creates, or uses a certain type of system
resource, an object. The object type O characterizes the type of the system resource,
e.g. a process, a socket, or a file. It is represented by the tuple (P, A, r, f) where P
defines the set of object properties. The object type file, for instance, possesses
among others the properties file name/path, creation date and access rights. A
describes the set of actions of the object type O. Some of them can change the
properties of O. The relation r: a p with a є A, p ⊆ P describes for each action a є A
the subset pa ⊆ P of the object properties which are changed by a. Finally f defines a
relation f:a,p Aa, with a є A, p ⊆ P, Aa ⊆ A which defines for a given action a the set
of semantically equivalent actions Aa preserving the properties of the object type

 Towards Systematic Signature Testing 285

unchanged. An object o є O is an instance of O which is characterized by the concrete
property values. The object types together with the associated relations can be defined
for a concrete system by an expert with average effort. These definitions have to be
performed mostly once per system (e.g. with host based intrusion detection systems
once per operating system or monitored application) and can be used for all signature
tests concerning the system.

We now describe rules for transforming action sequences into semantically equal
sequences using object types. Each action belongs to a certain object type. The infor-
mation which action can be executed on an object is sufficient. This information can
be easily derived from the signature by the test engineer. If the object types are given
each action or action sequence, respectively, can be assigned an object type. Thus an
action sequence a1a2a3….an with ai є A, can be mapped on objects o1o2o3…on (with
oi=oj, if ai and aj relate on the same object). An action ai can be replaced by a
semantically equal action ái if (1) ái compared to ai does not change additional
properties of the respective object, or (2) if the additionally changed object properties
by ái are not changed by former or later actions in the action sequence. Thus all
substitutable action sequences á1á2á3…án

with ()YXafá ii /,∈ and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
=

−

=
∪∪

n

ik
k

i

l
l arYarX)(,)(

1

1

 can be generated

from the original sequence a1a2a3….an by means of the respective object types and the
relations r and f. The approach can be extended without loss of generality to replace
single actions by action sequences and vice versa.

Permutations of actions in an action sequence require additional specifications by
the test engineer to indicate dependencies between objects and between the actions of
an object. In many cases though the following semantics preserving permutation can
be performed: An action ai is almost always exchangeable with action aj (i<j), if ai
and aj relate to the same object and ai influences other properties than aj (r(ai) ∩ r(aj)
= Ø). Further there exists no action al with i<l<j which uses the object associated with
ai and aj. If such an action exists and ai is exchanged with aj then action al is executed
under different conditions. The order of actions which create and erase objects
remains unchanged due to the above mentioned rule that they change all properties. If
the test engineer further specifies which objects are independent of each other so the
associated actions can be exchanged as long as the before mentioned condition is
fulfilled. This specification requires though certain knowledge about the system
behaviour and the attack strategy. It is required once per signature.

The described substitution and permutation rules do not cover the whole range of
possible action sequence transformations. There are certain types of attacks which can
be transformed into action sequences which do correspond to a valid attack. These
exceptional cases must be handled by the test engineer.

Test method: For the test, all action sequences are derived which distinguish
concerning action sequence. This can be done analogously to step (1) and (2) of test
method 2 whereby path coverage is applied in step (1). Next all possible combinations
are generated for each action sequences according to the above given rules. Thereafter
it is proved using an intrusion detection system, whether one of the derived action
sequences is not detected by the signature. In this case the intrusion detection system

286 S. Schmerl and H. Koenig

does not trigger an alarm for this signature and action sequence. If the signature does
not detect a transformed action sequence it has to be checked, whether this action
sequence corresponds to a valid attack sequence. This test can be performed
analogously to test method 2. If the test outcome is positive the signature has to be
completed so that this sequence is also detected.

4.4 Test of Escape Events

Signatures only describe action sequences which represent successful attacks. When
during analysis events are recognized which make the successful completion of an
attack impossible the analysis has to be stopped to avoid false negatives and, of
course, for performance reasons. Actions which prevent the attack to be completed
are called escape events. They transfer the signature into the initial state. Many escape
events are implicitly given by contrary events. For example, in Solaris OS the system
calls fork and exit for creating and terminating processes are complementary events. If
the creation of a new process is an indispensable condition for the success of an attack
fork is a significant part of the signature. The corresponding escape event is exit.
Escape events are, therefore, an indispensable part of the signature to stop or to re-
initialize attack tracking. Consequently, their handling has to be tested.

For this, all events specified in the signature are again converted into actions
according to step (2) test strategy 2 (comp. Section 4.2). Next the contrary events are
assigned to each signature event using lists of actions with their corresponding
contrary actions. The resulting sequence of contrary actions is then again converted
into the corresponding events. This can be done using an IDS sensor. In the last step it
is proved, whether the signature handles each contrary event. If this is not the case,
the escape event is generally not modeled in the signature.

5 Example: Test for Under Specified Signatures

Signatures are specified using various description languages. Therefore the test sce-
narios has to be adapted to the given signature description language or semantic
model, respectively. We now demonstrate this for the test method for under specified
signatures with a concrete signature description language. We use EDL (Event
Description Language) [8] which is based on a Petri-net like modeling approach. It
supports the specification of complex multi-step attacks and possesses a high expres-
siveness and nevertheless allows for efficient analysis. Before describing the test
procedure we first outline some essential features of EDL. More details can be found
in [8].

5.1 Modeling Signatures in EDL

The descriptions of signatures in EDL consist of places and transitions which are con-
nected by directed edges. Places represent states of the system which are traversed by
the related attack. Transitions represent the state changes. They describe the specific
events which cause the state change, e.g. security relevant actions. These events are
contained in the audit data stream recorded during the attack. The signature execution

 Towards Systematic Signature Testing 287

is represented by tokens which flow from state to state. Tokens represent concrete
signature instances. They can be labeled with values as in colored Petri-nets.

Places describe the relevant system states of an attack. They are characterized by a
set of features and a place type. Features specify the properties of the tokens which
are located in a place. The information contained in a token can change from place to
place. EDL distinguishes four place types: initial, interior, escape, and exit places.
Initial places are the starting places of a signature. They are marked with an initial
token at the start of analysis. Each signature has exactly one exit place which de-
scribes the final place of signature. If a token reaches this place, then the signature has
identified a manifestation of an attack in the audit data stream. Escape places indicate
an analysis stop of an attack instance. They are reached if events occur which make
the completion of the attack instance impossible. Tokens which reach these places are
discarded. All other places are interior places. Fig. 3 shows a simple signature with
places P1 to P4 for illustration.

Value bindings by token

Feature definitions by places:

T1 P3 P4P1 T3

Initia Place

Interior Place

Exit Place

Escape Place

Transition

empty Int UserID

P2 T2

Int UserID,
Int ProcessID

String OpenFile,
Int TimeStamp

UserID=1080 UserID=1066
ProcessID=12

UserID=1080
ProcessID=9

OpenFile=".mail"
TimeStamp=1091

Token

UserID=1066

Fig. 3. Features and places

Transitions represent events which trigger state changes of signature instances. A
transition is characterized by input places, output places, event type, conditions, fea-
ture mappings, consumption mode, and actions. Input places of transition t are places
with an edge leading to the transition t. They describe the required state of the system
before the transition can fire. Output places of transition t are places with an incoming
edge from the transition t. They characterize the system state after the transition has
fired. A change between system states requires a security relevant event. Therefore
each transition is associated with an event type. Further, a system change can require
additional conditions which specify that certain features of the event (e.g. user name)
are assigned with particular values (e.g. root). Conditions can require distinct relation-
ships between event and token features on input places (e.g. same values).

If a transition fires, then tokens are created on the transition's output places. These
tokens describe the new system state. To bind values to the features of the new tokens
the transitions contain feature mappings. These are bindings which can be parameter-
ized with constants, references to event features, or references to input place features.
The consumption mode (cf. [8]) of a transition controls whether tokens that activate
the transition remain on the input places after the transition fired. This mode can be
individually defined for each input place. The consumption mode can be considered
as a property of a connecting edge between input place and transition. Only in the
consuming case the tokens which activate the transition are deleted on the input
places.

288 S. Schmerl and H. Koenig

Fig. 4 illustrates the properties of a transition. The transition T1 contains two condi-
tions. The first condition requires that feature Type of event E contains the value
FileCreate. The second condition compares feature UserID of input place P1, refer-
enced by “P1.UserID”, and feature EUserID of event type E, referenced by
“EUserID”. This condition demands that the value of feature UserID of tokens on
input place P1 is equal to the value of event feature EUserID. Transition T1 contains
two feature mappings. The first one binds the feature UserID of the new token on the
output place P2 with the value of the homonymous feature of the transition activating
token on place P1. The second one maps the feature Name from the new token on
place P2 to event feature EName of the transition triggering event of type E.

E

Feature definitions by places

Interior place T1-P1 P2

Int UserID;
String Name;

Conditions: Type == FileCreate; P1.UserID == EUserID;
Feature mappings: P2.UserID := P1.UserID; P2.Name := EName;

Int Type, EUserID;
String EName;

+ Non-consuming
... ...

E Transition T1 with associated
event type E Int UserID;

T1

- Consuming

+

Fig. 4. Transition properties

5.2 Test Steps

We now explain the test for under specified signatures according Section 2.2 for a
shell-link-attack which is described in EDL. A shell-link-attack exploits a special
shell feature and the SUID (Set-User-ID) mechanism. If a link to a shell script is
created and the link name starts with "-", then it is possible to create an interactive
shell by calling the link. In old shell versions regular users could create an appropriate
link which points to a SUID-shell-script and produce an interactive shell. This shell
runs with the privileges of the shell-script owner (maybe root).

Fig. 5 depicts the respective EDL-signature.

T14

T1

init_place_1 escape_place

link_with_prefix

T2

T3

T4 T5

link_no_prefix

T6

exit_place

T7

T8

+

+

-

-

-

-

-

-
+

create link without -

create link with -

rename link

rename link

rename link

execute link
delete link

delete link

rename link

Script created T10
+

chmod script

SUID_script

T11

+

rename script

T13

-

delete script
init_place_2

T9
+

create script

T12

+

copy script

Fig. 5. Simplified EDL-signature of the shell-link-attack

 Towards Systematic Signature Testing 289

Applying the test method of Section 4.2 to the test of shell-link-attack signature the
following test steps have to be executed:

Step1: For test case selection, we use the path coverage criteria (C4). Thus every
possible path from the initial to the exit place will be selected. In our example this
results in 19 different paths (e.g. T1,T5,T4,T9,T10,T12,T14), if each loop is passed
maximum once.

Step2: Based on the selected paths action sequences are assigned to the events
required by the transition by means of the inverse relation δ-1. In this case timed
independencies between the action sequences of transitions T1 to T8 and T9 to T13 can
be neglected. This restriction is possible, since the actions of the two transition paths
from places init_place_1 and init_place_2, respectively, to the exit_place are
concurrent. Only transition T14 synchronizes the two concurrent action sequences.
Since the shell-link-attack represents an attack which is executed within a shell, the
inverse relation δ-1

 assigns shell commands to the associated events. The transition
conditions are used to implement the parameters of the shell commands.

We show this as example for transition T3: T3 fires, when a rename_link-event
occurs and there is a token on place link_with_prefix and the event fulfils the two
transition conditions (link_with_prefix.link_name == new_link_name) and
(new_link_name == RegExp(“-.*“)). The associated rename_link-event is mapped by
δ-1 onto the shell command mv. This command has two parameters: the old
(old_name) and the future name (new_name) of the link or the file, respectively. The
first transition condition determines the old_name parameter of mv command with the
value of the link_name feature from the token of the place link_with_pefix. The
second parameter (new_name) of the mv command is arbitrary, but due the second
transition condition it is restricted to a name which begins with “–“.

Step3a (Establishing the correct attack conditions): The step is dropped, since the
shell-link-attack is a deterministic successful attack.

Step3b: Because the derived action sequence are shell commands they are simply
executed by means of a scripts in a shell.

Step3c: The successful exploitation of the vulnerability by the action sequence can be
proved by means of the shell command id which outputs the effective UserID. In case
of a successful attack it should correspond to the UserID of the script owner.
Therefore each action sequence has to be completed by appending an id-statement for
comparing the UserID. Thus a successful attack execution can be determined
automatically.

Test outcome: The execution of the 19 action sequences showed that all sequences
which containing copy statements for triggering transition T12 don’t leading to a suc-
cessful attack. Accordingly the transition T12 must be incorrect. The analysis of this
transition and the associated copy command cp revealed in a short time that cp during
copying removes the SUID bit set before with chmod (T10). Accordingly the signature
must be corrected so that the outgoing edge of transition T12 leads to script_created
and not as up to now to place SUID_scrip.

290 S. Schmerl and H. Koenig

6 Final Remarks

The derivation of signatures from new exploits is still a tedious process which
requires much experience. Systematic approaches are still rare. Newly derived
signatures often possess therefore significant detection shakiness. Inaccurate
signatures strongly limit the detection power of misuse detection systems as well as
their acceptance in practice. A longer test and correction phase is needed until
qualitative and accurate signatures can be applied which implicates an unacceptable
vulnerability window. Systematic test methods can help to accelerate the signature
development process and to reduce the vulnerability period of affected systems. In
this paper we presented first approaches for a systematic signature test.

The detection shakiness of newly derived signatures is the result of heuristic
derivation procedures. Even the rare systematic approaches scarcely induce ideal
signatures due to the broad range of system details to be taken into account. Normally
derived signatures are either under or over specified. We presented two test methods
to detect these both kinds of variances as well as preliminary tests and a test on escape
events. Test methods for signature tests require a strong involvement of the test
engineer in details of the considered system. Unlike other tests signature tests do not
require specific test architecture. All tests are executed on the vulnerable system and
the monitoring intrusion detection system. A central issue of signature testing is to re-
establish the conditions needed for successfully running an attack. This requires a lot
of experience and limits the practicability of the tests. Beside this or in the case of
deterministic successful attacks the test engineer needs only sparsely knowledge
about the concrete attack and signature to accomplish the tests. We are currently
investigating the proposed test methods with concrete signatures. Further we look for
other test strategies.

References

1. Cheung, S., Lindqvist, U., Fong, M.: Modeling Multistep Cyber Attacks for Scenario
Recognition. In: Proc. of the 3rd DARPA Information Survivability Conf. and Exposition,
pp. 284–292. IEEE Computer Society Press, Washington (2003)

2. Debar, H., Morin, B.: Evaluation of the Diagnostic Capabilities of Commercial Intrusion
Detection Systems. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 177–198. Springer, Heidelberg (2002)

3. Julisch, K.: Dealing with False Positives in Intrusion Detection. In: Debar, H., Mé, L., Wu,
S.F. (eds.) RAID 2000. LNCS, vol. 1907, Springer, Heidelberg (2000)

4. Larson, U., Lundin Barse, E., Jonsson, E.: METAL - A Tool for Extracting Attack
Manifestations. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 85–
102. Springer, Heidelberg (2005)

5. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARAP Off-Line
Intrusion Detection System Evaluation. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000.
LNCS, vol. 1907, pp. 162–182. Springer, Heidelberg (2000)

6. Lippmann, R., Webster, S., Stetson, D.: The Effect of Identifying Vulnerabilities and
Patching Software on the Utility of Network Intrusion Detection. In: Wespi, A., Vigna, G.,
Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 307–326. Springer, Heidelberg (2002)

 Towards Systematic Signature Testing 291

7. Meier, M., Bischof, N., Holz, T.: SHEDEL - A Simple Hierarchical Event Description
Language for Specifying Attack Signatures. In: Proc. of the 17th IFIP International
Conference on Information Security, pp. 559–571. Kluwer, Dordrecht (2002)

8. Meier, M., Schmerl, S., Koenig, H.: Improving the Efficiency of Misuse Detection. In:
Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 188–205. Springer,
Heidelberg (2005)

9. Ranum, M.J.: Challenges for the Future of Intrusion Detection. In: Wespi, A., Vigna, G.,
Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, Springer, Heidelberg (2002)

10. Rubin, S., Jha, S., Miller, B.: Automatic Generation and Analysis of NIDS Attacks. In:
Proc. of. 20th Annual Computer Security Applications Conference, Tucson, AZ, USA, pp.
28–38. IEEE Computer Society Press, Los Alamitos (2004)

11. Rubin, S., Jha, S., Miller, P.B.: Language-based generation and evaluation of NIDS
signatures. In: Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA, USA,
pp. 3–17. IEEE Computer Society Press, Los Alamitos (2005)

12. Schmerl, S., König, H., Flegel, U., Meier, M.: Simplifying Signature Engineering by
Reuse. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 436–450. Springer,
Heidelberg (2006)

13. Totel, E., Majorczyk, F., Mé, L.: COTS Diversity Based Intrusion Detection and
Application to Web Servers. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 43–62. Springer, Heidelberg (2006)

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 292 – 304, 2007.
© IFIP- International Federation for Information Processing 2007

TPLan-A Notation for Expressing Test Purposes

Stephan Schulz1, Anthony Wiles1, and Steve Randall2

1 European Telecommunications
Standards Institute (ETSI)

650 Route de Lucioles
F-06921 Sophia Antipolis Cedex

{Stephan.Schulz, Anthony.Wiles}@etsi.org
2 PQM Consultants

4 The Myrtles
Tutshill, Chepstow

U.KSteve.Randall@pmqconsultants.com

Abstract. To this day test purposes are predominately defined in practice using
natural language. This paper describes a more formal approach based on a
notation which has been recently developed and standardized at the European
Telecommunications Standards Institute (ETSI) called TPLan. We introduce
here the motivation and main concepts behind this new notation, and share our
experiences gathered from its application in the development of standardized
test specifications. We also discuss how TPLan can help to make test
development as a whole more efficient – especially in the context of suite based
test specification.

1 Introduction

TPLan has been developed and standardized [1] by the ETSI Technical Committee
Methods for Testing and Specification (TC-MTS). Members of this group include
leading testing experts from industry and academia and it receives support from
ETSI's own Protocol and Testing Competence Centre. For more than a decade MTS
has been involved in the design of languages, methodologies, frameworks, and
guidelines [2,3,4] to help rapporteurs to increase quality and effectiveness of their
specifications. The Test Purpose notation, TPLan, was conceived when investigating
approaches to improving efficiency in the development of test specifications based on
patterns [5]. Here, it was realized that patterns could or should be identified much
earlier than at the time of test case writing, i.e., when identifying test purposes.

Much of the current research on test specification development has focused on the
development and use of either suite-based [2] or model-based [6] testing technologies.
Test purposes have been anchored as a concept in conformance testing methodology
[7] for a long time but, as such, have received little attention in the testing research
community. Formal approaches to test purpose specification [9,10,11,12] have been
proposed but these have yet to be deployed successfully in industry. Graphical
approaches based on Message Sequence Charts (MSC) [13, 14] for specifying test
purposes have had only limited success – arguably due to their limitation in

 TPLan-A Notation for Expressing Test Purposes 293

expressing behaviour only in terms of interactions. In our experience natural language
still dominates the specification of test purposes.

It was our intention with TPLan to make test purpose specification more structured
but not completely formal. Evidence of this approach can be found in the notation
where many of the base keywords have been selected from preferred writing styles
used in ETSI's test purpose specifications. Another design criterion was to keep the
core notation as independent as possible from any specific application area and testing
technology while making it easily extensible. This opens TPLan to a wide range of
applications from, for example, telecommunication to civil engineering. It also allows
it to be used in conjunction with both suite-based and model-based testing.

After an introduction to test purposes and how they fit into test specification
development we will discuss their specification with our notation in section 3 of this
paper in more detail. TPLan has already been used within ETSI to specify more than a
thousand test purposes in the context of test development for the Internet Protocol
version 6 (IPv6) [15] and digital Public Mobile Radio (dPMR) [16]. Section 4
presents first experiences from these projects which have shown that TPLan can help
to enforce uniformity of test purpose specifications and to identify inconsistencies in
standard documents at an early stage before costly test case specification and
validation. We believe, however, that this notation may have even more potential in
the test specification process by reducing development times and increasing
productivity. Section 5 proposes some ideas for more sophisticated tools that may
achieve such additional gains.

2 About Test Purposes

As with any other development activity, better test specifications can be produced
when a structured approach is followed. For more than 15 years ETSI has applied the
methodology prescribed by [7,8] where the development of a complete test
specification is broken down into five discrete steps as shown in Table 1. These steps
can be understood as different levels of abstraction that bridge the large intellectual
gap between a base specification and the final executable test suite. They are not only
an essential framework to the test engineer but also enable a common understanding
of the complete test suite between different target audiences.

Table 1. Steps in test specification development

Test Specification Step Means of Specification Question answered
Requirement (RQ)
identification

Text, Tables Which requirements are to be
tested?

Test Purpose (TP)
specification

Text, Tables, TPLan What is to be tested?

Test Description (TD) Text, Tables, MSCs,
etc

How is it to be tested?
(informally)

Test Case (TC)
specification

TTCN-3, C, Java, Perl,
Python, MSC, etc

How is it to be tested?
(executable)

Test validation - Is test implemented correctly?

294 S. Schulz, A. Wiles, and S. Randall

Test purposes are derived from the requirements stated in one or more base
specifications that define the implementation. This direct relationship to the
requirements makes it possible to make an early assessment of test coverage of the
specification and to determine the inter-dependencies between different requirements.
Each test purpose usually focuses on one specific requirement. Within ETSI, these
base specifications are most often protocol standards.

Test purposes provide an essential abstraction of a test that specifies what is to be
tested without going into the details of how a test is to be implemented. Test purposes
are not test steps; they specify pass verdict criteria. Test purposes are written using the
language and terminology of the base specification(s) and are independent of any
particular programming language, test system or platform on which corresponding
tests might eventually be executed. They need to be developed, discussed and
stabilized prior to any test case specification.

Test purpose specification results in a rigid assessment of the requirements with
which they are associated and can identify problems in base specifications long before
any test is ever implemented or executed against an Implementation Under Test
(IUT). Not all requirements will lead to test purposes due to the limitations imposed
by the chosen type of testing, e.g., conformance or interoperability testing.

Test purposes serve an important role as a basic documentation tool. They do not
only bridge the gap between original requirements and test case specification but also
between technology experts (who are not necessarily test engineers), managers, and
the test engineers. At ETSI this aspect is very important since test specifications are
often reviewed and approved by standards working groups. These groups need to
understand the requirements which are being tested without having to read detailed
test case specifications. In addition, ETSI is an environment where test purposes and
corresponding test case specifications are developed for a wide variety of
technologies in a distributed (and multi-cultural) environment. Such an environment
clearly has a need for a consistent and uniform approach to test purpose specification,
i.e., a notation which provides a common and recognisable level of understanding.

3 Test Purpose Specification with TPLan

TPLan has been designed to make test purpose specification more formal without
inhibiting the expressive power of prose. The intent was to enable a consistent and
structured representation of test purposes across a wide range of application domains
and cultural backgrounds while retaining the informal "look and feel" of a natural
language. It is for this reason that the core TPLan syntax and semantics have been
kept small and left open. Of course this flexibility or “freedom of expression”
inevitably results in weaker semantics and limits the checks that a tool can perform
purely on the basis of the TPLan definition itself.

3.1 Test Purpose Structure

A TPLan test purpose comprises two segments as shown in Figure 1: a header and a
body. The header provides a unique identifier for the test purpose and, optionally,
references to other useful information for the understanding of the test purpose. These

 TPLan-A Notation for Expressing Test Purposes 295

can include the requirement(s) covered by the test purpose, the type of test purpose,
dependencies with other test purposes, and the tested role of the IUT.

The body of a test purpose specifies the specific initial IUT condition required for
the test purpose to be valid and critical verdict criteria for a test - in the form of a
stimulus and response - to ensure that the requirement(s) are met. The structuring of
the test purpose body into the "with", "when" and "then" clauses clearly shows the
roots of this notation in black box testing. A test purpose body is usually written from
the perspective of the IUT, i.e., pre-conditions refer to the required initial state of the
IUT, etc.

-- test purpose header
TP id: <string>
< other test purpose headers (optional) >

-- test purpose body
with { <pre-conditions> } -- optional clause

ensure that {

 when { <stimulus> }

 then { <response> }

}

Fig. 1. Basic structure of a TPLan test purpose specification

Table 2. Key TPLan concepts

Concept Definition
Entity A physical or logical actor which applies a stimulus or

receives response, and vice versa.
Event The measurable basis of a stimulus or response which

may be parameterized with Values
Value An abstract identifier representing either

− a literal constant;
− a numeric constant;
− a field or other container

Unit A concrete qualifier to a number which helps to
indicate the relative size or quantity of the number.

Condition An abstract expression of the status or state of the
entity or entities under test.

Word Any other natural language element useful for the
specification of the test purpose body, for example,
− an action
− an article, preposition, adjective, adverb, etc

The keywords "when" and "then" should not be misunderstood to require a
complete specification of accurate test sequence(s). Stimulus and response in a test

296 S. Schulz, A. Wiles, and S. Randall

purpose should focus and isolate only the directly relevant parts of information
needed to assess if a requirement is indeed fulfilled by an IUT, for example, message
types and critical information element values. Again, the level of information content
and language used should be identical to the one of the requirement definition in the
base specification.

3.2 Fundamental Building Blocks

The initial conditions, the stimulus and the response in a test purpose body are
constructed using the concepts which are listed in Table 2.

Instances of these concepts can be created using quoted strings containing free
form text. Some instances for entities and words such as "IUT", "sends" or
"containing" have been pre-defined as keywords in the notation. An example of a
basic TPLan test purpose is shown in Figure 2.

TP id : CW_U01_002
Summary : 'A busy user with information channel control
 but no B-Channel responds to an incoming
 SETUP'
RQ ref : Section 9.5.1
IUT role : user
with { IUT in 'an information channel control state'
 and 'no B-Channel free'
 }

ensure that {

 when { the IUT receives 'a valid and compatible SETUP'
 from the TESTER
 containing 'a channel identification IE'
 indicating 'no B-channel available' }

then { the IUT sends 'ALERTING' to the TESTER }

}

Fig. 2. A complete example of a test purpose

The drawback of quoted strings is, however, that it is impossible to associate much
meaning with them. It is also not possible to check whether quoted strings specify
instances of these concepts in the correct order; for example, that ALERTING in
Figure 2 is really an event.

3.3 User Defined Extensions

TPLan allows users to extend or customize its vocabulary based on the concepts
introduced in the previous section with keywords which are relevant to their own
specific application domain. This concept makes TPLan much more powerful than
other forms of test purpose specification. Although the notation does not support an

 TPLan-A Notation for Expressing Test Purposes 297

explicit definition of the semantics associated with a word or phrase, such semantics
can often be implied from application domain within which TPLan is being used.

As an example, assume that we define a new word "accepts". When we use this
new word in a TPLan "when" clause, e.g., "when { the IUT accepts 'this message' }",
then TPLan itself does not define or restrict what "accepts" actually means or how
such acceptance is measured in an eventual test case specification. The word
"accepts" could mean any of the following actions:

• the IUT displays a message to the user.
• no error is displayed to the user.
• the IUT will continue interacting normally.
• the IUT does nothing that is externally observable

However, the meaning of "accepts" is likely to be obvious to technology experts as
well as test engineers familiar with the domain or technology. As a result, this word is
a valid abstraction of either one or possibly more interactions with the user or internal
or external entities.

xref CW_U { ETS_300_058_1 } -- ETSI standard reference

def condition information_channel_control_state

def event SETUP { Channel_identification_IE }
def event ALERTING

def value no_B_channel_available

TP id : CW_U01_002
Summary : 'A busy user with information channel
 control but no B-Channel responds to an
 incoming SETUP'
RQ ref : Section 9.5.1
IUT role : user

with { IUT in an information_channel_control_state
 and 'no B-Channel free'
 }

ensure that {

 when { the IUT receives a valid and compatible SETUP
 from the TESTER
 containing a Channel_identification_IE
 indicating no_B_channel_available }

then { the IUT sends ALERTING to the TESTER }

}

Fig. 3. A complete example of a test purpose with user definitions

298 S. Schulz, A. Wiles, and S. Randall

Users have to declare specific instances of the main concepts shown previously in
Table 2 when they use them in the test purpose definition. Figure 3 illustrates an
example test purpose from the telecommunication domain written for conformance
testing. The user has included a cross-reference to identify the ETSI standard
ETS 300 058-1 as the base specification and then defined one initial condition and
two events representing the different message types.

The definition of the SETUP event shows one parameter. That does not mean that in
practice the message that this event represents only has one parameter. It means that
only this parameter is significant in determining whether the IUT fulfills the referenced
requirement. In test purposes, events are abstract representations of exchanged or
observed information; they are not complete message instances. Similarly the user
defined value in the example is an abstract representation of a concrete value.

Note also that within TPLan, user defined conditions, events and values are
expressed as identifiers, i.e., they must not contain spaces. In our example we have
chosen underscores to preserve a feel of natural language to the identifiers but this is
only our naming convention. Finally, notice that one initial condition has been
specified for the sake of this example using a quoted string. Quoted strings can still be
useful in cases where, for example, a pre-condition is very complex.

By means of a simple notation, the user is also able to restrict the syntactical
context in which user-defined words can be used. Within a context definition
statement, any word prefixed with a tilde character (~) may only be used in that
context, any word surrounded by square brackets is considered optional and any
unencumbered word can be used in any other syntactical context. As an example, the
following definitions can be made:

 def word requested

 def context is [not] ~requested to

Here, the words "is", "not" and "to" are included in the predefined TPLan vocabulary.
The "context" statement constrains the user-defined keyword "requested" so that it is
only syntactically correct in the contexts "is requested to" and "is not requested to".

3.3 Arrangement of Test Purpose Definitions

In most cases and for a variety of reasons test purpose specifications need a logical
structuring. To assist users in such structuring TPLan offers two complementary
mechanisms which are grouping and inclusion.

Test purposes can be arranged into logical, hierarchical groups by using the
"Group" and "End Group" statements as shown in Figure 4. These groups as well as
individual test purposes can also be collected together into a single specification
referred to as a Test Suite Structure (TSS) which also contains a header of its own.

In those cases where a number of test purpose writers are involved in a project, it
will be necessary to maintain a single source of vocabulary extensions. For this
purpose, the notation allows a TSS to include other TPLan files by means of a
#include statement as shown in Figure 5. This mechanism uses a simple replacement
method so that the content of the identified file is inserted into the file in place of the
#include statement. Additionally, the inclusion mechanism can be used to construct a
complete TSS from separate group files developed by multiple test purpose writers.

 TPLan-A Notation for Expressing Test Purposes 299

TSS : COR_IOP –- identifier for all test purposes
Title : 'RFC2460 IPv6 Core Specification'
Version : 1.0.1
Date : 05.10.2006
Author : 'Steve Randall (ETSI TC-MTS)'

Group 1 'Initialization functions'

Group 1.1 'System startup'

Group 1.1.1 'Memory check'
…
<test purpose definitions>
…
End Group 1.1.1

Group 1.1.2 'Media check'
…
<test purpose definitions>
…
End Group 1.1.2

End Group 1.1

End Group 1

…

Fig. 4. Example test purpose structuring using TSS header and grouping

TSS : COR_IOP -- identifier for all test purposes
Title : 'RFC2460 IPv6 Core Specification'
Version : 1.0.1
Date : 05.10.2006
Author : 'Steve Randall (ETSI TC-MTS)'

#include c:\include\SIUnitDefs.tplan
#include c:\include\IOPDefs.tplan
#include c:\include\IPv6Defs.tplan

#include c:\include\IPv6Group1.tplan -- Initialization

#include c:\include\IPv6Group2.tplan -- Outgoing call

#include c:\include\IPv6Group3.tplan -- Incoming call

Fig. 5. TPLan specification constructed from #include statements

4 First Experiences

TPLan has been used by ETSI for the specification of test purposes in its IPv6 and
dPMR test development projects. In both cases test purposes have been specified for
two types of testing, conformance and formalized interoperability testing [17].

300 S. Schulz, A. Wiles, and S. Randall

Two examples, a dPMR conformance and an IPv6 interoperability test purpose, are
shown in Figures 6 and 7. These examples illustrate how TPLan vocabulary can be
customized for these specific application domains and adapted to different types of
testing. Note that required TPLan user definitions have been omitted from the figures.
Also, almost all test purpose header lines are optional. The ones chosen in these
examples provide further information about a test purpose summary, the type of test
purpose, a reference to the catalogued requirement that the test purpose pertains to,
the role or type of equipment being the subject of test, as well as a reference to the test
architecture or configuration in which the IUT or Equipment Under Test (EUT) is
embedded.

TP id : TP_PMR_0406_01
summary : 'Header frame acknowledges connect request'
TP type : conformance
RQ ref : RQ_001_0406
IUT Role : CSF -- Configured Service Function (CSF)
config ref: CF_dPMR_CSF_01 -- CSF Implementation Under
 -- Test (IUT) and TESTER

with { IUT in standby }

ensure that {
 when { IUT receives a Connection_Request }
 then { IUT sends an Acknowledgement_Frame }
}

Fig. 6. Example dPMR conformance test purpose

Our experiences with the first prototype version of TPLan (which allowed the use
of a non extensible pre-defined set of keywords and quoted strings) were that writers
felt limited in their ability to fully express test purposes. The language used by the
standard document differed too much from the language that could be constructed
from pre-defined TPLan keywords. Consequently, writers frequently requested new
keywords to be added to the notation and made heavy use of quoted strings in test
purpose specification. That, in turn, reduced the ability of project managers to ensure
the quality and consistency of test purposes.

The introduction of user defined extensions to TPLan radically changed this
situation. The ability to define a domain specific vocabulary not only gave writers
more freedom in specifying test purposes but also made it easier to detect the misuse
or misspelling of significant words. We noticed that, independent of the project type,
the user defined vocabulary initially grows quite rapidly during the specification of
first test purposes. After that, however, the need for new definitions levels off quickly.
The test purpose writers also found it useful that user defined keywords could be
explained or clarified with comments at one central place, i.e., their definition.

 TPLan-A Notation for Expressing Test Purposes 301

TP id : TP_COR_8231_01
summary : 'EUT uses at least two of the connected
 routers as its default routers '
TP type : interoperability
RQ ref : RQ_COR_8231
EUT role : Host, Router -- = either Host or Router
config ref: CF_033_I -- 2 Routers and 1 Node as
 -- Qualified Equipment (QE1/2/3) +
 -- Equipment Under Test (EUT)
 -- connected via 2 links
TD ref : TD_COR_8231_01

with { QE1 having 1 unique unicast_address on each link

 and QE2 having 1 unique unicast_address on each link

 and EUT and QE3 able to communicate

 and QE1 'having disabled one of its interfaces' }

ensure that {

 when { (QE1 disables 1 interface
 or QE2 disables 1 interface)
 and EUT is requested to send a packet to QE3 }

 then { EUT sends the packet to QE3 }

}

Fig. 7. Example Ipv6 core interoperability test purpose

The extra effort spent in structured writing helped to reveal many problems or
inconsistencies in the base specification prior to any test case specification or
execution. This property of the notation became especially apparent during dPMR test
purpose specification where writers were experts in the technology but novices in
testing. Automated syntax checking with a simple parser [18] gave a first level of
assurance on test purpose quality. A manual check of test purposes was nevertheless
still required to assure their correctness. For a proficient English speaker it was easy
to identify incorrect or badly written test purposes as these were not minor
grammatical or spelling errors, the test purposes just obviously read incorrectly. It is
not clear at this point if an improved syntax checker or further tool support could
eliminate the need for this second grammar check.

5 Improving of Test Specification Efficiency

In this section we want to show how TPLan offers a foundation to build on.
Remember that it has only recently been standardized and is still in its infancy. So far

302 S. Schulz, A. Wiles, and S. Randall

there is much interest in it but only limited tool support. Based on our early
experience with TPLan we believe that additional tool support could help to further
improve the speed and quality of test purpose as well as test specification
development as a whole.

Sophisticated editor support is probably one of the more important issues. Context
sensitive editors could assist, extend and manage TPLan user definitions and provide
features such as syntax highlighting, keyword completion and other forms of
vocabulary management. This kind of tool would help users to avoid writing incorrect
TPLan test purposes to begin with. More advanced parsers which go beyond simple
syntax checks are needed to help pinpoint incorrect test purposes early on in the
specification process. It may also be possible to extend the analysis of test purposes
by incorporating some of the English grammar checking technologies used by modern
word processing software.

Test purposes that have been checked for correctness can be used as input to other
forms of processing. One of these is the identification of recurring patterns in
preconditions and the interactions between entities. Such patterns can be used in a
variety of ways:

1. the identification of potentially reusable segments of test case specifications
derived from the test purposes;

2. an assessment of test purpose variation;
3. an estimation of the possible complexity of the eventual test case specification;
4. an estimation of the effort likely to be required for implementing the eventual

test specifications.

When used with suite-based test technologies TPLan test purposes can serve as the
basis for test purpose publication or other presentation formats. TPLan test purposes seem
especially attractive for generation of test specification stubs. They contain a considerable
amount of information regarding initial conditions, verdict criteria and interaction of
entities. Nevertheless there are many details which are not specified in test purposes but
which are required for test case specification such as preamble implementation, complete
message values, guarding against unexpected behaviour, postamble implementation, etc.
To make test case generation as complete as possible we expect it to almost certainly be
based on and driven by domain-specific TPLan vocabulary and semantics as well as other
external sources of input. But once a clever approach is found it will be possible to
develop code generators for many different testing languages since TPLan is independent
of a specific test case specification language.

Another interesting application for future TPLan tools is the automatic validation
of manually written test cases against TPLan test purposes to determine whether or
not a test case implementation fulfils the criteria specified in the associated test
purposes. This could be an interesting idea, e.g., for companies that define test
purposes but subcontract test case specification.

When used in a model-based testing context, TPLan test purposes can be used in
the definition of coverage criteria or testing directives for test generation from formal
executable models. Here, the test purpose would define a path through model
behaviour. Similarly as in the case of test case stub generation, the abstract nature of
test purposes has to be again taken into account in model-based test generation. A
stimuli or response of a test purpose specification may correspond to only one state

 TPLan-A Notation for Expressing Test Purposes 303

transition but also to a path or even multiple paths in the model (see our discussion of
"accepts" in Section 3.3). Secondly, the faithful use of data specified in a test purpose
is non-trivial to handle in test case generation. Data is often not hard-coded but
computed during the execution of models. Therefore, for example, it has to be
ensured that the event parameter values specified in a test purpose are truly sent or
expected by the generated test case.

6 Conclusions

In this paper we have introduced the new notation TPLan which has been developed
and standardized by ETSI for expressing test purposes. TPLan attempts to formalize
the specification of test purposes by requiring a certain structure and composition
based on a set of well defined concepts, i.e., entities, event, value, units, conditions
and words. It is independent of a specific testing technology or application domain. A
key concept in TPLan is that the pre-defined vocabulary can be extended and
customized by users for specific application domains. User definitions make it
possible to add more meaning to test purposes and to customize the notation for a
specific application domain.

This notation has already been used extensively by ETSI in its IPv6 and dPMR test
specification developments. Experiences have been positive in that the quality of test
purpose specifications was easier to monitor and affect. Further study is however still
required to investigate other impacts of TPLan use such as its effect on overall test
specification process. We expect that TPLan will have an even bigger impact on test
specification development once more sophisticated tools for handling test purposes
become available. Most interest seems to be in the generation of test case
specification stubs from test purposes as well as the use of test purposes as a driver
for model-based test generation. Some tools, such as a free simple parser and syntax
highlighter, are already publicly available at [18].

In the future we see that TPLan standardization is likely to be extended. Currently
the creation of TPLan profiles for specific application areas is under discussion, for
example, for communicating systems. Such profiles will essentially just extend the
pre-defined vocabulary and define semantics for the later. In addition, we are
planning to study further existing work on requirements definition languages which
are closely related to definition of test purposes.

Acknowledgments

We would like to thank all experts who took part in TPLan test purpose specification
in the ETSI IPv6 and dPMR projects for their constructive comments and feedback on
the notation itself. In addition, we would like to recognize Dr. Thomas Deiß for his
extensive reviews of TPLan standard drafts.

References

[1] ETSI ES 202 553: Methods for Testing and Specification (MTS); TPLan: A Notation for
expressing Test Purposes, European Telecommunications Standards Institute, Sophia
Antipolis (2007)

304 S. Schulz, A. Wiles, and S. Randall

[2] Willcock, C., et al.: An Introduction to TTCN-3. Wiley & Sons, Chichester (2005)
[3] Moseley, S., Randall, S., Wiles, A.: Experience within ETSI of the combined roles of

conformance testing and interoperability testing. In: Proceedings of 3rd Conference on
Standardization and Innovation in Information Technology (SIIT), Delft, The
Netherlands, October, pp. 177–89 (2003)

[4] Randall, S.: Descriptive SDL., Telektronikk,Telenor AS, (4), pp. 107–12 (2000)
[5] Neukirchen, H., Dai, Z.R., Grabowski, J.: Communication Patterns for Expressing Real-

Time Requirements Using MSC and their Application to Testing. In: Groz, R., Hierons,
R.M. (eds.) TestCom 2004. LNCS, vol. 2978, pp. 144–159. Springer, Heidelberg (2004)

[6] Hartma, A., Nagin, K.: The AGEDIS tools for model based testing. In: Proceedings of
the 2004 ACM SIGSOFT international Symposium on Software Testing and Analysis
(ISSTA ’04), Boston, MA, pp. 129–132. ACM Press, New York (2004)

[7] Information Technology - Open Systems Interconnection - Conformance Testing
Methodology and Framework - Part 1: General concepts, Geneva (1994) ISO/IEC 9646-1

[8] Information Technology - Open Systems Interconnection - Conformance Testing
Methodology and Framework - Part 2: Abstract Test Suite Specification, Geneva (1994)
ISO/IEC 9646-2

[9] Jard, C., Jeron, T.: TGV: theory, principles and algorithms. In: Proceedings of 6th World
Conference on Integrated Design and Process Technology (IDPT 2000), Pasadena,
California, USA (June 2002)

[10] Desmoulin, A., Viho, C.: Formalizing Interoperability for Test Case Generation Purpose.
In: Proceedings of IEEE Nasa ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, Columbia, MD, USA (September 2005)

[11] Tretmans, J.: A Formal Approach to Conformance Testing, Ph.D. Thesis, University of
Twente, The Netherlands (1992)

[12] Deussen, P., Tobies, S.: Formal Test Purposes and The Validity of Test Cases. In: Peled,
D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, Springer, Heidelberg (2002)

[13] Grabowski, J., Hogrefe, D., Nahm, R.: Test Case Generation with Test Purpose
Specification by MSCs. In: Faergemand, O., Sarma, A. (eds.) SDL’93 - Using Objects
North-Holland (October 1993)

[14] Object Management Group: UML 2.0 Testing Profile Specification (2003)
[15] Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. IETF RFC

2460 (December 1998)
[16] ETSI TS 102 490 (V1.3.1): Electromagnetic compatibility and Radio spectrum Matters

(ERM); Peer-to-Peer Digital Private Mobile Radio using FDMA with a channel spacing
of 6,25 kHz with e.r.p of up to 500 mW, European Telecommunications Standards
Institute, Sophia Antipolis (2006)

[17] ETSI TS 102 237-1 (V4.1.1): Telecommunications and Internet Protocol Harmonization
Over Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part
1: Generic approach to interoperability testing, European Telecommunications Standards
Institute, Sophia Antipolis (2003)

[18] http://www.tplan.info

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 305–318, 2007.
© IFIP- International Federation for Information Processing 2007

Testing Nondeterministic Finite State Machines with
Respect to the Separability Relation

Natalia Shabaldina1, Khaled El-Fakih2, and Nina Yevtushenko1

1 Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia
snv@kitidis.tsu.ru, yevtushenko@elefot.tsu.ru

2 American University of Sharjah, PO Box 26666, UAE
kelfakih@aus.edu

Abstract. In this paper, we propose a fault model and a method for deriving
complete test suites for nondeterministic FSMs with respect to the separability
relation. Two FSMs are separable if there exists an input sequence such that the
sets of output responses of these FSMs to the sequence do not intersect. In
contrast to the well-known reduction and equivalence relations, the separability
relation can be checked when the «all weather conditions» assumption does not
hold for a nondeterministic Implementation Under Test (IUT). A (complete)
test suite derived from the given (nondeterministic) FSM specification using the
separability relation can detect every IUT that is separable from the given
specification after applying each test case only once. Two algorithms are
proposed for complete test derivation without the explicit enumeration of all
possible implementations. The first algorithm can be applied when the set of
possible implementations is the set of all complete nondeterministic
submachines of a given mutation machine. The second algorithm is applied
when the upper bound on the number of states of an IUT is known.

Keywords: separability relation, testing nondeterministic FSMs.

1 Introduction

A number of conformance testing methods have been developed for deriving tests
when the system specification and implementation are represented by
nondeterministic FSMs [1–16]. Non-determinism occurs due to various reasons such
as performance, flexibility, limited controllability, and abstraction [8] [11] [13] [17].

A number of methods have been proposed for test generation against
nondeterministic FSM specifications with the guaranteed fault coverage with respect to
appropriate fault models. The methods given in [3] and [4] derive test suites with
respect to the equivalence relation for a nondeterministic implementation against a
nondeterministic specification while the methods given in [6], [8], [9], and [10] derive
test suites for a complete deterministic implementation against a nondeterministic
specification with respect to the reduction relation. Two FSMs are equivalent if they
have the same input/output behavior and an FSM T is a reduction of FSM S if the
input/output behavior of T is a subset of that of S. Hierons [11] presented a test
derivation method with respect to the reduction relation when a system implementation

306 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

can be nondeterministic. Petrenko and Yevtushenko [15] generalize the work given in
[18] and proposed a method that derives a test suite with respect to the reduction and
equivalence relations for a nondeterministic implementation against possibly a partial
specification.

When deriving test suites with respect to the reduction and equivalence relations
with the guaranteed fault coverage the so-called complete testing assumption [3–4]
(called «all weather conditions» by Milner in [19]) is assumed to be satisfied when
testing a nondeterministic implementation. According to this assumption, if an input
sequence (a test case) is applied a number of times to a nondeterministic
implementation, then all possible output sequences of the implementation to this test
case can be observed. However, when an Implementation Under Test (IUT) has a
limited controllability, as happens, for instance, in remote testing, the complete testing
assumption cannot be satisfied. In this case, the only relation that can be used for the
preset test derivation with the guaranteed fault coverage [20] [21] is the separability
relation defined by Starke in [22]. Two FSMs are separable if there is an input
sequence, called a separating sequence, such that the sets of output responses of these
FSMs to the sequence do not intersect, i.e., the sets are disjoint. It is known [15] [21]
that test suites derived with respect to the equivalence and reduction relations cannot
be used for testing the separability relation. The fact that an FSM with m states is not
equivalent (or not a reduction) of an FSM with n states can always be established by
an input sequence of length up to mn [15], while there exist two FSMs which can be
separated only with an input sequence of exponential length [5].

The separability relation was further studied by Alur et al. in [5] where an algorithm
for deriving a separating sequence for two separable states of an FSM with n states is
proposed and is shown that the upper bound on the length of a shortest separating
sequence is exponential. In [23], it is shown that given FSMs S with n states and T
with m states, the length of a shortest separating sequence is at most 2mn−1 and this
upper bound is reachable. An algorithm is proposed for deriving a shortest separating
sequence of the given FSMs. However, experiments with the proposed algorithm
show that on average, the length of a shortest separating sequence is less than mn and
the existence of a separating sequence significantly depends on the number of
nondeterministic transitions in the given FSMs. For all conducted experiments the
upper bound 2mn−1 on the length of a separating sequence was never reached.

In this paper, we consider the test derivation w.r.t. the reduction relation when «all
weather conditions» assumption may not be held for an IUT. A test suite is called
complete up to the separability relation if it detects every non-reduction of the
specification FSM from a given fault domain that is separable from the given FSM
specification. If each test case of the test suite is applied to an IUT of the fault domain
once and an IUT is separable from the specification FSM, then the IUT will be
detected with such a test suite. However, this test suite can also detect some other
implementations which are non-reductions of the specification FSM but are not
separable with the specification FSM. Correspondingly, we refine the notions of a
fault model and of a complete test suite. We propose a method for deriving a
complete test suite without the explicit enumeration of FSMs of the fault domain
when the fault domain is the set of all submachines of a given mutation machine
(including those which are non-deterministic) and when the fault domain has each
implementation FSM up to m states. We also demonstrate that not every test suite that

 Testing Nondeterministic Finite State Machines with Respect 307

is complete w.r.t. the reduction relation under the complete testing assumption can be
used for testing up to the separability relation when each test case is applied to an IUT
at most once.

This paper is organized as follows. Section 2 includes all necessary definitions. In
Section 3 we refine the notion of a fault model and define a complete test suite w.r.t.
the refined fault model. Sections 4 and 5 contain algorithms for building a complete
test suite w.r.t. the refined model where the fault domain is the set of all complete (not
only deterministic) submachines of a given nondeterministic FSM (a mutation
machine) and where the fault domain is the set of all nondeterminisitic FSMs with at
most m states. Section 6 concludes this paper.

2 Preliminaries

A finite state machine (FSM) S is a 5-tuple 〈S, I, O, hS, s1〉, where S is a finite
nonempty set with s1 as the initial state; I and O are input and output alphabets; and
hS ⊆ S×I×O×S is a behavior relation. The behavior relation defines all possible
transitions of the machine. Given a current state sj and input symbol i, a 4-tuple
(sj,i,o,sk)∈ hS represents a possible transition from state sj under the input i to the next

state sk with the output o, usually written as sj
⎯⎯→⎯ oi /

sk. If for each pair (s , i)∈S× I
there exists (o ,s ′)∈O×S such that (s , i ,o ,s ′)∈hS then FSM S is said to be
complete; otherwise, FSM S is partial. If for each (s , i ,o)∈S× I×O there is at most
one transition (s , i ,o ,s ′)∈hS then FSM S is said to be observable. Given FSM
S = 〈S, I, O, hS , s1〉, state s and an input i, state s ′ is a successor of state s under the
input i or simply an i-successor of state s if there exist o ∈ O such that the 4-tuple
(s , i ,o ,s ′)∈h S . Given a set of states b ⊆ S and an input i, the set of states b′ is a
successor of the set b under the input i or simply an i-successor of b if b′ is the set of
all i-successors of states of the set b.

In the usual way, the behavior relation hS is extended to input and output
sequences. Given states s ,s ′∈S , input sequence α= i1 i2 … i k ∈I* and output sequence
β=o 1o 2…ok ∈O*. Transition (s , α , β , s ′)∈h S if there exist states s=s1 , s 2 , … ,
 sk , s k + 1=s′ such that (si,ii,oi,si+1)∈hS, i=1, … , k. As usual, given a defined input
sequence α at state s, hS

O(s, α) denotes the set of all output sequences which FSM S
produces at state s under the input sequence α, i.e. hs

O(s, α) = {β:
∃ s ′∈S [(s ,α ,β ,s ′)∈h S]}.

Given an FSM M = 〈M,I,O,hM ,m1〉, an FSM S = 〈S ,I ,O ,hS ,s1〉 , S⊆M , s1 = m1, is
a submachine of FSM M if h S ⊆ hM , i.e., if each transition of FSM S is obtained by
fixing an appropriate transition of the FSM M. The set of all complete submachines,
including those which are non-deterministic, of a complete FSM S is denoted
Subnd(S).

Given FSMs S = 〈S ,I ,O ,h S ,s1〉 and T = 〈T ,I ,O ,hT , t1〉 , the intersection S ∩ T is
defined as the largest connected submachine of the FSM 〈S×T ,I,O,h,s1t1〉 where
(st , i ,o ,s ′ t ′)∈h ⇔ (s , i ,o ,s ′)∈hS & (t , i ,o , t ′)∈hT .

308 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

Complete FSMs S and T are equivalent, written S ≅ T, if for each sequence α ∈ I*
[hT

O(t1, α) = hS
O(s1, α)], i.e., the sets of output sequences of FSMs S and T under each

input sequence coincide. If there exist sequence α ∈ I* [hT
O(t1, α) ≠ hS

O(s1, α)] then

FSMs S and T are distinguishable, written S ≇ T.
A state t of a complete FSM T is a reduction of a state s of a complete FSM S,

written t ≤ s, if for each sequence α ∈ I* [hT
O(t, α) ⊆ hS

O(s, α)], i.e., the set of output
sequences of FSM S at state s contains the set of output sequences of FSM T at state
t under each input sequence. If there exists sequence α ∈ I* [hT

O(t, α) ⊄ hS
O(s, α)]

then state t is not a reduction of state s, written t ≰ s . FSM T is a reduction of a
FSM S, written T ≤ S, if the reduction relation holds between the initial states, i.e.,
for each sequence α ∈ I* [hT

O(t1, α) ⊆ hS
O(s1, α)]. If there exists sequence α ∈ I*

[hT
O(t1, α) ⊄ hS

O(s1, α)] then FSM T is not a reduction of FSM S, written T ≰ S.
A state t of a complete FSM T is r-compatible with a state s of a complete FSM S

[21], written t ≃ s, if there exists a complete FSM B = 〈B,I,O,hB ,b1〉 and state b ∈ B
such that b is a reduction of both states t and s. If states t and s are not r-compatible

then they are r-distinguishable, written t ≄ s. In this case, there exists an r-
distinguishability finite set W of input sequences such that for each complete FSM
B = 〈B,I,O,hB ,b1〉 and each state b ∈ B there exists α ∈ W such that
[hB

O(b, α) ⊄ hS
O(s, α)] or [hB

O(b, α) ⊄ hT
O(t, α)]. FSMs T and S are r-compatible,

written T ≃ S (or r-distinguishable, written T ≄ S) if the corresponding relation
holds between their initial states.

Complete FSMs T and S are non-separable, written T ∼ S, if for each sequence
α ∈ I* [hT

O(t1, α) ∩ hS
O(s1, α) ≠ ∅], i.e., the sets of output sequences of FSMs T and

S under each input sequence intersect. If there exists sequence α ∈ I*

[hT
O(t1, α) ∩ hS

O(s1, α) = ∅] then FSMs T and S are separable, written T ≁ S. In the
latter case, the sequence α is called a separating sequence of FSMs T and S.

3 Fault Model and a Test Suite

When testing w.r.t. the reduction relation the traditional fault model is a triple
<S, ≤, ℜ>, where S is a specification FSM, ≤ is the reduction relation, fault domain ℜ is
the set of all possible (faulty and non-faulty) implementation FSMs with the same input
and output alphabets as the specification FSM S. As usual, FSMs of the set ℜ represent
all possible faults which can happen when implementing the specification. An
implementation FSM T ∈ ℜ is called conforming if T ≤ S; otherwise, T is a non-
conforming implementation. Given the specification FSM S, a test case is a finite input
sequence of S. As usual, a test suite is a finite set of test cases. Given an implementation
FSM T ∈ ℜ and an output response β of T to a test case α, the FSM T passes the test
case if β is in the set of output responses of the specification FSM S to α. Otherwise, the
FSM T fails the test case. Given a test suite, an Implementation Under Test (IUT)
passes the test suite if the IUT passes each test case.

 Testing Nondeterministic Finite State Machines with Respect 309

In this paper, we generalize the traditional fault model <S, ≤ , ℜ> by adding the

relation ≁ into the fault model. Formally a fault model becomes a 4-tuple

<S, (≤,≁), ℜ>. This model indicates that a test suite is complete up to the subset of ℜ

that contains all implementations T ≁ S. That is a test suite is complete w.r.t. to the

fault model <S, (≤ ,≁), ℜ> if each non-reduction T of S such that T ≁ S can be
detected with this test suite.

Here we note that in FSM-based testing when using a traditional fault model it is
usually assumed that each non-conforming implementation can be detected with a
complete test suite. However, if the assumption of «all weather conditions» fails when
testing a non-deterministic implementation, as happens, for example, in the remote
testing, then a non-deterministic implementation cannot be tested up to the reduction
or up to the equivalence relation. In this paper, we show that in this case, an
implementation can be tested up to the separability relation without relying on «all
weather conditions» assumption. As usual, we assume that both specification and
implementation FSMs are complete. However, we do not require either the
specification FSM or an implementation FSM to be observable.

The relation «not a reduction» contains the separability relation, i.e. for

nondeterministic FSMs ≁ ⊆ ≰ . However, as the following example shows a
complete test suite w.r.t. the fault models <S, ≤, ℜ> is not always complete w.r.t. the

fault model <S, (≤,≁), ℜ>.
Consider the specification FSM S in Figure 1 with states {a,b}, inputs {x, y} and

outputs {1,2,3,4}. States of S are separated by the input y and both states are
deterministically reachable from the initial state a. We use the method for test
derivation [21] and obtain a test suite TS = {xy, yxy, yyy} w.r.t. the fault model
<S, ≤, ℜ2> where ℜ2 contains each complete FSM with up to 2 states over the input
alphabet {x, y}. The test suite TS is complete when the assumption of «all weather
conditions» holds. However, if the assumption of «all weather conditions» fails then
the implementation FSM T in Figure 1 that is separable with S, i.e., is not a reduction
of S, can remain undetected with the test suite TS when each test case is applied at

most once, i.e., TS is not complete w.r.t. the fault model <S, (≤,≁), ℜ2>. By direct
inspection, one can assure that a shortest sequence that separates the initial states a
and 1 of S and T has length four while to each input sequence of length up to three the
sets of output responses of S and T intersect.

Fig. 1. FSMs S and T

S a b T 1 2

x a/0,1,2,3 a/1,2 x 1/0
2/1

1/0,1

y b/1,2 a/0
b/3

 y 1/1
2/0,2

1/3
2/0

310 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

The reason is that the r-distinguishability relation between states of the
specification FSM cannot be used when deriving tests w.r.t. the separability relation.
Given two r-distinguishable states s1 and s2 of the specification FSM with an r-
distinguishability set W and a state t of an implementation FSM, there exists a

sequence α ∈ W such that t≰αs1 or t≰αs2. Therefore, if a test suite has two
sequences α1 and α2 that take the specification FSM to states s1 and s2 appended with
the r-distinguishability set W then each implementation FSM that is taken with
sequences α1 and α2 to the same state t will be detected with such a test suite.
Unfortunately, the above property does not hold for the separability relation. Given
two separable states s1 and s2 in the specification FSM with a separating sequence α, a
state t of an implementation FSM can be non-separable with both states s1 and s2
w.r.t. the sequence α.

Given the specification FSM S and the fault domainℜ, a complete test suite w.r.t.

the fault model <S, (≤,≁), ℜ > can be derived by the explicit enumeration of all
machines of the set ℜ. For each T ∈ ℜ that is separable with S, a separating sequence
is derived that is used as a test case to detect a wrong implementation FSM T. The set

of all test cases is a complete test suite w.r.t. the fault model <S, (≤,≁), ℜ >). Below
we include the algorithm given in [23] for deriving a separating sequence for two
complete FSMs.

Algorithm 1. Deriving a separating sequence of two complete FSMs
Input: Complete FSMs S = 〈S, I, O, hS, s1〉 and T = 〈T, I, O, hT, t1〉
Output: A shortest separating sequence of FSMs S and T (if it exists)

Step 1. Derive the intersection S ∩ T. If the intersection is a complete FSM then the
FSMs S and T are non-separable. END Algorithm 1.

Step 2. If the intersection S ∩ T is a partial FSM, then derive a truncated successor
tree of the intersection S ∩ T. The root of this tree, which is at the 0th level, is the
initial state (s1 , t1) of the intersection; the nodes of the tree are labeled with subsets of
states of the intersection. Given already derived j tree levels, j ≥ 0, a non-leaf
(intermediate) node of the jth level labeled with a subset P of states of the intersection,
and an input i, there is an outgoing edge from this non-leaf node labeled with i to the
node labeled with the subset of the i-successors of states of the subset P. A current
node Current, at the kth level, k ≥ 0, labeled with the subset P of states, is claimed as a
leaf node if one of the following conditions holds:

Rule 1: There exists an input i such that each state of the set P has no i-successors
in the intersection S ∩ T.
Rule 2: There exists a node at a jth level, j < k, labeled with subset R of states with
the property: for each state (s', t') of R there exists a state (s, t) of P such that
(s', t') ≤ (s, t).

Step 3. If none of the paths of the truncated tree derived at Step 2 is terminated using
Rule 1 then FSMs S and T are non-separable. END Algorithm 1. Otherwise, if there
is a leaf node, Leaf, labeled with the subset P of pairs of states such that for some
input i, each pair of the set P has no i-successors, then a shortest sequence αi where α

 Testing Nondeterministic Finite State Machines with Respect 311

labels the path from the root of the tree to Leaf, is a shortest separating sequence of
FSMs S and T.

Theorem 1. Given FSMs S and T over input alphabet I and output alphabet O,
Algorithm 1 returns a shortest separating sequence of FSMs S and T (if a separating
sequence exists).

Proof. In order to separate FSMs S and T we need an input sequence α under which
the intersection S ∩ T enters the set P of states such that there exists some input i that
separates each pair of the set P, i.e., in the intersection, each state of the set P has no
successors under input i. If none of the paths of the truncated tree derived at Step 2 of
Algorithm 1 is terminated according termination Rule 1, then there is no such an input
sequence α, and thus, FSMs S and T are non-separable. If there exists a path of the
truncated tree derived at Step 2 of Algorithm 1 that is terminated according
termination Rule 1 then the sequence α which labels this path takes the intersection
S ∩ T to the set P such that there exists an input i that separates each pair of the set P,
and thus, αi is a separating sequence of FSMs S and T. Given a current node Current
labeled with a subset P at kth level, let there exist a node at a jth level, j < k, labeled
with subset R of states with the property: for each state (s', t') of R there exists a state
(s, t) of P such that (s', t') ≤ (s, t). In this case, each input sequence that separates each
pair of states of the set P also separates each pair of states of the set R. Therefore,
each path of the truncated tree traversing the node Current can be terminated, since a
shorter separating sequence can be derived when traversing the node labeled with the
set R.

As usual, the explicit enumeration of all machines in the fault domain ℜ can be
applied only to small fault domains. Accordingly, in the following section, we
propose a method for deriving a complete test suite w.r.t. the fault model

<S, (≤,≁), ℜ> without the explicit enumeration of the machines in ℜ. This is done by
using a nondeterministic FSM called a mutation machine MM in [9], to represent, in a
compact way, all possible implementations of S. In this case, the fault domain ℜ
equals the set Subnd(MM) of all complete submachines of MM. In Section 5, we extend
the method to the case when the upper bound on the number of states of an IUT is
given.

4 Deriving a Complete Test Suite w.r.t. Fault Model <S, (≤,≁),
Subnd(MM)>

According to Algorithm 1, in order to derive a complete test suite w.r.t. the fault

model <S, (≤,≁), Subnd(MM)> a truncated successor tree of the intersection S ∩ T
should be derived for each complete submachine T of the FSM MM. Therefore, given a
current node Current labeled with a subset P and input i, we should have an edge
labeled by i not only to the i-successor of P but to all non-empty subsets of the i-
successor. Moreover, we cannot terminate a path comparing the label of its node with
labels of another path, since now these paths can belong to different submachines of

312 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

MM. The above two observations lead us to a method below when deriving a complete

test suite w.r.t. the fault model <S, (≤,≁), Subnd(MM)>.

Algorithm 2. Deriving a complete test suite w.r.t. the fault model

<S, (≤,≁), Subnd(MM)>
Input: Complete FSMs S and MM

Output: A complete test suite TS w.r.t. the fault model <S, (≤,≁), Subnd(MM)>

Step 1. Derive the intersection S ∩ MM.

Step 2. Derive a truncated successor tree of the intersection S ∩ MM. The root of this
tree, which is at the 0th level, is the initial state (s1 , m1) of the intersection; the nodes
of the tree are labeled with subsets of states of the intersection. Given already derived
j tree levels, j ≥ 0, a non-leaf (intermediate) node of the jth level labeled with a subset
P of states of the intersection, and an input i, there is an outgoing edge from this non-
leaf node labeled with i to the node labeled with each subset of the i-successor of the
subset P. A current node Current, at the kth level, k ≥ 0, labeled with the subset P of
states, is claimed as a leaf node if one of the following conditions holds:

Rule 1: There exists an input i such that each state of the set P has no i-successors
in the intersection S ∩ MM.
Rule 2: There exists a node at the path from the root to this node at jth level, j < k,
labeled with subset R of states with the property: for each state (s', m') of R there
exists a state (s, m) of P such that (s', m') ≤ (s, m).

Step 3. For each path of the tree terminated using Rule 1, include into TS an input
sequence that labels the path appended with an input i such that each state of the set P
corresponded to the final node of the path has no i-successors in the intersection
S ∩ MM.

For each path of the tree terminated using Rule 2, include into TS an input
sequence that labels the path.

Theorem 2. Given FSMs S and MM over the input alphabet I and output alphabet O,

Algorithm 2 returns a complete test suite w.r.t. the fault model <S, (≤,≁), Subnd(MM)>.

Proof. According to Algorithm 1, when deriving a separating sequence for two FSMs
S and T we use the truncated tree of S ∩ T. In our case, each FSM T that should be
separated with S (if S and T are separable) is a submachine of MM, i.e., S ∩ T is a
submachine of S ∩ MM. In order to get an appropriate truncated subtree for each
submachine of FSM MM at Step 2 of Algorithm 1, for each non-leaf node Current
labeled with a subset P and each input i, we add an outgoing edge to each non-empty
subset of the i-successor of P. Thus, for each complete submachine T of MM a
truncated tree for separating T and S is a subtree of the tree derived by
Algorithm 2.

Example. As an application example, consider FSMs S in Figure 1 and MM in
Figure 2. We apply Algorithm 2 we obtain the intersection (Figure 3) and the

 Testing Nondeterministic Finite State Machines with Respect 313

truncated successor tree in Figure 4. Therefore, the set {xx, xyx, xyyx, xyyy, yxx, yxyx,
yxyy, yyxx, yyxyx, yyxyy, yyy} is a complete test suite w.r.t. the fault model

<S, (≤,≁), Subnd(MM)>.

MM 1 2 S∩MM a1 a2 b1 b2

x 1/0,1
1/2,3
2/2,3

1/2,3
2/2,3

x a1/0,1,2,3
a2/2,3

a1/2,3
a2/2,3

a1/1,2
a2/2

a1/2
a2/2

y 1/1,2,3
2/1,2

1/0,2
2/2,3

y b1/1,2
b2/1,2

b1/2
b2/2

b1/3 a1/0
b2/3

Fig. 2. FSMs MM and S∩MM

Fig. 3. The truncated successor tree

Sometimes a test suite derived using Algorithm 2 can be shortened by relaxing the

conditions of Step 3. For example, given a tail edge {sm}
i

→ {s′m′} of some path

terminated using Rule 1 and labeled with an input sequence αi, it can happen that the
set of output responses of the intersection S ∩ MM to i at state sm coincides with that
of the MM at state m. In this case, i is unnecessary for separating new submachines of
MM from S and it is enough to include into a test suite the sequence α instead of αi.
More analysis is needed for reducing a test suite. This is a part of our future work.

We implemented the above algorithm and performed some experiments with FSMs
with small number of states. As our experiments show, the total length of a complete

314 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

test suite w.r.t. the fault model <S, (≤,≁), Subnd(MM)> significantly depends on the
number of nondeterministic transitions in the specification and mutation machines.
Table 1 contains a selected part of conducted experiments for FSMs with 5 states.
Each row in the table represents an average test suite length of 100 randomly
generated specification FSMs. Each FSM S is a complete nondeterministic FSM with
|S| states, |I| inputs, |O| outputs, where for 20 percent of pairs (s, i) there is more than
one outgoing transition from state s under input i. Each FSM MM is derived by adding
(up to 25 percent) additional transitions to FSM S.

Table 1. A selected part of conducted experiments

|I| |O| Average test suite length

2 2 2432
3 3 15407
3 4 6826

5 Deriving a Complete Test Suite w.r.t. Fault Model

<S, (≤,≁), ℜm>

Let ℜm be the fault domain of a given specification S that contains each complete
implementation FSM of S, over the same input and output alphabets of S, with up to a
given number m of states. The following theorem can be used for deriving a complete

test suite w.r.t. the fault model <S, (≤,≁), ℜm>. This theorem is a corollary of
Theorem 2 given in our previous work [23].

Theorem 3. Given the specification FSM S with n states, a test suite
12 −mn

I is

complete w.r.t. the fault model <S, (≤,≁), ℜm>.

In the following, based on the idea of counting states of the specification FSM when
deriving a complete test suite w.r.t. the fault model <S, ≤, ℜm>) (a SC-method [15]),

we propose a test derivation method for reducing the test suite
12 −mn

I . In this case,
unlike the above method given in Algorithm 1, we derive a truncated tree using only
the specification FSM S. Before terminating a path at a node labeled with a subset K
of states of the specification FSM, we make sure that for each complete FSM T with
up to m states the path traverses all possible subsets of the Cartesian product K × T in
the intersection S ∩ T, i.e., the path should traverse not less than 2|K|⋅m subsets of K. If
K contains the initial state, then the initial state of the intersection can be excluded
from any subset that labels a non-root node of the tree, i.e., the path should traverse
not less than (2|K|⋅m − 1 + 1) subsets of K.

Algorithm 3. Deriving a complete test suite w.r.t. the fault model <S, (≤,≁), ℜm>

 Testing Nondeterministic Finite State Machines with Respect 315

Input: Complete FSM S and an upper bound m on the number of states of any FSM
implementation of S

Output: A complete test suite TS w.r.t. the fault model <S, (≤,≁), ℜm>

Step 1. Derive a truncated successor tree of the specification FSM S. The root of this
tree, which is at the 0th level, is the initial state s0 of the FSM S; the nodes of the tree
are labeled with subsets of states of the FSM S. Given already derived j levels of the
tree, j ≥ 0, a non-leaf (intermediate) node of the jth level labeled with a subset K of
states of the FSM S, and an input i, there is an outgoing edge from this non-leaf node
labeled with i to the node labeled with the i-successor of the subset K. A current node
Current, at the kth level, k ≥ 0, labeled with the subset K of states of S is claimed as a
leaf node if the path from the root to this node has 2|K|⋅m nodes labeled with subsets of
K and the initial state s0 is not in K. If the initial state is in K then the node Current is
claimed as a leaf node if the path from the root to this node traverses (2|K|m − 1 + 1)
nodes labeled with subsets of K.

Step 2. Include into TS each input sequence which labels the path from the root to a
leaf node in the above truncated tree.

Theorem 4. Given the specification FSM S over the input alphabet I and an integer

m, Algorithm 3 returns a complete test suite w.r.t. the fault model <S, (≤,≁), ℜm>.

Proof. Given an implementation FSM T, consider the truncated tree TreeS of the
specification FSM S and the truncated tree TreeS∩T of S ∩ T. Given a path in the
TreeS to a node labeled with a subset K of states of S, the corresponding path in the
tree TreeS∩T leads to a node that is labeled with a subset P of states of the intersection
S ∩ T such that the first item of each pair of P is in the set K. The number of such
non-empty subsets is 2|K|⋅m − 1. Thus, when a path of the TreeS traverses 2|K|⋅m nodes
labeled with subsets of K the corresponding path in the tree TreeS∩T traverses two
nodes labeled with the same subset and can be terminated, according to Algorithm 1.
When the initial state of the specification FSM S is in the set K then each subset
traversed by the corresponding path in the tree TreeS∩T does not contain the initial
state, i.e., the number of such subsets is 2(|K|−1)⋅m − 1. Respectively, when K contains
the initial state a path can be terminated if it traverses (2(|K|−1)⋅m + 1) nodes labeled with
subsets of K (counting the initial state of the specification that labels the root of the
TreeS), since the corresponding path in the tree TreeS∩T traverses two nodes labeled
with the same subset or with a subset that contains the initial state of the
intersection.

As an example, we consider the specification FSM S in Figure 1 (left hand) and

derive a complete test suite w.r.t. the fault model <S, (≤,≁), ℜ2>. At Step 2 a current
node labeled with the state a is claimed as a leaf node if the path from the root to this
node traverses (2m−1 + 1) = 3 nodes labeled with a. A current node labeled with the
state b is claimed as a leaf node if the path from the root to this node traverses 2m = 4
nodes labeled with b. Finally, a current node labeled with the subset {a, b} is claimed

316 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

as a leaf node if the path from the root to this node traverses (22m−1 + 1) = 9 nodes
labeled with a, b and {a, b}. A complete test suite has the total length 277 (Figure 4).

Here we notice that Algorithm 3 does not return a shortest test suite. Consider, for
example, a test case xyyyyyyy of the above test suite and the corresponding path of the
truncated successor tree TreeS: axayby{a,b}y{a,b}y{a,b}y{a,b}y{a,b}y{a,b}. By direct
inspection, one can assure that if an implementation FSM has states 1 and 2 then the
corresponding path in the truncated tree TreeS∩T will be already terminated after
{a1}x{a2}y{b1,b2}y{b1}y{b2}y{a,b}y. By using such analyzing, a complete test suite

with total length 89 can be derived for the fault model <S, (≤,≁), ℜ2>. Thus, more
analysis of termination rules is needed for reducing the length of obtained test suites.
Here we recall (Section 3) that a complete test suite of length 11 is derived using the
SC-method w.r.t. the fault model <S, ≤, ℜ2> under the assumption of «all weather
conditions». According to this condition, each sequence of the test suite should be
applied at least eight times to a given IUT since, on average, there are eight different
output responses to a test case. Thus, the total length of a test suite complete w.r.t. the
fault model <S, ≤, ℜ2> is around 100 and this test suite still does not guarantee the
detection of all implementations with up to 2 states, that are separable from the given
specification FSM if we lack the necessary controllability and/or observability over an
IUT.

However, more rigorous analysis is necessary in order to refine termination rules,
since in general, the exponential bound on the length of a test case cannot be reduced
[23].

Fig. 4. The truncated successor tree TreeS

6 Conclusion and Future Research Work

In this paper, we have proposed a method for the test derivation against
nondeterministic FSMs with respect to the separability relation. This relation can be
used without assuming that an implementation under test should satisfy the «all
weather conditions» assumption. Refined notions of a fault model and a complete test

 Testing Nondeterministic Finite State Machines with Respect 317

suite are given. A test suite is called complete up to the separability relation if it
detects every implementation that is separable from (i.e., is not a reduction of) the
given FSM specification. This complete fault coverage is guaranteed if each test case
of the test suite is applied to an IUT only once. The test suite can also detect some
implementations that are not reductions of the specification FSM but are non-
separable from the specification FSM.

Two algorithms are presented for complete test suite derivation with respect to the
separability relation. The first algorithm can be applied when the set of possible
implementations is the set of all complete nondeterministic submachines of a given
mutation machine. The second algorithm is applied when the upper bound on the
number of states of an IUT is known. The proposed algorithms do not return shortest
test suites and more work is needed for reducing the length of obtained test suites.
Unfortunately, the exponential upper bound on the length of a test case cannot be
reduced [23], except of the case when the specification is deterministic or we consider
only deterministic implementations. For simplicity of presentation, in this paper, we
assume that the specification FSM is complete but the proposed algorithms do not
rely on this assumption and thus, can be extended to partial specification FSMs.

References

1. Kloosterman, H.: Test derivation from non-deterministic finite state machines. In:
Proceedings of the IFIP Fifth International Workshop on Protocol Test Systems, Canada,
pp. 297–308 (1992)

2. Tripathy, P., Naik, K.: Generation of adaptive test cases from nondeterministic Finite State
models. IFIP Trans. C: Commun. System C-11, 309–320 (1993)

3. Luo, G., Petrenko, A., Bochmann, G.v.: Selecting test sequences for partially specified
nondeterministic finite state machines. In: Proc. 7th International Workshop on Protocol
Test Systems (1994)

4. Luo, G., Bochmann, G.v., Petrenko, A.: Test selection based on communicating non-
deterministic finite-state machines using a generalized Wp-method. IEEE Transactions on
Software Engineering 20(2), 149–161 (1994)

5. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proc. the 27th ACM Symposium on Theory of Computing, pp.
363–372 (1995)

6. Petrenko, A., Yevtushenko, N., Bochmann, G.v.: Testing deterministic implementations
from their nondeterministic specifications. In: Proc. 9th International Workshop on
Protocol Test Systems, pp. 125–140 (1996)

7. Boroday, S.Y.: Distinguishing Tests for Non-Deterministic Finite State Machines. In:
Proc. IFIP TC6 11th International Workshop on Testing of Communicating Systems, pp.
101–107 (1998)

8. Hierons, R.M.: Adaptive testing of a deterministic implementation against a
nondeterministic finite state machine. The Computer Journal 41(5), 349–355 (1998)

9. Koufareva, I., Evtushenko, N., Petrenko, A.: Design of tests for nondeterministic machines
with respect to reduction. Automatic Control and Computer Sciences, USA, vol. 3 (1998)

10. Hierons, R.M.: Using candidates to test a deterministic implementation against a non-
deterministic finite state machine. The. Computer Journal 46(3), 307–318 (2003)

318 N. Shabaldina, K. El-Fakih, and N. Yevtushenko

11. Hierons, R.M.: Testing from a non-deterministic finite state machine using adaptive state
counting. IEEE Transactions on Computers 53(10), 1330–1342 (2004)

12. Hierons, R.M., Ural, H.: Concerning the ordering of adaptive test sequences. In: König, H.,
Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 289–302. Springer,
Heidelberg (2003)

13. Hwang, I., Kim, T., Hong, S., Lee, J.: Test selection for a nondeterministic FSM.
Computer Communications 24, 1213–1223 (2001)

14. Zhang, F., Cheung, T.: Optimal transfer trees and distinguishing trees for testing
observable nondeterministic finite-state machines. IEEE Transactions on Software
Engineering 29(1), 1–14 (2003)

15. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for partial
nondeterministic FSM. In: Proc. 5th International Workshop on Formal Approaches to
Testing of Software (2005)

16. Miller, R., Chen, D., Lee, D., Hao, R.: Coping with nondeterminism in network protocol
testing. In: Proceedings of the 17th IFIP International Conference on Testing of
Communicating Systems, USA (2005)

17. Tanenbaum, A.S.: Computer Networks. Prentice-Hall, NJ (1996)
18. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifications.

IEEE Trans. on Computers 54(9), 1154–1165 (2005)
19. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer,

Heidelberg (1980)
20. Spitsyna, N., Trenkaev, V., El-Fakih, K., Yevtushenko, N.: FSM interoperability testing,

Wor. In: Progress: 23rd International Conference on Formal Techniques for Networked
and Distributed Systems (2003)

21. Spitsyna, N.: FSM-based test suite derivation strategies for discrete event systems. Ph.D.
Thesis, Tomsk State University, pp. 1–158 (2005)

22. Starke, P.: Abstract automata, pp. 3–419. American Elsevier, New York (1972)
23. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the Separability Relation between

Finite State Machines. Submitted to Software Testing, Verification and Reliability (2006)

Learning and Integration of Parameterized

Components Through Testing

Muzammil Shahbaz1, Keqin Li2, and Roland Groz2

1 France Telecom R&D
Meylan, France

muhammad.muzammilshahbaz@orange-ftgroup.com
2 LIG, Computer Science Lab
Grenoble Universités, France

{Keqin.Li,Roland.Groz}@imag.fr

Abstract. We investigate the use of parameterized state machine mod-
els to drive integration testing, in the case where the models of compo-
nents are not available beforehand. Therefore, observations from tests
are used to learn partial models of components, from which further tests
can be derived for integration. We have extended previous algorithms to
the case of finite state models with predicates on input parameters and
observable non-determinism. We also propose a new strategy where inte-
gration tests can be derived from the data collected during the learning
process. Our work typically addresses the problem of assembling telecom-
munication services from black box COTS.

1 Introduction

Model based testing has gained momentum in many industrial fields, in partic-
ular in the domain of testing complex systems, e.g., telecom services, which
are composed of various components developed independently. It is not un-
common for these components to be collected from different sources as COTS
(Commercial-off-the-shelf), their formal models are not always available and no
detailed technical corpora is provided with the components. Therefore, engineers
find difficulty in providing a required system integration if they have limited
knowledge of the behaviors of the components, which they use in the system.

To address this problem, we propose to generate formal models directly from
the components through testing. These models are generated as state machine
models so that rigorous techniques of model based integration testing could
readily be applied. This provides us room to investigate methods of state ma-
chine inference from black box components, i.e., the components whose internal
structure is unknown. Among various such methods, Angluin’s algorithm [1] is
well-known that learns a deterministic automata in a polynomial time. This work
has yielded positive results in applied research [14], [7] etc., where real problems
were put under case-studies. However there remained less explicit emphasis in
these works on learning expressive models.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 319–334, 2007.
c© IFIP- International Federation for Information Processing 2007

320 M. Shahbaz, K. Li, and R. Groz

In our particular case of integration of a variety of components, we have ob-
served that the nature of components integration elicit potential interoperability
problems due to exchange of data values from arbitrarily complex domains. In
this case, learning DFA models for such components would be inadequate and
impractical due to the chance of state-explosion and loss of genericity of the
model. Therefore, we need to advance from simple state-machine inference to
the inference of more expressive models that can maintain the fine granularity
of complex systems, i.e., parametric details and also some notion of nondetermin-
ism. Also, as the size of input data is directly proportional to the testing effort,
there is a good argument to model expressive forms that can detail the intended
behaviors of the component in a compact form and can be learnt through less
number of test cases. We have proposed techniques based on Angluin’s algorithm
to adapt it for more expressive models than DFA, starting from Mealy machines
[9] to simple parameterized models [10].

In this paper, we enrich our model to incorporate parameterized predicates
on transitions with observable nondeterminism. This model is more expressive
compared to the models proposed in the previous works of automata inference
[1], [7], [9], [10], [2] in terms of parameterized inputs/outputs, infinite domain of
parameter values, predicates on input parameters and observable nondetermin-
ism when interacting with input parameter values. Compared to usual EFSM
models [13], [12], we stop short of including variables in the model, because when
we learn a black box, we cannot distinguish in its internal structure what would
be encoded as (control) state and what would be encoded in variables. All state
information in our model is encoded in the state machine structure.

We propose an algorithm to infer such parameterized models based on An-
gluin’s algorithm. We also have significantly improved the algorithm in two ways.
The basic algorithm and all its adaptations stated above check for certain con-
cepts in order to make a conjecture of the model. Inspired by [14], we reduced
one of these concepts, called consistency and hence reduced the number of test
cases needed to perform this concept. Furthermore, the algorithm assumes an
oracle that provides a counterexample when the conjecture is wrong. In the
context of industrial applications where this oracle assumption is quite unreal-
istic, we propose a technique to find potential counterexamples from the models
taking advantage of our integration testing strategy. The counterexamples are
provided back to the learning procedure to refine the learned model, thus making
it an iterative process [9]. We also consider former approaches, e.g., property-
based testing [11] and scenario-based testing [10] and propose a new integration
testing technique which is illustrated with the help of an example of integrat-
ing two parameterized components. The organization of the paper is as follows.
The formal definition of the parameterized model is given in section 2 and its
learning algorithm is described in section 3. The integration testing strategy
and related discussion is covered in section 4 and finally section 5 concludes the
paper.

Learning and Integration of Parameterized Components Through Testing 321

2 Parameterized Model

A Parameterized Finite State Machine (PFSM) M is a tuple M = (Q, I,O,DI ,
DO, Γ, q0), where

– Q is a finite set of states
– I is a finite set of input symbols
– O is a finite set of output symbols
– DI is a set of input parameter values
– DO is a set of output parameter values
– q0 is an initial state
– Γ is a set of transitions

A transition t ∈ Γ is described as: t = (q, q′, i, o, p, f), where q ∈ Q is a source
state, q′ ∈ Q is a target state, i ∈ I is an input symbol, o ∈ O is an output
symbol, p ⊆ DI is a predicate on input parameter values and f : p −→ DO is
an output parameter function. We consider that the model is restricted with the
following three properties.

Property 1 (Input Enabled). The model is input enabled, i.e., ∀q ∈ Q, ∀i ∈ I and
∀x ∈ DI , ∃t ∈ Γ such that t = (q, q′, i, o, p, f), in which x ∈ p.
The machine can be made input enabled by adding loop back transitions on a
state for all those inputs (and associated predicate for parameter values) which
are not acceptable for that state. Such transitions contain a special symbol Ω in
O. Similarly, there exists transitions which do not take input parameter values
into account. Such transitions contain a special symbol ⊥ with the input symbol
that expresses the absence of parameter value. For the sake of simplicity, we do
not write this symbol while modeling a problem with PFSM.

Property 2 (Input Deterministic). The model is input deterministic, i.e., for
t1, t2 ∈ Γ such that t1 = (q1, q′1, i1, o1, p1, f1), t2 = (q2, q′2, i2, o2, p2, f2) and
t1 �= t2, if q1 = q2 ∧ i1 = i2 then p1 ∩ p2 = φ.

Property 3 (Observable). The model is observable, i.e., for t1, t2 ∈ Γ such that
t1 = (q1, q′1, i1, o1, p1, f1), t2 = (q2, q′2, i2, o2, p2, f2) and t1 �= t2, if q1 = q2∧i1 = i2
then o1 �= o2.
Property 3 ensures that two transitions having same source state and same
input symbol would generate different output symbols. This helps us determining
the target states that are possibly different for each transition in the learning
algorithm.

WhenM is in state q ∈ Q and receives an input i ∈ I along with the parameter
value x ∈ DI , then the target state q′, the output o and the output parameter
value function f are determined by the functions δ, λ and σ respectively, which
are described as follows:

– δ : Q× I ×DI −→ Q is a target state function
– λ : Q× I ×DI −→ O is an output function
– σ : Q× I −→ DO

DI is an output parameter function. DO
DI is the set of all

functions from DI to DO.

322 M. Shahbaz, K. Li, and R. Groz

The properties 1 and 2 ensure that δ and λ are mappings. For an input symbol
sequence ω = i1, . . . , ik and an input parameter value sequence α = x1, . . . , xk,
where each ij ∈ I, xj ∈ DI , 1 ≤ j ≤ k, we define a parameterized input sequence,
i.e., the association of ω and α as ω ⊗ α = i1(x1), ..., ik(xk), where each xj is
associated with ij and |ω| = |α|. The association of output symbol sequence and
output parameter value sequence is defined analogously. Then, for the state q1 ∈
Q, when applying a parameterized input sequence ω⊗ α, M moves successively
from q1 to the states qj+1 = δ(qj , ij, xj), ∀1 ≤ j ≤ k. We extend the functions
from input symbols to parameterized input sequences as δ(q1, ω, α) = qk+1 to
denote the final state qk+1 and λ(q1, ω, α) = o1(y1), ..., ok(yk), where each oj =
λ(qj , ij, xj), yj = σ(qj , ij)(xj), ∀1 ≤ j ≤ k, to denote the complete parameterized
output sequence, when applying ω ⊗ α on q1.

An example of PFSM model is given in Figure 1, in which Q = {q0, q1, q2, q3,
q4, q5}, I = {a, u}, O = {s, t}, DI = DO = Z, the set of integers.

Fig. 1. Example of PFSM Model

3 Algorithm

Assume an unknown PFSMM = (Q, I,O,DI , DO, Γ, q0) with known input sym-
bols I and input parameter domain DI can be used to model a component C.
For any parameterized input sequence or a test case ω⊗ α, (ω ∈ I∗, α ∈ D∗

I) for
a component, we assume that λ(q0, ω, α) can be known from testing. We also
assume that C can be reset to its initial state before each test. The key part of
the learning algorithm is using observation table. We define the structure of the
table and related definitions in the section below and then the algorithm in the
subsequent section.

3.1 Observation Table

The observation table is used to generate test cases for an unknown component,
to organize the result of each test case and finally to make a PFSM conjecture
when certain properties on the table are satisfied. The rows and columns of the

Learning and Integration of Parameterized Components Through Testing 323

table are labelled by input strings which are associated with the input parameter
values in order to construct test cases. The result of a test case is organized in
the cells of the table in the form of a pair of input parameter value sequence and
parameterized output. After the table conforms to the properties, a conjecture
is made where some rows of the table are regarded as states and transitions are
derived from the observations recorded in the table. We shall describe the basic
structure and properties of the table in this section and rest of the explana-
tion regarding construction of test cases, organization of outputs and making a
conjecture out of the table will be explained in the next section.

Structure. Let U = {ω ⊗ α|ω ∈ I+, α ∈ DI
+} ∪ {ω|ω ∈ I∗} be the set of

parameterized input sequences and input symbol sequences. We define IS(u), u ∈
U , an input symbol sequence from u such that if u = ω or u = ω ⊗ α, ω ∈
I∗, α ∈ DI

∗, then IS(u) = ω. Also, pref (γ)k is the prefix of some sequence
γ ∈ I∗ ∪O∗ ∪DI

∗ ∪DO
∗ of length k ≤ |γ|. For example, for γ = i1, ..., in, where

every ij ∈ I, 1 ≤ j ≤ n, pref(γ)k = i1, ..., ik, 1 ≤ k ≤ n. Similarly, suff (γ)k is the
suffix of γ of length k ≤ |γ|. Let P = {(α, ⊗ β)|α ∈ DI

+, ∈ O+, β ∈ DO
+}

be the set of the pair of input parameter value sequence and parameterized
output sequence.

Table 1. Example of an Observation Table

E

a u

S ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)

R
a ((⊥, ⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)
u ((1, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)

An observation table is denoted as (S,R,E, T). S and R are nonempty finite
sets of input strings and make the rows of the table. S is used to identify potential
states in the conjecture and R is used to satisfy properties on the table. In PFSM,
states are not only determined by input symbol sequence but also by parameter
value sequence, thus formally, S ⊆ U is a set of input symbol sequences and
parameterized input sequences, and R ⊆ U extends the rows such that for all
r ∈ R, there exists s ∈ S, e ∈ E and IS(r) = IS(s) · e. Whenever, a sequence
s is added to S, R is extended in the following way: i) if s = ω, ω ∈ I∗ an
input symbol sequence, then R will be extended by ω · i, for all i ∈ I. ii) if
s = ω ⊗ α, ω ∈ I+, α ∈ DI

+ a parameterized input sequence, then R will be
extended by ω · i⊗α · x, for all i ∈ I, where x is selected from DI . The selection
policy for parameter values is up to the system’s specific requirements, however
a general idea is given in section 4.
E ⊆ I+ is a nonempty finite set of input symbol sequences that make the

columns of the table and separate the different states of the conjecture. The
elements of (S ∪ R) × E are used to construct test cases in the algorithm
which are associated with parameter value sequences fromDI

+, and their results

324 M. Shahbaz, K. Li, and R. Groz

(observations) are organized in the table with the help of a function T mapping
from (S∪R)×E to 2P . For example, a parameterized output of a test case derived
from s ∈ S∪R, e ∈ E and associated with parameter value sequence α ∈ DI

+ will
be organized in T (s, e) in the form of a pair of input parameter value sequence
and parameterized output sequence, i.e., (α, ⊗β), α ∈ DI

+, ∈ O+, β ∈ DO
+.

The observations from T (s, e) are used to identify potential transitions in the
conjecture and label them with input/output and parameter values. Table 1 is
an example of an observation table, in which S contains only one row ε and R
contains two rows a and u, whereas E contains two columns a and u respectively.

Properties. Each test case driven from s ∈ S ∪ R, e ∈ E may generate dif-
ferent parameterized output sequences depending upon the selection of different
input parameter value sequences from DI

+. Thus, there may exist (α1, 1 ⊗
β1), (α2, 2⊗β2) ∈ T (s, e) such that 1 �= 2, i.e, T (s, e) contains pairs in which
the output sequences are different. Let η(T (s, e)) be the number of different out-
put sequences contained by T (s, e), then we can divide T (s, e) into η(T (s, e))

distinguishing subsets, i.e., T (s, e) =
η(T (s,e))⋃

k=1

dk(s, e), where in each dk(s, e) =

{(α1(k), 1
(k) ⊗ β1(k)), . . . , (αm

(k), m
(k) ⊗ βm

(k))} ⊆ T (s, e),m = |dk(s, e)|,
 1 = . . . = m, the output sequences are same. Let OS(dk(s, e)) = 1

(k) =
. . . = m

(k) be the output sequence from dk(s, e), then for any d1(s, e), d2(s, e) ⊂
T (s, e), OS(d1(s, e)) �= OS(d2(s, e)) and d1(s, e)∩d2(s, e) = ∅. For every dk(s, e),
we define ρ(dk(s, e)) = {α1(k), . . . , αm

(k)}, a set of distinguishing parameter
value sequence from dk(s, e), and PS(dk(s, e)) = {(suff (α1

(k))|e|, β1(k)), . . . ,
(suff (αm

(k))|e|, βm
(k))}, the set of pairs of i/o parameter value sequences from

dk(s, e).
Since T (s, e), s ∈ S ∪ R, e ∈ E represents a possible transition in the con-

jecture, if T (s, e) contains many distinguishing subsets then each subset may
represent a different transition. Therefore, we call such s a disputed row. For-
mally, s ∈ S is disputed iff for any e ∈ E, η(T (s, e)) > 1, i.e., T (s, e) contains
more than one distinguishing subsets. The table must contain additional rows
to treat disputed rows. A disputed row s is treated iff for every distinguishing
subset dk(s, e) ⊂ T (s, e), 1 ≤ k ≤ η(T (s, e)), there exists t ∈ S ∪ R such that
t = IS(s) · e ⊗ α, α ∈ ρ(dk(s · e)). The table is called dispute− free iff all the
disputed rows s ∈ S are treated.

For any s1, s2 ∈ S∪R, s1 and s2 are comparable with the help of the following
definitions.

– s1 and s2 are compatible, denoted by s1 ≡ s2, iff ∀e ∈ E, ∀(α1, 1 ⊗ β1) ∈
T (s1, e), ∀(α2, 2 ⊗ β2) ∈ T (s2, e), if suff (α1)|e| = suff (α2)|e|, then 1 ⊗
β1 = 2⊗β2. This means that common input parameters produce the same
output parameters.

– s1 and s2 are balanced, denoted by s1 ↔ s2, iff ∀e ∈ E, ∀(α1, 1 ⊗ β1) ∈
T (s1, e), ∃(α2, 2 ⊗ β2) ∈ T (s2, e) such that suff (α1)|e| = suff (α2)|e| and
∀(α2, 2 ⊗ β2) ∈ T (s2, e), ∃(α1, 1 ⊗ β1) ∈ T (s1, e) such that suff (α2)|e| =

Learning and Integration of Parameterized Components Through Testing 325

suff (α1)|e|. This means any input parameter combination on one has been
tested on the other.

– s1 and s2 are equivalent, denoted by s1 ∼= s2, iff s1 ↔ s2 and s1 ≡ s2, i.e.,
s1 and s2 are balanced and they remain compatible.

A table is balanced iff for every s, t ∈ S ∪R such that s ≡ t, s↔ t. The table
is called closed iff for each t ∈ R, there exists s ∈ S such that s ∼= t. A closed
table makes sure that no row in R is different from the rows in S that gives out
the potential states of the conjecture.

3.2 Algorithm

The algorithm starts by initializing (S,R,E, T) with E = I and S = R = ∅, i.e.,
each input symbol makes one column and there are no rows initially. The first step
is to add ε to S, where ε is an empty string. Thus, R will be extended by adding
ε · i, for all i ∈ I. Table 1 shows the extensions of S, R and E, where I = {a, u}.

The test cases are constructed by the elements of (S∪R)×E. Since S∪R con-
tains the input symbol sequences as well as the parameterized input sequences,
the test cases in each case are constructed in the following way:

i) if s = ω ∈ S ∪ R an input symbol sequence and e ∈ E, then a test case is
constructed as ω · e⊗ α1 · α2, where α1 and α2 are selected from DI

∗ such that
|ω| = |α1| and |e| = |α2|.

ii) If s = (ω ⊗ α1) ∈ S ∪ R a parameterized input sequence and e ∈ E, then
a test case is constructed as ω · e⊗ α1 · α2, where α2 will be selected from DI

+

such that |e| = |α2|.
The result of each test case is organized in the table by just filling the cells

with output sequences, and does not lead to the extension of rows or columns.
Let ω ⊗ α be a test case, where ω ∈ I+, α ∈ DI

+, generating a parameterized
output sequence λ(q0, ω, α) = ⊗ β, ∈ O+, β ∈ DO

+, then the table will be
filled as follows:

i) if there exists s = ω1 ∈ S ∪R, e = ω2 ∈ E such that ω1 · ω2 is a prefix of ω
or
ii) if there exists s = ω1 ⊗ α1 ∈ S ∪ R and e = ω2 ∈ E such that ω1 · ω2 is a

prefix of ω and α1 is a prefix of α,
then there is a prefix αp = pref (α)|ω1 ·ω2 |, βp = pref (β)|ω1 ·ω2 |, p =

pref ()|ω1 ·ω2 | and T (s, e) will be appended by (αp,
′ ⊗ β′), where ′ =

suff (p)|ω2 |, β = suff (βp)|ω2 |.
The table is made balanced after every test case performed. Whenever it is

not balanced, find s, t ∈ S ∪ R, e ∈ E, (α1, 1 ⊗ β1) ∈ T (s, e) such that s ≡ t
and there does not exist (α2, 2⊗ β2) ∈ T (t, e) where suff (α1)|e| = suff (α2)|e|,
then construct test case IS(t) · e⊗ pref (α)|α|−|e| · suff (α1)|e| where α is selected
from ρ(dk(t, e)), for any dk(t, e) ⊆ T (t, e), 1 ≤ k ≤ η(T (s, e)).

The table is made dispute − free after balancing. Let s ∈ S be disputed
then find e ∈ E such that η(T (t, e)) > 1. Then, for every distinguishing subset
dk(t, e) ⊂ T (t, e), 1 ≤ k ≤ η(T (t, e)), add IS(s) · e⊗ α to R where α is selected
from ρ(dk(t, e)). Remove the original row s · e ∈ S ∪ R if it exists. Construct
additional test cases for the missing elements of the table.

326 M. Shahbaz, K. Li, and R. Groz

When the table is made balanced and dispute − free, it is made closed.
Whenever it is not closed, find t ∈ R such that s � t, ∀s ∈ S and move t
to S and extend R accordingly. Construct additional test cases for the missing
elements of the table.

When table is balanced, dispute− free and closed, a PFSM conjecture M ′ is
made from the table in the following way:

- Each s ∈ S is a state of the conjecture
- ε ∈ S is the initial state

For each s ∈ S, i ∈ I, there exists η(T (s, i)) transitions. Thus, each distin-
guishing subset dk(s, i) ⊆ T (s, i), 1 ≤ k ≤ η(T (s, i)), defines one transition
{s, s′, i, o, p, f}, in which p = {suff (α)1 , ∀α ∈ ρ(dk(s, i))}, f = σ(s, i) =
PS(dk(s, i)) and s′, i are determined by δ(s, i, x), λ(s, i, x), ∀x ∈ p, resp., in
the following way:

- δ(s, i, x) = t ∈ S|t ∼= (IS(s) · i⊗ α) ∈ S ∪R,α ∈ (ρ(dk(s, i))∗

- λ(s, i, x) = OS(dk(s, i))

The termination of the algorithm is guaranteed by the finite space of states and
transitions of the black box component modeled as PFSM. The operations which
keep the algorithm extending the table are two, i.e., disputed row treatment and
making the table closed.

A row is disputed if a row (or state) has more than one outputs (or possible
transitions) for the same input symbol but for different set of parameter values.
If a state in the actual component hasm different transitions for an input symbol
and a parameter value for each transition has been tested during the process,
then there will be at most m rows added in the table for such state and input
symbol.

A table is not closed when a row r in R is not equivalent to any row in S. Then
by definition, r will be moved to S and will represent a state of the conjecture.
If there are n states in the actual component, then there will be at most n− 1
moves from R to S, since there is initially one row in S and there cannot be
more than n.

As to balancing the table, it is nothing more than recording output sequences
in the existing table for those input parameter values that are not recorded
previously. The number of test cases required for balancing the table is calculated
as follows. Let mr,e is the number of different input parameter values recorded
in T (r, e), r ∈ S ∪ R, e ∈ E, and ne is the number of different input parameter
values recorded in T (s, e), ∀s ∈ S ∪ R. Then, the number of test cases required
for balancing each T (r, e) is ne −mr,e.

3.3 Illustration

We illustrate the learning algorithm of PFSM model on the example given in
Figure 1. The summary of the algorithm is given below.

Learning and Integration of Parameterized Components Through Testing 327

Input: I,DI

Output: Conjecture M ′

begin
Initialize (S,R,E, T) by E = I, S = ε, R = ε · i, ∀i ∈ I ;
Construct the test cases from (S ∪R)× E ;
Organize result in the table accordingly ;
while table is not balanced or not dispute− free or not closed do

Make the table balanced such that for every s, t ∈ S ∪R|s ≡ t,
s↔ t ;
Make the table dispute− free such that for all s ∈ S, e ∈ E, where
η(T (s, e)) > 1, s is treated ;
Make the table closed such that for every t ∈ R, there exists s ∈ S
such that s ∼= t ;

end
Make a conjecture M ′ from the table.

end

Algorithm 1. Summary of the Learning Algorithm

We start by initializing (S,R,E, T) with the input symbols from I = {a, u}
and construct test cases to fill the table, shown in Table 1. In the test cases, we
associate parameter values 1 and 5 and balance the table accordingly. Thus, the
row ε becomes disputed, since η(T (ε, u)) > 1.

Table 2. Table is not closed

a u

ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)

a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)
u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

Table 3. Table is not dispute − free

a u

ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)
a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

aa ((⊥,⊥, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1), s ⊗ ⊥), ((⊥, ⊥, 5), t ⊗ 25)
au ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25)

We add two parameterized sequences u⊗ 1 and u⊗ 5 to R and refill the table
by constructing test cases for new rows and balance it respectively, shown in
Table 2. The table is not closed, since row a in R is not equivalent to any row in
S (that contains only one row ε and a � ε). Thus, we move a to S and extend
R accordingly, shown in table 3. Balancing the table makes the row a disputed,
as η(T (a, u)) > 1. Hence, we add two more parameterized sequences in R and
construct test cases to fill new rows. Table 4 is balanced, dispute − free and

328 M. Shahbaz, K. Li, and R. Groz

Table 4. Table is balanced, dispute − free and closed

a u

ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)
a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

aa ((⊥,⊥, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1), s ⊗ ⊥), ((⊥, ⊥, 5), t ⊗ 25)
(a, u) ⊗ (⊥, 1) ((⊥, 1, ⊥), s ⊗ ⊥) ((⊥, 1, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25)
(a, u) ⊗ (⊥, 5) ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 5, 5), t ⊗ 5)

closed. Figure 2 shows the conjecture from the current table. Note that we can
use arbitrary input parameter values every time we construct test cases, whereas
in the example, only 1 and 5 are used for sake of simplicity. However, using many
different parameter values is more likely to reveal interesting information.

Fig. 2. The first conjecture of the example

3.4 Dealing with Counterexamples

The original learning algorithm for DFA [1], its improvements [14], [7] and its
adaptations to more expressive models [9], [2], [10] performs an additional con-
cept on the observation table, i.e., the table must be consistent before making
the conjecture. The consistency concept can be described informally in the fol-
lowing way. If there are two equivalent rows s, t ∈ S, then all the subsequent
rows in S ∪ R, which extend s, t with some input symbol i ∈ I, must also be
equivalent. In other words, the two apparently similar states (i.e., rows in S)
must have same successive states for all inputs implied on those states. If the ta-
ble is found not consistent, then the corresponding input sequence (which makes
the successive states different) is added to E. This means that rows are extended
with longer input sequences and then new test cases are constructed to fill the
table. In this way, two apparently similar states in S become different.

In the learning algorithm of PFSM, we do not perform this concept because
any two rows in S remain inequivalent during the whole process. Therefore in-
consistency does not occur in the first iteration of the learning process. If a
conjecture made from the table is not correct and there is a counterexample
(an input sequence) that rejects the conjecture (the output sequence differs
from the conjecture when applying counterexample to the component), then the

Learning and Integration of Parameterized Components Through Testing 329

Fig. 3. Example of a Composed System

counterexample is fixed back into the table in order to refine the conjecture,
which is considered as the next iteration of the learning process. In all above-
mentioned algorithms, a counterexample is fixed by adding all its prefixes in
S and hence new test cases are constructed for new rows. That is where the
inconsistency may occur while adding prefixes in S.

This concept can be avoided altogether if the method of fixing a counterex-
ample in the table is modified in such a way that instead of adding all prefixes
in S, we only add the relevant sequence in the table that results in difference
between the conjecture and the actual component. Furthermore, this addition
will not be reflected in S, so that no two rows in S become equivalent. A general
idea is discussed in [3], inspired by [14], applied on DFA algorithm. However, we
deal differently in our case which is described below.

Let c = ω ⊗ α, ω ∈ I+, α ∈ DI
+ be a counterexample for the current conjec-

ture. Then c will be fixed in the observation table as follows:
If there exists s ∈ S ∪ R such that IS(s) is the longest prefix of ω then add

e = suff (IS (c))|IS(c)|−|IS(s)| in E, if it is not already present. In case where
s = ω1 ⊗ α1 ∈ S ∪ R a parameterized input sequence and α1 is not a prefix of
α then add ω1 ⊗ pref (α)|ω1 | in R. Organize λ(q0, ω, α) in the table and make it
balanced, dispute− free and closed for a new PFSM conjecture.

We have observed that fixing the counterexample in this way actually gives the
same result as fixing the inconsistency in other algorithms. In other algorithms,
E is extended only when inconsistency is found, which is reflected after fixing
the counterexample. In our explanation, we extend E immediately while fixing
the counterexample which keeps the rows in S inequivalent.

4 Integration Testing

In [9], we described the overall testing procedure in which the model is Mealy
machine, with adaptations to a restricted form of PFSM in [10]. We suppose that
we are provided with a set of components and the architecture of communication
linking them. That is, we know for each component its interfaces. Each interface
is a set of input and output symbol types and the types of associated parame-
ters. Interface of two components can be pairwise connected, provided they are
complementary (inputs and outputs correspond, and parameter types match).
In an integrated architecture, non-connected interfaces will be considered as ex-
ternal interfaces to the environment. An example of a composed system of two
components M and N is shown in Figure 3.

330 M. Shahbaz, K. Li, and R. Groz

In order to associate PFSM models to components, we must provide a map-
ping from interfaces and parameter domains to sets I,O,DI , DO for each compo-
nent. In this mapping, we may omit unrelevant parameters: some expertise may
be needed there to identify which parts of the system are of interest. Some
high-level description of the integration (e.g. with component diagrams, use
cases...) could help in identifying relevant elements. We assume that through this
mapping, each machine can be modeled with a PFSM, i.e, all state information
will be captured in finite state. We also assume that typical parameter values to
be tested are provided for each input: those could be provided by scenarios (esp.
for external interfaces) or, failing that, chosen randomly. And for parameters
considered not relevant, there should be some mechanism to assign them a value
(either a default value, or some value linked to the values of other parameters,
e.g. observed values in similar type).

We first learn each component in isolation, using algorithm 1 up to the first
conjecture: we call this “unit testing”. Thus, we get a PFSM model for each
component. Actually, when the conjecture is made, some transitions will be la-
belled as “unchecked” as will be explained in section 4.2. From that point, we
proceed to integration testing, where we connect the actual components using
the specified architecture. We also connect the models of components: for this,
since PFSM are a restricted form of EFSM, we use the IF tool-set [4] to compute
interaction sequences. When we execute a test case, we submit external input
symbols along with external input parameter values to the integrated system,
observe the external output symbols and the external output parameter values.
At the same time, by observing the internal interfaces, we also obtain the input
and output sequences of the components. By using the mapping to the inputs
and output of the models, and running the corresponding sequences on the in-
tegrated model, we can detect any discrepancy between the observed behaviors
of components and that of their models. Those discrepancies can then be used
as counterexamples to refine the models.

In order to choose integration tests, we can first use some information pro-
vided as scenarios or properties of the system, as described below in section 4.1.
In any case, we shall be able to use the information from unit testing to derive
systematic integration test cases, as described in section 4.2. Additionally, ran-
dom walk on the model could provide a cheap test generation strategy: it could
also be related to a coverage of the “unchecked” transitions.

4.1 Test Generation by Scenario or Model Checking

In component integration, the integrator may have a number of test scenarios for
the global interaction of the system with its environment. Additionally, sample
parameter values are provided for all external interfaces of the system. For each
test scenario, a test case is constructed, in which the input parameter values are
selected according to the ranges specified in the test scenario. In executing the
test case, we check two properties:

– Whether the test scenario has been respected. If the test scenario has not
been respected, an error has been detected in the system of components.

Learning and Integration of Parameterized Components Through Testing 331

– Whether the observed behaviors conform to the models of components. If
there is a discrepancy between the observed behavior of one component and
its model, we go back to the unit testing procedure to refine the model with
the input sequence as counterexample.

Another source for test cases could come from property checking. If some
properties are specified for the system, then we can model-check those properties
on the composed model. Any counterexample for the property could then be run
on the system to check whether the actual system also includes a violation of
the property. This combination of model-checking with learned models has been
quite extensively studied in [5]. If no specific property is provided, we can still
check for generic properties. In particular, we could check for livelocks, since our
unit testing cannot guarantee that the models do not livelock when integrated
(deadlocks are a different matter since we make our models input-enabled).

4.2 Test Generation Using Information from Learning Procedure

In the unit testing procedure, in the step of making a conjecture, the set of
states is taken from S. When we want to define a transition from a state s for an
input symbol and a set of parameter value, we try to identify the corresponding
sequence s′ in S ∪ R, through observation recorded in T . If s′ is in S, the next
state of the transition is that sequence. If s′ is in R, we find the sequence t ∈ S
which is equivalent to s′.

In the first case, since the sequences s and s′ are all in S, they are not equiv-
alent to each other. So, we are sure that in the real model of the component,
the state reached by s and the state reached by s′ are different, and there must
exist such a transition from the state reached by s to the state reached by s′.

In the latter case, we cannot distinguish the state reached by s′ and the
state reached by t using the current set E of separating sequences. So, in the
conjecture, we assume these two states are the same, and there is a transition
from the state reached by s to the state reached by t.

But this conjecture may be wrong. In the real model of the component, the
state reached by s′ and the state reached by t can be different. These two states
can be distinguished by certain sequence. From the point of view of identifying
counterexamples for the conjecture, in the integration testing procedure, we
should try to separate these states by executing long sequences from them. Based
on this observation, we propose the following integration testing technique.

In making a conjecture in the unit testing procedure, for s ∈ S, i ∈ I, α ∈
(ρ(dk(s, i))∗, if t = (IS(s) · i⊗α) ∈ R then we label the transition as unchecked,
and we record the sequence t with it and refer to it as the hidden sequence.

Our test generation strategy for integration testing will be specifically targeted
at covering unchecked transitions. For each unchecked transition, we extend its
hidden sequence with several parameterized input sequences whose lengths are
limited by a predefined threshold k to obtain a group of sequences. From all
these sequences obtained, we remove those sequences which have been executed
in unit testing, and those sequences in which there is not any interaction with

332 M. Shahbaz, K. Li, and R. Groz

another component. Those sequences are local to a given component, and should
be extended to a global test sequence. Therefore, we take rest of the sequences
as test purposes, and obtain a group of test cases which contain external in-
puts/outputs only using the method described in [8]: basically we search the
composed model for global sequences whose projections on the local component
match the test purpose. Actually, in a single search, we may compute the test
cases for several components. By executing these test cases, we may identify
counterexamples.

In the example of a composed system shown in Figure 3, componentM has IM =
{a, u} andOM = {s, t}, and componentN has IN = {b} andON = {u, r}, respec-
tively. The PFSM model of componentM is shown in Figure 1. After unit testing,
the first conjectureM (1) of componentM is learnt, shown in Figure 2. The PFSM
model of componentN is shown in Figure 4. It is learnt exactly in its unit testing.

Fig. 4. PFSM Model of Component N

In M (1), among the 6 transitions, transitions tr1, tr2, tr3, tr4 and tr5 are
unchecked. For unchecked transition tr2, its hidden sequence is u(5). We extend
it to obtain u(5)·a·a, u(5)·a·u(5), u(5)·u(5)·a, and u(5)·u(5)·u(5). Among them,
using u(5) · a · u(5) as test purpose, we obtain a test case b(4)/r(4) · b(4)/t(5) ·
a/s · b(4)/t(25).

In executing this test case, the expected behavior of component M is
u(5)/t(5) ·a/s ·u(5)/t(25), and the observed behavior is u(5)/t(5) ·a/s ·u(5)/t(5).
This means that a counterexample u(5) · a · u(5) is identified.

Table 5. Table is balanced, dispute− free and closed after fixing the counterexample

a u au

ε (⊥, s ⊗ ⊥) (⊥, s ⊗ ⊥), (5, t ⊗ 5) ((⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, 1), (s, s) ⊗ (⊥, ⊥))
a ((⊥, ⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25) ((⊥,⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5) ((5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 1), (s, s) ⊗ (⊥,⊥))

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25) ((1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
aa ((⊥, ⊥, ⊥), s ⊗ ⊥) ((⊥,⊥, 1), s ⊗ ⊥), ((⊥,⊥, 5), t ⊗ 25) ((⊥, ⊥,⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

(a, u) ⊗ (⊥, 1) ((⊥, 1, ⊥), s ⊗ ⊥) ((⊥, 1, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25) ((⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, 1, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(a, u) ⊗ (⊥, 5) ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 5, 5), t ⊗ 5) ((⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((⊥, 5, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(u, u) ⊗ (5, 1) ((5, 1, ⊥), s ⊗ ⊥) ((5, 1, 1), s ⊗ ⊥), ((5, 1, 5), t ⊗ 5) ((5, 1, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, 1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, u) ⊗ (5, 5) ((5, 5, ⊥), s ⊗ ⊥) ((5, 5, 1), s ⊗ ⊥), ((5, 5, 5), t ⊗ 5) ((5, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, a) ⊗ (5, ⊥) ((5, ⊥, ⊥), s ⊗ ⊥) ((5, ⊥, 1), s ⊗ ⊥), ((5, ⊥, 5), t ⊗ 5) ((5, ⊥, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, ⊥, 1), (s, s) ⊗ (⊥,⊥))

(a, a, u) ⊗ (⊥, ⊥, 5) ((⊥,⊥, 5, ⊥), s ⊗ ⊥) ((⊥, ⊥, 5, 1), s ⊗ ⊥), ((⊥,⊥, 5, 5), t ⊗ 5) ((⊥,⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((⊥,⊥, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(a, a, u) ⊗ (⊥, ⊥, 1) ((⊥,⊥, 1, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1, 1), s ⊗ ⊥), ((⊥,⊥, 1, 5), t ⊗ 25) ((⊥, ⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, 1, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(u, a, u) ⊗ (5, ⊥, 1) ((5, ⊥, 1, ⊥), s ⊗ ⊥) ((5, ⊥, 1, 1), s ⊗ ⊥), ((5, ⊥, 1, 5), t ⊗ 5) ((5, ⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, a, u) ⊗ (5, ⊥, 5) ((5, ⊥, 5, ⊥), s ⊗ ⊥) ((5, ⊥, 5, 1), s ⊗ ⊥), ((5, ⊥, 5, 5), t ⊗ 5) ((5, ⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

Going back to unit testing, we fix the counterexample in the observation table
by adding a · u in E and then making the table balanced, dispute − free and
closed, we obtain a new conjecture M (2) for component M . The table is shown
in Table 5 and Figure 5 is the conjecture. The new conjecture then will again be
put under integration testing with component N and new global test sequences

Learning and Integration of Parameterized Components Through Testing 333

will be generated according to the process described above. This may identify
new counterexamples or end the integration process if no discrepancy is found
[9]. In the former case, the conjecture will then be refined again through fixing
new counterexamples in the table.

Fig. 5. Conjecture M (2) of Component M

5 Conclusion

We have presented an approach that makes it possible to use model-based testing
techniques, in particular test generation for integration testing, in the absence of
initial models. We extend previous work done in this direction [7], [9], [5] to deal
with arbitrary data values, avoiding the complexity of expanding into DFA or
FSM models. The model is richer than the models used by [10] or [2]. We use an
incremental testing approach where new interoperability tests can be derived to
check systematically the models derived from previous observations. From those
tests, refined models of the system can be built, or faults in the system can be
identified, as explained in [9].

We are currently working on a tool, called RALT (Rich Automata Learning
and Testing), to run the approach on case studies to be provided by France
Telecom. We have already implemented the learning algorithms for DFA [1],
for Mealy machine [9] and for simple parameterized machine [10], and need to
interface to actual test drivers, so that we can compare them all.

We also consider research perspectives to deal with even more complex models.
In particular, we could try to move closer to EFSM models by incorporating vari-
ables. To circumvent the hidden nature of state structure in black boxes, we could
either rely on additional structure information provided by the integrator (moving
from black to some kind of grey box) or use some heuristics to differentiate con-
trol states from variables.Other direction is to consider sufficient information (e.g.,
parts of source code) and derive complex models, as performed in [6], [15]. We are
also investigating other types of test generation strategies for integration testing.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 2, 87–106 (1987)

2. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with pa-
rameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and ETAPS 2006. LNCS,
vol. 3922, pp. 107–121. Springer, Heidelberg (2006)

334 M. Shahbaz, K. Li, and R. Groz

3. Berg, T., Raffelt, H.: Model checking. In: Model-Based Testing of Reactive Systems,
pp. 557–603 (2004)

4. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS,
vol. 3185, pp. 237–267. Springer, Heidelberg (2004)

5. Elkind, E., Genest, B., Peled, D., Qu, H.: Grey-box checking. In: Najm, E., Pradat-
Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–
435. Springer, Heidelberg (2006)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming (2006)

7. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–
327. Springer, Heidelberg (2003)

8. Koné, O., Castanet, R.: Test generation for interworking systems. Computer Com-
munications 23(7), 642–652 (2000)

9. Li, K., Groz, R., Shahbaz, M.: Integration testing of components guided by in-
cremental state machine learning. In: TAIC PART, pp. 59–70. IEEE Computer
Society, Washington (2006)

10. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based
on learning parameterized i/o models. In: Najm, E., Pradat-Peyre, J.F., Donzeau-
Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidel-
berg (2006)

11. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE. IFIP
Conference Proceedings, vol. 156, pp. 225–240. Kluwer, Dordrecht (1999)

12. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.
IEEE Trans. Softw. Eng. 30(1), 29–42 (2004)

13. Ramalingom, T., Thulasiraman, K., Das, A.: Context independent unique state
identification sequences for testing communication protocols modelled as extended
finite state machines. Computer Communications 26(14), 1622–1633 (2003)

14. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Machine Learning: From Theory to Applications, pp. 51–73 (1993)

15. Walkinshaw, N., Bogdanov, K., Holcombe, M.: Identifying state transitions and
their functions in source code. In: TAIC PART, pp. 49–58. IEEE Computer Society,
Washington (2006)

An EFSM-Based Passive Fault Detection

Approach

Hasan Ural and Zhi Xu

School of Information Technology and Engineering (SITE)
University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

{ural,zxu061}@site.uottawa.ca

Abstract. Extended Finite State Machine (EFSM)-based passive fault
detection involves modeling the system under test (SUT) as an EFSM
M, monitoring the input/output behaviors of the SUT, and determining
whether these behaviors relate to faults within the SUT. We propose a
new approach for EFSM-based passive fault detection which randomly
selects a state in M and checks whether there is a trace in M starting
from this state which is compatible with the observed behaviors. If a
compatible trace is found, we determine that observed behaviors are not
sufficient to declare the SUT to be faulty; otherwise, we check another
unchecked state. If all the states have been checked and no compatible
trace is found, we declare that the SUT is faulty. We use a Hybrid method
in our approach which combines the use of both Interval Refinement and
Simplex methods to improve the performance of passive fault detection.

1 Introduction

Passive fault detection is a fundamental part of passive testing which determines
whether a system under test (SUT) is faulty by observing the input/output
(I/O) behaviors of the SUT without interfering with its normal operations [10].
Compared with active fault detection, in which a tester has complete control
over the inputs and devises a test sequence to reveal possible faults of the SUT,
passive fault detection is more applicable under circumstances where the control
is impractical or impossible, such as network fault management [10].

In Extended Finite State Machine (EFSM)-based passive fault detection, the
specification of an SUT N is modeled as an EFSM M, N is treated as a blackbox,
and the observed I/O behaviors of N is represented as a sequence E of observed
I/O events. Determining whether N is faulty with respect to M is then based
on the existence of traces in M that are compatible with E, i.e., a trace in M
is compatible with E if E maps to a sequence of consecutive transitions of M
starting at a state s of M . If the number of traces in M compatible with E is
zero, then E is sufficient to determine that N is faulty. Otherwise, E is declared
to be insufficient to determine whether N is faulty, i.e., there is at least one
trace in M compatible with E and E needs to be augmented with additional
I/O events of N to continue with passive fault detection.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 335–350, 2007.
c© IFIP- International Federation for Information Processing 2007

336 H. Ural and Z. Xu

Usually, EFSM-based passive fault detection approaches are derived from Fi-
nite State Machine-based passive fault detection approaches. The FSM-based
fault detection approach in [9] checks the observed sequence of I/O events one-
by-one from the beginning, and reduces the size of the set S′ of possible current
states by eliminating impossible states until either S′ is empty (N is faulty) or
there is at least one state in S′ (no fault is detected). The approach in [9] has
been applied for passive fault detection in FSM-based systems [22, 23]. This ap-
proach has been extended to systems specified in the EFSM model by [7, 10, 11,
21] and adopted to systems specified in the Communicating Finite State Machine
(CFSM) model by [14, 15, 16, 17, 18]. Another approach to EFSM-based passive
fault detection focuses on characterizing specifications of an SUT in terms of
invariants [3, 4, 5, 6].

This paper proposes a new approach for EFSM-based passive fault detection
which is summarized as follows: assume that the subset S0 of states of M contains
all possible starting states of E. Randomly pick a state s in S0 and determine
whether there exists a trace in M that starts at s and is compatible with E. If
such a trace is found, then stop and declare that E is not sufficient to determine
whether N is faulty. In this case, the starting state and the current state of N
can be determined readily using this trace. Otherwise, continue to check other
states in S0. After checking all the states in S0, if no trace in M is found to be
compatible with E, then N will be declared faulty.

The proposed approach provides information about possible starting state
and possible trace compatible with E at the end of passive fault detection.
Such information cannot be provided by the existing approaches derived from
[9] unless a post-processing is performed or a backward checking approach is
taken for exploring the information about possible starting state and possible
trace [1, 2]. In addition, the proposed approach utilizes a Hybrid method to
evaluate constraints in predicates associated with transitions in an EFSM which
combines the use of both Interval Refinement [8, 19] and Simplex [13] methods
for performance improvement during passive fault detection. We show that using
only the Interval Refinement method has a similar performance to the Hybrid
method but suffers from inaccuracy whereas using only the Simplex method has
the same accuracy as the Hybrid method but suffers from poor performance.

The rest of the paper is organized as follows. Section 2 gives preliminaries
needed for our discussion, including definitions and notations used in our pre-
sentation. Section 3 presents the proposed approach for EFSM-based passive
fault detection in detail. Section 4 provides experimental evaluations. Section 5
concludes this paper with some final remarks and directions for future research.

2 Preliminaries

The proposed approach for EFSM-based passive fault detection is based on the
specification of SUT N given as a Simplified Extended Finite State Machine
(SEFSM) and the sequence of I/O behaviors a tester observes during the execu-
tion of N given as a sequence E of observed I/O events.

An EFSM-Based Passive Fault Detection Approach 337

A Simplified Extended Finite State Machine (SEFSM) M is (S,Em, x̄, T):

1. S = {s1, . . . , sn} is a finite set of states;
2. Em is a finite set of I/O events. e(ȳ) ∈ Em is an input or output event, and
ȳ = (y1, y2, . . . , yp) is a vector of parameters of the I/O event e, called local
variables ;

3. x̄ = (x1, . . . , xr) is a vector of global variables which are accessible within all
transitions;

4. T is a finite set of transitions.

The difference between ȳ and x̄ is that ȳ is observable from SUT N while x̄ is
unobservable. Note that all variables are integers. An example SEFSM is shown
in Figure 1.

Global Variables: initial values
- attempts: [0, 10]
- pin: [0, 9999]
- lang: [0, 6]
- op: [1, 30]
- cb: [0, MAX], MAX=1E7, MIN=-1E7

s0

s1

T1: ?Card(p, w)
[TRUE]
pin := p;
cb := w;

attempts := 0;

T2a: ?PIN(p)
[(p - pin ≤ -1) (attempts ≤ 2)]

attempts := attempts + 1;

T4: ?PIN(p)
[p-pin=0]

s2

s6

T3a: ?PIN(p)
[(p – pin ≥ 1) (attempts ≥ 3)]

T2b: ?PIN(p)
[(p – pin ≥ 1) (attempts ≤ 2)]

attempts := attempts + 1;

T3b: ?PIN(p)
[(p - pin ≤ -1) (attempts ≥ 3)]

T12: ?operate(k)
[k=10]

T5: ?Language(l)
[TRUE]
lang := l;

s3

T6: ?operate(k)
[k=4]

T13: ?operate(k, w)
[(k = 1) (w ≥ cb - 100)]

s5

T7: ?operate(k, w)
[(k = 1) w < cb – 100)]

cb := cb - w;
op := k;

T8: ?operate(k, w)
[k = 2]

cb := cb + w;
op := k;

T11: !Receipt(l, c, o)
[(l = lang) (c = cb) o = op)]

s4

T9: ?operate(k)
[k = 3]
op := k;

T10: !print(l, w)
[(l = lang) w = cb)]

start

Notation for a transition

Si Sj

e(y)
[P(x, y)]
A(x, y)

t#:

Fig. 1. The SEFSM ATM for an Automatic Teller Machine (ATM) system

A transition t ∈ T in an SEFSM is (si, sj , e(ȳ), P (x̄, ȳ), A(x̄, ȳ)):

1. si is the starting state of t ;
2. sj is the ending state of t ;
3. e(ȳ) ∈ Em is an input event prefixed with “?” or output event prefixed with

“!” that can be observed once t is activated;
4. P (x̄, ȳ) is a predicate expressing the conditions to be satisfied for the acti-

vation of t which consists of conjunctive terms, each of which is defined as
a constraint, connected by “ ∧ ” (and) operators;

5. A(x̄, ȳ) is an action consisting of a sequence of assignment statements, each
updating a global or local variable as a function of elements of x̄ and ȳ.

Examples of an I/O event, predicate, and action are: “!display(y)” is an I/O
event “display” which outputs the value of y, “(3 × x1 + (−1) × x2 ≥ 0) ∧ (1
× x1 + 4 × y2 ≤ 4)” is a predicate, and “x3 := 3 × x1 + (-1) × x2 + (-5); x1
:= x3;” is an action, respectively.

Because ȳ is observable from N while x̄ is unobservable, the I/O events with
global variables as parameters must be modified. For example, if x is a global

338 H. Ural and Z. Xu

variable, an input event “?read(x)” will be transformed to “?read(a) x :=a;”
where a is a local variable and the action “x :=a;” assigns the value of a to x ;
similarly, an output event “!display(x)” will be transformed to “!display(a) [a
= x]” where the predicate “[a = x]” guarantees the output value is equal to the
value of x.

In this paper, a constraint cs is represented by
∑k

i=1 aixi = I (ai is a coeffi-
cient, xi is a global variable, I is an interval) after replacing the local variables
of ȳ by the actual values of the parameters observed during the execution of N.
For example, the constraint “3 × x1 + (-1) × x2 ≥ 0” is represented by the
expression “3 × x1 + (-1) × x2 = [0, MAX]”. MAX is defined as 1 ×107 and
MIN is defined as -1 ×107 in this paper.

Note that an event-driven extended finite state machine (EEFSM) model is
used in [10]. The differences between EEFSM and SEFSM models are as fol-
lows: the SEFSM model simplifies the structure of predicates in transitions by
eliminating the “or” operator in EEFSM. Therefore, in SEFSM, a transition is
executable if and only if all the constraints in the predicate are evaluated to be
TRUE. Also, in actions associated with transitions in EEFSM, [10] only con-
sidered the assignment statements where the left hand side is a global variable,
whereas we consider both global and local variables to be on the left hand side
of assignment statements.

The sequence E of observed I/O events represents a sequence of I/O behaviors
a tester observed during the execution of N, i.e., e1e2. . . en. Like an I/O event
in Em, an observed I/O event ei, 1 ≤ i ≤ n, in E is also categorized as an
observed input event prefixed with “?” or an observed output event prefixed with
“!”. Different from the I/O event in Em, an observed I/O event in E contains
determined values instead of symbols for variables. For example, “?read(3)” is
an observed I/O event in E while “?read(y)” is an I/O event in Em.

A configuration depicts a possible status of the SUT N during EFSM-based
passive fault detection. A configuration c is a quadruple (#, s, [x̄], CS(x̄)) where

1. # is the number of observed I/O events that have been checked to reach the
configuration;

2. s is the possible current state of N ;
3. [x̄] is a vector of intervals which represents the ranges of possible values

which the variables in x̄ can take;
4. CS(x̄) records the constraints on variables in x̄. These constraints are ob-

tained from both predicates and actions. As CS(x̄) contains only global
variables, we shall henceforth use CS as the abbreviation of CS(x̄).

For example, c = (3, s6, {x1 = [0, 5], x2 = [1, 2]}, {x1+x2 ≥ 0; 3x1−x2 ≤ 9; })
is a configuration. (see Figure 2) According to configuration c in Figure 2, 3
observed I/O events have been checked; the current possible state of N is s6;
the value of x1 is greater or equal to 0 and less than or equal to 5, and the
value of x2 is greater or equal to 1 and less than or equal to 2; the values of x1
and x2 must satisfy two constraints “x1 + x2 ≥ 0” and “3x1 − x2 ≤ 9” at the
same time.

An EFSM-Based Passive Fault Detection Approach 339

Fig. 2. A configuration c

A trace represents the sequence of status of the SUT N during EFSM-based
passive fault detection. Trace-Tree records all the traces that have been checked
during EFSM-based passive fault detection.

1. A trace trace is a sequence of configurations, which are connected by tran-
sitions;

2. A Trace-Tree Tree for s consists of all the traces starting from a state s ∈
S0. Each node in Tree represents a configuration and each edge stands for a
transition between two configurations. Every trace tracei of length k, from
s to a leaf in Tree, is compatible with a prefix of E (e1e2 . . . ek, k ≤ |E|);

3. A trace in M compatible with E, henceforth called compatible trace of E, is
defined as a trace in Trace-Tree for s with length equal to |E | .

3 The Proposed Approach

Given a specification SEFSM M of an SUT N, a sequence E of observed I/O
events, and S0 ⊆ S, the proposed approach proceeds as follows:

1. Pick an unchecked state s from S0;
2. Build a Trace-Tree for s by finding all the possible traces starting from state

s ∈ S0;
3. If a compatible trace of E is found, declare this trace as a compatible trace

of E ; if no compatible trace of E can be found in Trace-Tree for s, go to (1);
4. If all states in S0 have been checked and no compatible trace of E is found,

declare that “N is faulty”.

3.1 Algorithm Main

In algorithm Main, we randomly select a state s from S0 ⊆ S of SEFSM M
and try to find a compatible trace of E starting from s. If trace is found to
be a compatible trace of E, this algorithm will terminate and declare trace as a
compatible trace of E ; if all the states in S0 have been checked and no compatible
trace of E is found, the algorithm will report “N is faulty”.

3.2 Algorithm Search Trace Tree

Algorithm Search Trace Tree searches for a compatible trace of E starting from
a state s using the data structures for configuration and Trace-Tree.

340 H. Ural and Z. Xu

Algorithm 1. Algorithm Main
1: Given: an SEFSM M,
2: a sequence E of observed I/O events, and
3: S0 = { s1, s2, · · · , sn}
4: Return: “N is faulty”, or “trace is a compatible trace of E”
5: Begin:
6: while (S0 �= ∅)
7: randomly select a state s from S0;
8: S0 ← S0 \{ s } ;
9: trace ← Search Trace Tree(M, s, E);{search for a compatible trace of E}

10: If(trace �= NULL)
11: return (“trace is a compatible trace of E”);
12: endwhile
13: return (“N is faulty”); {no compatible trace of E is found}
14: End

3.3 Algorithm Check Trace and the Hybrid Method

A trace consists of a sequence of configurations which represents the sequence
of changes in the status of N through E. Algorithm Check Trace(M , trace,
E, Tree) checks if there is a trace compatible with E. It first initializes the cur-
rent configuration ccurrent to the first configuration from trace, sets the current
possible state s to the state in ccurrent and gets the observed I/O event e to
be considered from E. Then, all transitions in M starting from s (i.e., set Ts

of transitions) are checked one by one. Those transitions passing both control
portion and data portion fault detection will be considered as executable tran-
sitions corresponding to the observed I/O event e. As there may be more than
one executable transition, algorithm Check Trace picks the first one of them to

2

2 31

0

2

1

2 2

1

0

2

1

The architecture of a
Trace-Tree Tree

Checking the Trace-Tree Tree by
the proposed approach

Tree = (trace 1, trace 2, trace 3)

trace 1

trace 2 trace 3

trace 1

trace 3

trace 2
3

c
0

c11
c

12

c21 c22 c23

c
31

c0

c11

c21

c12

c23

c22

c31
t011 t012

t121 t122 t123

t231

t
011

t121

t012

t
123

t122

t
231

Fig. 3. The architecture of a Trace-Tree and its representation during passive fault
detection

An EFSM-Based Passive Fault Detection Approach 341

Algorithm 2. Algorithm Search Trace Tree(M, s, E)
1: Given: an SEFSM M,
2: a state s ∈ S0, and
3: a sequence E of observed I/O events
4: Return: a compatible trace trace, or NULL
5: Begin:
6: Tree ← NULL; {initialize the Trace-Tree Tree}
7: trace ← NULL; {initialize the trace trace}
8: [x̄]0 ← set the initial intervals of the global variables in M ;
9: c0 ← (0, s, [x̄]0, ∅); {create the initial configuration c0 =(#, s, [x̄], CS)}

10: trace.add(c0); {add c0 as the first configuration in this trace}
11: Tree.add(trace);
12: while (Tree �= ∅)
13: trace ← Tree.get(0); {get the first trace in Tree}
14: succ ← Check Trace(M, trace, E, Tree); {check if this trace is compatible

with E}
15: if (succ = TRUE) {if trace is compatible with E}
16: return (trace);
17: else
18: Tree.delete(trace); {delete trace from Tree}
19: endwhile
20: return (NULL); {no trace compatible with E has been found}
21: End

continue checking and adds all other transitions as branches into the Trace-Tree
Tree. The procedure of checking a Trace-Tree is described in Figure 3. In Figure
3, Tree consists of three traces. For example, when checking configuration c11,
there exist two executable transitions, t121 and t122. For each executable tran-
sition, a new configuration will be built. For c21, which corresponds to the first
executable transition t121, we add c21 to the end of trace1; for c22, we build a
new trace, trace3, and set c22 as the starting configuration of trace3. Then we
continue checking trace1 with c21. trace3 will be checked if and only if trace1
and trace2 are determined not compatible with E. Whenever a compatible trace
of E is found, algorithm Check Trace returns this trace.

When searching for executable transitions within algorithm Check Trace, two
steps are applied to a transition t ∈ Ts: In the first step, which corresponds
to function control portion checking in algorithm Check Trace, we compare the
I/O event associated with transition t with the observed I/O event e (in E) by
the prefix symbol, event name and possibly the number of parameters. If this
comparison produces a mismatch, we stop processing transition t. Otherwise,
we continue with the second step, which corresponds to the data portion fault
detection, where we replace the local variables of ȳ in predicate t.P (x̄, ȳ) by the
actual values of the parameters of the observed I/O event e and then transform
the predicate into a list of constraints stored in newCS. After the replacement,
the data portion fault detection problem is reduced to a Constraint Satisfaction

342 H. Ural and Z. Xu

Problem (CSP) which is defined as follows: given (1) a configuration c, in which
c.[x̄] contains a vector of intervals representing the ranges of possible values of
global variables and c.CS stores existing constraints on x̄; and (2) a set newCS
of new constraints, which is generated from t.predicate(x̄, ȳ), determine if there
exists at least one combination of values, called solution, in c.[x̄] that satisfies
the existing constraints in c.CS and new constraints in newCS simultaneously. If
there exists a solution, the predicate t.predicate(x̄, ȳ) will be considered consis-
tent with the configuration c. If no solution exists, it means that an inconsistency
has been detected.

To solve this CSP, the Interval Refinement method can be used, as done in
[10]. However, because of the dependency problem, the results of the Interval
Refinement method may not be accurate, i.e., some transitions may falsely be
reported as executable. For example: assume a configuration c with c.[x̄] : x1 =
[1, 2], x2 = [1, 2], x1 and x2 are integers; c.CS: {cs : x1 − x2 = 0;} , and check
two transitions t1 with a constraint cs1 in its predicate as: x1 + x2 = 3; t2
with a constraint cs2 in its predicate as: x1 + x2 ≤ 4. By applying the Interval
Refinement method, both transition t1 and t2 will be judged as executable.
However, t1 is not executable because x1 and x2 are integers and there is no
solution for both cs and cs1 at the same time. To guarantee the correctness
of results, the Simplex method can be used instead of the Interval Refinement
method, as done in [11]. Although the Simplex method is accurate, it is slower
than the Interval Refinement method. Another difference between these two
methods is that, in the Interval Refinement method, the intervals are narrowed;
while in the Simplex method, the intervals will be untouched.

To combine the advantages of both the Interval Refinement and Simplex meth-
ods, we propose a Hybrid method, which is as accurate as the Simplex method
and as efficient as the Interval Refinement method. The proposed Hybrid method
uses both of these two methods judiciously as follows: given the set Ts of transi-
tions, the current configuration ccurrent, and an observed I/O event e, first the
Interval Refinement method, together with function control portion checking, is
used to decide which transitions in Ts are executable. If no transition in Ts is eval-
uated to be executable, the current trace will be determined not compatible with
E. If more than one transition is evaluated to be executable, the Simplex method
will be applied to check the correctness of the Interval Refinement method in
declaring these transitions executable. If only one transition is evaluated to be
executable by the Interval Refinement method, the Simplex method will not be
applied because this transition will be evaluated by the Simplex method implic-
itly by checking the last configuration of this trace. That is, at the end of a trace,
before the trace is determined to be compatible with E, the Simplex method is
applied to confirm that there exists no inconsistency in the last configuration
of this trace. For example, consider a trace trace (c1c2 . . . ck, k ≤ |E |) in the
Trace-Tree Tree. If ck is checked by the Simplex method and no inconsistency is
found, trace is guaranteed to be compatible with a prefix of E (e1e2 . . . ek, k ≤
|E |) because ck contains all the constraints within the configurations from c1 to

An EFSM-Based Passive Fault Detection Approach 343

ck−1. Therefore, if no inconsistency found in the last configuration of trace by
the Simplex method, the transitions associated with trace are all executable.

After evaluating all the transitions in Ts, we continue to perform actions by
function action(tc, e, c) on the configurations in C with their corresponding
transitions in Ts. After performing actions, we add the first configuration in C
to the end of trace and continue to check trace starting from this configuration.
Other configurations in C will be considered as the initial configuration of new
branches, which are represented as new traces in the Trace-Tree.

In function Interval Refinement(c.[x̄], c.CS, newCS), the interval arith-
metic operations are applied to narrow the intervals of variables in constraints
[19]. During refinement, if the interval of a variable is empty, an inconsistency
is detected and function Interval Refinement returns FALSE. Otherwise, c.[x̄] is
updated based on the new constraints newCS and newCS is added into the set
c.CS.

In function Simplex(c.[x̄], c.CS, ∅), we adopt an open source tool lp solve
which is a free linear programming solver based on the revised Simplex method
and the Branch-and-bound method [11, 12]. If no solution exists, function
Simplex returns FALSE. Both c.[x̄] and c.CS are unchanged within function
Simplex.

The worst case computational complexities of Interval Refinement and Sim-
plex methods are exponential. [10, 11, 20] show that the average complexities of
both methods in practice are polynomial. However, because the Simplex method
is more complex than the Interval Refinement method, the speed of the Simplex
method is slower than that of the Interval Refinement method. However, the use
of the Simplex method in conjunction with the Interval Refinement method does
not adversely affect the efficiency of the Hybrid method because the frequency
of applying the Simplex method in the Hybrid method is very low; and the In-
terval Refinement method narrows the intervals which helps reduce the cost of
applying the Simplex method.

3.4 Function action

When a transition has been evaluated to be executable, a new configuration
will be constructed to record the status of SUT N after this transition. The
construction of a new configuration depends on the action part, A(x̄,ȳ), in the
transition which consists of a sequence of assignment statements. Given a con-
figuration c in the set of configurations built for all executable transitions, an
observed I/O event e and a transition tc corresponding to c, function action(tc,
e, c) performs the actions associated with tc, and builds a new configuration
cnext which stands for the status of SUT N after tc. The details of algorithm
action are presented as follows: In the first step, we replace the local variables
in the right hand expression (RHE) of an assignment statement by their values
in e which gives an RHE =

∑k
i=1 aixi. After the replacement, RHE without

local variables is used to update the value of the left hand variable (LHV) in
the configuration c. If LHV is a local variable, we use the value of RHE in the
assignment statement to replace the existing value of this local variable. If LHV

344 H. Ural and Z. Xu

Algorithm 3. Algorithm Check Trace(M, trace, E, Tree)

1: Given: an SEFSM M,
2: a trace trace,
3: a sequence E of observed I/O events, and
4: a Trace-Tree Tree,
5: Return: FALSE, or {trace is not a compatible trace of E}
6: TRUE {trace is a compatible trace of E}
7: Begin:
8: ccurrent ← trace.get(0);{get the first configuration}
9: while (ccurrent �= NULL and ccurrent.# �= E.#){ if there is an observed I/O

event to be checked}
10: s ← ccurrent.sc;
11: Ts ← all transitions in M starting at s;
12: e ← E.get(ccurrent.# + 1);{ get the observed I/O event e}
13: C ← ∅ ;
14: for each transition t in Ts {evaluate transitions}
15: c ← ccurrent;
16: if (control portion checking(c, t, e) = FALSE)
17: end the for loop; {the control portion is inconsistent}
18: else {the data portion fault detection commences}
19: newCS ← replace(t.P(x̄ , ȳ), e);{eliminate local variables}
20: if (Interval Refinement(c.[x̄], c.CS, newCS) = FALSE)
21: end the for loop; {the data portion is inconsistent}
22: else
23: C ← C ∪ { c } ; {c is modified and needs to be added to C}
24: endfor
25: if (C = ∅) return (FALSE); {if no executable transition is found}
26: else
27: if (|C | > 1 or ccurrent.# + 1 = |E |) {checking by the Simplex method}
28: for each configuration c in C

29: if (Simplex(c.[x̄], c.CS, ∅) = FALSE) C ← C \{ c } ;
30: endfor
31: else
32: continue;
33: if (C = ∅) return (FALSE); {if no configuration in C is consistent}
34: else
35: for each configuration c in C

36: c ← action(tc, e, c) ; {perform actions associated with tc which is the
executable transition corresponding to c}

37: if (c = NULL)
38: end the for loop;
39: else
40: if (c is the first configuration in C)
41: add c to trace;
42: ccurrent ← c;
43: else
44: build a new trace branch trace;
45: add c to branch trace; {create a new branch}
46: add branch trace to tree;
47: endfor
48: endwhile
49: return (TRUE); {a trace compatible with E is found}
50: End

An EFSM-Based Passive Fault Detection Approach 345

Algorithm 4. Algorithm action(tc, e, c)
1: Given: a transition tc,
2: an observed I/O events e, and
3: the current configuration c
4: Return: new configuration cnext, or {the configuration after transition tc}
5: NULL {construction failed}
6: Begin:
7: local var ← set the values of the set of local variables according to e;
8: cnext ← c;
9: assignments ← tc.A(x̄, ȳ); {put the assignments in tc.A(x̄, ȳ) into a vector}

10: while(assignments is not an empty sequence)
11: a ← remove(a, assignments); {pick the first assignment}
12: replace the local variables in a using local var ; {the first step}
13: if (a.LHV is a local variable) {the second step}
14: q ← find the index of variable a.LHV in local vars;
15: local vars[q] ← a.RHE ; {replace by the value of RHE}
16: else
17: q ← find the index of variable a.LHV in c.[x̄];
18: [xq] ← R(a.RHE)[x̄]; {update the interval of a.LHV in [x̄]}
19: if (a.LHV appears in a.RHE)
20: for every constraint cs in cnext.CS that contains a.LHV
21: replace the a.LHV in cs by (a.LHV −

∑k
i=1,i�=q aixi)/aq ;

22: endfor
23: else {if a.LHV does not appear in a.RHE}
24: for every constraint cs in cnext.CS that contains a.LHV
25: replace the variable a.LHV in cs with [xq];
26: change a to a new constraint cs′;
27: cnext.CS ← cnext.CS ∪ cs′; {add this new constraint}
28: endfor
29: endwhile
30: return (cnext);
31: End

is a global variable, we first replace the interval of LHV in c.[x̄] by the value of
interval R(RHE)[x̄], then update the constraints containing LHV in c.CS. If
LHV appears in RHE, for every constraint cs in c.CS that contains LHV, we
replace LHV in cs by (a.LHV −

∑k
i=1,i�=q aixi)/aq. If LHV does not appear in

RHE, for every constraint cs in c.CS that contains LHV, we replace the occur-
rences of LHV with [xq] and add the assignment to c.CS as a new constraint.
For example, the assignment “x1 := x2 + x3 - 3” can be added as a constraint
“x2 + x3 - x1 = 3”. Note that in [10], in the situation where LHV does not
appear in RHE, all the constraints in c.CS containing LHV will be discarded.
However, those discarded constraints may contain constraints on not only LHV
but also other global variables. Considering this, we keep those constraints and
replace LHV in them by the interval of LHV in [x̄].

346 H. Ural and Z. Xu

3.5 Optimization on Constraints

In algorithm Check Trace and function action, evaluating and storing constraints
are complex and time consuming. In order to reduce the complexity, we optimize
the constraint related operations as follows: First, the values of global variables
are represented by intervals. For a variable xi = [xi, xi], if its lower bound is
equal to its higher bound (i.e. xi = xi), [10] considers the value of variable xi

as a determined value. Whenever the value of a global variable is determined,
[10] replaces this variable in constraints with its determined value. For example,
given the variable x1 = [1, 1] and a constraint cs : x1 + x2 – x3 = [-1, 5], x1 in
cs can be replaced by 1. Therefore, the new constraint after replacement would
be cs : x2 – x3 = [-2, 4]. We adopt this replacement strategy in our approach.

Second, consider the situation in which a new constraint cs contains a single
variable in the expression, for example x1 ≤ 8. It would be unnecessary to check
cs with former constraints in c.CS and keep it in c.CS. Instead, we use cs
to directly narrow the interval of this variable in [x̄]. For example, given the
existing interval of x1 in [x̄] as x1 = [0, 20], and a new constraint cs as x1 ≤ 8,
the narrowed interval is x1 = [0, 8]. If the narrowed interval is not empty, we
use the narrowed interval to replace the existing interval in [x̄]. Otherwise, we
report that an inconsistency is found.

Third, when searching for a compatible trace of E, a transition t in M may
be encountered more than once, i.e. the observed I/O event ei and ek (i �= k)
in E may correspond to the same transition t in M. In this case, we may have
two constraints cs1: and cs2:cs1 :

∑k
i=1 aixi = I1 and cs2 :

∑k
i=1 bixi = I2 such

that ∀i, 1 ≤ i ≤ k, ai = z × bi where z is a constant. We will call cs1 and
cs2 similar. For example, x1 + x2 = [1, 2] and 3x1 + 3x2 = [0, 9] are similar.
Then, given a new constraint cs, if there is a constraint within ccurrent.CS that
is similar to cs, we can reduce the number of constraints that need to be checked
by the Hybrid method. In order to determine whether there is a constraint cs′

in current CS that is similar to cs, we apply the following algorithm (called
Similarity Checking) before checking cs with function Interval Refinement. If a
constraint cs′ similar to cs is found, we replace the interval of constraint cs′.I
by (cs′.I × z) ∩ cs.I. Thus, by applying algorithm Similarity Checking, we can
reduce the number of constraints that need to be checked by the Hybrid method.

4 Experiments

We made an experimental comparison of Interval Refinement, Simplex and Hy-
brid methods for EFSM-based passive fault detection on the ATM system of
Figure 1. Within the SEFSM ATM, there are five global variables, i.e. x̄ = (at-
tempts, pin, lang, op, cb); seven states, i.e. S0 = {s0, s1, . . . , s6}; and fifteen
transitions. Local variables are defined within transitions. Each global variable
is assigned an interval standing for its initial values. S0 is determined by the

An EFSM-Based Passive Fault Detection Approach 347

Algorithm 5. Algorithm Similarity Checking
1: Given: a new constraint cs (

∑k
i=1 aixi = I1), and

2: a set of existing constraints CS
3: Return: FALSE, or {inconsistency detected}
4: TRUE {no inconsistency detected}
5: Begin:
6: for each constraint cs′ in CS {cs′:

∑k
i=1 bixi = I2}

7: if (cs and cs′ are similar)
8: z ← ai/bi;
9: cs.I ← (cs′.I × z) ∩ cs.I ;

10: if (cs.I = ∅) return (FALSE); {cs is inconsistent with cs′}
11: else
12: cs′.I ← cs.I ;return (TRUE); {cs is consistent with cs′}
13: endfor
14: return (TRUE); {no inconsistency is found by cs}
15: End

tester according to the specific application at hand. In this experiment, S0 is
chosen to be equal to S.

In the experiment, we considered two cases. In Case I, called correct imple-
mentation, there is at least one trace in M that is compatible with E and this
compatible trace is expected to be reported. In this case, we randomly generate
a sequence Es of observed I/O events (|Es| = 1000) based on the SEFSM ATM
and starting from state s0. Within Es, we randomly select five sequences with
lengths of 20, 50, 100, 200, and 500 observed I/O events.

In Case II, called faulty implementation, there is no trace in M that is com-
patible with E and “faulty” is expected to be reported. First, we create a faulty
specification ATM ′ from ATM by altering the next state, expanding a constraint
in the predicate, or narrowing a constraint in the predicate of a randomly se-
lected transition. Then, we randomly generate a sequence Es of observed I/O
events (|Es| = 1000) based on the SEFSM ATM ′ and starting from state s0.
Within Es, we randomly select ten sequences containing the altered transition
with length of 30 observed I/O events.

We compared three implementations. The first implementation is the Hybrid
method; the second implementation replaces the Hybrid method by the Interval
Refinement method so that a transition is checked only by the Interval Re-
finement method (the same as in [10]); the third implementation replaces the
Hybrid method by the Simplex method so that a transition is checked only by
the Simplex method (the same as in [11]).

According to the results, in Case I, all three implementations successfully
find the corresponding traces. In Case II with next state fault and expanded
constraint fault, all three implementations report fault correctly. But, the fault
with narrowed constraint cannot be detected by all the three implementations
because an observed I/O event generated by narrowed constraint will certainly
satisfy the original constraint.

348 H. Ural and Z. Xu

Figure 4, left, compares the efficiency of these three implementations in terms
of the average time cost. According to the results, the Interval Refinement
method requires the least amount of time; the Hybrid method requires a little
bit more time than the Interval Refinement method; and the Simplex method
is the most expensive in terms of time. As the length of sequence E of observed
I/O events increases, the time consumed for these three methods all increases.

Moreover, to compare the rate of increase of time costs, along with the increase
of |E | , we compute the average rate of time costs between (1) Simplex method
and Interval Refinement method (Simplex/IR); (2) Hybrid method and Interval
Refinement method (Hybrid/IR). In Figure 4, right, we see that the time costs of
the Interval Refinement method and Hybrid method are quite similar and, with
the increase in the length of E, the difference between these two methods is not
noticeable. We also see that the time cost of the Simplex method is much more
than that of the Interval Refinement method, and as the length of E increases,
the disparity between these two methods also increases.

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600
Length of E

Time Cost (ms)

Simplex
IR
Hybrid

-1

1

3

5

7

9

11

13

15

17

0 100 200 300 400 500 600

Length of E

rate

Simplex/IR
Hybrid/IR

Fig. 4. The results of Case I by applying the Hybrid method, Interval Refinement
method, and Simplex method (left) and rates of time cost of three methods (right)

5 Conclusions

In this paper, we have proposed an approach for EFSM-based passive fault de-
tection which provides information about possible starting state and possible
trace at the end of passive fault detection; and utilizes a Hybrid method which
combines the use of both Interval Refinement and Simplex methods for perfor-
mance improvement during passive fault detection. Through experiments, we
show that, compared with using only the Interval Refinement or only the Sim-
plex method, the Hybrid method guarantees the correctness of results with a
reasonable time cost.

In future research, some model checking techniques can be adopted in the
proposed approach for EFSM-based passive fault detection to help exploring the
Trace-Tree. Also, it would be interesting to see how our proposed approach can
help solving the problems of fault location and fault identification.

An EFSM-Based Passive Fault Detection Approach 349

Acknowledgments

This work is supported in part by the Natural Science and Engineering Research
Council of Canada under grant RGPIN 976 and CITO/OCE of the Government
of Ontario. The authors wish to thank Dr. Fan Zhang for many useful discussions.

References

1. Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Network protocol system
passive testing for faulty management - a backward checking approach. In: de
Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 150–166.
Springer, Heidelberg (2004)

2. Alcalde, B., Cavalli, A.: Parallel passive testing of system protocols c towards a real-
time exhaustive approach. In: International Conference on Network, International
Conference on Systems and International Conference on Mobile Communications
and Learning Technologies (ICN/ICONS/MCL 06), pp. 42–42 (2006)

3. Arnedo, J.A., Cavalli, A., Nunez, M.: Fast testing of critical properties through
passive testing. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644,
pp. 295–310. Springer, Heidelberg (2003)

4. Bayse, E., Cavalli, A., Nunez, M., Zaidi, F.: A passive testing approach based on
invariants: Application to the wap. Computer Networks and ISDN Systems 48,
247–266 (2005)

5. Cavalli, A., Gervy, C., Prokopenko, S.: New approaches for passive testing using
an extended finite state machine specification. Information and Software Technol-
ogy 45, 837–852 (2003)

6. Cavalli, A., Vieira, D.: An enhanced passive testing approach for network pro-
tocols. In: International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and Learning
Technologies (ICN/ICONS/MCL06), pp. 169–169 (2006)

7. Chen, D., Wu, J., Chu, T.: An enhanced passive testing tool for network proto-
cols. In: International Conference on Computer Networks and Mobile Computing
(ICCNMC 03), pp. 513–516 (2003)

8. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis, 2nd edn.
New York: Marcel Dekker Inc (2004)

9. Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive testing and ap-
plications to network management. In: IEEE International Conference on Network
Protocols (ICNP97), pp. 113–122 (1997)

10. Lee, D., Chen, D., Hao, R., Miller, R.E., Wu, J., Yin, X.: A formal approach for
passive testing of protocol data portions. In: IEEE International Conference on
Network Protocols (ICNP02), pp. 122–131 (2002)

11. Lee, D., Chen, D., Hao, R., Miller, R.E., Wu, J., Yin, X.: Network protocol system
monitoring c a formal approach with passive testing. IEEE/ACM Transactions on
Networking 14, 424–437 (2006)

12. LP Solve: Tool lp solve, version 5.5.0.9 (2007)
http://lpsolve.sourceforge.net/5.5/

13. Marriott, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT
Press, Cambridge, Mass (1998)

14. Miller, R.: Passive testing of networks using a cfsm specification. In: IEEE Interna-
tional Performance, Computing and Communications Conference (IPCCC98), pp.
111–116 (1998)

http://lpsolve.sourceforge.net/5.5/

350 H. Ural and Z. Xu

15. Miller, R., Arisha, K.: On fault location in networks by passive testing. In: IEEE In-
ternational Performance, Computing and Communications Conference (IPCCC00),
pp. 281–287 (2000)

16. Miller, R., Arisha, K.: Fault identification in networks by passive testing. In: 34th
Annual Simulation Symposium, pp. 277–284 (2001)

17. Miller, R., Arisha, K.: Fault identification in networks using a cfsm model by
passive testing. Technical report, UMIACS (2001)

18. Miller, R., Arisha, K.: Fault coverage in networks by passive testing. In: Interna-
tional Conference on Internet Computing, pp. 413–419 (2001)

19. Moore, R.: Interval Analysis. Prentice-Hall Inc, Englewood Cliffs, N.J (1966)
20. Spielman, D., Teng, S.: Smoothed analysis: Why the simplex algorithm usually

takes polynomial time. Journal of the ACM 51, 385–463 (2004)
21. Tabourier, M., Cavalli, A.: Passive testing and application to the gsm-map protocol.

Information and Software Technology 41, 813–821 (1999)
22. Wu, J., Zhao, Y., Yin, X.: From active to passive: Progress in testing of internet

routing protocols. In: IFIP FORTE01, pp. 101–118 (2001)
23. Zhao, Y., Yin, X., Wu, J.: Online test system, an application of passive testing

in routing protocols test. In: 9th IEEE International Conference on Networks, pp.
190–195 (2001)

Test Data Variance as a Test Quality Measure:
Exemplified for TTCN-3�

Diana Vega1, Ina Schieferdecker1,2, and George Din2

1 Technical University Berlin, Franklinstr. 28/29, D-10623 Berlin
{vega,ina}@cs.tu-berlin.de

2 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin
{schieferdecker,din}@fokus.fraunhofer.de

Abstract. Test effectiveness is a central quality aspect of a test specifi-
cation which reflects its ability to demonstrate system quality levels and
to discover system faults. A well-known approach for its estimatation is
to determine coverage metrics for the system code or system model. How-
ever, often these are not available as such but the system interface only,
which basically define structural aspects of the stimuli and responses to
the system.

Therefore, this paper focuses on the idea of using test data vari-
ance analysis as another analytical approach to determine test quality.
It presents a method for the quantitative evaluation of structural and
semantical variance of test data. Test variance is defined as the test data
distribution over the system interface data domain. It is expected that
the more the test data varies, the better the system is tested by a given
test suite. The paper instantiates this method for black-box test specifi-
cations written in TTCN-3 and the structural analysis of send templates.
Distance metrics and similarity relations are used to determine the data
variance.

1 Introduction

Today’s test specifications used in industry and for standardised test suites are
usually complex (several hundred test cases, several thousand lines of test code,
etc.). As they are hard to evaluate and assess, test quality aspects are constantly
subject of discussions. Various test metrics have been developed already measur-
ing selected aspects [1,2,3]. Therefore [4] provided a framework for the different
quality aspects of test specifications: it proposed a quality model for test spec-
ifications based on the ISO/IEC 9126 [5] quality model. The concrete quality
analysis for Testing and Test Control Notation (TTCN-3) test suites however
concentrated on internal quality aspects only — to analyse potentials of test
suite reuse and maintenance.

However, TTCN-3 [6] being standardized by European Telecommunications
Standards Institute (ETSI) allows not only to specify tests abstractly, but also
to make them executable by compilation and execution together with additional
� This work has been supported by the Krupp von Bohlen und Halbach - Stiftung.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 351–364, 2007.
c© IFIP- International Federation for Information Processing 2007

352 D. Vega, I. Schieferdecker, and G. Din

run-time components (such as an SUT adapter). By that not only the internal,
but also the external quality is of interest.

Test effectiveness is the external quality aspect of a test specification which
reflects its ability to demonstrate system quality levels and to discover system
faults — in other words, its ability to fulfill a given set of test purposes. According
to [4], test effectiveness is divided into

– the suitability aspect which is characterised by test coverage. Coverage con-
stitutes a measure for test completeness and can be measured on different
levels, e.g. the degree to which the test specification covers system require-
ments, system model, system code and alike,

– the test correctness aspect which reflects the correctness of a test specifi-
cation with respect to the system specification or the set of test purposes,
and

– finally the fault-revealing capability on the capability of a test specification
to actually reveal faults.

In practice, both system model and system code are not always available to
the testers, for example when testing third-party components, integrated with
off-the-shelf components or tested on system and acceptance level. Hence, the
test correctness and fault-revealing capabilities are hard and if not impossible
to determine. In contrast, system interfaces as such are available (often also
provided in terms of interface specifications and/or documentations) test cov-
erage for the system interfaces could be analysed — despite the fact, that a
more thorough analysis would be possible if more information in terms of sys-
tem model and system code would be available. In the latter case, for white-box
(structural) testing code coverage metrics and for black-box (functional) test-
ing system model coverage metrics are in use. Traditionally, code metrics have
been used only. With the advances of model-based system development, system
model coverage metrics have been adapted from code coverage metrics by using
state coverage (the counterpart for statement coverage), transition coverage (the
counterpart for branch coverage) and alike.

In this paper we investigate the typical, but less comfortable situation where
only the system interface is given. The system interface defines the input data
to the system (the stimuli) and the output data to the system (the reactions).
These are either provided in form of data structures (e.g. accessing the system
information directly), of messages (e.g. accessing the system via asynchronous
communication means) or by means of operations (e.g. accessing the system via
synchronous operation invocations).

This paper describes an approach to analyse system interface coverage by
means of test data variance. It is expected that the more the test data vari-
ates, the better the system is tested by the given test suite. We concentrate on
asynchronous test data only by analysing type and send value templates only1.
1 Without loss of generality, we do not consider signatures and signature templates.

The approach however can be extended to handle the case of synchronous commu-
nication.

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 353

Please note that although we consider external test quality, we are using anal-
ysis methods that do not execute the test suite itself. We use such an approach
of analysing the abstract test suite itself as every test execution involves also
the SUT. Hence because of the SUT capabilities and quality, a test execution
may reveal selected errors only, may allow to execute a small subset of test cases
only and alike - although the test suite might principally be able to reveal more
errors. Therefore, we are aiming at determining the error revealing potential of
a test suite instead.

The paper is structured as follows: after reviewing related work in Section 2,
the principal approach is explained in Section 3 and the data variance compu-
tation method is presented in Section 4. Distance metrics for TTCN-3 types are
discussed in Section 5 and further aspects of test data variance are discussed in
Section 6. An example is given in Section 7 and details of our implementation are
highlighted in Section 8. Concluding remarks in Section 9 complete the paper.

2 Related Work

Independent of a test specification language, the test data adequacy criterion re-
mains among the most important factors for the effectiveness of a test. According
to [7], a test data adequacy criterion is a formalism to decide if a software has
been tested enough by test data. The same author introduces in [8] a theoretical
model for the notion of adequacy in the context of test effectiveness. Many other
test adequacy criteria are defined in the literature [9] such as the well-known
control-flow criteria, but also more complicated ones such as the Modified Con-
dition/Decision Coverage (MC/DC) or Reinforced Condition/Decision Coverage
(RC/DC) criteria introduced by Kapoor [10].

Approaches to study how good the test data is selected include the notion of
distance between programs, where programs are the tested systems. A test data
set is considered to be adequate if it distinguishes the tested program from other
programs which are sufficiently far from it, i.e. produce different input-output
behavior. Close programs producing same results are considered the same [8]. A
similar concept of Adaptive Random Testing is provided in [11] where random
test inputs rely on the notion of distance between the test values. The authors
define the object distance in the context of object-oriented programs. In addition,
they propose a method to compute the distance and use it to generalize their
approach.

Another approach of test data coverage called statistical coverage is presented
in [12]. The concept of statistical coverage derives from statistical testing and
requires continues testing until it is unlikely that new coverage items will appear.
The proposed statistical coverage method uses a binomial distribution to com-
pute the probability of finding new coverage item and an associated confidence
interval, with the assumption that software test runs are independent of each
other.

All these approaches intend to study test data variance as a measure of test
data values spread over the input domain. Given the very large number of possi-

354 D. Vega, I. Schieferdecker, and G. Din

ble inputs (e.g. almost all types have a theoretically unlimited number of values)
that could be feed to a program to be tested, the goal is to minimize the number
of test cases (in software testing, test data applied to the same system behaviour)
in a test suite while keeping test effectiveness as high as possible.

3 The Principal Approach

The basic idea for test data variance of black-box tests is to analyse the coverage
of test inputs with respect to the system interface and its structure as depicted
in Figure 1.

TSI
(Test System Interface)

Port

Size and complexity
of potential data space

Data Distance

Test System

SUT
(System Under Test)

Data
Quantification

Fig. 1. The principle test data variance approach

In order to get a conceptual framework for presenting our approach, we use
TTCN-3 terminology [6]. The system under test (SUT) is represented with its
interfaces and in relation to the test system only: the test system interface (TSI)
consists of a number of ports. Every port can be of different port type. A port
type defines the kind of a port to be message-based or signature-based and to be
unidirectional or bidirectional. For every test case, the TSI is defined (explicitly
or implicitly) within the system clause. By that, one test suite represented by a
(set of) TTCN-3 modules can test different TSIs (even of potentially different
SUTs, although that is not recommended).

A high test coverage with respect to a given TSI requires that the test data
has to fulfill the following criteria:

– Every port and every type transportable to the SUT via that port (incl.
every type element in case of structured types) have to be "touched" by the
test data.

– The test data has to be representative with respect to a given type. Repre-
sentative data can be identified either semantically or structurally, i.e. data
can vary with respect to qualitative or quantitative similarity.

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 355

While quantitative similarity is by use of distance measures easier to derive,
qualitative similarity is assumed to provide better results. In particular, the par-
titioning method can be used to provide a qualitative characterization of an input
space. In this paper, we provide a computation method open to both the qualita-
tive and quantitative similarity of test data (see Section 4), but concentrate later
on quantitative similarity for TTCN-3 (see Section 5) only as this can be derived
purely from the TSI. For the sake of simplicity, we assume in the following

– that all test cases have the same TSI,
– that the TSI consists of one port only,
– that this port is a message-based port, and
– which can transport data to the SUT 2.

4 The Data Variance Computation Method

Let us assume a set of test data of a given type being sent over a given port to the
SUT, from which we select two (i.e. two TTCN-3 templates resolving to concrete
values). Their distance is calculated by use of type specific distance metrics. By
use of a type specific distance threshold, the similarity or dissimilarity of the test
data is being determined. The type coverage is finally determined by the number
of subsets of similar test data, meaning that a set of dissimilar test data covers
a type better than one with similar data.

For that, we consider basically types T. As in structured types however ele-
ments/fields can be optional, a type extended with omit are being considered in
those cases:

T ′ = T ∪ {omit}

Without loss of generality, we consider subsequently T’ for types. We partition
types into subtypes by considering a value v of T’ and the set of values being
logically or numerically nearby v:

partitionT ′ : T ′ → ΠT ′

for v �= omit : partitionT ′(v) = {v′ ∈ T : similar(v, v′)}
partitionT ′(omit) = {omit}

The similarity of values is a Boolean relation which can be used to determine
qualitative or quantitative similarity. For the moment, we restrict ourselves to
quantifiable similarity. For that, we use the distance between values and a dis-
tance threshold so that any two values are considered similar whenever their
distance is smaller than the distance threshold3:
2 This is in fact not a limitation, but a precondition that test data can be sent to the

SUT via that port.
3 Please note that this gives us a dynamic classification of values into sets of similar

values — depending on the chosen values, the set of values considered similar will
differ. This is different to the qualitative approach of equivalence classes [13], where
equivalence classes (also representing data partitions) are statically defined.

356 D. Vega, I. Schieferdecker, and G. Din

similarT ′ : T ′ × T ′ → B
for v1, v2 �= omit : similarT ′(v1, v2) = { true for distanceT ′(v1,v2)<thresholdT ′

false otherwise

similarT ′(v, omit) = { true for v=omit
false otherwise

The distance of a type is defined as a float value in between 0 and 1:

distanceT ′ : T ′ × T ′ → [0..1]
for v1, v2 �= omit : distanceT ′(v1, v2) = {>0 as defined in Section 5 for v1 �=v2

0 otherwise
distanceT ′(v, omit) = { 0 for v=omit

1 otherwise

Finally, we determine the coverage of a type T’ for a given set of values of
that type:

coverageT ′ : ΠT ′ → [0..1]
coverageT ′(V) = #partitionsT ′(V) ! thresholdT ′

where the number of partitions determines the number of varying data of a value
set for a given type:

#partitionsT ′ : ΠT ′ → N
#partitionsT ′(∅) = 0
for V �= ∅ : #partitionsT ′(V) = 1 + #partitionsT ′(V ′)
with V ′ = V \ partitionT ′(v) for a selected v ∈ V

That completes the data variance computation method, which allows us to
determine type coverage based on qualitative or quantitative notion of test data
variance.

5 Distance Metrics for TTCN-3 Values

This section defines the distance measures to derive the quantitative similarity
of TTCN-3 values being sent to the SUT. The TTCN-3 type system consists of
basic and structured types. Their distance definitions are given in Table 1 and
Table 24. Please remember that the distance for omit has been already defined
in Section 4: it is maximum, i.e. 1, between omit and any other concrete value
and minimum, i.e. 0, between omit and omit.

As defined in Section 4, every type T has an associated thresholdT , which
is the basis to determine data similarity out of the data distance. In spite of
our pure quantitative data analysis, our analysis of selected test suites (i.e. for
Session Initiation Protocol (SIP), IP Multimedia Subsystem (IMS), SS7 MTP3-
User Adaptation Layer (M3UA) and Internet Protocol version 6 (IPv6)) indi-
cated that a uniform threshold of 1

3 is a good basis for representing the data
variance requirements: 1

3 means that there should be three representative values

4 We left out the objid type as it is often used together with ASN.1 specifications only.

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 357

Table 1. Distance Metrics for Values of Basic TTCN-3 Types

Basic Type Distance based on Definition of distance d for values x and y
Integer One-Dimensional Euclidian

Distance d(x, y) = |x−y|
sizeof(Integer)

Float One-Dimensional Euclidian
Distance d(x, y) = |x−y|

sizeof(F loat)

Boolean Inequality
d(x, y) = { 0 for x=y

1 otherwise

Bitstring Hamming Distance number of positions for which the bits
are different (the shorter bitstring is ex-
tended into the longer bitstring by fill-
ing it with leading ’0’B) divided by the
longer length: d(x, y) = d(x,y)

maxlength(x,y) with
d(x, y) = number of i where xi �= yi

Hexstring Hamming Distance same but with leading ’0’H
Octetstring Hamming Distance same but with leading ’0’O
Charstring Hamming Distance same but with leading " " (spaces)
Universal
Charstring

Hamming Distance same but with leading " " (spaces)

Table 2. Distance Metrics for Values of Structured TTCN-3 Types

Structured
Type

Distance based on Definition of distance d for values x and y

Record N-Dimensional Euclidian
Distance d(x, y) =

√∑n
i=1(d(xi,yi))2

n

Record of Hamming Distance
d(x, y) =

∑n
i=1 d(x,y)

maxlength(x,y) with
d(x, y) = number of i where d(xi, yi) > 1

3
and where the record sequence is extended
into the longer record sequence by filling it
with leading omit

Set N-Dimensional Euclidian
Distance

same as for record

Set of Hamming Distance same as for record of
Enumerated Inequality

d(x, y) = |n(x)−n(y)|
n

where n is the sequen-
tially numbered index of the enumeration

Union Distance defined above
d(x, y) = d(v(x), v(y)) = { 1 for v(x)=v(y)

0 otherwise

358 D. Vega, I. Schieferdecker, and G. Din

such as from the "beginning", "middle" and "end" of a type. Only for the case
of Boolean and two-value enumerations this threshold should even be reduced
to 1

2 . However note that, if we consider an optional field of these types (and
hence T ′ instead) we take thresholdT ′ = 1

3 as in this case omit constitutes an
own similarity class of the data being sent to the SUT.

6 Distance Metrics for TTCN-3 Templates

In general, test data to be analysed with respect to their type coverage are
not just concrete values, but templates that are sent over the same port to the
SUT. These templates constitute a template subset to be considered, where the
following aspects complicate the analysis:

– global and local templates: Templates can be defined in global or local scope.
For the latter case, a call flow analysis would be adequate in order to derive
the template subset precisely. For the moment, we analyse all templates
independently of their scope.

– template parameters: Template fields may use parameters directly or pa-
rameters within more complicated expressions. In both cases, a symbolic
analysis is needed to derive the limitations for the template fields. For the
moment, we use for parameterized fields the maximum distance as they have
the potential to spread the field type completely.

– modified templates: Template modifications are used to change the setting
of template fields of global or local templates. The updated field can be
defined in terms of concrete values or more complex expressions, which may
reference parameters, functions and alike. Currently, we use distances for
concrete values only and a maximum distance in all other cases.

– inline templates: In this case, the send template is formed directly in the send
statement where the values may take any form of expression such as func-
tion calls, variables reference and alike. A precise analysis of inline templates
requires a combination of call flow analysis with symbolic computation. As
for modified templates, we use distances for concrete values only and a max-
imum distance in all other cases.

These template aspects make the analysis of data variance tricky and demon-
strate why the quality of a real TTCN-3 test suite is hard to assess. Our current
solution overestimates the coverage of a test suite. However, as tool development
is progressing the provided measures will become more and more precise.

7 An Example

In this section, we show how to apply the introduced concepts to small TTCN-3
examples. In the listing below we define a simple TTCN-3 record type R that
contains two fields: one of type integer of range (1..100) and an optional boolean
field. Based on this type definition, several templates are defined r1, r2 . . . , r4.

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 359

Listing 1.1. TTCN-3 Example

1
type record R {

integer i (1 . . 1 0 0) ,
boolean b optional

}
6

template R r1 := {1 , true}
template R r2 := {10 , true}
template R r3 := {90 ,omit}
template R r4 := {35 , fa l se }

Assuming that all these templates are used as SUT stimuli over a port that
carries R, they form a template subset of interest. The next step is to determine
each distance d(ri, rj), i �= j — recursively for the fields as given in Table 3 and
Table 4 according to the formulas given in Table 1 and then for the complete
record (see Table 5) according to the formulas in Table 2.

Table 3. Distances for boolean record field in the example

true false omit
true 0 0,5 1
false 0,5 0 1
omit 1 1 0

Table 4. Distances for integer record field in the example

1 10 90 35
1 0 0,09 0,89 0,34
10 0,09 0 0,8 0,25
90 0,89 0,8 0 0,45
35 0,34 0,25 0,45 0

We see that the fields themselves are well covered (and, indeed, we have seen
this immediately because of the simplicity of the example). Looking however at
the records in Table 5, it shows that R is not well covered.

The records r1, r2 and r4 are similar (and are hence considered stimulating
the same system behavior — they are considered belonging to the same simi-
larity class). The separation of the templates into similarity classes is made by
comparing the distances between them and a threshold value. The threshold
of 1

3 separates R into three similarity classes: r1,r2 and r4 form one similarity
class, r3 a second, but the third is missing. It is not so obvious that although the
field types are covered, the record type R is not. The situation can be resolved by

360 D. Vega, I. Schieferdecker, and G. Din

Table 5. Distances for records in the example

r1 r2 r3 r4
r1 0 0,05 0,67 0,3
r2 0,05 0 0,64 0,28
r3 0,67 0,64 0 0,57
r4 0,3 0,28 0,57 0

Table 6. Distances for added record

r1 r2 r3 r4
r5 0,49 0,44 0,5 0,41

adding e.g. r5 which represents the third similarity class. The distances between
r5 and the other templates are computed in Table 6.

Listing 1.2. Extended TTCN-3 Example

:
template R r1 := {1 , true}
template R r2 := {10 , true}

4template R r3 := {90 ,omit}
template R r4 := {35 , fa l se }
template R r5 := {99 , true} // added to cover R comp l e te l y

Whenever representatives for similarity classes are missing, approaches for
test refactoring [14] and/or pattern-driven test generation [15] can help here to
improve the quality of a test suite. Once the analysis has shown that selected
interface aspects are not covered, additional templates (to be sent by additional
test cases) could be proposed for inclusion into the test suite.

8 Implementation

In order to compute the test data variance and system interface coverage, there
is a clear requirement for a TTCN-3 tool to automatically compute the variance
measures.

Our implementation is based on the TTworkbench [16] product, an Eclipse-
based IDE that offers an environment for specifying and executing TTCN-3 tests.
The main reason for selecting this tool, is that it provides a metamodel for the
TTCN-3 language which is technically realized by using the Eclipse Modelling
Framework (EMF) provided by Eclipse. EMF is a Java framework and code
generation facility which helps turning models rapidly into efficient, correct, and
easily customizable Java code.

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 361

The generated Java classes provide an interface useful to traverse every
TTCN-3 test suite loaded and access every element of it by creating an as-
sociated metamodel instance. The plug-in based structure of the tool allows
adding new features by plugging them into the core platform. The incorporated
TTCN-3 metamodel is a central test repository that can be used to present the
test suite in various formats: in the core language format (the CLEditor is used
to edit TTCN-3 code in its textual format) or in the graphical format (for which
a GFT Editor is provided).

Our work on the automated template distance collector follows up an earlier
work [2] where TTCN-3 test quality indicators are derivedfrom a statical analysis
of a TTCN-3 test suite. It is designed as a plug-in whose invocation triggers a)
the access to the metamodel instance and b) the traversal of elements of interest
as shown in Figure 2. The most significant steps are:

– visit test cases
– identify templates used in send operations
– recursively traverse pairs of templates in order to measure their distance

Fig. 2. The principle of the implementation

In the tool terminology, a TTCN-3 project contains all TTCN-3 modules
composing an overall test suite. Given a project identifier, the metamodel loader
engine is able to load all modules and build a tree-like structure having as root
the main module. The code snippet in Figure 3 shows how to extract the runs
on component name from each test case declaration using the provided EMF
API. This one will be used furthermore to find its definition and extract the list
of ports used in send direction.

362 D. Vega, I. Schieferdecker, and G. Din

Fig. 3. Metamodel traversal - code snippet

Every TTCN-3 element has a corresponding EMF element that could be ac-
cessed and modified handling only EMF generated Java classes. While searching
for simple EMF element definitions translates into accessing directly the tree
nodes and getting the needed information, obtaining in parallel the values of
two templates whose distance is to be measured, introduces a much more in-
creased degree of complexity. For example, for structured type based templates,
it is required to design a visitor that traverses recursively and in parallel every
child from each template until values in leaves are reached. Then, the distance
formula for templates of basic types is applied to the leaves belonging to the
same level in the tree hierarchy and returned to the upper level in a recursive
process.

9 Conclusions and Outlook

In this paper we investigate test data variance as a way to assess the test coverage
for the system interface quantitatively. We and others consider test data variance
as an import factor of test effectiveness. This paper defines a principal method
for deriving test data variance based on notions of qualitative or quantitative
data similarity. This method is then exemplified for TTCN-3 and for quantitative
data similarity.

We define distance metrics for basic and structured types. A threshold based
weighting process of distance evaluation leads to an empirical assessment of data
similarity: it is false when the values are different "enough". Different values
are counted into separate similarity classes representing partitions of a given
type where similar values belong to the same partition. The number of present
similarity classes of a type in a test suite defines finally the coverage for that

Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3 363

type. With the aggregation of the coverage of all stimuli types, we obtain the
overall test suite coverage.

Although the approach is in its beginning, it demonstrated already the value
of coverage analysis for system interfaces. In future work, the empirical analysis
will become more precise with the addition of a dedicated call flow analysis and
symbolic execution. In addition, the simplifying assumptions given in Section 3
for defining the data variance computation method are easy to leverage and are
being leveraged already in our tool

– by slicing a test suite into sets of test cases with the same test system inter-
face (TSI) and considering the TSIs individually,

– by considering every port of a TSI individually, and
– by expanding the notion of distance, similarity and coverage to signatures

and their parameters,

Finally we plan to detail the system interface analysis by extending toward
semantical aspects like condition, assertions and behaviours of the interface us-
age. By all that, we foresee an application of the test data variance analysis in
test generation approaches as a control and stopping criteria.

References

1. Sneed, H.M.: Measuring the Effectiveness of Software Testing. In: Beydeda, S.,
Gruhn, V., Mayer, J., Reussner, R., Schweiggert, F. (eds.) Proceedings of SOQUA
2004 and TECOS 2004. Lecture Notes in Informatics, vol. 58, Gesellschaft für
Informatik (2004)

2. Vega, D.E., Schieferdecker, I.: Towards quality of TTCN-3 tests. In: Gotzhein, R.,
Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, Springer, Heidelberg (2006)

3. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and
Metrics for TTCN-3 Test Suites. In: Gotzhein, R., Reed, R. (eds.) SAM 2006.
LNCS, vol. 4320, Springer, Heidelberg (2006)

4. Zeiß, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the
ISO 9126 Quality Model to Test Specifications Exemplified for TTCN-3 Test Spec-
ifications. In: Software Engineering 2007 (SE 2007). Lecture Notes in Informatics,
Copyright Gesellschaft für Informatik, Köllen Verlag, Bonn (2007)

5. ISO/IEC: ISO/IEC Standard No. 9126: Software engineering – Product quality;
Parts 1–4. International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC), Geneva, Switzerland (2001-2004)

6. ETSI: ETSI Standard ES 201 873-1 V3.2.1 (2007-03): The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language. European Telecommunications
Standards Institute (ETSI), Sophia-Antipolis, France (2007)

7. Weyuker, E.J.: The evaluation of program-based software test data adequacy cri-
teria. Commun. ACM 31, 668–675 (1988)

8. Davis, M., Weyuker, E.: Metric space-based test-base adequacy criteria. Comput.
J. 31, 17–24 (1988)

9. Weiss, S.N.: Comparing test data adequacy criteria. SIGSOFT Softw. Eng.
Notes 14, 42–49 (1989)

10. Vilkomir, S.A., Bowen, J.P.: Reinforced condition/decision coverage (RC/DC): A
new criterion for software testing. In: ZB, pp. 291–308 (2002)

364 D. Vega, I. Schieferdecker, and G. Din

11. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Object distance and its application to
adaptive random testing of object-oriented programs. In: RT ’06: Proceedings of
the 1st international workshop on Random testing, pp. 55–63. ACM Press, New
York (2006)

12. Howden, W.E.: Systems testing and statistical test data coverage. In: COMPSAC
’97: Proceedings of the 21st International Computer Software and Applications
Conference, pp. 500–504. IEEE Computer Society, Washington, DC, USA (1997)

13. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Software
Testing, Verification and Reliability 3, 63–82 (1993)

14. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring for
TTCN-3 Test Suites. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320,
Springer, Heidelberg (2006)

15. Vouffo-Feudjio, A., Schieferdecker, I.: Test patterns with TTCN-3. In: Grabowski,
J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 170–179. Springer, Hei-
delberg (2005)

16. TestingTechnologies: TTworkbench: an Eclipse based TTCN-3 IDE (2007)
http://www.testingtech.de/products/ttwb_intro.php

http://www.testingtech.de/products/ttwb_intro.php

Model-Based Testing of Optimizing Compilers

Sergey Zelenov and Sophia Zelenova

Institute for System Programming of Russian Academy of Sciences
{zelenov, sophia}@ispras.ru

http://www.unitesk.com

Abstract. We describe a test development method, named OTK1, that
is aimed at optimizing compiler testing. The OTK method is based on
constructing a model of optimizer’s input data. The method allows devel-
oping tests targeted to testing a chosen optimizer. A formal data model
is constructed on the basis of an abstract informal description of an al-
gorithm of the optimizer under test. In the paper, we consider in detail
the process of analyzing an optimization algorithm and building a formal
model. We also consider in outline the other part of the method, test se-
lection and test running. The OTK method has been successfully applied
in several case studies, including test development for several different
optimizing compilers for modern architectures.

Keywords: model based testing, compiler testing, formalization of re-
quirements, formal data model, test data generation.

1 Introduction

High level programming languages are the main instruments in software devel-
opment. Translation of source text written in a high level programming lan-
guage into executable form is performed by software that is traditionally called
“compiler”.

Compiler defects break execution of entities resulting from translation: their
behavior differs from what is specified in the language specification. Defects in
executable entities induced by erroneous compiler are hard to detect and find a
workaround, thus correctness of executables obtained from an incorrect compiler
is always a doubt. Validation and verification of a compiler is an important
activity for dissemination of a compiler in industry.

Validation and verification of compilers is always a very complicated. The
main source of difficulties is complexity of input and output: the input is a
program with a furcated syntax structure and rich set of context constraints
imposed by the language specification, the output is an executable in machine or
intermediate language and possesses similar or even higher degree of complexity.

The usual way to cope with complications of compiler validation and verifica-
tion is a decomposition the validation and verification task into several subtasks
that in total cover whole functionality of the compiler.
1 OTK stands for “Optimizer Testing Kit”.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 365–377, 2007.
c© IFIP- International Federation for Information Processing 2007

366 S. Zelenov and S. Zelenova

Typical compiler includes the following set of functions:
1. analysis of syntax correctness and parsing of input text;
2. semantic check of input;
3. optimization of the internal representation;
4. generation of the output.

There are many papers concerning validation and verification of the first and
second functions of compiler. Papers [7,11,18,24] describe various approaches
to validation and verification of parsers. Papers [2,5] describe approaches to
validation and verification of semantic checkers.

Nowadays the main function of a compiler is optimization, which allows prod-
icing faster executable programs. So, the main subtask of the compiler validation
and verification is the validation and verification of optimizers.

Papers [6,21,22] describes theoretical studies that use various logical calculi
for compiler verification.

Papers [12,8,15,13] contain ideas on creation of oracles that check preservation
of program semantics during optimizations. The common shortcoming of these
methods is that they do not offer any approach for selection of compiler input data.

Study [9] describes an approach to automation of code generator testing.
Specifications developed in XASM language were used for automated filtering
tests and obtaining reference results. But this approach to test selection is not
systematic and very ineffective.

We use testing [3] based on formal specifications and models [17] as the pri-
mary tool for compiler validation and verification.

In this paper we present the OTK method of automated test generation for
optimizing compiler testing. The method is based on constructing a model of in-
put data of an optimizer under test. The OTK method allows constructing data
models and developing generators of tests targeted to testing a chosen optimizer.

The OTK method consists of the following phases:
1. requirements elicitation;
2. formalization of requirements;
3. automated tests generation;
4. tests execution.

In this paper we zero in on the first and second phases. The third and fourth
phases have been described in details in [10].

The remainder of the paper is organized as follows. In Section 2 we describe
the OTK method. In Section 3 we present practical applications of the OTK
method. In Section 4 the paper is concluded.

2 The OTK Method

The OTK method was developed during joint project of ISP RAS and Intel on
testing a set of optimizer units of Intel C++/Fortran compiler in 2001–2003.

Most of compilers perform optimization on some internal representation that
is built during parsing and semantics analysis. Straightforward approach to ver-
ification of the optimization is to build internal representation of some piece of
source code and then optimize it.

Model-Based Testing of Optimizing Compilers 367

The problem is that since internal representation is encapsulated in imple-
mentation part of a compiler, then it is very uncertain and therefore tests are
difficult to build and are not portable even between different versions of the same
compiler. Another problem is that test developers may not have an access to the
interface of optimizer units, which are working with internal representation of
program code2.

More practical approach to verification is to use purposely built source code.
This approach is easier to implement and is more generic. The OTK method
implements this approach.

The OTK method is based on UniTESK approach [4,20] to model-based test-
ing and consists of the following phases.

The first phase is requirements elicitation: analytics study an algorithm of the
optimization under test, identify input data requirements and categorize them.
The result of the phase is a requirements diagram that contains precisely for-
mulated input data requirements, classified into several groups with established
links between them. The diagram is used on the following phases.

The first phase is described in Subsection 2.1.
The second phase is formalization of requirements. Elicited input data re-

quirements get specified using appropriate formal notation. Such specification is
called formal data model.

The second phase is described in Subsection 2.2.
The third phase is automated tests generation from the formal data model.
The fourth phase is tests execution that results in test reports that contain

information about observed compiler behavior.
The third and fourth phases are described in outline in Subsection 2.3. Details

may be found in [10].
Reports analysis, defects identification and corrections is beyond the scope of

validation and verification. These issues are not discussed here.

2.1 Process of Analyzing an Optimization Algorithm

The first phase of the OTK method is requirements elicitation. An input data re-
quirements are elicited from an abstract description of the optimization algorithm.

An optimization algorithm is formulated using entities of some appropriate
abstract representation of an input data, for example, control flow graph, data
flow graph, symbol table, etc. In order to perform transformations, an optimizer
searches for combinations of entities that match some patterns , for example,
presence of loops in a routine, presence of some specific statements in the loop,
presence of common subexpressions, presence of some specific data dependences
between statements. Patterns contains entities significant for the algorithm of
the optimization. The goal of this phase is to build a UML-like diagram of these
entities.
2 In the project of ISP RAS and Intel we have no access to the interface of optimizers

under test due to Intel security policy. The only information available was that an
optimization algorithm operates similar to the one described in certain section of
the Muchnick’s book [14].

368 S. Zelenov and S. Zelenova

Here we proceed with step-by-step detailed description of the process of ana-
lyzing an optimization algorithm.

First, one should represent the text of the algorithm under consideration in
“if–then” form.

Next, one should mark all branch conditions in this text, i.e. all parts of the
text that are located between “if” and “then” words. These branch conditions
are patterns that the algorithm deals with.

Next, one should mark all entities in all patterns.

Example: Induction-Variable Optimizations Algorithm. Let us consider
the induction-variable (IV) optimizations (see [14]). An induction variable is a
variable whose successive values form an arithmetic progression over some part
of the program, usually a loop. There are three important transformations that
apply to induction variables:

– strength reduction that replaces expensive operations, such as multiplications
and divisions, by less expensive ones, such as additions and subtractions;

– induction-variable removal , when we may remove an induction variable that
serve no useful purpose in the program;

– linear-function test replacement , when a variable is used only in the loop-
closing test and may be replaced by another induction variable in that con-
text.

For simplicity we consider only the principal part of the algorithm, identify-
ing induction variables. Fig. 7 in Appendix presents the “if–then” form of this
algorithm. Patterns are printed in italic. Entities in the patterns are underlined.
"

Next, one should write out a list of all marked entities. Besides, one should add
to this list a principal entity that is a common context where the algorithm is
applied. For each entity in the list, one should create some unique identifier.

Example: List of IV-related Entities. A principal entity for the algorithm
presented in Fig. 7 is a loop body. The list of all entities with corresponding
identifiers is shown in Table 1. "

Next, one should write out a list of all marked patterns. For each pattern, one
should create its graphical representation (a diagram of the pattern) as follows.

– The diagram should contain all entities that the pattern has.
– An entity in the diagram is presented in the form of boxed identifier that

corresponds to the entity.
– If an entity in the pattern has some properties, then these properties should

be reflected in the diagram under the box of the entity by the label of the
form “<property_identifier> : <value>”.

– If two entities in the pattern are related to each other in some way, then
this relation should be reflected in the diagram as an arrow link between
corresponding boxes. An arrow should be labeled by the identifier of the
corresponding relation. All links fall into two categories:

Model-Based Testing of Optimizing Compilers 369

Table 1. List of IV-related entities

Entity Identifier
variable Var

instruction of the form i = i + c or i = c + i Inc

loop constant Const

subexpression Expr

induction variable IndVar

basic IV BIV

dependent IV DIV

temporary dependent IV TIV

assignment Asgn

loop body Loop

• aggregation that means that one entity contains another;
• reference that means that entities are related in some another way.

Any arrow that corresponds to aggregation is marked by a bullet point in
the beginning of the arrow.

– Any relation between two entities has cardinality that is reflected by the
following labels near the end of the corresponding arrow:

• without label – “beginning” entity relates to exactly one “end” entity;
• “0..1” – “beginning” entity relates to 0 or 1 “end” entity;
• “0..n” – “beginning” entity relates to 0 or more “end” entities;
• “1..n” – “beginning” entity relates to 1 or more “end” entities.

Example: Diagrams of IV-related Patterns. The algorithm presented in
Fig. 7 provides us with the following list of patterns:

1. a variable i is modified by exactly one instruction of the form i = i+ c or
i = c+ i, where c is a loop constant, and the instruction is unconditionally
executable;

2. a variable i is modified by two or more instructions of the form i = i+ cn or
i = cn + i, where all cn are loop constants, and all the instructions are un-
conditionally executable;

3.1. a subexpression has any of the forms {i ∗ c, c ∗ i, i+ c, c+ i, i− c, c− i,−i},
where i is a basic IV, c is a loop constant;

3.2.1. a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i−c, c− i,−i},
where i is a dependent IV, c is a loop constant, and the subexpression is
located after modification of i;

3.2.2. a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i−c, c− i,−i},
where i is a temporary dependent IV3, c is a loop constant;

4. a subexpression described in the patterns 3.1, 3.2.1, 3.2.2 is assigned to a
variable k, and all assignments to k are unconditionally executable;

3 Any temporary variable is always defined before use.

370 S. Zelenov and S. Zelenova

5. there are two or more cases described in the pattern 4 of modification of one
variable k.

The corresponding diagrams are presented in Fig. 1.
The property uncond reflects that corresponding instruction is uncondition-

ally executable, the property kind keeps the information about form of a subex-
pression, the property afterIV reflects that a subexpression is located after
modification of used induction variable.

Links iv in the patterns 3.1 and 3.2.1 are references since one induction vari-
able (basic or dependent) may be used in several different subexpressions. The
other links in the patterns are aggregations. "

Fig. 1. Diagrams of IV-related patterns

Next, one should improve the diagrams of the patterns, i.e. make the infor-
mation presented on the patterns more exact: Some entities, links or properties
in the diagrams may be renamed or added. The source for such an improvement
are those parts of the algorithm that have not been considered yet, i.e. “then”
clauses.

Example: Improved Diagrams of IV-related Patterns. “Then” clauses
of the items 1 and 2 of the algorithm presented in Fig. 7 say that the variables
are in fact basic IVs, “then” clause of the item 3.2.2 says that the temporary
dependent IV is related to some subexpression, “then” clauses of the items 4
and 5 say that the variables are in fact dependent IVs.

The corresponding improved diagrams are presented in Fig. 2. "

Next, one should check if some entities may be specialized. An entity should be
specialized if it has different sets of properties and/or links in the patterns. In
this case, the initial entity is called a generalized entity.

One should reflect the information about generalization and specialization in
a special diagram of generalization. Any entity may occur in the diagram of gen-
eralization no more then once. Each specialized entity linked to its generalized
entity by a special kind of arrow with big white end. A generalized entity pos-
sesses only those properties and links that are common for several entities in the
patterns. A specialized entity possesses all properties and links of its generalized
entity, and besides, it has some additional properties and links.

Model-Based Testing of Optimizing Compilers 371

Fig. 2. Improved diagrams of IV-related patterns

Fig. 3. Generalization of the Expr entity

Next, one should improve the initial diagrams of patterns: Rename the gen-
eralized entities to corresponding specialized entities.

Note that not all generalized entities can be renamed during such an improve-
ment. If after the improvement some pattern contains a generalized entity, then
this entity may be in fact any of its specialized entity.

Example: Generalization of the Expr Entity. Occurrences of the Expr en-
tity in the patterns 3.1, 3.2.1 and 3.2.2 have different sets of properties and
links. Thus, this entity should be specialized. The diagram of generalization is
presented in Fig. 3.a.

Now we should improve the diagrams of patterns: We rename the general-
ized entities Expr in the diagrams of the patterns 3.1, 3.2.1 (Fig. 1), and 3.2.2
(Fig. 2) to specialized entities BExpr, DExpr, and TExpr correspondingly. Note
that diagrams of the patterns 4 and 5 can not be improved, since these patterns
have no information that may be used for specialization of the Expr entity.

The improved diagrams of the patterns 3.1, 3.2.1 and 3.2.2 are presented in
Fig. 3.b. "

Finally, one should construct a UML-like data model diagram. Any entity may
occur in the data model diagram no more then once. The data model diagram
should contain all entities, properties and links that are presented in all the finally
obtained diagrams of the patterns. Besides, the data model diagram contains
the principal entity that should be linked to some other entities by means of
aggregation links.

372 S. Zelenov and S. Zelenova

Example: IV-related Data Model Diagram. A principal entity for the
algorithm presented in Fig. 7 is Loop. It may contain several Inc entities and
several Asgn entities.

Fig. 4 shows the corresponding data model diagram for the algorithm under
consideration. "

Fig. 4. IV-related data model diagram

The obtained data model diagram is a result of the first phase of the OTK
method.

2.2 Formalization of Requirements

The second phase of the OTK method is formalization of requirements. A formal
data model is constructed on the basis of the data model diagram elicited on
the first phase.

We consider a model representation of a test program as an attributed tree.
The role of nodes is played by entities, the role of edges from parents to children
is played by aggregation links, the role of attributes is played by properties and
reference links.

A formal data model is specified using TreeDL4 language [19] as follows.

– Each entity is specified using the TreeDL-term “node”.
– A generalized entity is specified as an “abstract node”, a specialised entity

is specified as a derived node.
– A property of an entity is specified as an “attribute” of corresponding

node.
– An aggregation link of an entity is specified as a “child” of corresponding

node.
– An reference link of an entity is specified as a “attribute late” of corre-

sponding node.
– The cardinality of properties and links is specified using the following mod-

ifiers:

• without modifiers – exactly one element;
• “?” – 0 or 1 element;
• “*” – 0 or more elements;
• “+” – 1 or more elements.

4 TreeDL stands for “Tree Description Language”.

Model-Based Testing of Optimizing Compilers 373

Example: IV-related Formal Data Model. Fig. 5 demonstrates a formal
data model for the algorithm presented in Fig. 7. "

node Loop : <OtkNode> { node DIV : <OtkNode> {
child Asgn* asgn; }
child Inc* inc; node Const : <OtkNode> {

} }
node Inc : <OtkNode> { abstract node Expr : <OtkNode> {

attribute <boolean> uncond; attribute <int> kind;
child BaseIV base; child Const constant;
child Const+ constant; }

} node BExpr : Expr {
node Asgn : <OtkNode> { attribute late BIV iv;

attribute <boolean> uncond; }
child DepIV dep; node DExpr : Expr {
child Expr+ expr; attribute <boolean> afterIV;

} attribute late DIV iv;
node TIV : <OtkNode> { }

child Expr expr; node TExpr : Expr {
} child TIV iv;
node BIV : <OtkNode> { }
}

Fig. 5. IV-related formal data model

2.3 Automated Tests Generation and Tests Execution

Here we proceed with brief description of the third and fourth phases of the
OTK method. Detailed description may be found in [10].

The third phase of the OTK method is automated tests generation from the
formal data model.

A test coverage criterion is formulated in terms of the data model. A goal of
test generation is to cover various combinations of model entities. Tests should
contain both combinations that match some of the patterns and combinations
that unmatch the patterns in some way. Practice shows that such an approach
allows to achieve high level of code coverage of the optimizer under test.

Test program generator is constructed as a structured system of generators
of separate data model elements. Such generators in their turn are constructed
from generators of subelements, and so on. For example, generator of assignments
is usually constructed from two generators of subexpressions and generator of
dependent induction variables. All these generators work with model representa-
tion of test program structure. The text of test programs appears after applying
special mapper component transforming model representation into textual and
constructed also on the base of data model structure.

The OTK method is supplied by a tool kit for data model formal description
and for developing all required components of a test generator [16].

The fourth phase of the OTK method is automated tests execution.
In the OTK method, an oracle for back-end testing automatically checks

preservation of program semantics during back-end pass. To perform this, a
mapper should map a model structure to a program with functional semantics
being fully described by program’s output trace. For such programs, the problem

374 S. Zelenov and S. Zelenova

of checking program semantics preservation during optimizer pass is reduced to
comparison of output trace of an optimized program with some reference trace.

Checking optimizer correctness is organized as comparison of traces generated
by program compiled with optimization and without it.

Example: IV-related Test Program. Fig. 6 shows an example of a test pro-
gram generated with OTK from the formal data model presented in Fig. 5. The
program consists of one loop with several statements, each of which is modifi-
cation of some induction variable. Some of the statements are located within if-
statements that reflect conditionally executable instructions. The program takes
several parameters that are used as induction variables, which are modified by
the assignments inside the loop and then are printed in the trace. Traces of opti-
mized and nonoptimized programs’ executions with several arrays of parameters
are compared to find differences in their behavior. Each difference detected is
further analyzed for being caused by a bug in an optimizer unit. "

void f_0(int i_0, int i_1, int s_0, int s_1) {
int k;
for(k = 0; k < 100; k++) {

if(cond_asgn()) {
s_0 = i_0 - 7;
s_0 = 7 - i_1;

}
if(cond_asgn()) {

s_1 = -i_0;
s_1 = s_0 * 7;

}
if(cond_inc()) {

i_0 = i_0 + 7;
i_0 = i_0 + 7;

}
i_1 = i_1 + 7;
i_1 = i_1 + 7;

}
printf("%d %d %d %d\n", i_0, i_1, s_0, s_1);

}

Fig. 6. Example of generated test program for IV optimization

3 Practical Applications

The OTK method was used in several case studies.
During joint project of ISP and Intel in 2001–2003, the OTK method has

been applied in testing several optimizing compilers for modern architectures,
namely, in GCC, Open64, Intel C++/Fortran compiler.

Test sets developed with the help of the OTK method and targeted to the
following compiler’s components have been used for testing:

– Common subexpression elimination;
– Jump optimizations;
– Loop fusion optimization;
– Induction variable optimization;

Model-Based Testing of Optimizing Compilers 375

– Linear loop transformations;
– Loop carried dependence detection;
– Register allocation;
– Loop rerolling;
– Subscripts dependence detection;
– Separable and coupled subscripts detection.

Desctiptions of these components may be found in [14,1].
As a result of test execution, several bugs in compilers under test have been

found. In the case of GCC testing, we have achieved about 90% of code coverage
of the units under test.

During joint project of ISP and Intel in 2004, the OTK method has been
successfully applied in testing exception handling mechanism5 in Intel C++
compiler.

During joint project of ISP and DaimlerChrysler AG in 2005, the OTK
method has been successfully applied in testing optimizers of graphical mod-
els [23].

Obtained practical results prove effectiveness of the OTK method.

4 Conclusion

This paper presents the OTK method that implements model-based testing ap-
proach to optimizing compiler testing. The OTK method supports test devel-
opment phases starting on requirements elicitation from an algorithm of the
optimization under test and ending on automated tests generation and test exe-
cution. The process of analyzing an optimization algorithm and building a formal
data model is considered in details.

The OTK method is supplied by a tool kit that supports creating formal data
models and developing test generators. A generator developed with the help of
the OTK allows automatic generating sets of tests that meet a chosen coverage
criteria and are targeted to an optimizer under test.

The OTK may be also used in test development for processors of complex
structured text.

The OTK method was used in several case studies including commercial com-
piler testing projects. Obtained practical results prove effectiveness of the OTK
method.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2002)

2. Arkhipova, M.V.: Semantic analyzer tests generation. Numerical
Methods and Programming, vol. 7, pp. 55–70 (in Russian) (2006)
http://num-meth.srcc.msu.su/english/zhurnal/tom 2006/v7r206.html

5 Checking correctness in this case has been organized as comparison of traces gener-
ated by program compiled with compiler under test and compiled by GCC.

http://num-meth.srcc.msu.su/english/zhurnal/tom_2006/v7r206.html

376 S. Zelenov and S. Zelenova

3. Beizer, B.: Software Testing Techniques. van Nostrand Reinhold (1990)
4. Bourdonov, I.B., Kossatchev, A.S., Kuliamin, V.V., Petrenko, A.K.: UniTesK Test

Suite Architecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 77–88. Springer, Heidelberg (2002)

5. Duncan, A.G., Hutchison, J.S.: Using Attributed Grammars to Test Designs and
Implementation. In: Proceedings of the 5th international conference on Software
engineering, Piscataway, NJ, USA, pp. 170–178. IEEE Press, New York (1981)

6. Hannan, J., Pfenning, F.: Compiler Verification in LF. In: Proc. 7th Annual IEEE
Symposium on Logic in Computer Science, pp. 407–418 (1992)

7. Harm, J., Lämmel, R.: Two-dimensional Approximation Coverage. Informatica
Journal, 24(3) (2000)

8. Jaramillo, C., Gupta, R., Soffa, M.L.: Comparison Checking: An Approach to Avoid
Debugging of Optimized Code. In: Nierstrasz, O., Lemoine, M. (eds.) Software
Engineering - ESEC/FSE ’99. LNCS, vol. 1687, pp. 268–284. Springer, Heidelberg
(1999)

9. Kalinov, A., Kossatchev, A., Posypkin, M., Shishkov, V.: Using ASM Specification
for automatic test suite generation for mpC parallel programming language com-
piler. In: Proc. 4th International Workshop on Action Semantic, AS’, BRICS note
series NS-02-8, pp. 99–109 (2002)

10. Kossatchev, A.S., Petrenko, A.K., Zelenov, S.V., Zelenova, S.A.: Application of
Model-Based Approach for Automated Testing of Optimizing Compilers. In: Pro-
ceedings of the International Workshop on Program Understanding. Novosibirsk,
pp. 81–88 (2003)

11. Lämmel, R.: Grammar testing. In: Proc. of Fundamental Approaches Software
Engineering, vol. 2029, pp. 201–216 (2001)

12. McKeeman, W.: Differential testing for software. Digital Technical Journal 10(1),
100–107 (1998)

13. McNerney, T.S.: Verifying the Correctness of Compiler Transformations on Basic
Blocks using Abstract Interpretation. In: Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pp. 106–115 (1991)

14. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco (1997)

15. Necula, G.: Translation Validation for an Optimizing Compiler. In: Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
83–95 (2000)

16. OTK: Optimizer Testing Kit. http://www.unitesk.com/content/category/
9/17/35/

17. Petrenko, A.K.: Specification Based Testing: Towards Practice. In: Bjørner, D.,
Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 287–300. Springer,
Heidelberg (2001)

18. Purdom, P.: A Sentence Generator For Testing Parsers. BIT 2, 336–375 (1972)
19. TreeDL: Tree Description Language. http://treedl.sourceforge.net/treedl/

treedl en.html
20. UniTESK Technology Web-site. http://www.unitesk.com/
21. Wand, M., Wang, Zh.: Conditional Lambda-Theories and the Verification of Static

Properties of Programs. In: Proc. 5th IEEE Symposium on Logic in Computer
Science, pp. 321–332 (1990)

22. Wand, M.: Compiler Correctness for Parallel Languages. In: Conference on Func-
tional Programming Languages and Computer Architecture (FPCA), pp. 120–134
(1995)

http://www.unitesk.com/content/category/9/17/35/
http://www.unitesk.com/content/category/9/17/35/
http://treedl.sourceforge.net/treedl/treedl_en.html
http://treedl.sourceforge.net/treedl/treedl_en.html
http://www.unitesk.com/

Model-Based Testing of Optimizing Compilers 377

23. Zelenov, S.V., Silakov, D.V., Petrenko, A.K., Conrad, M., Fey, I.: Automatic Test
Generation for Model-Based Code Generators. In: Proc. 2nd International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation,
ISoLA (2006)

24. Zelenov, S., Zelenova, S.: Automated Generation of Positive and Negative Tests
for Parsers. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 187–202. Springer, Heidelberg (2006)

Appendix

Identifying basic IVs.
We sequentially inspect all variables in all instructions in the body of a loop.

1. If a variable i is modified by exactly one instruction of the form i = i + c or
i = c + i, where c is a loop constant, and the instruction is unconditionally exe-
cutable, then i is a basic IV.

2. If a variable i is modified by two or more instructions of the form i = i + cn or
i = cn + i, where all cn are loop constants, and all the instructions are uncondi-
tionally executable, then i is replaced by corresponding quantity of different basic
IVs.

Identifying dependent IVs.
We repetitively inspect all subexpressions in all instructions in the body of a loop.

3. If a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i− c, c− i, −i}, where i
is an IV, c is a loop constant, then in the following cases we define new temporary
dependent IV j whose value is equal to the subexpression, and we replace the
subexpression by j:
3.1. if i is a basic IV, then j depends on i;
3.2. if

3.2.1. i is a dependent IV or
3.2.2. i is a temporary dependent IV,
and the subexpression is located after modification of i in the body of the loop,
then j and i depends on the same basic IV.

4. If a subexpression described in the item 3 is assigned to a variable k, and all
assignments to k are unconditionally executable, then we does not define a tempo-
rary IV for the subexpression, but we state that k is a dependent IV.

5. If there are two or more cases described in the item 3 of modification of one variable
k, then k is replaced by corresponding quantity of different dependent IVs.

Fig. 7. The “if–then” form of the principal part of the IV optimizations algorithm
(identifying IV) with marked patterns (printed in italic) and marked entities in the
patterns (underlined)

Erratum to: Testing of Software
and Communicating Systems

Alexandre Petrenko1, Margus Veanes2, Jan Tretmans3,
and Wolfgang Grieskamp2

1 CRIM, Montreal, Canada
petrenko@crim.ca

2 Microsoft Research, Redmond, WA, USA
margus@microsoft.com, wrwg@microsoft.com

3 Embedded Systems Institute, Eindhoven, The Netherlands
jan.tretmans@esi.nl

Erratum to:

A. Petrenko et al. (Eds.)

Testing of Software and Communicating Systems

DOI: 10.1007/978-3-540-73066-8

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© IFIP International
Federation for Information Processing. The book has been updated with the
changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-540-73066-8

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, p. E1, 2007.
c© IFIP International Federation for Information Processing 2017

http://dx.doi.org/10.1007/978-3-540-73066-8
http://dx.doi.org/10.1007/978-3-540-73066-8

Author Index

Bastos, Denise 199
Benharref, Abdelghani 13
Bisanz, Martin 228

Cebrián, David 28
Constant, Camille 41
Cuartero, Fernando 28

Desmoulin, Alexandra 58
Din, George 351
Dssouli, Rachida 13

Eldh, Sigrid 74
El-Fakih, Khaled 305
En-Nouaary, Abdeslam 13

Faivre, Alain 90
Falcone, Yliès 107
Fernandez, Jean-Claude 107

Gaston, Christophe 90
Glitho, Roch 13
Gönczy, László 155
Grepet, Cyril 123
Gromov, Maxim 138
Groz, Roland 319

Haar, Stefan 171
Hansson, Hans 74
Heckel, Reiko 155
Horváth, Tamás 186
Huima, Antti 1

Jard, Claude 171
Jeannet, Bertrand 41
Jéron, Thierry 41
Jönsson, Peter 74
Jourdan, Guy-Vincent 171

Kawakami, Luiz 199
Knabben, André 199
Koenig, Hartmut 276
Kovács, Gábor 244

Le Gall, Pascale 90
Li, Keqin 319
Luukkala, Vesa 212

Maag, Stephane 123
Metzger, Mieczyslaw 260
Mounier, Laurent 107

Németh, Gábor Árpád 244
Neukirchen, Helmut 228

Oliver, Ian 212

Pap, Zoltán 244
Pereira, Otavio 199
Pereira e Silva, Ricardo 199
Plesowicz, Przemyslaw 260
Punnekkat, Sasikumar 74

Randall, Steve 292
Rechia, Douglas 199
Richier, Jean-Luc 107

Santos, Luiz C.V. dos 199
Schieferdecker, Ina 351
Schmerl, Sebastian 276
Schulz, Stephan 292
Serhani, Mohamed Adel 13
Shabaldina, Natalia 305
Shahbaz, Muzammil 319
Subramaniam, Mahadevan 244
Sulyán, Tibor 186

Ural, Hasan 335

Valero, Valent́ın 28
Varró, Dániel 155
Vega, Diana 351
Viho, César 58

Wiles, Anthony 292
Willemse, Tim A.C. 138

Xu, Zhi 335

Yevtushenko, Nina 305

Zelenov, Sergey 365
Zelenova, Sophia 365

	Title Page
	Preface
	Organization
	Table of Contents
	Implementing Conformiq Qtronic
	New Approach for EFSM-Based Passive Testing of Web Services
	Introduction
	Related Work
	EFSM-Based Observation: Forward and Backward Walks
	The Homing Controller Algorithm
	Processing Observed Requests
	Processing Observed Responses
	Performing Backward Walk
	Discussion
	Example

	Conclusion
	References

	Automation of Avionic Systems Testing
	Introduction
	SystemOverview
	Testing Environment Constraints

	The Tool
	General Strategies

	Case Study
	Conclusions and Future Work
	References

	Automatic Test Generation from Interprocedural Specifications
	Introduction
	Introductive Example
	Testing Theory
	Modeling Recursive Specifications and Test Purposes
	Test Selection on the Recursive Canonical Tester
	Concluding Remarks
	References

	A New Method for Interoperability Test Generation
	Introduction
	Formal Background
	Preliminary Definitions
	IOLTS Model and Related Definitions
	Interoperability Formal Definitions: iop Criteria

	Interoperability Test Generation
	Preliminary Definitions
	Classical Methods
	New Approach: Bilateral Criterion Based Method

	Applying the New Method to a Connection Protocol
	A Simplified Version of the ISDN Connection Protocol
	CADP Toolbox Used for Implementing the Method
	Applying the Classical Approach on the Client/Server Mode
	Applying Our New Method on the Client/Server Version
	Application to the Complete Client and Server Mode
	Summary of the Experimentation Results

	Conclusion
	References

	Component Testing Is Not Enough - A Study of Software Faults in Telecom Middleware
	Introduction
	Terminology

	Related Work
	Case Study Process and Data Selection
	Identified Failure Distributions
	Fault Classification
	Fault Distribution

	Validation and Threats
	Future Work
	Discussions and Conclusions
	References

	Symbolic Model Based Testing for Component Oriented Systems
	Introduction
	Structured Input/Output Symbolic Transition Systems
	Basic Definitions of IOSTS
	Systems
	An Example of a Slot Machine

	System Based Test Purposes for Sub-systems
	Symbolic Execution
	Symbolic Behavior Projections

	Symbolic Execution Based Conformance Testing
	Conformance Testing and System-Based Test Purposes

	Conclusion and Future Works
	References

	A Compositional Testing Framework Driven by Partial Specifications
	Introduction
	The General Approach
	Notations
	Formal Requirements
	Test Process Algebra
	Test Generation
	Test Execution and Test Verdicts

	Application to Variant of LTL
	The Logic
	Test Generation
	Soundness Proposition

	Java-CTPS
	Case Study
	Conclusion
	References

	Nodes Self-similarity to Test Wireless Ad Hoc Routing Protocols
	Introduction
	Related Works
	Conformance Testing of an Ad Hoc Routing Protocol
	Testing Architecture
	Testing Assumptions
	Formal Specification

	Self-similarity of Nodes
	Definition of Self-similarity

	A Case Study: DSR
	Dynamic Source Routing Protocol
	DSR Formal Model
	Specification Reduction Using Nodes Self-similarity
	Test Scenarios Equivalence
	Experiment Context
	Sets Management for Unexpected Messages

	Conclusion
	References

	Testing and Model-Checking Techniques for Diagnosis
	Introduction
	Background
	Techniques and Heuristics for Diagnostic Testing
	Distinguishability
	Orthogonality

	Automating Diagnostic Testing
	Preliminaries
	Strong Distinguishability and Strong Orthogonality
	Weak Distinguishability andWeak Orthogonality
	Optimisations
	Diagnostic Testing Methodology

	Example
	Concluding Remarks
	References

	Model-Based Testing of Service Infrastructure Components
	Introduction
	Modelling a Solution for Fault-Tolerant Service Infrastructure
	Structural Model
	Behavioural Rules

	Generation of Execution Sequences by Model Checking
	Test Requirements
	State Space Generation and Model Checking

	Derivation of Test Cases
	A Distributed Test Architecture
	Creating the Test Suite
	Discussion

	Related Work
	Conclusions and Future Work
	References

	Testing Input/Output Partial Order Automata
	Introduction
	IOPOA Framework
	IOPO Automata
	I/O Vector Sequences
	Completion of an IOPOA
	Morphisms and Conformance

	Conformance Testing for Automata with Distinguishing Sequences
	Assumptions
	Sequential Input Automata
	Complete Transition Identification
	Algorithm for IOPOA Conformance Testing
	Checking Sequence Construction

	ExtensionsandOutlook
	Conformance Testing for Automata Without Distinguishing Sequences
	State Identification and State Verification
	Homing and Synchronizing Sequences

	Conclusion
	References

	A Framework for Testing AIS Implementations
	Introduction
	Application Interface Specification Overview
	Current AIS Implementation Testing Systems
	SAFtest
	SAFtest Next Generation

	The Message-Based AIS Testing Framework (MATF)
	Test Coordination
	Message Processing
	Controlling and Observing the IUT

	Testing Experiments
	Test Suite Configuration
	Test Execution

	Future Work
	Conclusion
	References

	An Object-Oriented Framework for Improving Software Reuse on Automated Testing of Mobile Phones
	Introduction
	Related Work
	Practices in the Corporate Environment
	Related Research Topics

	TAF Design Description
	Low-Level Implementation Infrastructure
	High-Level ATC Encoding
	TAF Organization
	Automating a Test Case with the Aid of TAF
	Object-Oriented Framework: A Keystone for Worthy Automation

	Experimental Results
	Quantifying Reuse Upon TAF
	The Impact of Software Reuse
	The Overall Impact of Test Automation

	Conclusions and Future Work
	References

	Model Based Testing of an Embedded Session and Transport Protocol
	Introduction
	The Approach
	NoTA Architecture, Session and Transport Protocol Layer
	Modeling the System and Constructing the Tester
	The Models
	Use Cases, Data and Control of the System
	Test Configuration

	Results and Conclusions
	References

	Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites
	Introduction
	Foundations
	Smells in Tests
	A TTCN-3 Code Smell Catalogue
	TTCN-3 Code Smell: Duplicate Alt Branches
	TTCN-3 Code Smell: Activation Asymmetry

	A Tool for Detecting TTCN-3 Code Smell Instances
	Implementation
	Related Work

	Application
	Conclusion
	References

	A Bounded Incremental Test Generation Algorithm for Finite State Machines
	Introduction
	Finite State Machines
	Representing Changes to FSMs

	FSM Test Generation and the HIS-Method
	The HIS-Method

	Incremental Computation Model
	Evaluating the Complexity of an Incremental Algorithm

	Incremental Test Generation Method
	Incremental Algorithm for Maintaining a Prefix-Closed State Cover Set
	Incremental Algorithm for Maintaining a Separating Family of Sequences
	Total Complexity of the Incremental Testing

	Related Work
	Conclusion
	References

	Experimental Testing of TCP/IP/Ethernet Communication for Automatic Control
	Introduction
	Motivation
	Tests of TCP/IP/Ethernet network Properties
	Tests of Transmission Time
	Packet Loss Measurement

	Influence of Transmission Time on Control Quality (LabVIEW Platform)
	Materials and Methods
	Experimental Tests
	Observations and Conclusions

	Influence of Transmission Time on Control Quality (Logix Platform)
	Materials and Methods
	Results and Conclusions

	Influence of Transmission Time on Control Quality in Simatic Platform
	Materials and Methods
	Results and Conclusions

	Concluding Remarks
	References

	Towards Systematic Signature Testing
	Motivation
	On the Derivation of Signatures
	On the Test of Signatures
	Methods for the Test of Signatures
	Preliminary Test
	Tests for Under Specified Signatures
	Tests for over Specified Signatures
	Test of Escape Events

	Example: Test for Under Specified Signatures
	Modeling Signatures in EDL
	Test Steps

	Final Remarks
	References

	TPLan-A Notation for Expressing Test Purposes
	Introduction
	About Test Purposes
	Test Purpose Specification with TPLan
	Test Purpose Structure
	Fundamental Building Blocks
	User Defined Extensions
	Arrangement of Test Purpose Definitions

	First Experiences
	Improving of Test Specification Efficiency
	Conclusions
	References

	Testing Nondeterministic Finite State Machines with Respect to the Separability Relation
	Introduction
	Preliminaries
	Fault Model and a Test Suite
	Deriving a Complete Test Suite w.r.t. Fault Model <S, (≤,chi),Sub_nd(MM)>$
	Deriving a Complete Test Suite w.r.t. Fault Model $<S, (≤,$chi$), Re_m>$
	Conclusion and Future Research Work
	References

	Learning and Integration of Parameterized Components Through Testing
	Introduction
	Parameterized Model
	Algorithm
	Observation Table
	Algorithm
	Illustration
	Dealing with Counterexamples

	IntegrationTesting
	Test Generation by Scenario or Model Checking
	Test Generation Using Information from Learning Procedure

	Conclusion
	References

	An EFSM-Based Passive Fault Detection Approach
	Introduction
	Preliminaries
	The Proposed Approach
	Algorithm Main
	Algorithm Search Trace Tree
	Algorithm Check Trace and the Hybrid Method
	Function $action$
	Optimization on Constraints

	Experiments
	Conclusions
	References

	Test Data Variance as a Test Quality Measure: Exemplified for TTCN-3
	Introduction
	Related Work
	The Principal Approach
	The Data Variance Computation Method
	Distance Metrics for TTCN-3 Values
	Distance Metrics for TTCN-3 Templates
	AnExample
	Implementation
	Conclusions and Outlook
	References

	Model-Based Testing of Optimizing Compilers
	Introduction
	The OTK Method
	Process of Analyzing an Optimization Algorithm
	Formalization of Requirements
	Automated Tests Generation and Tests Execution

	Practical Applications
	Conclusion
	References

	Author Index
	Blank Page
	Blank Page

