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Abstract. Identifying gene functional modules is an important step
towards elucidating gene functions at a global scale. In this paper, we in-
troduce a simple method to construct gene co-expression networks from
microarray data, and then propose an efficient spectral clustering al-
gorithm to identify natural communities, which are relatively densely
connected sub-graphs, in the network. To assess the effectiveness of our
approach and its advantage over existing methods, we develop a novel
method to measure the agreement between the gene communities and the
modular structures in other reference networks, including protein-protein
interaction networks, transcriptional regulatory networks, and gene net-
works derived from gene annotations. We evaluate the proposed methods
on two large-scale gene expression data in budding yeast and Arabidop-
sis thaliana. The results show that the clusters identified by our method
are functionally more coherent than the clusters from several standard
clustering algorithms, such as k-means, self-organizing maps, and spec-
tral clustering, and have high agreement to the modular structures in
the reference networks.

Keywords: clustering, community identification, microarray, co-expres-
sion networks.

1 Introduction

Many biological sub-systems considered in systems biology can be modeled as
networks, where nodes are entities such as genes or proteins, and edges are the
relationships between pairs of entities. Examples of biological networks include
protein-protein interaction (PPI) networks [1], gene co-expression networks [2],
metabolic networks [3], and transcriptional regulatory networks [4]. Much ef-
fort has been devoted to the study of their overall topological properties and
similarities to other real-world networks [5,6,7,8].

A large amount of available gene expression microarray data has provided
opportunities for studying gene functions on a global scale. Since genes that are
on the same pathways or in the same functional complex are often regulated
by the same transcription factors (TFs), they usually exhibit similar expression
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patterns under diverse temporal and physiological conditions. Therefore, an im-
portant step in analyzing gene functions is to cluster genes according to their
expression patterns. The clusters can then be analyzed in several ways. For ex-
ample, from the promoter sequences of the genes in the same cluster, one may
identify common short DNA sequences, which can often suggest the regulation
pathways of the genes; in addition, if the majority of the genes in a cluster are
known to have some common functions, it is likely that the unannotated genes
in the same cluster may also share similar functions. (See [9] for a review). The
most popular clustering techniques for gene expression data include hierarchical
clustering [10], k-means clustering [11], and self-organizing maps (SOM) [12].

However, genes of similar expression patterns may not necessarily have
the same or similar functions. Genes could be accidentally co-regulated or
co-expressed [2]; a single event often activate multiple pathways that have dis-
tinct biological functions. On the other hand, genes with related functions may
not show any close correlation in their expression patterns. For example, there
might be time-shift between the expression patterns of genes in the same path-
way [13]. Most existing clustering algorithms do not take these possibilities into
account.

Another challenging problem for clustering algorithms is to determine the
most appropriate number of clusters without prior knowledge of the data. For
most clustering algorithms, such as k-means and SOM, it is the user’s responsi-
bility to decide the number of clusters to be computed, and it is always possible
for the algorithms to return the specified numbers of clusters, regardless of the
structure of the data.

To objectively evaluate and validate clustering results is also a daunting task.
Generally, different clustering algorithms provide different results and unveil
different aspects of the data. To assess the quality of clustering results, most
studies have focused on the separation between clusters or homogeneity within
clusters [14]. Such numerical evaluation methods depend solely on the data and
face a common dilemma: one cannot maximize both the separation and homo-
geneity at the same time. More importantly, these methods seldomly perform
any reality check. For example, does a clustering make any biological sense?
Several alternative approaches have been proposed to validate clustering results
with biological knowledge, for example, using annotations in the gene ontology
(GO) [15,16]. However, these methods are usually affected by factors such as
the number of clusters and the distribution of cluster sizes, and cannot precisely
measure clustering qualities.

Here, we take a network-based perspective to efficiently identify and evaluate
intrinsic modular structures embedded in large gene expression data. Given the
expression profiles of a set of genes, we first construct a co-expression (CoE)
network, where the nodes in the network are genes, and the edges reflect expres-
sion similarities between pairs of genes. We then apply an algorithm that we
have developed recently to identify natural communities in the network, which
are densely connected subgraphs that are unexpected by chance [17,18]. Com-
pared to existing clustering methods, our algorithm is relatively independent
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of any detailed domain knowledge, and can automatically determine the best
number of clusters based on the internal structure of the data. Furthermore, we
also propose a method to evaluate the biological significance of the clustering
results based on their agreement with the structure of other reference biological
networks.

We apply the methods to two large gene expression datasets, one for yeast
and the other for Arabidopsis. We evaluate the clustering results on yeast genes
with three reference networks, including a protein-protein interaction (PPI) net-
work [19], a network based on GO annotations [20], and a network based on TF
biding data measured with ChIP-chip technology [21], and the results on Ara-
bidopsis genes with a GO-based reference network. We compare our results with
several popular clustering algorithms, including k-means, SOM and spectral clus-
tering, which are applied directly to the expression data. The comparison shows
that our network-based approach discovers significantly more enriched functional
groups, which also have a better agreement with the reference networks.

The paper is organized as follows. In section 2, we describe the method for
constructing gene CoE networks, the algorithm for community identification, and
the approach for cluster evaluation. In section 3, we first present some topological
results of the CoE networks, then discuss our clustering results and compare
them with the results from several popular clustering algorithms. We conclude
in section 4 with some discussion.

2 Methods

2.1 Constructing Gene CoE Networks

Many methods have been proposed for constructing CoE networks from gene
expression data. The most popular methods first compute a similarity between
the expression profiles of every pair of genes, and determine a threshold to se-
lect pairs of genes to be connected [22,23,24]. The problem with this type of
approaches, aside from being arbitrary in choosing a threshold, is that gene
CoE often exhibits a local-scaling property. For example, genes in one cluster
may be highly correlated to one another, while genes in another group may be
only loosely correlated. Therefore, if we choose a stringent threshold value, many
genes in a loosely correlated group may become unconnected. On the other hand,
if we attempt to include more gene in the network, the threshold may have to
be so low that a large portion of genes are almost completely connected, making
further analysis a difficult task. For example, to construct a CoE network for
the 3000 yeast genes that we will see in Section 3.1, even if we allow 10% of
the genes to be unconnected, the majority of the genes still have more than 300
links (Fig. 1).

We propose a rank-based transformation of similarity matrices to deal with
such local-scaling property. We first calculate the Pearson correlation coefficient
(or some other similarity measures) between every pair of genes. Then for every
gene, we rank all other genes by their correlation coefficients to the gene. Given
the ranks, we connect every gene to its top α co-expressed genes, where α is a
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Fig. 1. Median number of CoE links per gene and the number of genes without a CoE
link as a function of the threshold on the Pearson correlation coefficient

user defined threshold, with values typically smaller than 5. Note that although
the correlation coefficient matrix, C, is symmetric, i.e. C(i, j) = C(j, i), the rank
of gene i with respect to gene j, R(i, j), is in general not equal to the rank of
gene j with respect to gene i, R(j, i).

This network has several important features. First, all nodes are connected,
since each node is connected to at least α other nodes. By varying α, we obtain
networks of different granularities. Second, some nodes may have more than α
edges, due to the asymmetric property of the ranking. That is, although gene A
lists only α genes as its friends, other genes that are not in A’s friend list may
have A as their friends. In other words, the network can be viewed as directed,
even though the directions are ignored in our clustering. In section 3.1, we will
show that a CoE network thus constructed has a prominent topological feature
different from the CoE networks obtained in previous studies [2,24,25].

A network constructed with this procedure may be different from the un-
derlying biological network that regulates the genes. Nevertheless, at a higher
level, the network may capture some topological properties of the actual regu-
latory network and preserve functional relationships among genes. Genes that
are in the same pathway or functional complex tend to be close to one another
in the network, i.e., they are often directly linked to each other or connected
by short paths. As we will see in section 3, clustering of such networks can in-
deed produce biologically more meaningful modules than clustering the original
expression data with a conventional clustering method. We will also show that
clustering of this network is rather robust, in that perturbing a large fraction of
its connections does not significantly affect the final clustering results.

2.2 Community Identification

Identifying community structures in a network is similar, but not equivalent, to
the conventional graph partitioning problem; both amount to clustering vertices
into densely connected subgraphs [26]. A key difference is that for the former,
we need to decide whether there are indeed natural communities and how many
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communities exist in a given network. In contrast, in conventional graph parti-
tioning, the user has to decide how many clusters to look for.

We recently proposed a spectral-based community identification method
[17,18]. The method has several unique features. First, it considers local neigh-
borhood information of each node to improves clustering quality [17]. Second,
the algorithm combines a modularity function Q to automatically determine the
most appropriate number of clusters in a network. Third, the algorithm can han-
dle networks of several thousands of nodes in a few minutes, much faster than
most existing algorithms, while often achieving better clustering qualities. We
have extensively tested the algorithm on many simulated networks and real-world
networks with known community structures, as well as several real applications
such as PPI networks and scientific collaboration networks. The results from
these analyses show that our method is both efficient and effective. The detailed
analysis and evaluation of the algorithm can be found in [18]. Here we briefly
describe the key ideas in the algorithm.

Modularity Function. To determine the optimal community structure of a
network, Newman and Girvan [27] recently proposed a modularity function, Q,
which is defined as:

Q(Γk) =
k∑

i=1

(eii − a2
i ), (1)

where Γk is a clustering that partitions the nodes in a graph into k groups, eii is
the fraction of edges with both nodes within cluster i, and ai is the fraction of
edges with one or both nodes in cluster i. Intuitively, the Q function measures
the percentage of edges fully contained within the clusters, subtracted by what
one would expect if the edges were randomly placed. The value of Q is between
-1 and 1; a larger Q value means stronger community structures. If a partition
gives no more within-cluster edges than expected by chance, Q ≤ 0. For a trivial
partitioning with a single cluster, Q = 0. It has been observed that most real-
world networks have Q > 0.3 [28]. The Q function can also be extended to
weighted networks straightforwardly by generalizing eii and ai to edge weights,
instead of number of edges.

It has been shown empirically that higher Q values correspond to better clus-
ters in general [27,29]. Therefore, the Q function provides a good quality measure
to compare different community structures, and can serve as an objective func-
tion to search for the optimal clustering of a network.

The Qcut Algorithm. Several clustering algorithms have been developed
based on approximate optimization of Q (as surveyed in [29]), since the op-
timization is NP-hard [30]. Among them, a spectral algorithm NJW [31], can
approximately optimize Q if the number of clusters (k) is given, as shown in [32].
To automatically determine the number of clusters, the NJW algorithm is ex-
ecuted multiple times, with k ranging from the user defined minimum Kmin

to maximum Kmax number of clusters. The k that gives the highest Q value is
deemed the most appropriate number of clusters. The idea has been implemented
recently by others and us [32,17].
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While this idea is effective in finding community structures in small networks,
it scales poorly to large networks, because it needs to execute NJW , whose
running time is O(n2), up to Kmax times. Without any prior knowledge of a
network, one may over-estimate Kmax in order to reach the optimal Q. In the
worst case, Kmax can be linear in the number of vertices, making it impractical
to iterate over all possible k’s for large networks.

In order to develop a method that scales well to large networks while retaining
effectiveness in finding good communities, we developed an algorithm, called
Qcut, to recursively divide a network into smaller ones while optimizing Q [18].

Given the adjacency matrix of a network G, we apply the standard NJW
spectral clustering algorithm [31] to search for an up to l-way partitioning, where
l is a small integer (l < 5 typically), that gives the highest Q value. Then, the
algorithm is recursively applied to each subnetwork, until the overall Q value
cannot be improved by any further partitioning. At each step, a (sub)network is
divided into k subnetworks, where k is between 2 and l, and can be different for
each partitioning. To reduce computation cost, we restrict l to small integers. We
find that with l as small as 3 or 4, the Qcut algorithm can significantly improve
the Q values over standard two-way partitioning strategies [33,32], and is much
more efficient than direct k-way methods [32,17]. After each split and at the end
of all splits, an efficient procedure is applied to fine-tune the clusters in order to
further improve the modularity, making Qcut one of the most effective (in terms
of accuracy) and efficient algorithms in community identification.

2.3 Cluster Evaluation

A conventional way for evaluating clustering results is to measure separation and
homogeneity. We are more interested in the biological soundness and relevance
of the clustering results. Therefore, we use two methods based on gene functional
annotations to evaluate clustering qualities obtained from gene CoE networks.

Statistical Enrichment of GO Terms. To assess the functional significance of
gene clusters, we first compute the enrichment of GO terms for the genes within
each cluster. The statistical significance of GO term enrichment is measured by
a cumulative hypergeometric test [34]. The p-values are adjusted by Bonferroni
corrections for multiple tests [34]. The search of enriched GO terms is performed
with a computer program GO::TermFinder [35].

To compare different clustering results, we count the number of GO terms
enriched in the clusters at a given significance level. Furthermore, to rule out
the possibility that a single cluster may contain a very large number of enriched
GO terms and therefore dominate the contribution from other clusters, we also
count the number of clusters that have at least one enriched GO term at a
given significance level. Note that two clustering results cannot be compared
by this method if they differ significantly in numbers of clusters or cluster size
distributions, which may strongly affect the number of enriched GO terms. The
results of the comparison also depend on what p-value threshold is used.
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Evaluation Using Reference Networks. We propose a novel method for
assessing clustering qualities based on external information of the genes. The
basic idea is to introduce a functional reference network (discussed later), and
compare the clustering of the CoE network with the reference networks. In such
a reference network, genes are linked by edges that represent certain functional
relationships between them, where the edges may be weighted according to the
reliability or significance of the relationships. This network can be expected to
have some modular structures as well. Since our purpose is to identify functional
modules within a CoE network, we would prefer a good clustering of the CoE
network to represent a good partitioning of the reference network as well; i.e.,
genes within the same CoE clusters should be connected by many high weight
edges in the reference network, while genes in different CoE clusters should share
less functions or be connected with low weight edges in the reference network. To
measure the agreement between the clustering of a CoE network and a reference
network, we force the reference network to be partitioned exactly the same way
as the CoE network, i.e., the group memberships of the nodes in the reference
network are the same as that of the CoE network. We then compute the modu-
larity of the reference network using Equation (1). Since the modularity score is
not biased by the number of clusters or the cluster size distributions, it can be
applied to compare arbitrary clustering results.

Now that we have introduced the measurement, what can be a reference net-
work and how do we get it? First, many available biological networks, such as
PPI networks and genetic interaction networks, can be adopted directly. Evi-
dently, however, some networks may be more suitable than others for evaluating
gene CoE clusters.

In general, a reference network does not have to be directly observed from
experiments, but rather derived from knowledge about the genes. Two genes
can be connected if they posses some common attributes or features, given that
the common attributes are related to CoE. For example, they may participate
in the same biological process or be regulated by a common TF. These types
of information can be represented by a matrix, where each row is a gene, and
each column is an attribute. To construct a network from the matrix, genes
are treated as nodes, and an edge is drawn between two genes if they share at
least one common attribute. Edges are weighted by some similarity measure of
genes’ attributes. To measure the similarity, we use a well-developed function in
document clustering that takes into account the significance of attributes [36].
For example, the GO terms GO:0009987 (cellular process), which is very close
to the root of the GO graph and has a large number of genes associated, is not
very informative in clustering genes and should be weighted less than the GO
term GO:0045911 (positive regulation of DNA recombination).

Denote a gene-attribute matrix by A = (aij), where aij = 1 if gene i has
attribute j, or 0 otherwise. A is transformed into a weighted matrix W = (wij),
where wij = aij × idfj . The weighting factor idfj , called the inverse document
frequency (IDF) [36], is defined by idfj = log(n/

∑
i aij), where n is the number

of genes. With this transformation, the attributes that occur in many genes
receive low weights in W . The edge weight between two genes is then measured
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by the cosine of their weighted attribute vectors:

Sij = cos(wi., wj.) =
∑

k wikwjk√∑
k w2

ik

∑
k w2

jk

, (2)

where wi. and wj. are the i-th and j-th rows of W , respectively. As expected,
many genes may be connected with very low weights if they share some non-
specific functions. We apply a weight cutoff to remove such edges. We have
found, however, that the result is almost not affected by the use of different
cutoff values, as discussed in Results section.

We use three types of reference networks to evaluate clusters. The first is
a network constructed from biological process GO annotations [20], with each
term as an attribute. The ontology and annotation files for yeast and Arabidop-
sis genes are downloaded from http://www.geneontology.org/. To construct
a reference network, we first convert the original annotation files to include com-
plete annotations, i.e., if a gene is associated with a certain term, we also add
all ancestors of the term into the gene’s attribute list due to term inheritance.
If two terms are associated with exactly the same set of genes, we remove one
to avoid double counting. We also remove GO terms that are associated with
more than 500 or less than 5 genes. The procedure results in 1034 and 438 GO
terms for yeast and Arabidopsis, respectively. The second is a PPI network for
budding yeast, downloaded from the BioGRID database [19]. We combined all
physical interactions obtained from yeast two-hybrid or affinity purification-mass
spectrometry experiments. The edges are weighted by the number of times an
interaction was observed. The third network is a co-binding network derived
from the ChIP-chip data of 203 yeast transcription factors (TFs) under rich me-
dia conditions [21]. We treat each TF as an attribute, and construct a network
with the procedure described above. We only consider a binding as genuine if its
p-value is less than 0.001, according to the original authors [21].

3 Results

3.1 Topology of Yeast CoE Networks

Previous studies have analyzed the topologies of various networks, including bio-
logical and social networks, and suggested a common scale-free property [5,6,7,8].
In a scale-free network, the probability for a node to have n edges obeys a power-
law distribution, i.e. P (n) = c× n−γ . The implication of the scale-free property
is that a few nodes in the network are highly connected, acting as hubs, while
most nodes have low degrees. In contrast, in a random network, connections are
spread almost uniformly across all nodes. Real networks also differ from random
networks in that the former often have stronger modular structures, reflected by
higher clustering coefficients [28].

In this study, we obtained a set of yeast gene expression data measured in 173
different time points under various stress conditions [37], and selected 3000 genes
that showed the most expression variations. We constructed four CoE networks

http://www.geneontology.org/
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Table 1. Statistics of yeast CoE networks

α 2 3 4 5

# of nodes 3000 3000 3000 3000
# of edges 5432 8103 10775 13432
kavg 3.6 5.4 7.2 9.0
c 0.089 0.124 0.144 0.159
cr 0.010 0.015 0.018 0.02
csf 0.002 0.003 0.004 0.005

kavg: averge node degree; c: clustering coefficient; cr: clustering coefficient of the net-
work constructed from permuted expression data; csf : clustering coefficient of the
rewired network.
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Fig. 2. Distribution of the number of CoE links. Y-axes show the number of genes with
a certain number of CoE links (X-axes) in a network.

with α = 2, 3, 4 and 5, respectively, i.e., we let each gene connect to its top
α correlated genes (see section 2.1). To compare, we also randomly shuffled the
real gene expression data, and constructed four networks from the random data
with the same α values.

To determine the topological characteristics of the CoE networks, we first
plotted the number of genes having n connections as a function of n in a log-log
scale. As shown in Fig. 2, the networks constructed from the real data exhibit
a power-law degree distribution for all the α values considered, indicating that
an overall scale-free topology is a fairly robust feature of the CoE networks.
In contrast, the networks constructed from the randomized expression data are
close to random networks and contain significantly fewer high-degree nodes.
Second, we computed the clustering coefficients of the networks derived from real
and randomized expression data. As shown in Table 1, the true CoE networks
have much higher clustering coefficients than the random network. Furthermore,
we permuted the CoE networks through random rewiring [38], which preserves
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degree for each node, and thus does not change the scale-free property of the
networks. As shown in Table 1, the clustering coefficients of the rewired networks
are significantly lower than that of the original networks, indicating that high
clustering coefficients is indeed a property of CoE networks.

It is not surprising to see that CoE network is yet another example of scale-free
networks. However, several previous studies on a number of gene CoE networks
have suggested that there might exist profound topological differences between
gene CoE networks and other biological networks [2,23,25]. In these studies, it
has been observed that the exponent γ for the power law degree distribution
of CoE networks is consistently less than 2, while in other biological networks,
including PPI networks and metabolic networks, as well as in real-world social
and technology networks, γ is usually between 2 and 3 (for examples see [28,38]).
A scale-free network with γ < 2 has no finite mean degree when its size grows
to infinity, and is dominated by nodes with large degrees [28]. To determine the
values of γ for the CoE networks that we have constructed, we fitted a linear
regression model to each log-log plot to calculate its slope. As shown in Fig. 2,
the values of γ in our networks are consistently between 2 and 3, similar to many
real-world or biological networks.

The difference in γ between previous CoE networks and ours is most likely due
to the difference in the network construction procedures. We used a rank-based
method in selecting CoE links, while most existing methods are threshold-based.
A threshold-based network tends to include a large number of high degree nodes,
and therefore usually have a small γ value. Although further work is required, the
similarity in γ values between our networks and other biological and real-world
networks suggests that the networks constructed by our method may better
represent the underlying functional structures than previous CoE networks.
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3.2 Functional Modules in Yeast CoE Networks

We applied the Qcut algorithm to cluster the four CoE networks constructed in
section 3.1. The best numbers of clusters suggested by Qcut for the four networks
are 24, 20, 12 and 12, respectively. For comparison, we also applied three popular
clustering algorithms, including k-means, SOM, and spectral clustering, to the
expression data, using Pearson correlation-coefficient as the distance measure.
We obtained k = 24, 20, 12 and 9 clusters for each of the three competing
algorithms. The SOM algorithm was executed on 4 × 6, 4 × 5, 3 × 4, and 3 × 3
grids to produce the desired number of clusters [12]. Because Qcut identified 12
clusters on both the α = 4 and α = 5 networks, we matched the 12 clusters of
the α = 5 network with the 9 clusters from the competing algorithms to avoid
redundant comparison. Another reason for this matching is that Qcut often
produce a few small clusters, while the clusters of the competing algorithms are
relatively uniform in sizes. Therefore, the “effective” number of clusters is smaller
for Qcut than for other algorithms, so we used the last test to compensate some
differences in the cluster size distributions.

To validate the biological significance of the clusters, we first counted the
number of GO terms enriched in the clusters and the number of clusters that
had at least one enriched GO term at various significance levels. As shown in
Fig. 3, the clusters identified by Qcut contain more enriched GO terms than the
competing algorithms for most p-value cutoff levels and for different number of
clusters (Fig. 3(a)-(d)). Furthermore, the percentages of clusters containing at
least one enriched GO term are also higher for Qcut than for the other algorithms
(Fig. 3(e)-(h)). However, as observable from the figure, the number of enriched
GO terms increase with the number of clusters. Therefore, it is hard to conclude
which network has produced the best clustering result.
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Second, we evaluated the clusters with three reference networks that capture
different functional interactions between genes: a co-function network based on
GO annotations, a co-binding network based on ChIP-chip data, and a PPI
network (Section 2.3).

The comparison with all three reference networks indicates that the clusters
identified by Qcut have higher agreement with the reference networks than do
the clusters by the competing algorithms (Fig. 4 and 5). The spectral clustering
algorithm generally performs better than the other two, which is reasonable since
the spectral method is able to capture some topological features embedded in the
data. We also randomly shuffled the clustering results of Qcut while fixing the
sizes of the clusters, and compared the random clusters with the three reference
networks. The modularity is always very close to zero (Fig. 4 and 5), mean-
ing that the agreement between our clustering results and the three reference
networks is not due to chance.

Among the three reference networks, the GO-based network has higher agree-
ment with the CoE network modules (Q > 0.35) than do the PPI network (Q ≈
0.15) and the co-binding network (Q ≈ 0.1). The low agreement between CoE
and PPI networks may be partially due to the high level of noises in PPI data.
On the other hand, the low agreement between the CoE and co-binding net-
works is somewhat unexpected, because co-binding should be a relatively strong
evidence of CoE. The reason might be that the gene expression data were mea-
sured under stress conditions while the ChIP-chip experiments were conducted
under normal conditions. Therefore, genes bound by common TFs under normal
conditions may not necessarily exhibit similar expression patterns under these
stress conditions, and some co-binding under stress conditions were not captured
by the ChIP-chip experiments.

For the GO-based reference network, the modularity value is a monotonic
increasing function of edge cutoffs, indicating that genes sharing many functions
or several specific functional terms are more likely to be co-expressed than genes
sharing some broad functional terms. In comparison, the ChIP-chip modularity
reaches its peak at cutoff = 0.6, probably because there are relatively fewer
genes sharing exactly the same regulators, and therefore the co-binding network
becomes very sparse when the cutoff is greater than 0.6. However, the relative
performance of different clustering algorithms is not affected by the cutoffs.

Both Fig. 4 and Fig. 5 show that the modules in the α = 2 CoE network have
the worst agreement with any of the three reference networks, which means
that this network might be too sparse to capture all functional relationships.
The α = 4 CoE network has the highest agreement with the three reference
networks, while the networks with α = 3 or 5 give slightly worse results.

Furthermore, to test if the competing algorithms may give the best results
with a different number of clusters, we applied the spectral clustering to obtain
k = 5, 6, . . . , 25 clusters, and computed their agreement to the GO-based refer-
ence network at cutoff value = 0.8. As shown in Fig. 6, the spectral clustering
achieved best modularity 0.323 at k = 13, which is significantly lower than the
best modularity of Qcut (Q = 0.384).
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Fig. 5. Agreement between modular structures in yeast CoE networks and a PPI net-
work. The four groups represent four networks with different values of α.
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Fig. 6. Agreement between the clusters identified by spectral clustering and the GO-
based reference network as a function of the number of clusters (k). The dashed line
represents the best agreement achieved by Qcut (α=4, k=12).

Finally, Table 2 shows the number of genes within each cluster identified from
the α = 4 network, the most significantly enriched GO biological process terms,
and the transcription factors that may bind to the genes within each cluster. As
shown, most clusters contain highly coherent functional groups, and are regu-
lated by a few common transcription factors, e.g., clusters 8, 9, 11 and 12. The
majority of the genes in cluster 12 are involved in protein biosynthesis, and can be
bound by FHL1 and RAP1, both of which are known to be involved in rRNA pro-
cessing and regulating ribosomal proteins [39]. Cluster 9 is significantly enriched
by genes that are involved in generation of precursor metabolites and energy,
and can be bound by HAP4, a TF regulating carbohydrate metabolism [39].
Cluster 2 contains almost two third of the ribosome biogenesis genes, although
no TFs bind to this set of genes specifically. Cluster 11 are enriched with genes
that can be bound by eight different TFs. Interestingly, these TFs are all known
cell-cycle regulators [39].

Several small clusters correspond to very specific functional groups. For ex-
ample, 17 of 22 genes in cluster 10 are involved in Ty element transposition;
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9 of 18 genes in cluster 3 are related to chromatin assembly or disassembly. Six
genes in cluster 3 are regulated by HIR1/2/3, which are known to be involved
in the transcription of histone genes [39].

Among the 25 genes in cluster 4, 4 genes have a common function in telomere
maintenance, while 16 genes encode hypothetic proteins and have unknown func-
tions. Interestingly, 5 of the 16 uncharacterized genes are located near telomeric
region [39]. Moreover, A significant number of genes in this cluster are regulated
by four common transcription factors (Table 2). Therefore, it is very likely that
these uncharacterized genes are closely related to the function or maintenance of
telomere. Clusters 5 and 7 contain both a large fraction of genes with unknown
functions, and groups of genes with significantly enriched common functions or
common TFs. It is possible that these uncharacterized genes also have similar
functions to the other annotated genes in the same cluster.

3.3 Robustness of Clustering Results

Since gene expression measurement is inherently noisy, and our method only
used the top-ranked CoE edges in network construction, we need to evaluate
whether the resulting clusters were stable with respect to perturbations. To this
end, we removed all the top three CoE links from the yeast α = 6 network. That
is, each gene was connected only to its fourth, fifth and sixth best correlated
genes. This network has about the same number of edges as the α = 3 network,
but very different edges. In fact, the edges in the two networks are completely
different. To compare their modular structures, we calculated a minimal Wallace
Index [40] between the clustering results on the two networks, which is a defined
by W (Γ, Γ ′) = min (N11/S(Γ ), N11/S(Γ ′)), where Γ and Γ ′ are two clustering
results for comparison, N11 is the number of pairs of genes in the same cluster
in both Γ and Γ ′, and S(Γ ) is the number of pairs of genes in the same cluster
in Γ .

Surprisingly, the clustering on these two network are fairly similar: the Wallace
Index between the two clusters is 0.63, i.e., 63% of the gene pairs are conserved
between the two clustering results. In contrast, we would only expect the two
clusters to share (12±0.1)% of the gene pairs if the two networks were not related.
Furthermore, the clusters obtained from the reduced α = 6 network still contain
significantly more enriched GO terms than the clusters identified by k-means
and SOM (data not shown).

3.4 Functional Modules in an Arabidopsis CoE Network

To test our method on higher organisms, we applied it to a set of Arabidopsis
gene expression data downloaded from the AtGenExpress database( http://
www.uni-tuebingen.de/plantphys/AFGN/atgenex.htm). The dataset contains
the expression of 22k Arabidopsis genes in root and shoot in 6 time points
following cold stress treatment. We selected the genes that are up- or down-
regulated by at least five-folds in at least one of the 6 time points in root or

http://www.uni-tuebingen.de/plantphys/AFGN/atgenex.htm
http://www.uni-tuebingen.de/plantphys/AFGN/atgenex.htm
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Table 2. Functional modules in a yeast CoE network

Cluster Size Category1 Term Count Enrichment2 P-value

1 361 BP protein catabolism 32 4.2 2.0E-12
BP protein folding 21 5.9 1.6E-11

2 498 BP ribosome biogenesis 133 9.2 2.0E-106

3 18 BP chromatin assembly or disassembly 9 36.4 5.3E-13
TF HIR2 6 129.8 2.3E-12
TF HIR1 6 62.9 3.0E-10
TF HIR3 6 57.7 5.3E-10

4 25 BP telomerase-independent telomere main-
tenance

4 82.3 1.1E-07

BP biological process unknown 16 2.9 7.6E-06
TF GAT3 13 56.8 3.5E-21
TF YAP5 15 43.5 5.8E-17
TF PDR1 9 25.8 3.1E-11
TF MSN4 8 35.0 3.8E-11

5 422 BP spore wall assembly 16 7.0 1.6E-10
BP biological process unknown 138 1.5 1.2E-07
TF NRG1 21 4.2 1.4E-08
TF SUM1 16 3.9 2.3E-06
TF PHD1 15 3.4 3.2E-05

6 99 – – – – –

7 463 BP carbohydrate metabolism 41 2.9 4.6E-10
BP biological process unknown 178 1.7 9.5E-17
BP response to stimulus 62 1.7 2.0E-05
TF UME6 25 2.5 2.6E-05
TF NRG1 15 2.8 3.6E-04

8 108 BP nitrogen compound metabolism 25 7.0 5.2E-15
TF MET31 4 9.6 8.0E-04
TF MET32 5 5.7 2.1E-03

9 192 BP generation of precursor metabolites and
energy

50 8.2 7.5E-33

TF HAP4 22 9.2 5.1E-16

10 22 BP Ty element transposition 17 58.6 6.2E-29
TF SUM1 4 18.9 5.8E-05

11 604 BP carboxylic acid metabolism 76 3.0 2.4E-19
BP cell organization and biogenesis 212 1.6 3.7E-15
TF SWI6 45 2.9 3.6E-11
TF SWI4 44 2.8 2.7E-10
TF FKH2 35 3.0 4.7E-09
TF MBP1 36 2.8 1.9E-08
TF STE12 22 3.6 7.9E-08
TF NDD1 30 2.9 1.1E-07
TF FKH1 34 2.5 9.6E-07
TF MCM1 22 2.9 3.9E-06

12 186 BP protein biosynthesis 131 6.4 6.4E-85
TF FHL1 96 17.1 3.3E-105
TF RAP1 58 11.5 2.2E-48

1For each cluster, significantly enriched biological process GO terms (BP) or binding
of transcription factors (TF) are counted.
2Fold of enrichment is calcuated as:
(number of genes in cluster with the term)×(number of genes in genome)
(number of genes in cluster)×(number of genes in genome with the term)

.
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Fig. 7. Enrichment of GO terms in the Arabidopsis CoE network. (a) number of enr-
iched GO terms; (b) percentage of clusters with at least one enriched GO term; (c)
agreement between modular structures in the Arabidopsis CoE network and a reference
network derived from GO annotations. X-axes in (a) and (b) are p-value cutoff to
consider a GO term enriched. X-axis in (c) is edge weight cutoff for the reference
network.

shoot. We then constructed a CoE network by connecting each gene to its top
three correlated genes (i.e. α = 3). The network has 2545 genes and 5838 CoE
links.

Our clustering algorithm partitioned the network into 19 clusters, with a
Q value of 0.81, indicating strong modular structures. As in the previous ex-
periments, we examined the GO terms enriched in the clusters at various sig-
nificance levels, and compared them with the results of the standard k-means
algorithm that partitions the gene expression data into 19 clusters. As shown
in Fig. 7(a) and (b), the clusters identified by our network-based method con-
tains significantly more enriched terms than that identified by the k-means,
and GO terms are enriched in more clusters in our method than in k-means.
Furthermore, the comparison with a reference network derived from GO anno-
tations (section 2.3) shows that the clusters identified by Qcut is more consistent
with the reference network (Fig 7(c)). Note that due to the high complexity of
gene expression regulation and the lack of detailed gene annotations, the modu-
larity of the GO network in Arabidopsis is much lower than that of yeast (0.025
vs 0.38).

Table 3 shows the most enriched functional categories for each cluster. Some
clusters are enriched with functions that are known to be related to cold stress
responses, e.g. clusters 7 (photosynthesis), 11 (circadian rhythm), 14 (response
to heat), 15 (antiporter activity) and 18 (lipid binding). Since the annotation
for the Arabidopsis genome is much poorer than that for the yeast genome,
the enrichment of GO terms in the clusters for Arabidopsis genes are not as
significant as that for the yeast genes. On the other hand, our method may
be applied to assign putative functional roles to some of these unannotated
genes.
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Table 3. Functional modules in an Arabidopsis CoE network

Cluster Size GO term Count Enrichment∗ P-value

1 199 - - - -
2 141 - - - -
3 79 - - - -
4 180 catalytic activity 99 1.6 4.1E-09

amino acid and derivative metabolism 18 4.4 3.9E-08
5 284 endomembrane system 79 1.6 3.5E-06
6 238 oxidoreductase activity 40 2.6 7.7E-09

secondary metabolism 18 3.1 9.9E-06
7 65 photosynthesis 11 32.6 8.7E-16
8 261 RNA binding 11 4.6 9.2E-06
9 186 galactolipid biosynthesis 3 17.6 1.8E-04
10 19 branched-chain-amino-acid transaminase

activity
3 172.6 1.7E-07

11 117 starch metabolism 4 16.0 5.0E-05
circadian rhythm 6 7.6 8.5E-05

12 271 protein modification 37 2.1 4.3E-06
13 268 methyltransferase activity 8 4.7 1.4E-04
14 13 response to heat 8 87.7 1.9E-15
15 223 antiporter activity 10 6.1 1.5E-06
16 151 transcription regulator activity 60 3.0 2.5E-17
17 200 zeaxanthin epoxidase activity 3 16.4 2.2E-04
18 17 lipid binding 5 48.2 2.9E-08

membrane 12 2.7 1.8E-04
19 249 calcium ion binding 13 3.2 1.1E-04

∗See Table 2

4 Conclusions and Discussion

In this paper, we proposed a network-based method for clustering microarray
gene expression data, and a method for evaluating clustering results based on
reference networks. We introduced a simple rank-based method to construct
gene CoE networks from microarray data, and applied a spectral clustering al-
gorithm that we developed recently to cluster networks into densely connected
sub-graphs. We applied our method to two gene expression datasets, and showed
that the network-based clustering method can produce biologically more mean-
ingful clusters than conventional methods such as k-means and SOM. The clus-
ters identified by our methods contain significantly more enriched GO terms
than other algorithms and exhibited better agreement with several reference
networks.

It is rather surprising that the simple method we proposed to construct CoE
networks worked well. The connections in such a CoE network are obviously
different from actual biological interactions. Nevertheless, at a higher level,
the CoE networks that we constructed have captured most topological proper-
ties and functional relationships in the true network. We expect that a more
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sophisticated method for constructing CoE networks, such as Bayesian net-
works [41] and Boolean networks [42], may improve the discovery of function
modules even further.

The CoE networks that we constructed posses a unique topological feature
that is different from the CoE networks reported in the literature. In our network,
the exponent of the power-law degree distribution falls in the range of 2 to 3,
similar to most other real-world networks, whereas the exponent of CoE networks
reported in the literature is below the critical value of 2. We are currently looking
for the causes of this discrepancy and examining their effects on our clustering
algorithm.

Although we have only demonstrated our method on gene expression data,
it can be applied to other types of experimental data as well. The efficiency
of our clustering method and its relative independence of any detailed domain
knowledge of the data make it well suited for identifying intrinsic structures in
large-scale network data. Furthermore, the cluster evaluation method we pro-
posed may be used as a general framework for assessing different algorithms and
comparing clustering results based on external knowledge.
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