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Preface

The Semantic Gap

There is a set of recurrent problems in AI and neuroscience which have restricted
their progress from the foundation times of cybernetics and bionics. These prob-
lems have to do with the enormous semantic leap that exists between the ontol-
ogy of physical signals and that of meanings. Between physiology and cognition.
Between natural language and computer hardware. We encounter this gap when
we want to formulate computationally the cognitive processes associated with
reasoning, planning and the control of action and, in fact, all the phenomenology
associated with thought and language.

All “bio-inspired” and “interplay” movement between the natural and arti-
ficial, into which our workshop (IWINAC) fits, faces this same problem every
two years. We know how to model and reproduce those biological processes that
are associated with measurable physical magnitudes and, consequently, we know
how to design and build robots that imitate the corresponding behaviors. On the
other hand, we have enormous difficulties in understanding, modeling, formaliz-
ing and implementing all the phenomenology associated with the cognition field.
We do not know the language of thought. We mask our ignorance of conscience
with the term emergentism.

This very problem recurs in AI. We know how to process images, but we do
not know how to represent the process for interpreting the meaning of behaviors
that appear in a sequence of images computationally, for example. We know how
to plan a robot’s path, but we do not know how to model and build robots with
conscience and intentions. When the scientific community can link signals and
neuronal mechanisms with “cognitive magnitudes” causally we will have resolved
at the same time the serious problems of bio-inspired engineering and AI. In other
words, we will know how to synthesize “general intelligence in machines.”

To attempt to solve this problem, for some time now we have defended the
need to distinguish between own-domain descriptions of each level and those of
the external observer domain. We also believe that it is necessary to stress con-
ceptual and formal developments more. We are not sure that we have a reason-
able theory of the brain or the appropriate mathematics to formalize cognition.
Neither do we know how to escape classical physics to look for more appropriate
paradigms.

The difficulty of building bridges over the semantic gap justifies the difficul-
ties encountered up to now. We have been looking for some light at the end
of the tunnel for many years and this has been the underlying spirit and in-
tention of the organization of IWINAC 2007. In the various chapters of these
two books of proceedings, the works of the invited speakers, Professors Mon-
serrat and Paun, and the 126 works selected by the Scientific Committee, after
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the refereeing process, are included. In the first volume, entitled “Bio-inspired
Modeling of Cognitive Tasks,” we include all the contributions that are closer
to the theoretical, conceptual and methodological aspects linking AI and knowl-
edge engineering with neurophysiology, clinics and cognition. The second volume
entitled “Nature-Inspired Problem-Solving Methods in Knowledge Engineering”
contains all the contributions connected with biologically inspired methods and
techniques for solving AI and knowledge engineering problems in different ap-
plication domains.

An event of the nature of IWINAC 2007 cannot be organized without the
collaboration of a group of institutions and people who we would like to thank
now, starting with our university, UNED, and its Associate Center in Cartagena.
The collaboration of the Universitat Politécnica de Cartagena and the Univer-
sitat de Murcia has been crucial, as has the enthusiastic and efficient work of
José Manuel Ferrández and the rest of the Local Committee. In addition to
our universities, we received financial support from the Spanish Ministerio de
Educación y Ciencia, the Fundación SENECA-Agencia Regional de Ciencia y
Tecnoloǵıa de la Comunidad de Murcia, DISTRON s.l. and the Excelent́ısimo
Ayuntamiento de Cartagena. Finally, we would also like to thank the authors for
their interest in our call and the effort in preparing the papers, condition sine
qua non for these proceedings, and to all the Scientific and Organizing Commit-
tees, in particular, the members of these committees who have acted as effective
and efficient referees and as promoters and managers of pre-organized sessions
on autonomous and relevant topics under the IWINAC global scope.

My debt of gratitude with José Ramón Alvarez and Félix de la Paz goes, as
always, further than the limits of a preface. And the same is true concerning
Springer and Alfred Hofmann and their collaborators Anna Kramer and Erika
Siebert-Cole, for the continuous receptivity and collaboration in all our editorial
joint ventures on the interplay between neuroscience and computation.

June 2007 José Mira
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Camino Rodŕıguez Vela, Universitat de Oviedo (Spain)
Daniel Ruiz Fernández, Univ. de Alicante (Spain)
Ramón Ruiz Merino, Universitat Politécnica de Cartagena (Spain)
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P System Models of Bistable, Enzyme Driven Chemical Reaction
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Stanley Dunn and Peter Stivers

A Novel Improvement of Neural Network Classification Using Further
Division of Partition Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Lin Wang, Bo Yang, Zhenxiang Chen, Ajith Abraham, and
Lizhi Peng

Morphisms of ANN and the Computation of Least Fixed Points of
Semantic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Anthony Karel Seda

Predicting Human Immunodeficiency Virus (HIV) Drug Resistance
Using Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
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Grammar-Guided Neural Architecture Evolution . . . . . . . . . . . . . . . . . . . . . 437
Jorge Couchet, Daniel Manrique, and Luis Porras

Evolutionary Combining of Basis Function Neural Networks for
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

César Hervás, Francisco Mart́ınez, Mariano Carbonero,
Cristóbal Romero, and Juan Carlos Fernández

Non-linear Robust Identification: Application to a Thermal Process . . . . 457
J.M. Herrero, X. Blasco, M. Mart́ınez, and J.V. Salcedo

Gaining Insights into Laser Pulse Shaping by Evolution Strategies . . . . . . 467
Ofer M. Shir, Joost N. Kok, Thomas Bäck, and Marc J.J. Vrakking
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Neural Networks and Quantum Neurology:

Speculative Heuristic Towards the Architecture
of Psychism

Javier Monserrat

Universidad Autónoma de Madrid

Abstract. A new line of investigation known as quantum neurology
has been born in recent years. One of its objectives is to accomplish a
better explanation of psychism. It basically explains the unity of con-
sciousness, its holistic character, and the indeterminism of its responses.
How is this “phenomenological explicandum” explained in classical neu-
rological architecture? After commenting on the properties of classical
architecture, we focus on the proposal of Edelman, since we consider it
as probably one of the better proposals explaining psychism. The discus-
sion of Edelman’s proposal, from the viewpoint of the problem about the
“physical support” of psychism in classical physics, allows us to evaluate
the strengths of his proposal, as well as the remaining insufficiencies in
his explanation. The “heuristic” way of quantum neurology offers a new
approach to the “phenomenological explicandum” that does not contra-
dict, but completes classical architecture. The discussion regarding the
Hameroff-Penrose hypothesis allows us to propose that the psycho-bio-
physical ontology would have an architecture with three levels (or sub-
architectures) and two (or three) interface systems among them. This
hypothetical architecture permits us to reflect on the production of on-
tologies, architectures, and functional logics (real and artificial). In any
case, the new quantum neurology would suggest new formulations of
the psycho-bio-physical ontology by means of the graph theory (classical
neurology) and of topology (quantum neurology).

1 Introduction

These reflections are being proposed based on my professional and personal
interests, namely, epistemology, cognitive psychology and vision science.

When speaking about neural networks, I do not refer primarily to systems of
artificial neurons that permit parallel distributed processing within the frame-
work of connectionism as a man-made architecture, but to biological networks of
living neurons which make up our brains. These networks, according to authors,
are also referred to as patterns, cannons, structures, engrams or neural maps.

What we could call classic neurology, according to our understanding, would
be, on one hand, the understanding of these neural networks: their diversification,
their modularization, their branching structure of interconnected and interactive
systems as, among other things, functioning units; and, on the other hand, the
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knowledge of their correlational order (is it causal?) with these events which are
phenomenologically called qualia and which constitute the essential elements of
our physical lives.

Along with this classic neurology, today there is being developed what could
be called quantum neurology. In this new field there is a bitter argument among
those who reject it passionately, those who respect it with interest, and those
who support it, persuaded that it is opening paths to new knowledge which will
enrich the scientific explanation of the human and animal psyche. In any case,
using our own evaluation, we only refer to quantum neurology as a scientific
heuristic, as there does not seem to be enough scientific evidence to confirm it
(given the provisional character of all scientific confirmations).

It could be said that the main characteristic of this new quantum neurology
is this: to suppose that quantum phenomena – or, more exactly, phenomena
that are quantum coherent – could occur in the internal biological tissue of
neurons (but not only) and that it would be possible to attribute to them the
“physical support” or real ontology, which produces the emergence of sensation
or germinal “senticence” and, after complex evolutionary transformations, the
emergence of sensation-perception-consciousness which is the architectural base
of the animal and human psyche. If this were the case, neural networks would
then constitute the skeleton in which the structure of “quantum niches” that give
way to sensation-consciousness would live. This neural skeleton could work as a
connector, both in ascendant and descendent ways, between “quantum niches”
and the internal and external environment of organisms.

The first idea we present is that quantum neurology has opened up a new
form of heuristic speculation for science, which is pertinent for two reasons: 1)
because it is scientifically and methodologically well constructed when compared
with alternative theories that are open to experimental and empirical criticism,
and 2) because it points out a suggestive explanation for psychic phenomenon
that science cannot ignore and must understand but up until now has not suf-
ficiently explained within the alternatives offered by the framework of classical
neurology. It is obvious that all this must be clarified and we hope to do so in
this presentation.

Moreover, and this is the second idea we will defend, we consider that, if
quantum neurology is discovering the real architecture of the physical ontology
that provides organisms the sensation of themselves and of their external envi-
ronment, then this architecture is also capable of suggesting models for either:
a) an interaction with the real physical ontology, or b) a design and construction
of artificial physical architectures which are oriented to some specific goal, or c)
an abstract conception of the formalisms which could support the suppositions
presented in points a) and b). We will clarify this in what follows.

2 What Scientific Argumentation Demands

We consider that these two ideas can be seen as the logical result of a well-
constructed argument, not as a logical necessity, but as a means to diffuse logical
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probability, which we consider not only justified, but necessary in the process of
“doing” science.

Science should really respond to the rules established by epistemological ar-
gumentation. We understand that the theory that gives an empirical base to
science today is not positivism, but a theory closer to Popper’s ideas or even to
the conceptions developed after Popper: scientific facts are an “interpretation”
made by the human receptive system. Moreover, the human “phenomenal” expe-
rience itself is also part of the explicandum of the human sciences. Science must
produce knowledge based on “empirical evidence”. This is not trivial, because it
means that science has an epistemological moral obligation to explain all facts
(to find the real causes that produce them). In other words: it is not “scientific”
to ignore or discriminate some facts in order to explain them.

Because of this, the science that deals with humans does not begin with
theories, but with facts that demand an explanation. It is facts that should orient
the (heuristic) search for explanations (or theories), and facts are the last appeal
to judge the suitability of proposed explanations (or theories). What we referred
to previously as classical neurology is a theory that is supported by a dense
weave of interconnected empirical evidence; it belongs to the field of theories.
Quantum neurology is also a heuristic theory, although it is less mature and less
accepted than classical neurology. This means that it is being constructed right
now. It assumes and integrates quantum neurology and all its empirical evidence,
but also opens up new horizons for the explanation of humans and builds new
theoretical frames that could orient new designs of empirical research which
might be able to confirm it.

Classical neurology has been able to explain many facts; obviously no one,
not even we, will dare to question this. But what we are trying to defend is that
some empirical (phenomenological) facts, which are important and unquestion-
able and cannot be ignored but explained by science, do not seem to be explained
adequately by classical neurology: many authors have proposed different argu-
ments which defend that classical neurology is not really able to explain these
facts (although other authors, for example, Edelman, do think that classical
neurology does explain them).

Quantum neurology was born precisely as a theoretical heuristic whose main
purpose was to explain those facts which seemed not to have an explanation
in the context of classical neurology. Being the only alternative that tries to
explain these facts, the methodological and epistemological requirements of sci-
ence demand the promotion of a heuristic reflection towards new proposals that
could explain these anomalous facts (we should remember Kuhn). The “heuris-
tic” search for new theories does not mean that we should accept them before
they are ready; but the rich proliferation of theories is essential for science (Fey-
erabend) as it allows internal discussion, the promotion of different lines of ex-
perimentation and the election of the best theory. For these reasons we think
that the promotion of quantum neurology today is a necessity of science which
is epistemologically well grounded.



4 J. Monserrat

Quantum neurology is therefore building a heuristic theory whose affirma-
tions have a logical, diffuse probability, but which needs a more solid structure
of empirical evidence to be able to consolidate itself. However, as a provisional
theoretical construct (in a heuristic search) it is sufficiently supported by the
methodical exigencies of science: in science basic theorization is at least as nec-
essary as the search for empirical evidence. In many cases it would not even be
possible to know which kinds of evidence should be searched for without theo-
rization. So our urge to build this theoretical alternative really responds to an
epistemological logic which is sufficiently justified today.

3 Neurological Explicandum and Phenomenology

So, what are the problematic facts we are referring to? In principle, these facts
are a part of the explicandum of the human sciences. All sciences are based on
phenomena or facts of immediate experience which “should be explained” by
the knowledge of the causes that produce them; these causes are the scientific
explicans. In the case of the human sciences, the explicandum is made up by the
totality of our phenomenological experience, that is, all our immediate, personal
experience, and also all our consensual and socially - or intersubjectively - lived
experience, all what it means to be “a human being”.

The scientific discipline that describes phenomenological experience is phe-
nomenology. Phenomenology itself can be debated and should be contended. It
is, in fact, a very complex discipline: different authors and schools, from fields
like philosophy, psychology or even neurology, have proposed different basic ways
for the phenomenological analysis of human beings.

We could think, for example, about the immediate experience of our own cog-
nitive activity: doing science as an activity has been described differently in the
scientific epistemological theories of positivism, Popper’s or post-popperianism
(at the bottom, many theories of science are simply functional descriptions of
how we act when doing science). Language is also a fact that can be described.
Therefore, knowledge, science, language, all are the explicandum that must be
explained scientifically by the knowledge of their causal systems or explicans.
Even “reason” is also a functional experience (which connects cognitive and
linguistic contents) which appears as a phenomenon and which should also be
explained by science from its causal system.

It is obvious that in this presentation we cannot undertake a deep analysis
and discussion of phenomenology. But we want to refer to three very important
phenomenological features or contents of our human experience (reducible to
two), which are part of the basic explicandum of the human sciences and to
which we will refer later. Science cannot ignore them nor can it avoid explaining
them. They are as follows:

1. The unitary character of consciousness. Our consciousness is noticed as a
system which integrates in a unity the different sensory modalities (vision,
audition, proprioception ... ) which are projected to the psychical subject
that coordinates them and sets responses.
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2. The holistic character of consciousness. Our experience of consciousness is
wide open: we feel the openness of the external space through vision, the
unitary extension of our sensations through our own body, or the wide unity
of our internal experience when we close our eyes and follow the stream of
our thoughts.

3. The indeterminate nature of the responses of a conscious subject. Subjects
notice themselves as open to a multitude of possible responses and consider
themselves as the cause of these responses. Responses may be driven by
programmed automatisms, but subjects strategically exercise their control
and feel that their lives are played out without an absolute determinism, with
free indeterminate options (which does not mean absolutely unconditioned).
This phenomenology of our own experience of indetermination (free will)
creates the basic persuasion that gives sense to our personal and social life.

It is evident that these three features are not exclusive to the human domain.
According to the modern views of comparative psychology, ethology, biology
and evolutionary neurology, we can make a scientific inference based on the fact
that these three features - the unity of holistic consciousness, and the flexibility
and indetermination of adaptive responses - are present in higher animals in
varying degrees and with their corresponding characteristics. It is clear that
animal indetermination is not comparable to the free will of man, opened by the
exercise of reason; but it is certainly an evolutionary prologue. For that reason,
the features that we select as a reference in our presentation are common, in this
sense, to both the animal and human domains.

4 Psychic Architecture in Classical Neurology

All of the essential lines of psychic architecture are already known. Further on
in the presentation we will refer to Edelman, but we consider it convenient to
stop here to present a brief synthesis of classical neurology.

We will begin with visual images. A pattern of light, codified by its differen-
tial reflection in the external world, is processed by the optics of the eye before
being eliminated in the layer of photoreceptors in the retina. If the point dif-
ferences of the image were codified in the light patterns, they should produce a
trans-codification in the retina: it passes from a photonic code to a neural code.
The electro-chemical signals, via ordinary synaptic communication, transmit the
image to the brain. The signals arrive at the superior colliculus, the oldest visual
nucleus in evolutionary terms, and then to more modern centers such as the LGN
(lateral geniculate nucleus). From there the signals travel to zones V1, V2, and V3

of the visual cortex. These zones connect with nearby zones like V4 and V5 and
more widely with the brain by way of the “where route” (towards the superior
parietal lobe) and by way of the “what route” (towards the parietal lobe). The
correct activation of the neural engram, pattern, or canon of a specific image
creates the psychic effect of “seeing”. In this active system (from the retina to
the cortex), every one of the parts plays a special role in producing the image.
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The visual system produces the activation of a complex neural pattern which
produces the psychic effect of “seeing” the image with the wide range of qualia
it has.

The image is constructed, then, in the module that processes images (for
example, the image of a lion). But this image is also connected with the temporal
lobe, in which its cognitive interpretation occurs (what is a lion); visual agnosia
allows us to determine that it is possible to have an image without a cognitive
interpretation (to see a lion without knowing what it is). The idea of a lion is
connected too with the semantic and phonetic areas of the brain that process
language, so we can shout: “a lion!”. In a similar way, there are connections
with the limbic system (the amygdala), so an emotional reaction of fear occurs
because of the lion. Likewise other modules are activated in turn, especially in
the prefrontal and frontal areas, and subsequently a plan of action is defined to
confront the situation [25, chap. IV] [28].

We could say that in the psychological subject all the qualia produced in the
different modules of the neural system come together in parallel (the subject sees
the image, hears sounds, feels his body in a holistic manner, notices the emotional
effect...) and, therefore, give impulse to the actions that constitute the subject’s
response (the subject produces language, controls his own movements, prepares
a plan of action, builds his own thoughts...). This psychological subject, which
is also present in the animal domain, has emerged little by little in the process
of evolution through the process of neurally mapping the body in the brain (as
has been explained particularly by Antonio R. Damasio [2, part III]).

The activation of engrams that produces the qualia that the psychological
subject feels is only the tip of the iceberg of the neural system. There is an in-
credibly dense weave of engrams which do not produce qualia, but which still
determine all organic regulations (already built in the evolutionary oldest parts
of the brain) and multiple automatisms which support conscious behavior (for
example, motor or linguistic automatisms). With these arguments we are not
trying to discuss the problem of determination and free will in the field of neu-
rology. We just want to point out that, in normal subjects, this psychological
and neural architecture is not a closed or static system, but a very flexible one
which can reach surprising degrees of plasticity. For example, when some parts
of the body are missing, the brain can simulate them (i. e., phantom limbs); but
when it is some part of the brain that is missing, the brain can reorganize itself
in amazing ways to still “deal” with the stimulation that comes from the body
(i. e., reorganization of motor or linguistic areas after a brain lesion). Classic
architecturehas its own characteristics. We would point out seven of them:

1. It is stable, but also oscillating. It is not a neural network of retropropaga-
tion which can be controlled from some other system. Afferent stimulations
(which arrive in the sensitive brain and move to connected areas) produce
interactive structures (engrams) in a classic, unitary system in which they
are registered or “facilitated” (Hull), becoming then available for later reac-
tivation. These structures are stable, but not in a rigid but oscillatory way
(as we can see in the fuzziness of our memories).
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2. These structures (engrams) are co-participative connections: the same neu-
rons and the same branches of synaptic connections (each neuron can have
thousands of synapses) can co-participate in multiple different engrams.

3. These networks of connections expand in a classical three-dimensional macro-
scopic space which responds to the shape of the brain.

4. The networks are connected and activated in parallel inside the same three-
dimensional spatial topology, i. e., when seeing an image in real time, the
subject simultaneously notices that vague reminiscences flow into his mem-
ory, feels his own body and follows a line of thought.

5. These networks are built following the logic of a well-arranged topology:
this ordering allows for an ordered interaction of, for example, the engrams
which are activated and de-activated when I explore a piece of knowledge
which was registered in my mind (in the frontal and prefrontal areas but
interacting with other cerebral modules). This gives rise to what William
James called the stream of consciousness, whether the engrams are images
or thoughts. This ordering is both intra-modular (i.e., an ordered record of
folders with images or sounds) and inter-modular (i.e., a knowledge system
which, after the activation of the frontal areas, connects in real time with
the images activated in parallel in the visual registry module).

6. These networks are dynamic. This means that, although the neural records
are stable, as we said before, they are being transformed continuously, as we
postulated that the transformation should occur, for example, in the contin-
uous stream of visual or auditory images, in the unconscious occurrence of
engrams which control language, motility or the stream of thoughts.

7. These networks are plastic in the sense that functions allow the construction
or improvisation of the architecture itself, with the properties that we dis-
cussed before: the brain can re-organize itself when either some substantial
part is missing or after a brain lesion occurs. Therefore, we could say that
the classical neural architecture is self-generating: a germinal architecture
which is not yet developed allows its own functions to adequately generate
the complex architecture that we observe in the mature system.

5 Gerald M. Edelman and the Sufficiency of the Classical
Neuronal Architecture

In this article, when we speculate about sufficiency, we ask whether classical
neurology offers a satisfactory explanation of the phenomenological explicandum.
If we limit ourselves to previously chosen phenomenological features, we wonder
if classical neurology can explain a) the unity of consciousness, b) the holistic
experience of consciousness, and c) the indeterminate nature of the responses
of the conscious subject. Many neurologists have, of course, taken for granted
the classical explanation without noticing any problems. Others have observed,
at least to some degree, that the classical view can be problematic and have
tried to offer a convincing answer. According to our point of view, Gerald M.
Edelman has developed the most profound system and the most well-constructed
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arguments. Therefore, referring to him can serve as a way to reflect on the
sufficiency of classical neurology.

In fact, Edelman understands that neurology should explain phenomenologi-
cal experience. In ”The Universe of Consciousness” his phenomenology (which
we will not detail here) presents two essential features described as “continuous
unity” and “infinite variety”, which are, to our mind, a light version of Edel-
man’s ideas on holistic unity and indeterminate free will. “Continuous unity”
refers to the unitary sensation of the body and of all the psychological modali-
ties (sensations, emotions, etc...) and their convergence in the conscious subject.
“Infinite variety” refers to the modality of human or animal actions caused from
consciousness to the unknown (against the “instructional” determinism of com-
puters). So, where then does Edelman’s explanation take us? [9, part I].

Edelman’s explicative system is based on neural Darwinism and the theory
of neural group selection (TNGS [5] [9, chap. 7]). Many physical and biological
processes are explained assuming that Nature has produced an enormous amount
of different states which enable the evolutionary selection of those traits that are
better adapted. Human brains are thought to be built by neural darwinistic
selection as well, therefore constructing a quasi-infinite variety of possibilities
for engrams. What has been selected are neural groups (not individual neurons
but groups of them) and the connections which form the most adaptive maps
or engrams. The neural architecture, as Edelman conceives it, agrees with the
descriptive characteristics of the classical architecture that we presented before.
Edelman has contributed mainly to the explanation of the emergence of psycho-
logical and cognitive activity through his analysis of the representative processes
in the mechanisms of memory. But now I would like to pay attention to his con-
cept of “dynamic nucleus” because it will be the basis for an explanation of the
phenomenological features that we mentioned before.

The dynamic nucleus hypothesis is an explanation of how the brain functions.
It is the final consequence of TNGS and the conception of the nervous system
as a diversified specialized group that produces by means of neural darwinism
a unitary psychological activity that is diversified and specific. Think about
our psychological experience: Our conscious self coordinates proprioceptive, vi-
sual, auditory, tactile and kinesthetic experiences in a single moment as if they
were a remembered present of complex auto-images, dense systems of aware-
ness, thought, registered imagination, emotional states, etc., that flow over into
the present. All these guide the direction of behavior and coordinate our motor
functions, although they vary and are redirected following changes in stimuli and
the use of the ability to choose, degenerate and generate an infinite array of new
possibilities [9, chap. 12].

How is such complexity possible? Edelman responds with the dynamic nucleus
hypothesis: In real time, in the hundreds of milliseconds that constitute collective
activations occurring over and over again (are generated and degenerated) and
mapped from diverse modules that contain the neural bases for all the different
psychological activities, everything flows together in the psychological subject
as a single system because of complex activation and de-activation buses that
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are coordinated by multi-directional re-entries [7, pp. 64–90] [9, chap. 10]. These
complex relationships of re-entry among modules are the neural correlates that
support conscious activity, both as a continuous unity and the way it can be
informed (modular diversity and registered content).

Therefore, what science should now explain is continuous unity and infinite
variety. As we have pointed out earlier, the dynamic nucleus hypothesis must
justify two properties of the mind: integration and re-entry (which form the ba-
sis for continuous unity) and differential complexity (which form the basis of
differentiation and infinite variety). Edelman believes that his dynamic nucleus
hypothesis, as a synthesis of macroscopic neurology (of neurons and synaptic
networks), explains how the different maps unitarily flow together in real time
and how the complexity (i.e., the huge population) of the maps permits a se-
lection that is controlled by the subject in the context of the environment. The
mind is thus unitary as a parallel system, i.e., it is “selective”. For Edelman, this
is the same as saying it is indeterminate, not instructional. In this sense, neural
darwinism, because of its selectivity, would be based both on indetermination
and on animal and human behavior [31].

6 The Physical Support Problem of Psychism

Does Edelman’s hypothesis explain the phenomenological explicandum that we
started with? It seems clear that, in part, it does contribute something, at least
when explaining it. The activation of parallel engrams and their references (also
parallel) that are produced by the subject make, without a doubt, the unitary
and holistic experience of consciousness intelligible. The continuous selection
among a multitude of engrams in their optimal state would also permit the
understanding of variability and of the indeterminate unpredictability of con-
sciousness. Nevertheless, the problem should be analyzed in the light of our
own ideas (as understood by the physical sciences) about “physical support,”
which proceed from our understanding of psycho-biophysics. From this point of
view, we can discuss whether Edelman’s version of the classical explanation of
phenomenological experience is sufficient.

The scientific expectation, as we have said before, is monistic. The biological
world has been evolutionarily produced because of a preexisting ontology of
“physical support”. In turn, the psychological world has also been produced
due to the same preexisting ontology of “physical support”. How do we know
that this “physical support” depends on physical science? At this point, we have
to make an important observation: Not all of physics can make psychological
experience a product of evolution, basing it on the ontology of the physical
world; this is understandable. For example: If the physical world was made up
of what the Greeks called “atoms”, invisible and closed-in on themselves (as
imagined by certain mechanisms of the 19TH and even 20TH centuries), it would
be impossible to explain not only how the experience of sensation-perception-
consciousness is produced, but also unity, holism and psychic indetermination.
A clear idea of science could therefore take us from reductionism to dualism.
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However, current ideas about matter no longer follow the atomic model of the
Greeks. The primal matter of the big bang is radiation, which extends in physical
fields. Particles are “folded radiation” that gradually forms what we call “mat-
ter” or physical objects. There is, in certain conditions, a conversion of matter
into energy or radiation, and vice-versa. Matter “unfolds” and converts into en-
ergy; the energy in radiation can “fold up” into matter. The wave-corpuscle (or
particle-field) duality is one of the principles of quantum mechanics. The physi-
cal world has as many “field” properties as “corpuscle” properties. The ultimate
idea, however, is that the ontology of real things is an “energy field”, given that
particles (and physical bodies) are made up of a folding or alteration of the base
energy in that field (which has received diverse names throughout the history of
physics and that today remains related to the concept of a quantum vacuum).

We should remember that physics now differentiates between two types of
particles or matter. First, there is bosonic matter which is formed by a certain
type of particle that has the property of unfolding more easily in fields of unitary
vibration. In this way, the mass of bosonic particles, for example, the photon,
lose their individuality when they enter into a state of unitary vibration that
is extended in a field constituting a state recognised as quantum coherence.
The wave function is symmetric and it is considered that this depends on these
properties. The first description of these states of coherence were Bose-Einstein
condensates. Today, in modern physics, a multitude of quantum coherence states
have been described within the most strict experimental conditions.

Second, there is fermionic matter. These are particles whose wave function is
asymmetrical, so that their vibrations have difficulties entering into coherence
with other particles. They persistently maintain their individuality, not fusing
with other particles and remaining in a state of unitary indifferentiation. Elec-
trons and protons, essential constituents of atoms, for example, unite and form
material structures according to the 4 natural forces: gravity, electromagnetic
force, strong nuclear force and weak nuclear force. Nevertheless, every parti-
cle maintains its individuality. Every electron in an atom, for example, has its
orbit, which, when completed, makes the electron vibrate in its orbital space.
According to quantum principles, we cannot know exactly where the electron
is. The location in space depends on the “collapse of the wave function” of said
particular electron; the collapse is produced, for example, by the experimen-
tal intervention of an observer. Because of the fact that the energy of the big
bang caused the folding of this type of fermionic particles, the classical macro-
scopic world exists: stellar bodies, planets, living things and man. Their folding
accounts for differentiation and the possibility of a multitude of unfathomable
things, like the survival of living beings with stable bodies and standing firmly
on the surface of the earth.

This enables us to have an idea regarding how causality happened in the
classical macroscopic world, i.e., the world organized in terms of fermions. One
can think of two stones crashing into each other and breaking, or of a watch
whose gears transmit motion. These physical entities, stones or metallic pieces,
remain as closed and differentiated units. If we go down to the quantum level of
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microscopic fermionic entities, we can see that in molecules and macromolecules,
every atom and every particle continue to have the same identity. Actions and
cause-effect series are, in this world, associations and dissociations of independent
particles, atoms and molecules by means of ionic unions and covalences abiding
by the four previously mentioned forces. Shared orbits of electrons can be formed
in covalent links, but they are very localised and probably do not nullify the
independence of the electrons. However, what is interesting to note here is a
consequence: Causal interactions do not break the enclosure and differentiation of
the component elements in the classical macroscopic world made up of fermions.
In other words, holistic fields do not appear in the world of physical fields.

Furthermore, these causal systems are partly deterministic: The conditions that
blindly produce a bond or dissociation follow the laws of physics and chemistry.
On the other hand, however, these systems can give rise to indeterminate states:
We will not know the precise effect of a state that is produced among a multitude
of possible states. We attribute the effect to a chance that is unpredictable cer-
tain. This happens in the physics of chaotic systems and in biology, for example,
in cytoplasmic biochemistry that gives rise to Darwinian selection. The fermionic
evolution (mechanical-classical) of the universe has produced states or loops of
indetermination; but what is finally produced in these indeterminate environs is
caused by cause-effect series that are blind and deterministic.

We now return to the question that was asked before: Does the architecture
of Edelman, as an excellent theory of classical neurology, explain phenomeno-
logical experience? The first thing we should notice is that classical neurology
constructs its explanations based on a microscopic fermionic world. In discrete
events occurring among neurons of the network, which is our brain, deterministic
cause-effect series are transmitted (along with the previously mentioned chaotic
reservation) that do not create fields nor break the differentiation of entities in
each neuron or in other structural entities (macromolecules, molecules, atoms,
particles etc.) conforming with their fermionic nature.

As a consequence: (1) The “unity of consciousness” is partially explained, as
with Edelman, by the parallel convergence of all the engrams that project their
effect in the psychic subject-coordinator, but this unity is made up of differen-
tiated and isolated parts; it is like the unity seen in the complex mechanism
of a watch. (2) The “holistic unity of consciousness” does not seem to be ex-
plained as a function of an adequate “physical support” for the same reasons: In
vision, for example, an image transmitted by a photonic code in light becomes
disintegrated in the brain, and it is not possible to understand what the integra-
tion field observed in the phenomenological experience could consists of. (3) The
explanation concerning the “indetermination of the conscious subject” can be
accomplished in part through the mechanics of chaos and darwinistic biological
selection within a fermionic classical macroscopic framework. However, phenom-
enological experience contains something more that is not explained: Animals
choose responses based on the telenomic logic of their systems, and man, in ad-
dition, chooses responses based on rational and emotional thinking (it is not a
pure chaotic indetermination chosen by chance because of darwinistic selection).
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7 Quantum Neurology in Search of a “Physical Support”
of Psychism

Edelman makes the observation that “sensation” cannot be explained by science
[8, pp. 116–117 and 138–139]. We cannot know why matter is susceptible to
producing sensation. We agree completely with this observation. Questions of
the type like “Why does matter produce sensation instead of not producing
it?” or questions also like the classic question of Leibnitz, reformulated by other
philosophers, “Why does something exist instead of nothing?” are questions that
do not have a response. We begin from the fact that something exists, and that
we should attribute the ontological property of producing consciousness to the
primordial substrate that caused the universe. The pieces of empirical evidence
from the process of evolution oblige us to do so within the monistic expectation of
science. The problem of science, then, is not so much whether matter produces
consciousness or not (something which is a fact), but to understand how the
ontology of matter can explain its phenomenological properties.

Can a discontinuous world - with some entities isolated from others, corpus-
cular or “fermionic” in the previous sense - explain the unity of consciousness
and its holistic contents (sensitive integration of fields of reality as in vision or in
proprioception)? Can the causality produced by deterministic cause-effect series
from interactions among entities made of fermionic matter explain certain vari-
ations in the indeterministic flexibility in animal behavior and human freedom?
Everything is debatable, but many certainly think that it cannot be explained.

Where to find, then, an adequate “physical support” to ground in a sufficient
manner the phenomenological properties of psychism? Current psycho-physics
is moving towards the field aspects of physical reality, already known for many
years now. It was almost an inevitable option to think that the solution, or at
least a more convincing manner of explaining that comes closer to the phenom-
enological explicandum, could be found by searching in physical fields and among
the properties of matter described in quantum mechanics. In 19THcentury clas-
sical mechanics, physical reality was corpuscular matter and radiation. Quantum
mechanics unified these two aspects in the corpuscle-wave duality, with particles
as “folded radiation” (as we said before). Every matter, bosonic and fermionic,
is “radiation” in its ontological core. Bosonic matter tends to be diluted easily in
everything unified, in vibrating fields, losing the individuality of its particles in
states of “quantum coherence.” But although fermionic matter firmly maintains
its individuality, it can also produce states of coherence, as has been verified in
extreme experimental situations. Note that fermionic matter also pertains to the
quantum world. In other words, knowledge about quantum mechanics (e.g., the
electron in its orbit is a vibrating wave) is applied to it.

What do we understand, then, by “quantum neurology”? A more general de-
finition could be the following: It is the search for and investigation about the
quantum properties of the most primitive matter in order to relate them to the
neuronal system in view of establishing the appropriate “physical support” to
explain the phenomenological properties of psychism. To this end, authors like
Henry Stapp, Herbert Fröhlich, Stuart Hameroff, Roger Penrose, Albert F. Popp,
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among others, have contributed ideas. These authors have contributed ideas and
proposals, but they do not exhaust quantum neurology. Their contributions can
be more or less certain, and above all, debatable, always setting aside experi-
mental and empirical evidence. It is very possible that the truly prolific ideas
for quantum neurology have not yet been proposed, and that crucial empirical
contrasts perhaps have not yet been designed.

In this presentation, we cannot deal with the exposition of the ideas of these
authors. But we take for granted that their ideas are already known. Since we
are now going to refer to them, we will at least recall the basic outline of the
Penrose-Hameroff hypothesis [33, chap. VII] [19], now the center of discussions.
Very briefly synthesized, the hypothesis consists in arguing that some struc-
tures of the cellular cytoskeleton, microtubules, distributed widely in the entire
neuron, could possess the appropriate physico-biological characteristics, so that
the phenomenon of quantum coherence could occur in them. Vibrating states
in quantum coherence would have a wave function that would be in “quantum
superposition” (being in multiple states at the same time and not being in any
state). But in certain moments, a “wave-function collapse” of the system would
be produced. The Hameroff-Penrose hypothesis would postulate that states of
consciousness (and all the qualia that accompany them, e.g., in a visual image)
would result from the entrance into quantum coherence of vast quantities of
microtubules of different neurons and brain modules due to the effects of action-
at-a-distance or non-local causation, already known in quantum mechanics from
the imaginary experiment of Einstein, Podolsky and Rosen in 1935 (EPR effects).

The Hameroff-Penrose hypothesis, then, opens new avenues to explain the
phenomenological properties of psychism. Quantum coherence states due to
action-at-a-distance (EPR effects) would be the most appropriate “physical sup-
port” to explain the unity of consciousness and field sensations (propriocep-
tion and vision); to produce “sensation” would be a field property of matter,
as long as there would be a “psychical subject” capable of “sensing it.” The
indetermination-freedom of behavior would have its physical support in indeter-
minate quantum states and in the property of superposition. The subject could
induce the collapse of the wave function in a flexible manner that would allow
the descending control of the mecano-classical mechanisms of movement.

Let us suppose that the Hameroff-Penrose hypothesis were correct, and let us
think about the consequences it could have for vision science. In principle, we
would consider the neuronal engram of an image, when activated, as producing
the collapse of the wave function in a subsystem of microtubules belonging to
that engram. The sensation of the visual image would be the psychic effect (phe-
nomenological) of the system interaction because of action-at-a-distance (EPR
effects) of the state of quantum coherence of those microtubules. The pattern of
the image would be given outside, objectively in the world, and would consist in
the pattern of light that reaches both retinas. Since images are continually differ-
ent in optical flow, one would have to think that the subsystem of microtubules
involved would be varying in a continuous manner.
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This makes us realize that the fundamental explicative problem would consist
in knowing the mechanisms or series of interactions that begin from the deter-
minant pattern of light (the external physical world that “imposes” the content
of an image) up to the collapse of some or other systems of microtubules. It
would be a bottom-up process. In this process, a quantum-classical interface
should mediate, since the transmission of an image is made by means of classical
neural engrams (fermionic) that should induce precise effects in the states of
quantum superposition of the microtubules within each of the neurons activated
in an image, producing quantum coherence at a distance among microtubules
as EPR effect. The practical totality of these interface processes are not known
to us. The Hameroff-Penrose hypothesis and many other things that are being
investigated today concerning the biochemistry of neurons (e.g., the proposals
concerning how to understand the functions of tubulin dimers on the walls of
microtubules, or the manner of producing quantum coherence, or the function
of the so-called “hydrophobic pocket,” or clatrins, etc.) are only initial proposals
that should be given a relative value, and, needless to say, are debatable. We
will not go into them.

In the same manner, but inversely (that is, top-down), the conscious psychical
subject would be the result of a “subject engram” and of a special system of
associated microtubules. Evolution should have designed a descending mecha-
nism (top-down), so that the decisions (variable, flexible, indeterminate) of the
subject would control action (motor system) or the flow of the same thoughts
(mind). Superposition and quantum indeterminism would allow us to understand
how the subject could induce the collapse of the wave function of some or other
microtubules, and how from there would be generated a quantum-classical inter-
face that, supported by motor automatisms, would end in the final production
of movement [37].

8 Psycho-bio-physical Ontology from the Perspective of
Quantum Neurology

How living beings are really constructed, together with the nature of their com-
ponents, constitutes their ontology. If the superior factor is the mind, we would
be speaking of the ontology of the mind. It is a physical ontology, because it is
made of a “physical world.” It is a biological ontology, because it is a “physical
world” organized as biological or living matter. It is a psychic ontology, because
in the mind are produced psychic effects (sensation-perception-consciousness-
subject) that interact (bottom-up and top-down) with the biological and the
physical. In contrast, we see that, in agreement with all the available empirical
evidence, current computers have a different ontology that is purely physical
(neither biological nor psychic).

This psycho-bio-physical ontology has an architecture. In turn, “architecture”
is defined as the structural form of the physical construction of that psycho-bio-
physical ontology. Depending on the preceding analysis, and within the supposed
hypothesis of a quantum neurology, we could say that this architecture has three
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levels (or three sub-architectures) and two (or three) systems of interface among
them: (1) The physical architecture of reference, since the mind is united system-
ically to the physical world (e.g., united to the electromagnetic fields of light for
vision). (2) The classical architecture, constituted by the nervous system or neu-
ronal system connected to the global physical structure by the system of senses,
internal and external. The architecture of engrams, patterns, canons or neural
networks connects stimulations to automatic (without producing qualia) and
conscious (psychic life and the sensation of qualia) response loops. In this archi-
tecture, physical-biological-neuronal processes happen in a differentiated world
of macroscopic, fermionic, objects, in which cause-effect series are transmitted
among independent entities. Previously, in this same presentation, we analyzed
more extensively the properties of classical architecture. (3) The quantum archi-
tecture, in which living organisms would have to construct “biological niches”
that made possible the presence of matter in quantum states that were the sup-
port for sensations and for their holistic and indeterminate dimensions. Quantum
coherence, superposition of states, and action-at-a-distance or non-local causa-
tion (EPR effects) would be the foundations of this architecture. Bosonic and
fermionic matter could be involved in this architecture, since fermionic matter
(although it produces individual differentiation) has a quantum nature (e.g.,
electron) and it has been verified that it can also enter into states of quantum
coherence. (4) The classical-quantum interface would be the totality of ascend-
ing, bottom-up, mechanisms, because of which the world imposes the selection of
activated microtubules (e.g., in visual image). (5) The quantum-classical inter-
face, because of which the conscious subject is capable of generating a descend-
ing, top-down, cause-effect series; of controlling the mecano-classical, fermionic
structures; and of breaking biological determinism by introducing continually
the factor of psychic unpredictability (freedom). (6) Furthermore, one could add
a physico-biological interface of lesser importance (e.g., the connection of light
pattern to the retina through interface with the eyeball optic), which we omit
so as not to prolong this presentation.

Functionality (operativity) of the psycho-bio-physical ontology. Every ontology
has an architecture that, eo ipso (by itself), involves a certain mode of func-
tioning that excludes other modes. The same is true for the psycho-bio-physical
ontology of living beings and of man. a) It allows a functionality founded on a
deterministic causality proper to the mecano-classical world that produced all
the automatisms of the system. b) But it also allows a new functionality, gen-
erated from sensation-perception-consciousness-subject states, that is supported
by quantum coherence states. c) One actually deals with an integrated function-
ality in which what is automatic is coordinated with, and at the service of, a
holistic functionality that is terminally directed from consciousness.

Operative logic of the psycho-bio-physical functionality. Some ontologies with
their own functional systems can be presented as systems that operate with
certain logical systems. This applies to the psycho-bio-physical ontology, since it
has been formed evolutively in order to assimilate and to operate adaptively on
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the order of the natural world. Sensation, perception, consciousness, subjectivity,
attention, memory, cognition, language, learning, thought, etc., have emerged by
evolution to operate this natural order.

Phenomenological access to the logic of neural networks of the operative system.
The Aristotelian logic itself was a first description of how the mind logically
functions; the first space-time mathematics (arithmetic and geometry) was also a
first description. A generalized phenomenological analysis of how our mind works
(cognitive psychology) allows us to infer the probable manner of constitution of
the logical networks of engrams of the neural system in its special modules and
in the intermodular coordination of brain activity as a whole. Thus, for example,
visual images are registered and organized in “folders” that have a logical order,
allowing orderly access to them. Another example: When we study a certain
university subject, we produce in our frontal and pre-frontal zones an enormous
quantity of ordered engrams, permitting access from one to another (connected,
in turn, to other brain modules, e.g., vision), that, when activated, produce an
orderly flow of reasoning. This logic is possible because the architecture of the
psycho-bio-physical ontology grounds it. But we still do not totally know today
the codes of the space-time order of those neural networks and the rules of their
interconnection. Deciphering the code of that physical order would be a discovery
as important as, or even greater than, the discovery of the spatial ordering code
of the DNA due to the work of Watson and Crick.

9 Ontologies, Architectures, and Artificial Functional
Logics

By the word “artificial,” we refer here to their production by man in a real
physical or imaginary (abstract) manner. We begin with some observations about
functional logics.

Functional logics, formal systems, and simulation. The natural mind already car-
ried out some useful functional logics and mathematics in the discourse about life
in the environment and about calculation. But the human mind, inspired by the
structural and space-time form of the world, has come up with formal systems
that assume the natural operations of calculation and permit many other new,
more complex, superior, and useful operations. We have in mind mathematical
analysis itself (potentiation, logarithmation, derivatives, integral calculus, the-
ory of functions, etc.). But we have in mind not only all the systems conceived
by modern mathematics, but also artificial formal systems that allow the am-
plification of natural logical functioning not only for calculation but also for life
in general. Contrary to Penrose, I think the human mind can conceive formal
systems that simulate and exceed the functioning of the natural logic of the mind
(it has already been done abstractly both in mathematical formalization and in
logical formalization, e.g., in axiomatic systems). But the problem would be not
so much in the abstract conception of formal systems that integrally simulate
the functional logic of the mind, as in the integral knowledge of the natural logic
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of the mind that we should simulate. At least, one could always design partial
systems of simulation.

Ontologies and artificial architectures. Abstract and formal complex systems cre-
ated by the human mind have been able to operate (that is, have been able to
“function”) in the human mind. Engineers, with paper and pencil, have been
resolving numerous mathematical calculations. But the human mind has been
capable of conceiving and constructing new ontologies, with their own archi-
tectures, that allow receiving information and “operating” on it (processing it,
working on it) through the application of abstract formal systems created by
the same mind. Two ontologies are created today. First, the brilliant conception
of Turing’s universal machine that, in an algorithmic, serial, and computational
manner, has allowed extraordinarily useful applications of all types, and will
continue to allow them for many years. The second ontology would be that of
the parallel distributed processing (PDP) connectionist computer.

Turing’s machine will be very useful, but it is undoubtedly different ontolog-
ically, functionally, and architecturally from the human mind. In effect, it has
no deposits of 1’s and 0’s; it has no CPU; nor is it algorithmic, etc. PDP sys-
tems are more similar to the ontology of the mind (this is what they intend),
but much is still needed. The mind is not a neuronal network engaged in prop-
agation that produces outputs analyzed from another system, and that permits
the control of values by retro-propagation for the next propagation. In order
for PDP systems to approximate what is neuronal, they would need, at least,
one of the three architectures (quantum architecture) and the two systems of
interface mentioned. Furthermore, if we do a one-by-one analysis of the seven
points that we previously emphasized as characteristics of classical architecture,
we will also see how the so-called “artificial neuronal networks” are still far from
“real neuronal systems.”

Thus, neither the serial-algorithmic ontologies nor the PDP ontologies have
properties allowing us to argue that they are 1) ontological, 2) functional (since
every ontology presupposes some possibilities and determinant functional-
operative exigencies), and 3) architectonically comparable to the human mind.
Nevertheless, the human mind has serial aspects (e.g., in cataloging images,
in thought, in language, in motricity) and parallel aspects that can be under-
stood from the perspective of a “weak metaphor” by applying the model of a
computer, be it serial or connectionist. Ontologies and architectures, serial and
connectionist computers, have thus been created that can serve us to “operate”
logico-formal systems, which are created in order to simulate the human mind.
This simulation, as we have said before, will be possible and credible, but it will
not be perfect, nor will it presuppose ontological or functional identity with the
real animal-human mind.

It is possible to continue searching for new ontologies and new architec-
tures. Microphysical physical states susceptible to two states (0-1) and capa-
ble of registering and recuperating information are sought; it is, for example,
the Qubits’ road to quantum computation. Physical engineering related to the
field properties of the quantum world (for example, teleportation and quantum
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cryptography) is also possible. This engineering could progressively be applied
to design systems in which artificial holistic fields are “sensed” by an “artificial
subject.” But then, rather than the creation of “computers,” it probably would
be more appropriate to speak of the creation of “artificial life.” Penrose has
referred to it recently.

10 Formalization Towards New Ontologies and
Architectures

Although it may be difficult to think today about the creation of ontologies and
architectures similar to the natural mind (which we actually still do not know
well), it is possible to create approximations that are ever more useful. PDP con-
nectionism has already been a useful approximation. Nevertheless, what formal
systems could serve as instrument to shape these new ontologies? We conclude
this presentation with a brief allusion to preferred formal systems. In our opin-
ion, classical architecture should be inspired by mathematical formalizations
based on graph theory: Trees growing in parallel and ending in “closed cups,”
but with infinite “vines” (or connections) among them. They would be immense
forests with independent roots, but infinitely connected at the top (they would
be Edelman’s re-entry). On the other hand, quantum architecture should be
inspired by topology english, or the study of continuous environments in pluri-
dimensional spaces. Unitary topological spaces with boundary, separated at a
distance, should “cover” other second-order imaginary spaces. For this, current
topology should exert efforts to create new and more specific formal instruments
that could serve as model formalizations for quantum-holistic spheres produced
in physical ontologies and architectures of living beings. What purpose would
this serve? I propose that we continue focusing more on Turing’s machine. It
will probably continue to be more useful in the short and medium run.
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(2001) 176-211.



20 J. Monserrat

29. Monserrat, J. (2002), “John Searle en la discusión sobre la conciencia”, In: Pen-
samiento, vol. 58 (2002) 143-159.
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Abstract. The new Quantum Information Theory augurs powerful ma-
chines that obey the “entangled” logic of the subatomic world. Paral-
lelism, entanglement, teleportation, no-cloning and quantum cryptogra-
phy are typical peculiarities of this novel way of understanding com-
putation. In this article, we highlight and explain these fundamental
ingredients that make Quantum Computing potentially powerful.

1 Introduction

Quantum Computing combines two of the main scientific achievements of the
20th century: Information Theory and Quantum Mechanics. Its interdisciplinary
character is one of the most stimulating and appealing attributes.

The big success of Computer Science and Artificial Intelligence is linked to
the vertiginous technological progress of the last decades. Essentially, computer’s
power doubles every two years since 1970, according to Moore’s law. Extrapo-
lating naively to a near future, this steady exponential growth on the minia-
turization of the elementary component (the transistor) would reach the atomic
scale by the year 2017. By then, one bit of information could be stored just
in one atom. However, we should also start worrying about new and surprising
quantum-mechanical effects the arise at atomic scales. Some of them could have
a disruptive effect, like the tunnel effect, that put paid to standard computa-
tion. Although, instead of fighting against quantum effects, we would be better
off allying ourselves with them and thinking of proper alternative architectures
adapted to the nanometric scales: the would-be “quantum computer”.

Quantum Physics entails a way of processing information which is different
from the traditional, classical, methods. The processing of the information car-
ried by the wave function of a quantum physical system is the task of the new
Quantum Information Theory [1], a perfect marriage between Information The-
ory and Quantum Mechanics, comparable to the symbiosis between Physics and
Geometry that leads to General Relativity. In practical effects, the quantum
manipulation of information offers real applications, specially the reliable trans-
mission of information (Quantum Cryptography) and potential applications, like
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the design of exponentially fast quantum algorithms (see e.g. [2]) that could
threaten the privacy of most of actual business transactions. In fact, the most
spectacular discovery in Quantum Computing to date is that quantum computers
could efficiently perform some tasks (by efficient we mean that its running time is
polynomial in the input size) which are not feasible (i.e. “super-polynomial”) on
a classical computer. For example, there are cryptographic systems, such as the
“public key RSA” [3], whose reliability is based on the assumption that there are
no polynomial time (classical) algorithms for integer factoring. However, Peter
Shor [4] created an algorithm, to be run on a quantum computer, that factor-
izes integers in polynomial time. Also, there are efficient quantum algorithms for
searching [5].

The advantages of Quantum Computing over the classical one rely on two
quantum-mechanical properties par excellence, viz: superposition (interference or
parallelism) end entanglement. Quantum superposition allows the possibility of
performing simultaneous mathematical operations (equivalent to many classical
computers working in parallel); whereas entanglement provides greater quantum
correlations in answers than any classical correlation we can imagine.

Unfortunately, the more power we gain, the less stability we get. A quan-
tum computer turns out to be extremely vulnerable, fragile, sensitive to any
kind of background noise. Keeping the coherence of several atoms is extremely
difficult with actual technology. Other drawback is that we can not amplify a
quantum signal, due to the so-called “no-cloning theorem” (there are no perfect
quantum copy machines...), thus limiting long-range quantum communications
to tens of kilometers; nevertheless, we have quantum teleportation instead (see
later). Actually, the impossibility of cloning quantum states has a positive side:
the detection of eavesdroppers and the establishment of secure (quantum) com-
munications. Moreover, a certain fault tolerance and quantum error correcting
algorithms, together with a big effort in (nano)technology improvement, could
make feasible quantum computing in the near future.

By the time being, it is worth analysing the meaning of Quantum Information
and the abstract processing of it, disregarding the possible physical support
or hardware (i.e., ion trap, nuclear magnetic resonance, laser, etc) that could
efficiently accomplish our hypothetic computer in future.

2 Classic Versus Quantum: Bit Versus Qubit

The digital processing of information out of the brain goes through the con-
version of messages and signals into sequences of binary digits. A two stable
positions classical device (like a wire carrying or not electric current) can store
one bit of information. Loosely speaking, the manipulation and processing of
information comes down to swapping 0’s and 1’s around though logic gates (viz,
not, and, or). Note that, except for not, classical logic gates are irreversible;
that is, knowing the result c = a + b, we can not guess a and b. This loss of
information leads to the well known heat dissipation of classical computers. Ac-
tually, we could make classical computation reversible, by replacing traditional
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logic gates by the new ones: NOT, CNOT and CCNOT, in Figure 1, the price
being perhaps a waste of memory. However, Quantum Computation must be
intrinsically reversible, since it is based on a unitary time evolution of the wave
function (probability must be conserved), dictated by the Schrödinger equation.

In order to introduce the concept of qubit, let me use the following classical
analogy. Suppose we drop the electric current in a wire to the limit of not being
able to distinguish between cero (0) and positive (1) voltage. We could say
then that the “state of electric current flow” of the wire is a statistical mixture
(ψ) = p0(0) + p1(1) of both possibilities, with probabilities p0 and p1. However,
we would not gain anything new but just to introduce errors and uncertainty.
Quantum Computing would not have any appeal if it wasn’t that the quantum
state described by the wave function (in Dirac’s bracket notation)

|ψ〉 = c0|0〉 + c1|1〉 (1)

(c0 and c1 are complex numbers fulfilling |c0|2 + |c1|2 = 1) is not only a sta-
tistical mixture with probabilities p0 = |c0|2 and p1 = |c1|2 but, in addition, it
incorporates two important new ingredients: interference, or “parallelism”, and
entanglement, or “quantum correlations” (for the last one we actually need two
or more qubits, like in the state |ψ〉 = |0〉|0〉+|1〉|1〉). The above classical analogy
has sense in that the description of physical phenomena starts needing the Quan-
tum Theory as the energy (or action) gap between states (levels, possibilities,
etc) becomes smaller and smaller. This happens with more probability in the
subatomic world than in the macroscopic world. All the quantum alternatives
ψj ∼ e

i
�

Sj , whose action gap ΔS = Sj −Sk is of the order of the Planck constant
�, coexist in some sort of quantum superposition with complex weights, like (1).
These quantum alternatives are indistinguishable for a (classical) observer, who
does not have access to that particular quantum superposition. In order to ob-
serve/measure the actual state, he has to “amplify” the action/energy differences
ΔS up to the classical level, that is, up to the limit of being distinguishable by
him. In this “amplification” or “measurement” process, the quantum superposi-
tion (1) is “destroyed” and only one of the alternatives (e.g., |0〉 or |1〉) survives
the experience. This is the (standard but not free of controversy) so-called wave-
function collapse (or measurement process), which raised and keeps raising so
many philosophical and interpretation problems in Quantum Mechanics. The
coexistence of quantum alternatives gives rise to interference effects that defy
the common sense, like the well-known two-splits Young’s experiment (see any
book on Quantum Mechanics), which highlights the particle-wave duality of the
electron.

Thus, the wave function (1) carries an information different from the classic
one, which we agree to call qubit (quantum bit). Physical devices that store one
qubit of information are two-level quantum systems like: spin 1/2 particles and
atoms (electrons, silver atoms, etc), polarized light (photons), energy levels of
some ions, etc. For example, it is possible to prepare a quantum state like (1)
striking a laser beam of proper frequency and duration on some ions.



24 M. Calixto

Note that, with two qubits, we can prepare a register in a quantum superposi-
tion of 22 = 4 numbers from 0 up to 3 (we ignore normalization, for simplicity):

|ψ〉 = |a〉 |b〉 = (|0〉 + |1〉) ⊗ (|0〉 + |1〉) = |00〉 + |01〉 + |10〉 + |11〉 =
3∑

x=0

|x〉. (2)

This can be the spin state (|↓〉 ≡ |0〉 , |↑〉 ≡ |1〉) of carbon (a) and hydrogen
(b) nucleus in a chloroform molecule CHCl3. This “toy quantum computer” can
implement the cnot (controlled not) gate in Figure 1, by placing the molecule
in an external magnetic field and acting on it with radiowave pulses that flip
the spin of the nucleus. Actually, only when the spin of the carbon points in the
direction of the external magnetic field (i.e., | ↑〉 = |1〉), it is possible to flip the
spin of the hydrogen. That is, the carbon is the “control” and the hydrogen acts
as a xor gate (see Figure 1). It is proved that, assembling (two-qubit) cnot and
arbitrary one-qubit unitary (quantum) gates is enough to design any classical
algorithm like: addition, multiplication, etc (classically, they are the cnot and
ccnot gates that constitute a universal set).

Fig. 1. Truth tables of the basic reversible gates: not, cnot and ccnot or Toffoli
gates

In order to process more complex quantum information, it is promising to use
lineal ion traps (see e.g. [6,7]), where the coupling between electron and vibra-
tional degrees of freedom allows (in principle) the implementation of operations
in a multi-qubit register by absorbtion and emission of photons and phonons.

In a four-qubits quantum computer, the application of the unitary operation
U⊕ that implements the adding algorithm modulo 4 between the state (2) and
a second one like |ψ′〉 = |x′〉, with x′ = 0, . . . , 3, gives an output of the form:

|ψ〉 |ψ′〉 =
3∑

x=0

|x〉|x′〉 U⊕−→
3∑

x=0

|x〉|x ⊕ x′〉. (3)

That is, we have simultaneously computed the addition x ⊕ x′ for four different
values of of x, equivalent to four four-bits classical computers working in parallel.
This feature is called quantum parallelism. However, we can only measure or
“amplify” one of the four answers of the output

∑3
x=0 |x ⊕ x′〉 measure−→ |x0 ⊕ x′〉.

Let us see that it is not exactly superposition or parallelism what makes powerful
quantum computation, but it is entanglement.
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3 Entanglement: EPR Paradox

There are physical situations in which (quantum) particle pairs (or higher group-
ings) are created as if the state of one member would “instantaneously” deter-
mine or influence the state of the other, though they were hundreds of kilometres
apart. It is not exactly like having couples of loaded dice that always offer the
same face, but much more “intriguing”, as we are going to see. For example,
spin positron-electron entangled pairs |EP 〉 = |↑〉e |↓〉p − |↓〉e |↑〉p are created in
the decay of spin cero neutral particles; also pairs of photons with orthogonal
polarizations (V means vertical and H horizontal) |VH〉 = |
〉1 |↔〉2 − |↔〉1 |
〉2
are created by striking laser pulses on certain non-linear crystals. These are just
particular examples (the so called “singlet states”), but more general situations
are also possible.

��

EP Source

EP
�

R′
A

� RA

Alice

�
��

RB

�
��

R′
B

Bob

Fig. 2. Measuring entangled pairs |EP 〉

In the case of entangled spins like EP , we propose the following “gedankenex-
periment” (imaginary experiment like [8]) depicted in Figure 2. Alice A and Bob
B are equipped each of them with magnetic fields HA and HB, which can be
oriented in the directions: ↑, → and ↗, ↘, respectively, like in the Stern-Gerlach
experiment for silver atoms. From the result RA of the electron’s (E) spin in the
Alice’s measurement (which can result in: either parallel |↑〉e or antiparallel |↓〉e

to the external magnetic field HA), one can predict with certainty the result RB

of the positron’s (P ) spin in Bob’s measurement, when measuring in the same
direction HB||HA as Alice (RB ought to be antiparallel to RA in this case).
This would happen even if Alice and Bob were far away, so that no information
exchange between them could take place before each measurement, according to
Einstein’s causality principle.

In order to motivate the original Einstein-Podolsky-Rosen “paradox” [9], we
propose the following classic analogy: let us think of “entangled” pairs of green
and red balls, made of metal or wood and whose weight is 0.5 or 1 Kg. The
measurement devices (the analog of the magnetic field H directions) can be
a flashlight (to measure color), fire (to distinguish metal from wood) and some
weighing apparatus. Pairs of balls are “entangled” as: green-red, metal-wood and
0.5-1, and sent each one to Alice and Bob, respectively. Thus, the measurement
of a given quality carried out by Alice on one member of the pair, automatically
determines the quality of the other member of the pair, even before Bob carries
out the corresponding measure. What is then the paradox?. If Alice and Bob
are quite far away, so that no message can fly between them while the mea-
sures take place, then Bob would never think that the choice of measurement
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apparatus (flashlight, fire or scales) by Alice on one member of the pair would
determine his results (color, fabric and weight) on the other member of the pair.
If it were so, then we should start thinking about “telepathy” or “action at a
distance”, something forbidden by Einstein’s Relativity Theory. This situation
never would happen in the classic (macroscopic) world, but it is perfectly posible
in the quantum (subatomic) arena. Here we have the “esoteric” face of quan-
tum mechanics that upset Einstein. However, let us see that there is nothing
mysterious in quantum mechanics when one accepts that, contrary to the clas-
sical systems, subatomic entities have not well defined values of their properties
before they are measured ; instead, all posible values must coexist in a quantum
superposition like in (1). Indeed, (the following argument is a particular example
of Bell’s inequalities [10]) let us say that Bob, loyal to the classical mentality,
really believes that the positron coming to him (see Figure 2) has a definite
spin: either up (parallel) ↑ or down (antiparallel) ↓ (but never a mixture. . . )
aligned with his magnetic magnetic field HB, which he can choose either in
the direction ↗ or ↘, at pleasure. Alice’s magnetic field directions are rotated
θ = π/4 radians with respect to Bob’s. Let us say the answer is R = 1 when
the spin is up and R = 0 when the spin is down with respect to the magnetic
field H . Let us suppose that Alice and Bob start placing (HA, HB) = (→, ↗).
Quantum Mechanics predicts that the probability of agreement between the an-
swers (RA, RB) is sin2(θ/2) = 0.15, where θ is the angle between HA and HB

(that is θ = π/4). Bob, who stays quite far away from Alice’s place, also thinks
that his results RB are not affected by Alice’s choice of measurement direction
(either ↑ or →). Even more, since he thinks the spin is well defined even be-
fore any measurement takes place, he also thinks that the global result would
have been (R′

A, RB), instead of (RA, RB), if the choice of measurement had been
(HA, HB)′ = (↑, ↗) instead of (HA, HB) = (→, ↗). The agreement between
answers (R′

A, RB) would continue to be the same (15%) since the new angle θ′ is
the same as before. In the same way, according to “classic” Bob’s mentality, if the
arrangement were (HA, HB)′′ = (→, ↘), then the agreement between (RA, R′

B)
would have been again 15%. Taking into account the previous results, and just
by simple deduction (transitive property), Bob would then conclude that the
agreement between (R′

A, R′
B), in the arrangement (HA, HB)′′′ = (↑, ↘) would

never exceed 15%+15%+15% = 45%. But, on the contrary, the experiment gives
85%, in accordance with Quantum Mechanics, which predicts sin2(θ′′′/2) � 0.85
for θ′′′ = 3π/4 (to be precise, experiments are not really done with electrons
and positrons, but with other spin 1/2 particles or photons, although the same
argument applies). The mistake is then to think that, “like balls”, electrons have
a definite spin (up or down) before the measurement. Otherwise we should start
believing in telepathy. . . .

It is clear that these kind of experiences at subatomic level, utterly uncommon
in the macroscopic world, could be efficiently used in a future to create really
surprising situations. Let us imagine a World-Wide-Web of entangled quantum
computers that cooperate performing tasks which are imposible even via satel-
lite. Nowadays, this is just speculation, although there are actual and future
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applications of entanglement in the field of telecommunications. Le us see some
of these implementations of entanglement.

4 Entanglement and Teleportation

One of the most spectacular applications of entanglement is the possibility of
transporting a quantum system from one place to another without carrying mat-
ter, but just information. Teleporting the polarization state of one photon, like
|Ψ〉 = c0 |
〉+c1 |↔〉, is nowadays physically realizable thanks to the original idea
of Bennet et al [11] and the Innsbruck experiment [12]. However, there is a long
way to cover before we can teleport a macroscopic (even a mesoscopic) system.
Before we must fight “quantum decoherence” (qubits a fragile and sensitive to
any kind of external noise).

Teleportation of one photon goes as follows (see Figure 3). A ultraviolet laser
pulse strikes a Barium β-Borate crystal, creating an entangled pair of photons
(F1, F1′) and other pair (F2, F2′) after reflection in a mirror M1. The polarizer
P prepares F2 in the state Ψ , which joins F1 through a beam splitter (BS). Then
Alice makes a two-qubit measure (also, “coincidence” or Bell’s measure) with
the photon detectors D1, D2. The measurement can have four different answers:
(RD1 , RD2) = (1, 1), (1, 0), (0, 1), (0, 0). If both detectors are struck (i.e. the an-
swer is (1, 1)), Alice tells Bob (through a classic message) that the photon F1′

has “transmuted” to the state Ψ , which Bob can verify by using a beam splitter
polarizer (BSP), consisting in a calcite crystal. In the other three cases, Alice
can always indicate Bob the operation to rotate F1′ to Ψ . Thus, we need a two-
bits classic message to teleport one qubit (this is some sort of dense information
coding).

ALICE

SOURCE OF

ENTANGLED PAIRS

D1 D2

D4

D5

CRYSTAL

UV PULSE

BSP
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M1

M2

P Ψ

F1’
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Ψ

CLASSIC
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D3

M3

β BB

BOB

F2’

F2

Fig. 3. Quantum teleportation of the polarization state of one photon
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Quantum information can not be cloned (no-cloning quantum theorem), which
can limit long-range quantum communications due to decoherence of quantum
signals. However, intermediary teleporting stations can save this obstruction.

However, the impossibility of (perfectly) cloning a quantum signal has a posi-
tive side: the detection of eavesdroppers and the establishment of reliable quan-
tum communications.

5 Quantum Cryptography

The basic ingredients to encrypt a secret message M are: a key K (known only
by the sender, Alice, and the receiver, Bob) and a cryptographic algorithm E
that assigns a cryptogram C = EK(M) to M though K. The decryption process
consists in applying the inverse algorithm M = E−1

K (C). For example, the “one-
time pad” algorithm assigns a q-digits C = {c1, . . . , cq} (with cj = 0, . . . 25−1 the
alphabet symbols) to M = {m1, . . . , mq} though K = {k1, . . . , kq} by using the
addition cj = mj⊕kj mod 32. The reliability of this simple cryptographic system
is guaranteed as long as the key K is randomly generated and not used more
than once. The problem is then when Alice and Bob, who are far apart, run out
of keys. How to generate new keys overcoming the presence of eavesdroppers?.

5.1 Secure Quantum Private Key Distribution

One possibility is to use entangled pairs [13]). Both can choose the direction of
magnetic fields H : ↑ or →, at pleasure. After measuring n pairs, they broadcast
the direction choice of H each time, but not the answer, which can be: 1 = ↑
or 0 = ↓. In average, they should coincide n/2 times in the direction choice,
for which the answers are perfectly (anti-)correlated (RA, RB) = (1, 0) ≡ 0 or
(RA, RB) = (0, 1) ≡ 1. Then Alice and Bob keep only these approximately n/2
(anti-)correlated answers (RA, RB) = 0, 1 and construct the key K = 00101 . . .
One can prove that (RA, RB) are indeed anti-correlated if and only if there has
been no eavesdroppers tapping the quantum channel, which can be verified by
sacrificing a small part of the key, for high values of n (see [14] for a simple
proof). The reliability of this key distribution algorithm lies in the fact that the
observation of eavesdroppers destroys the quantum entanglement. Summarizing:
unlike classical communications, quantum communications detect the presence
of eavesdroppers. Actually, there are prototypes of tens of kilometers long.

5.2 Quantum Cracking of Public Key Cryptographic Systems

Nowadays, the reliability of the RSA (Rivest, Shamir and Adleman) public key
cryptographic system is based on the difficulty of integer factoring on classical
computers. The protocol is the following. Alice broadcasts her key, consisting
of two big integers (s, c), with c = pq the product of two big prime numbers
only known by her. Anyone wanting to send her an encrypted message can do it
by computing C = M s (mod c). In order to decrypt the message, Alice uses the
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formula M = Ct (mod c), where t = t(s, p, q) can be calculated from the simple
equations: st ≡ 1 (mod p − 1), st ≡ 1 (mod q − 1). Any other eavesdropper who
wants to decrypt the message, firstly has to factorize c = pq. To make oneself an
idea of the difficulty of this operation, for c ∼ 1050, and with a rough algorithm,
we should make the order of

√
c � 1025 divisions. A quite good classical computer

capable to perform 1010 divisions per second would last 1015 seconds in finding
p and q. Knowing that the universe is about 3, 8 · 1017 seconds, this discourages
any eavesdropper. Actually, there are more efficient algorithms that reduce the
computational time, although it keeps exponentially growing with the input size
anyway.

P.W. Shor [4] designed an algorithm, to be run on a quantum computer, that
factors in polinomial time t ∼ (log c)n, making factoring a tractable problem
in the quantum arena and threatening the security of most of business transac-
tions. The efficiency of the algorithm lies in the quantum mechanical resources:
entanglement and parallelism. Essentially, the factoring problem of c reduces to
finding the period r of the function Fc(x) = ax (mod c), where a is an arbitrary
number between 0 and c (see e.g. [14] for more details). Applying the unitary
transformation UF that implements F [remember the case (3)] to a superposition
of ω >> r numbers x in the first register

ω−1∑

x=0

|x〉 |0〉 UF−→
ω−1∑

x=0

|x〉 |Fc(x)〉 Fc(x)=u−→
j�ω/r−1∑

j=0

|xu + jr〉 |u〉 (4)

and storing the values Fc(x) in the second register, we entangle both registers.
Then measuring the second register, Fc(x) = u, we leave the first register in a
superposition of z � ω/r numbers that differ from each other in multiples jr
of the period r, which can be obtained by a quantum Fourier transform. It is
the entanglement between |x〉 and |Fc(x)〉 which makes possible the “massive
scanning” of the function Fc.

Reliability of RSA and the U.S. Digital Signature Algorithm lie in the fact that
factoring and discrete logarithm are intractable problems in classical computers.
They are just particular instances of the so-called Hidden Subgroup Problem (see
e.g. [2]). This problem encompasses all known “exponentially fast” applications
of the quantum Fourier transform.

6 Grover’s Quantum Searching Algorithm

Whereas classical searching algorithms need of the order of P/2 trials to find an
item x0 in a unstructured list of P items, Grover [5] designed a quantum algo-
rithm that brings the number of trials down to about

√
P iterations (with success

probability of ∼ (P −1)/P ) on the quantum superposition |Ψ〉 = 1√
P

∑P−1
x=0 |x〉 of

all items (parallel searching). Without entering into detail, the searching process
consists of enhancing the probability amplitude of |x0〉 and dimming the rest
in the superposition |Ψ〉 through consecutive unitary operations. The result is a
subtle interference effect that determines x0 in about t � (π/4)

√
P iterations.
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For P = 4 (two qubits) the situation is even more surprising: we just need a
single trial to turn |Ψ〉 to |x0〉!.
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Abstract. Theories of how the brain computes can be differentiated in
three general conceptions: the algorithmic approach, the neural infor-
mation processing (neurocomputational) approach and the dynamical
systems approach. The discussion of key features of brain organization
(i.e. structure with function) demonstrates the self-organizing character
of brain processes at the various spatio-temporal scales. It is argued that
the features associated with the brain are in support of its description in
terms of dynamical systems theory, and of a concept of computation to
be developed further within this framework.

1 Introduction

The brain as the basis of cognitive functions such as a thinking, perception and
acting has been fascinating scientists for a long time, and to understand its
operational principles is one of the largest challenges to modern science.

Only recently, the functional architecture of the brain has gained attention
from scientific camps which are traditionally rather distant from neuroscience,
i.e. from computer and organization sciences. The reason is that information
technology sees an explosion of complexity, forming the basis for both great
expectations and worries while the latter come up since software technology is
facing a complexity bottleneck [1]. Thus various initiatives started to propa-
gate novel paradigms of Unconventional Computing such as IBM’s ‘Autonomic
Computing’ 1, the ‘Grand Challenges in Computing Research’ in the UK 2, and
DFG’s ‘Organic Computing’ (DFG = German Science Foundation) 3.

According to current views, the brain is both a computing and organic en-
tity. The research initiatives mentioned before see therefore the neurosciences as
sources of concepts relevant for the new, unconventional computing paradigms
envisioned. Hence, the formal concepts which were developed within the The-
oretical Neuroscience to describe and understand the brain as an information
processing system are of special relevance.

This paper is organized as follows. Section 2 reviews some key features of
brain organization (i.e. structure with function). It is followed by Section 3
1 http://www.research.ibm.com/autonomic
2 http://www.ukcrc.org.uk/grand challenges
3 http://www.organic-computing.org
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Fig. 1. Levels of brain organization and methods for its investigation. This figure relates
the resolution in space and time of various methods for the study of brain function
(right) to the scale at which neuronal structures can be identified (left). Adapted
from [4]. MEG=magnetoencephalography; EP=evoked potentials; fMRT=functional
magnetic resonance tomography; PET=positron emission tomography.

which discusses the different computational approaches developed in Theoretical
(Computational) Neuroscience. Questions raised there include the search for the
computational unit, the concept of modularity and the development of dynami-
cal systems approaches. We end in Section 4 with some conclusions concerning
the needs of a theory of analog, emergent computation.

2 Brain Organization and Methods for Investigation

Neuroscientific research is practiced at very different levels extending from mole-
cular biology of the cell up to the behavior of the organism. In the first line, natu-
rally, the neuroscientific disciplines (Neuroanatomy, -physiology, -chemistry and
-genetics) are involved, but also Psychology and Cognitive Science. Theoretical
Neurobiology (with its subdivisions Computational Neuroscience and Neurocom-
puting), Physics and Mathematics provide theoretical contributions (e.g. [2,3]).
The integration of the results gathered by the disciplines is expected to provide
insights in the mechanisms on which the functions of neurons and neural net-
works are based, and in the long run in those of cognition. The well-grounded
and efficient realization of this integration represents one of the greatest chal-
lenges of actual neurosciences. New techniques like patch clamp, multi-electrode
recording, electroencephalogram (EEG) and imaging methods such as mag-
netoenzephalography (MEG), positron emission tomography (PET) and func-
tional magnetic resonance tomography (fMRT, nuclear spin tomography) enable
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investigations on different system levels (Fig. 1), raising again the question of
how to integrate conceptionally the results.

The human brain has on the average a mass of 1.4 kg. According to different
estimations it contains 1011 − 1012 neurons which differ from other cells of the
organism by the pronounced variability of their shapes and sizes (Fig. 2). The in-
dividual morphologic characteristics of the neurons are important determinants
of neuronal function [5,6,7,8,9], and thus they affect the dynamic characteristics
of the neural network, to which they belong, either directly, or by specifying the
entire connectivity between the neurons. In neural systems the influences are mu-
tual, so that in general also the global network dynamics affect the connectivity
and the form of the individual constituent neurons [5,10].

Fig. 2. Examples of dendritic neurons. Dendrites exhibit typical shapes which are
used for classification of neurons. A. Purkinje cell from guinea pig cerebellum, B. a-
motoneuron from cat spinal chord, C. spiny neuron from rat neostriatum, D. Output
neuron from cat superior colliculus. Figures A.-C. from [11], D. from [12].

The specific functions of the brain are essentially based on the interactions
each of a large number of neurons by means of their synaptic connections. A
mammalian neuron supports between 104 and 105 synapses whose majority is
located on the dendrites. Estimations of the total number of synaptic connec-
tions in the human brain amount to 1015. Depending on the effect upon the
successor neurons connections are classified as excitatory and inhibitory. The
neurons of the cortex are usually assigned to two main categories: the pyramidal
cells with a portion of ca. 85%, and the stellate cells with ca. 15% [13]. Pyrami-
dal neurons often have long-range axons with excitatory synapses, and stellate
cells with an only locally branched axon often act in an inhibitory manner. The
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activation status of the pyramidal neurons possibly encodes the relevant infor-
mation, while the stellate cells raise the difference between center and surround
by their inhibitory influence on the local environment, i.e. by lateral inhibition.

On the basis of distribution, density and size of the neuron somata the cortex
can be divided in six layers (e.g. [14]). The cell bodies of the pyramidal cells
particularly are in the layers III–V, and their apical dendrites extend into the
upper layer I. The somata of the stellate cells are mainly in the middle layers III–
IV (see (Fig. 3). Efferent connections from the cortex to subcortical and other
structures are formed by the axons of the pyramidal cells in layer V; afferences
to the cortex mainly come from the thalamus.

Hubel and Wiesel’s landmark studies [15,16] of the visual system have led
to the assumption that information processing in the brain generally follows a
hierarchical principle. Important for the conceptional view on the function of
the brain is, however, that there is also a multitude of feedback connections or
‘back projections’, which e.g. in the geniculate body (CGL) by far outnumber
the forward connections. Nearly all brain regions influence themselves by the
existence of such closed signal loops [17]. This also applies to the function of
the individual neurons, which are involved in signal processing within an area
or a subsystem of the brain. Further operational principles are divergence and
convergence of the connections, i.e. a neuron and/or an area sends its signals
to many others, and it also receives signals from many other neurons and/or
areas. On the average, any two neurons in the cortex are connected by only
one other neuron (‘two degrees of separation’, cf. [18]). This structurally caused
functional proximity means in the language of information processing that the
brain is characterized through massive parallelism.

3 Computational Approaches

Theories of how the brain functions as an informational system are in different
ways related to the levels of brain organization. We can differentiate three gen-
eral conceptions : the algorithmic approach, the neural information processing
(neurocomputational) approach and the dynamical approach [19].

The algorithmic computation approach attempts to use the formal definition
of computation, originally proposed by Turing [20] in order to understand neural
computation. Although brains can be understood in some formal sense as Turing
machines, it is now generally accepted that this reveals nothing at all of how the
brain actually works [19]. Thus, Turing’s definition of computation cannot be
straightly applied (e.g. [21]).

The neurocomputational approach was launched in 1988 by Sejnowski, Koch
and Churchland [4]. By stressing the architecture of the brain itself Computa-
tional Neuroscience was defined by the explicit research aim of “explaining how
electrical and chemical signals are used in the brain to represent and process in-
formation”. In this approach, computation is understood as any form of process
in neuronal systems where information is transformed [22]. The ‘acid test’ for
this approach (not passed as yet) is to find a definition for transformation of
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Fig. 3. Scheme of a neuronal circuit in the cerebral cortex. Pyramidal neurons (P —
black triangles) receive inputs (either directly via afferent fibers, or from local neurons),
generate outputs, and interact with one another. Local neurons (black circles — various
types of stellate cells) may be excitatory (E — empty synapse symbols) or inhibitory (I
— black synapse symbols). Cortex layers are indicated on the left. Significant variations
in cell density, dendritic architecture, and synaptic arrangement enable a vast number
of computational possibilities.

information, such that not almost all natural systems count as computational
information processors [23,24].

The dynamical approach rests on concepts and theories from the sciences
(Mathematics, Physics, Chemistry and Biology), and particularly from (Non-
linear) Dynamical Systems Theory. It seeks to understand the brain in terms
of analog, rate-dependent processes and physics style models. The brain is con-
sidered as a large and complex continuous-time (often also continuous-space)
physical system that is described in terms of the dynamics of neural excitation
and inhibition.

3.1 Neurocomputational Concepts

While current neurocomputational concepts are of great diversity, most of them
are tightly linked to the algorithmic view. The algorithmic as well as the neu-
rocomputational approach attempt to explain properties of the nervous sys-
tem (e.g., object recognition) in terms of parts of the system (cardinal cells,
or ‘grandmother neurons’), in accordance with the decomposition principle of
(linear) Systems Theory. Models of this kind seek to understand on a detailed
level how synapses, single neurons, neural circuits and large populations process
information. If the information processing capacity of the brain is compared in
this way with that of an algorithmic computer, one is confronted with several
problems. In the first line, the units of computation are to be determined. The
identification of the computational elements, however, is highly controversial.
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As is generally known, McCulloch and Pitts in their now classical work [25] de-
fined the neuron as the basic computational unit, since they believed it were the
simplest nonlinear element.

Yet today it is obvious that (nonlinear) neuronal computation happens already
at subcellular scales (dendritic subunits, synaptic sites), possibly even in supra-
molecular structures in dendrites. [26,27,28]. Correspondingly, e.g. synapses as
computational units were analyzed in theoretical studies (e.g. [29]). But the
problem of the computational unit at these scales remains open [30].

Computational units are assigned to supracellular scales, too. Based on ideas
intimately related to the decomposability principle underlying the algorithmic
approach, the principle of the modular organization of the brain has been formu-
lated. According to this principle, the nervous system is composed of ‘building
blocks’ of repetitive structures. The idea became known as the hypothesis of the
columnar organization of the cerebral cortex; it was developed mainly after the
works of Mountcastle, Hubel and Wiesel, and Szenthágothai (for reviews, see
e.g. [31,32,33]).

Referring to and based on these works, the spectacular Blue Brain Project was
started very recently. According to self-advertisement, the “Blue Brain project
is the first comprehensive attempt to reverse-engineer the mammalian brain, in
order to understand brain function and dysfunction through detailed simula-
tions” [34]. The central role in this project play ‘cortical microcircuits’ which
have been suggested as modules computing basic functions. Indeed, impressive
progress has been made in developing computational models for defined ‘canon-
ical’ microcircuits, especially in the case of online computing on time-varying
input streams (see [35] and references therein).

It should be noted, however, that the concept of columnar organization has
been questioned by neurobiological experts. Reviewing new findings in different
species and cortical areas, it was concluded that the notion of a basic uniformity
in the neocortex, with respect to the density and types of neurons per column
is not valid for all species [36]. Other experts even more clearly state that it has
been impossible to find a canonical microcircuit corresponding to the cortical
column [37]. These authors reason that although the column is an attractive
idea both from neurobiological and computational point of view, it has failed as
an unifying principle for understanding cortical function.

3.2 Concepts from Dynamical Systems Theory

Inconsistencies between neurobiological facts and theoretical concepts are not
new in the history of Theoretical Neurobiology. In the case of the column con-
cept they demonstrate that the decomposition principle is possibly not suitable
to serve as exclusive guidance principle for the study of information processing
in the brain. While the principle of decomposability has a great number of ad-
vantages, for example just modularity, many problems in neuroscience seem not
decomposable this way. The reason is that brains (like all biological systems) are
inherently complex.
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An appropriate framework for the description of the behavior of complex
systems is represented by the attractor concept of nonlinear dynamical systems
theory. Attractors may be informally defined as states of activity toward which a
system settles (relaxes) over time. The activity in a neural system is described by
a trajectory in the high-dimensional state space, say RN where N is the number
of neurons. Since this state (or phase) space is continuous, the neural system
performs an analog computation [38]. In this framework, a certain parameter
setting (the initial condition) is interpreted as input, the attractor to which
the system’s state flows as the output, and the flow itself as the process of
computation. The criteria of computational complexity developed for digital
algorithms are not directly applicable to ‘analog algorithms’. Appropriate criteria
of ‘dynamic complexity’ have been suggested: the time of convergence to an
attractor within defined error bounds, the degree of stability of the attractor, the
pattern of convergence (asymptotic, or oscillatory), type of the attractor (static,
periodic, chaotic, stochastic), etc. Important building blocks for a non-standard
theory of computation in continuous space and time have been developed by
Siegelmann [39] by relating the dynamical complexity of neural networks with
usual computational complexity.

While standard artificial neural networks have only point attractors, dynam-
ical systems theory easily handles also cases where the output is a limit cycle or
a chaotic attractor. The respective systems, however, have not been considered
in computational terms as yet. This holds also for the so-called active, excitable
or reaction-diffusion media, of which continuous neural fields are instances (see
[40]). These media — spatially extended continua — exhibit a variety of spatio-
temporal phenomena. Circular waves, spiral waves, and localized mobile exci-
tations (‘bumps’) are the most familiar examples. The challenge is to find out
how these phenomena can be used to perform useful computations. Generally,
data and results are given by spatial defects and information processing is im-
plemented via spreading and interaction of phase or diffusive waves. In several
studies it was shown that these media have real capabilities to solve problems
of Computational and Cognitive Neuroscience (formation of working memory,
preparation and control of saccadic eye movements, emergence of hallucinations
under the influence of drugs or the like, ‘near-to-death’ experiences, for overview
see e.g. [41,42] and the references therein) and Artificial Intelligence (navigation
of autonomous agents, image processing and recognition, e.g. [43,44]).

4 Conclusions

During the last decade, useful insights on structural, functional and computa-
tional aspects of brain networks have been obtained employing network theory
[45,46]. From the many investigations in this area (see e.g. [47] for review) we
know that the complexity of neural networks is due not only to their size (number
of neurons) but also to the interaction of its connection topology and dynamics
(the activity of the individual neurons), which gives rise to global states and
emergent behaviors.
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Several attempts were made to substantiate the general idea of computational
systems which acquire emergent capabilities during a process of self-organization.
The holistic properties of self-organizing systems represent a central intricacy in
this respect. There is no ‘natural’ way to decompose such a system. If a decompo-
sition is made anyhow (e.g. based on anatomical information only), subsystems
should at first have a certain behavioral potential (i.e. multi-functionality). Ideas
of the unfolding of multi-functionality were subsumed by Shimizu [48] under the
term relational system. Relational systems obtain their functional properties
only during mutual interaction with the other elements of the system while on
its part the interactions of the elements depend on the evolving properties of
the elements. Thus, an iterative process takes place which is based on princi-
ples of self-reference and self-organization. The properties of the system as a
whole emerge in such a way that it is able to cope with perturbations from the
environment.

An attempt to formalize this concept was undertaken recently [49] using
‘chaotic neuromodules’. The results obtained from applications to evolutionary
robotics demonstrate the multi-functional properties of coupled chaotic neuro-
modules but also the limitations of the linear couplings used [50].

A general conclusion to be drawn is that a great deal of progress in Theo-
retical Neuroscience will depend on tools and concepts made available through
the dynamical systems approach to computing. Steps to overcome the existing
theoretical restrictions in this area are essential not only for solving the problems
in the Neurosciences but also to reach the goals of Unconventional Computing.
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Abstract. In this work, we first present a view of the philosophic study
of Intelligent Behavior in a wide sense. We expose some key ideas to
understand Intelligence and Rationality in an operational way based on
the notions of Prediction and Randomness. In particular, we hypothesize
that unpredictability is the key concept of Intelligence while not random-
ness is the key concept of Rationality. Next we undertake the study of
Emotional Behavior discussing the basic principle of emotional attach-
ment which is modeled by means of an operational definition of the Self.
We hypothesize that the most basic principles of the Emotional Behavior
emerges from a sort of ego-centric mechanism.

1 Introduction

One of the mayor challenges in present and future intelligent systems research is
to describe the mechanisms that can lead to behave, act, and feel like Humans
or living beings. This field of research has inspired the creation of many concepts
and research lines such as Bio-Inspired systems, Bio-Mimetic approaches, Bio-
Robotics, the Animat notion and so on.

Anticipatory Behavior could be defined as every kind of behavior which is
influenced by any kind of: knowledge, expectation, prediction, believes or intu-
ition about the future. But future can be expressed in many terms, for instance,
future rewards, future states, future perceptions, future actions, etc. In fact, it
is not clear at which level of the animal evolution the concept or at least any
vague notion of future emerged. Humans handle a very sophisticated concept
of time including past, present and future, but the interplay between cultural
evolution and the human concept of time is not well known. Then, claiming
that animals like rats, birds, dogs, etc. have a sophisticated notion of future is
a hard to maintain hypothesis, also the most common of human behavior does
not depend strictly on temporal analytical planning. Taking that into account,
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any model predictive behavior with the aim to be of high applicability as a
general model can not be defined in terms of the very refined cultural human
notion of past, present and future. At this time there is a continuously growing
body of works explicitly about Anticipatory Behavior with works ranging from
initial models [1,2] to most current focused studies [3]. Anticipation as a predic-
tive process plays a mayor role in any Intelligent Behavior, i.e. for taking good
decisions we need to predict in some sense the consequences of such decisions.

In the first part of this work Anticipatory Behavior is addressed indirectly
trough the study of Intelligence and Rationality. We will see in particular that
there is no possibility for an agent to be truly rational or intelligent without
a basic anticipatory behavior or in a more general sense a predictive process.
In particular we hypothesize that unpredictability is the key concept of Intelli-
gence while not randomness is the key concept of Rationality. But, what does
Rationality means? What Intelligence is? Which is the interrelation between
Adaptiveness, Rationality and Intelligence?

In the second part of this work, we undertake the study of Emotional Behav-
ior discussing the basic principle of emotional attachment. The main challenge
addressed by our research lines is how to express a mechanics of the Emotional
Behavior. We hypothesize that such a mechanism of emotions is based on the
notion of the Self and that this notion is the basis of the Emotional Attachment
Behavior, that is, the root of any Emotional Behavior emerges from a sort of
ego-centric mechanism.

2 Rationality

One of the first characteristics of the human behavior that researchers in Artifi-
cial Intelligence have tried to emulate was the Rationality. However, what does
rationality means? Without entering philosophical depths we can say simply that
rationality is about choices. In economics the notion of rationality refers to the
fact that an economic agent must behave strictly and permanently maximizing
the total income in an economical process.

More close to the Animat approach, we can say that rationality is about action
selection and decision making. In [4] there is a relevant list of characteristics of
rational behavior in wide sense:

1. It is goal oriented.
2. It exploits opportunities.
3. Looks ahead.
4. It is highly adaptive to unpredictable and changing situations.
5. It is able to realize interacting and conflicting goals.
6. There is a graceful degradation of performance when certain components fail, all

of this must be achieved with limited resources and information (e.g. limited ex-
perience and knowledge).

Following this line, we encourage ourselves to propose a descriptive and op-
erational definition of rationality.
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Definition 1. Rationality is a constrainment of thought and consequently elim-
inates some freedom. This constrainment or loss of freedom is the result of an
evolutionary process by means of natural selection which is oriented to select an
order the thought (information processing) in such a way that the principles of
cause and effect both innate and learned be satisfied in such a manner that an
Animat behaves with at least a conscious indication (justification) that its judg-
ments and its derived actions are not random events or has no causal relation
with the consequences of its actions or judgments.

It can be seen from this definition that there are some factors that contribute to
the degree of rationality, for instance, the vigilance of the consciousness of living
organism is gradual and fluctuates between diverse species indeed in the same
individual under different situations.

Another gradual factor of rationality derives from the statistical nature of
the definition. Following the theory of the “dynamic core” and the theory of
“Neuronal Group Selection” [5,6], the fact of the clear differentiation of the
randomness depends directly on the entropy of the local micro-system of states
associated to the precise contextual moment where the thought occurs, that is,
in a specialized neuronal group.

Then, the learning and the knowledge repertoire are also important factors
since they allow storing causal relations that allows to decide on the degree of
randomness of one operation (behavior and action selection), thus, the greater
amount of cause and effect relations the greater potential rationality could have
the Animat, of this form, the degree of consciousness, the knowledge repertoire
and the entropy of the context determines the degree of rationality of an indi-
vidual.

This definition is absolutely more general than the definition in Economics
science in the sense that an agent can behave rationally indeed when it is con-
tinually losing money.

3 Is Water Intelligent?

The question although speaks exclusively about intelligence, as we will se next,
is directly related to adaptive behavior, predictive behavior, learning and in
general any non inert behavior (Active Behavior). In other words, can water
exhibit Intelligence? Is to behave like water the ultimate philosophy to construct
the next generation of intelligent systems?

Of course, we can say trivially yes or not, but why? If we get a landscape
and we add some water at the top of a mountain, the water goes from the most
highest zone to the most lower zone with complete effectiveness and do this
“feat” again and again without any mistake in the selection of the more natural
(perhaps optimal?) path. This kind of behavior is precisely the one for which
we have programmed our ‘Intelligent Systems’ since the last 50 years with some
degree of success, note that this can easily be reformulated as an optimization
process, that is, to search for a minimum over an error surface. Water is a source
of inspiration in part due to some special features. First, all living organisms in
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the Earth are based in the Water. The Water has been present in the history
of science as a source of discovering, we can remember the famous “eureka”.
Also the firsts notions of waves propagation where discovered observing water
waves and it is very hard to rebate that the study of waves has been one of
the most fruitful scientific studies with a lot of theoretical results and practical
applications.

It is doubtless that water is intrinsically adaptive, it is, -to quote an example
in the picture- as Bruce Lee claims: “formless and shapeless, if you put water
into a tea pot it becomes the tea pot”. Maybe, this adaptive intrinsic capability
of water and the fact that it is a universal solvent, is the reason that makes water
the base of all living organisms we know indeed that we expect to discover in
other planets. Our intention is to determine if these intrinsic features of water
are enough for constructing really intelligent systems.

Traditionally the dominant approach in Artificial Intelligence was symbolic
reasoning and logic. Even in Psychology Intelligence has been highly correlated
to the capability of abstraction and logical reasoning, not without sufficient
critics to this approach which has lead to a measure that has been called even
Intelligence Quotient (IQ).

One of the most relevant critics of past approaches to Artificial Intelligence
are the works of Brooks and the reactive paradigm of intelligent robotics (in
detriment of the deliberative one) with sounded papers like: “Elephants Don’t
Play Chess!”, “Intelligence Without Reason” and “Intelligence Without Repre-
sentation” [7,8,9]. Only reading the titles we can see the clear difference between
past approaches an his claims. The Reactive paradigm has changed the way of
doing Robotics. It is a model where the robots directly react to some stimu-
lus from its environment producing a sort of behavior, that is, without reason
and representation. Before the age of Reactive Robotics the robot programming
tasks where a sort of hard programming techniques mixed with a lot of planning
and deliberative rules. After the introduction of the concept of Reactive Behav-
ior, the field of autonomous robotics has gained a great amount of interest and
powerful results.

3.1 Information Quantity

We know by the information theory of Shannon [10,11] that the measurement of
the information that a message or a system contains can be interpreted as the
measurement of the unexpected, unpredictable and in some sense the originality
that the message contains. He defined a measure of information content called
“self-information” or surprisal of a message (m):

I(m) = − log p(m), (1)

where p(m) = Pr(M = m) is the probability that message m is chosen from all
possible choices in the message space M .

Eq. 1 weights messages with lower probabilities higher in contributing to the
overall value of I(m). In other words, infrequently occurring messages are in
some sense more valuable.
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In this way, if our message (m) is interpreted as the action (a) (behavior)
taken by an agent, we can measure the amount of information in a, that is,
how unexpected, unpredictable and original is the action of the agent after the
stimulus, this takes us to a measurement of creativity, intelligence and finally
active behavior.

3.2 Goal Oriented Active Behavior -Intelligence-

When studying the concept of information quantity and from a behaviorist point
of view, we can raise a measurement of the goal oriented active behavior of an
agent in a more natural way, measuring the adaptive-creative capabilities of its
behavior.

Therefore, we can define the Amount of Active Behavior of an agent in a
certain interval (t) of time to fulfill a previously determined goal (J) in a given
situation x, such as:

Definition 2 (Amount of Active Behavior). The amount of information in
its actions weighted by the effectiveness of its goal oriented actions, that is: the
unexpected, unpredictable and originality weighted by the degree of attainment of
its goals.

Eq. 2 shows a proposed measure of Active Behavior Quantity χ(a) of an action at.

χt(at) = I(at) × ∂Jt(x)
∂a

, (2)

where Jt(x) is the performance index of the goal attainment at time t at situation
(x) and I(at) is the entropy or information quantity of the action at.
That is, given two agents, will show evidence of more Active Behavior the one
that whose product between effectiveness and the information quantity of its
actions be greater. An immediate consequence of this definition is that:

Proposition 1. A completely predictable action does not demonstrate much
Active Behavior still being very effective.

Corollary 1. Then an effective action not necessarily demonstrates Goal Ori-
ented Active Behavior nor Intelligence since it can be simply the most probable
action in the system.

The form to measure Goal Oriented Active Behavior is indeed to measure its
demonstration, that is, the originality weighted by its effectiveness.
Thus, we ca reformulate the original question in this way:

Is water really intelligent since it always knows which path must follow with
an effectiveness of 100%?

The answer is NO, water is not intelligent since it is not original, that is,
its actions does not show intelligence because its actions are 100% predictable
although are 100% effective.

This formulation is completely related to the ethological and psychological
definition of Protean Behavior and Machiavellian Intelligence. Protean Behavior
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is a concept that defines a class of behavior mainly characterized by adaptively
unpredictable actions. Chance became one of the first biologists to recognize the
adaptive significance of unpredictable behavior in animals next Humphries and
Driver termed this sort of adaptively unpredictable behavior “protean behavior”
after the mythical Greek river-god Proteus who eluded capture by continually
unpredictably changing form (again water was a source of inspiration).

4 The Mechanics of Emotions

The challenge addressed is how can we express a mechanics of emotions?
We hypothesize that such a mechanism of emotion is based on the notion of

Self and that this notion is the basis of the Emotional Attachment behavior, of
course the universe of the emotions is huge enough to deal with it, so we propose
a starting point which is the study of the Emotional Attachment.

In 1905, Albert Einstein introduced its celebrated Theory of Relativity show-
ing that for different reference frames the reality as stated in classical physics
could be different if the particularities of the different observers are not taken
into account, thus, Einstein’s Relativity was the first contribution to the study of
the private and subjective perception of the world by different reference frames
in a rigorous sense. In this work the concept of reference frame (RF) will be the
basis of the mechanical formulation of the notion of Self. In order to address
such a mechanical formulation of Emotional Attachment we need to describe
a mechanical formulation of the agent’s world plus a sort of mechanism that
operates on the agent to produce the desired behavior in a ‘natural’ way, that
is, mechanistically.

Let us suppose that an organism has certain perceptual system and this is
receiving information continuously from the environment. We claim that the
organism is in equilibrium with its environment, that is, for instance it is hidden
or it is not in danger, when the change in the input of its perceptual system is
constant or very smooth.

The relation between self-safety, survivor and constancy of the input sensa-
tions comes from an intuitive observation on adaptation and the theory of evo-
lution. We will call to this principle the “the Principle of Justified Persistence”.
This principle asserts that:

Proposition 2 (Principle of Justified Persistence). If a living organism is
alive in some determined state of its environment, the maximum prior probability
to stay alive is obtained when the state of the environment is constant or the
change in such state is highly smooth.

In simple words, if you are alive then don’t do anything! Indeed if you have a
perceptual system and detect some change in the environment try to revert that
change as soon as possible. Thus, it is very reasonable that following this basic
principle, behaviors like homeostasis has emerged by means of natural selection.

In Fig. 1 we can see how this simple principle can be directly applied to the
task of controlling a simple robot.
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Fig. 1. The Principle of Justified Persistence applied to a mobile robot navigation
problem

In this experiment there is nothing in the control program that tells the robot
to keep away from obstacles as is the case in most control schemes like the
artificial potential field nor any explicit wall following subprogram, indeed we
can see that the robot uses the obstacles and walls as its source of constancy. In
this model the robot seeks naturally constant signals and tries to maintain this
signal as much constant as possible. Thus wall following and tangential obstacle
voidance can be explained as an emergent behaviors that are consequence of the
Principle of Justified Persistence.

Hence for a single certain system be able to adapt it needs a constant, oth-
erwise, the organism will not be able to adapt because cannot converge towards
the nothing. The organism that interacts with its environment by means of its
perceptual system needs a “ground” on which to walk, in strict and metaphoric
sense. With these basic notions we can promulgate a first law of ego-centric
systems:

Law 1. An organism that is in a steady-state and without internal or external
forces that cause disturbances in its environment will remain in a steady-state,
that is, without changing its behavior.

This idea, is exactly equivalent in form to the inertial law of Newton which
defines the natural behavior of an inert particle, indeed it is a proclamation of
what is natural and what not. Up to date, science is enclosed in this definition
of Nature. Nature must be reduced and explained by means of inert particles.
But why are we talking about inert particles? And what is the direct relation
of inert particles to Robotics? This relation is direct, pure reactive robots are
inert particles that react to the stimulus of its environments like any Newtonian
particle. In this sense, we can define an autonomous robot as an inertial observer
and its systems for perception, reasoning and action oriented to maximize the
vital function of the observer.

The vital function is a concept to represent the underlying principles in the
biological behavior. The speculations in the search of the principle of the life
have been long. Walter Cannon in the year of 1932 [12] tried to come near to the
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idea with the introduction of the term Homeostasis and a study on this process
in the biological behavior. The principle of Homeostasis or resistance to change
would allow the organisms the conservation of the internal steady-state and
stay alive. Practically all applications of the homeostatic principle are related
to control theory in self-regulatory behaviors. There is no publication in the
scientific literature that relates directly homeostatic behavior with environment
modification. Environment modification is one of the most powerful behaviors
that can use an agent to reach its goals. The ability of a biological organism to
modify its environment is one of the main evolutive advantages in survivor but
the field of robotics has paid more attention to adaptiveness which is the ability
to modify the “internal” organization of the agent in detriment of the “external”
environment modification behavior.

In recent years the homeostasis as proposed by Cannon has been criticized
in main lines by the tendency of the systems to paralyze and some divergences
in the field of medicine. In our personal opinion, this criticism comes from the
fact of a misunderstanding of the proposed principle, for instance, usually the
homeostasis is interpreted like the resistance to change, but to what change?,
The internal change? Where the internal and external boundary of the agent is?

If we define an agent like a closed system isolated from the environment,
that is, the environment is not a part of the agent then the agent becomes
immediately an inert particle that resists changing as any other inert particle
from the point of view of the Newtonian mechanics and it is not able to adapt
in any way. On the other hand, if the agent is so plastic that doesn’t offer
any resistance to change the system ends disintegrating itself since it will not
have internal cohesion and that would be equivalent to affirm that agent and
environment are completely undifferentiated. Then must exists an equilibrium
point between the mere resistance to change or inertia and the plasticity to
adapt to the environment and the changes occurring on it, thus, we claim for
a model of agent where the agent itself is formed by an environment, that is, a
kind of field around a reference frame. This field will also be affected by certain
“intensity of field” which is modified according to the events experienced by the
agent based on relevant sensory information.

Thus this process is a sort of mechanism of environmental formation that,
on one hand, acts like a modeling function where the agent differentiates itself
from the outer world and on the other hand, it acquires “conscience” about itself
(self-recognition). Thus the agent is differentiated gradually from the environ-
ment and which determines the intensity of field is the degree of constancy of a
sensation.

We can view this process with the following introspection.
-If there is something in the life of each of us, a universal invariant, universal

constant or universal reference frame, it is the Self. The Self is the invariant
set of perceptions which remains constant throughout all our life, and in the
measure in which an “object” appeared more times, that object is more near to
the Self, thus, my body has accompanied me during my years and I am able to
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perceive that it has changed because I can compare it with other things that have
not changed, such as, the Self or something that is more near to the Self, and,
I can recognize it as my body because its degree of constancy or change in time
has been smooth, thus, the Self is the reference frame of the perceptible universe.-

In the same way, will be observations that ones by frequency, others by intensity
and others by relevance, will be bound to the environment with certain distance
or difference with respect to the agent’s reference frame. Of this form, the agent
perceives what it is different from its reference frame adjusted gradually to the
intensity field. It is important to note that the inertial law imposes a physical
restriction to the perception of an inertial observer.

When we enunciate the inertial law we must indicate with respect to who
or what is the movement of the related particle (a reference frame). Such an
observer is called an inertial observer and the reference frame used by itself
is called inertial reference system. An immediate consequence of the inertial
law is that an inertial observer recognizes that a particle is not free, that is,
that interacts with another particles when it observes that the speed or the
momentum of the particle broke its constancy.

Of which we concluded that the only possible observations are those objects
that have a difference with respect to the inertial reference frame of the observer.
In case of an adaptive observer as it is the case that we are interested, the effect
on the perception is that the observer would be affected by the gradual loss
of discrimination on those events that have been part of the reference frame,
thus, if the agent has adapted to certain signal or event, this event will tend to
undifferentiate of the reference frame and start to gradually loss influence in its
behavior, whereas the abrupt new events will be easily detected. These objects
that gradually becomes part of the reference frame (Self) are precisely the objects
for which the agent “feel” Emotional Attachment. Then, the Agent which has
been defined as an environment half inertial half adaptive will tend to keep in
a steady state such environment following the Principle of Justified Persistence,
and the disturbances that occurs in such environment must be repaired either
by means of internal accommodation or adaptation to the new state or by the
possibility of the agent to modify its environment. Of this form, we can explain
emergent behaviors like the protection of the prole, the emotional attachment
and the environment-repairing behavior.

ε(x) =
1

∂P (x)
∂t

, (3)

where x is an object in the environment, ε(x) is the emotional attachment for
x which is the result of the inverse partial derivative ∂P (x) of the perceptual
function P for x with respect to time dimension ∂t.

5 Conclusions and Further Work

We have exposed some key ideas to understand Intelligence and Rationality in an
operational way. Thus, new operational definitions of Rationality and Intelligence
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has been presented concluding with a formulation of what we call Active Goal
Oriented Behavior.

Also we have presented a study about Emotional Behavior discussing the
basic principle of Emotional Attachment which was modeled by means of an
operational definition of the Self using an introspection. We have presented our
hypothesis that asserts that the most basic principles of the Emotions emerge
from a sort of ego-centric mechanism. That has lead us into a novel interpreta-
tion of the interrelation agent/environment as an adaptive reference frame. In
Addition, an experimental result with a simulated robot has been presented in
order to appreciate the proposed Principle of Justified Persistence.

Finally the integration of all of this work points to a formulation of a very
complex kind of behavior which must involve an Emotional-Unpredictable-Not
Random-Effective Goal Oriented action selection mechanism.
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Raúl Arrabales Moreno, Agapito Ledezma Espino,
and Araceli Sanchis de Miguel

Departamento de Informática,
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Abstract. This work aims to describe the application of a novel ma-
chine consciousness model to a particular problem of unknown environ-
ment exploration. This relatively simple problem is analyzed from the
point of view of the possible benefits that cognitive capabilities like at-
tention, environment awareness and emotional learning can offer. The
model we have developed integrates these concepts into a situated agent
control framework, whose first version is being tested in an advanced ro-
botics simulator. The implementation of the relationships and synergies
between the different cognitive functionalities of consciousness in the do-
main of autonomous robotics is also discussed.

Keywords: Cognitive Modeling, Consciousness, Attention, Emotions,
Exploration.

1 Introduction

Machine Consciousness could be considered as the field of Artificial Intelligence
specifically related to the production of conscious processes in engineered devices
(hardware and software). Undoubtedly, a multidisciplinary approach is necessary
in order to approach such an intricate paradigm. Latest advances and contribu-
tions from psychology and philosophy in the scientific study of consciousness have
lead computer scientist community to reconsider the possibility of engineering
machine consciousness [1].

Although the phenomenal aspects of consciousness are still especially con-
troversial [2][3], we argue that a purely functional approach can be successfully
applied in the domain of autonomous robot control. In this work we present a
machine consciousness model designed to command an autonomous robot, and
the functionality of this model as a solution of the exploration problem. The
phenomenal dimension, represented by the question ‘Is the robot conscious of
the exploration task he is doing? ’ is deliberately neglected at this stage of our
research.
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In section two we introduce our model and the theories of consciousness in
which it is based upon. Section three covers the software architecture where we
have integrated the machine consciousness model. In section four we discuss the
detailed design and interaction between model components. Finally, we conclude
describing salient preliminary results.

2 Evading the Cartesian Theater

Materialist theories of consciousness are not supposed to rely on any link to
the soul like the one located by Descartes in the pineal gland [4]. However, the
so-called Cartesian materialism associates conscious experience with a concrete
place in the brain. The Cartesian theater1 refers to this materialistic homunculus,
which would play the role of the director of the brain. In contrast to the Cartesian
theater metaphor, there exist other accounts for consciousness based on the idea
of interim coalitions of specialized processors running concurrently in our brains.
These processors or agents are continuously collaborating and competing for the
light of consciousness.

Our model is mainly based on two theories of consciousness: the Global
Workspace Theory (GWT) [6] and the Multiple Draft Model (MDM) [2]. GWT
depicts a theater where the processors compete for appearing in the scene spot-
light, which is the attention focus. Aggregation of processors is produced by the
application of contexts. Behind the scenes, context criteria are defined and co-
ordinated (unconsciously) by the director. Context formation mechanisms select
the event in the stage that will be illuminated by the spotlight. The MDM adopts
the editorial review process metaphor, where coalitions of processors suffer re-
iterative edition and review until they are presented as the official published
conscious content of the mind.

Taking the main ideas from the described metaphors of the mind, we have
built a cognitive model of consciousness called CERA (Conscious and Emo-
tional Reasoning Architecture) [7]. Key functionalities of the model can be di-
rectly mapped to functional aspects of both GWT and MDM. A layered and
modular scheme has been defined, where layers represent levels of control and
modules represent cognitive specialized functions. Modules are situated within
layers, CERA core layer encloses the key functional modules identified in the
mentioned theories of consciousness. This set of functional modules is designed
to support the workflows described by consciousness metaphors. Initial ver-
sion of CERA core layer comprises eight modules: attention, status assessment,
global search, preconscious management, contextualization, sensory prediction,
memory management, and self-coordination. In this framework, there is no cen-
tral module representing consciousness. Consciousness is supposed to emerge
from the interaction between modules and their management of specialized
processors.
1 The term Cartesian theater was coined by Dennett to define (and reject) the idea

of a central point of the brain where all sensory data is projected and conscious
experience is produced [5].
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3 Software Architecture

CERA has been originally designed to be applied to the domain of autonomous
robotics. Therefore, its three layers correspond to different levels of autonomous
control. The external layer manages physical robot machinery, and has to be
adapted to the particular robot and onboard sensors and actuators being used.
Middle layer is called instantiation layer as it encloses the problem-specific com-
ponents. In the case of unknown environment exploration, instantiation layer
contains the map production primitives and robot basic ‘innate’ behaviors for
exploring. Finally, the inner layer contains the mentioned general purpose cog-
nitive functions of consciousness (Fig. 1).

Fig. 1. In the left diagram solid lines represent CERA Core modules. Dashed lines
represent CERA instantiation layer (domain-specific modules). Dotted lines represent
CERA physical layer. Right diagrams illustrates CERA layered design and next action
selection contributions.

Robot behavior is determined by a combination of the three level goals. At
the physical level, the integrity of robot hardware is the highest priority (e.g.
avoid collisions). Mission goals, unknown environment exploration in our case,
are managed at the middle level. The meta-goals applied at the core level are
related to the emotional dimension of the model of consciousness as explained
in the next section.

In order to develop a flexible framework for experimentation with both sim-
ulated and real robots, we have integrated CERA into the Microsoft Robotics
Studio (MSRS) platform [8]. A key component of MSRS is the Concurrency
and Coordination Runtime (CCR) [9], which we use for asynchronous program-
ming and unconscious processors concurrency management. A managed high-
performance thread pool dispatches specialized processors tasks. Thread dis-
patching and asynchronous I/O operations follow diverse coordination patterns
as required by CERA core modules.
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MSRS is based on a light-weight distributed services-oriented architecture. A
MSRS node run a set of services, and nodes can be installed in different ma-
chines. Communication and coordination between services is performed using
the Decentralized Software Services Protocol (DSSP) [10]. The adaptation of
CERA to this environment is the role of CRANIUM (Cognitive Robotics Archi-
tecture Neurologically Inspired Underlying Manager). CRANIUM is a wrapper
for CERA that provides DSSP services creation and CCR parallel coordination
patterns. Basically, CRANIUM is the interface for the creation of unconscious
specialized processors and the management of their interactions. Like in a hu-
man brain, specialized regions of the brain perform concrete tasks concurrently,
and emerging coordination is given by the neural connections between these ar-
eas (global access hypothesis) [11]. While CRANIUM provides the underlying
neural-like mechanisms, CERA uses these services to produce the integrative
function of consciousness, where only one (conscious) content can prevail at any
given time.

4 Designing Robot Consciousness

A robotic application developed using MSRS is basically an orchestration of
input and output between a set of services. CRANIUM provides a model to
create the kind of services required by a cognitive robotics architecture like
CERA. CRANIUM services represent the interface to unconscious processors
like sensor preprocessors and actuator controllers. CRANIUM also defines the
communication primitives between the processes that perform robot functions.

For our preliminary experiments we are using both simulated and real Pioneer
P3 DX robots equipped with front and rear bumper arrays and a ring of eight
forward ultrasonic transducer sensors (range-finding sonar) (Fig. 2). CRANIUM
defines services for acquiring data from bumpers and sonar as well as command-
ing the differential drive motor system. Equivalent services are available for both
real and simulated sensors and actuators.

Fig. 2. Simulated and real Pioneer P3 DX robots
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4.1 Physical Layer

CERA Physical Layer subscribes to sensors notifications using CRANIUM. Every
time a sensor changes its state, the asynchronous operation is managed by a CERA
handler. The process of acquiring a sensor state change corresponds to a mini-
mal perceivable event for the robot. Following Aleksander and Dunmall notation
for axioms of neuroconsciousness [12], where A is the agent (the P3 DX robot in
our case) and S the sensory-accessible world, these minimal percepts δSj are the
atomic information acquired by sensor handlers. Therefore, these CERA handlers
build an internal representation of the percept, called N(δSj). This perception
process is twofold, as two differentiable pieces of information are obtained: sensed
object or event and its relative position in the world. In a two dimensional world,
j has two spatial dimensions, and (x, y) = (0, 0) represents the robot reference
system (his subjective point of view).

Measurement of j is provided by each sensor differently. For instance, P3 DX
bumper arrays consist of five points of sensing. Bump panels are at angles around
the robot (Fig. 3). In this case, j is calculated depending on the bumper panel
being pressed.

Fig. 3. P3 DX front bumper array consists of five bump panels at angles -52◦, -19◦, 0◦,
19◦and 52◦to front of the robot. CERA bumper handler detects which bump panels
are pressed and assigns values for every j accordingly. The resulting N(δSj) represent
a physical obstacle at the relative location j.

As bump panels are a fixed part of the robot body and their activation is on
contact, the j value is always the same for each bump panel. However, other
sort of sensors would have to calculate relative position of the percept based
on its own position or orientation. Like in natural nervous systems, all CERA
handlers have to provide the ability to locate the source of the object or event
being perceived.

The outputs from sensor handlers are combined into more complex percepts
by sensor preprocessors. These preprocessors play the role of specialized group
of neurons in charge of unconsciously detecting concrete features or patterns in
perceived data. For instance, mammals visual system has specialized neural cir-
cuitry for recognizing vertical symmetry, motion, depth, color or shape [13,14].
Analogously, CERA sensor preprocessors provide the robot with feature extrac-
tion and recognition mechanisms appropriate for its environment. Some of the
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CERA preprocessors that have been already implemented include wall detection
and sonar invisible object detection (objects detected by bumper collisions but
not detected by sonar or laser range finder).

In addition to sensor handlers and sensor preprocessors, CERA physical layer
also contains unconscious processors related to behavior. Robot actuator con-
trollers are defined as per CRANIUM interface to physical P3 DX robot. P3 DX
is equipped with two motors (each wheel is connected to its own motor) that
contain 500-tick encoders, forming a differential drive platform, where a third
unpowered castor wheel provides balance. Initially, three basic actions have been
implemented in CERA: stop, move forward, and turn. Move forward operation
takes a motor power level for both wheels, and turn operation uses two power
levels to apply to each motor in different directions. Thanks to CRANIUM, all
the operations triggered by actuator controllers are executed in the context of
the CCR dispatcher.

Basic actions are defined as δBi, where i is the referent indicating the di-
rection of the movement. Following the same notation as used for percepts, the
robot representation for basic actions is N(δBi), and N(B) corresponds to robot
behavior. The composition of higher level behaviors in terms of physical basic
actions is done at the instantiation layer under the coordination of CERA core
layer.

Goals at this level can be seen as instincts, and more specifically as survival
instincts. Basic goals are defined as a relation between perceptions and actions
in the physical layer. In terms of our P3 DX survival a small set of basic goals,
like avoiding collisions, have been defined. However, as explained below, higher
layers can send inhibition messages that prevent physical layer goals to be ac-
complished.

4.2 Instantiation Layer

CERA instantiation layer makes use of sensor preprocessors in order to build a
mission-specific representation of the world. This layer contains unconscious mis-
sion preprocessors, which are designed to recognize mission related objects and
events using the perception information obtained in the physical layer. Wall seg-
ments and obstacles perceived by sensor preprocessors are internally combined
in order to detect corridors or rooms. As percepts coming from the physical layer
are j indexed, mission related percepts are built as M(S), a partial description
of the sensory accessible world S, where:

N(S) = ∪jN(δSj)
M(S) ⊂ N(S)

N(S) is the entire representation of the world built by the robot, while M(S)
could be any subset of N(S). In this case, the N(δSj) components of a concrete
set M(S) are related due to their source location j.

In order to achieve the primary mission goal defined for the present work,
unknown environment exploration, a simple two dimensional map representation
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Table 1. Goal definition for a single mission (exploration). Layer 0, 1, and 2 refer to
physical, instantiation, and core layers respectively. Execution time is discretized in
steps, updates refer to N(S) representation updates, and mismatches refer to failures
to confirm a past percept, i.e. finding an obstacle where nothing was detected the last
time the area was explored. E represents Emotion and n is the number of emotions
being considered. Function Energy calculates the strength of a given emotion.

Goal Layer Description Evaluation

G00 0 Wander safely Eval(G00) = (steps − collisions)/steps
G10 1 Map the environment Eval(G10) = updates/steps
G11 1 Confirm created map Eval(G11) = (updates − mismatches)/steps
G20 2 Positive emotional state Eval(G20) =

�
n Energy(En)

has been chosen initially. As, for the time being, this is the only aspect of the
world that we want the robot to be aware of, this map is actually N(S). The robot
keeps this map updated as he explores the world, mapping current perception
of walls and obstacles into its two dimensional N(S).

Similarly to percept aggregation, instantiation layer behaviors (called mission
behaviors) are composed of the N(δBi) defined in the physical layer. Mission
behaviors are the M(Bi) (being M(B) ⊂ N(B)) that better fit mission goals
needs. In terms of exploration, different wandering behaviors have been defined in
the form of unconscious processors. These M(Bi) compete for selection according
to CERA Core layer cognitive rules.

4.3 Core Layer

CERA Core layer can be seen as a control center orchestrating the unconscious
processor resources available in lower layers. The cognitive model implemented in
this layer is intended to be domain independent, as all problem-specific represen-
tations are allocated in the instantiation layer. The general purpose functionality
modules available in the core layer operate based on the basic percepts and ac-
tions from lower layers. The functionality of CERA Core modules is illustrated
below applying the exploration problem.

Attention module is in charge of directing both perception and action. In order
to be successful, the robot has to direct its attention to the fulfillment of mission
goals, which can be recognized as full or partial solution of the specific problem
being tackled. However, CERA design does not follow this strategy directly.
Instead of taking mission goals as the drivers for the attentional focus, the meta-
goals are considered. Meta-goals are related to the emotional state of the robot,
and provide the means to have a general attention mechanism able to deal with
multiple missions or different goals of the same mission. The definition of meta-
goals characterizes the robot ‘personality’. Initially, we have just considered one
broad meta-goal: keeping a positive emotional state (Table 1).

Attention module calculates i referents for possible next M(Bi) behaviors. In
order to determine which M(Bi) are applicable, contextualization mechanisms
are used. The contextualization module provides possible associations between
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N(δBi) based on available contextualization criteria. The primary criterion for
building wander behaviors is based on the relation between j referent of perceived
objects and action i referent. Basically, contextualization criteria for exploring
will result in a set of promising directions to continue exploration, e.g. not to
pay attention toward directions where an obstacle has been previously detected.
Using this technique, attention focus is kept on the M(Sj) perceived in the
surrounding of the robot, and a set of possible actions M(Bi) is calculated in
that context with the aim of directing sensing.

The initial set of M(Bi) behaviors calculated by CERA Core are considered
gaze shifts, and are inspired in eye foveating saccades [15]. The robot is intended
to direct its sensors to where relevant perception is predicted to take place. Even
though our robot is not equipped with a motorized camera, he can rotate in
place operating the differential drive, thus orienting the sonar coverage. Sensory
prediction module is always active and listening sensor preprocessors output.
Percepts N(δSj) are arranged into sequences, where N(δSj(t + 1)) is predicted
based on past experience. As a first simplistic approach, sensory prediction is
based on invariability. Therefore, the sensory prediction module will tell the
attention module to direct the i referent of sensing to j locations where N(δSj(t))
is different from predicted (or remembered).

As attention is serial, the Attention module has to select a concrete M(Bi)
at any given time (which could be composed of one or more N(δBi) and could
take several time units to complete). The selection of winning attention focus
and its associated behavior is not only based upon the factors explained above.
The initial search on N(S) in terms of contextualization criteria and sensory
prediction, is extended further on N(I) by the Self-Coordination module. N(I)
as defined in [12], is the representation of a imagined world. As both N(S) and
N(I) are j -indexed, contextualization mechanisms can apply between perceived
and imagined world. Self-Coordination module provides planning capability by
searching trajectories in N(I). Search on N(I) is limited in depth and the sensory
prediction function is also used to generate imagined perceptions N(δIj). The
initial direction of the i referent of the most promising imagined behavior is used
to finally select the next behavior to apply.

Evaluation of imagined behaviors is performed taking into account Status As-
sessment module output. This module implements a model of emotions, where
basic emotions are defined and assigned an energy value. Emotions influence
cognition, activating or inhibiting perception and action [16]. Additionally, in
the context of CERA, emotions are the means to summarize the performance of
the robot in terms of goal accomplishment. Consequently, CERA goals are as-
signed one or more emotional operators, which evaluate the progress being made
in the goal achievement (see [7] for a detailed description of CERA emotional
operators and associated emotional learning mechanism). Table 1 shows the eval-
uation functions used for some goals. Making good progress in goal achievement
increases the energy of positive emotions like curiosity or joy. On the contrary,
failure leads to increases in the energy of negative emotions like fear or anger.
Emotional operators establish the relations between goals and specific emotions.
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As described by Baars [11], global access is the capacity of accessing any piece
of knowledge. The Global Search module is required to index and retrieve any
unconscious processor, being a performance aid for the contextualizing function.
Analogously, Preconscious management module is designed to be the interface
between conscious and unconscious processes. It provides the required environ-
ment where different coalitions of unconscious processors can be built in the
form of M(Bi) and M(Sj). Also, any ‘editorial’ review of these draft coalitions
is managed in this domain, in order to have a consistent (‘conscious’) final ver-
sion. Finally, the Memory Management module serves as an associative database
manager, offering an interface to retrieve subsets of N(S) and N(I) related by
any contextualization criteria.

5 Conclusion and Future Work

The described CERA architecture presents a novel approach to cognitive ro-
botics where attention can be directed even without information from the real
world. N(I) provides a representation that permits the robot to plan possible be-
haviors. These imagined behaviors are emotionally evaluated the same way that
actual performed behaviors. The emotional learning loop is closed when imag-
ined behavior is physically performed, and the real and imagined outcomes are
compared. An additional degree of flexibility beneficial to deal with real world
is provided by CERA layered design, where Core layer can send inhibition mes-
sages that prevent physical layer goals to be accomplished when the threshold
of energy of a particular emotion is reached.

There is still countless work to do in order to explore and compare the pros
and cons of this kind of cognitive architectures. As of this writing we are work-
ing in the improvement of several components of CERA and CRANIUM. The
application of forward models is being considered to improve sensory prediction
functionality [17]. Additionally, real world experiments require much more effort:
three dimensional representation and dealing with imperfect robot odometry.

Multiple mission accomplishment is other area where we believe that CERA
can provide a good solution. The approach for this problem would be the creation
of multiple instantiation layers. This design permits that the same architecture
can be used for other domains, and facilitates the integration of different AI
techniques into the unconscious processors.

Other challenges are robot vision and multi-robot collaboration. A pan-tilt on-
board camera with foveating capability would increase the perception richness.
Coordinated multi-robot exploration is also a challenging problem and very re-
lated to the field of autonomous exploration [18]. We believe that the application
of inter-subjectivity models might be beneficial in this area.
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Abstract. We present an insect-inspired approach to orientation esti-
mation for panoramic images. It has been shown by Zeil et al. (2003) that
relative rotation can be estimated from global image differences, which
could be used by insects and robots as a visual compass [1]. However
the performance decreases gradually with the distance of the recording
positions of the images. We show that an active vision approach based
on local translational movements can significantly improve the orienta-
tion estimation. Tests were performed with a mobile robot equipped with
a panoramic imaging system in a large entrance hall. Our approach is
minimalistic insofar as it is solely based on image differences.

1 Introduction

When leaving the nest and also when returning to it, honey bees and wasps
perform peculiar flight maneuvers [2,3]. Cartwright and Collett [4] suggested that
honey-bees do this in order to acquire a ‘distance-filtered snapshot’, i.e. an image
that omits nearby landmarks, which could guide them ‘to the neighbourhood of
the goal from a longer distance than can an unfiltered one’. Their hypothesis has
been supported recently by high-speed and high-resolution recordings that show
that during these maneuvers wasps keep their head in constant orientation for
short time spans [5]. Producing pure translational image motion on their retina,
this active vision strategy helps simplifying the estimation of range information.
In this paper we describe another benefit of distance-filtered images: emphasising
distant objects these images can provide improved orientation estimation.

Having an accurate orientation estimation is important for view-based hom-
ing, i.e. the return to a goal position by iteratively comparing the currently
perceived images with the goal image, see [6,7,8]. Wrong estimates of current
orientation with respect to a reference position are also a main source of errors
in path integration.

For a mobile robot it is not straightforward to obtain, after wandering around,
images that have the same orientation as a reference image recorded some time
ago. Inertial sensors and path integration are known for accumulating errors over
time. In indoor environments, compass sensors are often not applicable, and even
outdoors slight compass errors will occur.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 61–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Orientation Estimation for Panoramic Images

Since most insects eyes have very large field of view but usually low resolution
(typically ranging from 1◦ to 5◦, see [9]), panoramic images showing the full 360◦

azimuth are often used as a model of insect vision (see Fig. 1 for an example),
and special cameras have been developed to capture such images [10,11].

It has been shown by Zeil et al. [1] that the relative orientation to a reference
image Ia = (Ia

1 , Ia
2 , . . . , Ia

N )� can be estimated by simply calculating the image
rotation that minimises the difference to the current image Ib, i.e.

φ̂ab = argmin
φ

SSDab(φ) , (1)

SSDab(φ) = N−1
N∑

i=1

(Ia
i (φ) − Ib

i )2 . (2)

Ia(φ) denotes image Ia rotated by angle φ = |φ| around an axis given by the
unit vector φ/φ. In this paper, the axis is always aligned with the z-axis of the
coordinate system, directed opposite to the gravity vector.

It is unclear whether insects are able to rotate images mentally but they
certainly can turn on the spot and thereby testing different orientations for
the best match. Also most insects are equipped with a compass sense, e.g. the
polarised light compass [12], that can give them a first orientation estimate which
could then be further improved by image matching.

In (2) all pixels contribute equally. However, it is clear that in case of larger
position differences, image parts displaying close objects will not provide mean-
ingful information. Thus the performance usually decreases gradually with the
distance of the recording positions, see Fig. 4 a for an example. In the following
we describe a method that can improve the orientation estimation.

2 Improving the Orientation Estimation

2.1 Weighted SSD for Orientation Estimation

We define a weighted version of the SSD of two images Ia and Ib as

wSSDab(φ) :=
(∑

i

wab
i (φ)

)−1 ∑

i

wab
i (φ)(Ia

i (φ) − Ib
i )2 . (3)

The image shift is estimated as before, see (1),

φ̂ab = arg min
φ

wSSDab(φ) . (4)

The weights introduced in (3) are calculated using

wab
i (φ) = (vara

i(φ) + varb
i(0))−1 . (5)

var−1
i is supposed to give information about the quality of the pixel for rotation

estimation, e.g. it should be low if the pixel belongs to an image part showing
close objects. For equally weighted pixels, i.e. vara/b

i = 1 for all i, (3) is identical
to (2).
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2.2 Obtaining Weights by “Active Vision”

In our minimalistic approach we compute vari-values from pixel differences of
images recorded at near-by position with same orientation, i.e.

vari(φ) = 1 + |Ii(φ, dx) − Ii(φ)| + |Ii(φ, dy) − Ii(φ)| . (6)

Ii(φ, dx), Ii(φ, dy) are pixels of images recorded at positions shifted by dx
or dy relative to the position of image I(φ), without any (in practice with as
little as possible) orientation difference. This can be achieved for example using
inertial or odometry sensors that work well for short distances. The idea behind
(6) is that image parts with large image differences most probably show close
objects whereas image parts that correspond to distant objects have small local
image differences. Of course, instead of pure pixel differences, less minimalistic
methods, e.g. standard optic flow algorithms, could be used to obtain vari-values.

3 Robot Experiments

We tested our method for orientation estimation using images recorded by a
mobile robot equipped with a panoramic imaging system in a large entrance
hall, image set ‘hall1’ [13]. Images were recorded at positions of a 20 × 10 grid
with spacing of 0.5m. In order to always have additional images at positions
(x + 1, y) and (x, y + 1) needed for the computation of var-values using (6),
images for orientation estimation were taken only from a 19 × 9 grid, see Fig. 1.
After un-warping and conversion to gray scale, image size is 561 × 81 pixels.
To test the effect of low-pass filtering, Butterworth filters of different cut-off
frequencies were applied before un-warping.

3.1 Rotation Error

We define the rotation error as the deviation of the estimated orientation differ-
ence φ̂ab from the true orientation difference φab,

|φ̂ab − φab| ∈ [0◦, 180◦] . (7)

Since the orientation is estimated by shifting the un-warped images horizontally,
we measure the orientation error in pixels, i.e.

rotErrab = |ŝab − sab| ∈ [0 pixels, 280.5 pixels] . (8)

The rotation angle can be calculated from the image shift according to φ̂ab =
ŝab/(image width) × 360◦. Since all images of ‘hall1’ have approx. the same ori-
entation, the correct image shift is close to zero, i.e. sab ≈ 0 and thus rotErrab ≈
|ŝab|. For sub-pixel estimation of the rotation error, quadratic interpolation was
used.
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x
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a b

Fig. 1. Panoramic images of ‘hall1’. a: Camera image (size 545×545 pixels). b: Images
were recorded on a 20 × 10 grid (grid spacing is 0.5 m), positions of images used for
orientation estimation are marked by black dots (positions 1, 19, and 171 are labelled
by corresponding numbers). The additional images recorded at positions marked by
circles are only used for calculating var-values, see text. c: Un-warped image at position
1 (size 561×81 pixels), elevation ranges from approx. −25◦ to +25◦. Butterworth filter
with relative cut-off frequency of 0.4 was applied before un-warping. d: Strong low-pass
filtered, un-warped image at position 1 (Butterworth cut-off frequency 0.04).

3.2 Rotation Estimation Using SSD, (1), (2)

An example showing the SSD changing with orientation is given in Fig. 2 a,b
for image at position 3. The low-pass filtered image has a broader minimum at
φ = 0◦. It is also clearly visible that the existence of additional minima requires
a starting position not to far away from the global minimum if gradient based
methods for rotation estimation are used. Low-Pass filtering can increase the
range of suitable starting positions.

Figure 2 c,d show the minimum SSD-value and the corresponding rotation
error |ŝab| using all possible combinations of images, i.e. 171 × 171 rotation es-
timations. The conspicuous 19 × 19 blocks stem from the sequence in which the
images were recorded, see Fig. 1 b. Values on the diagonal are minφ SSDaa(φ) = 0
and rotErraa = 0, a = 1, 2, . . . , 171. One can also see that images at positions
close to each other usually give small errors. Examples for rotation errors calcu-
lated for single reference images are shown in Fig. 4 a,c. They correspond to row
(or column) 86 and row (or column) 171 in Fig. 2 d.

3.3 Rotation Estimation Using wSSD, (4) - (6)

For implementing the proposed rotation estimation with weighted SSD, we use
two additional images shifted in x, respectively y, by one position on the grid
of recording positions, i.e. for the calculation of the var-values (6) we set dx =
(0.5 m, 0) and dy = (0, 0.5 m). For a mobile robot this means that while two
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Fig. 2. a: Image difference (SSD) in dependence of rotation angle φ for image at posi-
tion 3 filtered with cut-off frequency 0.40 (continuous curve) and 0.04 (dashed curve).
b: Close-up of a) with details of the minimum. Markers (crosses and dots) show SSD-
values for integer image shifts. c: Minimum SSD-values with respect to φ for all possible
combinations of images of ‘hall1’ (cut-off frequency 0.40). d: Corresponding rotation
error coded as gray scale map.

images can be recorded moving straight ahead, the third images requires a 90◦-
turn. Of course, instead of moving the whole robot it is sufficient to move the
camera on top of the robot, see [14] for such a setup.

Examples of var−1 maps for image 1 are shown in Fig. 3 c,d. The calculation of
var-values in (6) is solely based on image differences. Therefore, only close objects
with sufficient contrast will cause high image differences, and the corresponding
image parts will receive low weights.

Figure 4 compares rotation errors estimated with SSD (left) and with the
proposed active vision strategy (wSSD, right) for reference images at the centre
(position 86) and at the top right corner (position 171). The errors for the wSSD-
method are clearly smaller.

Results for all pair-wise combinations of unwarped images with cut-off fre-
quency 0.4 (left) and 0.04 (right) using SSD and wSSD are shown in Fig. 5.
Since the error matrices are symmetrical rotErrab = rotErrba, and rotErraa = 0,
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Fig. 3. Un-warped images (a, b) and corresponding var−1-maps (c, d) for position 1.
Butterworth cut-off frequency is 0.40 (left) or 0.04 (right), respectively. As intended,
image parts displaying close objects, e.g. the pillar (highlighted by an arrow) have low
var−1-values and will contribute little to the overall weighted SSD.
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Fig. 4. Rotation errors using standard method (SSD, left) and the weighted SSD (right)
for reference images at the centre (position 86, top row) and at the top right corner
(position 171, bottom row). The rotation errors |ŝab| (in pixels) are gray coded (note
different scale-bars for a,b and c,d). The vectors depict (cos φ̂ab, sin φ̂ab)�, i = 86, 171.
Images with cut-off frequency 0.40 were used.

only the strictly upper triangular matrices were used for calculation of the his-
tograms, giving (1712 − 171)/2 = 14535 values. It is clearly visible that the
wSSD-method is superior having significantly smaller errors. Also, large rota-
tion errors > 50 pixels (≈ 32◦) are highly reduced (see insets). Interestingly (see
also Table 1), while strong low-pass filtering reduces the error for the wSSD-
method this is not the case for the SSD-method, probably because the number
of large rotation errors increases. This finding will be further investigated.

A direct comparison between SSD and wSSD of image 3 and image 22 is shown
in Fig. 6. While the global minimum of wSSD3,22(φ) is at the correct angle
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Fig. 5. Rotation errors of the two different methods described in this paper applied
to panoramic images that were either filtered with a very weak low-pass (left, cut-off
frequency 0.40) or a strong low-pass (right, cut-off frequency 0.04) before un-warping.
a,b: Histogram plots of the rotation error (bin width of 1 pixel) for SSD (thin curve) and
wSSD (bold), the dashed curves show the difference. The insets (a’, b’) show details
of the rectangular regions marked by dotted lines. Histograms were calculated from
a total of 14535 values (note different scaling of the y-axes). c,e: Gray-scale maps of
rotation error matrices for SSD method. Mapping of rotation errors to gray-scale as in
Fig. 2 d. d,f: Gray-scale maps for wSSD using additional images at positions shifted in
x and y.

φ̂3,22 = 0◦, SSD3,22(φ) exhibits much more local minima and a global minimum
at φ̂3,22 ≈ −14.1◦.

3.4 Testing Variants of the wSSD-Method

Having shown that the wSSD-method leads to significantly better rotation esti-
mations, see also Table 1 and compare row one and row two, we ask next whether
it is possible to simplify the method without loosing much of its benefits.

Movements at Reference Position Only. First we test what we gain if we
calculate var-values only for one of the two images that we use for orientation
estimation. This image e.g. recorded at the starting or a reference position we will
call ‘reference image’. For the second image we use equally weighted pixels, i.e.
varb = 1 in (6). Thus the robot would not have to do additional turns to calculate
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Fig. 6. a: SSD and weighted SSD (bold curve) of image 3 and image 22. b: Close-up
of a, showing the global minimum of SSD3,22(φ) at φ̂ ≈ −14.1◦ (ŝ = −22) and a local
minimum at φ ≈ −0.64◦ (s = −1). The global minimum of wSSD3,22(φ) is at φ̂ = 0◦.

Table 1. Mean and median of the rotation error in pixels for different methods listed
in the first column. Statistical significance of improvements for the wSSD-method
and its variants compared to the SSD-method was calculated using a bootstrapping
method [15,16]: (**): significant on the α = 1 % level, (n.s.): not significant.

varb during navigation. The results for ‘hall1’-images for this simplification are
shown in Fig. 7 and Table 1, third row (‘wSSDRefOnly’). Compared to the
original wSSD-method the performance is clearly worse. As can be seen in the
insets, larger rotation errors occur, especially for cut-off frequency 0.4. While the
mean rotation error for images with cut-off frequency 0.4 is even slightly higher
than for the SSD-method, there is still a significant improvement compared to
the SSD-method for images with cut-off frequency 0.04. We conclude that for
optimal rotation estimation close objects in both images have to be detected.

Movements in a Single Direction Only. Another way of simplifying the
wSSD-method is to use only movements in a single direction and thereby avoid-
ing 90◦ turns. We tested this wSSD-variant for movements either in x or in
y direction, see Table 1, 4th row (’wSSDx’) and 5th row (’wSSDy’). Although
both variants perform significantly better than the SSD-method, their mean and
median rotation errors are higher than for the original wSSD-method. This is
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Fig. 7. Results for variant of the wSSD-method were var-values are calculated just for
one of the two images used for rotation estimation. Conventions as in Fig. 5.

probably due to the fact that images recorded at positions shifted by a transla-
tion movement show very small image shifts in and opposite to the movement
direction, i.e. close to the point of expansion and the point of contraction. To
reliably detect close objects in all directions, the camera has thus to be moved
in non-collinear directions.

4 Discussion and Outlook

We have presented a minimalistic active vision approach for rotation estima-
tion that is solely based on pixel differences and thus, unlike other approaches,
e.g. [17], does not involve feature extraction. Although no explicit calculation of
the depth structure is done, it is implicitly contained in the var-values calculated
from neighbouring images with same orientation.

Despite its simplicity, the proposed method has been shown to significantly
improve orientation estimation for panoramic images in an indoor environment.
In future work it will be tested in different environments, especially in natural
outdoor scenes.
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Abstract. Social robots are receiving much interest in the robotics community.
The most important goal for such robots lies in their interaction capabilities. This
work describes the robotic head CASIMIRO, designed and built with the aim
of achieving interactions as natural as possible. CASIMIRO is a robot face with
11 degrees of freedom. Currently, the robot has audio-visual attention (based on
omnidirectional vision and sound localization abilities), face detection, head ges-
ture recognition, owner detection, etc. The results of interviews with people that
interacted with the robot support the idea that the robot has relatively natural
communication abilities, although certain aspects should be further developed.

1 Introduction

A relatively new area for robotics research is the design of robots that can engage with
humans in socially interactive situations. These robots have expressive power (i.e. they
all have an expressive face, voice, etc.) as well as abilities to locate, pay attention to,
and address people. In humans, these abilities fall within the ambit of what has been
called "social intelligence".

Being an emergent field, the number of social robots built seem to increase on a
monthly basis, see [7] for a survey. Kismet [3] has undoubtedly been the most influ-
ential social robot appeared. It is an animal-like robotic head with facial expressions.
Developed in the context of the Social Machines Project at MIT, it can engage people
in natural and expressive face-to-face interaction.

It is important to note that inspiration and theories from human sciences has always
been involved in the design of these robots, mainly from psychology, ethology and
infant social development studies. Kismet, for example, was conceived as a baby robot,
its abilities were designed to produce caregiver-infant exchanges that would eventually
make it more dexterous. Other authors have taken advantage of autism as an inspiration
for building social robots, i.e. by analyzing the significant lack of social abilities that
autistic people have, see for example [10].

Careful analysis of the available work leads to the question of whether these and
other robots that try to accomplish social tasks have a robust behaviour. Particularly,
face recognition (the social ability par excellence) is extremely sensitive to illumination,
hair, eyeglasses, expression, pose, image resolution, aging, etc., see [8]. There is the

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 71–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



72 O. Déniz et al.

impression (especially among the robot builders themselves) that performance would
degrade up to unacceptable levels when conditions are different from those used to
train or test the implementations. In test scenarios, performance is acceptable. However,
it would seem that there is little guarantee that it remains at the same levels for future,
unseen conditions and samples. Note that this impression does not appear for other
types of robots, say industrial manipulators, where the robot performance is "under
control". This leads us to the important question: is building a social robot in any sense
different than building other kinds of robots? An answer will be proposed later on.

This document describes CASIMIRO (The name is an Spanish acronym of "expres-
sive face and basic visual processing for an interactive robot), a robot with basic social
abilities. CASIMIRO is still under development and its capabilities will be expanded in
the future. The paper is organized as follows. Section 2 outlines the conceptual approach
taken. Then we briefly describe the implemented perception and action abilities, Sec-
tions 4 and 5, and behavior control in Section 6. Experiments are described in Section
7. Finally, we summarize the conclusions and outline future work.

2 Motivation

There are reasons to think that the design of social robots should be qualitatively dif-
ferent than that of other types of robots. The activities and processes that social robots
try to replicate are generally of unconscious nature in humans, face recognition being
the best example. Nowadays, the existence of unconscious processes in our brain seems
to be beyond doubt. Some authors contend that the reason why some mental processes
fade into the unconscious is repetition and practice [1]. If this is the case, our social abil-
ities should be certainly more unconscious, as they appear earlier in life. On the other
hand, the reason of their well performing may well be the fact that they are unconscious,
although we do not delve further on that aspect.

The reproduction of social intelligence, as opposed to other types of human abilities,
may lead to fragile performance, in the sense of having very different performances
between training/testing and future (unseen) conditions. This limitation stems from the
fact that the abilities of the social spectrum are mainly unconscious to us. This is in
contrast with other human tasks that we carry out using conscious effort, and for which
we can easily conceive algorithms. Thus, a coherent explanation is also given for the
truism that says that anything that is easy for us is hard for robots and vice versa.

For some types of robots like manipulators one can extract a set of equations (or
algorithms, representations,...) that are known to be valid for solving the task. Once
that these equations are stored in the control computer the manipulator will always
move to desired points. Sociable robots, however, will require a much more inductive
development effort. That is, the designer tests implementations in a set of cases and
hopes that the performance will be equally good for unseen (future) cases. Inductive
processes crucially depend on a priori knowledge: if there is little available one can
have good performance in test cases but poor performance in unseen cases (overfitting).

In the field of Inductive Machine Learning, complexity penalization is often used as
a principled means to avoid overfitting. Thus, we propose to develop sociable robots
starting from simple algorithms and representations. Implementations should evolve
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mainly through extensive testing in the robot niche (the particular environment and
restrictions imposed on the robot tasks, physical body, etc.). Inspiration from human
sciences is an asset, though our approach places more emphasis in the engineering
decisions taken throughout the robot development process, which depend very much
on the niche. The robot CASIMIRO, described in the following sections, has been built
following this approach.

3 Robot Overview

This section describes the hardware that constitutes CASIMIRO. Details will be in gen-
eral left out as the information is mainly technical data. It is important to introduce the
hardware at this point because that helps focus the work described in the following sec-
tions. CASIMIRO is a robotic face: a set of (9) motors move a number of facial features
placed on an aluminium skeleton. It also has a neck that moves the head. The neck has
the pan and tilt movements, although they are not independent. The global aspect of the
robot is shown in Figure 1.

Fig. 1. Global aspect of CASIMIRO

4 Perception Abilities

This section gives an overview of the perceptual abilities implemented in CASIMIRO
yet. Due to space constraints details will be omitted.

Omnidirectional Vision

As can be seen in Figure 1 in front of the robot there is an omnidirectional camera. The
camera was built using a webcam plus a curved reflective surface. It allows the robot
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to have a 180o field of view, similar to that of humans. Through adaptive background
subtraction, the robot is able to localize people in the surroundings, and pan the neck
toward them. The curvature of the mirror allows to extract a rough measure of the
distance to the robot.

Sound Localization

The robot has two omnidirectional microphones placed on both sides of the head.
The signals gathered by them are amplified and filtered. The direction of the sound
source is then estimated by calculating the ITD (Interaural Phase Delay) through cross-
correlation. The sound localization module only works when the robot’s facial motors
are not working.

Audio-Visual Attention

The most important goal for social robots lies in their interaction capabilities. An at-
tention system is crucial, both as a filter to center the robot’s perceptual resources and
as a mean of letting the observer know that the robot has intentionality. In CASIMIRO,
a simple but flexible and functional attentional model is described. The model fuses
both visual and auditive information extracted from the robot’s environment, and can
incorporate knowledge-based influences on attention.

Basically, the attention mechanism gathers detections of the omnidirectional vision
and sound localization modules and decides on a focus of attention (FOA). Although
this can be changed, the current implementation sets the FOA to the visual detection
nearest to the sound angle. In other cases the FOA is set to the visual detection nearest
to the previous FOA, which is a simple tracking mechanism.

Face Detection

Omnidirectional vision allows the robot to detect people in the scene, just to make the
neck turn toward them. When the neck turns, there is no guarantee that omnidirectional
vision has detected a person, it can be a coat stand, a wheelchair, etc. A face detection
module was integrated in CASIMIRO, it uses color images taken by a color stereo
camera placed near the robot’s nose. The face detection application is ENCARA [4],
which can also detect smiles. As color is its primary source of detection, we had to
use the depth map provided by the cameras to filter out distant skin-color blobs that
corresponded to furniture, doors, etc. (see Figure 2).

Head Nod and Shake Detection

Voice recognition was not implemented in CASIMIRO. It is estimated that voice recog-
nition errors, dubbed by Oviatt as the Achilles’ hell of speech technology, increase a
20%-50% when speech is delivered during natural spontaneous interaction, by diverse
speakers or in a natural field environment [9]. The option of making the speaker wear
a microphone was discarded from the beginning because it is too unnatural. Due to
the fact that (hands-free) speech feedback is very difficult to obtain for a robot, we
decided to turn our attention to simpler input techniques such as head gestures. Head
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nods and shakes are very simple in the sense that they only provide yes/no, understand-
ing/disbelief, approval/disapproval meanings. However, their importance must not be
underestimated because of the following reasons: the meaning of head nods and shakes
is almost universal, they can be detected in a relatively simple and robust way and they
can be used as the minimum feedback for learning new capabilities.

The major problem of observing the evolution of simple characteristics like intereye
position or the rectangle that fits the skin-color blob is noise. Due to the unavoidable
noise, a horizontal motion (the NO) does not produce a pure horizontal displacement
of the observed characteristic, because it is not being tracked. Even if it was tracked, it
could drift due to lighting changes or other reasons. The implemented algorithm uses
the pyramidal Lucas-Kanade tracking algorithm described in [2]. In this case, there is
tracking, and not of just one, but multiple characteristics, which increases the robustness
of the system. The tracker looks first for a number of good points to track, automatically.
Those points are accentuated corners. From those points chosen by the tracker we can
attend to those falling inside the rectangle that fits the skin-color blob, observing their
evolution and deciding based on what dimension (horizontal or vertical) shows a larger
displacement. Figure 2 shows an example of the system.

Fig. 2. Left: Top row: skin color detection. Bottom row: skin color detection using depth infor-
mation. Right: Head nod/shake detector.

Memory and Forgetting

In [11] three characteristics are suggested as critical to the success of robots that must
exhibit spontaneous interaction in public settings. One of them is the fact that the robot
should have the capability to adapt its human interaction parameters based on the out-
come of past interactions so that it can continue to demonstrate open-ended behaviour.

CASIMIRO has a memory of the individuals that it sees. Color histograms of (part
of) the person’s body are used as a recognition technique. Color histograms are simple
to calculate and manage and they are relatively robust. The price to pay is the limitation
that data in memory will make sense for only one day (at the most), though that was
considered sufficient. The region of the person’s body from which histograms are calcu-
lated depends on the box that contains the face detected by ENCARA. Intersection was
used to compare a stored pair of histograms with the histograms of the current image.
Memory will be represented in a list of histogram pairs, with data associated to each
entry. Each entry in the list is associated to an individual. Currently, the data associated
to the individuals are Boolean predicates like "Content", "Greeted", etc.
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Memory is of utmost importance for avoiding predictable behaviors. However, mem-
orizing facts indefinitely leads to predictable behaviors too. Behavioral changes occur
when we memorize but also when we forget. Thus, a forgetting mechanism can also be
helpful in our effort, especially if we take into account the fact that actions chosen by the
action-selection module do not always produce the same visible outcome. In our system
the power law of forgetting (see [5]) is modelled in the following way. Let f (t) be a
forget function, which we use as a measure of the probability of forgetting something:
f (t) = max(0,1 − t · exp(−k)), where k is a constant. We apply the f function to the
set of Boolean predicates that the robot retains in memory. When a predicate is to be
forgotten, it takes the value it had at the beginning, when the system was switched on.

Habituation

An habituation mechanism developed by the authors was implemented in CASIMIRO,
for signals in the visual domain only, i.e. images taken by the stereo camera. The dif-
ference between the current and previous frame is calculated. Then it is thresholded
and filtered with Open and Close operators. Also, blobs smaller than a threshold are
removed. Then the center of mass of the resultant image is calculated. The signal that
feeds the habituation algorithm is the sum of the x and y components of the center of
mass. When the image does not show significant changes or repetitive movements are
present for a while the habituation signal grows. When it grows larger than a threshold,
an inhibition signal is sent to the Attention module, which then changes its focus of
attention. The neck pan and tilt movements produce changes in the images, though it
was observed that they are not periodic, and so habituation does not grow.

5 Action Abilities

Facial Expression

A three-level hierarchy was used to model facial expressions in CASIMIRO. Groups
of motors that control a concrete facial feature are defined. For example, two motors
are grouped to control an eyebrow. For each of the defined motor groups, the poses that
the facial feature can adopt are also defined, like ’right eyebrow raised’, ’right eyebrow
neutral’, etc. The default transitions between the different poses uses the straight line in
the space of motor control values.

The designer is given the opportunity to modify these transitions, as some of them
could appear unnatural. A number of intermediate points can be put in all along the tran-
sition trajectory. Additionally, velocity can be set between any two consecutive points
in the trajectory. The possibility of using non-linear interpolation (splines) was consid-
ered, although eventually it was not necessary to obtain an acceptable behaviour. The
first pose that the modeller must define is the neutral pose. All the defined poses refer
to a maximum degree for that pose, 100. Each pose can appear in a certain degree be-
tween 0 and 100. The degree is specified when the system is running, along with the
pose itself. It is used to linearly interpolate the points in the trajectory with respect to
the neutral pose.
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As for the third level in the mentioned hierarchy, facial expressions refer to poses of
the different groups, each with a certain degree. Currently, CASIMIRO has the follow-
ing expressions: Neutral, Surprise, Anger, Happiness, Sadness, Fear and Sleep.

Voice Generation

CASIMIRO uses canned text for language generation. A text file contains a list of la-
bels. Under each label, a list of phrases appear. Those are the phrases that will be pro-
nounced by the robot. They can include annotations for the text-to-speech module (a
commercially available TTS was used). Labels are what the robot wants to say, for ex-
ample "greet", "something humorous", "something sad", etc. Examples of phrases for
the label "greet" could be: "hi!", "good morning!", "greetings earthling".

The Talk module, which manages TTS, reads the text file when it starts. It keeps a
register of the phrases that haven been pronounced for each label, so that they will not
be repeated. Given a label, it selects a phrase not pronounced before, randomly. If all the
phrases for that label have been pronounced, there is the option of not saying anything
or starting again. The Talk module pronounces phrases with an intonation that depends
on the current facial expression (see below). This is done by changing the intonation
parameters of the TTS.

6 Behavior

Action Selection

CASIMIRO’s action selection module is based on ZagaZ [6]. ZagaZ is an implemen-
tation of Maes’ Behaviour Networks. It has a graphical interface that allows to execute
and debug specifications of PHISH-Nets. Specifications have to be compiled before
they can be executed. There are two compilation modes: release and debug. The ac-
tion selection loop in ZagaZ has a period of a few milliseconds for relatively simple
networks. It was necessary to introduce a delay of 500 ms on each cycle for the whole
system to work well. Behaviors implemented has Boolean inputs like "Frontal Face
Detected" which may also correspond to memorized values. The repertory of actions is
currently limited to changes in the emotional state (which in turn modifies the displayed
facial expression) and commands for talking about something.

Emotions

The Emotions module maintains a position in a 2D valence and arousal space. The
module receives messages to shift the current position in one or the two dimensions.
The 2D space is divided into zones that correspond to a facial expression. Examples are
happiness: positive arousal,positive valence; anger: negative valence, positive arousal,
etc. In order to simplify the module, it is assumed that the expression is given by the
angle in the 2D space (with respect to the valence axis), and the degree is given by
the distance to the origin. The circular central zone corresponds to the neutral facial
expression. When the current position enters a different zone a message is sent to the
pose editor so that it can move the face, and to the Talk module so that intonation can
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be adjusted. A very simple decay is implemented: every once in a while arousal and
valence are divided by a factor. This does not change the angle in the 2D space, and
thus the facial expression does not change, only the degree.

The emotions that the robot has experienced while interacting with an individual are
stored in the memory associated to that individual. Actually, memory is updated peri-
odically with the mean values of arousal and valence experienced with that individual
(a running average is used). As for sleep, when the position in the 2D space has been
for a certain time in the neutral state arousal is lowered by a given amount (valence will
be zero). Besides, sleep has associated a decay factor below 1, so that it tends to get
farther the center instead of closer. This way, the emotional state will eventually tend to
neutral, and in time to sleep. When the robot is asleep the neck stops working.

7 Evaluation

Figure 3 shows an example interaction session with CASIMIRO. Initially, individual
A enters the interaction area. The valence values show that he adopts an uncooperative
attitude. The robot tries to ask him if he wants to hear poems, but the individual keeps
moving around and the robot has to abort the questions. At time 55 individual A be-
gins to leave the interaction area. The robot is then alone. At time 67 another individual
enters the interaction area. This individual B is more cooperative and answers affirma-
tively to the two questions made by the robot. Individual B leaves the area at around time
126. Then, individual A comes back at time 145 and is recognized by the robot, which
avoids greeting him again. Note that upon seeing individual A the robot emotional state
turns very negative, for its previous interaction with him ended unsatisfactorily.

Fig. 3. Example interaction that shows how the robot recognizes people. The figure shows the
evolution of the valence values of the robot emotional state and the executed actions.
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We arranged for some people to interact with the robot and fill in a questionnaire
after the interaction. For each topic, see Table 1, people had to assign a score between
1 (definitely no) to 5 (definitely yes). Out of 19 interviewees, 7 had a PhD in computer
science or an engineering, the rest were at least graduate students. Computing knowl-
edgeable individuals were used on purpose to make the test harder for the robot, for
these individuals usually know how robots work internally and what programming can
do. The point is: it is not what sociability level the robot has, but what sociability level
may be perceived as such.

The detailed results of the interviews are omitted here for space reasons. The av-
erage score received was 3.54. Particularly good scores were received by questions 4
and 5 (4.21 and 4.89, respectively). For some abilities people were very impressed, like
for example with owner recognition. Some asked questions like ’how can the robot do
that?’ or ’hey! does it recognize people?’. We find these results encouraging, given the
simplicity of the implemented technique. However, other aspects received less scores,
particularly question number 9 (2.4, the minimum score received), which suggests as-
pects that require future development.

Table 1. Questionnaire used to evaluate the robot. The last question allowed a free answer.

Section 1 "I understand the robot":
1. I have understood everything the robot has told me
2. The robot has conveyed its emotions through facial expressions
3. The robot has conveyed its emotions through voice tone
4. The robot pays attention to you
5. The robot is conscious of my presence
6. The robot is conscious of my movements
7. The robot recognizes people
8. This robot is a good starting point for keeping you informed

Section 2 "The robot understands me":
9. The robot understands what people say
10. The robot understands facial expressions
11. The robot knows where I direct my attention
12. This robot may be used to make it learn new things from people

Section 3 "Overall impression":
13. I have not had to make an effort to adapt myself to the robot
14. The robot has not had failures (things that it obviously had to do but it didn’t)
15. What do you think the robot should have to be used more frequently?

8 Conclusions and Future Work

This paper has described the current development status of a robot head with basic
interaction abilities. The implementation of social abilities in robots necessarily leads
to unrobust behaviour, for those abilities are mainly unconscious to us, as opposed to
other mental abilities. The approach taken has been to use a complexity penalization ap-
proach, as this minimizes error in unseen conditions. CASIMIRO’s perceptual abilities
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include sound localization, omnidirectional vision, face detection, an attention module,
memory, habituation, etc. The robot has facial features that can display basic emotional
expressions, and it can speak canned text through a TTS. The robot’s behaviour is con-
trolled by an action selection module, reflexes and a basic emotional module.

Future work will include research into the possibility of integrating hands-free
speech recognition. This is probably one of the most interesting research topics in
human-computer interaction. Audio-visual speech recognition, i.e. using both audio and
lip motion, is a promising approach that shall be put to practice.
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Abstract. Recent experiments show that inhibitory interneurons are
coupled by electrical synapses. In this paper the information transmis-
sion properties of a network of three interneurons, coupled by electri-
cal synapses alone, are studied by means of numerical simulations. It is
shown that the network is capable to transfer the information contained
in its presynapstic inputs when they are near synchronous: i.e. the net-
work behaves as a coincidence detector. Thus, it is hypothesized that this
property hold in general for networks of larger size. Lastly it is shown
that these findings agree with recent experimental data.

1 Introduction

Interneurons innervating the somatic and perisomatic region of pyramidal cells
are able to modulate their firing activities [1,2]. Moreover it was found that
oscillations, in the gamma frequency band (30 - 100 Hz), are associated to cog-
nitive functions [3]. Paired recording of interneurons have shown that they are
interconnected with electrical and inhibitory synapses [4,5]. The relevance of the
electrical synapses for the generation of synchronous discharges was shown exper-
imentally: the impairing of the electrical synapses between cortical interneurons
disrupts synchronous oscillations in the gamma frequency band [6]. Recently it
was also shown that the presence of electrical coupling in a pair of inhibitory in-
terneurons promotes synchronization at all spiking frequencies and this property
is enhanced when the strength of the electrical coupling increases [7]. Additional
experimental investigations suggest that interneurons play a relevant role in the
detection of synchronous activity [8,9]. Moreover, interneurons are involved in
the feed-forward inhibition of pyramidal cells, and that is a direct consequence
of their fast and reliable response to excitatory inputs [10]. In a previous paper
[11] we have investigated the property of a pair of fast spiking interneurons to
detect synchronous inputs, here we will try to extend this study to the case
of three coupled cells. For semplicity we will consider the case in which the
interneurons are connected by electrical synapses alone. A clear motivation to
study a small population of interneurons, coupled by electrical coupling alone,
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comes from recent experimental findings [9,12,13,14]. In fact many interneurons
of the thalamic reticular nucleus are interconnected by electrical synapses and
form clusters that are quite small compared with those in the neocortex; more-
over it was shown that the electrical coupling coordinate the rhythmic activity
of these neural netwoks [12]. An additional contribution to the synchronization
properties of thalamic reticular neurons probably comes from the excitatory in-
puts that they receive from neocortex and thalamic relay nuclei [12]. Thus, an
interesting question is to understand how the firing properties of the coupled
interneurons is affected by the time delays of the excitatory inputs they receive.
An other example is that of the Inferior Olive region: the corresponding experi-
mental results indicate that gap junctions connecting pair of interneurons play a
key role in promoting synchronization[13,14]. In this paper,by using a computa-
tional approach, we investigate the capability of a network of three interneurons
coupled by electrical synapses alone of transmitting excitatory synaptic inputs.

2 Methods

FS interneurons are not capable of generating repetitive firing of arbitrary low
frequency when injected with constant currents [15,16], thereby they have type
II excitability[17].

Recent experiments carried out on in vitro fast spiking interneurons reveal
that they have high firing rates (up to ≈ 200 Hz), average resting membrane
potential of -72 mV and input resistance ≈ 89 MΩ; their action potential
has a mean half-width ≈ 0.35 ms, average amplitude ≈ 61 mV and after-
hyperpolarization amplitude ≈ 25 mV [4,5,15].

2.1 Model Description

Here we use the following single compartmental biophysical model of a fast
spiking interneuron proposed in [11], well accounting for the features above:

C
dV

dt
= IE −gNam

3h(V −VNa)−gKn(V −VK)−gL(V −VL)+gExcP (t−t∗) (1)

dx

dt
=

x∞ − x

τx
, x∞ =

α∞
α∞ + β∞

, τx =
1

α∞ + β∞
, (x = m, h, n) (2)

where C = 1 μF/cm2, IE is the external stimulation current. The maximal spe-
cific conductances and the reversal potentials are respectively: gNa = 85 mS/cm2,
gK = 60 mS/cm2, gL = 0.15 mS/cm2 and VNa = 65 mV , VK = -95 mV , VL = -
72 mV . The term P (t− t∗) represents an excitatory pulses starting at time t∗ and
it is defined by: P (t − t∗) = H(t − t∗){N [e−(t−t∗)/τD − e−(t−t∗)/τR ]} where, N is
a normalization constant (| P |≤ 1), τD = 2ms and τR = 0.4ms are, respectively,
realistic values of the decay and rise time constants of the excitatory pulse. The
kinetic of the Na+ current is described by the following activation and deactiva-
tion rate variables: αm(V ) = 3.exp[(V + 25)/20], βm(V ) = 3.exp[−(V + 25)/27],
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αh(V ) = 0.026exp[−(V + 58)/15], βh(V ) = 0.026exp[(V + 58)/12]. The kinet-
ics of the potassium current K+ is defined by: αn(V ) = [-0.019(V -4.2)]/exp[-(V-
4.2)/6.4]-1, βn(V ) = 0.016exp(-V /vAHP),where vAHP = 13 mV . In this model
the onset of periodic firing occurs through a subcritical Hopf bifurcation for IE ≈
1.47 μA/cm2 with a well defined frequency (≈16 Hz)(data not shown).

2.2 Synaptic Coupling and Pulse Timing

The electrical synapses between a pair of interneuron are modeled as follows:

IEl(i) = −gij(Vi − Vj), (3)

where gij = gji is the maximal conductance of the gap junction (in mS/cm2

unit). In the case of three coupled interneurons the coupling currents are the
following:

IEl(1) = −g12(V1 − V2) − g31(V1 − V3), (4)
IEl(2) = −g12(V2 − V1) − g23(V2 − V3), (5)
IEl(3) = −g31(V3 − V1) − g23(V3 − V2), (6)

where IEl(1) is the coupling current between interneuron 1 and the last two
(2 and 3), etc.. Then, the synaptic coupling currents are introduced by adding
each term in the corresponding right hand side of equation 1. For all simulations
the adopted value of the parameters gij were all within the physiological range
[4,5,15]. The j-th interneuron receives the excitatory pulse at time tj with: t1 ≤
t2 ≤ t3 and amplitude (gExc). Moreover, the time delays between two consecutive
pulses will be adopted to be equal: i.e. t3 = t2 + Δt and t2 = t1 + Δt. In the
following the value of parameter t1 will be set to 200ms.

2.3 Synaptic Background Activity

Here, in keeping with the experiments, the simulations are carried out to repro-
duce the membrane potential fluctuations occurring in in vitro conditions [15].
Thus, the j− th cell model is injected with a noisy current: σξj(t), ξj(t) being an
uncorrelated Gaussian random variable of zero mean and unit standard devia-
tion (< ξi(t), ξj(t) >= δij , i �= j = 1, 2, 3). The values of the stimulation current
IE and of σ (equal for each cell) are chosen in such a way that no firing occurs
in absence of the excitatory pulse. To get an approximation of the firing statis-
tics of each interneuron, the stimulation protocol is repeated (NTrials = 200) by
using independent realizations of the applied noisy current. We investigate the
network of coupled interneuron models in realistic conditions: i.e. when, in the
absence of coupling, the firing probability of each cell receiving the excitatory
pulse is lower than 1. With this in mind the parameters IE , σ and gExc were so
chosen that the firing probability of each cell is ≈ 0.75 (see [8]).
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2.4 Data Analysis

The data obtained during the simulations will be presented here either as
histogram or cumulative spikes count. The spike histogram is obtained as follows:
the times of occurrence of spikes tj (j=1,2,..,N), falling in a given time window
are recorded for all trials (NTrials), then the histogram of the tj values was built
by using a bin size of 0.2 ms. Then, the corresponding cumulative spike count
up to time T , was built by adding all spikes falling in the bins located before
T . Lastly, the firing probability of each cell receiving the excitatory pulses is
defined as ns/NTrials, where ns represents the total number of spikes generated
during all trials.

3 Results

To characterize the firing properties of each cell let us consider, first of all, the
case in which the coupling between the cells is set off. The data reported in
figure 1 show that the spike histogram exhibits a peak located just to the right
of t1 = 200ms (i.e. the time at which the excitatory pulse is applied). The firing
of the interneuron occurs with an estimated latency of about 6 ms.

Fig. 1. Spike histogram of a generic interneuron of the network in absence of electrical
coupling. The parameter values are: t1 = 200ms, Δt = 0ms, gExc = 5.5μA/cm2,σ =
0.3μA/cm2,IE = 0.5μA/cm2,NTrials = 200.

Let us introduce the coupling between the interneurons to investigate how
the three excitatory pulses are transmitted by the network. To get a more clear
understanding these inputs can be thought to be the postsynaptic currents gen-
erated by the presynaptic activities of excitatory neural networks. The results, in
the case in which the electrical conductances between interneurons are all equal,
are reported in figure 2.

When the time delay between the pulse is Δt = 1ms, the behavior of the cu-
mulative spikes against the time indicate that all cells are responding. The firing
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Fig. 2. Information transmission properties of the network for several time delay values.
For all panels the parameter values are: t1 = 200ms, Δt = 0ms, gExc = 5.5μA/cm2,
σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 200, g12 = g13 = g23 = 0.02mS/cm2.
The gray line refers to cell 1, the thin black line to cell 2 and the thick black line to
cell 3.

probability increases starting from cell 1 to cell 3 (let us remember that cell 1 re-
ceive the pulse at time t1, cell 2 at t2 = t1+Δt and cell 3 at t3 = t2+Δt). In this
case the temporal information contained in the excitatory pulses is transmitted
by the network of coupled cells by preserving the timing of their inputs. When the
time delay between the pulses increases to Δt = 5ms there is a reduction of the
firing probabilities of cell 1 and 2, while that of cell 3 is practically unchanged.
Thus, in this case the overall temporal structure contained in the excitatory
pulses is not completely transmitted by the network. The meaning of this last
sentence is that the information (i.e. the excitatory pulse) that is transmitted by
the cell 1 (by means of generated spikes) is very low compared to that transmitted
by cell 2 and 3. In fact the firing in this case are: p1 = 0.035, p2 = 0.6, p3 = 0.985
respectively, for cell 1, cell 2 and 3. When the time delay increases to Δt = 15ms
firing in cell 1 decreases more (p1 = 0.01), while that of cell 2 and 3 is strongly
depressed with respect to the cases Δt = 1ms, Δt = 5ms. Increasing the time
delay to Δt = 25ms slows also the firing of cell 2 and 3 (p2 = p3 = 0.02).

To get a better understanding of the transmission properties of the network
of coupled cells, in figure 3 are reported the corresponding firing probabilities
against the time delay between the pulses.

The inspection of these data implies that the transmission of the excitatory
inputs occurs when the time delay between them is lower or equal to 1ms: i.e. the
network behaves as a coincidence detector. In other words, the maximal network
response occurs when the excitatory inputs are near synchronous. This result is
a generalization of that found in the case of two coupled cells in [11]. Moreover
the results obtained in the case of two coupled cells can be used to explain why
the firing rate of cell 1 is lower of that of cell 2 and that of cell 2 is lower of that
of cell 3 (see figure 2). The data reported in figure 3 shows that the firing activity
of the network stops when the time delay between the excitatory pulses gets a
sufficiently high value. This phenomenon was observed also in the case of two
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Fig. 3. Firing probabilities of the network of coupled interneurons against the time
delay separating the excitatory pulses. The parameter values are:t1 = 200ms, gExc =
5.5μA/cm2, σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 200, g12 = g13 = g23 =
0.02mS/cm2. The gray line represents the average firing probability of the network.

coupled cells [11] and it was shown, either analytically and numerically, that it
occurs because the effective input resistance of each cell decreases when the time
delay between the two excitatory pulses is large. This explanation works also in
the case of the three coupled cells. A qualitative explanation is the following: let
be Ri and R̄i the effective input resistance of a cell of the network in the cases
Δt � 0 and Δt � 1,respectively. Moreover, let us assume that the dynamical
regime of each cell is subthreshold. When it is Δt � 0 the difference between
the membrane potentials of a given cell with the remaining two is smaller than
that computed for Δt � 1 (see [11]). Then, in the first case (Δt � 0)the current
fluxes evoked by the excitatory pulse are mediated (mainly) by the capacitive and
leakage conductances, while in the second case (Δt � 1) there are additional
current fluxes through the electrical synapses. Therefore, it follows that it is
Ri > R̄i. Thus, the amplitude of the depolarization evoked by the pulse will be
greater in the case Δt � 0 than that for Δt � 1. An analytical proof will be
presented elsewhere. The results presented up to now were obtained in the case
g12 = g13 = g23: how change the results when this statement does not hold? The
presence of heterogeneity in the electrical coupling conductance between cells is a
more realistic representation of a real network of coupled interneurons; thus it is
interesting to investigate whether in this case the transfer of information occurs.
The corresponding results obtained by using several types of heterogeneity are
reported in figure 4.

The inspection of these data clearly shows that the network is able to trans-
fer the information contained in its inputs when they are near synchronous.
Thus the network behaves, also in this case, as a coincidence detector as in
the case of homogeneous coupling. This finding indicates that this property of
the network is robust against the introduction of heterogeneity in the coupling
and leads us to hypothesize that it holds also for networks of larger size. The
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Fig. 4. Firing probabilities of the interneurons against the time delay separating the
excitatory pulses for inhomogeneous coupling. The parameter values are: t1 = 200ms,
gExc = 5.5μA/cm2, σ = 0.3μA/cm2, IE = 0.5μA/cm2, NTrials = 200. For the
left panels it is g12 = 0.02mS/cm2, g13 = g23 = 0.08mS/cm2; for the middle panel
it is g12 = 0.08mS/cm2, g13 = g23 = 0.02mS/cm2 and for the right panel it is
g12 = 0.02mS/cm2, g13 = 0.04mS/cm2, g23 = 0.08mS/cm2.The gray line represents
the average firing probability of the network.

experimental studies on coupled interneurons showed that the presence of the
electrical synapses between cells promotes their firing synchrony [4,5,7,8]. In
particular it was shown that the presence of electrical coupling in a pair of cou-
pled interneurons confers to the network the capability to detect synchronous
inputs. Our results with three coupled interneurons agree with this experimental
finding. In the mammalian retina All Amacrine cells are coupled by electrical
synapses and receive excitatory inputs from Rod Bipolar cells [9,18]. In a recent
experimental paper were studied the information transmission properties of a
pair of coupled All Amacrine cells [9]: i.e. the firing probability of each cell when
receiving excitatory inputs. It was found that when the two excitatory pulses
were applied asynchronous the firing probabilities of the cells was low, while it
was significantly higher when the two pulses were synchronous. Thus, the re-
sults reported here in figures 3 and 4 agree qualitatively with these experimental
findings.

4 Conclusions

The excitatory synaptic communication among neurons is the basis for the
transmission and coding of the sensory information [10]. This neural activity is
modulated by the discharge of inhibitory interneurons [1]. Moreover it is now
established that interneurons are coupled also by gap junctions and play a
key role for the processing of the neural information [2,4,5]. In this paper we
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considered a network of three interneurons coupled by electrical synapses alone
and we studied how excitatory synaptic inputs are transmitted by the network. It
was found that the network behaves as a coincidence detector: the transmission
of the information is high when the time excitatory pulses are near synchronous,
while it is low when they are asynchrounous. We hypothesize that this behaviour
will occurs also for network of larger size. Lastly, it was show that the results
presented here can be explained by means of the corresponding findings obtained
in the case of a network of two coupled cells [11].
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1 Formal Frame

Traditional interpretation of early visual image processing in a retinal level has
focused exclusively on spatial aspects of receptive fields (RFs). We have learned
recently that RFs are spatiotemporal entities and this characterization is cru-
cial in understanding and modelling circuits in early visual processing ([1]). We
present a generalization of the layered computation concept to describe visual
information processing in the joint space-time domain.

The starting point is the generalization of the concept of layered computation
([2], [4]). In its original sense, a modular system is structured in layers of similar
computing elements. Modules in each layer operate on some input space to pro-
vide an output space. Both spaces have a pure physical nature such that input
and output lines represent denditric trees, axons or, simply, wires. Outputs can
interact with inputs through any type of feedback.

In the generalization, we preserve the existence of layers of computing ele-
ments which perform, in general, any type of decision rule or algorithm over
both input and output spaces. But the nature of these spaces is changed to
be spaces of representation. They are multidimensional spaces where each axis
represents possible values of an independent variable which measures an inde-
pendent possible property of inputs and outputs.

In its formal structure, the input space of the generalized computational frame
consists of a spatio-temporal cube or hypercube in which one axis is time and
the others correspond to cartesian coordinates (two or three dimensions) or to
symbolic space representations. Notice that what it is needed in the input space
representation is the possibility to define distances as proximities in that space:
events close in the space correspond to events close in the property time space.

Operations on the input space act as a generalized convolution over a volume
to produce, at each instant and each output point, an output layer to contribute
to the output space. In the general case, volumes in the output space are also
taken into account by every computational module to decide what the local value
of the output layer should be. That is, there is feedback and also, cooperative
processing since the outputs of nearby computing units in previous instants are
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used to compute the present output of the unit, due to the space-time character
of the feedback sample.

The other main aspect in this paper is the chromatic perception. The retina
has basically two types of photoreceptors cells, the cones and the rodes. The
rodes are cells that allow us to see in darkness, they still work at low intensities
but they are not able to distinguish the color perception. The cones allow us to
distinguish colors but its required a high illumination level by them to work. They
are three types of cones, those who appreciate the red color, those who appreciate
the green color and those who appreciate the blue color. The stimulation of this
three basic color allow the generation of all colors perceptible by the human
eye.We are going to work with this basic knowledge about chromatic perception.

Fig. 1. The layer structure of retina in the classical description

In a computational way, the mixture of light colors, usually red, green and
blue (RGB), is made using an additive color system, also referred as the RGB
model. The mixture of these three basic colors in a properly way can generate
most of the perceptible color by the human eye. That is, for example, a pure red
and a light green produce the yellow color. When these colors are mixtured in
their highest intensity for each one the result is the white color, the opposite is
the black color, that is, the mixture of those colors in their lowest value.

2 The Feedforward Visual Case

In the visual (image processing) case with no feedback the input space comprises
a stack of slides from t = 0 to t = −τ , where τ is the memory of the input
space. The computing units perform convolution-like computation on space-time
volumes, which are the spatio-temporal overlapping receptive fields.

In general, operations performed on the space-time receptive field of a com-
putational element can be arbitrary (algorithmic, algebraic, probabilistic, etc.).
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What is important in this representation is that no previous outputs can be
taken into account to generate a new output slode. That is, no recursive process
can be realized by the computing structure. But it is still somehow cooperative
as it happens to the visual system of vertebrates, in the sense that the same
input data to one unit is shared by all units in the proximities. Cooperativity,
as it is well known, is a key factor in reliable layered computation ([3]).

3 Computation and Tool Descriptions

As it corresponds to the visual level with no feedback, we have developed a visual
information processing system following the general principle above. It is capable
of performing spatio-temporal operations of an arbitrary nature on a stack of im-
ages or a video stream. Examples are presented which illustrate various classical
filtering space-time effects, linear and non-linear. The novelty is the implemen-
tation of the classical neurophysiological concept of center-periphery but now in
space-time, which produces naturally contrast detection, edge and movement de-
tection, ON, OFF and ON-OFF behaviour, directionality sensitivity and others.

3.1 Chromatic Codification

Our tool is going to make a particular codification of each image before it is
processed. This task consist in the discretization of each pixel in only one color.
Usually each RGB image is composed by 3 matrix, each one corresponding to one
of the basic RGB colors. Our tool is going to make discretization those colors from
R,G and B for each pixel to R,G, or B for each pixel. That means, that there is
going to be just one color for each pixel and not three. Thus, we will be able to
have an image codified into two 2-D matrix, one of those is going to keep the infor-
mation about de colors, and the other one we will keep the information about the
intensities of those colors. This last matrix is the one that is going to be processed.
In the next example, we can see that the red color is codified as R–R–R–... leaving
in black the spaces for green’s and blue’s intensities. In the other example we can
se the yellow color codified as RG-RG-RG-... where is filled the intensity of the
colors that compose the yellow color and leave in black the blue color.

Fig. 2. Chromatic Codification Example

Basically, there are going to be two types of chromatic test: Independent
chromatic test and Dependent chromatic test. Independent chromatic test makes
a distinction between each color, where a single color only can have an interaction
only with this single color and with no other color, that is, the red pixels only
have interaction with red, greens with greens and blues with blues. On the other
hand the dependent chromatic test allows the relation between every color.
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Fig. 3. A Generalized Convolution Center-Periphery forming geometric figures

3.2 Generalized Convolution

The tool allows us the process a set of images using a spatio-temporal structure
with the purpose of being able to make a filtered to all images by a generalized
convolution forming diverse geometric figures in the nucleus of the set of images.

4 Results

The main test for this paper is a Spatio-Temporal test with chromatic indepen-
dence. As we can see, we have the following set of images for the input. Each
image corresponds to a different period of time, that is, the first image is for
time t=0, the second t=1,and so on.

As we can see, the first four images and the last four are in color red. Never-
theless, the four images of the center are yellow with a pink square at the centre.

Fig. 4. Input images
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Fig. 5. Chromatic Codification of the example

Fig. 6. Output images

Fig. 7. Spatial edge detection

We must realize what are this colors made of: the red is a basic color, but the
yellow and pink are not basic colors. The yellow is red plus green, and the pink is
red plus blue at different intensities.We can see in the next figure our chromatic
codification.
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After making a generalized convolution of a simple 3-Dimensional Hexaedrix
figure, in this case, a cube of dimension 3x3x3, where the centre is located at
the centre pixel of the figure, and everything else is the surround, we have got
the following result:

As we can see, we have got an edge detector in a spatial, way as well as in a
temporal way. We can appreciate several things:

– For the temporal filter, the red color is totally absorbed because there is
no red-transition between images (each color represented in our input set
of images have a red component). Otherwise, we have got the chromatic
components blue and green of outputs 6 and 9 that show us the temporal
transition.

– For the spatial filter we can observe at the output 7 and 8 the edge de-
tector and each color is respecting the edge with other color (green (from
yellow) and blue (from pink)) because the have not coincidents chromatic
components:

To finish, we would like to comment that the first image is turquese because
we are going to start processing the structure in a time equal 0, and to make
this we have inserted white images at the beginning of the set of images that we
are going to process. Thus, the red component of the white color goes with the
red component of the first input image leaving for the first output the blue and
green chromatic components of the white color.

5 Future Work

Although the presented results can be considered very interesting from a theo-
retical point of view, the main objective of this project still to be done is the
implementation of different biological retinal models such as rabbit’s or frog’s
retinal models. In the future we will improve this tool making possible the next
objectives already mentioned.
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Abstract. Measurements of some visual functions (visual fields, acuity
and visual inversion) versus intensity of stimulus, including facilitation,
carried out by Justo Gonzalo in patients with central syndrome, are
seen to follow Stevens’ power law of perception. The characteristics of
this syndrome, which reveals aspects of the cerebral dynamics, allow us
to conjecture that Stevens’ law is in these cases a manifestation of the
universal allometric scaling power law associated with biological neural
networks. An extension of this result is pointed out.

1 Introduction

Half a century ago, Stevens [1] formulated his well-known relation between sen-
sation or perception P and the physical intensity of a stimulus S, expressed
mathematically as a power law of the type

P = pSm , (1)

where p is a constant and m depends on the nature of the stimulus. This law is
regarded as more accurate than the logarithmic Fechner’s law, but is not exempt
from criticism.

In a different, and somewhat more general context, it was argued that in
biological organisms, mass is the determinant factor for the scaling of the phys-
iological behavior. If M is the mass of the organism, many observable biological
quantities, for instance Y , are statistically seen to scale with M according to a
power law of the form

Y = kMn , (2)

where k is a constant and, in formal similitude with Stevens’ law, the exponent n
changes from one observable to another, leading to different (allometric) behavior
of observables with respect to mass M . Most of exponents in this law are surpris-
ingly found to be multiples of the power 1/4. Biological variables that follow these
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quarter-power allometric laws are, for instance, the metabolic rate (n � 3/4), lifes-
pan (1/4), growth rate (−1/4), height of trees (1/4), cerebral gray matter (5/4),
among many others (see [2,3] and references therein, and also [4,5]).

The allometric scaling laws are supposed to arise from universal mechanisms
in all biological systems, as the optimization to regulate the activity of its sub-
units, as cells. According to West and Brown [6], optimization would be achieved
through natural selection by evolving hierarchical fractal-like branching net-
works, which exchange energy and matter between the macroscopic reservoir
and the microscopic subunits. Some examples of these networks are the animal
circulatory, respiratory, renal and neural systems, the plant vascular system, etc.
The quarter-power allometric laws can be theoretically derived from simple di-
mensionality reasonings that derive from the geometrical constraints inherent to
these networks. As the same authors remark, powers proportional to a multiple
of 1/4 would be strictly verified only in ideal biological organisms, while in real
organisms the power may slightly depart from these values, since they are af-
fected by stocastic factors, environmental conditions and evolutionary histories.
For other authors [7], however, the scaling power laws are valid independently
of the network type, and hence also for those without hierarchical or fractal
structure.

Though Stevens’ law for perception-stimulus relation and biological scaling
law with mass relate to different phenomena, their formal similitude indicates a
possible connection between them. A more fundamental connection is pointed
out here on the basis of the measurements of some visual functions versus stim-
ulation intensity, carried out by Gonzalo [8,9,10] in patients with the central
syndrome that he described. After recalling the characteristics of this syndrome,
we first verify that the measured data of the visual functions versus stimulus in-
tensity fit well to Stevens’ power laws. Second, under reasonable assumptions on
the relation between physical stimulus and activated neural mass, we conclude
that Stevens’ law of perception is, in the cases studies at least, a manifestation
of the universal scaling power laws.

2 Characteristics of the Central Syndrome

The central syndrome (or symmetric poly-sensory syndrome) seems to be partic-
ularly suitable for the observation of the unfolding of the sensory functions. This
syndrome originates from a unilateral parieto-occipital lesion equidistant from
the visual, tactile and auditory projection areas, and is featured by [8,10] (a)
poly-sensory affection with symmetric bilaterality, (b) functional disgregation of
perception, in the sense that sensory qualities are gradually lost in a well-defined
order as the stimulus intensity diminishes, and (c) capability to improve the
perception by iterative temporal summation and by facilitation through other
stimuli, as for instance, strong muscular stress. The syndrome was interpreted
[10] as a deficit of cerebral integration due to a deficit of cerebral nervous ex-
citation caused by the loss of a rather unspecific (multisensory) neural mass.
This interpretation arises from a model in which functional sensory densities
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for each sensory system are distributed in gradation through the whole cortex
[10,11]. There are other works dealing with this research [12,13,14,15,16,17], or
related to it (e.g., [18,19,20]). A close connection can also be established with
models based on a distributed character of cerebral processing, its adaptive and
long-distance integrative aspects (e.g., [21]).

The remarkable point here is that the central syndrome was explained in
terms of a scale reduction of the normal cerebral system caused by the lesion
[10,12]. From the concept of dynamic similitude, scaling laws were applied to the
sensory decrease —or functional depression— observed in the patients. From the
comparison between twelve cases with central syndrome in different degrees, their
visual luminosity, acuity and other qualities were found to obey approximate
power laws versus their respective visual field amplitudes, with different exponent
for each quality, i.e., allometrically [10,12]. This is the formal description of
the functional disgregation, or decomposition of the normal perception into its
different qualities by their gradual loss, from the most to the less complex ones,
as the nervous excitation diminishes, or equivalently, as the magnitude of the
lesion grows. The organization of the sensorium can be then visualized, up to a
certain extent, as displayed in patients with central syndrome.

For a given individual with central syndrome, the sensory level grows by
intensifying the stimulus, or by adding other different stimuli, which are able to
compensate for the neural mass lost. This dynamic capability is greater as the
neural mass lost is greater, and is null, or extremely low for some functions, in
a normal man. [8,10,13].

3 Stevens’ Law in Central Syndrome

All experimental data presented are taken from Ref. [8], correspond to two dif-
ferent cases with central syndrome, called M and T (less intense), and refer
to the change of visual functions or qualities with intensity of stimulation in a
stationary regime. Stevens’ law [Eq. (1)] is used to fit the data.

Figure 1(a) shows the experimental data for the visual field amplitude of right
eye in cases M, M facilitated by strong muscular stress (40 kg held in his hands),
and case T, as functions of the illumination of the test object. The reduction
of the visual field in the central syndrome is concentric. In the log-log graphic,
Stevens’ law [Eq. (1)] yields a straight line of slope equal to the exponent m.
As seen, the data fit rather well to Stevens’ straight lines not very close to
saturation. The slope m of the fitting straight lines is remarkably close to 1/4
for M and M facilitated, and 1/8 for T. In Fig. 1(b), similar representation is
shown for the visual acuity in central vision, including a normal man. Straight
lines with slope 1/4 fit well to the central part of the data for the two states of
case M and for case T, and with slope 1/8 for normal man.

In another series of experiments, the intensity of light on the test object was
kept constant and low, whereas the variable stimulus was the facilitation sup-
plied by muscular stress [Fig. 2(a) and (b)], or by light on the other eye (Fig. 3).
Fig. 2(a) shows the measured visual field amplitude of right eye in case M
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Fig. 1. (a) Visual field of right eye versus relative illumination (test object: 1 cm-
diameter, white disk). Squares: M (fitting straight line with slope 1/4). Circles: M
facilitated (straight line with slope 1/4). Triangles: T (straight line with slope 1/8). (b)
Acuity of right eye versus illumination. Squares: M (fitting with slope 1/4). Circles: M
facilitated (fitting with 1/4). Triangles: T (fitting with 1/4). Inverted triangles: Normal
man (fitting with 1/8).

Fig. 2. (a) Visual field amplitude in right eye versus facilitation by muscular stress.
Squares: M, 0.5 cm test size (fitting straight line with slope 1/2). Circles: M, 1.0 cm test
size (fitting slope 1/3). (b) Visual direction (reinversion) in right eye versus facilitation
by muscular stress. Squares: M (fitting slope 1/4).

Fig. 3. Visual direction (reinversion) in right eye versus facilitation by illumination on
left eye. Squares: M (fitting straight line with slope 1/8).
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holding in his hands increasing weights. The data fit again to straight lines with
slopes (Stevens’ powers) 1/2 and 1/3 for the two different diameters of the white
circular test object. Fig. 2(b) shows data under similar conditions as in Fig. 2(a)
but the sensory function measured is the recovery of the upright direction (180
degrees) of a vertical white arrow that the patient perceived tilted or almost
inverted (0 degrees) under low illumination [8,9,10,15,16,17]. The improvement
of perception with facilitation by muscular stress shows good agreement with
Stevens’ law with power 1/4. We note however that the visual direction function
versus illumination of the test object does not show an evident agreement with
Stevens’ law. Under the same conditions as in the preceding figures, the novelty
in Fig. 3 is that facilitation is supplied by illuminating the left eye, which does
not see the object. Again, the data can be well fitted with Stevens’ law, but now
with power 1/8.

The improvement of perception with increasing stimuli in patients with cen-
tral syndrome is then seen to be describable from Stevens’ law of perception,
with a noticeable number of exponents around 1/4, as in scaling biological laws.
The observed loss of accuracy for very low and very high stimuli reflects the ap-
proximate character of Stevens’ law, considered as valid only in limited ranges
of stimuli.

4 The Underlying Biological Scaling Power Laws

It is not difficult to trace Stevens’ law in the cases studied to the allometric scal-
ing power laws. The stimulus induces nervous impulses which originate a cerebral
excitation, which in essence can be assimilated to the activation of a number of
neurons, or, in other terms, to the activation of a neural mass. Mass is in fact
the fundamental magnitude involved in biological scaling laws. Reasonable as-
sumptions on the relation between stimulus S and activated neural mass Mneur

can be established on the following basis. First, the disorders in patients with
central syndrome were interpreted to be the result of a deficit of integration of
neural mass Mneur at low stimuli S. With increasing stimuli, perception tends to
be normal due apparently to the increase of mass recruited. In this sense but in
normal man, the recent work of Arthurs et al. [22] describes the relation between
electrical stimuli and electrophysiological or neuroimaging measures of the hu-
man cortical response as a power law, with an average exponent around 1.3 (see
also Ref. [23]). These considerations support our assumption that the activated
neural mass as a function on the intensity of a stimulus can be approximately
described by the power law

Mneur = αSβ , (3)

where β is expected to depend on the nature of the stimulus. Equation (3) can
be equivalently written as S = α′M1/β

neur, which introduced into Stevens’ law (1)
yields

P = pSm = (α′M1/β
neur)

m = kMn
neur , (4)

with n = m/β.
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The last equality in Eq. (4) is a power law with respect to neural mass,
and hence a scaling power law associated to the neural network, the exponent
being then expected to fit in many cases to multiples of 1/4, as stated in the
introduction.

5 Discussion and Conclusion

From expression (4), and taking the network scaling power laws as more fun-
damental, it can be concluded that the physiological Stevens’ law in cases with
central syndrome is a manifestation of the scaling power laws. Increasing inten-
sity of stimulation would result in increasing activated neural mass according to
a power law, which in turn leads to an improvement of perception. This conclu-
sion is also supported by the fact that many powers m = nβ in the experimental
fittings with Stevens’ law are found to be close to 1/4, since n = 1/4 is very
often the basic power in scaling laws and β is reported to be close to unity [22].

In normal man, some of the sensory functions analyzed here (amplitude of
visual field and direction function) attain permanently its maximum value. Even
for stimuli with very low intensity, the cerebral excitation in normal man suffices
for the normal value of the sensory function to be reached (e.g., the whole visual
field and the upright perception of the visual scene), which can be thought as a
“saturated” situation. Other functions as visual acuity, vary in normal man with
the intensity of the stimulus, but with a very low exponent as seen in Fig. 1(b),
which would reflect a situation close to the “saturation” limit. In this respect,
let us mention the scaling power law found between the number of neurons in
the visual cortex V1 and the number of neurons in the visual thalamus (roughly
the same as the number of retinal ganglion cells) in primates [24], which suggests
that visual acuity depends not only on the type of cells activated in retina, but
also on an integrative process in the cortex. This was also suggested by the
behavior of acuity in central syndrome [8].

As an extension of these results, we finally suggest that Stevens’ law of per-
ception also in normal man could originate from the scaling power laws that
govern the dynamic behavior of biological neural networks.
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Abstract. Science has been researching on the physiology of the hu-
man hearing, and in the last decades, on the mechanism of the neural
stimulus generation towards the nervous system. The objective of this
research is to develop an algorithm that generalizes the stochastic spike
pattern of the auditory nerve fibers (ANF) formulated by Meddis, which
fulfils the Volley principle (principle that better describes the operation
of the auditory system). The operating principle of the peripheral audi-
tory system together with the models chosen to stimulate the auditory
system and the characteristics of the implemented computational model
are herein described. The implementation and analysis of the stochastic
spike of a simple ANF and the spatial and spatial–temporal stochastic
stimulation models demonstrate the superiority of the latter.

1 Introduction

There exist three theories that explain the principle of the cochlear functioning
at present: theory of the spatial or tonotopic code (Helmholtz’s), theory of the
temporal code and the theory of the spatial-temporal code (Volley), [1,2,3,4,5].
The theory of spatial code describes how each zone of the basilar membrane
enters resonance at a particular frequency of the sound stimulus. The theory of
the temporal code explains how a tone is codified by the stimulation rate of the
nervous cells. This last theory does not justify the behaviour of an auditory nerve
fiber at high frequency, since the maximum velocity response of only one cell in
the auditory system is approximately 1,000 spikes per second. The principle of
Volley suggests that, while only one neuron cannot bear the temporal coding
of a 20kHz pure tone, 20 neurons can do so with staggered firing rates, where
each neuron would be able to respond in every 20 cycles of the 20kHz pure
tone on average. The objective of this research is to develop an algorithm that
represents the spike of the auditory nerve fibers (ANF) according to Volley
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theory, generalizing the Meddis model. Some authors have presented the model
representing the spike produced in the ANF, by making each inner hair cell (IHC)
correspond with an ANF [6,7,8,9,10]. Besides this, the present work develops a
model which makes each IHC correspond with 20 ANFs.

2 Models Description

The Fig. 1 shows the computer model of the peripheral auditory system, where
the sound picked up by the microphone is presented to the outer and middle ear
block. The external and middle ear’s function [11,12] is to capture the incident
sound waves and provide an initial filtering of the signal to increase the sound
pressure in the region from 2 kHz to 7 kHz, helping to its location. The ear’s
performance is modelled by a low-pass filter transfer function where, selecting
a 4 kHz resonance frequency, the filter is designed to model a 10 dB frequency
peak around 4 kHz, something typical of the external ear’s transmission charac-
teristics.

Fig. 1. Computer model of the peripheral auditory system

Then, the signal is scaled and presented to the double resonance non-linear
(DRNL) filter [13,15] which represents the function of the basilar membrane
(BM), filtering the signal with non-linear characteristic. Once the response from
each zone of the BM is obtained, the signal is scaled again and presented to
the IHC [8,16]. Lastly, the respective outputs of the IHCs are presented to the
ANFs that represent the synaptic union IHC/neuron and are in charge of coding
the information going to CNS (Central Nervous System). For the scaling, the
input signal is normalized to a RMS value equal to the unit. Then, the signal is
scaled multiplying this normalized signal by X0 dBSPL10L/20, being L the level
of input signal sound pressure in dB, and X0 dBSPL for the first scale block equal
to 1.4059·10−8ms−1 and in the second scale block a value equal to the unit.

The most significant characteristics in the diagram of Fig. 1 are the follow-
ing: Increase of the sound pressure in the region from 2kHz to 7kHz; Linear
behaviour of the DRNL filter at low levels of input signal (<30dB SPL), non-
linear behaviour of the DRNL filter at intermediate levels of input signal (30 dB
- 80 dB SPL), and linear behaviour of the filter DRNL at high levels of input
signal (>85 dB SPL) [13]; Recovery of the spontaneous activity in 16.2ms on
average; Synchrony of the auditory nerve response against low frequency stimuli
(<1kHz); Adaptation mechanism of short and long duration of the IHCs (see
figure 13 in [8]).
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3 Stochastic Model for an ANF

Some authors [6,7,8,9,12] have modelled a simple ANF corresponding a unique
ANF with each spatial frequency, but the processes occurring to codify the fre-
quencies higher than 1 kHz are not explained.

In fact, the existence of a solid base of neural stimulation patterns generated
by the cochlea is a starting point. Although the CNS cannot be regarded as a
true model of the processing executed in the auditory center of the human brain,
because it is not known how the brain processes information, it is possible to
extract from these neural patterns the corresponding information of the applied
stimulus.

In our case to check and compare the spatial-temporal model with the spatial
model, both were subjected to three sequences of pip tones with the following
characteristics: Frequency of the tones: 0.4 kHz, 1 kHz and 3.25kHz; Duration of
the tones: 300ms; Interval among tones: 300ms; Intensity of the tones: 5 dB to
80 dB SPL, with steps of 5 dB; Sampling frequency: 8 kHz; Spatial frequency of
the BM: 0.33 kHz, 1.02 kHz and 3.27 kHz respectively.

The test to apply consists in comparing the envelope or amplitude level form
of the IHC output signal with the firing rate generated by the ANF, whose
level of resemblance will show the effectiveness of the implemented pattern. The
problem is that the spike signal is a modulated signal whose information (coded
sound) is given in the time among pulses, what complicates the recovery of the
signal amplitude level. For that reason, the statistical functions will be used
to show the most important characteristics of this signal (Post Stimulus Time
(PST) and InterSpike Interval (ISI) analysis).

The input of the stochastic ANF model implemented is the neurotransmitter
level present in the synapses IHC/neuron. This value scaled by an empirical value
h and multiplied by the sample rate of the signal Ts, gives as a result the spike
probability Pe of the ANF [8]. Finally, the block or decision logic determines and
decides if the spike is produced or not. A discharge occurs if Pe is higher than a
specific stochastic value generated with the functions of the MATLABTM and
if the ANF is ready. In this case, a time Tn equal or higher than the refractory
period of the ANF should have passed after the last discharge of the neuron (Tr,
equal to 1ms).

4 Spatial Stimulation Model and Computer Simulation

In the stochastic pattern of stimulation applying the spatial code theory, each
IHC stimulates its corresponding ANF which generates the nervous impulses
travelling to the CNS. The Fig. 2a shows the neurotransmitters level present
in the synapses IHC/neuron for a pip tone sequence of 1 kHz at the spatial
frequency of 1,020Hz, in which the processes of short and long time adaptation
occurring in the IHC can be noticed. In the same figure the ANF spike signal
travelling to the CNS is shown.

The first algorithm used to verify the spatial model was the Post Stimulus
Time (PST) [7,17], which determines the ANF firing rate, showing the number of



106 E. A. Mart́ınez–Rams and V. Garcerán–Hernández

Fig. 2. a) Neurotransmitters level present in the ANF synapses; b) ANF spike

spikes like a function of time whose signal corresponds with the spectral envelope
of the stimulus signal applied to the pattern. Figure 3a shows: neurotransmitters
level in the synapses (input signal to the model), the ANF firing rate and a
comparison between the firing rate and a specific threshold to detect the presence
of pip tones. When comparing the firing rate with the neurotransmitters envelope
amplitude present in the synapses (Fig. 3a) for levels of stimuli fundamentally
over the 25dB SPL, it is possible to observe, subjectively, the similarity between
both waves. The signal noise relation (SNR) between the firing rate (Fig. 3b)
and the envelope or amplitude of the stimulus signal (Fig. 3a) gave, for 100
simulations, a mean value of 28.0090dB with 0.22dB of variance and 0.4724dB of
standard typical deviation, which indicates the similarity between both signals.
To carry out these measurements in signals showing different amplitude levels
but equal forms or behaviour in the time, both signals were normalized to a
value of 1 rms.

Another test on the pattern consisted in recovering the amplitude informa-
tion from the signal by means of the extraction of the ISI envelope (InterSpike
Interval) to estimate the ANF firing rate [10]. The ISI shows the difference in
time between two spikes. The greater ISI the smaller signal amplitude, and the
smaller ISI the greater signal amplitude. Figure 4 illustrates the input signal to
the pattern, the ISI, the firing rate plus a dashed line representing the mean
value of the firing rate (threshold) and the comparison between firing rate and
threshold to detect the presence or absence of pip tones.

Figure 5a-d depicts the ISI histogram for several cases of the stimuli signals:
silence periods and pip tones periods of 1 kHz with intensities of 5 dB, 45 dB and
85 dB SPL. As detected, any discharge is produced under 1ms corresponding
to the refractory period, proving the fulfilment of the ANF recovery after being
discharged. Even when there is no sound stimulus (silence) spikes take place.
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Fig. 3. a) Neurotransmitters level in the synapses; b) ANF firing rate; c) Firing rate
compared to a threshold of detection

Fig. 4. a) Input signal to the model; b) ISI signal; c) firing rate and threshold level;
d) Firing rate compared to threshold level of detection

A falling exponential distribution of the number of spikes in time is also ob-
served. This indicates that the highest spike probability of the neuron is reached
1 millisecond after the last neural spike and an exponential decrease of this prob-
ability in time. The exponential form is due to the signal level coming from the
IHC which is, in general, smaller than the stochastic value in the modulation
process. Besides, the highest spike probability is obtained in the time equivalent
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to the stimulus signal period (in this case 1ms). Around this maximum point,
there is a normal distribution curve of the noise which is modulated by the sig-
nal originating from the IHC. Likewise, the same curve is repeated in multiples
of the stimulus signal period for the modulation effect. The distance between
successive picks corresponds to the stimulus signal period. The higher the stim-
ulus intensity, the spike probability increases. Next, the ISI was also analysed
for stimuli signals over 1 kHz with intensities from 0 up to 85dB SPL and in all
the cases, a falling exponential curve in time was obtained. This means that a
neuron cannot code stimuli over 1 kHz, since the period of these signals is shorter
than the refractory period (see Fig. 5e).

Fig. 5. ISI Histogram: a) Silence; b) Tone of 5 dB SPL; c) Tone of 45 dB SPL; d) Tone
of 85 dB SPL; e) Tone of a 2.5kHz to 85 dB SPL

5 Spatial–Temporal Stimulation Model and Computer
Simulation

One of the problem found in the verification of the spatial model is that, for low
levels of stimulus signal (<35 dB SPL), the presence and beginning of pip tones
cannot be accurately distinguished by the methods of the extraction of PST and
ISI. This model, unlike the previous pattern, solves the problem of the auditory
nervous fiber’s behaviour at high frequency. As only an ANF cannot respond to
frequencies higher than 1 kHz but a group of them do so, and taking into account
that the human peripheral auditory system can perceive a maximum spectral
component of 20 kHz, some 20 ANF for each IHC would be necessary to code
the sounds at such high frequencies. The graphs exposed over Fig. 6 show the
neurotransmitters level in the synapses IHC/neurone for a pip tone sequence of
1 kHz at the spatial frequency of 1,020Hz, corresponding to silence input signals
5 dB, 45 dB and 80 dB SPL respectively. There, the adaptation processes of short
and long duration occurring in the IHC can be noticed. In the graphs placed at
the bottom of the same figure, the respective neuron spike signals corresponding
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to the signal levels shown at the top of same figure, representing the ANF’s
spikes that will travel to the CNS. In this case, there are 20 neurons associated
to the IHC corresponding to the spatial frequency of 1,020Hz. As the sound
intensity increases, the spike probability increases, something noticeable just by
looking at the spike density in each graphics.

Fig. 6. Neurotransmitter level present in the ANF synapses and Discharge of an
assembly of 20 neuron, for: a) b) silence input; c) d) pip tone sequence of 1 kHz, 5 dB;
e) f) pip tone sequence of 1 kHz, 45 dB; g) h) pip tone sequence of 1 kHz, 80 dB

To test the spatial–temporal pattern, 20 nervous auditory fibers were associ-
ated to each IHC and a firing rate was determined for each ANF (the PST) like
in the previous point. Then, averaging the respective values of the PST for each
ANF, the average firing rate was determined, which should be similar to the en-
velope form of the stimulus wave. Figure 7 shows: the neurotransmitter level in
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the synapses (input signal to the pattern), the average firing rate of ANF spike
and a comparison of the average firing rate with a certain threshold in order to
detect the presence, beginning or end of a stimulus pip tone.

Fig. 7. a) Input signal to the model; b) Average firing rate; c) Average firing rate
compared with a detection threshold

When observing the results obtained from the spatial-temporal coding in
Fig. 7, it is noticeable how the average firing rate is more similar to the stimulus
signal amplitude form and the easiness to distinguish the presence, beginning
and end of the pip tones for stimuli signals particularly over 20 dB SPL. When
comparing these results with those obtained in the pattern corresponding to the
spatial coding, it is remarkable the superiority in the extraction of the stimu-
lus amplitude wave form. This indicates that, when a certain number of ANF
(20) is associated to each IHC, the CNS extracts more easily the character-
istic of the stimulus signal, which helps to validate our model or algorithm.
It is also to highlight that the same results were obtained with pip stimuli at
0.4kHz and 3.25kHz, and spatial frequency 0.33 kHz and 3.27kHz respectively.
As well as in the spatial pattern, the SNR was determined but, in this case,
between the average firing rate and the amplitude of the stimulus signal enve-
lope. After 100 simulations the following values were obtained: a mean value of
31.1684dB, variance of 0.0092dB and standard typical deviation of 0.0959dB,
showing the similarity between both signals. Besides, there is an increase of the
SNR in 3.1593dB with regard to the spatial pattern. Both signals were normal-
ized to a value of 1 rms, as well as for the spatial coding. Another test to verify
the spatial-temporal model consisted in obtaining the ISI of the signal resulting
from a logical operation OR, carried out to the respective outputs of the 20
ANFs associated to an IHC. Figure 8 depicts the histogram for a pip tone of
2.5 kHz (period of 0.4ms) of intensity 85 dB SPL, where it is observed how the
CNS receives spikes corresponding to the 2.5 kHz tone.
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Fig. 8. ISI Histogram of a 2.5kHz tone according to the Volley theory

6 Conclusions

In the course of our research we have tested two stimulation methods. It has been
concluded that the stochastic pattern of stimulation, applying the theory of the
spatial code, contains information of the coded signal, which is quite similar to
the original one, and that a level of SNR 28.0090dB is obtained. However, with
the implementation of the stochastic pattern of spatial–temporal stimulation, a
higher similarity was obtained between the recovered signal and the original one,
reflected in a stronger signal to noise relationship (31.17dB SNR). Besides, the
stochastic pattern of spatial–temporal stimulation determines more accurately
the beginning and end of pip tones, for stimuli fundamentally higher than 20 dB
SPL. Moreover, in this research, the implementation of stochastic model of a
low firing rate stimulation was achieved fulfilling the Volley theory or spatial–
temporal code. Each point of the basilar membrane was associated to not only
an ANF, but a group of them (until 20), in order to conform the stochastic model
of spatial-temporal stimulation.
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vol. XXVII, no. 1, pp. 45-54, June2006.



112 E. A. Mart́ınez–Rams and V. Garcerán–Hernández

5. Mart́ınez Rams, E. A., Cano Ortiz, S. D., and Garcerán Hernández, V.: Diseño
de banco de filtros para modelar la membrana basilar en una prótesis coclear. 1-6.
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Abstract. The issue of classification has long been a central topic in
the analysis of multielectrode data, either for spike sorting or for get-
ting insight into interactions among ensembles of neurons. Related to
coding, many multivariate statistical techniques such as linear discrimi-
nant analysis (LDA) or artificial neural networks (ANN) have been used
for dealing with the classification problem providing very similar perfor-
mances. This is, there is no method that stands out from others and the
right decision about which one to use is mainly depending on the particu-
lar cases demands. In this paper, we found groups of rabbit ganglion cells
with distinguishable coding performances by means of a simple based on
behaviour method. The method consisted of creating population subsets
based on the autocorrelograms of the cells and grouping them according
to a minimal Euclidian distance. These subpopulations shared functional
properties and may be used for functional identification of the subgroups.
Information theory (IT) has been used to quantify the coding capability
of every subpopulation. It has been described that all cells that belonged
to a certain subpopulation showed very small variances in the informa-
tion they conveyed while these values were significantly different across
subpopulations, suggesting that the functional separation worked around
the capacity of each cell to code different stimuli. In addition, the over-
all informational ability of each of the generated subpopulations kept
similar. This trend was present for an increasing number of classes un-
til a critical value was reached, proposing a natural value for functional
classes.

1 Introduction

The problem of neural cell classification spreads many different aspects, including
genetic, morphological or functional characteristics. As Migliore and Shepherd
[1] stated, it is very important not only to know the role of a given morphological
type of neuron in neural circuits, but also an understanding of the functional
phenotype is needed. Since it is not clear how to best classify neurons, many ap-
proaches are nowadays combining different techniques to classify morphological,
functional, and even genomic features in order to group these cells [2] [3] [4].
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Concerned about this objective, this paper focused on the functional clustering
of retinal ganglion cells.

A considerable number of coding studies have focused on single ganglion cell
responses [5] [6]. Traditionally, the spiking rate of aisle cells has been used as an
information carrier due to the close correlation with the stimulus intensity in all
sensory systems. There are, however some drawbacks when analysing single cell
firings. Firstly, the response of a single cell cannot unequivocally describe the
stimulus since the response from a single cell to the same stimulus has a consider-
able variability for different presentations. Moreover, the timing sequence differs
not only in the time events but also in the spike rates, producing uncertainty
in the decoding process. Secondly, the same sequence of neuronal events in an
aisle cell may be obtained by providing different stimuli, introducing ambiguity
in the neuronal response.

New recording techniques arisen from emerging technologies, allow simulta-
neous recordings from large populations of retinal ganglion cells. At this time,
recordings in the order of a hundred simultaneous spike trains may be obtained.
New tools for analysing this huge volume of data must be used and turn out
to be critical for proper conclusions. FitzHugh [7] used a statistical analyser
which, applied to neural data was able to estimate stimulus features. Differ-
ent approaches have been proposed on the construction of such a functional
population-oriented analizer, including information theory [8] [9], linear filters
[10], discriminant analysis [11] and neural networks [12].

Analyzing the neural code, in the context of getting useful information for the
clustering algorithm, needs to quantify the amount of information each cell con-
veys. The goal of this study was to quantify their tendency to group themselves
in sets of relatives according to their coding performance, using functional clus-
tering of the autocorrelograms and Information Theory as a tool for providing
an empirical value for the goodness of a coding capability. Therefore, a func-
tional separation, or classification based on behaviour, was accomplished and
the coding abilities of the subsets cells and the whole cluster determined.

2 Methods

2.1 Experimental Procedures

Extracellular recordings were obtained from ganglion cell populations in isolated
superfused albino rabbit (Oryctolagus cuniculus) retina using a rectangular ar-
ray of 100, 1.5 mm long electrodes, as reported previously [11] [13] [14]. Briefly,
after enucleation of the eye, the eyeball was hemisected with a razor blade, and
the cornea and lens were separated from the posterior half. The retinas were
then carefully removed from the remaining eyecup with the pigment epithelium,
mounted on a glass slide ganglion cell side up and covered with a Milipore filter.
This preparation was then mounted on a recording chamber and superfused with
bicarbonate-buffered Ames medium at 35C. For visual stimulation we used a 17”
NEC high-resolution RGB monitor. Pictures were focused with the help of lens
onto the photoreceptor layer. The retinas were flashed periodically with full field
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white light whereas the electrode array was lowered into the retina until a signifi-
cant number of electrodes detected light evoked single- and multi-unit responses.
This allowed us to record with 60-70 electrodes on average during each exper-
iment. The electrode array was connected to a 100 channel amplifier (low and
high corner frequencies of 250 and 7500 Hz) and a digital signal processor based
data acquisition system. Neural spike events were detected by comparing the
instantaneous electrode signal to level thresholds set for each data channel using
standard procedures described elsewhere [11] [13] [15]. When a supra-threshold
event occurs, the signal window surrounding the event is time-stamped and
stored for later, offline analysis. All the selected channels of data as well as the
state of the visual stimulus were digitized with a commercial multiplexed A/D
board data acquisition system (Bionic Technologies, Inc) and stored digitally.
For spike sorting we used a free program, NEV2kit, which has been recently de-
veloped by our group [16] and runs under Windows, MacOSX and Linux (source
code and documentation is freely available at: http://nev2lkit.sourceforge.net/).
NEV2kit loads multielectrode data files in various formats (ASCII based formats,
LabView formats, Neural Event Files (.NEV), etc) and is able to sort extracted
spikes from large sets of data. The sorting is done using principal component
analysis (PCA) and can be performed simultaneously on many records from the
same experiment.

2.2 Visual Stimulation

Different experiments were carried out with albino rabbits. The retinas were
stimulated with full field flashes at 16 different light intensities within the gray
scale. In order to ensure both the number of trials for each intensity was constant
and the probabilities of appearance of each intensity was equal, the following
procedure was carried out. Firstly, a lookup table with 16 light intensities equally
distributed ranging from black (RGB values: 0, 0, 0) to white (RGB values:
255, 255, 255) was constructed. Afterwards, the elements of a list containing
20 repetitions for each of the intensities from the lookup table were relocated
by changing their indexes according to a random entry chosen from an uniform
distribution. The list was then loaded by a Python script embedded in VisionEgg
for presentation of the flashes. Flashes were 300 ms long so that each trial lasted
96 seconds. Figure 1 shows 9 seconds of the light intensity trace for one trial and
the intensity histogram for the entire trial.

2.3 Separation into Subpopulations

The separation algorithm consists in calculating autocorrelograms [17] on each
of the cells in the dataset, a bin size of 10 ms was used and different time
shifts such that the complete flash transitions were included in the analysis. The
autocorrelograms then fed a non supervised, partitional clustering method for
the creation of a varying number of autocorrelograms groups. We will refer to
the number of groups with italic k. The same analysis were carried out for an
increasing k at every entire population. We will use the terms class, cluster,
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Fig. 1. Visual stimulation. Light intensity trace for 9 seconds of a sample trial con-
taining 30 flashes, each lasting 0.3 ms. Ordinate axis represent the different intensity
values (see methods).

subset or group interchangeably. The nearest-neighbour or k-means approach
was chosen for the clustering method. This approach decomposes the dataset
into a set of disjoint clusters and then minimizes the average squared distance
from a cluster centroid among the elements within a cluster, while maximizes
this distance when regarding the centroids of the different clusters. This defines
a set of implicit decision boundaries that separate the clusters or classes of units
according to their periodicity. In this way, we end up with groups of relatives
that are a subset of the entire array.

2.4 Information Theory

In 1929, Shannon published ”The Mathematical Theory of Communication” [18]
where thermodynamic entropy was used for computing different aspects about
information transmission, it was known as Information Theory. This computa-
tion was also applied for computing the capacity of channels for encoding, trans-
mitting and decoding different messages, regardless of the associated meaning.
Information theory may be used as a tool for quantifying the reliability of the
neural code just by analysing the relationship between stimuli and responses
[19] [20]. This approach allows one to answer questions about the relevant para-
meters that transmit information as well as addressing related issues such as the
redundancy, the minimum number of neurons needed for coding certain group of
stimuli, the efficiency of the code, the maximum information that a given code is
able to transmit, and the redundancy degree that exists in the population firing
pattern [21] [22].

In the present work, the population responses of the retina under several rep-
etitions of flashes were discretized into bins where the firing rates from the cells
of the population implement a vector n of spikes counts, with an observed prob-
ability P(n). The probability of the occurrence of different stimuli has a known
probability P(s). Finally the joint probability distribution is the probability of
a global response n and a stimulus s, P(s,n).
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The information provided by the population of neurons about the stimulus is
given by:

I(t) =
∑

s∈S

∑

n

P (s, n)log2
P (s, n)

P (s)P (n)
(1)

This information is a function of the length of the bin, t, used for digitising
the neuronal ensembles and the number of the stimuli in the dataset.

With the purpose of assessing the quality of the subpopulations obtained,
the following procedure was carried out. On every subpopulation generated, the
information that single cells conveyed about the stimulus as well as the pro-
gression of the mutual information values when increasing the number of cells
for each subpopulation was calculated. From these, two informational indicators
were constructed: the mean cell information, calculated as the sum of the mutual
information of each aisle cell divided by the total number of cells in a particu-
lar subpopulation, and the subpopulation information, consisting of the overall
mutual information for a subpopulation in which all their cells were taken into
account.

3 Results

3.1 Entire Population and Subpopulations Obtained

The generation of subpopulations is illustrated in Figure 2 with an example
where the number of clusters was fixed to three. Top panel displays the raster
plot of an entire population of ganglion cells while bottom panels (s1, s2 and s3)
show the raster plots of the subpopulations obtained by applying the separation
method formerly explained using a bin size of 10 ms and a maximum shift of 900
lags. In order to avoid repetitions, the following shortened forms will be defined:
the first subpopulation will be referred to as s1, while the second and third one
as s2 and s3 respectively. In addition, subpopulations were reordered so that s1
will always account for the subpopulation with fewer cells and subsequent sub-
populations will contain an increasing number of cells. Clear differences among
the different subpopulations can be perceived. These differences were related
mainly with the firing time patterns and the number of cells in each subpop-
ulation. For instance s1, contained very few cells that fired almost constantly
during the presentation of the stimuli, s2 contained a considerable number of
cells with apparent temporal patterns and s3 was integrated by a higher number
of cells which showed a more randomised activity. This behaviour was present
for different number of clusters.

3.2 Quality of the Subpopulations: Information Theory Approach

The overall information that each subpopulation accounted for, this is, the sub-
population information, kept similar across classes (one-way ANOVA; p=0.82)
while the informative value of the individual cells, summarised by the mean cell
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Fig. 2. Example of simultaneously recorded extracellular responses from a population
of rabbit ganglion cells to a trial of random full field flashes with 16 different intensities
(see methods). (A) Original population raster plot. Each dot represents a single spike.
(B) Mutual information values for each cell in the recording (bars) and for the whole
population (last gray bar). The overall mean cell information is showed as a dashed
line. (C) Accumulative mutual information for an increased number of cells. In this
example the number of cluster was fixed to three and the lower panel shows the raster
plots for each subpopulation (named s1, s2 and s3).

information significantly varied (one-way ANOVA; p≤0.0005). Figure 3 shows
the information that each cell conveyed about the stimulus. Notice the difference
in the MCI (dashed line) and SI (last bar) values.

Notice the difference in the mean cell information value (dashed line) from
the subpopulation information (last bar), which is equalized across subpopula-
tions around a similar value to that of the original population. Surprisingly, the
subpopulation formed by the very few continuously firing cells gave the higher
mean cell information (2.420.10 bits; MSE), above the overall value from the
whole population (1.480.01 bits; MSE) (Figure 2, right top panel, dashed line).
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Fig. 3. Information about the stimulus for the subpopulations showed in Fig 2. Upper
panels show the mutual information values for each cell in the recording (bars) and for
the whole population (last gray bar). The overall mean cell information in each case is
showed as a dashed line. Lower panel present the accumulative mutual information for
an increased number of cells. Note the relationship between number of cells and mean
cell information.

Moreover, s2, kept the moderately informative cells (1.880.07 bits; M SE) and s3
grouped the many worst cells on a mean information basis (1.330.02 bits; MSE).
Interestingly, the fewer cells a subpopulation contained, the higher the mean cell
information resulted at a certain subpopulation, while the number of cells did
not affect the subpopulation information. Figure 4 shows how this behaviour
holds for an increasing number of subpopulations generated up to five classes.
In the left column the Mean cell information is shown. It can be observed that it
decreases as the number of cells in a certain subpopulation increases. However,
in the right column the Subpopulation information is plotted. This information
keeps invariant for any cell number. Different trials are represented with different
markers.

It is evident the differences in the mean cell information through out the dif-
ferent subpopulations arisen at any number of clusters, while the subpopulation
information turned up nearly constant for all the cases. For the case in which
4 subpopulations are originated, the latter trend starts to suffer whilst for five
subsets such a behaviour is completely vanished. Thus, there is a maximum num-
ber of subpopulations which might optimise a clustering strategy that is able to
split the entire population on a smart informational basis. Such critical value for
the number of groups (k) can be appreciated on Figure 5, which shows that the
individual components of every subpopulation have similar information values.
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Fig. 4. Cell number versus coding quality. Left column: Mean cell information (MCI),
Right column: Subpopulation information (SI). Note that MCI decreases as the number
of cells in a certain subpopulation increases whereas SI keeps invariant for any cell
number. Different trials are represented with different markers on each panel.

Thus for k=4 although the two central clusters start to overlap, the goodness
in the group separation it is still evident. However, for five sets, the clustering
behaviour becomes totally blurred.

4 Discussion

A new method for defining subsets in a population of neuronal responses has
been defined. It permits pruning and classifyng the relevant elements of the vi-
sual system, getting insight the neural code more accurately. It has been shown
that the generated subsets share their own coding behaviour, quantified by in-
formation theory, identifying different subset encoders with different temporal
responses. This has been observed for different number of clusters. Also, the close
relation between the coding goodness of a subset and the mean information of
its cells has been observed using the proposed clustering algorithms.

A clear trend in the clustering strategy was present in all the subpopulations
generated for a number of classes (k) less than five. This is due to the fact that
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Fig. 5. Relationships between number of clusters and mean cell information values.
Different trials are represented with different markers. Note that the individual com-
ponents of each subpopulation have similar subpopulation information values and that
there is a maximum number of clusters which optimise the classification strategy. Thus
for k=4 although the two central clusters start to overlap, the group separation it is
still apparent. For k=5, the clustering behaviour becomes totally blurred.
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there exists a critic k value for which subpopulations with similar sizes but very
different behaviours start to originate. The latter might be explained from a func-
tional point of view. We speculate with a natural number of classes, where every
class contributes effectively to coding different elements of the visual scenario
such as intensity, colour, texture, orientation [24] or shape. From that number
on, the coding process could lose effectiveness, starting to turn up redundant
classes or subpopulations. In other words, the classes would represent different
kind of cells, like the intensity coders, the colour coders and so forth. Taking into
account that the stimulus applied was intensity variation of full field flashes, the
best coder subsets in this analysis would effectively code intensity. In fact, they
get the best coding capabilities, while the other classes would code other fea-
tures. This should be addressed in future works by repeating the visual stimuli
with other varying parameters, for instance, changing colour or orientation lines,
in order to confirm such a functional separation.
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Abstract. This article presents a neural network model for the simu-
lation of the neurological mechanism that produces limbs hiper-rigidity
(spasticity). In this model, we take into account intrinsic plasticity, which
is the property of biological neurons that consists in the shifting of the
action potential threshold according to experience. In accordance to the
computational model, a therapeutic technique for diminishing limbs spas-
ticity is proposed and discussed.

Keywords: Neural networks, hypertonia, spasticity intrinsic plasticity,
muscle, treatment.

1 Introduction

Limbs spasticity is a severe problem that results from brain or spinal cord in-
jury. Initially, the patient loses the movement of the limbs, presenting a very low
muscular tone (hypotonia). Gradually (in a few weeks) muscular tone increases,
so that a extreme rigidity of the limbs (hypertonia) follows the episode of hypo-
tonia. The spastic or hyper-rigid limb produces pain, limbs deformation and, in
some occasions, bones detachment from their joints. According to literature [1,2],
spasticity might be produced by two hypothetical causes: a) Gradual increase in
muscle spindle sensitivity b) Increased excitability of central neurons involved
in the reflex arc. Microneurographic studies [1, 2] in humans and neurophysio-
logical experiments in animals have found no abnormality in the sensitivity of
muscle spindles so that the other alternative, the increased excitability of central
neurons involved in spinal stretch reflex, appears to be the main responsible of
spasticity. Pierrot-Dseilligny and Mazieres [2] proposed that the disruption of the
descending motor inputs produces spasticity. Several theories were proposed for
explaining how this occurs. Among them, the sprouting of intraspinal synapses
that substitutes the degenerating ones from motor inputs may contribute to the
increment of the excitability in spinal neurons. Alternatively we propose that the
recently discovered property called intrinsic plasticity [3,4,5] might also explain
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spasticity. According to this property, neurons that are intensely stimulated in-
crease their action potential threshold so that their firing probability is lowered
in the future. Conversely, if a neuron is under-stimulated, its action potential
threshold diminishes so that its probability of firing increases in the future. Ac-
cording to this, after a brain or spinal injury, the lack of functional inputs to
spinal neurons makes these neurons to be initially silent giving rise to hypotonia.
Gradually, these initially silent neurons become more and more active due to the
diminution of their action potential threshold (according to intrinsic plasticity)
thereby producing hypertonia and spasticity. Although intrinsic plasticity was
initially detected in cortical neurons [4], now there is compelling evidence that
this same process exist in spinal cord neurons [6, 7]. In the following pages we
present a neural network model of the neurons involved in spinal cord reflexes
in which intrinsic plasticity is introduced in alfa and gamma motor neurons.
This model confirms our theoretical supposition that spasticity is related to
intrinsic plasticity. Several treatments for spasticity has been proposed, from
pharmacological treatments like botulinum toxin intending to relax the muscle,
to chirurgical solutions by cutting tendons. Unfortunately there is no available
therapy aiming to the more probable cause of spasticity, the abnormally high
excitability of motor neurons. Our computational model simulations suggest a
solution for quieting these abnormally excited neurons. Taking into account that
alfa motor neurons have lost its main input from the brain, we suggest to highly
stimulate their ancillary input, from Ia neurons. This can be done by quickly
tapping the muscle. We simulated this tapping process in the computer model,
arriving to the results that will be discussed in the paper.

2 Methods and Materials

2.1 Biological Mechanism

The skeleton’s muscles have two types of sensorial receptors, the muscular spin-
dles and the Golgi tendon organ [8]. In this work we do not deal with the Golgi
tendon organ, which is important for protecting the muscle when carrying very
heavy charges. We will focus in the muscular spindle sensory receptors that have
an important role in the control system loop that is used by the muscle to fol-
low brain commands for executing a muscular action. The spindle is a cylindric
structure, thicker in its central portion. Inside, it has two or more muscular
fibers functionally specialized as stretch mechanical receptors. These fibers are
called intrafusal. The remaining muscular fibers are called extrafusal and are
the responsible of the muscle strength. Inside the spindle, each Ia axon is coiled
around the central portion of the intrafusal fiber. The fiber’s central part is a
non-contractional segment. When it is strained the spiral is distorted generating
action potentials that are sent to the spinal cord. In each extremity of the cen-
tral region, the intrafusal fiber possesses a contractile element that receives the
axons coming from gamma motor-neurons in the spinal cord. The action poten-
tials arriving at these axons provoke the stretch of the intrafusal fiber central
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part. When the stretch of the muscle opposes to this contraction, terminals Ia
generates a burst of action potentials. Through Ia neurons the nervous system
constantly receives information about the degree of stretch of the different mus-
cles. The sensitivity of this stretch sensor is regulated through gamma neurons.

2.2 Model of the Circuit Involved in Motor Control

The motor control of the muscle can be modeled as it is shown in figure 1. In this
model a single muscle is being represented by two parallel springs, with spring
constants K1 and K2 respectively. The first spring represents the extrafusal
muscle fiber and the latter the intrafusal muscle fiber. Alpha neurons and gamma
neurons relays brain commands to the muscle. Alpha neurons relays strength
commands and gamma neurons displacement commands.
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Fig. 1. Simplified scheme of the neural circuit involved in motor control. The muscle
has been substituted by two springs representing extrafusal and intrafusal fibers. O3

represents the output of the, so called, Ia neurons whose axons are coiled in intrafusal
fibers.

Considering F, the force applied by the extrafusals fibers, and K1, the spring
constant of extrafusal fibers, the displacement X can be calculated by the fol-
lowing expression:

X = F/K1

The force f of the spring, representing the intrafusal fibers, is calculated ac-
cording to the following equation, where Xo is the length of the spring without
applying any weight.

f = k2(X − Xo)

In the model, the output O3 of the alfa motor neuron regulates the extrafusal
fibers strength by altering their spring constant, K1. For simplicity, and since
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there is a direct proportion between O3 and K1, we made K1 = O3 in the model.
Intrafusal fibers length is inversely proportional to the gamma motor command.
Accordingly and for simplicity we made Xo = 1/O4.

f = k2(F/O3 − 1/O4)

2.3 Mathematical Model of the Neuron

Rate-code neurons are used in our model. Their inputs Ij are modulated by the
synaptic weights wij . The activation, ai, of the neuron is calculated by:

a =
j=n∑
j=1

WijIj

Where each of the weights are calculated like the conditional probability of
the neuron´s output given the input [9]:

Wij = P (Oi/Ij)

which is asymptotically equivalent to the following rule:

ΔWij = εIj(Oi − Wij)

where ε is the learning constant which is usually a small decimal number. A
non-linear function (sigmoid) yields the output of the neuron in terms of ai

Oi = f(ai):

O = 1
1+e−25(a−shift)

Where shift is a sigmoid displacement parameter that is included for modeling
intrinsic plasticity (see Figure 2).
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Fig. 2. Intrinsic plasticity consists in the gradual leftward or rightward shift of the
neuron’s activation function (here a sigmoid) for a sustained trend of low (cases a, b
and c) or high (cases d, e, f) activations of the neuron respectively

The shift parameter is 1 when the sigmoid function is maximally dislocated
to the right and zero when it is maximally dislocated to the left.
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shiftt = ξOt−1+shiftt−1
1+ξ

2.4 Simplified Neural Model of Muscle Response

The diagram in figure 3 represents the neural network used in our computational
model.
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Fig. 3. The more complex system in Figure 1 is here simplified so that the muscle’s
(Ia neurons and extrafusal and intrafusal fibers) response is embedded inside a virtual
neuron whose ouput is O3

The output O3 of the virtual neuron represents the overall muscle computa-
tion, or in other words the firing probability of Ia neurons in terms of O4 and
O5.O3 = k2f = k2(F/O3 − 1/O4) where k2 was, for simplicity, arbitrarily made
equal to one.

3 Spasticity Model Resulting on Hypertonia

Using the previously described model, it’s possible to simulate spasticity, which
results from the injury of upper motor neurons, causing the absence of inputs to
alpha and gamma motor neurons (see figure 4).

Initially the model is used to simulate the behavior of an intact nervous system
and, after 1250 iterations, we stop the activity in upper motor neurons. Spasticity
and hypertonia should gradually appear.

3.1 Model of a Therapy for Attenuation of Spasticity

After spasticity is installed in the model, it is possible to simulate the application
of a therapy based on a physical stimulation of the hypertonic muscles. The aim
is to stimulate the alpha neuron through the feedback O3 from Ia neurons.
The application of the stimulus (tapping the muscle) drives alpha neurons to a
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Fig. 4. Simulation of an injury in spinal or brain areas. Alfa and gamma neurons are
detached from upper motor neurons.

new state in which the sigmoid is shifted rightwards so that the probability of
firing the neuron (that causes spasticity) is reduced. In this way, although the
brain stimuli to alfa neurons was eliminated due to the injury, it is possible to
provide an alternative means of stimulation through a feedback mechanism from
Ia neurons (O3) thereby reducing muscle’s rigidity.

3.2 Software for the Simulation of the Proposed Model

The software that simulates the proposed model was developed in Matlab. The
first 1250 iterations (horizontal axis) represents the normal situation in which
upper motor neurons are normally sending commands to alpha and gamma neu-
rons in the spinal cord. In the following iterations, activity from upper motor
neurons is canceled as occurs after a cerebral or spinal injury. Finally, a ther-
apeutic procedure is applied from iteration 3000, by repeatedly stimulating Ia
neuron. The therapeutic procedure ends at iteration 3000 and, from iteration
3000 ahead, it is possible to see the consequences of treatment.

4 Results

With this simulation, between iteration 1 and 1250, upper neurons stimulate
alpha and gamma neurons by using a square shaped wave. After the 1250th

iteration, upper neurons activity ceases and the basal activity of alpha (O4) and
gamma (O5) neurons gradually increases so that the muscle gradually becomes
hypertonic as shown by the gradual elevation of the two frontward ribbons in
figure 5.

This increment of the basal activity of alpha and gamma neurons is the conse-
quence of the leftward shifting of their sigmoidal activation functions as is shown
in figure 6 where the vertical axis represents the sigmoid shift. After the 3000th

iteration, a square shaped stimulation is applied in Ia fibers, as depicted by the
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Fig. 5. The evolution of spasticity before and after injury is depicted in this figure.
Vertical axis represent the ouput (firing probability) of the different neurons in the
network. Ribbons from back to front represent outputs O1, O2, O3, O4 and O5.

third ribbon in the figure, which finally, causes the alpha neuron to diminish
its basal activation when the stimulation is no more produced (see ribbon cor-
responding to O4 in figure 5. The diminution of O4 basal activity leads to the
disappearance of the muscle’s rigidity.

  

 

 
Fig. 6. Evolution of the shift of the activation function. During the first 1250 alpha
and gamma neuron’s shift is around 0.5. After injury the shift decreases so that the
sigmoid moves leftwards. After treatment (iteration 3000) only the shift of the alpha
and Ia neuron increase.

While this occurs, the basal activity of the gamma neuron continues the same,
meaning that the stimulation does not influence gamma neurons. After ceasing
the therapeutical procedure in which Ia neurons are no longer stimulated, hy-
pertonia comes back (See evolution of the curves in figure 5 after iteration 3500)
This means that the improvement is transitory: it lasts while the therapeutical
stimulation is performed. For a more sustained recovery, reconnection of upper
motor neurons is necessary, by means of other type of therapies.

5 Conclusion

Analyzing the simulation results, it can be concluded that it is possible to sim-
ulate the neuron control mechanism of the limbs. The model makes possible
to test our hypothesis for explaining spasticity as a result of intrinsic plasticity
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that, in the long run, makes non-stimulated neurons become extremely sensitive
so that they fire even without upper motor neuron’s inputs. The proposed model
allows to test possible therapies evaluating their performance and anticipating
the efficacy of these therapies along time. We proposed a therapy in which Ia
neurons are mechanically stimulated. It was shown that alpha neurons becomes
quieter, although the therapy does not produce any effect upon gamma neurons.
Despite the therapy might provide some relieve and comfort to the patient by
reducing the contraction of extrafusal fibers, a synergetic approach that restore
the connectivity with upper motor neurons is encouraged for obtaining more
sustained results.
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Abstract. A comprehensive view of speech and voice technologies is
now demanding better and more complex tools amenable of extracting as
much knowledge about sound and speech as possible. Many knowledge-
extraction tasks from speech and voice share well-known procedures at
the algorithmic level under the point of view of bio-inspiration. The same
resources employed to decode speech phones may be used in the char-
acterization of the speaker (gender, age, speaking group, etc.). Based on
these facts the present paper examines a hierarchy of sound processing
levels at the auditory and perceptual levels on the brain neural paths
which can be translated into a bio-inspired audio-processing architec-
ture. Through this paper its fundamental characteristics are analyzed in
relation with current tendencies in cognitive audio processing. Examples
extracted from speech processing applications in the domain of acoustic-
phonetics are presented. These may find applicability in speaker’s char-
acterization, forensics, and biometry, among others.

1 Introduction

Bio-inspired Speech Processing is the treatment of speech following paradigms
used by the human sound perception system, which has specific structures for
this purpose. An open question is if bio-inspiration is convenient for specific
tasks as Speech Recognition [4], [6]. The answer is that bio-inspiration may
offer alternative ways to implement specific functions in speech processing, help-
ing to improve the performance of conventional methods. Cognitive Audio as a
whole and Speech Understanding in particular are specific application paradigms
involving capabilities such as location and movement detection, source enhance-
ment and separation, source identification, speaker’s identification, recognition
of discourse, detection of emotions in voice, etc. These are part of what is known
as Cognitive Audio, in the sense that the understanding of the surrounding world
by human beings is strongly dependent on them. The purpose of the present pa-
per is to provide a hierarchical description of speech processing by bio-inspired
methods discussing the fundamentals of speech understanding, devising a general
bio-inspired architecture for Cognitive Audio.
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2 Fundamentals of Speech Production and Perception

Speech production is based in the flow of air through the larynx, inducing a
vibration of the vocal folds known as glottal source, which is modulated by the
pharyngeal, oral and nasal cavities and radiated through the mouth. This is
the basis for voiced speech, although some sounds are produced without the
vibration of the vocal cords, as in the case of unvoiced or whispered speech.
The tongue position relative to lips, teeth, palate or velum, and the opening of
the constrictions produce resonances which change the perception of the sound
produced. These resonances called formants, and give a good description of the
message issued (acoustic-phonetic decoding) as well as the speaker’s personality.
Formants are labeled in order of increasing frequency, F1 being the lowest, in the
range of 250-900 Hz. F2 sweeps a wider range, from 600 to 3600 Hz. Formants
F3, and higher may be also present in voiced speech, however, the lowest two
formants give a good description of vowel-like phonemes (see Fig.1).

Fig. 1. Left: Spectrogram of the five vowels in Spanish (/a/, /e/, /i/, /o/, /u/) from
a male speaker, obtained by Adaptive Linear Prediction. Right: Formant plot for the
same recording.

The first two formants for /a/ appear at 750 and 1250 Hz, F1 decreasing to
500 Hz and 400 Hz for /e/ and /i/, whereas F2 climbs to 1800 and 2100 Hz
for the same vowels. F1 shows the same values for /o/ and /u/ as for /e/ and
/i/, whereas F2 moves to 900 and 850 Hz. This is seen in the vowel triangle
represented in Fig.2, plotting F2 vs F1.

Vowels appear as stable narrow-band patterns, known as Characteristic Fre-
quencies (CF). Consonant behavior is rather different, as these sounds are pro-
duced by constrictions of the articulation organs, resulting in vowel formant
transitions, this phenomenon known as co-articulation (in voicing), or in the
production of noise bursts (in unvoiced sounds). Formant transitions from sta-
ble CF positions to new CF positions (virtual loci) are known as FM (frequency
modulation) components. The presence of wide bands, generally above 2000 Hz
are known as noise bursts (NB) or also as blips. These patterns (CF, FM and
NB) bear important communication clues [20], and in the human brain certain
types of neurons are specifically tuned to detect each one of them. An example
for consonant sounds is given in Fig.3.
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Fig. 2. Vowel triangle showing the five vowels in Spanish given in Fig.1. Vowel positions
are designated by the corresponding labels.

The first two formants move to the CF’s of /a/ for /ba/ (0.5 sec) and /da/
(0.8-1.0 sec), while they evolve faster in the cases of /dzha/ and /ga/. This
dynamic (non-stationary) formant movement is related to the character of the
consonant perceived. The locus theory is of most importance to understand
consonant production and perception [1]. It is observed that F1 climbs up in
all cases from a virtual locus (800 Hz) to 1000 Hz, while F2 descends from 1800
Hz to 1400 Hz although at a different rate, which for /dzha/ is the steepest one.
Blips are clearly perceived in this last consonant (1.22 sec) at a frequency of
2500 Hz and 3200 Hz, extending to 4000 Hz as a noise burst (NB). NB’s give
also important clues in consonant perception.

Fig. 3. Left: LPC spectrogram of the syllables /ba/, /da/, /dzha/, /ga/ from the same
speaker. Right: Formant plots.

Similar patterns are observed for the unvoiced consonants /pa/, /ta/, /tsha/
and /ka/, as shown in Fig.4 (left). In this case the formant onsets are sharper,
but the general tendencies of the formats are similar to the cases of /ba/, /da/,
/dzha/ and /ga/. Another important clue for the perception of the consonant
in the case of /ca/ is the presence of a column of blips just before t=1 sec (at
1000, 1800, 2500, 3000, 3500, 4000, and 4500 Hz). Two blips are also present
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Fig. 4. Left: Formant plots of the syllables /pa/, /ta/, /tsha/, /ka/ from the same
speaker. Right: Formant plots of the syllables /ma/, /na/, /nja/, /nga/.

before the onset of the two first formants in the case of /ka/. Finally, in Fig.4
(right) four nasals are presented, corresponding to the four positions studied
before. In this case, besides observing more similar dynamic behaviour for the
first two formants, a nasalization bar appears at a frequency around 300 Hz. A
Generalized Phoneme Description may be derived, as shown in Fig.5 (left) where
the temporal patterns of a typical phoneme are shown based on a nuclear vowel
system and the pre-onset and post-decay positions.

Fig. 5. Left: Generalized Phoneme Description. Right: Loci of the GPD on the vowel
triangle. White circles indicate the positions of the loci. The dark dot gives the position
of the specific vowel modeled (/a/ in the present case).

The description is based on a vowel nucleus defined by formants F1 and F2.
These are characterized by well defined relatively stable CF positions. The onset
is marked by formant F1 moving from a specific locus (L11) to the final CF
position (positive FM). The formant F2 may move from a low frequency locus
(L21) (positive FM) or from high frequency ones (L24, L25) (negative FM) de-
pending on the specific articulation place of the front consonant. Blips appear
mainly in palatal articulations, and possibly extend to wide-band patterns (with
frequencies above 3000 Hz). Loci in the decay side evolve to next vowel or con-
sonant articulation places. Nasalization appears as a low formant F0 which must
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not be confused with pitch. The number of formants above F3 is variable and
speaker dependent. If the first two formants were plotted on the vowel triangle
a specific consonantal system would appear as the dynamic trajectory shown in
Fig.5 (right) moving from the initial (onset) locus (L11, L21) for /ba/, (L11, L24)
for /da/ and (L11, L25) for /dzha/ and /ga/ through the position of the vowel
(/a/ in this case) ending in the final (decay) locus (CF positions of the vowel)
or in the CF positions of the next vowel or consonant with which it is to be
co-articulated. For different vowels the positions of the formant nucleus would
be different, but the positions of the virtual loci would be more or less the same.

In speech perception acoustic signals arrive to the cochlea through the outer
and middle ear. Important processing is produced in the basilar membrane, along
the cochlea or inner ear (see Fig.6), operating as a filter bank. Low frequencies
produce maximum excitation in the apical end of the membrane, while high
frequencies produce maximum excitation towards the basal area. These peak lo-
cations code different frequency stimuli present in speed inducing the excitation
of transducer cells (hair-cells) at different positions along the cochlea which will
be responsible for the mechanical to neural transduction process that propagates
electrical impulses to higher neural centers through auditory nerve fibers, each
one being specialized in the transmission of a different characteristic frequency
(CF). CF fibers tend to respond to each of the spectral components (F0, F1,
F2...) of speech in distinct groups, within each group the interpeak intervals
represent the period of the corresponding spectral components [16]. The next
processing centre is the cochlear nucleus (CN) where different types of neurons
are specialized in different kinds of processing, some of them segmenting the
signals (Cp: chopper units), others detecting stimuli onsets in order to locate it
by inter-aural differences (On: onset cells), others delaying the information to
detect the temporal relationship (Pb: pauser units), while others just pass the
information (Pl: primary-like units). The Cochlear Nucleus feeds information to
the Olivar Complex, where sounds are located by interaural differences, and to
the Inferior Colliculus (IC), which is organized in spherical layers with isofre-
quency bands orthogonal to each other. Delay lines of up to 12 msec are found
in its structure, and their function will be to detect temporal elements coded
in acoustic signals (CF and FM components). This centre sends information
to the thalamus (Medial Geniculated Body) which acts as a relay station for
prior representations (some neurons exhibit delays of a hundred milliseconds),
and as a tonotopic mapper of information arriving to cortex, where high level
processing takes place. It seems that the neural tissue in the brain is organized as
ordered feature maps [16] according to this sensory specialization. The specific
location of the neural structures in the cortex responsible for speech processing
and understanding is not well defined as the subjects of experimentation have
been mainly animals. Although recent reports on speech brain center research
using Nuclear Magnetic Resonance have been published, these studies do not
reach single neuron resolutions yet. In cats neurons have been found that fire
when FM-like frequency transitions are present (FM elements) [10], while in
macaque some neurons respond to specific noise bursts (NB components) [14].
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Other neurons are specialized to detect the combinations among these elements
[19]. In humans, evidence exists of a frequency representation map in the Heschl
circumvolution [15] and of a secondary map with word-addressing capabilities
[12]. A good description of the structures involved and their functionality is
given in [5].

3 A Bio-inspired Architecture for Speech Processing

A plausible structure to implement some of the described speech processing capa-
bilities of the human auditory system can be proposed as in Fig.6. A bio-inspired
speech processing architecture should start with a structure for transforming a
time-domain signal into its most important frequency components. This is usu-
ally done by the Cochlear System and the Cochlear Nucleus. To implement this
functionality some choices are available, as filterbanks, gammatones, FFT or
LPC, among others. Gammatone filters [8] are the closest to the operation of
the biological system, as they have been designed to mimic the space-time be-
havior of the real cochlea. Nevertheless, as the processing is based in formant-like
pattern detection, LPC has been selected as it is specialized in formant detection
by all-pole inverse filtering.

The characteristics of the Linear Prediction inverse filtering proposed in the
present work are the following:

• It is based on lattice filters, which are highly efficient in the modeling of
the vocal tract by high-order all-pole transfer functions. The time evolution
of the vocal tract transfer function due to articulation is tracked using an
adaptive implementation of the lattice filters.

• A combined iterative method derived originally from the study of the glottal
pathology [3] is used to de-couple the glottal source spectral behavior from
that of the vocal tract by means of paired lattices. This is especially impor-
tant to obtain an accurate formant description of speech in the frequency
domain.

The left hand-side plots in Fig.1 and Fig.3 have been obtained using such
methodology. Once the power spectral density of the vocal tract transfer function
has been decoupled from the glottal source formant features are to be estimated
from the resulting spectrogram, defined as:

X(m, n) = 20 · log10

∣∣∣∣∣∣

∑

k∈arg{V }
V (k)x(n + k)e−jmkΩτ

∣∣∣∣∣∣
(1)

where x(n) is the speech signal, V(k) is a specific framing window, and τ and
Ω are the resolutions in time and frequency. The representation X(m,n) can be
seen as a two-dimensional image, indexed by time (n) and frequency (m). This
means that many tools devised for image processing can be used for the detection
of time-frequency features, as CF or FM patterns. The first basic operation on
the LPC spectrogram will be to enhance formant trajectories. This is carried out
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Fig. 6. Bioinspired architecture of the auditory system to model speech recognition
functionalities. Two earlike-like frequency coders will separate sounds into auditory-like
stimuli to represent both ears. These stimuli are timely encoded by the Primary-Like
(Pl), Onset (On), Chopper (Cp) and Pauser-Build Up (Pb) neurons in the Cochlear Nu-
cleus. These connect to Tono-Topic neurons (Tt or CF cells) in the Superior Olivar Nu-
cleus. The outputs create contacts with the Inferior Colliculus and the Medial Geniculate
Body. It seems that binaural information is coded in Bi neurons, while certain neurons
can be found sensitive to frequency transitions (fm). Noise Bursts may be also detected
at this level by NB neurons. Finally the stimuli reach the 6-layer columnar structure
of the Auditory Cortex (Cl units). Certain neurons code associations of characteristic
frequency stimuli (cc) while others code associations of frequency transitions (ff).

using a simple bio-inspired algorithm to mimic lateral inhibition, this mechanism
being active in certain neuron associations in the Inferior Colliculus [16]. The
proposed algorithm is expressed as:

X̂(m, n) =
1∑

i=−1

w(i)X(m − i, n) (2)

where the respective weights are w−1=w1=-1/2 and w0=1. This filter has to be
applied to each column of the LPC spectrogram using buffering, to avoid data
corruption.
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Fig. 7. Formant Detection for the utterance /aeiou/: The speech spectral density (a)
is processed by columns of neurons implementing lateral inhibition (b), producing
differentially expressed formant lines (c), which are transformed into narrow formant
trajectories (d) after non-linear saturation

A columnar organization of the filter for three cells is shown in Fig.7. It may
be seen that the lateral inhibition filter produces sharp estimations of the spec-
tral peaks (see Fig.7.b). The whitish bands surrounding the formants are due
to the characteristic ”mexican hat” response of the filter. The final formant dis-
tribution is given in Fig.7.c after adaptive thresholding. The problem of feature
detection in formant spectrograms is related to a well known one in Digital Im-
age Processing (DIP) [9]. A classical methodology is based on the use of reticule
masks on the image matrix X(m,n):

X̃(m, n) =
1∑

i=−1

2∑

j=0

wi,jX(m − i, n − j) (3)

where wi,j is a 3x3 mask with a specific pattern and a specific set of weights. The
lateral-inhibition filtering given in (2) is a special case of (3) where the weights
of columns j=1,2 have been filled with zeros. It may be shown that the generic
filtering in (3) is equivalent to a liftering process [2].

There are two important concepts linked to mask design: the specific pattern
in time-frequency, and the specific weight adjustment. The basic cells for formant
trajectory processing shown in Fig.8 have been derived from the neural structures
of the auditory centers in brain, as presented in section 2. To produce unbiassed
results, the weight associated to each black square is fixed to +1/sb and the
weight associated to white squares is fixed to -1/sw, sb and sw being the number
of squares in black or white found in a 3x3 mask, respectively. Weight adjustment
may be pre-assigned or adaptive. In this last case a database of spectrograms
and 9:18:1 MLP structures for the training of each cell [7] can be used. The
results presented here are based on pre-assigned weights, for the sake of brevity.
The indexing in the time domain is intended to preserve the causality principle,
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Fig. 8. Left: 3x3 weight mask. Right: Masks for feature detection on the formant
spectrogram. Each mask is labelled with the corresponding octal code (most significant
bits: bottom-right).

Fig. 9. Dynamic formant detection for the utterance /ba/, /da/, /dzha/, /ga/. Left:
Firing of negative FM units. Right: Firing of positive FM units.

whereas the indexing in the frequency domain is established to ease operations
as the detection of dynamic changes (found in FM neurons). The upper row of
masks 700-077 is intended for formant detection, mimicking CF neurons. The
next descending row 111-666 is intended for the detection of wide-band features,
as noise bursts or blips, specific in fricative consonant detection. Masks 124-376
and 421-673 are designed to detect specific ascending or descending trajectories,
as in positive-negative FM neurons. The results of scanning the CF units output
for the uterance /ba/, /da/, /dzha/, /ga/ given in Fig.3 can be seen in Fig.9.
The characteristic ascending and descending patterns for F1-F2 can be clearly
appreciated.
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4 Conclusions

Through the present work several aspects have to be concluded. First of all, it
has been shown that formant-based speech processing may be carried out com-
bining classical techniques as inverse filtering and bio-inspired techniques, as
lateral inhibition. Good estimations of formant spectrograms may be of most in-
terest for phonetic studies or forensic sciences, for instance. The use of adaptive
filtering and the separation of the glottal influence render clear and neat formant
spectrograms, showing the specific features considered as most relevant for the
assignment of phonetic features and phonetic decoding in speech perception.
This could open the possibility to designing new paradigms in formant-based
speech recognition, as well as in speaker’s identification and verification tasks.
The experiments presented in dynamic formant detection using well-known bio-
inspired mask processors (CF and FM units) show the power of these techniques,
which offer also interesting properties under the computational point of view.
The structures studied correspond roughly to the processing centres in the Oli-
var Nucleus and the Inferior Colliculus. The study of short-time memory-like
structures found in the upper levels of the brain, and especially the columnar
structures of the Auditory Cortex [11] using low order regressors, fundamental
for phonemic parsing and the adaptive building-up of grammar structures [21]
[18] deserve an extensive attention out of the scope of the present work and is
left for future research.
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142 P. Gómez-Vilda et al.
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Abstract. An architecture for a cortical stimulator with visual neuro-
prosthetic purposes is presented. This device uses a 3D penetrating mul-
tielectrode array, which will be implanted in V1, offering different signal
amplitude sets with the programable current source module. This elec-
trode array has been proved for injecting current (charge) in a safety, se-
cure and precise way during animal acute experimentation. The dynamic
characteristic of the stimulator provide the possibility to adapt the cur-
rent level to the different electrodes and tissue impedances. The architec-
tureis based on a microprocessor circuit with programmable waveforms
with a transistor based current injection stage. With the proposed sys-
tem, a wide stimuli set can be used for obtaining the optimal parameters
to use in a visual neuroprosthesis using as input a retinomorphic sys-
tem. The histological results validate the stimulation and implantation
procedures.

1 Introduction

Neural stimulation provides a new emerging approach to motor and sensory
prostheses. Implantable stimulators such as pacemakers [1], cochlear implants [2],
deep brain [3], and spinal cord devices [4]improve the quality of life of cardiac
patients, deaf people, Parkinson disease affected, and decrease the pain in some
diseases, so nowadays they are implanted regularly in most hospitals. However
visual prosthesis are in a promising initial stage. Electrical stimulation of the
visual cortex produces localized visual perceptions called phosphenes [5] [6].
The retinotopic organization of primary visual cortex would produce an ordered
arrangement of phosphenes by stimulating this area through the stimulation of
spatially distributed electrodes.

There exists a vast number of scientific areas which need to establish a syner-
gic cooperation in order to give sight inside some of the tasks to perform: they
include neural coding analysis, system modeling, hardware implementation, bio-
compability of materials, rehabiliation, etc. The neural stimulator must drive an
array of electrodes implanted in neural tissue in a safe way, so balanced pulses
are required, using a minimal size and low power consumption prosthesis.

In a stimulator circuit, the objective is to transfer energy from the device to
the tissue in a precisely controlled process: the stimulator produces energy, which
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origins a voltage across the electrodes, passing current through the tissue, and
the rest of the energy dissipates as heat in the system and should be minimize
in order to improve the stimulation efficiency. So it is important to study the
relation stimulator/electrodes defining the appropriate stimulation and configu-
ration patterns.

The duration, frequency and either the voltage or the current amplitude must
be controlled very accurately by the stimulator, however the tissue impedances
are highly variable. Current injection provides more control over the injected
charge and behaves similar to the natural process which elicits an action potential
in excitable tissues. So, this approach has been widely used in cochlear or retinal
implants.

In this paper, a multiplexed current source architecture based on transistors is
presented. It drives a penetrating 3D multielectrode array (the Utah Multielec-
trode Array). It will be implanted in V1 , visual cortex (Fig 1) offering different
signal amplitude sets with the programmable current source device. This speci-
fication provides the possibility to adapt the current level to different electrodes
impedances and to a particular person characteristics. This is a crucial process
due to the different phosphenes threshold (variability) required by the potential
users, and because of an adaptation process to the current levels provided by
the brain.

Fig. 1. The proposed visual prosthesis

2 The Electrode Array

Present design and manufacturing of intracortical electrodes may be considered
as a real choice for neuroprosthetics devices intended to the recovery of motor
and sensory abilities. Electrical stimulation of single or small populations of
neurons in the central nervous system using penetrating microelectrodes arrays
requires current pulsing for eliciting action potentials.
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However, this approach must fulfil several conditions:

1. Alive tissue must accept the device (biocompatibility)
2. Electrical stimulation of nerve tissue must be induced by means of a charge

displacement (polarization), which is performed efficiently through current
stimulation.

3. Current injection in neural tissue must be effective and safe inside a working
zone delimited by electrolysis reactions nature.

The intracortical multielectrode array uses a three-dimensional architecture based
on a silicon Pt/Ir ended needle array (Utah Electrode Array-UEA (Fig 2 left)) [7].
Its tip has been designed to be located in cortex layer IV, where afferents from
he lateral geniculate nucleus (LGN) arrive (Fig 2 right). This electrode array has
been used extensively in acute and chronic recording experiments. It has been im-
planted for years and it has the FDA autorization for its use in humans.

Fig. 2. Left: Scanning electron micrograph of the Utah Electrode Array. Right: Tip
location in a cortical implanted electrode.

The multielectrode array is nearly the most relevant part in a neuroprosthesis
because it must must provide enough charge to evoke action potentials, the
tissue must accept the device with few reaction, so biocompatible coverings are
required, it must communicate with the stimulator, and it has to be durable in
order to be implanted for many years. The Utah multielectrode array verify this
requirements.

3 The Transistor Based Current Source Stage

The analog current source circuit delivers stimulation to the neurons via the elec-
trode array. It has been used current source because a precise charge delivery
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is a crucial parameter for eliciting an electrical stimulation of neuron popula-
tions. A voltage source cannot maintain constant current or constant charge
delivery while tissue or electrode impedance is changing over time, and hence it
will produce changes in the current, charge, delivered. Charge injection involve
electron transferring across the electrode-tissue interface and therefore need that
some chemical species be either oxidized or reduced. Metal electrodes must inject
charge predominantly by faradic processes because the charge required to elicit
a physiological response far exceeds that available from a capacitive mechanism.
Faradic processes may be reversible or not. In reversible faradic processes the
chemical reactions produce no new chemical species in the electrode boundaries,
then the system remains equal with a charge-balanced current stimulus. How-
ever, irreversible faradic processes involve production of chemical species that do
not remain bounded to the electrode surface, these reactions lead to electrode
corrosion by electrolysis reactions. A precise current source control prevent an
irreversible electrode dissolution. As a conclusion, for a durable implantation of
such a prosthesis, the multielectrode array must be biocompatible and electrical-
charge displacements must be preferably in a capacitive work area, never in a
irreversible-faradic working zone. A constant current stimulator was designed us-
ing transistors. A first design was op-amp based [8]. Figure 3 shows the current
source schematic, which allocates the analog circuitry. Two exhausting channels
(output channels connected to ground through a low resistance) are included if
it’s desired to prevent charge accumulation on electrode before stimulating. In
this design a unique stage to allocate digital and analog electronics is used, and
former eight bits parallel digital to analog converter, DAC08, is substituted by
a serial 12 bits DAC. The aim of this change is to compare the power consump-
tion of the new high frequency device controlling a serial DAC, with the previous
topology, which used a fast parallel TTL DAC with a lower clock frequency. The
motivations to choose a transistor based design instead of an op-amp design for
current source and sink are the following:

1. It is obtained a higher slew rate and a better compliance voltage that in the
operational choices, and discarding expensive power operational amplifiers.

2. As the topology uses a totem-pole configuration without polarization, no
power consumption is drawn when no stimulation is delivered (in this case
both BJT are open).

3. This last point gives an extra security aspect to the topology, because when
the input voltage is inside the band-gap BJT-base polarization voltages, no
current is drained. So, unexpected voltage fluctuations on the inputs must
overrun 0.8V to able current injection or sinking (a high security margin).

4. Better compliance towards power ratio, than in operational amplifier topolo-
gies.

It has been appreciated the quality of current pulses delivered in accuracy and
rise and fall transition times. The current source converts an input analog voltage
to a current output over the load connected to StChannel closed to ground. A
power drain test was carried out wit this new topology and resulted that for
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Fig. 3. The transistor-based current source circuit

a clock, fCLK=16MHz, the complete device draws +5V, 4.4mA (the op-amp
based design consumed 20 mA using fCLCK=4MHz) . The power consumption
saved by the commutation BJT-based current source and a serial CMOS DAC
is high enough to able the device to drive such a high frequency 12 bits serial
DAC instead a parallel one.

4 The Control Stage Submodule

The digital stage comprises the 100 channels motherboard microprocessor-based
backplane, with the 10 channels digital submodules. Each submodule includes an
Arizona Microchip PIC16F877, the power stage and an I2C read only memory
for logging purposes. Figure 4 shows the layout of this motherboard with two
submodules.

The microprocessors provides 8 kBytes Flash Program Memory, 368 Byte
RAM Data Memory, 256 Byte EEPROM Data Memory, In-Circuit Serial Pro-
gramming. (ICSP) via two pins (it is important to reprogram the chip on the
board when using SMT technology), and a wide operating voltage range: 2.0V
to 5.5V. It is oriented to a stand-alone operation, but includes communica-
tion circuitry to link with a host PC on USB port, in order to download the
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Fig. 4. The stimulator motherboard with two ten channels modules

configuration to the device and analyze the data from the stimulation and the
electrodes. The power stage has regulation circuitry to fit +5V from an external
9V battery, and DC/DC charge pump to get 10V (enough voltage for delimita-
tion of maximum compliances). Also has an inverter to draw -5V to the analog
stage if desired in future applications. The eeprom used is an I2C 64K CMOS
memory for storing the relevant parameters of the stimulation, impedances,
time, battery level. For each channel, the stimulator is capable of delivering
200 μA, 150 μA, 100 μA, 75 μA, 50 μA and 25 μA biphasic pulses (anodic-
first or cathodic-first) at programmable duration and latencies. Each channel
was capacitively-coupled to ensure the delivery of charge-balanced pulses. This
control submodule is customizable from a Windows-based graphical user inter-
face (GUI) (Fig. 5) where the amplitude, frequency and phase width for each
electrode can be defined. Pulse width values from the system are 50, 100, 150,
200 ms, the frequencies are 25 Hz, 50 Hz, 75 Hz and 100 Hz, and as mentioned,
the amplitudes cover 200 μA, 150 μA, 100 μA, 75 μA, 50 μA and 25 μA. Once
defined the pulse waveform for each electrode and if it is active or not and sent
to the device, the program can start or stop the stimulation. It also includes
built-in safety features that consist in the ability to sense the failure of any of
the output drivers or other modes of operation that could result in charge im-
balance and tissue damage. The motherboard receive the configuration using a
USB connection, and it downloads the stimulation parameters to each individual
10 channel submodule. Each submodule provides current to the electrodes using
a round-robin scheme, so only one of the electrodes is stimulating at a time for
each submodule. If 10 submodules are connected, the stimulation will consist in
the sequential stimulation of 10 simultaneous electrodes.
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Fig. 5. The graphical user interface software

5 Results

In order to characterize the stimulation parameters, the multielectrode array
was inmersed in saline solution, the array was dipped into a ringer bath, with an
Ag/AgCl reference electrode closing the circuit. A shunt resistance (Rshunt) of
150 Ω was added to give information about the current trespassing the interface.

The current waveform used for stimulation is an Anodic-First (AF) bipolar
current pulse delivered at 25 Hz. This signal allows the re-polarization of the
neural media in the second phase, therefore, it is easy to monitor the evoked
spikes, minimizing stimulus artifacts, and as it was described earlier, it is more
adequate to stimulate by means of constant current stimulus because it is more
reliable to control the charge injection through any electrode-tissue interface.
Because charge injection becomes independent of tissue impedances, an increase
in safety is achieved.

In the following Figure an AF current pulse is shown with its associated
delivered voltage waveform observed in the medium. A predominant capacitive
behavior is observed since voltage linearly increases with the onset of the current
waveform and a consequent negative voltage slope appears while the cathodic
pulse. For larger amounts of charge, diffusion components become significant,
therefore, a more resistive behaviour is observed which compromises the elec-
trode integrity by means of no-reversible REDOX processes.

Three stimulation signal points are selected to get voltage information about
Access potential and Capacitive cycles at interface. They are referred in the
Figure as V Access, V anodic and V cathodic. The voltage measurement at
the end of current injection gives idea about the charge storage at interface,



150 J.M. Ferrández et al.

and the measurement at Access point gives a reading of ESA (Electrochemical
surface area) at electrode tip. The Figure shows the tipical voltage response of
a working electrode, and denotes that for usual stimulation pulses polarization
access voltages work on the 1 volt region, achieving safety values. Total electrode
polarization towards Ag/AgCl Reference keeps on the zone of +/-3V for a large
population of electrodes (large charge pulses). This voltage compliance ensures
the working inside of safety margins delimited by water electrolysis levels.

Fig. 6. Anodic First current source pulse and corresponding voltage waveform observed
in the medium

Fig. 7. Histological analysis of the acute response of rabbit cortical tissue to array
implantation and stimulation
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This device has also been implanted in rabbits and it is currently being used
in animal experimentation using acute and chronic stimulation for obtaining
histological data. In Figure 7 the histological analysis of the acute response
of rabbit cortical tissue is shown. The multielectrode array was implanted and
the stimulator provided an anodic first 30 microAmps biphasic pulse during
64 hours. The hole marked shows the tip of the electrode that was implanted
using a pneumatic insertion device. No evidence neither microhemorraghes nor
inflammatory reactions has been observed.

6 Conclusions

A cortical stimulation device has been developed for neuroprosthetic purposes.
In order to achieve the requirements of constant current through variable im-
pedances, a transistor-based current source circuit has been used which feeds
a penetrating 3D multielectrode array. This electrode array has been proved
for injecting current, charge, in a safety, secure and precise way. The control
architecture consists in a microprocessor based motherboard customizable with
programmable waveforms which can be configured using a PC connection (USB).
It drives 10 channel submodules, including the current source circuitry and the
measurement functionality operating in parallel, providing stimulation to 10 si-
multaneous electrodes. With the proposed system, a wide stimuli set can be used
for testing and obtaining the optimal parameters to used in a visual neuropros-
thesis using as input a retinomorphic response of camera images. The results
concluded that the main advantage using a transistor based current source stim-
ulator is a high slew-rate limited only by the DAC slew-rate, and a very low
power consumption. It has been stimulating continuously during 240 h using
a 9V battery. A noise voltage reduction has also been observed, this is a very
important issue in little current delivering. The main disadvantage is less linear-
ity for little currents, and higher clock frequency needed due to serial digital to
analog coversion. Nowadays, a new module with RF link and new electrodes is
being designed. The histological data obtained in animal acute experimentation
provided the working parameters for a precise and safety stimulation.
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Abstract. This is a brief survey of spiking neural P systems, a branch of
membrane computing recently introduced with motivation from neural
computing. Basic ideas, examples, some results, and several research top-
ics are presented.

1 The General Framework

Membrane computing is a branch of natural computing which abstracts com-
puting models from the architecture and the functioning of the living cells and
from cells cooperation in tissues, organs or other structures. The obtained mod-
els, called P systems, were shown to be Turing equivalent and able to efficiently
solve computationally hard problems, and also very useful in devising models for
biological phenomena and for applications in economics, linguistics, computer
science, optimization. As basic sources of information, the reader is referred to
the monograph [23], the volume [11], as well as to the web page of membrane
computing, from http://psystems.disco.unimib.it.

A constant interest of membrane computing was to also capture features of
the way the neurons “compute”, alone or organized in neural nets, and a major
contribution in this respect was the introduction of so-called spiking neural P
systems, [18], much investigated in the last years.

The most intuitive way to introduce spiking neural P systems (in short, SN
P systems) is by watching the movie available at http://www.igi.tugraz.
at/tnatschl/spike trains eng.html, in the web page of Wofgang Maass,
Graz, Austria: neurons are sending to each others spikes, electrical impulses
of identical shape (duration, voltage, etc.), with the information “encoded” in
the frequency of these impulses, hence in the time passed between consecutive
spikes. For neurologists, this is nothing new, related drawings already appear in
papers by Ramón y Cajal, a pioneer of neuroscience at the beginning of the last
century, but in the recent years “computing by spiking” became a vivid research
area, with the hope to lead to a neural computing “of the third generation” –
see [12], [21], etc.

For membrane computing it is rather natural to incorporate the idea of spiking
neurons (already neural-like P systems exist, based on different ingredients – see
[23], efforts to compute with a small number of objects were recently made in
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several papers – see, e.g., [2], using the time as a support of information, for
instance, taking the time between two events as the result of a computation,
was also considered – see [3]), but still important differences exist between the
general way of working with multisets of objects in the compartments of a cell-
like membrane structure – as in membrane computing – and the way the neurons
communicate by spikes. A way to answer this challenge was proposed in [18]:
neurons as single membranes, placed in the nodes of a graph corresponding to
synapses, only one type of objects present in neurons, the spikes, with specific
rules for handling them, and with the distance in time between consecutive spikes
playing an important role (e.g., the result of a computation being defined either
as the whole spike train of a distinguished output neuron, or as the distance
between consecutive spikes). Details will be given immediately.

What is obtained is a computing device whose behavior resembles the process
from the neuron nets and which is meant to generate strings or infinite sequences
(like in formal language theory), to recognize or translate strings or infinite
sequences (like in automata theory), to generate or accept natural numbers, or
to compute number functions (like in membrane computing). Results of all these
types will be mentioned below. Nothing is said here, because nothing was done
so far, about using such devices in “standard” neural computing applications,
such as pattern recognition. Several open problems and research topics will be
mentioned below (a long list of such topics, prepared for the Fifth Brainstorming
Week on Membrane Computing, Sevilla, January 29-February 2, 2007, can be
found in [24]).

It is worth mentioning here that “general” membrane computing is now an
area of intense research related to applications, mainly in biology/medicine, but
also in economics, distributed evolutionary computing, computer graphics, etc.
(see [11], [27], [28]), but this happens after a couple of years of research of a
classic language-automata-complexity type; maybe this will be the case also for
the spiking neural P systems, which need further theoretical investigation before
passing to applications.

2 An Informal Overview – With an Example

Very shortly, an SN P system consists of a set of neurons (cells, consisting of
only one membrane) placed in the nodes of a directed graph and sending signals
(spikes, denoted in what follows by the symbol a) along synapses (arcs of the
graph). Thus, the architecture is that of a tissue-like P system, with only one
kind of objects present in the cells. The objects evolve by means of spiking rules,
which are of the form E/ac → a; d, where E is a regular expression over {a} and
c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing
k spikes such that ak ∈ L(E), k ≥ c, can consume c spikes and produce one
spike, after a delay of d steps. This spike is sent to all neurons to which a
synapse exists outgoing from the neuron where the rule was applied. There also
are forgetting rules, of the form as → λ, with the meaning that s ≥ 1 spikes are
removed, provided that the neuron contains exactly s spikes. We say that the
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rules “cover” the neuron, all spikes are taken into consideration when using a
rule.

The system works in a synchronized manner, i.e., in each time unit, each
neuron which can use a rule should do it, but the work of the system is sequential
in each neuron: only (at most) one rule is used in each neuron. One of the
neurons is considered to be the output neuron, and its spikes are also sent to
the environment. The moments of time when a spike is emitted by the output
neuron are marked with 1, the other moments are marked with 0. The binary
sequence obtained in this way is called the spike train of the system – it might
be infinite if the computation does not stop.

Figure 1 recalls an example from [18], and this also introduces the standard
way to represent an SN P system (note that the output neuron, σ7 in this case,
is indicated by an arrow pointing to the environment), and a simplification in
writing the spiking rules: if we have a rule E/ac → a; d with L(E) = {ac}, then
we write simply ac → a; d. If all rules are of this form, then the system is called
bounded (or finite), because it can handle only finite numbers of spikes in the
neurons (this is the case with the system given in Figure 1).
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a2 → a; 0

a → λ

a2

a2 → a; 0

a → λ

Fig. 1. An SN P system generating all even natural numbers

In the beginning, only neurons σ1, σ2, σ3, and σ7 contain spikes, hence they
fire in the first step – and spike immediately. In particular, the output neuron
spikes, hence a spike is also sent to the environment. Note that in the first step
we cannot use the forgetting rule a → λ in σ1, σ2, σ3, because we have more than
one spike present in each neuron.

The spikes of neurons σ1, σ2, σ3 will pass to neurons σ4, σ5, σ6. In step 2,
σ1, σ2, σ3 contain no spike inside, hence will not fire, but σ4, σ5, σ6 fire. Neurons
σ5, σ6 have only one rule, but neuron σ4 behaves non-deterministically, choosing
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between the rules a → a; 0 and a → a; 1. Assume that for m ≥ 0 steps we use here
the first rule. This means that three spikes are sent to neuron σ7, while each of neu-
rons σ1, σ2, σ3 receives two spikes. In step 3, neurons σ4, σ5, σ6 cannot fire, but all
σ1, σ2, σ3 fire again. After receiving the three spikes, neuron σ7 uses its forgetting
rule and gets empty again. These steps can be repeated arbitrarily many times.

In order to have neuron σ7 firing again, we have to use sometimes the rule
a → a; 1 of neuron σ4. Assume that this happens in step t (it is easy to see
that t = 2m + 2, for some m ≥ 2 as above). This means that at step t only
neurons σ5, σ6 emit their spikes. Each of neurons σ1, σ2, σ3 receives only one
spike – and forgets it in the next step, t + 1. Neuron σ7 receives two spikes, and
fires again, thus sending the second spike to the environment. This happens in
moment t + 1 = 2m + 2 + 1, hence between the first and the second spike sent
outside have elapsed 2m + 2 steps, for some m ≥ 0. The spike of neuron σ4 (the
one “prepared-but-not-yet-emitted” by using the rule a → a; 1 in step t) will
reach neurons σ1, σ2, σ3, and σ7 in step t + 1, hence it can be used only in step
t + 2; in step t + 2 neurons σ1, σ2, σ3 forget their spikes and the computation
halts. The spike from neuron σ7 remains unused, there is no rule for it. Note the
effect of the forgetting rules a → λ from neurons σ1, σ2, σ3: without such rules,
the spikes of neurons σ5, σ6 from step t will wait unused in neurons σ1, σ2, σ3

and, when the spike of neuron σ4 will arrive, we will have two spikes, hence the
rules a2 → a; 0 from neurons σ1, σ2, σ3 would be enabled again and the system
will continue to work.

Let us return to the general presentation. In the spirit of spiking neurons, in
the basic variant of SN P systems introduced in [18], the result of a computation
is defined as the distance between consecutive spikes sent into the environment
by the (output neuron of the) system. In [18] only the distance between the
first two spikes of a spike train was considered, then in [25] several extensions
were examined: the distance between the first k spikes of a spike train, or the
distances between all consecutive spikes, taking into account all intervals or only
intervals that alternate, all computations or only halting computations, etc.

Therefore, as seen above, the system Π1 from Figure 1 computes the set
N2(Π1) = {2n | n ≥ 1} – where the subscript 2 reminds that we consider the
distance between the first two spikes sent to the environment.

Systems working in the accepting mode were also considered: a neuron is
designated as the input neuron and two spikes are introduced in it, at an interval
of n steps; the number n is accepted if the computation halts.

Two main types of results were obtained: computational completeness in the
case when no bound was imposed on the number of spikes present in the system,
and a characterization of semilinear sets of numbers in the case when a bound
was imposed (hence for finite SN P systems).

Another attractive possibility is to consider the spike trains themselves as
the result of a computation, and then we obtain a (binary) language generating
device. We can also consider input neurons and then an SN P system can work
as a transducer. Such possibilities were investigated in [26]. Languages – even on
arbitrary alphabets – can be obtained also in other ways: following the path of
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a designated spike across neurons, or using extended rules, i.e., rules of the form
E/ac → ap; d, where all components are as above and p ≥ 1; the meaning is that
p spikes are produced when applying this rule. In this case, with a step when the
system sends out i spikes, we associate a symbol bi, and thus we get a language
over an alphabet with as many symbols as the number of spikes simultaneously
produced. This case was investigated in [9].

The proofs of all computational completeness results known up to now in this
area are based on simulating register machines. Starting the proofs from small uni-
versal register machines, as those produced in [20], one can find small universal SN
P systems. This idea was explored in [22] – the results are recalled in Theorem 4.

In the initial definition of SN P systems several ingredients are used (delay,
forgetting rules), some of them of an unrestricted form (general synapse graph,
general regular expressions). As shown in [15], rather restrictive normal forms
can be found, in the sense that some ingredients can be removed or simplified
without losing the computational completeness. For instance, the forgetting rules
or the delay can be removed, both the indegree and the outdegree of the synapse
graph can be bounded by 2, while the regular expressions from firing rules can
be of very simple forms.

There were investigated several other types of SN P systems: with several
output neurons ([16], [17]), with a non-synchronous use of rules ([4]), with an
exhaustive use of rules (whenever enabled, a rule is used as much as possible for
the number of spikes present in the neuron, [19]), with packages of spikes sent
along specified synapse links ([1]), etc. We refer the reader to the bibliography
of this note, with many papers being available at [27].

3 A Formal Definition

We introduce the SN P systems in a general form, namely, in the extended (i.e.,
with the rules able to produce more than one spike) computing (i.e., able to take
an input and provide an output) version.

A computing extended spiking neural P system, of degree m ≥ 1, is a construct
of the form

Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap; d, where E is a regular expression over a and c ≥ p ≥ 1,
d ≥ 0;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with i �= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons, respec-
tively.
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The rules of type (1) are firing (we also say spiking) rules, those of type (2)
are called forgetting rules. An SN P system whose firing rules have p = 1 (they
produce only one spike) is said to be of the standard type (non-extended).

The firing rules are applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule E/ac → ap; d ∈ Ri can be applied. This
means consuming (removing) c spikes (thus only k − c spikes remain in σi; this
corresponds to the right derivative operation L(E)/ac), the neuron is fired, and
it produces p spikes after d time units (a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized).
If d = 0, then the spikes are emitted immediately, if d = 1, then the spikes are
emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in
steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost). In the step t + d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the
step t+d+1, when the neuron can again apply rules). Once emitted from neuron
σi, the spikes reach immediately all neurons σj such that (i, j) ∈ syn and which
are open, that is, the p spikes are replicated and each target neuron receives p
spikes; spikes sent to a closed neuron are “lost”.

The forgetting rules are applied as follows: if the neuron σi contains exactly
s spikes, then the rule as → λ from Ri can be used, meaning that all s spikes
are removed from σi.

If a rule E/ac → ap; d of type (1) has E = ac, then we write it in the simplified
form ac → ap; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2,
can have L(E1)∩L(E2) �= ∅, it is possible that two or more rules can be applied
in a neuron, and in that case, only one of them is chosen non-deterministically.
Note however that, by definition, if a firing rule is applicable, then no forgetting
rule is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, at most one
in each step, but neurons function in parallel with each other. It is important to
notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open.
During the computation, a configuration is described by both the number of
spikes present in each neuron and by the state of the neuron, more precisely,
by the number of steps to count down until it becomes open again (this num-
ber is zero if the neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the con-
figuration where neuron σi contains ri ≥ 0 spikes and it will be open after
ti ≥ 0 steps, i = 1, 2, . . . , m; with this notation, the initial configuration is
C0 = 〈n1/0, . . . , nm/0〉.
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A computation in a system as above starts in the initial configuration. In or-
der to compute a function f : Nk −→ N, we introduce k natural numbers
n1, . . . , nk in the system by “reading” from the environment a binary sequence
z = 10n1−110n2−11 . . . 10nk−11. This means that the input neuron of Π receives
a spike in each step corresponding to a digit 1 from the string z and no spike oth-
erwise. Note that we input exactly k+1 spikes, i.e., after the last spike we assume
that no further spike is coming to the input neuron. (Another possibility is to
consider k input neurons and to introduce each ni, 1 ≤ i ≤ k, as the distance
between two spikes which enter the ith input neuron.) The result of the computa-
tion is also encoded in the distance between two spikes: we impose the restriction
that the system outputs exactly two spikes and halts (sometimes after the second
spike), hence it produces a train spike of the form 0b110r−11bb2 , for some b1, b2 ≥ 0
and with r = f(n1, . . . , nk) (the system outputs no spike a non-specified number
of steps from the beginning of the computation until the first spike).

The previous definition covers many types of systems/behaviors. If the neu-
ron σin is not specified, then we have a generative system: we start from the
initial configuration and we collect all results of computations, which can be the
distance between the first two spikes (as in [18]), the distance between all con-
secutive spikes, between alternate spikes, etc. (as in [25]), or it can be the spike
train itself, either taking only finite computations, hence generating finite strings
(as in [5], [9], etc.), or also hon-halting computations (as in [26]). Similarly, we
can ignore the output neuron and use an SN P system in the accepting mode:
a number introduced in the system as the distance between two spikes entering
the input neuron is accepted if and only if the computation halts. In the same
way we can accept input binary strings or strings over arbitrary alphabets. In
the second case, a symbol bi is taken from the environment by introducing i
spikes in the input neuron.

4 Three Examples

Not all types of SN P systems mentioned above will be discussed below, and
only some of them are illustrated in this section.

The first example, borrowed from [5], is presented in Figure 2, and it is meant
to generate binary strings.

Its evolution can be analyzed on a transition diagram as that from Figure
3, which is a very useful tool for studying systems with a bounded number of
spikes present in their neurons: because the number of configurations reachable
from the initial configuration is finite, we can place them in the nodes of a
graph, and between two nodes/configurations we draw an arrow if and only if
a direct transition is possible between them. In Figure 3, also the rules used
in each neuron are indicated, with the following conventions: for each rij we
have written only the subscript ij, with 31 being written in boldface, in order
to indicate that a spike is sent out of the system at that step; when a neuron
σi, i = 1, 2, 3, uses no rule, we have written i0, and when it spikes (after being
closed for one step), we write is.
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r31 : a → a; 0

r32 : a2 → λ

Fig. 2. The initial configuration of system Π2

We do not enter into details concerning the paths in this diagram. Any-
way, the transition diagram of a finite SN P system can be interpreted as
the representation of a non-deterministic finite automaton, with C0 being
the initial state, the halting configurations being final states, and each ar-
row being marked with 0 if in that transition the output neuron does not
send a spike out, and with 1 if in the respective transition the output neu-
ron spikes; in this way, we can identify the language generated by the sys-
tem. In the case of the finite SN P system Π2, the generated language is
L(Π2) = (0∗0(11 ∪ 111)∗110)∗0∗(011 ∪ 0(11 ∪ 111)+(0 ∪ 00)1).

The next example, given in Figure 4, is actually of a more general interest,
as it is a part of a larger SN P system which simulates a register machine.
The figure presents the module which simulates a SUB instruction; moreover, it
does it without using forgetting rules (the construction is part of the proof that
forgetting rules can be avoided – see [15]).

The idea of simulating a register machine M = (n, H, l0, lh, R) (number of
registers, set of labels, initial label, halt label, set of instructions) by an SN
P system Π is to associate a neuron σr with each register r and a neuron σl

with each label l from H (there also are other neurons – see the figure), and to
represent the fact that register r contains the number k by having 2k spikes in
neuron σr. Initially, all neurons are empty, except neuron σl0 , which contains one
spike. During the computation, the simulation of an instruction li : (OPP(r), lj , lk)
starts by introducing one spike in the corresponding neuron σli , and this triggers
the module associated with this instruction.

For instance, in the case of a subtraction instruction li : (SUB(r), lj , lk), the
module is initiated when a spike enters the neuron σli . This spike causes neuron
σli to immediately send a spike to the neurons σli1 , σli2 , and σr. If register r
is not empty, then the rule a(aaa)+/a3 → a; 0 will be applied and the spike
emitted will cause neurons σli3 , σli5 , and finally neuron σlj to spike. (In this
process, neuron σli4 has two spikes added during one step and it cannot spike.)
If register r is empty, hence neuron σr contains only the spike received from σli ,
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Fig. 3. The transition diagram of system Π2

then the rule a → a; 1 is applied and the subsequent spikes will cause neurons
σli4 , σli6 , and finally neuron σlk to spike. (In this process, neuron σli3 has two
spikes added during one step and does not spike.) After the computation of the
entire module is complete, each neuron is left with either zero spikes or an even
number of spikes, allowing the module to be run again in a correct way.

The third example deals with an SN P system used as a transducer, and it
illustrates the following result from [26]: Any function f : {0, 1}k −→ {0, 1} can
be computed by an SN P system with k input neurons (also using further 2k + 4
neurons, one being the output one).

The idea of the proof of this result is suggested in Figure 5, where a system
is presented which computes the function f : {0, 1}3 −→ {0, 1} defined by
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Fig. 4. Module SUB (simulating li : (SUB(r), lj , lk)

f(b1, b2, b3) = 1 iff b1 + b2 + b3 �= 2.

The three input neurons, σin1 , σin2 , σin3 , are fed with bits b1, b2, b3, and the
output neuron will provide, with a delay of 3 steps, the value of f(b1, b2, b3).

5 Some Results

There are several parameters describing the complexity of an SN P system:
number of neurons, number of rules, number of spikes consumed or forgot-
ten by a rule, etc. Here we consider only some of them and we denote by
N2SNPm(rulek, consp, forgq) the family of all sets N2(Π) computed as speci-
fied in Section 3 by SN P systems with at most m ≥ 1 neurons, using at most
k ≥ 1 rules in each neuron, with all spiking rules E/ac → a; t having c ≤ p, and
all forgetting rules as → λ having s ≤ q. When any of the parameters m, k, p, q
is not bounded, it is replaced with ∗. When we work only with SN P systems
whose neurons contain at most s spikes at any step of a computation (finite sys-
tems), then we add the parameter bounds after forgq. (Corresponding families
are defined for other definitions of the result of a computation, as well as for the
accepting case, but the results are quite similar, hence we do not give details
here.)
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Fig. 5. Computing a Boolean function of three variables

By NFIN, NREG, NRE we denote the families of finite, semilinear, and
Turing computable sets of (positive) natural numbers (number 0 is ignored);
they correspond to the length sets of finite, regular, and recursively enumerable
languages, whose families are denoted by FIN, REG, RE. We also invoke be-
low the family of recursive languages, REC (those languages with a decidable
membership).

The following results were proved in [18] and extended in [25] to other ways
of defining the result of a computation.

Theorem 1. (i) NFIN = N2SNP1(rule∗, cons1, forg0) = N2SNP2(rule∗,
cons∗, forg∗).

(ii) NRE = N2SNP∗(rulek, consp, forgq) for all k ≥ 2, p ≥ 3, q ≥ 3.
(iii) NSLIN = N2SNP∗(rulek, consp, forgq, bounds), for all k ≥ 3, q ≥ 3,

p ≥ 3, and s ≥ 3.

Point (ii) was proved in [18] also for the accepting case, and then the systems
used can be required to be deterministic (at most one rule can be applied in
each neuron in each step of the computation). In turn, universality results were
proved in [19] and [4] also for the exhaustive and for the non-synchronized modes
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of using the rules, respectively, but only for extended rules. The universality of
standard systems remains open for these cases.

Let us now pass to mentioning some results about languages generated by
SN P systems, starting with the restricted case of binary strings, [5]. We de-
note by L(Π) the set of strings over the alphabet B = {0, 1} describing the
spike trains associated with halting computations in Π ; then, we denote by
LSNPm(rulek, consp, forgq) the family of languages L(Π), generated by SN P
systems Π with the complexity bounded by the parameters m, k, p, q as specified
above. When using only systems with at most s spikes in their neurons (finite),
we write LSNPm(rulek, consp, forgq, bounds) for the corresponding family. As
usual, a parameter m, k, p, q, s is replaced with ∗ if it is not bounded.

Theorem 2. (i) There are finite languages (for instance, {0k, 10j}, for any k ≥
1, j ≥ 0) which cannot be generated by any SN P system, but for any L ∈ FIN ,
L ⊆ B+, we have L{1} ∈ LSNP1(rule∗, cons∗, forg0, bound∗), and if L =
{x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈ LSNP∗(rule∗,
cons1, forg0, bound∗).

(ii) The family of languages generated by finite SN P systems is strictly in-
cluded in the family of regular languages over the binary alphabet, but for any
regular language L ⊆ V ∗ there is a finite SN P system Π and a morphism
h : V ∗ −→ B∗ such that L = h−1(L(Π)).

(iii) LSNP∗(rule∗, cons∗, forg∗) ⊂ REC, but for every alphabet V = {a1, a2,
. . . ,ak} there are two symbols b, c not in V , a morphism h1 : (V ∪{b, c})∗ −→ B∗,
and a projection h2 : (V ∪ {b, c})∗ −→ V ∗ such that for each language L ⊆ V ∗,
L ∈ RE, there is an SN P system Π such that L = h2(h−1

1 (L(Π))).

These results show that the language generating power of SN P systems is rather
eccentric; on the one hand, finite languages (like {0, 1}) cannot be generated,
on the other hand, we can represent any RE language as the direct morphic
image of an inverse morphic image of a language generated in this way. This
eccentricity is due mainly to the restricted way of generating strings, with one
symbol added in each computation step. This restriction does not appear in the
case of extended spiking rules. In this case, a language can be generated by
associating the symbol bi with a step when the output neuron sends out i spikes,
with an important decision to take in the case i = 0: we can either consider b0

as a separate symbol, or we can assume that emitting 0 spikes means inserting λ
in the generated string. Thus, we both obtain strings over arbitrary alphabets,
not only over the binary one, and, in the case where we ignore the steps when no
spike is emitted, a considerable freedom is obtained in the way the computation
proceeds. This latter variant (with λ associated with steps when no spike exits
the system) is considered below.

We denote by LSNePm(rulek, consp, prodq) the family of languages L(Π),
generated by SN P systems Π using extended rules, with the parameters m, k, p, q
as above.

The next counterparts of the results from Theorem 2 were proved in [9].
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Theorem 3. (i) FIN = LSNeP1(rule∗, cons∗, prod∗) and this result is sharp,
as LSNeP2(rule2, cons2, prod2) contains infinite languages.

(ii) LSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LSNeP3(rule∗, cons∗, prod∗);
the second inclusion is proper, because LSNeP3(rule3, cons4, prod2)−REG �= ∅;
actually, LSNeP3(rule3, cons6, prod4) contains non-semilinear languages.

(iii) RE = LSNeP∗(rule∗, cons∗, prod∗).

It is an open problem to find characterizations or representations in this setup
for families of languages in the Chomsky hierarchy different from FIN, REG,
RE. We close this section by mentioning the results from [22]:

Theorem 4. There are universal computing SN P systems with (i) standard
rules and 84 neurons and with (ii) extended rules and 49 neurons, and there
are universal SN P systems used as a generators of sets of numbers with (iii)
standard rules and 76 neurons and with (iv) extended rules and 50 neurons.

These values can probably be improved (but the feeling is that this improvement
cannot be too large).

Tool-kits for handling strings or infinite sequences, on the binary or on the
arbitrary alphabet, are provided in [26] and [10]. For instance, in this latter
paper one gives constructions of SN P systems for computing the union and
concatenation of two languages generated by SN P systems, the intersection
with a regular language, while the former paper shows how length preserving
morphisms (codings) can be computed; the problem remains open for arbitrary
morphisms, Kleene ∗, inverse morphisms.

An interesting result is reported in [6]: SAT can be decided in constant time by
using an arbitrarily large pre-computed SN P system, of a very regular shape (in
what concerns the synapse graph) and with empty neurons, after plugging the
instance of size (n, m) (n variables and m clauses) of the problem into the system,
by introducing a polynomial number of spikes in (polynomially many) specified
neurons. This way of solving a problem, by making use of a pre-computed re-
source given for free, on the one hand, resembles the supposed fact that only part
of the brain neurons are active (involved in “computations”) at each time, on the
other hand, is not very common in computability and requests further research
efforts (what kind of pre-computed resource is allowed, so that no “cheating”
is possible? how the given resource should be activated? define and study com-
plexity classes for this framework).

6 Using the Rules in an Exhaustive Way

An essential difference between general P systems and SN P systems is the
fact that the latter systems use the rules in a sequential way in each neuron.
Introducing parallelism in SN P systems is not only natural from a theoretical
point of view, but also presumably useful in order to add computational efficiency
to these systems. A proposal in this respect was recently made in [19], and we
recall here some details from this paper.
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One considers SN P systems of the form introduced above, but with only one
type of rules, namely, of the form E/ac → ap; d, with the components as usual
and p also allowed to be zero – hence also the forgetting rules are controlled by
regular expressions. For all forgetting rules we impose to have d = 0 (no delay
is possible in this case – we do not consider the possibility to close the neuron
when using a forgetting rule).

However, essential now is not the form of rules, but the way they are used: in
the exhaustive way, in the following sense. If a rule E/ac → ap; d is associated
with a neuron σi which contains k spikes, then the rule is enabled (we also say
fired) if and only if ak ∈ L(E). Using the rule means the following. Assume that
k = sc + r, for some s ≥ 1 (this means that we must have k ≥ c) and 0 ≤ r < c
(the remainder of dividing k by c). Then sc spikes are consumed, r spikes remain
in the neuron σi, and sp spikes are produced and sent to the neurons σj such
that (i, j) ∈ syn (as usual, this means that the sp spikes are replicated and
exactly sp spikes are sent to each of the neurons σj). In the case of the output
neuron, sp spikes are also sent to the environment. Of course, if neuron σi has
no synapse leaving from it, then the produced spikes are lost.

The computations proceed as in the SN P systems with usual rules, and a spike
train is associated with each computation by writing 0 for a step when no spike
exits the system and 1 with a step when one or more spikes exit the system. Then,
a number is associated – and said to be generated/computed by the respective
computation – with a spike train containing at least two occurrences of the digit
1, in the form of the steps elapsed between the first two occurrences of 1 in the
spike train. Number 0 is ignored.

For an SN P system Π , we denote by Nex
2 (Π) the set of numbers computed

by Π in this way, and by N2SNP ex
m (rulek, consq, forgr) we denote the family

of all sets Nex
2 (Π) generated by SN P systems with at most m ≥ 1 neurons,

using at most k ≥ 1 rules in each neuron, with all spiking rules E/ac → ap; t
having c ≤ q, and all forgetting rules E/ac → λ having c ≤ r. When any of the
parameters m, k, q, r is not bounded, then it is replaced with ∗.

The following simple observations are rather useful:

1. If an SN P system Π has only rules of the form ac → ap; d and forgetting
rules as → λ, then in each neuron each rule can be used exactly once, hence
in this case the exhaustive mode coincides with the sequential mode.

2. There are constructions in [18] where one uses neurons with two spikes and
two rules of the form

a2/a → a; 0, a → a; n,

such that this neuron spikes twice, at interval of n steps. In the exhaustive
mode, when enabled, the first rule will consume both spikes, but the func-
tioning of the neuron in the exhaustive mode can be the same as in the
constructions from [18] if we start with three spikes and use the rules

a3/a2 → a; 0, a → a; n

(the first rule consumes two spikes and the second rule consumes the third
spike; each rule is used only once).
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Using these observations, several examples and results from [18] can be carried
to the exhausting case. In particular, this is true for the characterizations of finite
sets of numbers (they equal the sets generated by SN P systems with one or two
neurons) and for semilinear sets of numbers (their family is equal to the family
of sets of numbers generated by SN P systems with bounded neurons).

We do not enter into details, but we just mention that the examples from
Figures 3 (generating all even numbers) and 5 (generating all natural numbers)
from [18], as well as all Lemmas 9.1–9.6 from [18] are valid also for the exhaustive
way of using the rules, via the previous two observations, and this directly leads
to the two characterization results mentioned above.

Somewhat expected, also the equivalence with Turing machines is obtained:

Theorem 5. NRE = N2SNP ex
∗ (rulek, consq, forgr) for all k ≥ 5, q ≥ 5,

r ≥ 1.

The SN P systems with the exhaustive use of rules are computationally complete
also in the accepting case, even when using only deterministic systems.

Many issues remain to be investigated for this new class of SN P systems.
Practically, all questions considered for sequential SN P systems are relevant
also for the exhaustive case. We just list some of them: associating strings to
computations; finding universal SN P systems, if possible, with a small number of
neurons; handling strings or infinite sequences over binary or arbitrary alphabets
(both input and output neurons are considered); restricted classes of systems
(e.g., with a bounded number of spikes present at a time in any neuron) or
versions of output (taking k neurons as output neurons and thus producing
vectors of dimension k of natural numbers). In the bibliography below we indicate
papers dealing with each of these issues for the case of usual SN P systems.
Proof techniques from these papers might be useful also in the exhaustive case,
while the results proved in these papers should be checked to see whether their
counterparts hold true also for exhaustive SN P systems.

Another interesting issue is that of using the parallelism present in our systems
in order to solve computationally hard problems in a polynomial time. Usual SN
P systems are probably not able to do this (unless an arbitrarily large workspace
is freely available/precomputed, initiated in polynomial time, and self-activated
during the computation, as proposed in [6]). Is the parallelism of SN P systems
with the exhaustive use of rules useful in this respect?

7 Plenty of Research Topics

Many problems were already mentioned above, many others can be found in the
papers listed below, and further problems are given in [24]. We recall only some
general ideas: bring more ingredients from neural computing, especially related
to learning/training/efficiency; incorporate other facts from neurobiology, such
as the role played by astrocytes, the way the axon not only transmits impulses,
but also amplifies them; consider not only “positive” spikes, but also inhibitory
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impulses; define a notion of memory in this framework, which can be read with-
out being destroyed; provide ways for generating an exponential working space
(by splitting neurons? by enlarging the number of synapses?), in such a way to
trade space for time and provide polynomial solutions to computationally hard
problems; define systems with a dynamical synaptic structure; compare the SN
P systems used as generators/acceptors/transducers of infinite sequences with
other devices handling such sequences; investigate further systems with exhaus-
tive and other parallel ways of using the rules, as well as systems working in a
non-synchronized way; find classes of (accepting) SN P systems for which there
is a difference between deterministic and non-deterministic systems; find classes
which characterize levels of computability different from those corresponding to
finite automata (semilinear sets of numbers or regular languages) or to Turing
machines (recursively enumerable sets of numbers or languages).

We close with a more technical idea: use more general types of rules, for
instance, of the form E/an → af(n); d, where f is a partial function from natural
numbers to natural numbers (maybe with the property f(n) ≤ n for all n for
which f is defined), and used as follows: if the neuron contains k spikes such that
ak ∈ L(E), then c of them are consumed and f(c) are created, for c = max{n ∈
N | n ≤ k, and f(n) is defined}; if f is defined for no n smaller than or equal to
k, then the rule cannot be applied. This kind of rules looks both adequate from a
neurobiological point of view (the sigmoid excitation function can be captured)
and mathematically powerful.
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Press, 2005, 385–394

3. M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-related outputs of compu-
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Abstract. Tissue P systems with cell division is a computing model in
the framework of Membrane Computing based on intercellular commu-
nication and cooperation between neurons. The ability of cell division
allows us to obtain an exponential amount of cells in linear time and to
design cellular solutions to NP-complete problems in polynomial time.
In this paper we present a solution to the Subset Sum problem via a fam-
ily of such devices. This is the first solution to a numerical NP-complete
problem by using tissue P systems with cell division.

1 Introduction

In the cell-like model of P systems [6], membranes are hierarchically arranged
in a tree-like structure. Its biological inspiration comes from the morphology of
cells, where small vesicles are surrounded by larger ones. This biological structure
can be abstracted into a tree-like graph, where the root represents the skin of the
cell (i.e. the outermost membrane) and the leaves represent membranes that do
not contain any other membrane (elementary membranes). Besides, two nodes
in the graph are connected if they represent two membranes such that one of
them contains the other one.

Recently, new models of P systems have been explored. One of them is the
model of tissue P systems where the tree-like membrane structure is not consid-
ered anymore, being replaced by a general graph.

This model has two biological inspirations (see [4]): intercellular communi-
cation and cooperation between neurons. The common mathematical model of
these two mechanisms is a net of processors dealing with symbols and commu-
nicating these symbols along channels specified in advance. The communication
among cells is based on symport/antiport rules, which were introduced as com-
munication rules for P systems in [5]. In symport rules objects cooperate to tra-
verse a membrane together in the same direction, whereas in the case of antiport
rules, objects residing at both sides of the membrane cross it simultaneously but
in opposite directions.

This paper is devoted to the study of the computational efficiency of tissue
P systems with cell division. In literature different models of cell-like P systems
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have been successfully used in order to design efficient solutions to NP-complete
problems (see, for example, [2] and the references therein). These solutions are
obtained by generating an exponential amount of workspace in polynomial time
and using parallelism to check simultaneously all the candidate solutions.

From the seminal definition of tissue P systems [3,4], several research lines
have been developed and other variants have arisen (see [1] and references
therein). One of the most interesting variants of tissue P systems was presented
in [8], where the definition of tissue P systems is combined with the one of P
systems with active membranes, yielding tissue P systems with cell division. The
biological inspiration is clear: alive tissues are not static networks of cells, since
cells are duplicated via mitosis in a natural way. One of the main features of such
tissue P systems with cell division is related to their computational efficiency. In
[8], a polynomial-time solution to the NP-complete problem SAT is shown, and
in [1] a linear-time solution for the 3-COL problem was presented. In this paper
we go on with the research in this model and present a linear-time solution to
another well-known numerical NP-complete problem: the Subset Sum problem.

The paper is organised as follows: first we recall some preliminary concepts
and the definition of tissue P systems with cell division. Next, recognising tis-
sue P systems are briefly described. A linear–time solution to the Subset Sum
problem is presented in the following section, including a short overview of the
computation and of the necessary resources. Finally, some conclusions and lines
for future research are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string
u is the length of the string, and it is denoted by |u|. As usual, the empty
string (with length 0) will be denoted by λ. The set of strings of length n built
with symbols from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A
language over Σ is a subset from Σ∗. A multiset m over a set A is a pair
(A, f) where f : A → N is a mapping. If m = (A, f) is a multiset then its
support is defined as supp(m) = {x ∈ A | f(x) > 0} and its size is defined as∑

x∈A f(x). A multiset is empty (resp. finite) if its support is the empty set
(resp. finite). If m = (A, f) is a finite multiset over A, then it will be denoted as
m = {{a1, . . . , ak}}, where each element ai occurs f(ai) times. Multisets can
also be represented as strings in a natural way.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [7].

3 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [3,4] the membrane struc-
ture did not change along the computation. The main features of tissue P systems
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with cell division, from the computational point of view, are that cells obtained
by division have the same labels as the original cell, and if a cell is divided, then
its interaction with other cells or with the environment is blocked during the
mitosis process. In some sense, this means that while a cell is dividing it closes
the communication channels with other cells and with the environment. This
features imply that the underlying graph is dynamic, as nodes can be added
during the computation by division and the edges can be deleted/re-established
for dividing cells.

Formally, a tissue P system with cell division of initial degree q ≥ 1 is a tuple
of the form Π = (Γ, w1, . . . , wq, E , R, i0), where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ .
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i �= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q cells
labelled by 1, 2, . . . , q. We shall use 0 as the label of the environment, and i0 for
the output region (which can be the region inside a cell or the environment).
Despite the fact that cell-like models include an explicit description of the initial
membrane structure, this is not the case here. Instead, the underlying graph
expressing connections between cells is implicit, being determined by the com-
munication rules (the nodes are the cells and the edges indicate if it is possible
for pairs of cells to communicate directly).

The strings w1, . . . , wq describe the multisets of objects placed initially in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrarily large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object
a. The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction: when a cell is divided, the division
rule is the only one which is applied for that cell in that step; the objects inside
that cell do not move in that step.
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4 Recognising Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision prob-
lems. Let us recall that a decision problem is a pair (IX , θX) where IX is a
language over a finite alphabet (whose elements are called instances) and θX is
a total boolean function over IX .

In order to study the computational efficiency, a special class of tissue P sys-
tems is introduced in [8]: recognising1 tissue P systems. The key idea is the same
one as from cell-like recognising P systems, that were introduced in [9] as the
natural framework to study and solve decision problems within Membrane Com-
puting. Note that deciding whether an instance of a problem has an affirmative
or negative answer is equivalent to deciding if a string belongs or not to the
language associated with the problem.

In literature, recognising cell-like P systems are associated in a natural way
with P systems with input. The data related to an instance of the decision
problem need to be provided to the P system in order to compute the appropriate
answer. This is done by codifying in unary form each instance as a multiset placed
in an input membrane. The output of the computation (yes or no) is sent to the
environment. In this way, cell-like P systems with input and external output are
devices which can be seen as black boxes, in the sense that the user provides the
data before the computation starts, and then waits outside the P system until
it sends to the environment the output in the last step of the computation.

A recognising tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, Σ, w1, . . . , wq, E , R, iin, i0), where

– (Γ, w1, . . . , wq, E , R, i0) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

– The working alphabet Γ has two distinguished objects yes and no, present
in at least one copy in an initial multiset w1, . . . , wq, but not present in E .

– Σ is an (input) alphabet strictly contained in Γ .
– iin ∈ {1, . . . , q} is the input cell.
– The output region i0 is the environment.
– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

The computations of the system Π with input w ∈ Γ ∗ start from a configuration
of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w
to the contents of the input cell iin. We say that the multiset w is recognised by
Π if and only if the object yes is sent to the environment, in the last step of
all its associated computations. We say that C is an accepting (resp. rejecting)
computation if the object yes (resp. no) appears in the environment associated
with the corresponding halting configuration of C.

1 In [8] they were called recognizer tissue P systems.
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Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognising tissue P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every tissue P system Π(n) a con-
fluent condition, in the following sense: every computation of a system with
the same input multiset must always give the same answer. The pair of func-
tions (cod, s) are called a polynomial encoding of the problem in the family of P
systems.

We denote by PMCTD the set of all decision problems which can be solved
by means of recognising tissue P systems with cell division in polynomial time.

5 The Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

Next, we shall prove that the Subset Sum problem can be solved in a linear
time by a family of recognising tissue P systems with cell division. We shall
address the resolution via a brute force algorithm.

We will use a tuple (n, (w1, . . . , wn), k) to represent an instance of the problem,
where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the constant
given as input for the problem.

Theorem 1. SUBSET SUM∈ PMCTD.

Proof. Let A = {a1, . . . , an} be a finite set, w : A −→ N a weight function with
n = |A| and k ∈ N. Let g : N × N → N be a function defined by g(n, k) =
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((n + k)(n + k + 1)/2) + n. This function is primitive recursive and bijective
between N

2 and N and computable in polynomial time. Let us denote by u =
(n, (w1, . . . , wn), k), where wi = w(ai), 1 ≤ i ≤ n, the given instance of the
problem. We define the polynomially computable function s(u) = g(n, k).

We will provide a family of tissue P systems where each P system solves all the
instances of the SUBSET SUM problem with the same size. The weight function w
of the concrete instance will be provided via an input multiset determined via
the function cod(u) = {{vj

i : w(ai) = j ∧ 1 ≤ i ≤ n}} ∪ {{qk}}, where vj
i (i.e.,

j copies of object vi) represents that j is the weight of the element ai.
Next, we will provide a family of recognising tissue P systems with cell division

which solve the SUBSET SUM problem in linear time. For each (n, k) ∈ N
2 we will

consider the system Π(n, k) = (Γ, Σ, ω1, ω2, R, E , iin, i0), where

– Γ = Σ ∪ {Ai, Bi, : 1 ≤ i ≤ n}
∪ {ai : 1 ≤ i ≤ n + 
log n� + 
log(k + 1)� + 11}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ 
log n� + 
log(k + 1)� + 4}
∪ {ei : 1 ≤ i ≤ 
log n� + 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 
log(k + 1)� + 1}
∪ {b, D, p, g1, g2, f1, T, S, N, yes, no}

– Σ = {q} ∪ {vi : 1 ≤ i ≤ n}
– ω1 = a1 b c1 yes no
– ω2 = DA1 · · · An

– R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2 for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , n + 
log n� + 
log(k + 1)� + 10
r3,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/e2

i+1, 0) for i = 1, . . . , 
log n�
r7,i ≡ (2, di/di+1, 0) for i = 1, . . . , 
logn� + 
log(k + 1)� + 3
r8,i ≡ (2, e�log n�+1Bi/Bi1, 0) for i = 1, . . . , n
r9,i,j ≡ (2, Bij/B2

ij+1, 0) for i = 1, . . . , n, j = 1, . . . , 
log(k + 1)�
r10,i ≡ (2, Bi�log(k+1)�+1vi/p, 0) for i = 1, . . . , n
r11 ≡ (2, pq/λ, 0)
r12 ≡ (2, d�log n�+�log(k+1)�+4/g1f1, 0)
r13 ≡ (2, f1p/λ, 0)
r14 ≡ (2, f1q/λ, 0)
r15 ≡ (2, g1/g2, 0)
r16 ≡ (2, g2f1/T, 0)
r17 ≡ (2, T/λ, 1)
r18 ≡ (1, bT/S, 0)
r19 ≡ (1, Syes/λ, 0)
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r20 ≡ (1, an+�log n�+�log(k+1)�+11b/N, 0)
r21 ≡ (1, Nno/λ, 0)

– E = Γ − {yes, no}
– iin = 2, is the input cell
– i0 = env, is the output cell

The design is structured in the following stages:

– Generation Stage: The initial cell labelled by 2 is divided into two new cells;
and the divisions are iterated n times until a cell has been produced for each
possible candidate solution. Simultaneously to this process, two counters (ci

and ai) evolve in the cell labelled by 1: the first one controls the step in
which the communication between cells 2 starts and the second one will be
useful in the output stage.

– Pre–checking Stage: When this stage starts, we have 2n cells labelled by 2,
each of them encoding a subset of the set A. In each such a cell, as many
objects p as the weight of the corresponding subset will be generated. Recall
that there are k copies of the object q in each cell labelled by 2 (since they
were introduced as part of the input multiset).

– Checking Stage: In each cell labelled by 2, the number of copies of objects
p and q are compared. The way to do that is removing from the cell in one
step all possible pairs (p, q). After doing so, if some objects p or q remain in
the cell, then the cell was not encoding a solution of the problem; otherwise,
the weight of the subset of A encoded on the cell equals to k and hence it
encodes a solution to the problem.

– Output Stage: The system sends to the environment the right answer accord-
ing to the results of the previous stage:

• Answer yes: After the checking stage, there is a cell labelled by 2 without
objects p nor q. In this case, such a cell sends an object T to the cell 1.
This object T causes the cell 1 to expel an object yes to the environment
(see rules r18 and r20).

• Answer no: In each cell labelled by 2 there exists an object p or q. In
this case, no object T arrives to the cell labelled by 1 and an object no
is sent to the environment.

The non-determinism of this family of recognising tissue P systems with cell
division lies in the division rules. These division rules are not competitive: the
non-determinism is due to the order in which the rules are applied. When the
generation stage ends, the same configuration is reached regardless the order of
application of the division rules: 2n cells labelled by 2, each of them with the
codification of a different subset of A.

6 An Overview of the Computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed in the previous section. Let u = (n, (w1, . . . , wn), k) be an
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instance of the problem, s(u) = g(n, k) and cod(u) = {{vj
i : w(ai) = j ∧ 1 ≤

i ≤ n}}.
Next, we describe informally how the recognising tissue P system with cell

division Π(s(u)) with input cod(u) works. Let us start with the generation stage.
Recall that if a division rule is triggered, the communication rules cannot be
simultaneously applied. In this stage we have two parallel processes:

– On the one hand, in the cell labelled by 1 we have two counters: ai, which
will be used in the answer stage and ci, which will be multiplied until getting
2n copies in exactly n steps.

– On the other hand, in the cell labelled by 2, the division rules are applied.
For each object Ai (which codifies a member of the set A) we obtain two
cells labelled by 2: One of them has an element Bi and the other does not.

When all divisions have been done, after n steps, we will have 2n cells with label 2
and each of them will contain the encoding of a subset of A. At this moment,
the generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is changed by a copy of the counter c. In this way,
in the cell 1 2n copies of D will appear and, in each cell labelled by 2 there will
be an object cn+1. The occurrence of such object cn+1 in the cells 2 will produce
the apparition of two counters:

(a) The counter di lets the checking stage start, since it produces the apparition
of the objects g1 and f1 after 
log n� + 
log(k + 1)� + 4 steps.

(b) The counter ei will be multiplied for obtaining n copies of e�log n�+1 in the
step n+ 
log n�+2. Then, we trade objects e�log n�+1 and Bi against Bi1 for
each element Ai in the subset associated with the membrane. After that, for
each 1 ≤ i ≤ n we get k + 1 copies of Bi�log(k+1)�+1. Then for each element
Ai in the subset associated with the membrane we get min{k + 1, w(ai)}
copies of object p, in the step n + 
log n� + 
log(k + 1)� + 5.

The checking takes place in the step n+ 
logn�+ 
log(k+1)�+6, when all pairs
of objects p and q present in any cell labelled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding
is not exactly of weight k, then at least one object p or q will remain in the cell.
In the next step the answer stage starts. Two cases must be considered for each
cell:

– If no object p or q remain in the cell, the object f1 does not evolve, g1 evolves
to g2, and in the step n+ 
log n�+ 
log(k +1)�+8 the objects f1 and g2 are
traded by T with the environment. In the next step T is sent to the cell 1,
and in the step n+
logn�+
log(k+1)�+10, the objects T and b are sent to
the environment traded by S. Finally in the step n+
log n�+
log(k+1)�+11
the objects S and yes are sent to the environment.

– If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in
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the cell 2 after the step n + 
log n� + 
log(k + 1)� + 10. In this way, the
objects b and an+�log n�+�log(k+1)�+11 are traded by the object N with the
environment, and in the step n + 
log n� + 
log(k + 1)� + 12 the objects N
and no are sent to the environment.

6.1 Necessary Resources

Next, we show that the family Π = {Π(g(n, k)) : n, k ∈ N} defined in Theo-
rem 1 is polynomially uniform by Turing machines. To this aim we are going to
show that it is possible to build Π(g(n, k)) in polynomial time with respect to
the size of u.

It is easy to check that the rules of a system {Π(g(n, k)) : n, k ∈ N} of the
family are defined recursively from the values n and k. Besides, the necessary
resources to build an element of the family are of polynomial order with respect
to the same:

– Size of the alphabet: n · 
log(k + 1)� + 6n + 2
log(k + 1)� + 3
log n� + 28 ∈
O(n · log k)

– Initial number of cells: 2 ∈ θ(1).
– Initial number of objects: n + 6 ∈ θ(n).
– Number of rules: n·
log(k+1)�+5n+2
log(k+1)�+3
logn�+26 ∈ O(n·log k)
– Maximal length of a rule: 3.

7 Conclusions and Future Work

Natural Computing studies new computational paradigms inspired from various
well-known natural phenomena in physics, chemistry and biology. This paper
is devoted to a new field in Natural Computing: the study of the structure and
functioning of cells as living organisms able to process and generate information.

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many
results have been presented related to the computational power of membrane
devices, but up to now no implementation in vivo or in vitro has been carried out.
This paper deals with the study of algorithms to solve well-known problems and
in this sense it is a theoretical result, mainly related to computational efficiency.
Moreover, this paper represents a new step in the study of algorithms in the
framework of P systems because it exploits tissue P Systems with Cell Division
(a variant poorly studied) to solve an NP-complete problem.

The basic idea is to consider a distributed and parallel computing device,
structured as the cells of a tissue, by means of arrangement of cells where various
chemicals (we call them objects, to be free of any interpretation) evolve according
to local reaction rules. Because the chemicals from the compartments of a cell
are swimming in an aqueous solution, the data structure we consider is that
of a multiset – a set with multiplicities associated with its elements. Also, in
analogy with what happens in a cell, the rules are applied in a parallel and a
non–deterministic manner.
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P systems are computational devices whose power has to be studied in a
deeper extent. In the last years, several papers have explored this power, both in
the framework of cell-like P systems and tissue-like P systems with membrane
creation. These papers have shown that NP-complete problems are solvable
(in polynomial time) by families of recognising P systems in such models. In
this paper we have shown that numerical NP-complete problems can also be
solved (in polynomial time) by families of recognising tissue P systems with
Cell Division, in a uniform way. The specific techniques for designing solutions
to concrete problems (generation, evaluation, checking, and output stages) are
quite different from a P system model to another, so the simulation of one model
in the other one is not a trivial question.

Other lines to follow in the future are the extension of the techniques presented
in this paper for the study of other numerical NP-complete problems and to
develop a software for simulating these computational processes.
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Abstract. We study a Păun’s conjecture concerning the unsolvability of
NP–complete problems by polarizationless P systems with active mem-
branes in the usual framework, without cooperation, without priorities,
without changing labels, using evolution, communication, dissolution and
division rules, and working in maximal parallel manner. We also analyse
a version of this conjecture where we consider polarizationless P systems
working in the minimally parallel manner.

1 Introduction

Every deterministic Turing machine working in polynomial time can be simu-
lated in polynomial time by a family of recognizing P systems using only basic
rules, that is, evolution, communication, and rules involving dissolution [14]. If a
decision problem is solvable in polynomial time by a family of recognizing P sys-
tems (using only basic rules), then there exists a deterministic Turing machine
solving it in polynomial time [20]. As a consequence of these results, the class
of all decision problems solvable in polynomial time by this kind of P systems
is equal to the standard complexity class P [5]. For that reason, recognizing P
systems constructing in polynomial time an exponential workspace, expressed in
the number of objects, cannot solve NP–complete problems in polynomial time
(unless P = NP).

Hence, in order to efficiently solve NP–complete problem by P systems it
seems necessary to be able to construct an exponential workspace (expressed
by the number of membranes) in polynomial time. These models abstract the
way of obtaining new membranes through the processes of mitosis (membrane
division) and autopoiesis (membrane creation).

P systems with active membranes (using division rules) have been successfully
used to efficiently solve NP–complete problems. The first solutions were given
constructing a P system associated with each instance of the problem due to the
systems lack of an input membrane. Actually, we say that this kind of solutions
are semi–uniform if the following is true: (a) there exists a deterministic Turing
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machine working in polynomial time which constructs the P system processing
an instance of the problem (we say the family of P systems associated with all
the instances is polynomially uniform by Turing machines); and (b) the instance
of the problem has an affirmative answer if and only if every computation of the
P system associated with it is an accepting computation (we say the P system
is confluent).

The first semi–uniform polynomial–time solutions of computationally hard
decision problems were given by Gh. Păun [11,12], C. Zandron et al. [20], S.N.
Krishna et al. [7], and A. Obtulowicz [8]. In 2003, P. Sosik [19] gave a semi–
uniform polynomial–time solution to QSAT, a well known PSPACE–complete
problem.

There is another way to solve decision problems by P systems when we con-
sider the possibility to have an input membrane in the systems in which we can
introduce objects before the system starts to work. In this case, all instances of a
decision problem having the same size (according to a prefixed polynomial time
criterion) are processed by the same system.

P systems with active membranes have also been successfully used to design
uniform polynomial–time solutions to some well-known NP–complete problems,
such as SAT [17], Subset Sum [15], Knapsack [16], Partition [6], and the Common
Algorithmic Problem [18].

All papers mentioned above deal with P systems with three polarizations using
only division of elementary membranes (in [19] also division for non–elementary
membranes are permitted), and working in the maximal parallelism in using
the rules, that is, in each step, the assignment of objects to the rules to be
applied is maximal, no further rule can be applied in any region. The number of
polarizations can be decreased to two [1] without loss of efficiency.

It seems clear that the usual framework of P systems with active membranes
to solve decision problems is too powerful from the complexity point of view.
Then, it would be interesting to analyse which features allows to P systems
with active membranes, but without polarizations, to still get polynomial–time
solutions to computationally hard problems, and what features, once removed,
only allows to obtain polynomial–time solutions to tractable problems, in the
classical sense.

The present paper is a contribution to the problem of describing borderlines
between tractability and intractability in terms of descriptional resources re-
quired in (recognizing) membrane systems using division rules.

The paper is organized as follows. In the next section we present the Păun’s
conjecture concerning polarizationless P systems with active membranes with
three electrical charges and working in the maximally parallel mode. Also we
provide some partial solutions to this conjecture by using the notion of depen-
dency graph associated with a P system. Section 3 is devoted to formulate a
new version of the Păun’s conjecture, addressing P systems working in the min-
imally parallel mode. We give some partial solutions to this new version. Some
conclusions and open problems are given in the last Section.
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2 A Păun’s Conjecture

Usual P systems with active membranes use three electrical charges for mem-
branes, controlling the application of the rules which, basically, can be of the
following types: evolution rules, by which single objects evolve to a multiset of
objects, communication rules, by which an object is introduced in or expelled
from a membrane, maybe modified during this operation into another object,
dissolution rules, by which a membrane is dissolved, under the influence of an
object, which may be modified into another object by this operation, and mem-
brane division rules (both for elementary and non-elementary membranes, or
only for elementary membranes).

Definition 1. A P system with polarizationless active membranes of the initial
degree n ≥ 1 is a tuple of the form Π = (Γ, H, μ, M1, . . . , Mn, R, ho), where:

1. Γ is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. μ is a membrane structure, consisting of n membranes having initially neu-

tral polarizations, injectively labeled with elements of H;
4. M1, . . . , Mn are strings over Γ , describing the multisets of objects placed in

the n initial regions of μ;
5. R is a finite set of developmental rules, of the following forms:

(a) [a → v]h, for h ∈ H, a ∈ Γ, v ∈ Γ ∗ (object evolution rules).
(b) a[ ]h → [ b]h, for h ∈ H, a, b ∈ Γ (in communication rules).
(c) [a ]h → b[ ]h, for h ∈ H, a, b ∈ Γ (out communication rules).
(d) [a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules)
(e) [a ]h → [ b ]h[ c ]h, for h ∈ H, a, b, c ∈ Γ (weak division rules for ele-

mentary or non-elementary membranes).
(a) ho ∈ H or ho = env indicates the output region (in this case, usually ho

do not appear in the description of the system).

Also, we can consider rules of the form [ [ ]h1 [ ]h2 ]h3 → [ [ ]h1 ]h3 [ [ ]h2 ]h3 , where
h1, h2, h3 are labels: if the membrane with label h3 contains other membranes
than those with labels h1, h2, these membranes and their contents are duplicated
and placed in both new copies of the membrane h3; all membranes and objects
placed inside membranes h1, h2, as well as the objects from membrane h3 placed
outside membranes h1 and h2, are reproduced in the new copies of membrane
h3. These rules are called strong division rules for non–elementary membranes.

Using the maximally parallel manner, at each computation step (a global clock
is assumed) in each region of the system we apply the rules in such a way that
no further rule can be applied to the remaining objects or membranes. In each
step, each object and each membrane can be involved in only one rule.

A halting computation provides a result given by the number of objects
present in region ho at the end of the computation; this is a region of the system
if ho ∈ H (and in this case, for a computation to be successful, exactly one
membrane with label ho should be present in the halting configuration), or it is
the environment if ho = env.
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We denote by AM0 the class of recognizing polarizationless P systems with
active membranes, and we denote by AM0(α, β), where α ∈ {−d, +d} and β ∈
{−ne, +new, +nes}, the class of all recognizing P systems with polarizationless
active membranes such that: (a) if α = +d (resp. α = −d) then dissolution
rules are permitted (resp. forbidden); and (b) if β = +new or +nes (resp.
β = −ne) then division rules for elementary and non–elementary membranes,
weak or strong (respectively only division rules for elementary) are permitted.

The class of all decision problems solvable in uniform (resp. semi–uniform)
way, and in polynomial time by a family of recognizing membrane systems is
denoted by PMCR (resp. PMC∗

R)

Proposition 1. For each α ∈ {−d, +d}, β ∈ {−ne, +new, +nes}, and ε = ∗, λ,
we have:

1. PMCAM0(α,β) ⊆ PMC∗
AM0(α,β)

2. PMCε
AM0(α,−ne) ⊆ PMCε

AM0(α,+new)

3. PMCε
AM0(α,−ne) ⊆ PMCε

AM0(α,+nes)

4. PMCε
AM0(−d,β) ⊆ PMCε

AM0(+d,β)

where ε = ∗ (respectively ε = empty string) means that the complexity classes
are associated with semi–uniform (respectively, uniform) solutions.

At the beginning of 2005, Gh. Păun (problem F from [13]) wrote: My favorite
question (related to complexity aspects in P systems with active membranes and
with electrical charges) is that about the number of polarizations. Can the polar-
izations be completely avoided? The feeling is that this is not possible – and such
a result would be rather sound: passing from no polarization to two polarizations
amounts to passing from non–efficiency to efficiency.
That is, formally we can formulate the called conjecture of Păun as follows:
The class of all decision problems solvable in polynomial time by polarizationless
P systems with active membranes using evolution, communication, dissolution
and division rules for elementary membranes (working in the maximally parallel
mode) is equal to the class P

This conjecture can be expressed in terms of complexity classes in P systems as
follows: P = PMCAM0(+d,−ne) = PMC∗

AM0(+d,−ne)

Next, we study possible answers to the conjecture of Păun.

2.1 A Partial Affirmative Answer

Let us recall that using the concept of dependency graph associated with a P
system, a partial affirmative answer to the Păun’s conjecture can be given.

Let Π be a P system whose working alphabet is Γ and the set of labels is
H , and we denote by env the label of the environment. The dependency graph
associated with the system Π is the directed graph GΠ whose nodes are the
pairs (a, h) ∈ Γ × (H ∪ {env}) such that the object a in membrane (maybe the
environment) labelled by h either triggers a rule or it is produced by a rule, and
((a, h), (a′, h′)) is an arc in the graph if there exists a rule r of Π such that the
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object a in membrane labelled by h produces the object a′ in membrane (maybe
the environment) labelled by h′ by the application of rule r.

It can be proved that there exists a deterministic Turing machine that con-
structs the dependency graph, GΠ , associated with Π , in polynomial time, that
is, in a time bounded by a polynomial function depending on the total number
of rules and the maximum length of the rules (see [4]).

Let ΔΠ be the set whose elements are the pairs (a, h) ∈ Γ × (H ∪{env}) such
that there exists a path (within the dependency graph) from (a, h) to (yes, env).
Having in mind that the reachability problem (see chapter 1 from [10]) can be
solved by a search algorithm running in polynomial (quadratic) time, there exists
a deterministic Turing machine that constructs the set ΔΠ in polynomial time,
that is, in a time bounded by a polynomial function depending on the total
number of rules and the maximum length of the rules (see [4]).

Let Π = {Π(n) : n ∈ N} be a family of recognizing P systems with input
membranes (not using dissolution rules) solving a decision problem X , in a uni-
form way. Let (cod, s) be a polynomial encoding associated with that solution.
An instance u of the problem will be accepted by the system Π(s(u)) with input
cod(u) if and only if there is an object a in a membrane h of the initial configu-
ration of the system such that there exists a path in the associated dependency
graph from (a, h) to (yes, env). As a consequence of the previous results we have
the following:

Theorem 1. For each β ∈ {−ne, +new, +nes}, we have P = PMCAM0(−d,β).

Similar characterizations of P can be obtained when we deal with semi–uniform
solutions in the framework of recognizing polarizationless P systems with active
membranes, and where dissolution rules are forbidden. The proofs are similar,
it is enough to consider the system Π(u), for each instance u of the decision
problem, instead of the system Π(s(u)) with input the multiset cod(u).

Theorem 2. For each β ∈ {−ne, +new, +nes}, we have P = PMC∗
AM0(−d,β).

2.2 A Partial Negative Answer

It has been shown ([4]) that the class of decision problems solvable in polyno-
mial time in a semi–uniform way by families of recognizing polarizationless P
systems with active membranes where dissolution rules are permitted, and us-
ing division rules for elementary and non–elementary membranes, contains the
standard complexity class NP.

Theorem 3. We have the following:

1. SAT ∈ PMC∗
AM0(+d,+nes)

2. NP ∪ co–NP⊆ PMC∗
AM0(+d,+nes)

Moreover, it has been obtained an efficient uniform solution for the QSAT–
problem ([2]) in this framework.
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Theorem 4. We have the following:

1. QSAT ∈ PMCAM0(+d,+nes).
2. PSPACE ⊆ PMCAM0(+d,+nes).

Hence, in the framework of polarizationless P systems with active membranes
and working in the maximally parallel mode, dissolution rules play a crucial role
from the computational efficiency point of view. Specifically, if dissolution rules
are forbidden then it is not possible to solve NP–complete problems in polyno-
mial time (unless P = NP). Nevertheless, if dissolution rules are permitted then
it is possible to efficiently solve computationally hard problems.

That is, the Păun’s conjecture has a (partial) negative answer (assuming that
P �= NP). Nevertheless, the answer will be (partially) affirmative if dissolution
rules are forbidden.

3 A New Version of a Păun’s Conjecture

Recently, in [3] a more relaxed strategy of using the rules was introduced, the
so-called minimal parallelism: in each region where at least a rule can be applied,
at least one rule must be applied (if there is no conflict with the objects), without
any other restriction. This introduces an additional degree of non-determinism
in the system evolution.

P systems with active membranes working in the minimally parallel mode
means the following:

– All the rules of any type involving a membrane h form the set Rh, this means
all the rules of the form [a → v]h, all the rules of the form a[ ]h → [ b]h,
and all the rules of the form [a]h → z and [a]h → [ b]h[ c]h, with the same
h, constitute the set Rh.

– If a membrane h appears several times in a given configuration of the system,
then for each occurrence of the membrane we consider a different set Rh.

– Then, in each step, from each set Rh associated with each membrane labelled
by h ∈ H , from which at least a rule can be used, at least one rule must be
used (if there is no conflict with the objects; for example, if we have only
an object a in membrane h and we have an evolution rule [a → b]h and a
send–in rule a[ ]h′ → [ c]h′ , being h′ the label of a membrane immediately
inside membrane h, then we can apply at least a rule from Rh and from Rh′ ,
but we will apply only one between these two rules).

Of course, as usual for P systems with active membranes, each membrane and
each object can be involved in only one rule, and the choice of rules to use and
of objects and membranes to evolve is done in a non-deterministic way. In each
step, the use of rules is done in the bottom-up manner (first the inner objects and
membranes evolve, and the result is duplicated if any surrounding membrane is
divided).

In this kind of P systems still universality and semi–uniform polynomial–time
solutions to SAT were obtained in the new framework by using P systems with
active membranes, with three polarizations [3].
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Theorem 5. The SAT problem can be solved in a semi–uniform way and in a
linear time by polarization P systems with active membranes, without dissolution
rules and using (weak) division for non–elementary membranes, and working in
the minimally parallel mode.

Next, we define new classes of P systems related to AM0. Let α ∈ {−d, +d}, β ∈
{−ne, +new, +nes} and γ ∈ {m, M, md, Md}. Then we denote by AM0(α, β, γ)
the class of recognizing P systems with polarizationless active membranes such
that:

• α = +d: dissolution rules are permitted.
• α = −d: dissolution rules are forbidden.
• β = +new: division rules for elementary and (weak) non–elementary mem-

branes are permitted.
• β = +nes: division rules for elementary and (strong) non–elementary mem-

branes are permitted.
• β = −ne: only division rules for elementary membranes are permitted.
• γ = m: working in the minimally parallel mode.
• γ = md: working in the deterministic minimally parallel mode.
• γ = M : working in the maximally parallel mode.
• γ = Md: working in the deterministic maximally parallel mode.

Proposition 2. We have the following:

1. PMCε
AM0(α,β,md) ⊆ PMCε

AM0(α,β,m)

2. PMCε
AM0(α,β,m) ⊆ PMCε

AM0(α,β,M)

3. PMCε
AM0(α,β,Md) ⊆ PMCε

AM0(α,β,M)

where ε = ∗ or ε = empty string.

We can formulate the Păun’s conjecture in P systems working in the minimally
parallel mode.
The class of all decision problems solvable in polynomial time by polarizationless
P systems with active membranes using evolution, communication, dissolution
and division rules for elementary membranes (working in the minimally parallel
mode) is equal to the class P

This conjecture can be expresses in terms of complexity classes in P systems as
follows: P = PMCAM0(+d,−ne,m) = PMC∗

AM0(+d,−ne,m).
Next, we study possible answers to the new version of Păun’s conjecture.

3.1 A Partial Affirmative Answer

Let us recall that through the concept of dependency graph associated with a
P system, we have given a partial affirmative answer to the Păun’s conjecture
related with P systems working in the maximally parallel mode, and without
using dissolution rules.

Let us also recall that, in order to give that answer, the main property that
the dependency graph associated with a P system must satisfy is the following:
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every computation of the system is an accepting computation if and only if there
exists an object a in an initial membrane (labelled by h) of the system such that
there exists a path (within the dependency graph) from (a, h) to (yes, env).

When a polarizationless P system with active membranes works in the min-
imally parallel mode, in each transition step we can think that objects are as-
signed to rules, non–deterministically choosing the rules and the objects assigned
to each rule, according to the semantic of the minimally parallel mode. The ob-
jects which remain unassigned are left where they are, and they are passed
unchanged to the next configuration (and belonging to the same membrane be-
cause dissolution rules are not permitted). So, the above property is satisfied by
the computations of this kind of P systems working in the minimally parallel
mode (without using dissolution rules) because we can pass from a node (a, h)
to another node (a′, h′) in the dependency graph if and only if there exists a
transition step producing (a′, h′) from (a, h).

Hence, we have a negative answer to the to the Păun’s conjecture related with
P systems working in the minimally parallel mode (deterministically or not), and
without using dissolution rules.

Theorem 6. P = PMCε
AM0(−d,β,md) = PMCε

AM0(−d,β,m), where ε = ∗ or
ε = empty string.

3.2 A Partial Negative Answer

Next, we give a semi–uniform linear–time solution to SAT by using polarization-
less P systems with active membranes working in the minimally parallel mode,
and now using dissolution rules.

Theorem 7. SAT can be solved in a semi–uniform way and in a linear time by
polarizationless P systems with active membranes, using evolution, communica-
tion, dissolution and (weak) division for non–elementary membrane rules, and
working in the deterministic minimally parallel mode.

Proof. Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in conjunctive normal
form, such that each clause Cj , 1 ≤ j ≤ m, is of the form Cj = yj,1 ∨ · · · ∨
yj,kj , kj ≥ 1, for yj,r ∈ {xi, ¬xi | 1 ≤ i ≤ n}, and being {x1, . . . , xn} the set of
variables of ϕ. For each i = 1, 2, . . . , n, let us denote

t(xi) = {Cj | there is r, 1 ≤ r ≤ kj , such that yj,r = xi},

f(xi) = {Cj | there is r, 1 ≤ r ≤ kj , such that yj,r = ¬xi}.

That is, t(xi) (respectively, f(xi)) is the set of clauses which assume the value
true when xi is true (resp. when xi is false). Obviously, these sets have at most
m elements.

We construct a recognizing P system

Π(ϕ) = (Γ, H, μ, M0, M1, . . . , Mm, Mp, Mq, Mr, Ms, Ms′ , R)
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associated with the formula ϕ as follows:

Γ = {ai, fi, ti | 1 ≤ i ≤ n} ∪ {cj, dj | 1 ≤ j ≤ m} ∪ {pi | 1 ≤ i ≤ 2n + 7}
∪ {qi | 1 ≤ i ≤ 2n + 1} ∪ {ri | 1 ≤ i ≤ 2n + 5} ∪ {b1, b2, y, yes, no},

H = {0, 1, 2, . . . , m, p, q, r, s, s′},

μ = [s[s′ [p ]p[0[q ]q[r]r[1 ]1[2 ]2 . . . [m ]m]0]s′ ]s,

Mp = p1, Mq = q1, Mr = r1, M0 = a1, Ms = Ms′ = Mj = λ, (1 ≤ j ≤ m)

The set of evolution rules, R, consists of the following rules:

(a) [ pi → pi+1]p , for all 1 ≤ i ≤ 2n + 6
[ qi → qi+1]q , for all 1 ≤ i ≤ 2n

[ ri → ri+1]r , for all 1 ≤ i ≤ 2n + 4
(b) [ai]0 → [fi]0[ ti]0 , for all 1 ≤ i ≤ n

[ fi → f(xi)ai+1]0 and [ ti → t(xi)ai+1]0, for all 1 ≤ i ≤ n − 1,
[ fn → f(xn)]0 ; [ tn → t(xn)]0

(c) cj [ ]j → [ cj ]j and [ cj ]j → dj , for all 1 ≤ j ≤ m.

(d) [ q2n+1 ]q → q2n+1[ ]q ; [ q2n+1 → bm
1 ]0

(e) b1[ ]j → [ b1]j ; and [ b1]j → b2, for all 1 ≤ j ≤ m,
[ b2 ]0 → b2; [ p2n+7 ]p → p2n+7[ ]p ; [p2n+7 ]s′ → no[ ]s′ ; [no ]s → no[ ]s

[ r2n+5 ]r → r2n+5 ; [ r2n+5 ]0 → y[ ]0 ; [ y ]s′ → yes ; [yes ]s → yes[ ]s

An overview of the computation of Π(ϕ)

The rules of type (a) are used for evolving general counters pi, qi and ri

in membranes labelled by p, q and r, respectively, making possible the correct
synchronization.

In parallel with these rules, the non–elementary membrane 0 evolves by means
of the rules of the type (b). In step 2i − 1 (1 ≤ i ≤ 2n), object ai produces the
division of the membrane 0 (with fi, ti corresponding to the truth values false,
true, respectively, for variable xi). In step 2i we introduce inside membrane 0
the clauses satisfied by xi or ¬xi, respectively. Let us recall that when we divide
membrane 0, all inner objects and membranes are replicated. At the end of this
phase, all 2n truth assignments for the n variables are generated and they are
encoded in membranes labeled by 0.

In parallel with the process of membrane division, in the odd steps (until step
2n + 1), if a clause Cj is satisfied by the previously expanded variable, then the
corresponding object cj enters membrane j, by means of the first rule of the type
(c), producing their dissolution in the next step by means of the second rule of
that type and sending objects dj to membrane 0.

In step 2n + 2, in each membrane 0, the counters qi and ri follow evolving
and the second rule of the type (d) produces m copies of the object b1.

Thus, the configuration C2n+2 of the system obtained after 2n + 2 steps, con-
sists of 2n copies of membrane 0, each of them encoding a truth assignment
of the variables associated with ϕ, and containing the membrane q empty, the
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membrane r with the object r2n+3, possible objects cj and dj , 1 ≤ j ≤ m, as
well as copies of only membranes with labels 1, 2, . . . , m corresponding to clauses
which were not satisfied by the truth assignment generated in that copy of mem-
brane 0. Also, in that configuration the membrane p contains the object p2n+3

and membranes s′ and s are empties.
Hence, formula ϕ is satisfied if and only if there is a membrane 0 where all

membranes 1, 2, . . . , m have been dissolved. In order to check this last condition,
we proceed as follows.

In step 2n+3 we use the first rule of the type (e) which introduces objects b1 in
each membrane j which has not been dissolved. In parallel, the counters p and r
follow evolving. In step 2n+4 objects b1 in membrane j (in each such membrane
appearing in the configuration C2n+2) dissolve these membranes producing object
b2 in membrane 0. Therefore, the presence of objects b2 in membrane 0 of the
configuration C2n+4 means that the truth assignment encoded by that membrane
makes the formula false.

In step 2n + 5 the counter r2n+5 exits from membrane r and, simultaneously,
each membrane 0 containing an object b2 is dissolved by the third rule of the
type (e). Hence, formula ϕ is satisfied if and only if in the configuration C2n+5

there exists a membrane 0 that has not been dissolved.
In step 2n + 6, the counter pi evolves to p2n+7 in membrane p, and if there is

a membrane 0 that has not been dissolved, the object r2n+5 sends to membrane
s′ an object y. On the contrary, only the counter pi evolves.

In step 2n + 7 the counter p2n+7 exits from membrane p to membrane s′, by
applying the first rule of the type (f). Moreover, in that step, if the formula ϕ is
satisfiable then an object y dissolves the membrane s′ by applying the sixth rule
of the type (f) producing an object yes in the skin, that in step 2n + 8 is sent
to the environment; and the system halts. On the contrary, if membrane s′ has
not been dissolved, in step 2n+8 by applying the second rule of the type (f) the
object p2n+7 exits from membrane s′ producing an object no in the skin, and in
step 2n + 9 sends to the environment an object no; then, the system halts.

The system Π(ϕ) uses 9n + 2m + 18 objects, m + 6 initial membranes, con-
taining in total 4 objects, and 8n + 4m + 21 rules. The length of any rule is
bounded by m + 3. Clearly, all computations stop (after at most 2n + 9 steps)
and all give the same answer, yes or no, to the question whether formula ϕ is
satisfiable.

Corollary 1. NP ∪ co–NP ⊆ PMC∗
AM0(+d,+new,md).

As a consequence of this result, we have polarizationless P systems with ac-
tive membranes, using dissolution rules and (weak) division for non–elementary
membranes, and working in the deterministic minimally parallel mode are able
to give semi–uniform solutions of NP–complete problems. That is, we have a
(partial) negative answer to the new version of the Păun’s conjecture.

The following picture describes the results obtained until now related to
Păun’s conjecture in both modes, where −u (resp. +u) means semi–uniform
(resp. uniform) solutions, −ne (resp. +ne) means using division only for elemen-
tary membranes (resp. division for elementary and non–elementary membrane,
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strong in the maximal parallelism and weak in the minimal parallelism). Through
this graph, we try to specify whether or not it is possible to solve computation-
ally hard problems by recognizing P systems of the class associated with each
node. The direction of each arrow shows a relation of inclusion, and each blue
node provides an open question.
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Minimal
Deterministic

P P
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4 Conclusions and Open Problems

A conjecture of Păun, related to the impossibility to solve NP–complete prob-
lems in polynomial–time by means of polarizationless P systems with active
membranes, is studied in this paper. Partial solutions are given within the usual
framework of P systems working in the maximally parallel mode. As a conse-
quence of the results obtained, the crucial role played by dissolution rules when
we try to solve computationally hard problems, is highlighted.

Besides, a new version of that conjecture is formulated, this time associated
to polarizationless P systems with active membranes working in the minimally
parallel mode. Other partial solutions also arise from this new version and once
again, dissolution rules are shown to be a singular ingredient which gives a
borderline between efficiency (the possibility of solving computationally hard
problems using feasible membrane computing resources) and non–efficiency.

Finally, we propose some open problems.
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1. NP ∪ co–NP ⊆ PMCε
AM0(+d,−ne,m)?

2. NP ∪ co–NP ⊆ PMCAM0(+d,+new,md)?
3. PMCAM0(α,β,m) ⊆ PMCAM0(α,β,Md)?
4. Consider other ingredients in the framework AM0(−d, β, γ) that permit to

solve NP–complete problems.
5. Study the computational efficiency of the class AM0 with evolution rules

with length 2 (or with communication rules without evolution of objects).
6. Study the computational efficiency of the class AM0 without evolution

rules (or without communication rules).
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Abstract. Microfluidic systems, which constitute a miniaturization of
a conventional laboratory to the dimensions of a chip, are expected to
become the key support for a revolution in the world of biology and
chemistry. This article proposes a parallel algorithm that uses DNA and
such a distributed microfluidic device to generate scheduling grids in
polynomial time. Rather than taking a brute force approach, the algo-
rithm presented here uses concatenation and separation operations to
gradually build the DNA strings that represent a Multiprocessor Task
scheduling problem grids. The microfluidic device used makes for an au-
tonomous system, also enabling it to solve the problem without the need
of external control.

1 Introduction

In 1994 Leonard Adleman proved empirically what Richard Feynman had postu-
lated several decades earlier: the chemical and electrical properties of matter give
molecules the natural ability to make massively parallel calculations. So, for the
first time, Adleman used DNA strands to solve an instance of the Hamiltonian
path problem on a 7-node graph [1]. This fired the starting gun for a new branch
of research known as biomolecular computing. A year later, Richard Lipton put
forward a DNA computational model that generalized the techniques employed
by Adleman, which he used to solve an instance of the SAT [2]. Since then,
many researchers have exploited DNA’s potential for solving computationally
difficult problems (class NP-complete). Two good examples can be found in [3]
and [4]. NP-complete problems have two prominent features: 1) there are as yet
no polynomial algorithms to solve them, and 2) all their ”yes” instances can be
verified efficiently [5].

Microfluidic systems, also called microflow reactors or ”lab-on-a-chip” (LOC),
are passive fluidic devices built on a chip layer which is used as a substrate. They
are basically composed of cavities or microchambers between which liquid can
move along the microchannels that link them. Therefore, controlled chemical
reactions can be carried out in each cavity independently, that is, in parallel.
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These systems are tantamount to the miniaturization of a conventional labora-
tory to the dimensions of a chip and are expected to become the key support for
a revolution in the world of biology and chemistry. New emerging disciplines, as
synthetic biology and systems biology, demand computer scientists to contribute
in the resolution of new challenging problems such as drug discovery, the under-
standing of computational processes in cells or the analysis of genetic pathways
controlling biological processes in living organisms. In all those problems, mi-
crofluidic systems implementing parallel algorithms may play an important role
[6,7]. These needs have lead to a fast development of microfluidic-based tech-
nology in the last years. For instance, a microfluidic chip for automated nucleid
acid purification from bacterial or mammalian cells is constructed in [8]. The
use of microfluidic systems to implement automated DNA sequencing devices is
also been considered in [9]. Furthermore, the role played by valves and pumps in
these kind of devices is studied in [10,11]. Finally in [12], the possibility of im-
plementing microfluidic memory and control devices is presented. Besides that,
some work also exists using microfluidic systems to attack computationally hard
problems. Thus, a microflow reactor is used in [13] to solve the Minimum Clique
Problem using a brute force strategy and codifying each possible subgraph as
a DNA strand. Furthermore, two microfludic systems each implementing DNA
algorithms are proposed in [14] and [15] for the Hamiltonian path problem and
the shortest common superstring problem, respectively. Moreover, a microfluidic
DNA computer is used in [16] to solve the satisfability problem.

The present work deals with a classic scheduling problem: optimal scheduling
of tasks with precedence constraints in a multiprocessor scenario. This paper
starts from the previous resolution of the problem of getting all independents
sets of a dependency graph, and proposes a parallel DNA algorithm using a
microfluidic device to build optimal scheduling grids. To do so, it uses a con-
structive approach that has nothing to do with traditional brute force strategies,
gradually putting together correct solutions and removing invalid results along
the way. The remainder of this article is organized as follows. Section 2 presents
the problem. Section 3 describes the parallel algorithm and the microfluidic sup-
port system. An example of how the proposed system runs is given in section 4.
Finally, section 5 sets out the final remarks.

2 Multiprocessor Task Scheduling Problem

Let T be a set of tasks with single execution times. Let G(T, E) be a direct
acyclical graph (dag), which we will term dependency graph that establishes a
partial order ≺ on T . Each graph node represents a task, each arc a relation
of precedence between two tasks. If there is a path between two tasks ti and
tj , tj is said to be a descendant of ti and, therefore, its execution will not be
able to start until ti has been run (ti ≺ tj). Finally, let the positive integers M
and d be the number of the processors and the scheduling deadline, respectively.
A schedule for the tasks of T on M processors that respects the partial order
established by the graph G is a function f : T → ZZ+ that satisfies [17]:
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If (ti ≺ tj), then f(ti) < f(tj) (1)
For all u ≤ d, |ti : f(ti) = u| ≤ M (2)

This schedule’s end time will be maxti∈ T f(ti). A schedule of |T | tasks on
M processors that respects the dependency graph can actually be represented
as a scheduling grid A of size N × M , (with N ≤ |T |) where each element
A(k, mr) = ti, (1 ≤ k ≤ N), (1 ≤ r ≤ M) indicates that task ti has been
scheduled to run on processor mr at time k (ti ∈ T ∪ ∅, where the symbol ∅
represents the null process). A scheduling grid A will be valid if it meets the
following conditions: a) it does not contain repeated elements (with exception of
the null process ∅), b) it contains all the tasks in the set T (it is complete) and
c) it satisfies both the constraints expressed in (1) and (2). A valid grid will be
optimal if it also maximises the schedule’s parallelism, that is, it has the least
possible number of rows Figure 1.

Fig. 1. Dependency graph associated with the set of tasks T = {1, 2, 3, 4, 5} together
with an optimal scheduling grid for a two-processor scenario m1 and m2

To achieve such maximum parallelism in a schedule, it is essential to observe
the partial order ≺ between the tasks established by the graph G. We know
that if a task tj is the descendant of another task ti, then tj will not be able
to be executed in parallel with (or, of course, before) ti. If we call two tasks
without a relation of precedence in the partial order ≺ independent, then the
maximum set of tasks that can be run in parallel with a given task ti is made up
of the maximum independent set of tasks containing ti. Therefore, the greatest
possible parallelism between all the problem tasks is given by all the maximal
independent sets obtained from the dependency graph. An independent set si is
maximal if there is no other greater set v such that si ⊂ v.

Getting all these si is an NP-complete problem. There are multiple classical
algorithms that have addressed its solution as it has also been found to be
a problem besetting some genomics efforts, such as mapping genome data [18].
However, the proposals for solving it from the molecular or membrane computing
paradigms are very few. For instance, [19] proposes a P system with active
membranes to solve it. Recently, our group has developed a DNA algorithm
to solve the minimum clique cover problem for graphs, which is an equivalent
problem, albeit on the complementary graph [20].
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The algorithm proposed below is based on this result, that is, on getting the
maximal independent sets si from the dependency graph to design a system
capable of building optimal scheduling grids for our problem. For the example
graph of Figure 1, those sets are: s1 = {1, 2}, s2 = {1, 3, 4} and s3 = {5}.

3 A Parallel DNA Algorithm and a Microfluidic Device

3.1 System Design

We use a single DNA sequence to codify each task of the set T . A scheduling
grid A is represented as a task sequence, composed of N subsequences of M
elements each, where N is the schedule size (number of rows in A) and M is the
number of processors. An example is shown in Figure 2.

Fig. 2. Representation of a scheduling grid in a DNA strand by means of row concate-
nation. (N = 3 and M = 2).

The present algorithm builds the possible scheduling grids in parallel (concate-
nation operation), removing any that are invalid as they are detected (separation
operation). Both operations are based on DNA’s natural property of hybridiza-
tion through complementarity. Additionally, these operations are supported in
this case not by test tubes but by the microfluidic device’s microchambers and
microchannels around which the scheduling grids under construction circulate.

We propose a two-layer system architecture S. It is composed of three different
subsystems Si, each of which is associated with one of the maximum independent
sets si of G. In turn, each subsystem Si contain several interconnected nodes
vj , which correspond to the tasks of their associated set si. If |si| < M , a new
element v∅, corresponding to the null process, is added to the subsystem Si. This
way, symbols ∅ can be used to fill the grid positions that cannot house any other
task in the set T . Figure 3 a) illustrates this point.

The system S works as follows. All its subsystems Si operate in parallel and
synchronously to add whole rows to the scheduling grids they receive. Once
the respective row has been added, each Si sends the resulting grids to their
neighbouring subsystems which continue the operation. This process is done N
times until the grid is complete (with N ≤ |T |). Within a subsystem Si, a row
is generated in M steps that are taken by its nodes vj working in parallel to
add, one by one, each of the M tasks of which that row is composed. The total
number of steps that it takes to build the scheduling grids in the system S is,
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Fig. 3. a) Diagram of the two-layer system S associated with the example in Fig.
1. It is composed of three subsystems each with several nodes: S1 = {v1, v2}, S2 =
{v1, v3, v4}, S3 = {v5, v∅}. b) Design of the microfluidic device for the system S shown
in Fig. 3 a). Each element vj is composed of a filter chamber Fj and a concatenation
chamber Cj . Additionally, all the subsystems Si have an inlet chamber Ij and an outlet
chamber Oi.

therefore, N × M . The system stops when it detects that the scheduling grids
already contain all the tasks of the set T . For this to be possible, those grids
(DNA strands) need to be sequenced after each iteration of system S.

In the following, we detail how the microfluidic device has been designed
to implement the functionality described. Each of the elements vj making up a
subsystem Si is composed of a filter chamber Fj and a concatenation chamber Cj .
Additionally, each subsystem Si has an inlet chamber Ii and an outlet chamber
Oi. All the chambers linked by microchannels have pumps to circulate the fluid
in the direction of the arrows (Fig. 3 b)). The function and connectivity of each
chamber type of the proposed device is:

– Filter Chamber (Fj): This chamber receives the strings from the chambers
Cp of all the neighbouring vp or from the inlet chamber Ii of the subsystem
Si. It retains the strings that already contain the task associated with vj

(repeats) or any of its descendent tasks. It sends the other strands to its
associated concatenation chamber Cj .

– Concatenation Chamber (Cj): This chamber receives the strings from its
associated Fj chamber. It concatenates the task associated with vj with the
strings. It sends the resulting strands to the chambers Fp of all its neigh-
bouring vp or to the outlet chamber Oi of the subsystem Si.

– Inlet Chamber (Ii): This chamber receives and concentrates the flow of
strands from the chambers Or of the neighbouring subsystems Sr. This way
all filtering chambers Fj of the the subsystem Si are loaded orderly.
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– Outlet Chamber (Oi) : This chamber concentrates the strands from all the
concatenation chambers Cj of the subsystem Si. This way those strands can
be sent orderly to the inlet chambers Ir of the neighbouring subsystems Sr.

3.2 Algorithm

It is assumed that the filtering and concatenation operations take one unit of
time. The outputs of each chamber Fj are considered to be available at the inlet
to the Cj chambers in that unit of time. Furthermore, the concentration time of
all the outputs of the chambers Cj in the outlet chamber Oi is assumed to be
one, as is the distribution time of the content of the inlet chamber Ii to all the
filter chambers Fj of the subsystem Si:

1. Step (t = 0). Initial system loading:

– Put enough strands matching the task associated with vj and its descen-
dent tasks into the filter chambers Fj of each Si, (except in F∅).

– Put enough copies of the strand of the task associated with vj , and
enough copies of the auxiliary strands and enzymes to allow concatena-
tion into the concatenation chambers Cj of each subsystem Si.

– Put enough copies of the strands of all the tasks associated with vj of
that subsystem into the inlet chambers Ii of each subsystem Si.

2. Steps (t = 1) to (t = N). While the strings are incomplete:

– For (n = 1) to (n = M) do

• Computation: For all elements vj of all subsystems Si in parallel, do
a filter operation in Fj(n) and a concatenate operation in Cj(n).

• Internal communication: For all vj of all subsystems Si in parallel,
pump the results of chambers Cj(n) to the chambers Fp(n+1) of their
neighbouring vp:

Input(Fp (n+1)) =
⋃

∀ p�=j

Output(Cj (n))

– Load chambers Oi with the content of all chambers Cj of all subsystems
Si in parallel:

Oi(t) =
⋃

j

Cj(t)

– Communication between subsystems: Load the chambers Ii of all the
subsystems Si with the flow from the chambers Or of the neighbouring
subsystems Sr in parallel. Divide the content of Ii among the chambers
Fj of all their vj :

Ii(t+1) =
⋃

∀ r �=i

Or(t)
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3. Step (t = N + 1). System output:

– The chambers Oi already contain the strings of length N × M , with all
the tasks of T . The system stops and returns the resulting schedules
output.

Output(S) =
⋃

i

Oi(t)

This is, therefore, a polynomial algorithm in terms of number of tasks and proces-
sors. It takes N × M steps (with N ≤ |T |) to build the problem-solving grids.

4 Example

The system completes a total of 3×2 = 6 iterations before stopping and returning
the problem-solving scheduling grid:

– t0 (Initial loading of Ii and Fi)

I1(t0) = {1, 2} I2(t0) = {1, 3, 4} I3(t0) = {5, ∅}

– t1 (Execution of the subsystems Si and final loading of Oi)

S1 S2 S3

F1 = I1(t0) F1 = I2(t0) F5 = I3(t0)
C1 = {21} C1 = {31, 41} C5 = {∅5}
F2 = I1(t0) F3 = I2(t0) F∅ = I3(t0)
C2 = {12} C3 = {13, 43} C∅ = {5∅}

F4 = I2(t0)
C4 = {14, 34}

O1(t1) = {12, 21} O2(t1) = {31, 41, 13, 43, 14, 34} O3(t1) = {5∅, ∅5}

– t2 (Communication between subsystems Si (loading of Ii and of Fj). Exe-
cution of subsystems Si)

I1(t2) = {31, 41, 13, 43, 14, 34, 5∅, ∅5}
I2(t2) = {12, 21, 5∅, ∅5}
I3(t2) = {12, 21, 31, 41, 13, 43, 14, 34}

S1 S2 S3

F1 = I1(t2) F1 = I2(t2) F5 = I3(t2)
C1 = {431, 341} C1 = {−} C5 = {125, 215, 315, 415,
F2 = I1(t2) F3 = I2(t2) 135, 435, 145, 345}
C2 = {5∅2, ∅52} C3 = {123, 213} F∅ = I3(t2)

F4 = I2(t2) C∅ = {12∅, 21∅, 31∅, 41∅,
C4 = {124, 214} 13∅, 43∅, 14∅, 34∅}
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– t3 (Execution of the subsystems Si and final loading of Oi)

S1 S2 S3

F1 = C2(t2) F1 = C3(t2) + C4(t2) F5 = C∅(t2)
C1 = {−} C1 = {−} C5 = {12∅5, 21∅5, 31∅5, 41∅5, 13∅5,
F2 = C1(t2) F3 = C1(t2) + C4(t2) 43∅5, 14∅5, 34∅5}
C2 = {−} C3 = {1243, 2143} F∅ = C5(t2)

F4 = C1(t2) + C4(t2) C∅ = {125∅, 215∅, 315∅, 415∅, 135∅,
C4 = {1234, 2134} 435∅, 145∅, 345∅}

O1(t3) = {−}
O2(t3) = {1243, 2143, 1234, 2134}
O3(t3) = {12∅5, 21∅5, 31∅5, 41∅5, 13∅5, 43∅5, 14∅5, 34∅5, 125∅, 215∅, 315∅,

415∅, 135∅, 435∅, 145∅, 345∅}

– t4 (Communication between subsystems Si (loading of Ii and of Fj). Exe-
cution of subsystems Si)

I1(t4) = {1243, 2143, 1234, 2134, 12∅5, 21∅5, 31∅5, 41∅5, 13∅5, 43∅5, 14∅5,
34∅5, 125∅, 215∅, 315∅, 415∅, 135∅, 435∅, 145∅, 345∅}

I2(t4) = {12∅5, 21∅5, 31∅5, 41∅5, 13∅5, 43∅5, 14∅5, 34∅5, 125∅, 215∅, 315∅,
415∅, 135∅, 435∅, 145∅, 345∅}

I3(t4) = {1243, 2143, 1234, 2134}
S1 S2 S3

F1 = I1(t4) F1 = I2(t4) F5 = I3(t4)
C1 = {−} C1 = {−} C5 = {12435, 21435, 12345, 21345}
F2 = I1(t4) F3 = I2(t4) F∅ = I3(t4)
C2 = {−} C3 = {−} C∅ = {1243∅, 2143∅1234∅, 2134∅}

F4 = I2(t4)
C4 = {−}

– t5 (Execution of subsystems Si and final loading of Oi)

S1 S2 S3

F1 = C2(t4) F1 = C3(t4) + C4(t4) F5 = C∅(t4)
C1 = {−} C1 = {−} C5 = {1243∅5, 2143∅5, 1234∅5,
F2 = C1(t4) F3 = C1(t4) + C4(t4) 2134∅5}
C2 = {−} C3 = {−} F∅ = C5(t4)

F4 = C1(t4) + C3(t4) C∅ = {12435∅, 21435∅, 12345∅,
C4 = {−} 21345∅}

O1(t5) = {−}
O2(t5) = {−}
O3(t5) = {1243∅5, 2143∅5, 1234∅5, 2134∅5, 12435∅, 21435∅, 12345∅, 21345∅}

– t6 (End of execution. Results output)
When the algorithm finished, we got eight strings codifying eight combina-
tions of the problem-solving scheduling grid:
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5 Concluding Remarks

This article proposes a parallel algorithm that uses DNA and a distributed mi-
crofluidic device to generate scheduling grids in polynomial time. Microfluidic
systems are passive fluidic devices built on a chip layer which is used as a sub-
strate. They contain cavities, microchannels, pumps and valves that allow con-
trolled chemical reactions to be carried out independently, that is, in parallel.

The algorithm described in this paper takes a constructive approach based
on concatenation and filter operations to get optimal scheduling grids. This uses
fewer strings than would be necessary if we tried to generate those grids by brute
force. Although, from the computational point of view, a tough combinatorial
problem has to be solved beforehand, this algorithm constitutes an interesting
approach to the possibilities brought by microfluidic systems inherent paral-
lelism. From now on, with the advent of synthetic and systems biology, computer
scientists biologists and chemists will deal toguether with the resolution of new
and challenging problems, in which microfluidic systems implementing parallel
algorithms may play an important role.

The evolution of these systems since Adleman’s and Lipton’s early experi-
ments prove that they constitute a promising and highly interesting technology
for implementing distributed DNA algorithms. The structure of microfluidic sys-
tems can be exploited to design topologies, and these topologies can then be used
to implement automated bioalgorithms on a miniaturized scale, as shown in this
paper.
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202 M. Garćıa-Arnau, D. Manrique, and A. Rodŕıguez-Patón
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Abstract. In certain classes of chemical reaction networks (CRN), there
may be two stable states. The challenge is to find a model of the CRN
such that the stability properties can be predicted. In this paper we
consider the problem of building a P-system designed to simulate the
CRN in an attempt to determine if the CRN is stable or bistable. We
found that for the networks in [2] none of the bistable CRN would have
a bistable P-system by stoichiometry alone. The reaction kinetics must
be included in the P-system model; the implementation of which has
been considered an open problem. In this paper we conclude that a P-
system for a CRN in m reactants and n products has at most 2(m2+mn)
membranes and 6(m2+mn) rules. This suggests that P-system models of
a chemical reaction network, including both stoichiometry and reaction
kinetics can be built.

1 Introduction

Craciun et al [2] considered the problem of understanding and characterizing
enzyme driven chemical reaction networks (CRNs) that exhibit bistability - the
capability that a CRN has to switch between two or more stable states. There is
evidence that metabolic pathways can exhibit bistability, i.e., chemical signaling
that causes the network to switch between two different stable steady states.

The common understanding of bistability is that there is a pathway in the
network where the product of one reaction inhibits or promotes another reaction.
Craciun et al argue that that bistability can result from very simple chemistry:
Common enzymatic mechanisms and mass action kinetics have the capacity to
demonstrate bistability in certain situations. By capacity, we mean that there
exists combinations of rate constants and substrate supply rates that the CRN
has at least two stable states.

Craciun et al develop a model called the species-reaction, or SR graph that
models relationships between each species and the reactions in which it is a
reactant or product. The main result of the paper [2] is a theorem that relates
the number and type of cycles in the graph to the number of steady states for
the CRN.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 203–213, 2007.
� Springer-Verlag Berlin Heidelberg 2007
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If it is the case that there is a relationship between a given CRN and a
description of the network architecture (such as the species-reaction graph in
[2]), then it is reasonable to assume that there is a P system that simulates the
chemical reaction network and that this simulation can be used to experimentally
determine if there are multiple steady states for the CRN. Determining whether
or not a CRN has the capacity for bistability using the SR graph amounts to
finding cycles in the graph. Clearly, such a computation must be computable by
a P-system. The only question that remains is (1) the particular type of P-system
and (2) the representation of the CRN.

There are two parts to the description of a CRN: The stoichiometry (the
mol balance) and the mass balance. Both have a precise relationship to the
network structure, but the dynamic behavior of CRNs are governed by mass-
action kinetics. Although the obvious plan of attack would be to model the
CRN by the mass-action kinetics, it remains an unsolved problem as to how to
implement this model [5].

In [1], Cazzaniga and colleagues study the behavior of P systems based on
the Gillespie algorithm [4] for solving mass-action dynamics of chemical reaction
networks. They compare a multi-compartmental approach with a dynamic prob-
abilistic approach. In the former, the authors assume that the Gillespie algorithm
runs in each compartment and that the assumptions have all been satisfied. In
the latter algorithm, multiple, synchronized processes each running Gillespie’s
algorithm simulate the chemical reaction network. Cazzaniga et al use the quo-
rum sensing problem as an example and show the results for implementations
of both algorithms. While the results were substantively the same, the authors
point out that the multi-compartmental approach has the distinct advantage of
a single time stream and therefore system behavior. While the parallel design is
computationally appealing, it isn’t necessarily the best approach for reaching a
descriptive model.

In [7] Jimenez and colleagues study P systems based on mass-action dynamics,
which should mirror the (multi-compartmental) Gillespie approach in [1]. The
rules in this model allow for reactions to take place with a rate constant k.
Jimenez et al associate probabilities with each rule that are based on mass-
action kinetics. Presumably, the authors are referring to the Gillespie algorithm,
but it is not clear from the paper. They, too, use the Vibrio Fisheri quorum
sensing problem as an example of their model. Jimenez et al also demonstrate
the quorum sensing behavior, albeit with smaller populations. It is not clear if
the semantics of their rules follow that of the Gillespie algorithm [4].

While much work has been done in the area of P systems with mass action
rules, the number of examples for which they have been applied has been limited.
Jimenez and co-workers applied their algorithm to the problem of the EGFR
signaling cascade [8], but there are not too many other instances of how these
models can be applied to real biochemical problems.

Our goal in this paper is to apply the model of P system with rule semantics
based on mass action kinetics to the problem of analyzing the stability of enzyme
driven chemical reaction networks. The data is from Craciun et al [2] and the
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simulator is based on the algorithm of Romero-Campero and Gheorghe [3]; we
have used both Scilab and MATLAB implementations. If the rule semantics are
truly mass-action dynamics, then with a sufficiently large number of trials, the
networks should exhibit uni-stable or bistable behavior, as appropriate.

2 P-System Models of CRN Stoichiometry

None of the implementations reviewed permit fractional transport; this is in
part the open problem outlined by Paun [5] on the implementation of ordinary
differential equations. Therefore, we shall refer to these systems as P systems
with rule semantics based on mass-action kinetics are really rules with semantics
based on stoichiometry.

Given that the SR graphs of Craciun et al are not based on mass-action
kinetics, but are based on the relationships of chemical entities to the reaction
in which they participate and that these models show some promise for showing
the capacity for bistability, it is reasonable to consider P-systems as models of
these CRNs since they do not require mass-action kinetics. Also, the SR graph
bears a close relationship to the stoichiometric relationships of the CRN and it
is these relationships that we will implement in a P-system. Thus, we consider
instead a P-system model of a CRN based on the stoichiometry of the network.

The PNAS article by Craciun hints that stoichiometric relationships can be
used to determine if a CRN is stable or bistable. Their method is based on
network models of the CRN, which suggests that simulation or analysis of the
dynamic behavior is not necessary; another way of putting this would be that the
results suggest that a static analysis of the CRN is both necessary and sufficient.

Our first question was to determine whether or not a P system model of the
CRN stoichiometry can be used to determine if the CRN is stable, or bistable
as in some of the cases in [2]. We used a stochastic model of P systems, based on
the work of [1,7] to implement the stoichiometric simulation. This implementation
is a multi-compartment Gillespie algorithm that was originally used to solve the
quorum sensing problem. In the current problem, a single compartment model was
used with rules that are the stoichiometry from [2] as shown in Table 1 below.

Figure 1 shows the results of a six minute simulation of the fourth CRN, the
first of nine that exhibits bistability. The two stable states for CRN 4 are in Table
2.We repeated this simulation a number of times and there was no simulation in
which the output tended toward the second state; in each case, the state of the
P system tended toward the first steady state.

The networks in Table 1 are 1 compartment each. The difficulty with simulat-
ing these systems in overcoming the problem of modeling the replenishment of
the substrate and inhibitor during the simulation. Our solution to this problem
was to run the simulation for a short period of time, replenish the substrate and
then continue the simulation for the unit of time during which there is no replen-
ishment. The reaction and replenishment rates are given in the supplementary
material to [2].
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Table 1. Chemical Reaction Networks and their bistability from [2]

Network Bistability

1 E + S

k1→
←
k2

ES
k3→ E + P No

2 E + S

k1→
←
k2

ES
k3→ E + P E + I

k4→ EI No

3 E + S

k1→
←
k2

ES k3→ E + P ES + I
k4→ ESI No

4

E + S

k1→
←
k2

ES k3→ E + P E + I

k4→
←
k5

EI

ES + I

k6→
←
k7

ESI
k8→
←
k9

EI + S

Yes

5 E + S1

k1→
←
k2

ES1 S2 + ES1

k3→
←
k4

ES1S2
k5→ E + P No

6

E + S1

k1→
←
k2

ES1 E + S2

k3→
←
k4

ES2

S2 + ES1

k5→
←
k6

ES1S2

k7→
←
k8

S1 + ES2 ES1S2
k9→ E + P

Yes

Table 2. The steady state concentrations for the bistable CRN number 4 from [2]

Species Steady State 1 Steady State 2

E 0.1875 2.3135 E-15
S 1 1096.6331
I 1 1
P 1733.2661 637.6330

Table 3. Mass-action kinetics for the fourth chemical reaction network in [2]

[Ṡ] = −k1[E][S] + k2[ES ] + k8[ESI ] − k9[EI ][S]

[Ė] = −k1[E][S] + k2[ES ] + k3[ES ] − k4[E][I ] + k5[EI ]

[İ] = −k4[E][I ] + k5[EI ] − k6[ES ][I ] + k7[ESI ]

[ĖS ] = k1[E][S] − k2[ES ] − k3[ES ] − k4[ES ][I ] + k5[ESI ]

[ĖI ] = k4[E][I ] − k5[EI ] + k8[ESI ] − k9[EI ][S]

[ ˙ESI ] = k6[ES ][I ] − k7[ESI ] − k8[ESI ] + k9[EI ][S]

[Ṗ ] = k3[ES ]
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Fig. 1. Substrate and Product concentration as a function of time for CRN 4. The
product concentration reaches the steady state concentration of 1733.2661. The stair-
case substrate concentration is due to the replenishment.

3 P-System Models of Mass-Action Kinetics

Because of the restricted model of mass-action kinetics, fractional mass trans-
port cannot occur and chemical reaction networks that should exhibit bistable
behavior do not. The problem with implementing P-system models is that the
P-system (such as [1,7]) has mass transfer of whole, or integer units.

This returns us to Paun’s open problem X in [5]. In order to model true
mass action kinetics, there must exist a model in which fixed or floating point
arithmetic us used to represent the real numbers in the mass-action kinetics.
We considered a model of fixed point arithmetic in our Gillespie mass-action P
system, but regardless of the resolution, i.e., regardless of the number of fixed
point digits, the simulation of the fourth CRN in Table 1 showed convergence
to the first of the two steady states.

Although we have no proof, we conjecture that a P-system simulation based on
stoichiometry, with or without fixed point representation of the rate constants,
cannot simulate bistable behavior exhibited by the underlying CRN. Although
we can argue that the P-system simulates mass action, it does not simulate
mass-action kinetics because the P-system does not implement multiplication1.

1 One might argue that the additions are simulated by the transfer of a molecule
between compartments.
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The table below shows the mass-action kinetic rate laws for the first bistable
reaction network being considered, number 4 in [2]. In any of these differential
equations, the mass transfer requires computing the product of the rate constants
and the concentrations. The Gillespie algorithm P-system, or any P-system for
that matter, simulates mass transfer based on the rates alone, not multiplied by
concentrations of the constituent species.

4 Computational Complexity of Mass-Action Kinetic
P-Systems

These empirical results and the analysis suggest that mass transfer simulation
based on stoichiometry is insufficient for modeling kinetics. P-system kinetic
models could be developed if there is a way to implement the arithmetic opera-
tions in the kinetics, meaning can one implement the (generic) operation ki[S]
in a P-system. This P-system will still have rule semantics based on Gillespie [4].
We hope to show that this is indeed the case, and the number of compartments
and the number of rules have an upper bound that is a polynomial in the number
of reactants and the number of products in a chemical reaction network. In this
section, we lay out the argument.

In what follows, we assume that a multiplication can be implemented in a P-
system with 2 membranes and 6 rules and that an addition can be implemented
in a P-system that has 1 membrane and 1 rule [9]. Furthermore, we shall assume
that a chemical reaction network

A + B → C (1)
A → B + C (2)

in which the species B is both a reactant and a product shall not occur unless
one of the reactions is part of a reversible reaction. That is, we shall assume
that no chemical species can occur as both a reactant and a product in a given
chemical reaction. First we shall describe our notation

– Let C be a system of k chemical reactions, |C| = k
– Let S be the set of chemical species in these reactions;
– Let R ⊆ S be the set of reactants = {r1, r2, r3, . . . , rR}
– Let P ⊆ S be the set of products = {p1, p2, p3, . . . , pP }
– Let ri ∈ R and pi ∈ P
– Let e be the non-empty set {ri,pi} of reactants and products for a chemical

reaction in the set C = {{r1, p1}, {r2, p2}, {r3, p3} . . . {rk, pk}}
– Let mk to be the number of reactants for the first k reactions:

mk = |r1 ∪ r2 ∪ . . . ∪ rk| and let nk be the number of products in these first
k reactions: nk = |p1 ∪ p2 ∪ . . . ∪ pk|

Then mk+1 = |r1 ∪ r2 ∪ . . . ∪ r(k+1)| and nk+1 = |p1 ∪ p2 ∪ . . . ∪ p(k+1)|
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There are three variables that describe the size of the CRN: The number of
reactants m, the number of products n and the number of reactions k. First
we show that as the size of the CRN increases, the number of reactants and/or
products must increase. The consequence is that the bound on the size of the P-
system as a function of the size of the CRN need only be expressed as a function
of m and n, with k being subsumed in the analysis.

Lemma 1. If a chemical reaction ek+1 is added to the system such that |C ∪
ek+1| = k + 1, then both mk and nk are monotonically increasing with limits
limk→∞ mk = limk→∞ nk = |S|. That is, any increase in the number of
reactions in a system C must lead to an increase in the total number of reactants
and/or the total number of products in the system until mk = nk = |S|.

Proof.

Part A: The base case of two reactions
Suppose that the system C has two reactions e1 and e2. If both reactions have

the same set of species, r1 ∪ p1 = r2 ∪ p2, then either r1 �= r2, p1 �= p2 or both
since otherwise, they would be the same reaction e1. There are three cases to
consider for each of m and n:

– If m1< m2 then there is an additional unique reactant in e2 and therefore
the total number of reactants has increased.

– If m1 = m2 and since e1 �= e2 then n1 < n2 and therefore the total
number of products has increased.

– The case where m1 > m2 cannot occur since it implies that |r1 ∪ r2| < |r1|,
which says at least r2 = ∅ which cannot occur.

– If n1<n2 then there is an additional unique product in e2 and therefore the
total number of products has increased.

– If n1 = n2 and since e1 �= e2 then m1 < m2 and therefore the total
number of reactants has increased.

– The case where n1 > n2 cannot occur since it implies that |p1 ∪p2| < |p1|,
which says at least p2 = ∅, which cannot occur.

Thus, we have shown that any increase in the number of reactions in a system
C must lead to an increase in the total number of reactants and/or the total
number of products in the system.

Part B: The induction step
Consider now the case of adding a reaction to a system C where |C| = k > 2.

Neither the set of reactants rk+1 nor the set of products pk+1 can be the empty
set.

Suppose we add a new reaction ek+1 = {rk+1, pk+1} such that the products
in the set pk+1 have already appeared in C , then nk = nk+1 . Then, there
must be an increase in the number of reactants, mk+1 > mk until mk+1 =
|S|. Therefore, either the number of reactants has increased, or the number of
reactants has reached the limit |S|.
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Suppose we add a new reaction ek+1 = {rk+1, pk+1} such that the reactants
in the set rk+1 have already appeared in C , then mk = mk+1 . Therefore,
there must be an increase in the number of products, nk+1 > nk until nk+1 =
|S|. Therefore, either the number of products has increased, or the number of
products has reached the limit |S|.

Lastly, suppose we add a new reaction ek+1 = {rk+1, pk+1} such that
mk+1 > mk and nk+1 > nk . Thus, the number of reactants and products has
increased, or the number of reactants and products has reached the limit |S|.

Therefore, for each increase in k, there is an increase in either m or n or both.
An increase in the number of reactions in a system C leads to an increase in the
total number of reactants and/or the total number of products in the system
until mk = nk = |S|.

Theorem 1. A P system with k reactions of m reactants and n products will
require at most 2(m2 + mn) membranes and 6(m2 + mn) rules to compute the
multiplications in the reaction rate equations.

Proof. The consequence of Lemma 1 is that one need not consider the number
of reactions in a system C, but only the total number of unique reactants and
products in the system. Therefore, we can prove the statement above by induc-
tion on m and n only.

Part A: The base case m = n = 1
Suppose there is one reaction A → B with the reaction rate equations d[B]

dt =
k1[A] and d[A]

dt = −k1[B] . Without regard for the sign of the rate constant, there
is one multiplication in each equation. A P-system for a single multiplication
has 2 membranes and 6 rules; this CRN requires 4 membranes and 12 rules as
predicted by the theorem.

Part B: The induction step
Suppose we have a system C for which the theorem holds. We now add 1

reactant, 1 product or both.

Adding 1 reactant: If a new reactant is added to the system C , then there is
a new reaction rate equation (RRE) that is added to the system. Also, there
is now an additional multiplication in the original RREs as the concentration
of the new species is an additional term in the product of the reactants. This
additional multiplication will introduce a change to the P system model of the
system C:

The system C has 2(m2 +mn) membranes, and with the additional reactant:
2(m2

0 + m0 ∗ n) + 2(m0 + n + m0 + 1) = 2((m + 1)2 + (m + 1)n)
2(m2

0 + m0 ∗ n + m0 + n + m0 + 1) = 2((m + 1)2 + (m + 1)n)
2(m2

0 + 2 ∗ m0 + 1 + m0 ∗ n + n) = 2((m + 1)2 + (m + 1)n)
2((m0 + 1)2 + (m0 + 1)n) = 2((m + 1)2 + (m + 1)n)



P System Models of Bistable, Enzyme Driven Chemical Reaction Networks 211

The system C has 6(m2 + mn) rules and with the additional reactant:
6(m2

0 + m0 ∗ n) + 6(m0 + n + m0 + 1) = 6((m + 1)2 + (m + 1)n)
6(m2

0 + m0 ∗ n + m0 + n + m0 + 1) = 6((m + 1)2 + (m + 1)n)
6(m2

0 + 2 ∗ m0 + 1 + m0 ∗ n + n) = 6((m + 1)2 + (m + 1)n)
6((m0 + 1)2 + (m0 + 1)n) = 6((m + 1)2 + (m + 1)n)

Adding 1 product: If a new product is added to the system C, then there is a
new reaction rate equation that is added to the system. Also, there is now an
additional multiplication in the original RREs as the concentration of the new
species is an additional term in the product of the (reaction) products. This
additional multiplication will introduce a change to the P system model of the
system C:

The system C has 2(m2 + mn) membranes and with the additional product:
2(m2

0 + m0 ∗ n) + 2 ∗ m0 = 2(m2 + m(n + 1))
2(m2

0 + m0 ∗ n + m0) = 2(m2 + m(n + 1))
2(m2

0 + m0(n + 1)) = 2(m2 + m(n + 1))

The system C has 6(m2 + mn) rules and with the additional product:
6(m2

0 + m0 ∗ n) + 6(m0) = 6((m + 1)2 + (m + 1)n)
6(m2

0 + m0 ∗ n + m0) = 6((m + 1)2 + (m + 1)n)
6(m2

0 + m0(n + 1)) = 6((m + 1)2 + (m + 1)n)
6((m0 + 1)2 + (m0 + 1)n) = 6((m + 1)2 + (m + 1)n)

Adding 1 reactant and 1 product: If a new reactant and a new product are both
added to the system C , then there is a new reaction rate equation for each. Also,
there are now additional multiplications in the original RREs as the concentra-
tion of the new species are additional terms in the product of the (reaction)
reactants or products, respectively. This additional multiplication will introduce
a change to the P system model of the system C:

The system C has 2(m2 + mn) membranes, and with the additional reactant
and product:

2(m2
0 + m0 ∗ n0) + 2(m0 + m0 + 1 + n0 + m0 + 1) =

2((m + 1)2 + (m + 1)(n + 1))
2(m2

0 + m0 ∗ n0 + m0 + m0 + 1 + n0 + m0 + 1) =
2((m + 1)2 + (m + 1)(n + 1))

2(m2
0 + 2 ∗ m0 + 1 + m0 ∗ n0 + n0 + m0 + 1) =

2((m + 1)2 + (m + 1)(n + 1))
2((m0 + 1)2 + (m0 + 1)(n0 + 1)) = 2((m + 1)2 + (m + 1)(n + 1))

The system C has 6(m2 + mn) rules, and with the additional reactant and
product:
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6(m2
0 + m0 ∗ n0) + 6(m0 + m0 + 1 + n0 + m0 + 1) =

6((m + 1)2 + (m + 1)(n + 1))
6(m2

0 + m0 ∗ n0 + m0 + m0 + 1 + n0 + m0 + 1) =
6((m + 1)2 + (m + 1)(n + 1))

6(m2
0 + 2 ∗ m0 + 1 + m0 ∗ n0 + n0 + m0 + 1) =

6((m + 1)2 + (m + 1)(n + 1))
6((m0 + 1)2 + (m0 + 1)(n0 + 1)) = 6((m + 1)2 + (m + 1)(n + 1))

Thus the theorem holds. 	


There is not as straightforward a rule for the additional addition operations as
there is for multiplications. This is because the number of additions depends
on the number of reactions in which a particular specie appears. It is clear,
however, that the number of rules and membranes required for an addition is
less than those required for multiplications. Based on the assumption that each
specie appears only once in each reaction, then there is an upper bound on the
number of additions in each ODE in the mass-action kinetics. Therefore, the
number of membranes and rules required to implement the additions for the
mass-action kinetics is also polynomial in the number of reactants, products and
rules. It is possible to develop a P system that models both stoichiometry and
true mass-action kinetics.

5 Conclusions

The use of P-systems to model chemical and biochemical systems has been stud-
ied for some time. Although the limitations have been understood [5], there have
been several attempts to develop models that engender mass-action kinetics [1,7].
Although the papers suggest that the semantics are mass-action, the rules in
these systems do not permit for fractional mass transport.

This is born out by the present application, using mass-action P-systems to
simulate enzyme driven chemical reaction networks that exhibit bistability [2].
We found that there is at least one case where the network is bistable, but the
mass-action P-system could only reach one of the two steady states. There is
clearly a limitation to these stoichiometric mass-action models.

To fully implement mass-action kinetics, the P-system would have to imple-
ment all of the operations to solve the ODEs that model the kinetics. In this
paper we considered the representation of the ODEs, which would require multi-
plications and additions that are a function of the number of reactants, products
and reactions. The main result of this paper is that the number of multiplica-
tions and additions have polynomial bounds and therefore, can be computed in
a P-system.

The plan for future work includes implementing the complete stoichiometric
and mass-action P-system and to demonstrate that these P-systems can demon-
strate the bistability of the networks such as those in [2]. Clearly, elucidating
other non-linear properties of chemical reaction networks is a topic worthy of
further consideration.
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Abstract. Further Division of Partition Space (FDPS) is a novel tech-
nique for neural network classification. Partition space is a space that is
used to categorize data sample after sample, which are mapped by neural
network learning. The data partition space, which are divided manually
into few parts to categorize samples, can be considered as a line segment
in the traditional neural network classification. It is proposed that the
performance of neural network classification could be improved by using
FDPS. In addition, the data partition space are to be divided into many
partitions, which will attach to different classes automatically. Exper-
iment results have shown that this method has favorable performance
especially with respect to the optimization speed and the accuracy of
classified samples.

Keywords: Classification, neural network, partition space, further
division.

1 Introduction

Classification is an important research area in data mining. In supervised classi-
fication tasks, a classification model is usually constructed according to a given
training set. Once the model has been built, it can map a test data to a certain
class in the given class set. Many classification techniques including decision tree
[1, 2], neural network (NN) [3], support vector machine (SVM) [4, 5], rule based
classifiers systems etc. have been proposed. Among these techniques, decision
tree is simple and easy to be comprehended by human beings. SVM is a new
machine learning method developed on the Statistical Learning Theory. SVM
is gaining popularity due to many attractive features, and promising empirical
performance. SVM is based on the hypothesis that the training samples obey a
certain distribution which restricts its application scope. Neural network classifi-
cation, which is supervised, has been proved to be a practical approach with lots
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of success stories in several classification tasks. However, its training efficiency
is usually a problem, which is the current focus of our research in this paper.

In conventional neural network classification, the partition space is a line
segment between 0 and 1. A sample from the original data set is mapped to this
line segment by the neural network. The sample will be deemed as class 0 if it
is more close to 0 than to 1. Otherwise, the sample will be deemed to belong to
class 1. If the partition space is divided into partitions, and the mapped sample
gets close to these partitions freely, the mapping relationship (using a neural
network) could be formed easily. Therefore, the performance of neural network
classification including training speed and accuracy could be improved. This is
the basic inspiration of our research.

Samples are mapped to the partition space by neural networks, and then
partition space is assigned by the distribution of mapped samples. If neural
networks are optimized, its corresponding signed partition space will be formed.
Particle Swarm Optimization(PSO) is used to optimize neural network in FDPS
for its predominant features. The problem, to assign the divided partitions in
partition space by a certain category, once perplexed us. Very soon it was found
that the category of majority in one partition should control the partition that
it belongs to. Process that assigns partitions by category of majority is called
color partitions. The traditional neural network classification could be regarded
as a specific example of FDPS. Its partition space is divided into 2 partitions,
and its dimension of partition vector is 1.

This paper is arranged as follows. Particle swarm optimization is outlined in
Section 2. Section 3 illustrates the detailed method of FDPS. Section 4 outlines
and discusses our experimental results followed by conclusions in Section 5.

2 Particle Swarm Optimization (PSO)

Particle swarm optimization is a population based stochastic optimization tech-
nique [6], inspired by social behavior of bird flocking or fish schooling. There are
two reasons that PSO is attractive. There are few parameters to be adjusted
and usually PSO achieves better results in a faster, cheaper way compared with
other methods.

PSO is initialized with a population of random solutions and searches for
optima by updating generations. The potential solutions, called particles, fly
through the problem space by following the current optimum particles. Each
particle keeps track of its coordinates in the problem space that are associated
with the best solution (fitness) it has achieved so far. (The fitness value is also
stored.) This value is called pbest. Another ”best” value that is tracked by the
particle swarm optimizer is the best value, obtained so far by any particle in the
neighbors of the particle. This location is called lbest. When a particle takes all
the population as its topological neighbors, the best value is a global best and
is called gbest.

The particle swarm optimization concept consists of, at each time step, chang-
ing the velocity of (accelerating) each particle toward its pbest and lbest locations
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(local version of PSO). Acceleration is weighted by a random term, with sepa-
rate random numbers being generated for acceleration towards pbest and lbest
locations.

3 Further Division of Partition Space (FDPS)

In this section, FDPS is explained in detail. At first, we describe how the data
set is mapped by using a neural network in FDPS. We then illustrate how to
divide partition space into partitions and how to distribute mapped samples over
these partitions.In order to color these partitions fairly, the reason why weights
of classes are needed in FDPS is explained in the Subsection 3.3. The formula
for getting the weight is also illustrated. Then we narrate the details of coloring
partitions which is the kernel part of the training in FDPS. After partitions are
colored, neural network and its corresponding colored partition space will be
used in the evaluation of training and in the classification of new samples. The
whole training algorithm is described in Subsection 3.7.

3.1 Mapping Data Set

Mapping is the process to transform the training data set from original space to
partition space. The mapping relation we used is the back propagation learning
method for artificial neural networks. The dimension of input data set vector is
defined as n and dimension of partition vector is defined as m. Every element of
partition vector is mapped by an isolated neural network from the same input
vector I. The i th back propagation neural network structure which is used in
FDPS shown in Figure 1.

…
 …

 

…
 …

 

1I  

2I  

nI  

…
 …

 

iP  

Fig. 1. The structure of i th neural network

Where the target partition space vector is P . P i is the i th element of P and I
is an input data set vector. The mapping formula is:

Pi = NNi (I) , i = 0...m − 1 (1)

Whole data set is mapped to partition space using (1).
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3.2 Division of Partition Space

The partition space is divided into many partitions. If m is equal to 1, the
partition space is one-dimensional and every partition is a line segment. If m
is equal to 2, the partition space is two-dimensional and every partition is a
rectangle. If m is equal to 3, the partition space is three-dimensional and every
piece is cube, and so on.

TotalPartitionNumber =
m∏

d=1

partitionsnumberd (2)

partitionsnumberd is the number of partitions in d axes, TotalPartitionNumber
is the number of partitions in the whole partition space. Figure 2 illustrates this
concept.

  

Fig. 2. Divided partition space. The m is 2, each PiecesNumber is 10, and so the
TotalP iecesNumber is 100.

3.3 Analyzing Data Set and Computation of the Weight of Classes

It is unfair for every class data to color the partition space without using weight,
because the number of each class data in the data set is different. A class will
control most area in the partition space, if its number is much bigger than any
other in the same data set. In order to solve the problem, a weight is needed.
The weight of the first class should be smaller than second one, if the number
of the first one is bigger than the second. The proportion of class c in the whole
data set is defined as Rc:

Rc =
Numc

Numtotal
(3)

Where number of samples in class c is Numc, and Numtotal is the total number
of samples in the whole data set. The weight of class c is calculated by:

Wc =
1

Rc
(4)
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3.4 Coloring Partitions

When every sample in the data set is mapped to the partition space by neural
networks, parts of which are used to color the partitions,is related to proportion
DP . These selected mapped samples are called color points. Color points are
taken out from each class in the mapped data set by the proportion DP . There
are two methods to generate the sequence of color points. Order sequence and
random sequence could be used for generation in one class.

Class1 Class2 Class1 Class2 

Fig. 3. This is a mapped training data set. The shadowed parts are color points with
the proportion DP in each class. The left sequence is an ordered sequence. Color points
are in the front position of the data set, while the other mapped samples followed after.
The right sequence is random. Color points are taken out randomly in each class, but
the total number of random samples are according with DP in each class.

Every partition is blank after dividing the partition space into partitions.
Each of them are colored. Our goal is that different classes are to be colored
with different colors. One or more partitions could be colored by one class. The
principle is that if color points of one class are majority in one partition, this class
will control the partition. The partition is colored by the color of this class. The
partitions, which are still blank after the partition space is colored, are called
unclassified partitions. Test points (training point will never drop into these
pieces, if they do, the piece will be colored), which fall into these partitions are
called unclassified points. The corresponding sample is unclassified. If the data
set is uneven, the number of color points of each class should be multiplied by
its weight. Color Algorithm in one piece is shown as;

Majority: =0;
For C=0 to Number of Classes-1

Begin
If Color points’ number of class c in this partition*Weight of class C>
Number of color points of class Majority in this partition *Weight of
class Majority
Then Majority: =C;
End;

partition Color:=Color(Majority);

All the partitions should run this algorithm to color themselves. For example:
in the training data set, the number of points of class 1 is twice as much as class
0. We calculate W0=3 and W1=1.5 and set each PartitionNumber to 10 and
m=2. So TotalPartitionNumber is 100. Figure 4 illustrates the distribution of
color points and the coloring of the partition space.
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Fig. 4. The figure on top illustrates the distribution of color points. The partition space
should be colored as per bottom figure.

3.5 Calculation of Correctness

The performance of neural network is to evaluated, because the network should
be optimized to achieve the best performance. FDPS is supervised, and so the
evaluation of neural network should be calculated at each generation. The cor-
rectness is calculated by the following formula, where L is the total number of
samples of training data set:

Right =
{

1, Color(point) = Color(partition)
0, Else.

(5)

Correctness =
∑L−1

i=0 Righti
L

(6)

3.6 Categorizing New Sample by Using FDPS

After training, an optimized neural network and its corresponding colored result
(the colored partition space) is produced. A new sample should be mapped by
this neural network and then, its category should be judged according to the
color of the partition, which the corresponding mapped point of this sample
belongs to. If the partition color is not blank, this sample is categorized by
the corresponding class of the color. Otherwise, partition color is blank and the
sample is unclassified in FDPS.
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3.7 FDPS Training Algorithm

The weight and threshold of neural network should be coded, to form
a vector; Form a population of vectors and initialize vectors by
random constant; Analyze training data set and get the weight of
classes; Take out color points sequence from training data set
according to DP; Divide partition space into partitions; Current
generation: =0; While current generation < maximum generation do

Begin
For every vector of the population

Begin
Decode the vector, and form a neural network;
Map training data set from original space to partition
space by neural network;
Color partitions and record the result;
Calculate the correctness as the vector’s fitness;
End;

Optimize vectors using PSO;
Current generation: = Current generation+1;
End.

The goal is to get the elitist neural network and its corresponding
colored results.

4 Experiments and Results

In order to evaluate the performance of this algorithm, four criterions are defined.
Training Accuracy (TA), a method to adapt training data to achieve better

TA.

TA =
NumberOfCorrectlyClassifiedSamplesInTrainingDataSet

NumberOfTotalSamplesInTrainingDataSet
(7)

Generalization Accuracy (GA), a method to obtain better generalization ca-
pability.

GA =
NumberOfCorrectlyClassifiedSamplesInTestDataSet

NumberOfTotalSamplesInTestingDataSet
(8)

Accuracy of Classified Samples (ACS), displays the classification ability of
the method on the data which is to be categorized. On the condition that a
sample could be classified by a method, higher values of ACS ensures higher
classification accuracy.

ACS =
NumberOfCorrectlyClassifiedSamplesInTestDataSet

NumberOfClassedSamplesInTestingDataSet
(9)

Proportion of Unclassified Samples (PUS) illustrate unclassified proportion of
data sets. Lower PUS represents more samples to be be categorized. The PUS
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in traditional neural network classification is 0, because all of the samples are
categorized by this method. In FDPS, PUS is not 0 for the reason that some
samples are mapped to unclassified partitions.

PUS =
NumberOfUnclassedSamplesInTestingDataSet

NumberOfTotalSamplesInTestingDataSet
(10)

Experiments need many trails for one data set. So Mean (M) and Standard
Deviation (SD) are also needed for performance evaluation. Many data sets have
been used for testing and evaluation of FDPS procedure. This paper uses the
breast cancer data as the representative data set. Breast cancer is the most
common cancer in women in many countries. Most breast cancers are detected
as a lump/mass on the breast, or through self examination or mammography
[7,8,9]. The Wisconsin breast cancer data set has 30 attributes and 569 instances
of which 357 are of benign and 212 are of malignant type. The data set is
randomly divided into a training data set and a test data set. The first 285
data is used for training and the remaining 284 data is used for testing. Binary
classification is adopted in this research.

Experiments were conducted to evaluate TA, GA and ACS and the training
speed. Ten trails were conducted and the mean and standard deviation is reported.
We used a three-layered back propagation neural network with 30 hidden neu-
rons. Parameters used for this data set are: DP=0.5, m=2, PartitionNumber0

=10, PartitionNumber1=10, Max Generation=1000, Population Size=50,φ1=
0.05,φ2= 0.05 and VMAX=1.2. Table 1 and Figure 5 illustrate the overall per-
formance of the FDPS.

Some accuracy results are shown in Table 1. The average performance of
both TA and ACS of FDPS is obviously higher than the traditional method.
But, average GA is lower in FDPS, at the same time SD of GA is higher. The
maximum GA in FDPS is higher than maximum GA in the traditional method,
while the minimum GA in FDPS is lower than the traditional method.

Table 1. Performance results for breast cancer data

Traditional Method FDPS

TA GA ACS TA GA ACS PUS

1 93.21% 93.21% 93.21% 94.28% 94.64% 94.64% 0%
2 94.28% 93.93% 93.93% 93.57% 87.50% 87.5% 0%
3 92.85% 90.35% 90.35% 94.64% 91.43% 92.42% 1.07%
4 93.57% 91.79% 91.79% 95.00% 93.21% 93.21% 0%
5 92.85% 92.14% 92.14% 95.35% 90.72% 91.70% 1.07%
6 93.21% 91.79% 91.79% 94.64% 90.00% 90.97% 1.07%
7 93.21% 88.21% 88.21% 95.00% 93.21% 93.21% 0%
8 93.21% 93.21% 93.21% 94.64% 89.64% 89.64% 0%
9 94.28% 89.64% 89.64% 94.64% 89.64% 89.96% 0.36%
10 91.42% 92.5% 92.5% 96.07% 93.57% 94.24% 0.71%
M 93.21% 91.68% 91.68% 94.78% 91.36% 91.75% 0.43%
SD 0.81% 1.78% 1.78% 0.66% 2.25% 2.25% 0.50%
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Fig. 5. Speed of convergence with Y axis representing (1.0 - TA)

Figure 5 illustrates that FDPS performed very well and has converged within
the first 400 generations. During the training process, accuracy of FDPS is op-
timized faster than the traditional method. The final accuracy of FDPS is bet-
ter than traditional method, which clearly means that the FDPS method aids
the neural network learning process. It has faster optimization speed than the
direct approach because mapping of neural network in FDPS is flexible and
unrestricted.

5 Conclusions

This paper proposes novel technique to improve traditional neural network clas-
sification. This technique which maps data sample freely and easily is based on
further division of partition space. From the experiment results, it is evident
that performance measures and optimization speed of FDPS is better and faster
than the traditional method. There are still some limitations in FDPS. The
mean of GA is lower in FDPS, notwithstanding that the standard deviation is
larger than the traditional method (leading to the best GA in FDPS is higher).
More experiments on different data sets are required to better analyze FDPS’s
performance.
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Abstract. We consider a notion of morphism of neural networks and
develop its properties. We show how, given any definite logic program
P , the least fixed point of the immediate consequence operator TP can
be computed by the colimit of a family of neural networks determined
by P .

1 Introduction

It is an important, challenging and interesting problem to integrate symbolic
models of computation and natural models of computation. A particular instance
of this problem is the integration of logic programming, viewed as logic-based
symbolic computation, and artificial neural networks (ANN), viewed as models
inspired by the brain; we refer to the introduction and references of [2] for a
discussion of the issues involved and their ramifications.

One much-studied aspect of this question is the computation by ANN of the
operators ΨP , such as the immediate consequence operator TP , determined by
the standard semantics of logic programs P . This particular problem is usually
considered from two points of view: exact computation when P is propositional,
and approximation when P is first-order.

In [2] and elsewhere, approximation of ΨP by ANN is the main focus, whereas
in [6] we considered, in the same context, convergence and approximation of
interpretations and of programs relative to certain metrics and pseudometrics.
In this paper, we consider the question of “convergence” and “limits”, in some
sense, of the approximating ANN. In fact, we consider their colimits in the cat-
egorical sense of [4], and the thinking here is motivated by the following two
observations. First, morphisms of ANN should reflect the structure of ANN, and
one should expect isomorphic ANN to compute the same function. (Alterna-
tively, one might formulate a definition of morphism and of isomorphism along
the lines of bisimulation, that is, based on “states”.) Second, the (co)limit ANN
should exactly compute the least fixed points of ΨP when P is first order.

In summary, we adopt here a rather strong definition of morphism reflecting
the structure of ANN and closely related to the computational capabilities of the
networks we employ, see Definition 2, and we consider its basic properties. The
results are satisfactory, see Propositions 1, 2 and 3. Furthermore, the results on
colimits give appropriate versions of convergence and “limit” for neural networks,

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 224–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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see Propositions 7, Corollary 1, Proposition 8 and Corollary 2. In particular,
Proposition 7 and Corollary 1 show how, given any definite first-order logic
program P , one may construct an infinite 3-layer feedforward ANN, using only
binary threshold units and weights of value 0 or 1, which computes the least
fixed point of TP .

2 Neural Networks and Their Morphisms

Definition 1. A neural network N = (N , N in, N out, C, W , H, Θ) is a septuple
consisting of a weighted digraph together with the following extra structure. We
let N denote both the neural network and its set of nodes, neurons or units Ni,
where i belongs to some countable (possibly infinite) index set I; the terms node,
neuron and unit are used interchangeably. The set N in ⊆ N is a distinguished
set of input neurons, and N out ⊆ N is a distinguished set of output neurons.
We denote by cij the (digraph) connection between neurons Ni and Nj , if such
exists, and by C the set of all the given connections cij . We denote by wji ∈ R

the weight of a connection cij , and by W the set of all the weights. With each
neuron Ni we associate an output function or activation function denoted by
hi : R → R, and a threshold θi ∈ R; we denote by H the set of these functions
and by Θ the set of the thresholds. Given a connection cij between Ni and Nj ,
we call Ni the source src(cij) and Nj the target trg(cij) of the connection. We
sometimes denote typical neurons simply by N or M , rather than by Ni or Mi,
with corresponding notation cNM , wMN , hN , and θN then being employed.

We work with discrete equidistant moments of time t = 0, 1, 2, . . . . Then the
(activation) potential pi for a neuron Ni at time t is given by

pi(0) := 0, pi(t) :=

(
∑

k∈Ii

wik σk(t)

)
− θi + ιi(t) if t > 0, (1)

where Ii is the set of all those indices k for which there is a connection cki from
Nk to Ni; σk(t) is the output value emitted by the neuron Nk at time t; and
ιi(t) is an external input received by Ni at time t (we set ιi(t) = 0 if Ni /∈ N in).
Indeed, the output value σi(t) of a neuron Ni at time t is computed by

σi(0) := 0 , σi(t) := hi(pi(t − 1)) if t > 0. (2)

As usual, units are mainly distinguished by the nature of their output function
h, but the only one we need to distinguish here is the binary threshold unit,
wherein hN is a threshold function H ; thus, H(x) = 1 if x ≥ 0 and is 0 otherwise.

Definition 2. Suppose that N and M are neural networks. A homomorphism
or just morphism Φ : N → M consists of a pair of mappings φ (the node mapping
of Φ) and φ̂ (the connection mapping of Φ) satisfying the following properties.

(1) φ maps nodes N of N to nodes φ(N) of M, and φ̂ maps each weighted

connection
w

N1 → N2 in N to a weighted connection
φ̂(w)

φ(N1) −→ φ(N2) in M,
where φ̂(w) = w. Thus, φ̂ preserves orientation of connections and their weights.
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(2) Activation functions and thresholds satisfy hφ(N) = hN and θφ(N) = θN for
all nodes N in N .

Notice that a morphism of neural networks induces a morphism of the underlying
(weighted) digraphs.

Definition 3. Suppose that N is a neural network. The morphism IdN : N →
N , where the node mapping is the identity mapping on N and the connection
mapping is the identity on C, is called the identity morphism on N .

Definition 4. Suppose that Φ1 : N1 → N2 and Φ2 : N2 → N3 are morphisms
of neural networks. Then the composition Φ2 ◦Φ1 : N1 → N3 is the morphism of
neural networks in which (i) the node mapping is the composite φ2 ◦ φ1 of the
node mappings of Φ1 and Φ2, and (ii) the connection mapping is the composite
φ̂2 ◦ φ̂1 of the connection mappings of Φ1 and Φ2.

Definition 5. Suppose that N1 and N2 are neural networks. An isomorphism
Φ : N1 → N2 is a morphism Φ : N1 → N2 such that there is a morphism
Φ

′
: N2 → N1 with the property that Φ

′ ◦ Φ = IdN1 and Φ ◦ Φ
′
= IdN2 .

Remark 1. (1) Both IdN and Φ2 ◦ Φ1 satisfy Definition 2 and therefore both
are indeed morphisms.
(2) A morphism Φ : N1 → N2 of neural networks is an isomorphism if and only
if its node mapping and its connection mapping are both bijections.
(3) An isomorphism Φ : N1 → N2 of neural networks induces an isomorphism of
the underlying (weighted) digraphs.
(4) An isomorphism (φ, φ̂) of digraphs induces an isomorphism Φ of neural net-

works provided (i) there is a connection
w

N1 → N2 in N1 iff
φ̂(w)

φ(N1) −→ φ(N2) is
a connection in N2 and φ̂(w) = w, and (ii) activation functions and thresholds
satisfy hφ(N) = hN respectively θφ(N) = θN for all nodes N in N .

3 Morphisms of Multilayer FNNs

Let N be a neural network such that there is a partition L1, L2, . . . , Ln of its set
N of neurons satisfying L1 = N in, Ln = N out and n ≥ 3. In this case, we call N
an n-layer feedforward neural network (FNN) if each connection cij ∈ C is such
that src(cij) ∈ Lm and trg(cij) ∈ Lm+1, for some m with 1 ≤ m ≤ n − 1. Such
networks are referred to as multilayer feedforward neural networks in general,
and Lm is referred to as a layer, the m-th layer or layer m. In particular, layer
1 constitutes the layer of input neurons, layer n the layer of output neurons, and
layers 2 to n − 1 are referred to as layers of hidden neurons. We think of the
units in Lm as indexed by a set |Lm|, and if this set is finite of size rm, say, we
take |Lm| to be {1, 2, . . . , rm}; otherwise we take |Lm| to be N. Finally, we take
all external inputs ιi(t) to be zero in the case of an FNN (see Equation (1)).

We denote a typical unit in layer m by Nm
k , for k ∈ |Lm| and m = 1, . . . , n.

However, we often denote a typical input unit N1
k by Ik, for k ∈ |L1|, and

similarly we often denote a typical output unit Nn
i by Oi, for i ∈ |Ln|.
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The following restriction is sometimes imposed in the literature.

Condition 1. Each neuron in layer m is connected (possibly with weight zero) to
every neuron in layer m+1, for m = 1, . . . , n−1. There are no other connections
unless the network is made recurrent. By this latter term, we mean that the
input and output layers are in one-to-one correspondence, and each output unit
is connected with weight one to the corresponding input unit.

We denote by wm
ji , for m = 1, . . . , n − 1, the weight of the connection cm

ij from
unit Nm

i in layer m to unit Nm+1
j in layer m+1. Note that the networks we are

currently considering compute functions f : R
c(|L1|) → R

c(|Ln|) when applied to
real vector inputs, where c(A) denotes the cardinality of a set A.

Proposition 1. Suppose that N and M are multilayer FNNs satisfying Condi-
tion 1 (not necessarily having the same number of layers) and that Φ : N → M
is a morphism of neural networks. Then the following statements hold.
(1) All units in a given layer in N are mapped by Φ into a common layer in M.
(2) A path of connections of length l in N is mapped by Φ to a path of connec-
tions of length l in M.

Thus, under Condition 1, a morphism cannot make “vertical” identifications
of neurons, that is, cannot identify neurons in different layers, but can only make
identifications of neurons in the same layer (horizontal identifications).

Proof. (1) Suppose that Nm
i and Nm

j are units in layer m in N , and that
Nm

i is mapped to φ(Nm
i ) = M1 in layer m1 in M and that Nm

j is mapped to
φ(Nm

j ) = M2 in layer m2 in M, where m1 �= m2; suppose further that m1 > m2,
with a similar argument if m2 > m1.

Case 1. Layer m is not the output layer. Then there is a layer m + 1 in N .
Consider connections cm

i1 from Nm
i to Nm+1

1 , and cm
j1 from Nm

j to Nm+1
1 . Unit

φ(Nm+1
1 ) cannot belong to layer m1 otherwise the connection φ̂(cm

i1) is a connec-
tion between two units in the same layer m1. Similarly, φ(Nm+1

1 ) cannot belong
to layer m1 + k for any k ≥ 2, if such layers exist, otherwise we would have a
connection φ̂(cm

i1) between units in layers m1 and m1 + k with k ≥ 2, which is
impossible. Hence, φ(Nm+1

1 ) must belong to layer m1 + 1. But then φ̂(cm
j1) is a

connection between units in layers m2 and m1 + 1, and this also is impossible.

Case 2. Layer m is the output layer. Then there is a layer m−1 in N . Consider
the connections cm−1

1i from Nm−1
1 to Nm

i , and cm−1
1j from Nm−1

1 to Nm
j . The

unit φ(Nm−1
1 ) cannot belong to layer m1 otherwise the connection φ̂(cm−1

1i ) is a
connection between two units in the same layer m1. Similarly, φ(Nm−1

1 ) cannot
belong to layer m1 + k for any k ≥ 1, if such layers exist, because then we
would have a connection φ̂(cm−1

1i ) directed from a unit in layer m1 + k with
k ≥ 1 towards a unit in layer m1, which is impossible. In fact, because of the
connection cm−1

1j it is clear that φ(Nm−1
1 ) must belong to layer m2 − 1. But this

is impossible otherwise we have a connection φ̂(cm−1
1i ) from a unit in layer m2−1

to a unit in layer m1 where m1 > m2. These contradictions establish (1).
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(2) Suppose that N1
c12−→ N2

c23−→ N3
c34−→ · · ·

c(l−1)(l)−→ Nl

cl(l+1)−→ Nl+1 is a path
of length l in N . Consecutive nodes Nj and Nj+1 must belong to consecutive
layers in N because of the connection cj(j+1) between them. But then φ̂(cj(j+1))
must be the connection in M between φ(Nj) and φ(Nj+1). Hence, φ(Nj) and
φ(Nj+1) belong to consecutive layers in M, and the result follows.

Remark 2. (1) The proof of this result does not use the weights and associ-
ated apparatus of a neural network, only the structure pertaining to the units
(arranged in layers) and properties of digraphs.
(2) The homomorphic image of a multilayer FNN is itself a multilayer FNN.

Proposition 2. Suppose that Φ : N → M is an isomorphism of multilayer
FNNs N and M. In the presence of Condition 1 the following statements hold.
(1) N and M have the same number n, say, of layers.
(2) φ maps layer m in N bijectively onto layer m in M for 1 ≤ m ≤ n. In
particular, φ maps the input layer of N onto the input layer of M, and maps
the output layer of N onto the output layer of M.
(3) Let N be any neuron in N . For the same input given to N and M at time
t = 0, the outputs of N and φ(N) at any later time t are equal.
(4) N and M compute the same function.

Proof. Statement (1) follows immediately from (2) of Proposition 1 on consider-
ing paths of maximum length in N and M, and Statement (2) follows from (1)
of Proposition 1 given that φ is a bijection on the sets of nodes in N and M.
(3) Consider a neuron N in N and its image φ(N) in M. The claim is clearly
true at time t = 0. Suppose that the claim is true at times 1, . . . , t− 1. Then, by
the properties of an isomorphism and the current hypothesis, we have
pN (t − 1) =

(∑
M∈IN

wNM σM (t − 1)
)

− θN

=
(∑

φ(M)∈Iφ(N)
wφ(N)φ(M) σφ(M)(t − 1)

)
− θφ(N)

=
(∑

M ′∈Iφ(N)
wφ(N)M ′ σM ′ (t − 1)

)
− θφ(N) = pφ(N)(t − 1).

Thus, σN (t) = hN (pN (t − 1)) = hφ(N)(pφ(N)(t − 1)) = σφ(N)(t), and (3) follows.
(4) That N and M compute the same function follows immediately from (3).

We next consider 3-layer FNN. Here, a version of Proposition 2 holds under the
following condition which is much weaker than Condition 1.

Condition 2. (1) No input unit and no hidden unit has no output connections.
(2) No hidden unit and no output unit has no input connections.

Proposition 3. Suppose that Condition 2 is satisfied by 3-layer FNN N1 and
N2. Then an isomorphism Φ : N1 → N2 maps input units to input units, output
units to output units, and hidden units to hidden units. Furthermore, isomorphic
3-layer FNN N1 and N2 satisfying Condition 2 compute the same function.

Proof. Claim (1) Φ maps input units in N1 to input units in N2.



Morphisms of ANN and the Computation of Least Fixed Points 229

Proof of claim. (a) Suppose that N1 is an input neuron in N1 and is mapped
to a hidden unit M1 = φ(N1) in N2. By the assumption (1), there is a connec-
tion M1 → M2 in N2, where M2 is an output unit. Clearly φ−1(M2) cannot be
an input nor an output unit in N1 because of the connection M1 → M2. Hence
φ−1(M2) is a hidden unit and we have a connection N1 → φ−1(M2). By assump-
tion (1), there is a connection φ−1(M2) → N2, say, in N1, and N2 is an output
unit. But this leads to a connection M2 → φ(N2) in N2, which is impossible
since M2 is an output unit. Thus, φ(N1) = M1 cannot be a hidden unit.
(b) Suppose that N1 is an input unit in N1 and is mapped to an output unit
M1 = φ(N1) in N2. By our assumption (1), there is a connection N1 → N2 in
N1 for some N2. But then we have a connection φ(N1) → φ(N2) in N2, that is, a
connection M1 → φ(N2) which is clearly impossible since M1 is an output unit.
Thus, Claim (1) is established.

That Φ maps output units in N1 to output units in N2 and maps hidden units
in N1 to hidden units in N2 follows similarly. The remaining statement of the
result now follows in the same way as Proposition 2 from this point on.

Remark 3. The activation potential of a neuron in a neural network has the
form pi(t) =

(∑
k∈Ii

wik σk(t)
)

− θi + ιi(t), by Equation (1). So, adding con-
nections with weight zero does not affect any computations. Thus, Conditions 1
and 2 are not very restrictive in relation to computation by neural networks.

4 Colimits of 3-Layer FNN and Least Fixed Points

Let P be an arbitrary definite logic program, let ground(P ) denote the set of all
ground instances of clauses in P , let I denote the least fixed point of TP and let
l : BP → N be a level mapping where BP denotes the Herbrand base for P , see
[3] for undefined terms and notation relating to logic programming. (We assume
l has the property: given n ∈ N, we can effectively find the set of all A ∈ BP

such that l(A) = n, see [6]; then, given any n ∈ N, the set of all atoms A such
that l(A) = n is finite.) If l(A) = n, then we say that the level of A is n. Using l,
we fix an ordering on BP = (A1, A2, A3, . . .) in which those terms of BP of level
0 are listed first, followed by those of level 1, followed by those of level 2, etc.

We will need certain of the steps made in proving [6, Theorem 3.19], and for
convenience we sketch them here. We are working specifically with TP in this
paper for reasons of space limitation, but similar results can be established for
quite general operators ΨP .

Proposition 4. Suppose that A ∈ TP ↑ k, see [3]. Then there is a clause A ←
body in ground(P ) such that A does not occur in body and body |= TP ↑ (k−1).

Proof. Clearly, k ≥ 1. Suppose that A ∈ TP ↑ k0 = TP (TP ↑ (k0 − 1)) and
that k0 is the smallest natural number with this property. Then there is a clause
A ← body in ground(P ) such that TP ↑ (k0 − 1) |= body. By definition of k0,
we have A �∈ TP ↑ (k0 − 1) and hence A does not occur in body. Finally, by
monotonicity, we obtain that TP ↑ (k − 1) |= body, as required.



230 A.K. Seda

Since P is definite, we have

TP ↑ 0 ⊆ TP ↑ 1 ⊆ · · · ⊆ TP ↑ n ⊆ · · · ⊆ I =
⋃∞

n=1
TP ↑ n,

where TP ↑ n denotes the n-th upward power T n
P (∅) of TP .

Given n ∈ N, there are only finitely many atoms1 A1, A2, . . . , Am ∈ I with
l(Ai) ≤ n for i = 1, . . . , m, and, by directedness, there is (a smallest) k = kn ∈ N

such that A1, A2, . . . , Am ∈ TP ↑ kn. Consider the atom Ai, where 1 ≤ i ≤ m,
and the following sequence of steps.
Step 1 We have Ai ∈ TP ↑ kn = TP (TP ↑ (kn − 1)). Therefore, there is a clause

Ai ← A1
i (1), . . . , Am(i)

i (1)

in ground(P ) such that A1
i (1), . . . , Am(i)

i (1) ∈ TP ↑ (kn − 1). (There may be
many such clauses, including unit clauses possibly, and we select one of them.)
Step 2 Because A1

i (1), . . . , Am(i)
i (1) ∈ TP ↑ (kn − 1) = TP (TP ↑ (kn − 2)), there

are clauses in ground(P ) as follows:

A1
i (1) ← A1

i,1(2), . . . , Am(i,1)
i,1 (2)

A2
i (1) ← A1

i,2(2), . . . , Am(i,2)
i,2 (2)

... ←
...

A
m(i)
i (1) ← A1

i,m(i)(2), . . . , Am(i,m(i))
i,m(i) (2),

where each of the atoms Ar
i,j(2) in each of the bodies belongs to TP ↑ (kn − 2).

Step 3 Because each of the Ar
i,j(2) in the previous step belongs to TP ↑ (kn−2) =

TP (TP ↑ (kn − 3)), we have a finite collection of ground clauses (one for each of
the Ar

i,j(2) in Step 2) the first of which has the form

A1
i,1(2) ← A1

i,1,1(3), . . . , Am(i,1,1)
i,1,1 (3),

where each new body atom belongs to TP ↑ (kn − 3), and so on.
At each stage in this process we select a program clause in which the head of

the clause does not occur in the body by means of Proposition 4.
This process terminates producing unit clauses in its last step. Let Pi,n denote

the (finite) subset of ground(P ) consisting of all the clauses which result; it is
clear that TPi,n ↑ kn consists of the heads of all the clauses in Pi,n. We carry out
this construction for i = 1, . . . , m to obtain programs P1,n, . . . , Pm,n such that,
for i = 1, . . . , m, TPi,n(TPi,n ↑ kn) = TPi,n ↑ kn (indeed, TPi,n ↑ kn is the least
fixed point of TPi,n by Kleene’s theorem), Ai ∈ TPi,n ↑ kn, and TPi,n ↑ r ⊆ TP ↑
r ⊆ I for all r ∈ N. Let Pn denote the program P1,n ∪ . . . ∪ Pm,n. Then Pn is a
finite subprogram of ground(P ), and TPi,n ↑ kn ⊆ TP n

↑ kn ⊆ TP ↑ kn ⊆ I for

1 Notice that, depending on l, there may be no atoms A with l(A) ≤ n; this case is
handled by the abuse of notation obtained by allowing m to be 0.
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i = 1, . . . , m. Furthermore, A1, . . . , Am ∈ TP n
↑ kn, and TP n

↑ kn is the least
fixed point of TPn

, see [6]. Moreover, having determined Pn, we assume that,
for each n ∈ N, Pn+1 consists of the clauses in Pn together with extra clauses
which deal with atoms of level n + 1 as above; thus, Pn ⊆ Pn+1 for each n ∈ N.

Proposition 5. We have
⋃∞

n=1 TP n
↑ kn = I.

Proof. Clearly,
⋃∞

n=1 TP n
↑ kn ⊆ I. If A ∈ I, then l(A) = n for some n and

hence A ∈ TP n
↑ kn. Therefore, I ⊆

⋃∞
n=1 TP n

↑ kn.

For a definite program P , let lfp(TP ) denote the least fixed point of TP , and let
P denote

⋃∞
n=1 Pn, as defined above. Then we have the following result.

Proposition 6. For any definite program P , we have lfp(TP) = lfp(TP ) = I.

Proof. Since P ⊆ P , we have lfp(TP) ⊆ lfp(TP ).
Conversely, suppose that A ∈ lfp(TP ). Then l(A) = n for some n and hence

A ∈ TPn
↑ kn. Therefore, A ∈ TP ↑ kn ⊆ lfp(TP), as required.

Having obtained the programs Pn for each n ∈ N, we apply the algorithm
established by the proof of [2, Theorem 3.2] to Pn.

Theorem 1. ([2, Theorem 3.2]) For each propositional program P (not neces-
sarily definite), there exists a 3-layer FNN, having only binary threshold units,
which computes TP .

By means of this result, we obtain for each n ∈ N a 3-layer FNN Nn which
computes TP n

. Furthermore, the construction of Pn and the properties of the
algorithm given by [2, Theorem 3.2] show that we can construct a well-defined,
possibly infinite, 3-layer FNN N as follows: (i) a unit is in N if and only if it
is in the corresponding layer of Nn for large enough n; (ii) there is a connection
cij from Ni to Nj in N if and only if cij is a connection of the same weight from
Ni to Nj in Nn for large enough n; the threshhold of a unit in N is equal to its
threshhold in any Nn containing it; all units in N are binary threshold units.

Proposition 7. The network N computes TP .

Proof. Let A ∈ BP and let J be an arbitrary interpretation for P (defined on
the Herbrand base BP of P). We input J to N .
Case 1. A �∈ I. In this case, A is not the head of any clause in P , and so
TP(J)(A) = false. On the other hand, there are no connections of weight 1 to
the unit representing A in the output layer of N . Therefore, N also outputs false
as the value of the unit representing A.
Case 2. A ∈ I. Suppose l(A) = n. Then A is the head of exactly one clause
A ← body in P , and this clause is in Pn. Suppose first that TP(J)(A) = true.
Then J |= body and hence J |BP n

|= body. Therefore, TP n
(J)(A) = true. Since

Nn computes TP n
, it outputs value true in the unit representing A. Hence, N

outputs value true in the unit representing A, as required.
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Suppose finally that TP(J)(A) = false. Then J �|= body, and therefore J |BP n
�|=

body. Thus, we have TPn
(J)(A) = false since the clause A ← body is the only one

in P with head A and hence is the only one in Pn with head A. Since, again, Nn

computes TPn
, it outputs value false in the unit representing A. Hence, N outputs

value false in the unit representing A, as required.

Corollary 1. Suppose the definite logic program P is given. Then, when made
recurrent, N computes I = lfp(TP ).

Proof. Since N computes TP , when made recurrent it computes each iterate of
TP applied to the empty interpretation. The result now follows.

It follows from the construction of N that the inclusion Φn,m : Nn → Nm is a
morphism of neural networks whenever n ≤ m, and the inclusion In : Nn → N
is also a morphism for each n, and we have the following result.

Proposition 8. The neural network N is a colimit of the diagram

N1

Φ1,2 �� N2

Φ2,3 �� N3 . . . Nn

Φn,n+1 �� Nn+1 . . .

Proof. It is clear that the diagram

N

N1

I1

���������������������� Φ1,2 �� N2

I2

����������������� Φ2,3 �� N3

I3 ...

��

. . . Nn

In

������������������
Φn,n+1 �� Nn+1 . . .

In+1 ...

�������������������������

is commutative and is a cocone. Suppose that

B

N1

F1

���������������������� Φ1,2 �� N2

F2

����������������� Φ2,3 �� N3

F3 ...

��

. . . Nn

Fn

������������������
Φn,n+1 �� Nn+1 . . .

Fn+1 ...

�������������������������

is another cocone. Define Φ : N → B as follows. Let N ∈ N be a unit. Then
N ∈ Nn for some n. Define φ by φ(N) = fn(N). Suppose that N ∈ Nm with
n < m. Then fm(N) = fm ◦ φn,m(N) = fn(N), so φ is well-defined. Likewise,
if c ∈ N is a connection, then c ∈ Nn for some n. Again, we define φ̂ by
φ̂(c) = f̂n(c), and φ̂ is well-defined. Moreover, it is clear that Φ : N → B is a
morphism of neural networks and hence is a cocone morphism.
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Suppose Ψ : N → B is another cocone morphism. Let N ∈ N be a unit.
Then N ∈ Nn for some n. But ψ ◦ in = fn and so fn(N) = ψ ◦ in(N) = ψ(N).
Therefore, φ(N) = ψ(N) and hence φ = ψ. Similarly, φ̂ = ψ̂ and so Φ = Ψ .

Thus, there is a unique morphism Φ : N → B, and therefore N is a colimit of
the diagram given in the statement of the proposition, as required.

Corollary 2. For any definite program P , any colimit of the diagram

N1

Φ1,2 �� N2

Φ2,3 �� N3 . . . Nn

Φn,n+1 �� Nn+1 . . . ,

computes the least fixed point of TP .

Proof. This result follows from Proposition 3, the fact that all colimits are iso-
morphic, the construction of N , and Corollary 1.

5 Conclusions and Further Work

(1) A number of other authors have considered categorical aspects of neural
networks, see [1,5]. It is of interest to investigate categorical properties of cate-
gories of neural networks and of natural models in general relative to appropriate
notions of “morphism”.
(2) Finite ANN of the type we are considering cannot compute TP nor its least
fixed point for arbitrary definite programs P . However, it is of interest to avoid
using infinite neural networks, if possible, by emulating them by networks of
bounded size allowing unbounded iteration coded up in the weights (not re-
stricted to 0 and 1) with the weights changing at each iteration. Well-known
work of Sontag and Siegelmann on realizing conventional programming ideas
within networks, and proving universality results, suggests that this may be
possible.
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Abstract. Predicting HIV resistance to drugs is one of many prob-
lems for which bioinformaticians have implemented and trained machine
learning methods, such as neural networks. Predicting HIV resistance
would be much easier if we could directly use the three-dimensional (3D)
structure of the targeted protein sequences, but unfortunately we rarely
have enough structural information available to train a neural network.
Fur-thermore, prediction of the 3D structure of a protein is not straight-
forward. However, characteristics related to the 3D structure can be used
to train a machine learning algorithm as an alternative to take into ac-
count the information of the protein folding in the 3D space. Here, start-
ing from this philosophy, we select the amino acid energies as features
to predict HIV drug resistance, using a specific topology of a neural net-
work. In this paper, we demonstrate that the amino acid ener-gies are
good features to represent the HIV genotype. In addi-tion, it was shown
that Bidirectional Recurrent Neural Networks can be used as an efficient
classification method for this prob-lem. The prediction performance that
was obtained was greater than or at least comparable to results obtained
previously. The accuracies vary between 81.3% and 94.7%.

1 Introduction

The Human Immunodeficiency Virus (HIV) is one of the main causes of death in
the world. The HIV is a human pathogen that infects certain types of lympho-
cytes called T-helper cells, which are important to the immune system. Without
a sufficient number of T-helper cells, the immune system is unable to defend the
body against infections.

It is a great challenge for scientists to design an effective drug against HIV.
Nevertheless, some approved antiretroviral drugs are currently available for the
treatment of HIV infection. Most of them focus on two of the most important
viral enzymes, namely Protease and Reverse transcriptase.

Several statistical techniques and machine learning algorithms have been used
to predict HIV resistance in silico, such as cluster analysis and linear discriminant
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analysis, as described by Sevin [1]. A simple metric to predict the Protease
inhibitors resistance has been proposed by Scmidt et al. (2000) [2]. Wang and
Larder (2003) used neural networks to predict resistance to the Protease inhibitor
Lopinavir [3]. In [4] was used decision trees while in [5] was used decision trees
and the k-nearest neighbor technique (KNN) to predict the resistance of protease
inhibitors. Recently, convex optimization techniques have been used together
with Least Absolute Shrinkage, and Selection Operator (LASSO) and Support
Vector Ma-chine (SVM) models for regression or classification of the protease
and reverse transcriptase resistance [6][7].

In this paper, we will focus on the study of seven Protease inhibitors. The
contact energy of the amino acids will be used to describe the sequences, and
bidirectional recurrent neuronal networks are suggested for the analysis of se-
quences and resistance. The performance will be compared to that of other
machine learning methods.

2 Methods

2.1 Datasets

There are several databases with available information about HIV protease
and its resistance associated with drugs. We used the Stanford HIV Resis-
tance Database Protease (http://hivdb.stanford.edu/cgi-bin/PIResiNote.cgi) to
develop our strategy because it is the one mostly used in the literature. This
database contains information about the genotype and phenotype for seven of
the mostly used protease inhibitors: amprenavir (APV), atazanavir (ATV), nelfi-
navir (NFV), ritonavir (RTV), saquinavir (SQV), lopinavir (LPV) and indinavir
(IDV). The genotype is documented for the mutated positions and con-sequent
changed amino acids. The phenotype is represented by the resistance-fold based
on the concentration of the drug to inhibit the viral protease.

Cases with unknown changes were discarded in order to eliminate missing
values in learning, and seven databases were constructed, one for each drug. We
took as reference sequence (wild type) the HXB2 protease and built the mutants
by changing the amino acid in the corresponding reported mutated positions.
For the resistance-fold we used the cut-off value of 3.5 as previously reported
in the literature for these drugs [8][5]. If the drug resistance is greater than the
cut-off, the mutant is classified as resistant and otherwise as susceptible.

2.2 Feature Representation

One of the most important steps to apply a classification method is to find
good features to represent the input information. In some approaches the simple
representation of each sequence position by a binary vector of 20 elements (i.e.
the amino acids) has been used. In that case a value of 1 is given to the analyzed
amino acid position and a 0 to all the others. Mutual information profiles have
also been used to represent each sequence of the Protease enzyme [4].
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We used features close to the 3D-structure to represent the primary sequence.
In particular we chose the amino acid contact energy as an adequate represen-
tation because it determines the (un)folding of the protein. The contact energy
changes the protein structure and that the substitution of a simple amino acid
is enough to observe this [9][10]. For this reason the energy is used to represent
the amino acids of the Protease sequence.

We analyze two feature representations:

– The energy associated with each amino acid, which we will refer to as
Energy.
Energy : A → R

where A is the set of 20 amino acids and R is the set of real numbers
– The variation of the energy with regard to the wild type, i.e. the energy

difference between the positions in the analyzed sequence and the corre-
sponding position in the wild type, or vice versa. This variation is called
�Energy.
�Energy(Ai) = Energy(AWi) − Energy(Ai)

where AWi is the amino acid in the position i of the wild type sequence, and Ai

is the amino acid in the position i of the mutated sequence.

2.3 Problem Formulation

The problem was transformed into seven similar classification problems of two
classes.

For each problem the target function is defined as:
F : C → O
O= {resistant, susceptible}

where C ⊆ R
99 , because the database consists of sequences of the same length,

namely 99 amino acids. Each element of C is a protease sequence identified by an
amino acid vector. All amino acids are represented by their Energy or �Energy
which is, in both cases, a real value.

Finally, after having designed the classification task we proceed to choose an
appropriate classification method.

2.4 Classification Methods

We used several classification methods such as Support Vector Machines (SVM),
MultiLayer Perceptrons (MLP) and Bidirectional Recurrent Neural Networks
(BRNN).

SVM. The SVM is a technique developed by Vapnik in 1995 from statistical
learning theory[11]. SVMs have become an important machine learning technique
for many pattern recognition problems, especially in computational biology. For
SVM training and testing we used the LIBSVM software library available at
http://www.csie.ntu.edu.tw/cjlin/libsvm [12].
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MLP. The Multilayer Perceptron (MLP) [13] is a type of artificial neural net-
work that simulates one of the countless functions of our nervous system: clas-
sification. Consequently, it structurally and functionally simulates part of the
nervous system. This was one of the reasons for choosing a MLP to solve this
problem. We used the standard Backpropagation algorithm with some heuristics
[14], in order to achieve a higher efficiency, accelerating its convergence speed.

BRNN. Recurrent neural networks were originally created to analyze time
series in which the present moment is influenced by the past and the future [15].
We used them here to analyze one-dimensional spatial sequences but the idea is
essentially similar. There are several topologies for recurrent networks that have
been used in the literature to solve different problems. A bidirectional dynamic
topology is described and used for prediction of secondary structures by Baldi
[16]. We decided to use a neural network topology where the sequence is analyzed
in three parts with identical length , so that the processing of the middle part is
influenced by the first and third part. Simultaneously, these extreme parts are
influenced by the middle. In this way the training of the network represents the
nature of the problem a little better.

Figure 1 shows an example of this topology for our problem. The network has
33 input neurons and 2 output neurons. It has context layers backward (HB),
forward (HF) and the hidden layer (HO). In other words, this topology consists of
two context blocks, one of them with recurrence to the left and another one with
recurrence to the right. For each sequence we refer to s as the middle part, while
we refer to left as the information received from layer HB (subsequence “s− 1”)
and right as the information received from layer HF (subsequence “s + 1”). But
it should be noted that s is also considered the “right part” of the sequence s−1
and the “left part” of sequence s + 1.

Table 1. Number of neurons associated to the context layers backward (HB), forward
(HF) and to the hidden layer (HO) for each neuronal network

Drug HB=HF HO

SQV 11 11
LPV 11 11
RTV 20 20
APV 20 20
IDV 27 20
ATV 32 32
NFV 20 20

To HB and HF we developed several tests always assigning the same weight to
the pattern from the previous subsequence and to the pattern from the posterior
subsequence, according to the given drug. Table 1 shows the numbers of neu-
rons of the topology with which we obtained the best results. In this case the 33
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Fig. 1. Bidirectional Recurrent Neuronal Network Topology. Each of the arrows from
layer to layer means that there are connections of all the neurons of the origin layer
with all the neurons of the destination layer. The discontinuous arrows represent the
connections between the parts, the shift operator q+1 means that the connection is from
a left immediate part, and the shift operator q−1means that the connection comes from
the right immediate part.

inputs are real values and the outputs are (0,1) or (1,0), meaning resistant and
susceptible, respectively.

A classification problem is not the typical problem to solve in this kind of
network. We do not have an output associated with each subsequence. But we
considered the three parts of a sequence associated with the same output. Specif-
ically the sequence was divided in three parts, that is, 33 inputs in each part
and three outputs- one output for each part.

As training algorithm of this network, the Backpropagation Through Time
(BPTT) was used [17]. As target function we used Cross-Entropy and as output
activation function we used a Softmax function.

3 Results

As explained above, we used three different methods (SVM, MLP and BRNN)
to predict resistance of HIV sequences using seven inhibitors. We compared the
results with those published previously [4][5]. All results were averaged using
10-fold crossvalidation.

We used MLP and SVM to compare with the results obtained up to now to
demonstrate that the Energy as well as �Energy are adequate feature repre-
sentations for the resistance prediction.

In table 2 the columns 1, 2 and 3 correspond to the results reported by James
(2004) using KNN, the classic decision tree using ID3 and a variant of a deci-
sion tree developed respectively. The column 4 represents the results obtained
by Beerenwinkel et al. (2002) using a classic decision tree.The columns 5 and
6 show our results using a MLP and the columns 7 and 8 show our results
using SVM. After analyzing these results we can see that the feature representa-
tion using Energy as well as the representation using �Energy are appropriate
to describe the sequence in this task because both are similar to the previous
results.
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Table 2. Prediction performance of methods used before: KNN, several decision trees
and the prediction performance using MLP. Prediction performance is measured in
terms of accuracy.

1 2 3 4 5 6 7 8

MLP SVM

Drug KNN Dtree NewDtree Dtree1 Energy �Energy Energy �Energy

SQV 81.7 80 85.7 87.5 85.47 87.88 87.82 85.23
LPV 81.1 89.5 92.33 87.88 88.57 88.57
RTV 82 89 89.5 89.8 90.92 90.71 91.83 92.15
APV 80.9 75.8 75.8 87.4 82.17 80.65 82.30 83.64
IDV 80.6 85 85.5 89.1 86.96 92.55 91.51 92.57
ATV 80.00 74.16 74.38 72.72
NFV 73.6 91.8 93.7 88.5 86.63 87.13 84.86 84.86

As explained earlier, we used BRNN to solve the problem. The network has
three output values during the predicting process, that is, the output is a vector
with three components, because an output is obtained for each part. As in the
other techniques used, we represent the output with the two values explained be-
fore - resistance and susceptible. The difference with regard to the other methods
is that, now we will have three outputs in the prediction.

The BPTT algorithm is based on the unfolding and folding process. For each
case in the training dataset, in the forward process the network is unfolding
as a classical feedforward network and executes the Backpropagation algorithm
to obtain the corresponding output as is shown in Figure 2. In the backward
process the network is folding again to turn back as the beginning (Fig. 1) in
order to update the weights [17].

As is illustrated in figure 2, we split the instances in the database. Figure 2
shows the first step to the BPTT and the processing of the outputs in order
to use this network in this classifica-tion problem. The prediction is divided in
three tasks. The first task is to split the sequence in three parts, representing the
three entries to parts the network. The second task is to unfold the network and
to obtain the three outputs for this input, and the third task is to compute the
final output - to represent the resistance or not of this protein - as an adequate
combination of the three previous outputs.

In our training dataset we represented the class in the three outputs
(output 1, output 2, output3) using the same value, that means, 1 for resistance
and 0 for susceptible. But in the prediction we can obtain different outputs for
each part, i.e. the output is a vector of three coordinates: (O1, O2, O3), where
Oi ∈ {0, 1}

1 Note the results of classical decision trees by James are different than those of Beeren-
winkel due to a different number of cases; Beerenwinkel et al. used more cases to
decision tree training. The columns 5 and 6 show our results using a MLP.
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Table 3. Classification performance using bidirectional recurrent neural networks

BRNN

Drug mode middle output

SQV 91.16 91.16
LPV 94.42 94.39
RTV 93.42 94.73
APV 89.25 88.71
IDV 92.55 92.55
ATV 82.67 81.33
NFV 94.06 93.07

Now the problem is the following: once the network has finished its prediction
and we have its vectorial output, we need to select one of its components as
the sole final output. In this paper we will deal with two of several variants to
obtain one output from the three outputs. A first output variant is the mode of
the three outputs and a second variant is the output corresponding to the middle
time (output from time t=2). In the case of the first variant we are obtaining
the value that is more frequent at the three parts and that gives the same
weight to all parts of the sequence. In the second case it is valid to remember
that this middle output was influenced by the other two parts. For this reason
it presumably has more information about the whole sequence than the other
ones.

For this method we took as feature values the �Energy as is shown in Table 3.
Similar results were obtained using the selection variant of the mode of the three
outputs as well as the variant using the output of the middle time.

We also used statistical methods to analyze the results. A Friedman two-way
ANOVA test was used to compare the results of Table 2 in order to validate
the accuracy of the MLP. This test showed that there are significant differences
between the methods. The Friedman test demonstrated that methods 3 and 5
(as referred in Table 2) are better than the rest. A Wilcoxon test ratified that
these two algorithms (3 and 5) are similar. A Friedman two-way ANOVA test
was also used to compare the different SVM used in this work and a Wilcoxon
test was applied to compare with the results obtained by other authors (reported
in Table 2). With these tests we do not obtain significant differences between
the results of these algorithms.

We proceeded in the same way with the BRNN. We compared the results of
this method with the best result in previous works, and with the best result using
MLP. The statistical tests yielded significant differences between the accuracy
of these techniques.

We used these statistics also to compare the two different kinds of final output
processing (mode and middle output). In this case we demonstrated that the
results of both BRNN are an appropriated method to the problem, because the
accuracy is greater than or similar to the rest.
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Fig. 2. Bidirectional Recurrent Neuronal Network Unfolding

4 Conclusions

In this paper we analyzed a recurrent neural network with an appropriate topol-
ogy to analyze sequences in classification problems. In particular, we studied the
problem to predict the Human Immunodeficiency Virus Drug Resistance. Amino
acid energies of the Protease were used as features to represent the sequence with
characteristics related to their 3D structure. A comparative evaluation of a selec-
tion of machine learning algorithms was performed, demonstrating the reliability
of both the use of energy as features and the use of recurrent neural network as
predictors.
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It was demonstrated that both Energy (amino acids contact energy) and
�Energy (difference of the amino acid energy in a mutant sequence with respect
to wild type) are good features to represent the HIV genotype, and the results
obtained were similar and in some cases better than other features used so far.
It was demonstrated that the BRNN could be used as a classifica-tion method
for this problem. Prediction performance obtained was greater than or at least
comparable with results obtained previously. The accuracy was between 81.4%
and 94.7%. The two variants of networks output computation were averaged
using 10-fold crossvalidation and had similar results, concluding that both can
be used in this problem. For the output selection variant, values of specificity
and sensitivity were obtained between 74.1-100% and 77.5-95.8% respectively.
In the selection variant using the mode the results of sensitivity and specificity
were 84.8-96.2% and 77.7-100% respectively.
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ration program supported by VLIR (Vlaamse InterUniversitaire Raad, Flemish
Interuniversity Council, Belgium).
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Abstract. Many Artificial Neural Networks design algorithms or learn-
ing methods imply the minimization of an error objective function. Dur-
ing learning, weight values are updated following a strategy that tends
to minimize the final mean error in the Network performance. Weight
values are classically seen as a representation of the synaptic weights
in biological neurons and their ability to change its value could be in-
terpreted as artificial plasticity inspired by this biological property of
neurons. In such a way, metaplasticity is interpreted in this paper as
the ability to change the efficiency of artificial plasticity giving more
relevance to weight updating of less frequent activations and resting rel-
evance to frequent ones. Modeling this interpretation in the training
phase, the hypothesis of an improved training is tested in the Multilayer
Perceptron with Backpropagation case. The results show a much more
efficient training maintaining the Artificial Neural Network performance.

Keywords: Neural Networks, Backpropagation Training Algorithm,
Metaplasticity, Binary Detection.

1 Introduction

The idea proposed is to improve the basic error minimization algorithm used to
train an Artificial Neural Network (ANN) [1] manipulating the error objective
function in order to give more relevance to less frequent training patterns and
to subtract relevance to the frequent ones. So, if the objective is to minimize an
expected error EM defined by the following expression:

EM = ε {E (x)} (1)

where X is a random variable of the training input vectors x = (x1, x2, ..., xn),
(x ∈ Rn) , where Rn is the n-dimensional space and E(x) is the expression of
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a given error criterion as a function of the inputs applied in ANN training to
update its weights in each training iteration step, then

EM =
∫

Rn

E(x)f(x)dx =
∫

Rn

e(x)dx (2)

EM =
∫

Rn

e(x)
f∗

X(x)
f∗

X(x)dx = ε∗
{

e(x)
f∗

X(x)

}
(3)

From statistical inference theory applied to eq. (3), an estimator of E is given
by:

ÊM =
1
N

N∑

k=1

e(xk)
f∗

X(xk)
(4)

where x∗
k, k = 1, 2, ..., N , are independent sample vectors whose pdf is f∗

X(x),
that we call Weighting Function and f∗

X(x) can be arbitrarily chosen by the
designer if f∗

X(x) �= 0 wherever e(x) �= 0, ∀x ∈ Rn. Note that from eq. (3) f∗
X(x)

is ideally given by [1]:

(f∗
X(x))opt =

1
EM

e(x) (5)

2 Weighting Operation

What lies in eq. (4) is that an error objective function E(xk) can be weighted
by a proper function w∗(xk) without affecting the final error objective. In fig. 1
we present a block diagram for the Weighted Training.

On the hypothesis that by giving more relevance in weight update to less
frequent activations and resting relevance to frequent ones, Metaplasticity [2][3]
is being modelled and therefore training can be improved, we test for the case
of a Multilayer Perceptron (MLP) the following weight functions:

w∗̄
X(x) = A

√
(2π)N1 · e

B
8�

i=1
x2

i

(6)

and

w∗̄
X(x) = Cŷ (7)

In eq. (6) an inverse Gaussian function is proposed as weighting function
as a standard assumption for the weighting function. In eq. (7) the network
output is used and advantage is taken from the inherent a posteriori probabilities
estimation for each input class of MLP outputs, so the statistical distribution of
training patterns is used to quantify how frequent a pattern is. A, B, and C are
parameters to be adjusted according to the training to converge. N1 represents
the number of MLP inputs.
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Fig. 1. Weighted training cycle

3 Computer Results

Experiments have been carried out in order to evaluate the Backpropagation
with Weighting (BPW) algorithm [4]. The main objective of these experiments
is the preliminary evaluation of the weighting function capabilities and limits in
particular cases. Note that the range of implementation of the idea proposed is
very wide as many ANNs learning methods imply the minimization of an error
function. We present the results obtained from training 100 MLPs applying a
BPW algorithm consisting in Least Mean Square (LMS) criterion modified by
the proposed weighting functions.

3.1 General Characteristics of the Experiments

The ANNs applied are MLPs with structure 16/8/1 (that is 16 inputs, and one
hidden layer of 8 units). The choice of the structure and the rest of the parameters
of the network was the optimal solution for the given example application [1][5].
The activation function is sigmoidal with scalar output in the range (0,1) and it
is the same for all the neurons.

For the training of the network we used balanced patterns of two classes, being
class H0 noise patterns and being class H1 signal received with additive Gaussian
noise. These patterns configure the problem of signal detection noise and the
ANN acts as a binary detector. The application of the ANN is an elemental radar
detection problem [5][6] when the basic parameter for the patterns is the Signal-
to-Noise ratio, SNR, and the performance of the detectors is evaluated in terms of
the Neyman-Pearson criterion. That is, maximizing probability of detection, Pd,
(the probability of classifying correctly the patterns belonging to the class H1)
for a fixed false alarm probability, Pfa (the probability of classifying erroneously
the patterns belonging to the class H0). In the radar literature, performance is
evaluated through the Detection curves (Pd vs. SNR), so we use these detection
curves to present the results of our method.
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In each experiment 100 networks were trained in order to achieve mean results
that does not depend on initial random value of the weights of the ANN. Fig. 2
shows the error evolution comparison of the network trained with BPW and
classical BP training. Error is calculated as the rate of misclassified patterns of
the test set out of the total number of patterns. We can notice that the BPW
training algorithm requires much less iterations to consider an ANN trained than
the classical BP does, which shortens the total time of training.

In the following experiments, two different criterions were applied to stop the
training: in one case it was stopped when the error reached zero (denoted as
ism) and in the other the training was conducted with a fixed number of 3000
patterns (3ism). When inverse Gaussian function (6) was applied as Weighting
function, the training was conducted as usual BP training, that is, maintaining
the expression of the error function to be minimized from the beginning to the
end of the training. Fig. 3 shows an example of NN training using only weighting
function (6). But in the case of (7) the weighting function is not valid until the
output of the network is a sufficiently good approximation of the a posteriori
probabilities of the inputs. In the first iterations ŷ can tend to values very close
to zero and the MLP does not learn. So, in this second case, function (6) was
applied till the error probability achieved a value in the range of 0.1-0.2 and
then switched to function (7) till the end of training. Fig. 4 shows the error
evolution during the network training phase for the second case. As usual, three
set of patterns have been used to design the network. A training set (composed
of patterns of SNR = 13.2dB for class H1), a test set to calculate the error
during training and a validation set to obtain the detection curves.

The detection probability for three different false alarm probability (proba-
bility of ”decide H0 when input corresponds to H1”) values related to the SNR
are shown in fig. 5, 6 and 7, respectively.

The red line represents the theoretical maximum by Marcum theorem [6].
The green line represents average performance for the networks that were trained
until the error probability reached zero and the blue line is used for the networks
trained with the fixed number of patterns. False alarm probabilities, Pfa, of
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10−2, 10−3 and 10−4 have been considered. For the detection probability that
corresponds to the false alarm probability of 0.01, we find that the results are
noticeably better if the NNs were trained with the fixed number of patterns
(3000) for all the values in relation to the SNR between 0 and 8 dB. In the
case of false alarm probability of 0.001 and 0.0001 we also get better results for
training a network with the fixed number of patterns and the curve (blue) is
much closer to the theoretical one (red). For the high SNR values the results
could be improved, which could make a part of the future lines of investigation
for this application.

Fig. 8 shows the results obtained for setting the threshold for changing the
weighting functions at 0.15. Again, we considered two criterions for stopping
the training of a network, when error reaches zero and with the fixed number of
patterns. We can see that the decision to change the weighting function when the
threshold 0.15 was reached gave also satisfactory results. Again, the experiments
were carried out for false alarm probability values 10−2, 10−3 and 10−4. The
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Fig. 5. Detection probability, Pfa=10−2, threshold 0.2

 

-10 -5 0 5 10 15 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

SNR (dB) 
 

D
et

ec
tio

n 
pr

ob
ab

ilit
y
 

Pfa = 10 - 3 

  

  
MarcumTeor3  
is m 
3is 

m 

Fig. 6. Detection probability, Pfa=10−3, threshold 0.2
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Fig. 7. Detection probability, Pfa=10−4, threshold 0.2
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Fig. 8. Classification error in training phase, threshold 0.15. 3ism and ism have the
same evolution.

results obtained are better in the case of training a network with the fixed
number of patterns, as it was with the threshold of 0.2. This seems to show that
the optimum point to switch weighting functions is a matter of study.

3.2 The Best Obtained Network

The error probability evolution of the best network obtained is shown in fig. 9.
Only 355 iterations were needed to reach the zero classification error. We can
see that the network has a rapid error evolution to the zero value, with a low
number of iterations. This allows us to save time and resources. The threshold
for changing the weighting function was in this case set to 0.2.

Fig. 10, 11 and 12 show the characteristics of trained network for false alarm
probabilities, Pfa, of 10−2, 10−3 and 10−4, respectively. We can see that the
distance between two curves is less than 1 dB. Even though the number of
iterations used was small, we could continue the training with a fixed number
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Fig. 9. Classification error in training phase, threshold 0.2, the best case.
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Fig. 10. Detection probability, Pfa=10−2, threshold 0.2, the best case
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Fig. 11. Detection probability, Pfa=10−3, threshold 0.2, the best case
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Fig. 12. Detection probability, Pfa=10−4, threshold 0.2, the best case

of patterns and obtain values even closer to the theoretical maximum. These
results support, one more time, the superiority of the performance of NNs trained
applying BPW criterion with two weighting functions.
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4 Conclusions

We test the hypothesis that weighting the error objective function giving more
relevance to less frequent training patterns and subtracting relevance to fre-
quent ones is a way to model of metaplasticity biological properties in artificial
neurones. We apply the statistical distribution of training patterns to quantify
how frequent a pattern is in an application of MLP with error Backpropagation
training, finding that Weighting training requires much less training patterns
maintaining the ANN performance.
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Abstract. This paper presents a first approach to try to determine the
weight of a newborn using a set of variables determined uniquely by the
mother. The proposed model to approximate the weight is a Radial Ba-
sis Function Neural Network (RBFNN) because it has been successfully
applied to many real world problems. The problem of determining the
weight of a newborn could be very useful by the time of diagnosing the
gestational diabetes mellitus, since it can be a risk factor, and also to de-
termine if the newborn is macrosomic. However, the design of RBFNNs
is another issue which still remains as a challenge since there is no per-
fect methodology to design an RBFNN using a reduced data set, keeping
the generalization capabilities of the network. Within the many design
techniques existing in the literature, the use of clustering algorithms as
a first initialization step for the RBF centers is a quite common solution
and many approaches have been proposed. The following work presents
a comparative of RBFNNs generated using several algorithms recently
developed concluding that, although RBFNNs that can approximate a
training data set with an acceptable error, further work must be done in
order to adapt RBFNN to large dimensional spaces where the general-
ization capabilities might be lost.

1 Introduction

The problem of predicting the weight of a newborn using some parameters mea-
sured from the mother translates into the problem of approximating a function.
Formally, a function approximation problem can be formulated as, given a set
of observations {(xk; yk); k = 1, ..., n} with yk = F (xk) ∈ IR and xk ∈ IRd, it is
desired to obtain a function G so yk = G (xk) ∈ IR with xk ∈ IRd.

Designing an RBF Neural Network (RBFNN) to approximate a function from
a set of input-output data pairs, is a common solution since this kind of networks
are able to approximate any function [4,12]. Once this function is learned, it will
be possible to generate new outputs from input data that were not specified in
the original data set, making possible to predict the weight of a newborn.
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The most important information that could be obtained is the fetal macroso-
mia, this is, a a birth weight of more than 4,000 g. The macrosomia is difficult
to predict and clinical and ultrasonographic estimates tend to have errors [15].
Furthermore, the weight of the fetus is a risk factor for several diseases such
us gestational diabetes mellitus [3], therefore, if we are able to approximate the
weight of the newborn, we will know in advance one of the many elements that
are used to identify diseases.

The rest of the paper is organized as follows, Section 2 describes briefly the
RBFNN model, Section 3 introduces the algorithms used to design the RBFNNs
to predict the newborn weight and Section 4 shows the results. Finally, in Section
5, conclusions are drawn.

2 RBFNN Description

An RBFNN (Figure 1) F with fixed structure to approximate an unknown func-
tion F with n entries and one output starting from a set of values {(xk; yk); k = 1,
..., n} with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to
be optimized:

F (xk; C, R, Ω) =
m∑

j=1

φ(xk; cj , rj) · Ωj (1)

where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the interpo-
lation capabilities [2,14].

The procedure to design an RBFNN starts by setting the number of RBFs in
the hidden layer, then the RBF centers cj must be placed and a radius rj has
to be set for each of them. Finally, the weights Ωj can be calculated optimally
by solving a linear equation system [5].

Fig. 1. A Radial Basis Function Neural Network
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3 Algorithms for Designing RFBNNs

This section presents the algorithms used to design the RBFNNs that predict the
newborn weight. Some of these algorithms have been recently developed showing
a better performance than classical algorithms used up to date.

3.1 Fuzzy C-Means (FCM)

This algorithm presented in [1] uses a fuzzy partition of the data where an
input vector belongs to several clusters with a membership value. It defines an
objective distortion function to be minimized is:

Jh(U, C; X) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2 (2)

where X = {x1, x2, ..., xn} are the input vectors, C = {c1, c2, ..., cm} are the
centers of the clusters, U = [uik] is the matrix where the degree of membership
is established by the input vector to the cluster, and h is a parameter to control
the degree of the partition fuzziness. After applying the least square method to
minimize the function in Equation 2, we get the equations to reach the solution
trough an iterative process.

3.2 Improved Clustering for Function Approximation Algorithm:
ICFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. To consider these situations, the parameter w is introduced (4)
to modify the values of the distance between a center and an input vector.
w will measure the difference between the estimated output of a center and the
output value of an input vector. The smaller w is, the more the distance between
the center and the vector will be reduced. This distance is calculated now by
modifying the norm in the euclidean distance:

dkj = ‖xk − cj‖2 · w2
kj . (3)

To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center.

wkj =
|F (xk) − oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
(4)

where F (x) is the function output and oj is the estimated output of cj .
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Thus, the objective function to be minimize is redefined as:

Jh(U, C, W ) =
n∑

k=1

m∑

i=1

uh
ik‖xk − ci‖2w2

ik (5)

This function is minimized using an alternating optimization procedure in
the same way as in the FCM algorithm, although new equations are needed to
calculate the positions of the centers, the membership values and the expected
output values:

uik =

⎛

⎝
m∑

j=1

(
dik

djk

) 2
h−1

⎞

⎠
−1

ci =

n∑
k=1

uh
ikxkw2

ik

n∑
k=1

uh
ikw2

ik

oi =

n�

k=1
uh

ikYkd2
ik

n�

k=1
uh

ikd2
ik

(6)

where dij is the weighted euclidean distance between center i and input vector j,
and h > 1 is a parameter that allow us to control how fuzzy will be the partition
and usually is equal to 2.

The ICFA algorithm performs a migration step with the objective of reducing
the global distortion of the partition by putting closer two centers. It performs a
pre-selection of the centers, to decide what centers will be migrated, it is used a
fuzzy rule that selects centers that have a distortion value above the average. By
doing this, centers that do not add a significant error to the objective function
are excluded because their placement is correct and they do not need help from
other center. The center to be migrated will be the one that has assigned the
smallest value of distortion and the destination of the migration will be the center
that has the biggest value of distortion. If the total distortion of the partition has
nor decreased after the migration, the centers remain at their original positions.
The idea of a migration step was introduced in [13] as an extension of Hard
C-means.

3.3 Fuzzy Possibilistic CFA

The algorithm that is used in the design is an adaptation of the one presented in
[9] but modifying the way the input data is partitioned. As classical clustering
algorithms, the proposed algorithm defines a distortion function that has to be
minimized. The distortion function is based in a fuzzy-possibilistic approach as
it was presented in [6], although the migration step remains the same as for
ICFA. The function is:

Jh(U, C, T, W ; X) =
n∑

k=1

m∑

i=1

(uhf

ik + t
hp

ik )D2
ikW (7)

restricted to the constraints:
m∑

i=1

uik = 1 ∀k = 1...n and
n∑

k=1

tik = 1 ∀i = 1...m.
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As the previous approaches, the final position of the centers is reached by an
alternating optimization approach where all the elements defined in the func-
tion to be minimized are updated iteratively using the equations obtained by
differentiating Jh(U, T, C, W ; X) with uik, tik, ci and oi.

3.4 Possibilistic Centers Initializer (PCI)

This algorithm [8] adapts the algorithm proposed in [9] using a mixed approach
between a possibilistic and a fuzzy partition, combining both approach as it was
done in [16]. The objective function to be minimized is defined as:

Jh(U (p), U (f), C,W ; X) =
n∑

k=1

m∑

i=1

(u(f)
ik )hf (u(p)

ik )hpD2
ikW +

m∑

i=1

ηi

n∑

k=1

(u(f)
ik )hf (1 − u

(p)
ik )hp

( ) (8)
where u

(p)
ik is the possibilistic membership of xk in the cluster i, u

(f)
ik is the fuzzy

membership of xk in the cluster i, DikW is the weighted euclidean distance, ηi

is a scale parameter that is calculated by: ηi =

n�

k=1
(u

(f)
ik )hf ‖xk−ci‖2

(u
(f)
ik )hf

This function is obtained by replacing de distance measure in the FCM al-
gorithm by the objective function of the PCM algorithm, obtaining a mixed
approach. The scale parameter determines the relative degree to which the sec-
ond term in the objective function is compared with the first. This second term
forces to make the possibilistic membership degree as big as possible, thus, choos-
ing this value for ηi will keep a balance between the fuzzy and the possibilistic
memberships.

3.5 Output Value-Based Initializer (OVI)

This algorithm [7] changes the perspective of the previous ones, the idea is
to think the output space as a flat surface (Y (xk) = 0), where some of the
values of this surface have been modified by an n-dimensional element, obtaining
yk. From this, it can be assumed that the most common value of the target
function is constant and equal 0. The preprocessing of the output is performed
by making the most frequent output value equal 0. This can be easily performed
by calculating the fuzzy mode of the output values and subtracting it to each
yk. Once this situation is achieved, all the most common values that have an
output around 0 will not affect the distortion significantly so the centers will be
mostly influenced by the input vectors with high output values.

This distortion function combines the information provided by a coordinate
in the input vector space and its corresponding output in such a way that, if
a neuron is near an input vector and the output of the input vector is high,
the activation value of that neuron respect that input vector will be high. The
distortion function is defined as:

δ =
n∑

k=1

m∑

i=1

D2
ikal

ik|Y p
k | (9)
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where Dik represents the euclidean distance from a center ci to an input vector
xk, aik is the activation value that determines how important the input vector
xk is for the center ci, l is a parameter to control the degree of overlapping
between the neurons, Yk is the preprocessed output of the input vector xk, and
p allows the influence of the output when initializing the centers to increase or
decrease.

The OVI algorithm calculates how much an input vector will activate a neuron
in function of its output value. From this, the value of the radius can be set as
the distance to the farthest input vector that activates a center. In order to do
that, a threshold has to be established to decide when an input vector activates
or does not activate a center.

Using the values of the A matrix, an activation threshold (ϑoverlap) that allows
us to calculate the distance to the farthest input vector that activates a neuron
can be established. The proposed algorithm selects the radius for each center
independently of the positions of the other centers, unlike in the KNN heuristic
[11], and it allows to maintain an overlap between the RBFs, unlike in the CIV
heuristic [10].

Each radius is defined as:

ri = max{ Dik / aik > ϑoverlap , 1 ≤ i ≤ m , 1 ≤ k ≤ n } (10)

The selection of a threshold makes the algorithm more flexible, because it can
increase or decrease the degree of overlap between the RBFs.

4 Experimental Results

The data used for the experiments was provided by the Preventative Medicine
Department at the University of Granada and consists in a cohort of 969 preg-
nant women considering the following parameters: number of cigarettes smoked
during the pregnancy, mother’s weight at the beginning and at the end of the
pregnancy, gestation days and the mother’s age. A set of 500 randomly chosen
elements from the original set was used for training and the rest for test.

To compare the results provided by the different algorithms, it will be used
the normalized root mean squared error (NRMSE) which is defined as:

NRMSE =

√√√√√√√

n∑
k=1

(yk − F(xk; C, R, Ω))2

n∑
k=1

(
yk − Ȳ

)2
(11)

where Ȳ is the average of the outputs of the target function, in this case, the
final weight of the newborn.

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1, except for the OVI algorithm which uses its own technique as described
above. The weights were calculated optimally by solving a linear equation
system.
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Table 1 shows the approximation errors for the training and test data sets.
As the results show, the performance of the algorithms is quite similar although
the OVI algorithm seems to perform better than the rest probably as a con-
sequence of its own method to calculate the radii. All the algorithms are able
to fit the training set with a reasonable error for any number of centers with
no improvement of error when increasing the number of RBFs. Unfortunately,
the test errors are unacceptable for all the algorithms showing how the RBFNNs
loose their generalization capabilities in high dimensional spaces using a reduced
amount of data.

Table 1. Mean of the approximation error (NRMSE) for the training and test sets

Training

Clusters FCM ICFA FPCFA PCI OVI
5 0.639 0.652 0.642 0.638 0.635
6 0.680 0.642 0.641 0.644 0.640
7 0.675 0.633 0.629 0.636 0.625
8 0.674 0.632 0.653 0.669 0.617
9 0.644 0.655 0.631 0.629 0.619
10 0.644 0.623 0.645 0.650 0.631

Test

Clusters FCM ICFA FPCFA PCI OVI
5 4.583 4.461 4.518 4.575 4.545
6 4.569 4.606 4.499 4.625 4.619
7 4.639 4.550 4.634 4.479 4.579
8 4.593 4.573 4.575 4.451 4.621
9 4.580 4.570 4.577 4.614 4.607
10 4.628 4.588 4.597 4.601 4.591

5 Conclusions

This work has presented an application of RBFNNs to a real world problem: the
prediction of a newborn’s weight. This parameter could be quite useful in the
diagnosis of macrosomia which can lead to complications at the childbirth and
also to be considered in the diagnosis of other diseases which has the newborn
weight as a risk factor. The RBFNNs were designed using a classical methodology
where the centers of the RBFs are initialized using clustering techniques and
applying local search algorithms. The results showed how, for the training set,
the RBFNNs were able to approximate reasonably well the weights although test
errors become unacceptable, independently of the algorithm used. This results
cheer to keep on researching on this subject although aiming at other aspects
such us how the Radial Basis Function behave in high dimensional spaces.
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13. G. Patanè and M. Russo. The Enhanced-LBG algorithm. Neural Networks,
14(9):1219–1237, 2001.

14. I. Rojas, M. Anguita, A. Prieto, and O. Valenzuela. Analysis of the operators
involved in the definition of the implication functions and in the fuzzy inference
proccess. International Journal of Approximate Reasoning, 19:367–389, 1998.

15. M. A. Zamorski and W.S. Biggs. Management of Suspected Fetal Macrosomia.
American Family Physician, 63(2), January 2001.

16. J. Zhang and Y. Leung. Improved possibilistic C–means clustering algorithms.
IEEE Transactions on Fuzzy Systems, 12:209–217, 2004.



Filtering Documents with a Hybrid Neural

Network Model

Guido Bologna, Mathieu Boretti, and Paul Albuquerque

University of Applied Science HES-SO, Laboratoire d’Informatique Industrielle
Rue de la Prairie 4, 1202 Geneva, Switzerland

Guido.Bologna@hesge.unige.ch

Abstract. This work presents an application example of text document
filtering. We compare the DIMLP neural hybrid model to several machine
learning algorithms. The clear advantage of this neural hybrid system is
its transparency. In fact, the classification strategy of DIMLPs is almost
completely encoded into the extracted rules. During cross-validation tri-
als and in the majority of the situations, DIMLPs demonstrated to be
at least as accurate as support vector machines, which is one of the most
accurate classifiers of the text categorization domain. In the future, in
order to further increase DIMLP accuracy, we believe that common sense
knowledge could be easily inserted and refined with the use of symbolic
rules.

1 Introduction

Until the end of the eighties, document classification was mainly a knowledge
engineering process. In practice, symbolic rules describing how to classify docu-
ments under the existing categories were first determined by experts and then
used in classification algorithms. In the nineties, categorization of documents by
machine learning models was strongly investigated; in many cases the accuracy
of document classification systems reached human performance [6]. A clear ad-
vantage of the machine learning approach is that the intervention of knowledge
experts is avoided, thus saving time and financial ressources.

In this work we present a comparison study between several machine learn-
ing models applied to a particular document classification problem. For the first
time we generate symbolic rules from the DIMLP neural hybrid system [2] in
a classification task related to text categorization. We focus on a filtering ap-
plication dataset of small size, as we would like to mimic a situation for which
one would quickly annotate a small set of text documents using labels such as
relevant or non-relevant.

In the majority of the experiments, DIMLP networks were at least as accurate
as SVMs with the advantage of offering a starting point for explaining neural
network classifications to text mining experts. In the remaining sections, section
two describes the machine learning models used for the comparison, section
three gives a description of DIMLP networks and its rule extraction algorithm,
section four describes how to index text documents, section five illustrates the
experiments and is followed by a conclusion.
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2 Naive Bayes, IB1, C4.5 and SVMs

In this work, we compare DIMLP bagged networks to Support Vector Machines
(SVMs), Naive Bayes, IB1 and C4.5 Decision Trees. In the following paragraphs
we shortly describe the models.

2.1 Naive Bayes Classifier

Without loss of generality, let us consider a classification problem with class C
and class C̄, which is the complement of C. Given a document D of class C, the
Bayes Theorem states that

p(C|D)p(D) = p(D|C)p(C); (1)

with p() denoting the probability, which is equivalent to

p(C|D) =
p(C)
p(D)

p(D|C). (2)

Similarly, with class C̄ we obtain

p(C̄|D) =
p(C̄)
p(D)

p(D|C̄). (3)

A document is modelled according to a set of words; given class C, the probability
of occurrence of word i is defined as p(wi|C). Further, by the strong hypothesis
of independence of words, we obtain that the probability of a given document
D, given a class C is

p(D|C) =
∏

i

p(wi|C) (4)

and

p(D|C̄) =
∏

i

p(wi|C̄). (5)

Dividing (2) by (3) gives

p(C|D)
p(C̄|D)

=
p(C)
p(C̄)

∏

i

p(wi|C)
p(wi|C̄)

. (6)

If the numerator of the right hand side of (6) is greater than the denominator,
the class of document D is C, else the class is the complement of C. Note that
probabilities of words given classes C and C̄ are estimated with the use of the
training set.
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2.2 IB1

Instance based learning (IB1) [1] corresponds to the well known nearest neigh-
bour classifier. A new sample is classified according to the class of the nearest
training case belonging to the training set. Many variants of this model have
been defined; for instance it is possible to take into account k neighbours and
to assign the class most represented in the neighbourhood. Note that larger k
values help to reduce the effects of noisy points within the training data set.

2.3 Decision Trees

A tree is a recursive structure. Each intermediary node of the tree is divided into
several partitions. For binary trees, two partitions are determined at each node.
The splitting criterion is based on the “discriminatory power” of one or several
combined variables. Many segmentation criteria have been proposed; the most
famous are Shannon entropy, Gini coefficients with many variants and the Khi
squared criterion. An important question during tree induction is the size of the
obtained structure, in order to obtain a good classifier. As a consequence many
tree pruning techniques have been established. C4.5 is one of the most popular
binary decision trees [5].

2.4 Support Vector Machines

Amongst the best models for text categorization SVMs have been often referred
by many authors [8]. This model tries to determine a discriminant frontier be-
tween two classes achieving maximum separation also denoted as the margin. In
practice for a linear classifier the separation border corresponds to a hyperplane.

Specifically, let us consider a linearly separable problem with data points of the
form {(x1, l1), ..., (xN , lN )}, with xi representing an n dimensional data vector
and li being a learning value belonging to {−1, 1}. We would like the SVM linear
classifier to determine the optimal hyperplane of the form

wx − b = 0, (7)

with vector w being perpendicular to the separating hyperplane. It can be shown
that the margin has length 2/|w|. It is possible to maximize the margin by
minimizing |w|.

Learning is achieved by solving a quadratic programming optimization prob-
lem. With the use of non-linear kernels (analogous to non-linear transfer func-
tions in neural networks) it is possible to create non-linear classifiers with max-
imum margin discriminatory frontiers.

3 DIMLPs with Bagging

The Discretized Interpretable Multi-Layer Perceptron (DIMLP) is a special
neural network model for which symbolic rules are generated to explain the
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knowledge embedded within the connections and the activations of neurons.
With respect to the training set, the degree of matching between network re-
sponses and extracted rules is 100%. Moreover, the computational complexity of
the rule extraction algorithm scales in polynomial time with the dimensionality
of the problem, the number of training examples, and the size of the network.
In this work, we give a short description of the DIMLP model; the interested
reader will find more details in [2].

3.1 A Single DIMLP Network

The DIMLP architecture differs from the standard multi-layer perceptron archi-
tecture in two main ways :

1. Each neuron in the first hidden layer is connected to only one input neuron.
2. The activation function used by the neurons of the first hidden layer is the

staircase function instead of the sigmoid function.

Staircase activation functions create linear discriminant frontiers between sev-
eral classes. Moreover, with the special pattern of connectivity between the input
layer and the first hidden layer, linear frontiers are parallel to the axis defined
by input variables. The training phase is carried out by varying the weights in
order to minimize the usual Sum Squared Error Function by a modified back-
propagation algorithm [2].

3.2 Rule Extraction

The key idea behind rule extraction is the precise localization of discriminant
frontiers. In a standard multi-layer perceptron discriminant frontiers are not
linear [2]; further, their precise localization is not straightforward. The use of
staircase activation functions turns discriminant frontiers into well determined
hyper-planes.

Generally, the rule extraction task corresponds to the resolution of a covering
problem where discriminant hyper-planes represent frontiers between regions of
different classes. Discriminant hyper-planes are precisely determined by weight
values connecting an input neuron to a hidden neuron. For each neuron of the
first hidden layer the number of stairs related to the staircase function, corre-
sponds to the number of possible discriminant hyper- planes. The rule extraction
algorithm checks whether a hyper-plane frontier is effective or not in a given re-
gion of the input space.

The relevance of a discriminant hyper-plane corresponds to the number of
points viewing this hyper-plane as the transition to a different class. In the
first step of the covering algorithm the relevance of discriminant hyper-planes is
estimated from all available examples and DIMLP responses. In practice, for all
examples each input variable xi is varied by the quantity δi, such as δi depends
on the localization of next virtual hyper-plane.

Once the relevance of discriminant hyper-planes has been established a spe-
cial decision tree is built according to the highest relevant hyper-plane criterion.
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In other terms, during tree induction in a given region of the input space the
hyper-plane having the largest number of points viewing this hyper-plane as the
transition to a different class is added to the tree.

Each path between the root and a leaf of the obtained decision tree corre-
sponds to a rule. At this stage rules are disjointed and generally their number
is large, as well as their number of antecedents. Therefore, a pruning strategy is
applied to all rules according to the most enlarging pruned antecedent criterion.
The use of this heuristic involves that at each step the pruning algorithm prunes
the rule antecedent which most increases the number of covered examples with-
out altering DIMLP classifications. Note that at the end of this stage, rules are
no longer disjointed and unnecessary rules are removed.

When it is no longer possible to prune any antecedent or any rule, again, to
increase the number of covered examples by each rule all thresholds of remaining
antecedents are modified according to the most enlarging criterion. More pre-
cisely, for each attribute new threshold values are determined according to the
list of discriminant hyper-planes. At each step, the new threshold antecedent
which most increases the number of covered examples without altering DIMLP
classifications is retained.

The general algorithm is summarized below.

1. Determine relevance of discriminant hyper-planes using available examples
and DIMLP classifications.

2. Build a decision tree according to the highest relevant hyper-plane criterion.
3. Prune rule antecedents according to the most enlarging pruned antecedent

criterion.
4. Prune unnecessary rules.
5. Modify antecedent thresholds according to the most enlarging criterion.

Generally, the search for the minimal covering is an NP-hard problem. How-
ever, as the presented rule extraction algorithm uses several heuristics the over-
all computational complexity to find a sub-optimal solution is polynomial with
respect to the number of inputs, stairs and examples. Therefore, even for rea-
sonably large datasets and large DIMLP networks the rule extraction problem is
tractable. Note that extracted rules exactly represent neural network responses.

3.3 Bagging

Bagging is based on resampling techniques. Assuming that q is the size of the
original training set, bagging generates for each classifier q examples drawn with
replacement from the original training set. As a consequence, for each network
many of the generated examples may be repeated while others may be left out.

The rule extraction technique presented in 3.2 can be applied to any DIMLP
architecture having as many hidden layers as desired. In fact, the first hidden
layer determines the exact location of hyper-planes, whereas all other layers just
switch on or off discriminant frontiers in a given region of the input space. Since
the overall combination of DIMLP networks is again a DIMLP network we can
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use the same rule extraction technique. Here, all virtual hyper-planes defined
by all DIMLP networks are taken into account. The previous rule extraction
technique (cf. 3.2) is only modified in step 1. This step becomes:

1. Determine virtual hyper-planes from all DIMLP networks.

4 Document Indexing

A typical representation of a text document is given by a histogram of words.
This is also the well known bag of words representation. As an alternative, it is
possible to constitute vectors of word frequencies which are more robust with
text documents of different lengths. Several authors found that more sophisti-
cated representations than this did not yield significantly better results [3]. For
instance, sentences rather than individual words have been used [7], but results
were not encouraging.

A more sophisticated indexing function is represented by the tfidf function.

tfidf(wk, dj) = Card(wk , dj) · log
N

Card(D(wk))
; (8)

with Card(wk , dj) representing the number of times wk appears in document
dj , N being the number of documents in the training set and Card(D(wk)) the
number of documents in the training set in which wk occurs. Two features are
embodied into this function. On one hand, the more often a word appears in a
document, the more often it is representative of its content, while on the other
hand the more documents a word appears in, the less discriminating it is. Several
variants of the tfidf function have been established; essentially the differences
between these functions reside in the logarithms and normalization factors.

Typical vectors describing texts have thousands of components. Several strate-
gies have been proposed, in order to reduce vector dimensionality. For instance,
neutral words such as articles, prepositions conjunctions and stop words are
almost always removed. It is also possible to group words that share the mor-
phological root; this is called stemming. While it is not completely clear whether
stemming is effective or not, the propensity to adopt it, is frequent.

Another simple approach consists in retaining the words that occur in the
greatest number of text documents. As a result, it is possible to reach a dimen-
sionality reduction factor of ten with no loss in accuracy [9]. A typical rule that
has been used by many authors is to remove all words that occur at most k times
with k ranging from one to five [6].

Word selection is able to be performed according to information-theoretic
term selection functions. One of the most popular is based on the χ2 statistic.
The key idea is to measure how dependent a word is to a class; more partic-
ularly, thus words with no dependence on any classes are removed. Other well
known selection functions, such as Information gain and Mutual information are
reported by Sebastiani [6].
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5 Experiments

We retrieved from the Reuters internet site (www.reuters.com) a set of 330
text documents belonging to several classes : economy, sport, politics, health,
technology, entertainment, science, and weather. From this sample set we created
two other datasets. The first denoted as Dataset 1 contained 110 samples, the
second which is called Dataset 2 had 220 samples and finally the whole sample
set is named Dataset 3. Note that all text documents were of comparable length.

The goal was to filter the class of the text documents related to economy. Note
also that in these three datasets, half of the economic text documents belonged
to the economy class. Performance was estimated by average values of accuracy,
recall and precision on ten repetitions of ten fold cross-validation. Learners have
been set with default learning parameters. SVMs, Naive Bayes, IB1, and C4.5
were run with the Weka package1, while DIMLPs were retrieved from the “Neural
Hybrid Systems” internet site2. Note that the default architecture for the DIMLP
neural network had a number of neurons in the first hidden layer equal to the
number of inputs (without the second hidden layer). DIMLPBT denotes an
ensemble of 25 DIMLP networks trained with bagging. Finally, during cross-
validation trials, the number of components in the input vectors depended on
the words present in the training set.

5.1 Rough Input Vectors

Text documents were indexed according to word occurrence; no other processing
was performed, not even for the suppression of stop words. This experimented
setup gave the highest dimensional input vectors. Tables 1, 2 and 3 summarize
cross-validation results on the three datasets. Naive Bayes classifiers, SVMs and

Table 1. Average predictive accuracy using rough input vectors

Dataset 1 Dataset 2 Dataset 3

Avg. dim. 6185.5 ± 1.9 9405.3 ± 3.3 11360.7 ± 2.6

Naive Bayes 92.0 ± 1.3 89.2 ± 0.9 90.0 ± 0.3

IB1 56.7 ± 1.0 67.5 ± 1.2 72.0 ± 1.3

C4.5 76.3 ± 1.6 78.1 ± 2.2 85.9 ± 1.3

SVM 90.3 ± 0.8 87.3 ± 1.2 90.0 ± 0.7

DIMLPBT 88.4 ± 1.9 88.6 ± 0.9 91.5 ± 0.5

DIMLPBTs were significantly more accurate than IB1 and C4.5 decision trees.
Contrary to the curse of dimensionality phenomenon, these two models clearly
improved their predictive accuracy from a training set containing 100 samples
to a training set including 300 training cases. Note also that this improvement
was much more moderate for DIMLPBT, while SVMs were stable.
1 http://www.cs.waikato.ac.nz/ml/weka/
2 http://www.wv.inf.tu-dresden.de/�borstel/sycosy/doku.php?id=software
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Table 2. Average predictive recall using rough input vectors

Dataset 1 Dataset 2 Dataset 3

Naive Bayes 91.4 ± 2.1 88.5 ± 0.9 90.0 ± 0.9

IB1 100 ± 0.0 47.8 ± 2.3 54.8 ± 2.5

C4.5 73.6 ± 3.6 75.6 ± 3.3 86.0 ± 2.1

SVM 97.6 ± 1.0 90.4 ± 1.1 92.2 ± 0.8
DIMLPBT 92.2 ± 2.1 88.8 ± 1.1 90.3 ± 0.9

Table 3. Average predictive precision using rough input vectors

Dataset 1 Dataset 2 Dataset 3

Naive Bayes 93.1 ± 2.1 90.4 ± 1.4 90.3 ± 1.0

IB1 53.9 ± 0.7 88.3 ± 0.2 90.7 ± 0.7

C4.5 80.8 ± 1.2 80.5 ± 2.9 86.4 ± 1.7

SVM 86.6 ± 0.8 86.0 ± 1.0 88.7 ± 0.9

DIMLPBT 87.0 ± 2.0 89.2 ± 1.3 92.8 ± 0.3

Amongst the three most accurate models, the better predictive average recall
was obtained by SVMs, whereas better average predictive precision was obtained
by Naive Bayes and DIMLPBT.

5.2 Removing Non-frequent and Rare Words

The second series of experiments concerned dimensionality reduction by remov-
ing articles, adjectives, conjunctions, prepositions, stop words and words that
appeared at most once in every text document belonging to the training set. In
the results shown in table 4 the dimensionality reduction factor was at most 4.5,
with DIMLPBT reaching the highest accuracy. Note also that with respect to
table 1, DIMLPBT accuracy improved for the first and the second dataset.

Table 4. Average predictive accuracy with the suppression of rare words

Dataset 1 Dataset 2 Dataset 3

Avg. dim. 1385.1 ± 0.7 2264.4 ± 0.9 2929.6 ± 0.9

Naive Bayes 90.9 ± 1.5 88.2 ± 0.8 88.9 ± 0.5

IB1 58.0 ± 1.4 57.7 ± 0.8 70.4 ± 1.3

C4.5 80.0 ± 2.0 79.1 ± 1.2 83.8 ± 1.7

SVM 90.7 ± 1.8 87.6 ± 0.9 90.0 ± 0.6

DIMLPBT 91.3 ± 0.8 89.9 ± 0.7 91.6 ± 0.6

5.3 Dimensionality Reduction by Abstraction of Words

We tried to further reduce the dimensionality with the use of abstraction. The
idea was to replace for instance a cat by an animal, as an animal is a much more
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Table 5. Average predictive accuracy with the abstraction of words

Dataset 1 Dataset 2 Dataset 3

Avg. dim. 401.3 ± 0.3 670.3 ± 0.3 909.6 ± 0.3

Naive Bayes 79.6 ± 1.5 80.3 ± 1.8 80.0 ± 0.6

IB1 61.3 ± 1.4 68.1 ± 1.0 68.3 ± 0.5

C4.5 66.8 ± 3.7 73.3 ± 3.8 74.8 ± 1.8

SVM 86.4 ± 1.2 82.4 ± 1.7 84.7 ± 0.7

DIMLPBT 84.3 ± 1.9 86.0 ± 0.6 86.5 ± 0.8

abstract notion than that of a cat. WordNet [4] allowed us to make this trans-
formation. Obviously, this process reduces the input vector dimensionality, as
several words tend to be transformed into the same word. The results illustrated
in table 5 show that predictive accuracy was lower.

Thus, the transformation of words into a more abstract representation is not
beneficial in this context.

5.4 Rule Extraction from DIMLPs

Table 6 illustrates the results of rule extraction from DIMLPBT networks with
input vectors containing non-relevant and non-frequent words (cf. table 4).
Fidelity corresponds to the degree of matching between rules and networks on

Table 6. Description of the rules extracted from DIMLPBT with input vectors con-
taining non-relevant words

Dataset 1 Dataset 2 Dataset 3

Fidelity 81.2 88.7 92.4

Accuracy 92.1 90.8 92.4

Nb of rules 24.1 30.2 34.7

Nb. of ant. 68.6 101.8 126.9

the testing set. The accuracy is given for those testing cases for which rules and
networks agree. The number of antecedents per ruleset is related to the com-
plexity of the classifier generated for each cross validation trial. As expected,
complexity increased with the number of training cases.

Table 7 illustrates the results of rule extraction from DIMLPBT networks
with input vectors containing abstracted words. Rule predictive accuracy was
lower compared to the previous table.

Below we give a few examples of typical rules for class “Economy”; note that
rule antecedents are given in terms of word occurrence.

1. (forecast ≥ 1) ⇒ Class = Economy
2. (cents ≥ 1) ⇒ Class = Economy
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Table 7. Description of the rules extracted from DIMLPBT with input vectors con-
taining abstracted words

Dataset 1 Dataset 2 Dataset 3

Fidelity 83.9 89.7 92.1

Accuracy 86.6 87.5 87.8

Nb of rules 18.9 29.6 37.0

Nb. of ant. 55.5 107.8 145.1

3. (dow ≥ 1) ⇒ Class = Economy
4. (percent ≥ 1)(prices ≥ 1) ⇒ Class = Economy
5. (company ≥ 1) (fell ≥ 1) ⇒ Class = Economy

These rule examples were 100% accurate during a particular cross-validation
trial. Word “dow” in the second rule represents the “Dow Jones”, which is a
very important economic index. Moreover “cents” is related to dollars in the
second rule, while “company” and “fell” are also very important words in the
context of economy.

6 Conclusion

We presented several machine learning models trained to filter three datasets of
small size. Even with very high dimensional vectors DIMLPs, SVM and Naive
Bayes classifiers were able to reach satisfactory accuracy. In order to reduce
input dimensionality, we removed words which occur at most once. As expected,
average predictive accuracy was roughly very close for the best models with a
dimensionality reduction factor equal to 4.5 at most. We tried further, word
abstraction; however predictive accuracy started to degrade too much. In the
future, in order to further increase DIMLPBT predictive accuracy, we believe
that in addition to training cases, common sense knowledge could be easily
inserted refined and extracted with the use of symbolic rules.
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Abstract. A formal definition of task relatedness to theoretically jus-
tify multi-task learning (MTL) improvements has remained quite elu-
sive. The implementation of MTL using multi-layer perceptron (MLP)
neural networks evoked the notion of related tasks sharing an underlying
representation. This assumption of relatedness can sometimes hurt the
training process if tasks are not truly related in that way. In this paper
we present a novel single-layer perceptron (SLP) approach to selectively
achieve knowledge transfer in a multi-tasking scenario by using a differ-
ent notion of task relatedness. The experimental results show that the
proposed scheme largely outperforms single-task learning (STL) using
single layer perceptrons, working in a robust way even when not closely
related tasks are present.

1 Introduction

One of the first and most extended MTL implementations is based on the use of
multi-layer neural networks [2,4,14,17]. This approach allow us to exploit task
relatedness by sharing the internal representation at the hidden level of the
network, so it is implicitly assumed that tasks are going to present a correlated
internal structure. However, to improve the generalization accuracy, it will be
completely necessary to provide a set of learning tasks that are known to be
appropriated. To relax this hard requirement, it would be desirable to propose
algorithms that can discover the relation between multiple learning tasks, so
that a positive knowledge transfer occurs during the training process. These
frameworks are typically named by selective transfer approaches.

We remark the works developed by Daniel Silver and Sebastian Thrun in the
context of selective multi-task learning neural networks [17,18]. In both frame-
works, it is assumed that tasks will constructively interact during the training
of a standard MTL scheme by using an a priori measure of task relatedness,
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i.e., the main role in the selective transfer process is played by a previously de-
fined metric of tasks relatedness. In other words, it is assumed that the measure
of task relatedness is good enough to force resulting tasks to “see” the whole
information (weighted or not) of each other during the training process.

Instead, in this paper we introduce a new framework for doing selective trans-
fer by using a different notion of tasks relatedness from the typical one in MTL
neural networks. This alternative definition is inspired in Hierarchical Bayes for
multi-task learning [11], where it is considered that closely related tasks have
the same whole representation. In particular, following a viewpoint closer to the
human brain behavior [13,19], the learner is provided with a common representa-
tion that exploits similarities between tasks (related information), and a private
part (not accessible to the rest of tasks) that captures the specific structure of
each task (unrelated information).

Since tasks following this new viewpoint of task relatedness are not supposed
to share any internal representation, it is possible to extend multi-task learning to
single-layer neural networks. We use coupling parameters weighting importance
of the common and the private representation as a function of the grade of
task relatedness. This allows us to automatically achieve selective transfer, not
requiring any a priori measure of similarity. Moreover, the use of linear learners
may be of great utility when tasks within the domain are linear/quasi-linear, or
they present a high dimensional input space [16].

The rest of the paper is organized as follows. In Section 2, we introduce the no-
tation used throughout the paper and, in order to assert the basis of our method,
we review two main approaches that appeared in the machine learning literature
to model task relatedness. In Section 3 we set a framework to achieve selective
transfer using a single-layer perceptron. Section 4 presents some experiments
over two domains showing that the proposed framework leads to a significant
improvement in generalization performance when compared to single-task learn-
ing. Finally, in Section 5 we present our conclusions and some lines for further
work.

2 Notation and Setup

We assume the following setup. We consider that the domain has T learning
tasks and that all data from the tasks come from the same space X × Y . For
simplicity we assume that X ⊂ R

d and Y ⊂ R. For each task the learner is
provided with M input-output independent trials according to some (unknown)
probability distribution Pt on X ×Y , so the total data available by a supervised
multi-task learning is

{{(x11, y11), ..., (xM1, yM1)} , ..., {(x1T , y1T ), ..., (xMT , yMT )}}.
In addition, the learner is provided with an action space A, an error function
E : Y ×A → [0, L] for some positive real number L, and a decision or hypothesis
space H containing functions h : X → A.

We assume that the learner is trained within an environment where Pt is
different for each task but Pt’s are related in any grade. The goal is to learn T
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functions h1, h2, ..., hT such that ht(xit) ≈ yit, or equivalently the error function
E(ht(xit), yit) ≈ 0.

All applications considered in Section 4 are included in a simple version of
this setup, consisting of using the same input data xit for all the tasks. That
is, for every i ∈ {1, ..., M} vector xit is the same for all t ∈ {1, ..., T}, but the
output targets yit differ for each t.

2.1 Models for Task Relatedness

All frameworks for multi-task learning are based on some definition of the no-
tion of task relatedness formalized through the design of a multi-task learning
approach. In this sense, we will pay attention to two models of task relatedness
widely used in the Machine Learning context:

1. As MTL neural networks considers so far, tasks may be related assuming
that they are going to share a common underlying representation. This is the
case of [1] and, specially, [2,4,17] where backpropagation multi-task learning
schemes are employed.

To formalize notation for MTL using multi-layer neural networks, as done
in [2] we consider that the hypothesis space H : X → A is split into two
sections: H = G ◦ F where F : X → V and G : V → A, where V is an
arbitrary set1. We simplify the notation writing

X
F−→ V

G−→ A

F is called the representation space and an individual member f of F is called
an internal representation or just a representation. On the other hand, G is
called the output function space.

Based on the information about the domain knowledge, contained in the
samples of all tasks, the learner searches for a good representation f ∈ F ,
and then searches G ◦ f for an adequate individual output function gt ∈ G
or hypothesis ht = gt ◦ f ∈ H with small error, for each t, 1 ≤ t ≤ T .

2. Besides, in some implementations of MTL task relatedness is modeled
through assuming that all functions learned are close to some model [7,12,20].
That is, this viewpoint considers that closely related tasks are going to share
a same whole representation. This is the case for functions capturing prefer-
ences in user’s modeling problems [6].

In this case, we assume that there is not a representation space, F , shared
by all the tasks, so the hypothesis space is not divided into two sections, that
is, using the same nomenclature as before, the hypothesis space is equal to
the output function space, H = G : X → A. Consequently, the learner just
searches G (or H) for a good external representation, given by gt.

Under this notion, selective transfer becomes an inherent feature since rep-
resentation is split in a common model, extracted from the domain knowl-
edge, and an individual (private) model for each task, both of them with
significance depending on the grade of task relatedness.

1 That is, H = {g ◦ f : g ⊂ G, f ∈ F}.
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3 Selective Transfer by Coupling Common/Private
Representation

Following the second notion of task relatedness, Hierarchical Bayesian methods
[11,12] assume that all task parameters, wt, come from a particular Gaussian
probability distribution. This implies that all wt are “close” to some mean pa-
rameter, wc (the mean of the Gaussian distribution).

In this section we follow the intuition of Hierarchical Bayes, assuming the
model proposed in [6] by which all wt are written, for every t ∈ {1, ..., T}, as

wt = wc + wp,t . (1)

When private vectors wp,t are “small”, tasks will be similar to each other. So,
as the second notion of task relatedness defines, tasks are related in a way that
the true models are all close to some canonical model wc, which plays the role
of the mean of the Gaussian assumed by Hierarchical Bayes.

3.1 Single Layer Perceptron for MTL

The method proposed in this subsection is built upon an approach based on
convex optimization for modeling consumer heterogeneity in conjoint estimation
[8]. Specifically, this approach starts from an individual-level Ridge-Regression
(RR) [10], which minimizes a convex cost function with respect to task para-
meters wt. In particular, this cost function is parametrized by a positive weight
λ that is typically set using cross validation. For every task the following cost
function is independently minimized:

min
wt

{
1
λ

M∑

i=1

(ht(xit) − yit)2 + ‖wt‖2

}
(2)

where ht(xit) = xitwt results in a convex problem.
As we see, the cost function is composed of a first part that measures the fit,

and a regularization term, wT
t wt = ‖wt‖2. A positive parameter λ defines the

trade-off between fit and complexity.
To pool information across tasks, [8] presents a coupled cost function. Inspired

by (1), they propose modeling heterogeneity and pooling information across tasks
by shrinking the final models, wt, towards a mean model, wc. The following
convex optimization problem is considered:

min
wt,wc

{
1
λ

T∑

t=1

M∑

i=1

(ht(xit) − yit)2 +
T∑

t=1

‖wt − wc‖2

}
(3)

using a linear function ht(xit) = xitwt.
Again, this cost function consists of two parts. The first part refers to fit

and the second one makes a regularization but, unlike the individual-level RR
cost function (2) where final models are shrinked towards zero, by shrinking
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final models towards vector wc. Higher values of λ result in more homogeneous
estimates.

Next, we proceed to build a MTL implementation using a single layer per-
ceptron neural network upon the framework above explained. Using the later
notation, in this case the goal of the learner is to selectively search only in the
space G (previously called output function space) for an hypothesis (or output
function), that is:

ht(·) = gt(·) = ρcgc(·) + ρpgp,t(·) (4)

where ρc and ρp are coupling parameters weighting significance of the common
and private representation in the total model (gc(·) and gp,t(·), respectively).

As equation (4) shows, in this work we assume that common/private coupling
factors are the same for all tasks, i.e. ρc,t = ρc and ρp,t = ρp, so we just take into
account the global positive knowledge transfer caused by the interaction of the
set of tasks, instead of each particular knowledge transfer. In this case we easily
select parameters ρc and ρp by cross-validation. Nevertheless, our algorithm can
be directly extended to the case of multiple coupling factors, ρc,t and ρp,t for
every t ∈ {1, ..., T}, by using a more robust process to select these parameters.

In particular, we establish a non-convex problem by replacing the lineal func-
tion with the widely used in SLP hyperbolic tangent activation function [5] in
(3). Following (4), we introduce coupling parameters so the next regularized
SLP cost function depending on final models, wt, and common model, wc, is
minimized:

min
wt,wc

{
C

(
E
(
ht(xit), yit

)
,wt,wc

)
:=

:=
T∑

t=1

M∑

i=1

(ht(xit) − yit)2 + λ

[
ρc ‖wc‖2 + ρp

T∑

t=1

‖wt − wc‖2

]}
(5)

for all i ∈ {1, 2, ..., M} and t ∈ {1, 2, ..., T}, and using ht(xit) = tanh(xitwt).
Again, λ is a regularization parameter. For simplicity in the selection of the

coupling parameters, after preliminary results, we use in this work coupling
parameters depending on a common coupling factor γ, specifically ρc = 1

γ and
ρp = 1

1−γ . Clearly, parameter γ will take care of the grade of task relatedness
(under the second viewpoint) by a regularization constraint in the way that when
γ ≈ 1, the problem (5) will tend to make the models to be the same (the private
model wt − wc = wp,t is close to zero, thus wt = wc), solving one only single-
task learning (finding ht = gt = gc having gp,t = 0 for every t ∈ {1, 2, ..., T});
and for a value close to zero, γ ≈ 0, (5) will tend to make all tasks unrelated (wc

equal to zero), solving the T tasks independently by T independent single-task
learnings (finding ht = gt = gp,t having gc = 0).

The non-convex problem (5) can be minimized by a gradient-based learning.
Using gradient descent minimization, we have the following stochastic updates
for wt and wc (leaving out the dependences on i for clarity):
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wt = wt − η

[
(ht − yt)(1 − h2

t )xin + λ
1

1 − γ
(wt − wc)

]
(6)

wc = wc − ηλ

[
1
γ
wc +

1
1 − γ

T∑

t=1

(wt − wc)
]

(7)

η being the learning rate.

4 Experiments

We run two experiments, consisting of a synthetic domain and a character recog-
nition problem, respectively. Both scenarios are provided with binary tasks that
intuitively seem to keep any similarity (but we do not know the grade of related-
ness and the sort of relatedness if there is any). Since there is not any previous
idea about significance of tasks within each domain we consider that all tasks are
equally significant, having into account the global performance of the domain
instead of focusing on the individual performance of a selected main task. Never-
theless, the framework with priority tasks would remain the same, being feasible
the introduction of weighting error parameters in order to control interaction of
secondary tasks over the primary one.

We compare the performance of the single-layer multi-task approach here pro-
posed (noted by SLP-MTL in tables) with respect to its single-task version,
this last by using both the traditional single-layer perceptron cost function
(SLP-STL in tables) and taking into account a regularized approximation
(SLP-STL (reg) in tables), that is C =

∑M
i=1(ht(xit) − yit)2 and C =

∑M
i=1

(ht(xit)−yit)2+λ ‖wt‖2, respectively, where ht(xit) = tanh(xitwt). Performance
of solving all tasks with the same representation (noted by One SLP), that is,
an individual SLP for all tasks (SLP-MTL with γ = 1), will be also presented
as extra information.

Experiments are carried out using different number of training samples and
different tasks, so that we can explore in an clearer way the advantages of the
MTL approach.

The coupling parameter, γ, has been selected in all schemes by cross-validation.
In particular, due to the reduced number of training samples utilized in all do-
mains (when MTL makes specially sense [4]), a leave-one-out procedure has been
followed. Values explored have been the same for all domains. Specifically, we test
the following values of the tasks-coupling parameter, γ: 0.01, 0.1, 0.3, 0.5, 0.7, 0.9,
0.99 (0 would be the STL case and 1 the one of all tasks using the same represen-
tation). We test several values of the regularizer parameter, λ, as well (namely, 1,
1e-2, 1e-4).

All learners are trained choosing a linearly decreased learning rate, its initial
value being 0.4. Moreover, a previous convergence analysis has been carried out
in order to select an appropriate number of epochs.

Finally, results are averaged over 50 repetitions in all scenarios, including
the statistical significance of the difference of error rates in our multi-tasking
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approach and those corresponding to STL approximations, measured by using
the Kruskal-Wallis test [9].

4.1 Description of Datasets

Balloon. Extracted from [3], this domain was proposed by the psychologist
Michael Pazzani in order to evaluate the influence of prior knowledge on concept
acquisition [15].

There are four data sets representing different conditions of an experiment
inflating a balloon. The number of possible instances are 16. We consider several
scenarios using 7, 10 and 13 training samples, and the remaining for test. The
train and test sets have been randomly varied for each repetition.

Character Recognition. This database, collected in [3], was generated by
using a first order theory which describes the structure of ten capital letters of
the English alphabet. The capital letters represented are the following: A, C, D,
E, F, G, H, L, P, R. Each instance is structured and is described by a set of
segments (lines).

Since each segment may belong to several letters, instead of assigning each
set of segments to a letter, the goal of the learner will be to identify the set of
letters that are described by a certain segment (line). This way we are promoting
output tasks to be more related.

Again, we consider a variable number samples (10, 50, 100) for the training
set, and a fixed number of test samples (specifically, 100).

4.2 Discussion

In this subsection we present in tables global test error rates (in %) of the meth-
ods above explained over the three scenarios studied. For the Balloon problem
we also present a table showing correlation coefficients between all tasks, so that
we can compare with the value of coupling parameter γ.

Balloon. From results in Table 1 we draw the following commentaries:

– SLP-MTL dramatically improves global performance of any STL approach.
Best error rates are obtained when we use a few training samples, tending
to STL performance as the learner is provided with more information about
tasks (obviously, if all available data are present during the training process
generalization capacity becomes useless).

– Sharing the whole representation leads to very bad performance, which indi-
cates that tasks are not closely related as second notion of tasks relatedness
defines.

– Selective transfer seems to be efficiently achieved by SLP-MTL practically
in all cases. In fact, the coupling factor is larger when correlation between
tasks is too.
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Table 1. Test error rates (in %) of single-layer perceptron approaches in Balloon.
Averaged performance of SLP-MTL at the 5% significance level (with respect to best
STL approach) is in bold. The coupling factor is shown in brackets.

Tasks Data One SLP SLP-STL SLP-STL SLP-MTL
(train/test) (reg) (γ)

1,2 7/9 44.667 11.750 21.778 3.125 (0.9)

1,2 10/6 45.500 2.563 6.333 0.250 (0.9)

1,2 13/3 45.846 0 0 0 (0.9)

1,2,3 7/9 46.74 11.833 22.889 8.958 (0.7)

1,2,3 10/6 47.556 3.750 9.222 1.583 (0.7)

1,2,3 13/3 47.478 0.167 1.111 0.042 (0.7)

1,2,3,4 7/9 50.200 15.469 28.444 12.656 (0.9)

1,2,3,4 10/6 51.300 6.906 18.750 5.031 (0.99)

1,2,3,4 13/3 53.683 3.313 10.167 2.969 (0.5)

Table 2. Correlation coefficients for tasks in Balloon domain. Significant correlations
are in bold (probability of getting a correlation as large as the observed value by random
chance less than 0.05).

Task 1 Task 2 Task 3 Task 4
1 0.34 0.04 0.25 Task 1

1 0.03 0.65 Task 2
1 0.66 Task 3

1 Task 4

Character Recognition. The following conclusions emerge from the results
in Table 5:

– The proposed method significantly overcomes any STL approach in practi-
cally all cases.

– In case of using the same representation for all tasks we get quite good
performance, specially when 5 and 10 tasks are considered (computing cor-
relation coefficients, most of the letters have a significant value larger than
0.5).

– Correlation between letters A and C (tasks 1 and 2 respectively) is the
lowest (namely, less than 0.1), so the test error of One SLP remains high.
Nevertheless, STL approaches are significantly improved by the selective
transfer method by using low values of the coupling factor.

– When all capital letters are considered there are interactions between two
sets of letters not very correlated, but having closely correlated letters each
one (specifically, a set with straight lines (E,F,H,L) against a set with curved
lines (C,D,P,R,G)), so the coupling factor keeps a medium value.



280 J. Madrid-Sánchez, M. Lázaro-Gredilla, and A.R. Figueiras-Vidal

Table 3. Test error rates (in %) of single-layer perceptron approaches in Character
Recognition. Averaged performance of SLP-MTL at the 5% significance level (with
respect to best STL approach) is in bold. The coupling factor is shown in brackets.

Tasks Data One SLP SLP-STL SLP-STL SLP-MTL
(train/test) (reg) (γ)

1,2 10/100 24.267 25.217 22.383 21.450 (0.1)

1,2 50/100 26.167 23.833 23.067 20.650 (0.3)

1,2 100/100 28 24.167 22.450 20.867 (0.3)

1,...,5 10/100 28.200 30.300 28.487 28.086 (0.7)

1,...,5 50/100 28.200 30.573 28.707 27.666 (0.7)

1,...,5 100/100 31.107 32.967 28.727 27.213(0.7)

1,...,10 10/100 30.900 32.473 31.620 30.636 (0.5)

1,...,10 50/100 32.170 34.757 32.750 29.603 (0.3)

1,...,10 100/100 32.240 35.610 31.497 29.889 (0.5)

5 Conclusions

In this work we have proposed a single-layer neural network approach to selec-
tively train several tasks that are related in any grade, by using a notion of task
relatedness that does not require to share a common underlying representation,
but a coupled common and private representation.

Experimental results show significant improvements of our method with re-
spect to STL approaches. Moreover, in order to promote a positive knowledge
transfer, a coupling factor that takes into account the grade of task relatedness
is found in all cases.

As interesting topics for further research, we remark the extension of the
proposed selective transfer framework to multi-layer neural networks by using
both a common and private internal representation. Doing selective transfer as a
function of the notion of task relatedness instead of the grade of task relatedness
results in a straightforward implementation as well.
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1 Dpto. Tecnoloǵıas de la Información y las Comunicaciones
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Abstract. Incomplete data is a common drawback in many pattern
classification applications. A classical way to deal with unknown values
is missing data estimation. Most machine learning techniques work well
with missing values, but they do not focus the missing data estimation
to solve the classification task. This paper1 presents effective neural net-
work approaches based on Multi-Task Learning (MTL) for pattern clas-
sification with missing inputs. These MTL networks are compared with
representative procedures used for handling incomplete data on two well-
known data sets. The experimental results show the superiority of our
approaches with respect to alternative techniques.

1 Introduction

As humans, we can receive data through our senses, and after processing the
obtained information, we are able to identify the data source. For example, many
of us can recognize voices over a poor telephone line, distinguish the grapes used
to make a wine, or identify several species of flowers. Pattern classification is
the discipline of building machines to classify data (patterns) based on either a
priori knowledge or on statistical information extracted from the patterns.

A complete pattern classification system consists of a group of sensors that
gather the observations to be classified; a feature extraction mechanism that
computes numeric or symbolic information from the observations; and a classifi-
cation scheme for assigning a class to each observation, relying on the extracted
features. In the past forty years, a large number of Artificial Neural Networks
(ANNs) models have been proposed for performing pattern classification tasks
[1]. ANNs can recognize patterns working simultaneously with continuous, bi-
nary, ordinal and nominal data.
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Missing or incomplete data is an usual drawback in many real-world appli-
cations. Data may contain unknown features due to different reasons, e.g., data
collection procedure can be imperfect, sensor failures producing a distorted or
unmeasurable value, data occlusion by noise, non-response in surveys [2]. Han-
dling missing data has become in a fundamental requirement for pattern classifi-
cation, because an inappropriate missing data treatment may cause large errors
or false results on classification.

One of the most recommended ways for dealing with unknown features is
missing data imputation. Imputation is a generic term for filling in unknown
features with plausible values provided by a missing data estimator [2]. In this
approach, missing features are estimated from the available data, and after the
imputation is done, a classifier is trained using the edited training set (i.e., com-
plete patterns and incomplete vectors with imputed values). Sharpe et al. use
FFNN (Feed-Forward Neural Network) models to estimate incomplete data [3].
In this approach, known as Reduced Neural Networks (Reduced NN), a set of
FFNNs is created, where each one of them is trained to learn each possible com-
bination of features with unknown values using as inputs the remaining complete
features. After imputations are done using these networks, the edited set is used
to train an ANN classifier. Unfortunately, this method requires a huge number
of neurons with an increasing number of incomplete features. Another widely
used approach is replacing missing feature values by values from the features of
their K nearest neighbors (KNN), in the available complete training data; and
after that, a machine learning algorithm classifies the obtained complete set [4].
Other proposed solutions are based on Gaussian Mixture Models (GMM) trained
by Expectation-Maximization (EM) algorithm [5]. It works efficiently in many
situations, but the main disadvantages of GMM-EM are that it is necessary
to assume an underlaying data distribution, and they are not able to estimate
missing values in the operation mode, only during the training stage.

However, neither of them can provide a solution that includes a desirable char-
acteristic: a missing data imputation oriented to solve the classification problem.
Up to now, most used techniques in pattern classification with missing data di-
vide the problem in two separated and isolated tasks, classification task and
imputation tasks, what are solved by different learners. In this work, effective
approaches to classify incomplete input vectors using FFNN schemes based on
Multi-Task Learning (MTL) are presented, where the estimation of missing val-
ues is oriented by the learning of the classification task. In particular, this paper
extends our previous research works on MTL and missing data [6,7]. Our method
utilizes the incomplete features as extra tasks, and learns them at the same time
with the main classification task. The remaining of this paper is organized as
follows. Section 2 introduces the basic MTL notions in FFNN. Next, in Section
3, proposed method is presented, and its training and operation mode are ex-
plained. In Section 4, different MTL schemes based on private subnetworks are
described. Section 5 shows obtained results on two well-known data sets, and
discusses the relative advantages and drawbacks of our approaches over other
representatives methods. Finally, conclusions and future works end this paper.
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2 Multi-Task Neural Networks

Human learning frequently involves learning several tasks simultaneously; in
particular, humans compare and contrast related tasks for solving a problem.
For example, reading and writing are difficult tasks for children, but it can be
easier when both tasks are learned at the same time, i.e., parallel learning of
both tasks contribute to the learning of each one of them.

In recent years, several machine learning methods have been proposed to learn
from multiple tasks [7,8,9,10]. This approach to learning is named Multi-Task
Learning (MTL). The basic idea is that a task will be learned better and/or
faster if can leverage the information contained in the training signals of other
related tasks during learning. This paper is based on the MTL method used
by Caruana [8], where tasks share a hidden layer of neurons in a FFNN. The
task which is desired to be learned better is called the primary or main task,
and the tasks what are used as hints by the main task are referred to as the
secondary or extra tasks. With respect to weights, weights of the first layer are
updated depending on the error of all tasks; while output layer weights are only
influenced by task associated error.

3 A MTL Neural Network Approach for Classification
with Incomplete Data

Assume a set of N labeled incomplete input vectors,

D = {(x(n), t(n),m(n)) : x(n) ∈ IRd, x
(n)
i is missing ⇐⇒ m

(n)
i = 1}N

n=1 (1)

where x(n) is the n-th input vector composed of d features; labeled as tn in a 1-
of-c codification, with c possible classes; and m(n) indicates what input features
are unknown in x(n). Moreover, the vector a = [a1, a2, ..., am] is defined, whose
components are the m incomplete attributes in the data set.

In a MTL approach, this problem is composed of two kind of different tasks
to be learned: a main classification task; and m secondary imputation tasks
associated to each feature with missing values. Working in this manner, in a
first MTL approach, we can consider an ANN with a hidden layer of common
neurons that learn in parallel all tasks. Figure 1(a) shows this approach. Output
layer has c outputs units for classification task, and m imputation outputs for
each one of the incomplete features. In the hidden layer, the number of neurons
depends on the problem to be solved. The inputs units of this network are the d
input features, and also, the c components of the classification target vector. This
approach uses linear inputs, modified hyperbolic tangent as activation function
g(·) in all neurons, and linear outputs. Figure 1(b) shows the implemented MTL
neuron for dealing with missing inputs. Hidden neurons are different to the
classical neuron, because they compute different outputs for the distinct tasks to
be learned, i.e., it computes a different sum-product of its weights and its inputs
for each output unit. In particular, they do not include in the sum product the
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Fig. 1. MTL network with a common hidden layer that learns the classification and
the imputation tasks at the same time. Biases are implicit for simplicity.

input signal that they have to learn in the corresponding output unit. It is done
to avoid direct connections to map the input as output [8]. The j-th hidden
neuron outputs are computed according with the following expressions,

For k = 1, ..., c

zj,k = g

(
d∑

i=1

w
(1)
i,j xi + w

(1)
0,j

)
(2)

For k = c + 1, ..., c + m

zj,k = g

⎛

⎜⎝
d∑

i=1
i�=ak−c

w
(1)
i,j xi +

c∑

i=1

w
(1)
d+i,jti + w

(1)
0,j

⎞

⎟⎠ (3)

Finally, the outputs o = [o(C),o(M)] are obtained by a linear combination of
the outputs of the hidden neurons using a second layer of processing units.

3.1 Training Stage

Before training, all weights are initialized randomly, and also, the training set is
normalize to zero mean and unit variance.

During the training stage, the network weights are updated iteratively in order
to minimize an error function. In this paper, the Sum-of-Squares-Error (SSE)
function is used,

E =
1
2

N∑

n=1

(
‖o(n,C) − t(n)‖2 +

m∑

k=1

(
o
(n,M)
k − x(n)

ak

)2
)

(4)

where o(n,C) and o
(n,M)
k are, respectively, the classification output and the k-th

imputation output obtained by the input vector x(n). This error function de-
pends on the differences between obtained outputs and desired outputs. If the
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attribute ak of the n-th input vector is unknown, it is not possible to compute
the differences o

(n,M)
k − x

(n)
ak . For this reason, differences associated to every

incomplete input feature is established to zero. These zero errors produce zero
gradient components that leave the corresponding weights unchanged. With re-
spect to the minimization of Equation 4, we use gradient descent method in
sequential mode with adaptive learning rate and momentum term.

In this neural network approach, imputation outputs are used to estimate
and fill missing values in the incomplete training vectors. In particular, missing
data imputation is done when the learning of all secondary imputation tasks is
stopping. Since classification and imputation tasks are learned by the same MTL
network, learning of the main classification task affects to these imputed values,
and so, this imputation is oriented to solve the classification task.

3.2 Operation Stage

During the operation stage, the classification performance and generalization
capabilities of the MTL approach are evaluated on a new set of incomplete input
vectors. The classification process at operation phase is shown in the procedure
below.

Algorithm 1. Operation Stage.
Require: x(n) (input vector), m(n) (missing data indicator vector), c (number of

classes)
1: if x(n) is incomplete then
2: for k = 1 to c do
3: Set up to zero the incomplete values labeled by m(n)

4: Check the k-th class labeled in t(n) as extra input, [x(n), t(n)]
5: Forward propagation, and filling in the missing values using o(n,M) → x̃(n)

6: Forward propagation with x̃(n) → o(n,C)

7: Measure the similarity between o(n,C) and t(n)

8: end for
9: Choose the most consistent class of all possible targets

10: else
11: Forward propagation with x(n) → Classify with o(n,C)

12: end if

If x(n) is completely known, the MTL network directly classifies using the
classification output o(n,C). When an incomplete pattern is presented to the
network, the classification process of the MTL approach is different, because the
missing data estimation is done by means of o(M). But these outputs depend
on t(n) as part of the input, and this class information is not available during
the operation stage. In order to solve it, all possible classes are checked, and the
most consistent class is selected. The consistency of the class labeled in t(n) is a
measure of the difference between t and the output o(C), which is obtained by
the MTL network after imputation is realized using the corresponding o(M).
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4 Exploiting Private Subnetworks

Previous works have extended the basic MTL scheme using private or specific
subnetworks [6,7]. As we can see in Figure 2(a), a first approach is adding a
private subnetwork to learn only the classification task. This private subnetwork
is connected to all input features, but not to the extra inputs (classification
target). It learns only the main task; and so, the use of a private subnetwork
helps to get a better generalization of the classification task. Hidden neurons in
this subnetwork work as a classical artificial neuron [1], computing the same sum-
product for all outputs. Private subnetwork size has to be optimized to provide
a good classification performance. On the other hand, the number of hidden
neurons in the common subnetwork depends on all tasks, because it supports
the knowledge transfer between tasks.

x1 x1 xdxd t1 tc
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(M)
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(M)
m

(a) FFNN with a common subnet-
work, and a private subnetwork.
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(b) FFNN with m common subnetworks and a
private subnetwork.

Fig. 2. First, it is showed a MTL network with a hidden layer that learns the clas-
sification and the imputation tasks at the same time, and a private subnetwork used
only by the main task; secondly, a MTL network with a private subnetwork used only
by the main task, and m common subnetworks, which learn the classification and the
corresponding imputation task simultaneously

The two solutions proposed in Figures 1 and 2(a) have a common subnetwork
what is shared by all tasks. MTL makes the assumption that the learned tasks are
related, and these relations are what contribute to the learning [8]. This default
assumption allows unrelated tasks to decrease the generalization performance
across all learned tasks in the MTL network causing a loss of knowledge for some
tasks, what should be avoided [9]. For this reason, it is essential to consider the
relation between tasks and how each task is learned during the training of the
MTL networks [9]. An alternative to the previous approaches, see Figure 2(b),
is using a common subnetwork for each imputation task, which learns the main
task and the associated secondary task. Thus, learning between unrelated sec-
ondary tasks is avoided, and each one of them is guided by the learning of the
classification task, i.e., common weights of each private subnetwork are influ-
enced by the learning of the main task and the corresponding imputation task.
In this scheme, the drawback is the high number of neurons that are required.
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5 Simulation Results

In order to test the MTL networks introduced in this paper, two well-known
datasets are used, Iris Data and Pima Indians Data [11]. Iris data set is ran-
domly divided into three subsets: 1/3 instances of the dataset are used as training
set, 1/6 instances are used as validation set and the rest 1/2 are used as test set.
Such process is repeated twelve times and twelve groups of training, validation
and test subsets are generated, and also ten simulations have been made in each
group of subsets. In contrast, the Pima data set has been previously divided into
training and test sets. The different MTL networks showed in Figure 1, 2(a) and
2(b) are respectively labeled as MTL-A, MTL-B and MTL-C. These networks
are compared with three representative methods [3,4,5], described in Section 1.

5.1 Iris Data

There are 150 samples composed of four input attributes (A1, A2, A3 and A4)
with three possible classes. As this data set is complete, different percentages of
missing values are artificially inserted, from 5% to 40%, in training, validation
and test subsets. In order to select what attributes will be incomplete, the Mutual
Information (MI) between each attribute and the classification task is evaluated
[9], obtaining 0.877 (A1), 0.511 (A2), 1.446 (A3), and 1.436 (A4). It can be
observed that A3 and A4 are clearly the most related attributes with the main
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Fig. 3. Obtained results on Iris data set using KNN imputation, Reduced NNs, GMM
trained with EM, and the different proposed MTL schemes. These graphs show the
evolution of the test error rate with respect to the percentage of incomplete samples
in the selected attributes.
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(classification) task. Considering this fact, missing values have been introduced
according with the following combinations of attributes: A1, A4, A1-A4 and A3-
A4. Figure 3 shows the average accuracy rates using KNN imputation, Reduced
NN, GMM-EM and the different proposed MTL schemes. When there are only
a secondary task, i.e., an incomplete attribute, MTL-B and MTL-C schemes are
the same, as the two first graphs.

Considering the results shown in Figure 3, proposed MTL schemes outper-
form the obtained classification accuracy by the other methods in the most sim-
ulations. When missing values occur in related attributes, the MTL networks
perform better than the other procedures. Only with 30% and 40% in the most
related attributes, in training, validation and test subsets, the MTL advantages
are not so clear. Figure 4 shows the evolution of the training cost (SSE) for each
task when 30% of missing data is artificially inserted in the attributes A1 and A4
using the three proposed networks. As we can see in this figure, the secondary
task associated to the attribute A4 is learned better and faster than the other
secondary task, because the attribute A4 is more related with the main one than
A1. Also, it is clear to see how the training error associated to the main task
decreases in a sudden way when the first imputation is done. This imputation
is done when the learning of the secondary tasks is stopping. Each one of the
following imputations gradually affects less the learning of the classification task
because the learning of the secondary task is also stopped gradually. Comparing
the proposed networks, the use of a private subnetwork to learn specifically the
main task gets a better and faster learning in the classification task.
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Fig. 4. Evolution of the sum-of-squares error (SSE) during learning in the Iris data
set with 30% of missing data in the attributes A1 and A4 using the MTL networks
presented in this paper
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5.2 Pima Indians Data

This real problem consists of a training set with 300 cases, where 100 cases present
unknown inputs; and a test set of 332 samples. In particular, three attributes are
incomplete: the attributes A3, A4 and A5, with 4.33%, 32.67% and 1.00% as miss-
ing data percentages respectively. The MI measured between each one of them
and the classification task are: A3, 0.111; A4, 0.232; and A5, 0.534.

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

Training Epochs

T
ra

in
in

g 
S

S
E

MTL−A

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

Training Epochs

T
ra

in
in

g 
S

S
E

MTL−B

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

Training Epochs

T
ra

in
in

g 
S

S
E

MTL−C

Classification Task

Secondary Task associated to A3

Secondary Task associated to A4

Secondary Task associated to A5

MTL−A: a common hidden layer of 3 neurons

MTL−B: a common subnetwork of 3 neurons and a
private subnetwork of 3 neurons

MTL−C: three common subnetworks of 3 neurons
and a private subnetwork of 3 neurons

Fig. 5. Evolution of the sum-of-squares error (SSE) during learning in the Pima data
set using the MTL networks presented in this paper

Table 1 summarizes the obtained results for Pima data set. As we can see on it,
the proposed MTL schemes clearly outperform the other tested procedures. Only
the architecture labeled as MTL-C gets a worse result on the test set because this
MTL network has a huge number of neurons that learn the main classification
task, and it produces over-fitting in the training subset. This disadvantage can
be observed in Figure 5, where the evolution of the training cost for each task
during the learning using the three MTL schemes is shown. When the MTL-C
network is used, better learning results are obtained but it over-fits the training
subset.

Table 1. Obtained misclassification error rates on test set for Pima Indians

Method KNN Reduced NNs GMM-EM MTL-A MTL-B MTL-C

% Error 21.02 ± 0.33 19.76 ± 0.58 21.98 ± 0.01 19.68 ± 0.18 19.58 ± 1.38 22.65 ± 1.76
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6 Conclusions and Future Works

Different neural network schemes to classify incomplete patterns have been pre-
sented in this paper. Unlike other methods, classification and missing data esti-
mation are combined in only one network using common and private subnetworks
in MTL schemes. To do this, we have used the classification as main task and
each incomplete feature as a secondary task; and also, a novel artificial neuron
model has been implemented in order to learn all these tasks. Outputs that learn
incomplete features are used to estimate missing values during learning process.
Imputed values are those that contribute to improve the classification accuracy,
because the learning of imputation tasks is oriented by the learning of the main
task. Another great improvement is obtained when classification targets are used
as extra inputs to learn the imputation tasks. During the operation phase, class
information is not available, and the most consistent class is chosen. The effec-
tiveness of our MTL networks has been justified empirically in two well-known
databases.

In the future it would be valuable to set the number of neurons in each subnet-
work dynamically using constructive methods, to implement a relation measure
between tasks, and extending the presented approach to different machines [10].
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Abstract. An extension to Hopfield’s model of associative memory is studied
in the present work. In particular, this paper is focused in giving solutions to the
two main problems present in the model: the apparition of spurious patterns in
the learning phase (implying the well-known and undesirable effect of storing
the opposite pattern) and the problem of its reduced capacity (the probability of
error in the retrieving phase increases as the number of stored patterns grows). In
this work, a method to avoid spurious patterns is presented and studied, and an
explanation to the previously mentioned effect is given. Another novel technique
to increase the capacity of a network is proposed here, based on the idea of using
several reference points when storing patterns. It is studied in depth, and an ex-
plicit formula for the capacity of the network is provided. This formula shows the
linear dependence of the capacity of the new model on the number of reference
points, implying the increase of the capacity in this model.

1 Introduction

Associative memory has received much attention for the last two decades. Though nu-
merous models have been developed and investigated, the most influential is Hopfield’s
associative memory, based on his bipolar model (BH) [1]. This kind of memory arises
as a result of his studies on collective computation in neural networks.

Hopfield’s model consists in a fully-interconnected series of bi-valued neurons (out-
puts are either −1 or +1). Neural connection strength is expressed in terms of weight
matrix W = (wi,j), where wi,j represents the synaptic connection between neurons i
and j. This matrix is determined in the learning phase by applying Hebb’s postulate of
learning [2], and no further synaptic modification is considered later.

Two main problems arise in this model: the apparition of spurious patterns and its
low capacity.

Spurious patterns are stable states, that is, local minima of the corresponding energy
function of the network, not associated to any stored (input) pattern. The simplest, but
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not the least important, case of apparition of spurious patterns is the fact of storing,
given a pattern, its opposite, i.e. both X and −X are stable states for the net, but only
one of them has been introduced as an input pattern.

The problem of spurious patterns is very fundamental for cognitive modelers as well
as practical users of neural networks.

Many solutions have been suggested in the literature. Some of them [3,4] are based
on introducing asymmetry in synaptic connections.

However, it has been demonstrated that synaptic asymmetry does not provide by
itself a satisfactory solution to the problem of spurious patterns, see [5,6]. Athithan [7]
provided a solution based on neural self-interactions with a suitably chosen magnitude,
if Hebb’s learning rule is used, leading to the near (but not) total suppression of spurious
patterns.

Crick [8] suggested the idea of unlearning the spurious patterns as a biologically
plausible solution to suppress them. With a physiological explanation, they suggest that
spurious patterns are unlearned randomly by human brain during sleep, by means of a
process that is the reverse of Hebb’s learning rule. This may result in the suppression
of many spurious patterns with large basins of attraction. Experiments have shown that
their idea leads to an enlargening of the basins for correct patterns along with the elim-
ination of a significant fraction of spurious patterns [9]. However, a great number of
spurious patterns with small basins of attraction do survive. Also, in the process of in-
discriminate reverse learning, there is a finite probability of unlearning correct patterns,
what makes this strategy unacceptable.

On the other hand, the capacity parameter α is usually defined as the quotient be-
tween the maximum number of patterns to load into the network, and the number of
used neurons that achieve an acceptable error probability in the retrieving phase, usually
pe = 0.01 or pe = 0.05. It was empirically shown that this constant is approximately
α = 0.15 for BH (very close to its actual value, α = 0.1847, see [4]). The meaning
of this capacity parameter is that, if the net is formed by N neurons, a maximum of
K ≤ αN patterns can be stored and retrieved with little error probability.

McEliece [10] showed that an upper bound for the asymptotic capacity of the net-
work is 1

2 log N , if most of the input (prototype) patterns are to remain as fixed points.

This capacity decreases to 1
4 log N if every pattern must be a fixed point of the net.

By using Markov chains to study capacity and the recall error probability, Ho et al.
[11] showed results very similar to those obtained by McEliece, since for them it is
α = 0.12 for small values of N , and the asymptotical capacity is given by 1

4 log N .
Kuh [12] manifested roughly similar estimations by making use of normal approxi-

mation theory and the theorems about exchangeables random variables.
In this work, a multivalued generalization of Hopfield’s model (called MREM) is

studied as an associative memory, and a technique to totally avoid the apparition of
spurious patterns (in both models, BH and MREM) is explained in terms of the decrease
of the energy function associated to patterns.

The main contribution of this paper consists in an extension of these models as as-
sociative memories to overcome the problem of the reduced capacity, by using a new
technique which ensures the linear increase of the capacity.
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2 The MREM Model

Let us consider a recurrent neural network formed by N neurons, where the state of
each neuron i ∈ I = {1, . . . , N} is defined by its output Vi taking values in any finite
set M = {m1, m2, . . . , mL}. This set does not need to be numerical.

The state of the network, at time t, is given by a N -dimensional vector, V (t) =
(V1(t), V2(t), . . . , VN (t)) ∈ MN . Associated to every state vector, an energy function,
is defined:

E(V ) = −1
2

N∑

i=1

N∑

j=1

wijf(Vi, Vj) +
N∑

i=1

θi(Vi) (1)

where wi,j is the weight of the connection from the j-th neuron to the i-th neuron,
f : M × M → R can be considered as a measure of similarity between the outputs of
two neurons, usually verifying the conditions mentioned in [13]:

1. For all x ∈ M, f(x, x) = c ∈ R.
2. f is a symmetric function: for every x, y ∈ M, f(x, y) = f(y, x).
3. If x �= y, then f(x, y) ≤ c.

and θi : M → R are the threshold functions. Since thresholds will not be used for
content addressable memory, henceforth we will consider θi be the zero function for all
i = 1, . . . , N .

The introduction of this similarity function provides, to the network, of a wide range
of possibilities to represent different problems [13,14]. So, it leads to a better and richer
(giving more information) representation of problems than other multivalued models,
as SOAR and MAREN [15,16], since in those models most of the information enclosed
in the multivalued representation is lost by the use of the signum function that only
produces values in {−1, 0, 1}.

The energy function characterizes the dynamics of the net, as happened in BH. In
every instant, the net evolves to reach a state of lower energy than the current one.

In this work, we have considered discrete time and semi-parallel dynamics, where
only one neuron is updated at time t. The next state of the net will be the one that
achieves the greatest descent of the energy function by changing only one neuron out-
put.

Let us consider a total order in M. The potential increment when a-th neuron changes
its output from Va to l ∈ M at time t, is

Ua,l(t) = −
N∑

i=1

[wi,a · (f(Vi(t), l) − f(Vi(t), Va(t)))] (2)

(due to the similarity conditions imposed to f ).
We use the following updating rule for the neuron outputs:

Va(t + 1) =
{

l, if Ua,l(t) ≥ Ub,k(t)∀k ∈ M and ∀b ∈ I
Va(t), otherwise

(3)

This means that each neuron computes in parallel the value of a L-dimensional vector
of potentials, related to the energy decrement produced if the neuron state is changed.
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The only neuron changing its current state is the one producing the maximum decrease
of energy.

It has been proved that the MREM model with this dynamics always converges to
a minimal state [13]. This result is particularly important when dealing with combina-
torial optimization problems, where the application of MREM has been very fruitful
[13,17].

If function f(x, y) = 2δx,y − 1, which equals 1 if and only if its two parameters
coincide, and −1 in the rest of cases, is used and M = {−1, 1}, MREM reduces to
Hopfield’s model. So, MREM is a powerful generalization of BH and other multivalued
models, because it is capable of representing the information more accurately than those
models.

2.1 MREM as Auto-associative Memory

Now, let {X(k) : k = 1, . . . , K} be a set of patterns to be loaded into the neural
network. Then, in order to store a pattern, X = (Xi)i∈I , components of the W matrix
must be modified in order to make X the state of the network with minimal energy.

As pointed out in [13], since energy function is defined as in Eq. (1), we calculate
∂E

∂wij
= − 1

2f(Vi, Vj) and we modify the components of matrix W in order to reduce

the energy of state V = X by the rule Δwi,j = −α ∂E
∂wi,j

= α
2 f(Xi, Xj) for some

α > 0. For simplicity, we can consider α = 2, resulting:

Δwi,j = f(Xi, Xj) (4)

and considering that, at first, W = 0, that is, all the states of the network have the same
energy and adding over all the patterns, the next expression is obtained:

wi,j =
K∑

k=1

f(X(k)
i , X

(k)
j ) (5)

Equation (5) is a generalization of Hebb’s postulate of learning, because the weight
wij between neurons is increased in correspondence with their similarity.

It must be pointed out that, when bipolar neurons and the product function f(x, y) =
xy are used, the well-known learning rule of patterns in the Hopfield’s network is ob-
tained. This is also achieved by the use of the function f(x, y) = 2δx,y − 1. In the rest
of this work we will consider the use of this function for our study.

Analogously to BH, the network is initialized with the known part of the pattern
to be retrieved (called probe). The network dynamics will converge to a stable state
minimizing the energy function, and it will be the answer of the network.

3 How to Avoid Spurious States

When a pattern X is loaded into the network, by modifying weight matrix W , not only
the energy corresponding to state V = X is decreased. This fact can be explained in
terms of the so-called associated vectors.
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Definition 1. Given a state V , its associated matrix is defined as GV = (gi,j) such that
gi,j = f(Vi, Vj).

Its associated vector is AV = (ak), with aj+N(i−1) = gi,j , that is, it is built by
expanding the associated matrix as a vector of N2 components.

Lemma 1. The increment of energy of a state V when pattern X is loaded into the
network, by using Eq. (4), is given by:

ΔE(V ) = −1
2

< AX , AV >

where < ·, · > denotes the usual inner product.

Lemma 2. Given a state vector V , we have AV = A−V . So E(V ) = E(−V ).

These two results explain why spurious patterns are loaded into the network.
It must be noted that, in MREM, the number of spurious patterns appearing after the

load of a vector into the net is greater than the corresponding in BH.
An important remark has to be done at this point: With this notation, the expression

of the energy function can be rewritten as:

E(V ) = −1
2

K∑

k=1

< AX(k) , AV >

Since all associated vectors are vectors of N2 components taking value in {−1, 1},
their norms are equal, ||AV ||E = N for all V . This result implies that what is actually
stored in the network is the orientation of the vectors associated to loaded patterns.

From the above expression for the increment of energy, and using that components
of associated vectors are either −1 or 1, the following expression for the decrease of
energy when a pattern is loaded is obtained:

−ΔE(V ) =
1
2
(N − 2dH(V , X))2 (6)

where dH(V , X) is the Hamming distance between vectors V and X .
After this explanation, we propose a solution for this problem:

Definition 2. The augmented pattern X̂ , associated to X ∈ MN , is defined by ap-
pending to X the possible values of its components, that is, if M = {m1, . . . , mL},
then X̂ = (X1, . . . , XN , m1, . . . , mL}. Particularly:

– In case of bipolar outputs, M = {−1, 1}, and it is X̂ = (X1, . . . , XN , −1, 1).
– If M = {1, . . . , L}, then X̂ = (X1, . . . , XN , 1, 2, . . . , L).

By making use of augmented patterns, the problem of spurious patterns is solved, as
stated in the next result, which is easy to prove:

Theorem 1. The function Ψ that associates an augmented pattern to its corresponding
associated vector is injective.

Then, in order to store a pattern X , it will suffice to load its augmented version, which
will be the unique state maximizing the decrease of energy.

It must be noted that it will only be necessary to consider N neurons, their weights,
and the weights corresponding to the last L neurons, that remain fixed, and do not need
to be implemented.
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4 Associative Memory with Multiple Reference Points

In Hopfield’s classical model, the unique reference point is the origin in R
N , that is,

patterns are not shifted or translated to achieve better results. As the network stores the
orientations of the associated vectors, it could be useful to shift patterns by different
amounts in order to be capable of distinguishing them more accurately.

In this work, let us consider M = {1, . . . , M}. So, to load the set {X(k) : k =
1, . . . , K}, we use as reference points O(1), . . . , O(Q) ∈ MN . This means that what
the net is going to store is the set of augmented patterns related to X(k) −O(q), for each
k and q.

As X
(k)
i −O

(q)
i ∈ {1−M, . . . , −1, 0, 1, . . . , M − 1} = M′, the augmented pattern

associated to X(k) − O(q) will be (using the same notation for simplicity)

X(k) − O(q) = (X(k)
1 − O

(q)
1 , . . . , X

(k)
N − O

(q)
N , 1 − M, . . . , M − 1}

In addition, we will refer to the components of the above vector as

(X(k) − O(q))i =
{

X
(k)
i − O

(q)
i i ≤ N

i − (N + M) N + 1 ≤ i ≤ N + 2M − 1

Let us also denote L = 2M − 1, the cardinal of the set M′.
By extending what was exposed in Sec. 2, a new energy function is introduced:

E(V ) = −1
2

Q∑

q=1

N+L∑

i=1

N+L∑

j=1

w
(q)
i,j f((V − O(q))i, (V − O(q))j) (7)

where

w
(q)
i,j =

Q∑

q=1

K∑

k=1

f((V − O(q))i, (V − O(q))j)

The above expression can be rewritten in the following terms:

E(V ) =
Q∑

q=1

Eq(V )

The expression of this new energy function implies that each neuron will be able to
perform a more complex process in each step, since it has to take into account Q refer-
ence points, available in its own local memory. Thus, we are increasing the complexity
of the neuron model, that will lead to a higher performance of the net in terms of an
increase of its capacity, as we will prove in the next Section.

We must observe that this new model, with Q = 1, reduces to MREM standard
associative memory.

5 Capacity of the New Model

The capacity of the network is a measure of the amount of patterns that can be intro-
duced into the network such that at the retrieving phase the probability of error does
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not exceed a threshold, pe. The aim of this section is to present a study of the network
capacity (similar to [4]) that provides us with an exact or very approximate expression
for the capacity parameter α.

Let us suppose that K patterns X(1), . . . , X(K), have been loaded into the network,
and that state vector V matches a stored pattern, X(k0). Suppose that state V ′ coin-
cides to V except in one component. Without loss of generality, this component can be
assumed to be the first one, that is, Vi = V ′

i if i > 1 and V1 �= V ′
1 .

By denoting as D = ΔE = E(V ′) − E(V ) the energy increment between these
two states V and V ′, the pattern X(k0) is correctly retrieved when pattern V ′ is intro-
duced into the net if D > 0, because this condition implies that V is a fixed point for
the dynamics that are being used. So, in order to calculate the error probability in the
retrieval phase, the probability P (D < 0) must be computed.

But

D = ΔE =
Q∑

q=1

Eq(V ′) −
Q∑

q=1

Eq(V ) =
Q∑

q=1

(Eq(V ′) − Eq(V )) =
Q∑

q=1

ΔEq (8)

and thus we have to compute Dq = ΔEq .
To this end, we present some technical results which will guide us to the main re-

sult of this section, the capacity of the network with multiple reference points. Proofs
for these results will be omitted due to the limitation in the length of this paper. The
reader can refer to [18] for a detailed proof in the case of Hopfield’s bipolar model with
multiple reference points.

Lemma 3. We have

Dq = N + 3 −
N∑

i=2

φi +
∑

k �=k0

N+L∑

i=2

ξi (9)

where

1. φi is a random variable (r. v.) with mean E(φi) = 1 − 4 2M2+1
3M3 and variance

V (φi) = 8 2M2+1
3M3

(
1 − 2 2M2+1

3M3

)
, for all i ≤ N .

2. ξi is another r. v. with mean E(ξi) = 0 and variance V (ξi) = 8 2M2+1
3M3 , for every i.

The exact formula for D is given in the following lemma, by making use of this last
result applied to Eq. (8).

Lemma 4. For N ≥ 30 and Q ≥ 1,

D = Q(N + 3) + Ω

where Ω is a Gaussian r. v. with mean

μ = Q(N − 1)(4
2M2 + 1

3M3
− 1)

and variance given by

σ2 = 8Q
2M2 + 1

3M3

(
(N − 1)(1 − 2

2M2 + 1
3M3

) + (N + 2M − 2)(K − 1)
)
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This result allows us to calculate

P (D < 0) = P (Q(N + 3) + Ω < 0) = P (Ω < −Q(N + 3)) =

= P

(
Ω − μ

σ
<

−Q(N + 3) − μ

σ

)

Since Z = Ω−μ
σ is a Gaussian with mean 0, and variance 1, there exists one unique

zα ∈ R such that P (Z < zα) = pe. For example, for pe = 0.05, it is zα = −1.645,
and for pe = 0.01, it is zα = −2.326. By using that P (Z < zα) = pe = P (D < 0),
we arrive at

−Q(N + 3) − μ

σ
= zα (10)

The next step is to use the proper definition of the parameter of capacity α. It is the
quotient between the number of patterns and the number of neurons which achieve an
error probability lower than pe. So, α = K

N , that is, K = αN .
By combining Eq. (10) and the above expression for K , we get the following result:

Theorem 2. The capacity of the network as associative memory with multiple reference
points is given by

α =
1
N

[
1 +

1
V

(
T 2

z2
α

− U

)]
(11)

where

T =
√

Q

(
(N + 3) + (N − 1)(4

2M2 + 1
3M3

− 1)
)

U = 8(N − 1)
2M2 + 1

3M3
(1 − 2

2M2 + 1
3M3

)

and

V = 8(N + 2M − 2)
2M2 + 1

3M3

From this theorem, some important corollaries can be stated:

Corollary 1. The capacity of the network is asymptotically increasing with the number
of reference points.

This result can be deduced from the fact that Eq. (11) can be rewritten in the following
terms:

α = R0(M, N) + R1(M, N)Q

with R1(M, N) > 0. So, given N and M , α is an increasing function for values of
Q ≥ 1. This implies that, by increasing the number of reference points, capacity greater
than 1 may be achieved, as can be verified in Fig. 1. It must be remembered that the
maximum capacity in BH was 1.

Corollary 2. Given M and Q, there exists a positive constant αmin such that α ≥ αmin

for all N .
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Fig. 1. Capacity of a network with N = 40 neurons and M = 4 states, as a function of Q, which
varies from 1 to 500

Fig. 2. Capacity of the bipolar network with N ∈ {50, . . . , 1000} neurons and Q = 4, compared
with the bound given by McEliece (lower graph)

This corollary can be proved just by noting that the capacity is a decreasing function
of N , the number of neurons, so we can fix M and Q and calculate the value αmin =
limN→∞ α = 2Q

z2
α

2M2+1
3M3 . If we consider M = 2 and Q = 2 and pe = 0.01, a value

of αmin = 0.2772 is obtained, and for pe = 0.05, a value of αmin = 0.5543. In Fig. 2,
the value of α for a bipolar network is compared with the upper bound given by [10],
and it is shown that α > 1

2 log N , meaning a great improvement on the capacity of the
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net, since this upper bound tends to 0 as N approaches ∞, and our technique ensures a
minimum positive amount of capacity for the net.

6 Conclusions and Future Work

In this paper, an extension to Hopfield’s associative memory has been studied to over-
come some of the most important problems or lacks it possesses: spurious patterns and
low capacity.

A method to avoid the apparition of spurious patterns has been presented. This
method also explains the well-known (and undesirable) phenomenon of storing the op-
posite of a pattern.

A new technique to increase the network capacity as a content-addressable memory
has also been proposed, based on the use of multiple reference points, which contributes
many new possibilities of study and research.

Our future work covers several aspects of these methods:

– Find the optimal configuration of O(q) for a given set of patterns (randomly distrib-
uted or with a specific distribution), that is, the distribution of O(q) which discrim-
inates most the patterns and makes the net achieve the maximum possible capacity.

– Consider a mix of fixed and random reference points.
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18. López-Rodrı́guez, D., Mérida-Casermeiro, E., Ortiz-de Lazcano-Lobato, J.M.: Hopfield net-
work as associative memory with multiple reference points. In Ardil, C., ed.: International
Enformatika Conference. (2005) 62 – 67



Classification and Diagnosis of Heart Sounds

and Murmurs Using Artificial Neural Networks
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Abstract. Cardiac auscultation still remains today as the basic tech-
nique to easily achieve a cardiac valvular diagnosis. Nowadays, auscul-
tation can be powered with automated computer-aided analysis systems
to provide objective, accurate, documented and cost-effective diagnosis.
This is particulary useful when such systems offer remote diagnosis capa-
bilities. ASEPTIC is a telediagnosis system for cardiac sounds that allows
the analysis of remote phonocardiographic signals. The pattern recogni-
tion stage of ASEPTIC is presented in this paper. It is based in feature
selection from the cardiac events, and classification using a multilayer
perceptron artificial neural network trained with Levenberg-Marquardt
algorithm for fast convergence. Three categories of records have been
considered: normal, with holosystolic murmur, and with midsystolic mur-
mur. Experimental results show high correct classification rates for the
three categories: 100%, 92.69%, and 97.57%, respectively.

1 Introduction

Although in the last 30 years cardiac auscultation has been replaced by modern
techniques (mainly echocardiography) to diagnose the valvular state of the heart,
it is still widely used as a screening technique. Nowadays, efforts are mainly
conducted to develop computer systems that can aid the physician to diagnose
the state of the heart and provide rapid, accurate, objective, documented and
cost-effective diagnosis [1]. This is specially useful in rural areas [2], because of
the lack of physicians and high cost modern techniques.

One of such systems is ASEPTIC (Aided System for Event-based Phonocar-
diographic Telediagnosis with Integrated Compression) [3], which is a complete
system for telediagnosis of the cardiovascular condition by analysing phonocar-
diographic (PCG) signals generated by the heart. The analysis is performed using
only the PCG signal, without needing auxiliary signals like ECG or pulse. ASEP-
TIC includes a processing stage that analyzes the PCG recordings, and a com-
pression/decompression stage [4] for an efficient transmission of the PCG signals
to and from the processing unit. After signal conditioning and basic preprocess-
ing, ASEPTIC detects the individual cardiac events, and then pattern recog-
nition is performed using the features extracted from the cardiac events and a
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neural classifier (multilayer perceptron artificial neural network with Levenberg-
Marquardt training algorithm [5]). Although a variety of classification methods
exists, neural classifiers have been widely used for PCG because of their good
performance and learning capabilities [6,7,8].

In these article we describe the feature extraction and neural classification of
the information extracted from the PCG in order to obtain the diagnosis of the
heart condition. Section 2 provides a brief description of the operations that are
performed during the analysis, and how the information that contains the PCG
signal is prepared for classification. In Section 3, full details of the feature extrac-
tion and classification using an artificial neural network (ANN) are presented. Sec-
tion 4 reports experimental results, and final conclusions are given in Section 5.

2 System Overview

The processing stage of ASEPTIC is arranged as a modular hierarchical struc-
ture with four abstraction levels (Figure 1). The first three levels perform, re-
spectively, signal conditioning, delimitation of the relevant segments of the PCG
to be analyzed, and identification of the cardiac events. The fourth level com-
putes several features from the events previously detected, and these features
are used as inputs of an ANN to classify them in several predefined categories
(pathologies).

Fig. 1. Processing levels of the hierarchical structure of ASEPTIC. Level 0 (PCG
signal) does not form part of the processing levels, but is only the input signal to the
hierarchy.

Initially, the PCG is decimated by a factor 2 (from 8000 samples/s to
4000 samples/s), and scaled in the range [+1,-1] by dividing the PCG by its
maximum absolute value. The resulting signal is digitally filtered using two IIR
(Infinite Impulse Response) Chebyshev type I 3rd. order filters, with cutting
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frequencies fc1 = 40 Hz (high-pass) and fc2 = 800 Hz (low-pass). Finally, three
instantaneous magnitudes are derived from the PCG (instantaneous amplitude,
IA, energy, IE, and frequency, IF [9]) and their envelopes are computed using a
moving average filter [10].

The autocorrelation signal of the product of the three envelopes provides
a symmetric signal with its maximum in the central point. The main relative
maximum peaks detected in either of the halves of the autocorrelation signal are
used to define the average cardiac rhythm as the mean value of the segments
defined by these main peaks. An events detection method is then used to detect
the basic cardiac events [11]. This method is based in the detection of the relative
maxima in the amplitude envelope and the computation of a set of associated
points. They define the temporal limits of the events, and a basic identification
of them as sounds or murmurs is provided .

From the computed average cardiac rhythm and the detected events, the PCG
is segmented in cardiac cycles, beginning with a first heart sound (S1). Then the
detected events are identified using the following information: events duration,
amplitude and maximum frequency, relative distance between events, number
of events in the cardiac cycle, and situation of the middle point of the event
(only for murmurs). Algorithms have been developed to identify the following
events: S1, S2, S3, S4, midsystolic clicks (MSC), and murmurs. In this last case,
information about the relative situation of the murmur in the cardiac cycle is also
provided (early/mid/late/holo and systolic/diastolic). Identification is based in
three methods, used sequentially until one of them provides the identification
of all the events in the cardiac cycle: energy envelope, spectral-based energy
tracking [12], and the application of the IF to the A5 subband of the wavelet
decomposition of the PCG.

3 Neural Classification of Heart Sounds and Murmurs

After the processing of levels 1, 2 and 3 of the hierarchy, the diagnostic cate-
gory of the record is often restricted to a subset of all the possible categories
considered. Pattern recognition performed in level 4 allows to define precisely
the category, and provides a diagnosis combining these results with physiological
and auscultation information.

Pattern recognition consists of two steps: firstly, a feature set is computed from
the detected events; those features which provides more information are selected,
and also redundant information is removed. Secondly, the selected features are
used as inputs of an ANN, which provides the category to which the analyzed
PCG record belongs to, and defines the pathology.

3.1 Feature Extraction

For each cardiac event, a set of 13 features has been extracted from temporal
measurements and from the envelopes of instantaneous amplitude, energy and
frequency:
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– duration of the event (d),
– average value of the event in the IA envelope (avgIA),
– maximum value of the event in the IA envelope (maxIA),
– normalized standard deviation of the event in the IA envelope (nsdIA),
– area enclosed by the event in the IA envelope, which equals the average value

multiplied by the duration of the event (areaIA = d · avgIA),
– average, maximum, normalized standard deviation, and area enclosed of the

event in the IE envelope (avgIE, maxIE, nsdIE, and areaIE),
– average, maximum, normalized standard deviation, and area enclosed of the

event in the IF envelope (avgIF , maxIF , nsdIF , and areaIF ),

Although the IA and IE signals are obviously related (since energy is the square
value of the amplitude), both signals are needed because each of them provides
important information during events delimitation and identification (depending
on which kind of events must be highlighted, the IA or IE signals are used). It is
thus expected that the set of 13 features will provide some redundant informa-
tion. Principal Component Analysis (PCA) has been used to find which features
are the most discriminant and also to remove redundant information. A new set
of non-correlated features is then obtained. Each new feature is called a princi-
pal component (PC), and they are sorted from higher variance (PC1) to lower
variance (PC13). Usually, more than 90% of the variance of the original feature
set can be achieved with only a few PCs. This allows to select a reduced feature
set used to classify the PCG records, thus avoiding a large dimension feature
space (curse of dimensionality) that would make the design of the classifier more
complex, specially when the training data set is not very large.

3.2 Classification

Classification is used to refine the event identification information extracted in
level 3 of the processing hierarchy. The classifier will provide the category or
pathology to which the PCG record belongs to, which is used as the diagnosis of
the analysis system. Additional information like physiological data of the patient,
or data coming from the auscultation process also could be used to refine the
diagnosis of the classifier.

After a feature set has been extracted from each event and the most discrim-
inant features have been selected using PCA, the selected features for all the
events in a specific cardiac cycle form the cardiac cycle feature set vector. This
vector will be used to establish the pathology of the PCG record. For a set of
several cardiac cycles (training data set), a matrix of data is obtained: each row
provides the feature vector of each cardiac cycle (which is called a pattern), and
each column provides a specific feature for the different cardiac cycles. This data
matrix will be used to train an heteroassociative classifier to match each feature
vector with its corresponding pathology.

From the many existing methods for pattern recognition, the method chosen
for classification has been a neural network because of its learning capabili-
ties and generalization of information. In particular, the multilayer perceptron
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(MLP) has been used, with the Levenberg-Marquardt [5] training algorithm,
which reduces the learning time considerably with respect to the backpropaga-
tion algorithm.

The structure of the neural network consists of three layers with feedforward
connections:

– the input layer, with Nfeat neurons, one for each feature of the cardiac cycle,
– the middle (or hidden) layer, with 40 neurons, and
– the output layer, with Ncat neurons, one for each category or class.

The activation functions have been the hyperbolic tangent for the hidden layer,
and the lineal function for the output layer. The following parameters have been
used to train the network: Levenberg-Marquardt training algorithm, target error
of 0.0001, learning factor of 0.01, and maximum number of iterations of 1000.
The training of the network consisted in two stages: 1) one half of the patterns
(set 1) was used to train the network and the other half (set 2) was used to test
the network; 2) the sets were swapped (set 2 for training and set 1 for testing).
Finally, results were merged, obtaining a matrix of results whose size equals the
total number of patterns (cardiac cycles).

As a previous step to the training of the network, the input data were nor-
malized (mean = 0 and standard deviation = 1) to avoid that differences of the
data ranges can have influence in the training. After the training, when the input
data were presented at the network, they were also normalized with the same
scale factors that the training data.

4 Experimental Results

Diagnosis of heart sounds using the previous methodology has been tested with
a database of 94 heart cycles of real PCG records extracted from [13], belonging
to three different categories: normal records (with only the first and second heart
sounds, S1 and S2), records with holosystolic murmur (HSM), and records with
midsystolic murmur (MSM). The number of cardiac cycles for each category
has been the following: 31 (S1-S2), 26 (HSM), and 37 (MSM). In the normal
records, two events per cardiac cycle were detected (S1 and S2). For the records
with murmurs, three events per cycle were detected (S1, S2 and the murmur).
Thus, the total number of detected events was 251.

Initially, PCA was applied to the matrix with the 13 features extracted from
the 251 events. Table 1 shows the variance of the 13 new variables (principal
components), and the percentage that they represent with respect to the total
variance, sorted from higher to lower variance.

Figure 2 shows the contribution of each original feature to the principal com-
ponent with the highest variance (PC1), which owns more than 50% of the
variance of the whole feature set. In this figure it can be seen that the contribu-
tion of all features is quite similar except for nsdIA, nsdIE and nsdIF , which
have a lower contribution. From now on, these three features will be discarded.
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Table 1. Variance and its percentage (from the total variance) for the principal com-
ponents obtained from PCA

PC Variance Variance (%)

1 7.1777 55.2134
2 2.3064 17.7413
3 1.9384 14.9107
4 0.6623 5.0945
5 0.5738 4.4137
6 0.0955 0.7343
7 0.0879 0.6758
8 0.0690 0.5304
9 0.0486 0.3740

10 0.0181 0.1395
11 0.0158 0.1215
12 0.0043 0.0332
13 0.0023 0.0176

Then, PCA was used again to analyze the remaining 10 features. PC1 was
represented versus PC2 for the 4 types of detected events (S1, S2, HSM and
MSM) for 6 different feature sets, which are shown in Figure 3: a) { d, avgIA,
maxIA, areaIA }, b) { d, avgIE, maxIE, areaIE }, c) { d, avgIF , maxIF ,
areaIF }, d) { d, avgIA, avgIF , areaIA, areaIF }, e) { d, avgIE, avgIF ,
areaIE, areaIF }, f) { d, avgIF , areaIA, areaIF }. Event duration was in-
cluded in all the feature sets since it is the only temporal feature (although the
area enclosed by the event contains also this information in an implicit way).

A comparison between amplitude features and energy features (Figures 3a-3b
and 3d-3e) reveals that, although it is possible to discriminate between normal
sounds and murmurs for all the cases, those figures with amplitude features
provide better separation between MSM and HSM. Besides, the best separation
between events is achieved always for those sets with IF features (Figures 3c, 3d
and 3f). Separation between S1 and S2 was not possible at all for the six data
sets.

Fig. 2. Contribution of the original features to PC1
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These results show the importance of the features extracted from the IF en-
velope, since they allow to characterize quantitatively the different events and
discriminate between the different types.

For classification, 5 features have been selected for each event: d, avgIA,
avgIF , areaIA, and areaIF , which corresponds to the case with the biggest
separation between HSM and MSM (Figure 3d). The feature vector for each
cardiac cycle has been obtained using the 5 previous features for the two main
sounds (S1 and S2), the systole and the diastole. When an event (usually a
murmur) exists in the systole or the diastole, the features for that period (systole
or diastole) have been those of the event. In that case, the duration of the event
in the systole or diastole has been expressed in percentage with respect to the
total duration of the period ( event duration

period duration · 100), instead of using the duration of
the event measured in time units. When a period does not contain cardiac events,
their five features are 0. Since the records used for classification do not include
diastolic murmurs (so there is not any event in the diastole), the 5 diastolic
features (all of them 0’s) have not been used, since they are the same for all the
records and do not provide any discriminant information.

A 15-element feature vector is then formed:

– records without murmurs: [dS1, avgIAS1, avgIFS1, areaIAS1, areaIFS1, 0,
0, 0, 0, 0, dS2, avgIAS2, avgIFS2, areaIAS2, areaIFS2]

– records with murmurs: [dS1, avgIAS1, avgIFS1, areaIAS1, areaIFS1,
dmurmur·100

dsystole
, avgIAmurmur, avgIFmurmur, areaIAmurmur, areaIFmurmur, dS2,

avgIAS2, avgIFS2, areaIAS2, areaIFS2]

Thus, a feature matrix with 94 rows and 15 columns is formed, each row being
a pattern for the input to the neural network. The input layer to the neural
network has Nfeat = 15 neurons plus the bias (unit-input neuron used to set
the offset at the input of each neuron), and the output layer includes Nclass = 3
neurons, since three categories or classes have been used: normal records (C1),
records with HSM (C2), and records with MSM (C3). A winner-take-all approach
has been used for the output layer, where only one neuron (corresponding to the
class of the murmur) will take the value of 1, and the other two neurons will
take 0 value.

The complete pattern set has been divided in set 1 and set 2, where both
contain representative patterns in all the feature space. A full training of the
neural network consists really of two steps: 1) the ANN is trained with set 1
and validated with set 2, and 2) the training and validation sets are swapped.
In this form, all the patterns can be validated although they are never used
simultaneously as training patterns and validation patterns. Results from the
two steps are merged, so a 94-by-3 matrix is obtained. These results show the
category assigned by the ANN for each cardiac cycle.

Confusion matrix can be obtained from the result matrix, and contains all
the possibilities of categories assigned by the ANN for each pattern. Since the
number of patterns is not large, averaging over 10 trainings have been used to
improve the accuracy. Convergence of the ANN with the Levenberg-Marquardt
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Fig. 3. Representation of PC1 versus PC2 for different feature sets: a) { d, avgIA,
maxIA, areaIA }, b) { d, avgIE, maxIE, areaIE }, c) { d, avgIF , maxIF , areaIF
}, d) { d, avgIA, avgIF , areaIA, areaIF }, e) { d, avgIE, avgIF , areaIE, areaIF
}, f) { d, avgIF , areaIA, areaIF }
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algorithm has been very fast, needing only 3 or 4 iterations in all cases (3.25
iterations in average). The average time for each of the 10 trainings has been
4.66 seconds, using a PC laptop with Intel Pentium IV 2.8GHz processor.

The resulting confusion matrix is shown in Table 2. This matrix shows in
rows the real category to where a cardiac cycle belongs to (Ci), and in columns
the category where it has been classified by the ANN (C′

i). Ideally, for a perfect
classification, the main diagonal cells should be 100%, and the rest of cells should
be 0%. Percentage of results over the number of records for each category has
been also indicated in brackets.

Table 2. Confusion matrix where results have been averaged for 10 trainings. Rows
(Ci) represent the real category of the pattern, and columns (C′

i) represent the category
where the pattern has been assigned by the classifier. Percentage is shown in brackets.

Class C′
1 C′

2 C′
3

C1 31.0 (100.00%) 0.0 (0.00%) 0.0 (0.00%)

C2 0.2 (0.77%) 24.1 (92.69%) 1.7 (6.54%)

C3 0.1 (0.27%) 0.8 (2.16%) 36.1 (97.57%)

Table 2 shows that all the cardiac cycles of class C1 have been classified
correctly. There is also a small percentage of cycles with murmur (0.77% of
patterns in C2, and 0.27% of patterns in C3) that have been incorrectly assigned
to class C1. The hit rate for the classification has been of 92.69% and 97.57%
for classes C2 and C3, respectively. 6.54% of the cardiac cycles with HSM were
classified as MSM (in class C3), whereas 2.16% of the cycles with MSM where
classified as HSM (in class C2).

5 Conclusions

The description of pattern recognition for phonocardiography using an artificial
neural network as classifier has been presented in this article. Classification is
performed for a three category set of records: normal, HSM, and MSM records.
After basic preprocessing and individual events detection, a set of 13 features is
extracted for each event. PCA has been used to remove redundant information
and to select the 5 most discriminant features. The analysis made with PCA
revealed that features extracted from the instantaneous frequency envelope were
among the most discriminant features, allowing clear separation between non-
murmur and murmur records, and between holosystolic and midsystolic mur-
murs. Finally, a multilayer perceptron was used to classify the feature vector for
each cardiac cycle. The Levenberg-Marquardt training algorithm has provided
good convergence, and target error was reached after very few iterations. Results
achieved a very high hit rate, with 100% correct classification for normal records.

It is worth noting that the diagnosis system uses only the PCG signal, so sig-
nal acquisition remains as simple as possible, without needing additional synchro-
nization signals. Although results have been very promising for three categories,
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it is planned to increase the record database with more pathologies and with more
records per pathology, trying to cover the most frequent valvular pathologies.
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Abstract. A system that is capable of retaining learned knowledge and
selectively transferring portions of that knowledge as a source of induc-
tive bias during new learning would be a significant advance in artificial
intelligence and inductive modeling. We define such a system to be a
machine lifelong learning, or ML3 system. This paper makes an initial
effort at specifying the scope of ML3 systems and their functional re-
quirements.

1 Introduction

Over the last ten years progress has been made in machine learning and statisti-
cal modeling that exhibit aspects of knowledge retention and inductive transfer.
These represent advances in inductive modeling that move beyond tabula rasa
learning and toward machines capable of lifelong learning [17]. Henceforth, this
article will refer to such as machine lifelong learning (ML3) systems. Despite the
progress that has been made, there is need for a clear definition of the knowledge
retention and inductive transfer problem. Toward that end, this paper makes an
initial effort at specifying the scope of ML3 systems and their functional require-
ments.

2 Scope of ML3 Systems

The constraint on a learning system’s hypothesis space, beyond the criterion of
consistency with the training examples, is called inductive bias [4]. An inductive
bias of a learning system can be expressed as the system’s preference for one
hypothesis over another, for example Occam’s Razor suggests a bias for simple
over more complex hypotheses. Inductive bias is essential for the development
of a hypothesis with good generalization from a practical number of examples
[5]. Ideally, a lifelong learning system can select its inductive bias to tailor the
preference for hypotheses according to the task being learned [18]. One type of
inductive bias is knowledge of the task domain. The retention and use of domain
knowledge as a source of inductive bias remains an unsolved problem in machine
learning.

In [14,15] knowledge-based inductive learning is defined as an ML3 approach
that uses knowledge of the task domain as a source of inductive bias. Figure 1
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Fig. 1. The framework for knowledge based inductive learning

provides the framework for knowledge based inductive learning. As with a stan-
dard inductive learner, training examples are used to develop a hypothesis of a
classification task. However, unlike a standard learning system, knowledge from
each hypothesis is saved in a long-term memory structure called domain knowl-
edge. When learning a new task, aspects of domain knowledge are selected to
provide a positive inductive bias to the learning system. The result is a more
accurate hypothesis developed in a shorter period of time. The method relies
on the transfer of knowledge from one or more prior secondary tasks, stored
in domain knowledge, to the hypothesis for a new primary task. The problem
of selecting an appropriate bias becomes one of selecting the most related task
knowledge for transfer.

An ML3 system is typically composed of short-term and long-term compo-
nents and/or exhibits short-term and long-term processes. Although two phases
of learning may not be necessary, it is frequently required so as to ensure that
long-term domain knowledge is not corrupted by inaccurate short-term learning.
The following three sections outline general requirements for ML3 systems and
specific requirements for long-term retention of learned knowledge and short-
term learning with inductive transfer.

3 General Requirements

3.1 Form of knowledge Retention

Learned knowledge can be stored in functional or representational form within a
ML3 [14]. The simplest method of retaining task knowledge in functional form is
to save the respective training examples. Other methods of retaining functional
knowledge involve the storage or modelling of search parameters such as the
learning rate in neural networks. An advantage of retaining functional knowledge,
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particularly the retention of the actual training examples, is the accuracy and
purity of the knowledge. Disadvantages of retaining functional knowledge are
the large amount of storage space that it requires and difficulties in using such
knowledge during future learning.

Alternatively, a description of an accurate hypothesis developed from the
training examples can be retrained. We define this to be a representational form
of knowledge retention. The description of a decision tree or a neural network are
examples of representations. The advantages of retaining representational knowl-
edge is its compact size relative to the space required for the original training
examples and its ability to generalize beyond those examples. The disadvantage
of retaining representational knowledge is the potential loss of accuracy from the
original training examples.

3.2 Form of knowledge Transfer

The form in which task knowledge is retained can be separated from the form
in which it is transferred. For example, the retained hypothesis representation
for a learned task can be used to generate functional knowledge in the form of
training examples [10,15].

Representational transfer involves the direct or indirect assignment of known
task representation to the model of a new target (or primary) task [14]. In this
way the learning system is initialized in favour of a particular region of hy-
pothesis space of the modeling system [9,11,16]. Representational transfer often
results in substantially reduced training time with no loss in the generalization
performance of the resulting hypotheses.

In contrast to representational transfer, functional transfer employs the use of
implicit pressures from training examples of related tasks [1], the parallel learning
of related tasks constrained to use a common internal representation [2,3], or the
use of historical training information from related tasks [17,6]. These pressures
reduce the effective hypothesis space in which the learning system performs
its search. This form of transfer has its greatest value in terms of increased
generalization performance from the resulting hypotheses.

3.3 Input and Output Type, Complexity and Cardinality

The output representation of a system capable of retaining and transferring
knowledge should not be constrained to a particular data type. A ML3 system
should be capable of predicting class categories and real-value outputs including
scalar values as well as vectors.

An ML3 should be capable of dealing with its environment over a lifetime
with a fixed number of inputs and outputs for the task domain(s) under study.
Certain inputs or outputs might go unused for many tasks of a domain early
in the learning system’s lifetime only to be used quite frequently later in life.
The rationale for this requirement is not to constrain an ML3 system to a fixed
amount of internal representation (this could change over time) but to ensure
a consistent interface with the environment and with other entities such as a
software agent, a application program or a human user.
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3.4 Scalability

A ML3 system must be capable of scaling up to large numbers of inputs, out-
puts, training examples and learning tasks. Preferably, both the space and time
complexity of the learning system grows polynomially in all of these factors.

3.5 Accumulation of Practice

A ML3 system should facilitate the practice of a task. The system’s normal
methods should retain and transfer knowledge from one learning episode of a
task to another such that the generalization accuracy of the long-term hypothesis
for the task increases. But, how can a ML3 system determine from the training
examples that it is practicing a task it has previously learned versus learning
a new but closely related task [7,12]. We have come to the conclusion that a
ML3 system should not have to be explicit in this determination. Rather, the
similarity, or relatedness, of a set of training examples to that of prior domain
knowledge should be implicit; each training example should be able to draw
upon those aspects of domain knowledge that are most related. This suggests
that domain knowledge should be seen as continuum as apposed to a set of
disjoint tasks.

4 Requirements for Long-Term Retention of Learned
Knowledge

4.1 Effective Retention

A ML3 system should resist the introduction and accumulation of domain knowl-
edge error. Only hypotheses with an acceptable level of generalization accuracy
should be retained else, once saved in long-term memory, the error from a hypoth-
esis may be transferred to future hypotheses. A ML3 system must be concerned
with this systemic growth in error over its lifetime. Similarly, The process of
retaining a new hypothesis should not reduced its accuracy or that of prior hy-
potheses existing in long-term memory. In fact, the integration or consolidation
of new task knowledge should increase the accuracy of related prior knowledge.

4.2 Efficient Retention

A ML3 system should be efficient in its use of long-term memory (efficient in
space). In particular, the system should make use of memory resources such
that the duplication of information is minimized. A representational form of
task knowledge will be more space efficient than a functional form because of
the reasons cited in Section 3.1. A ML3 system should also be computationally
efficient (efficient in time) when storing learned knowledge in long-term memory.
Ideally, retention should occur during short-term learning, however, in order
to ensure effective retention (integration and reduction of error) this is rarely
possible.
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4.3 Effective Indexing

A ML3 must be capable of selecting the appropriate prior knowledge for induc-
tive transfer during short-term learning. This requires that a ML3 be capable of
indexing into long-term memory for task knowledge that is most related to the
primary task. Typically, primary task knowledge will arrive in the form of train-
ing examples (functional knowledge) and no representational knowledge will be
provided. This requires design choices in the construction of the ML3 system.
The system must either use functional examples to select related domain knowl-
edge or generate a hypothesis representation for the primary task to estimate
its similarity to existing domain knowledge representation.

4.4 Efficient Indexing

A ML3 system must make the selection of related knowledge as rapid as pos-
sible. Preferably, the computational time for indexing into domain knowledge
should be no worse than polynomial in the number of tasks having been stored.
Experimentation has shown that a representational form of retained knowledge
(e.g. graph of a decision tree) can be more efficiently indexed than a functional
form (e.g. examples used to train the decision tree) [8].

4.5 Meta-knowledge of the Task Domain

In most cases, it will be necessary for a ML3 system to determine and retain
meta-knowledge of the task domain. For example, it may be necessary to es-
timate the probability distribution over the input space so as to manufacture
appropriate functional examples from retained task representation [15]. Alter-
natively, it may be necessary to retain characteristics of the learning process
(learning curve, error rate) for each task.

5 Requirements for Short-Term Learning with Inductive
Transfer

5.1 Effective Learning

The inductive transfer (bias) from long-term memory should never decrease the
generalization performance of a hypothesis developed by a ML3 system. A ML3
system should produce a hypothesis for the primary task that meets or exceeds
the generalization performance of that developed strictly from the training exam-
ples. There is evidence that the functional form of knowledge transfer somewhat
surpasses that of representation transfer in its ability to produce more accurate
hypotheses [3,13]. Starting from a prior representation can limit the development
of novel representation required by the hypothesis for the primary task. In terms
of neural networks this representational barrier manifests itself in terms of local
minimum.
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5.2 Efficient Learning

Inductive transfer from long-term memory should not increase the computational
time for developing a hypothesis for the primary task as compared to using
only the training examples. In fact, inductive transfer should reduce training
time. In practice this reduction is rarely observed because of the computation
required to index into prior domain knowledge. In terms of memory (space),
there will typically be an increase in complexity as prior domain knowledge
must be used during the learning of the new task. Our research has shown
that a representational form of knowledge transfer will be more efficient than a
functional form (supplemental training examples) [13].

Sections 4.3, 4.4, 5.1 and 5.2 indicate an interesting dichotomy between effec-
tive and efficient inductive transfer. Effective learning requires functional transfer
whereas efficient learning requires representation transfer.

5.3 Transfer Versus Training Examples

A ML3 must take into consideration the estimated sample complexity and num-
ber of available examples for the primary task and the generalization accuracy
and relatedness of retained knowledge in long-term memory. During the process
of inductive transfer a ML3 must weigh the relevance and accuracy of retained
knowledge along side that of the information resident in the training examples.

6 Conclusion

This paper has outlined the scope and functional requirements for a ML3 system.
A ML3 system can retain and transfer knowledge in either representational or
functional form. A ML3 system should have no bounds on input and output
variable type and complexity and it should be scalable in terms of number of
inputs, outputs, number of training examples and learning tasks. A ML3 should
facilitate the practice of a task and treat domain knowledge as a continuum of
tasks rather than a set of disjoint tasks.

Efficient long-term retention of learned knowledge should cause no loss of prior
task knowledge, no loss of new task knowledge, and an increase in the accuracy
of old tasks if the new task being retained is related. A ML3 must be capable
of efficiently selecting the most effective prior knowledge for inductive transfer
during short-term learning.

Efficient short-term learning with inductive transfer should produce a hypoth-
esis for a primary task that meets or exceeds the generalization performance of
a hypothesis developed from only the training examples. Experimental results
indicate that effective learning excels under functional transfer whereas efficient
learning requires representation transfer. Lastly, we point out that a ML3 must
weigh the relevance and accuracy of retained knowledge along side that of the
available training examples for the primary task.
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Abstract. In real life, the task learning is reinforced by the related
tasks that we have learned or that we learn at the same time. This
scheme applied to Artificial Neural Networks (ANN) is known with the
name of Multitask Learning (MTL). So, the information coming from the
related secondary tasks provide a bias to the main task, which improves
its performances versus a Single-Task Learning (STL) scheme. However,
this implies a bigger complexity. Data Editing procedures are used to
reduce the algorithmic complexity, obtaining an outstanding samples set
from the original set. This edited set gets the performance very fast. In
this paper we combine MTL with Data Editing, so we can approach the
small samples set training in an MTL scheme.

1 Introduction

Multitask Learning (MTL) allows to learn a task (main task) using information
from secondary tasks related with the main one. The purpose of these secondary
tasks is to help to the main task to improve its performances. Caruana et al. [1]
use the MTL procedure to train an ANN to order the pneumonia patients list,
obtaining better results that with the STL scheme. Caruana also proposes other
alternatives of algorithms for MTL [2,3,4]. Ghosn and Bengio [5] work about
the bias learning and how these tasks make weight share domain. Silver and
Mercer create relations between tasks to know the best task that can be used as
secondary task in the MTL training process [6].

Unfortunately, MTL increments the algorithm complexity. In this sense, sam-
ple selection procedures may be used to obtain new samples sets to work in a
MTL scheme improving the performance with a small samples set. The proposed
method combine the fast performances of Data Editing procedures and the infor-
mation provided from the related tasks. Using related tasks to train an ANN has
� This work is partially supported by Ministerio de Educación y Ciencia under grant

TEC2006-13338/TCM, and by Consejeŕıa de Educación y Cultura de Murcia under
grant 03122/PI/05.
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been proved to be useful to improve the main task performances. This is because
information provided by the secondary tasks is used as an inductive bias for the
main task [5]. Thus, ANNs are trained using samples from all different tasks,
producing a bias in the solution obtained when only samples of the main task
are used. In this work, we use the MTL method developed by Caruana [1,2,3,4].
Figure 1 shows this MTL scheme, where all tasks (each one of them is associated
to a network output) share a hidden layer of neurons in an ANN.

Fig. 1. MTL scheme. All tasks share the hidden layer, and the N secondary tasks help
the main one to improve its performance.

The rest of the paper is organized as follows. Section 2 explains the Data
Editing procedure. In Section 3, we set a MTL method with Data Editing.
Section 4 presents the experiment results over a two-class classification problem
showing the performance improvement of our proposed approach compared to
other MTL and STL procedures. Finally, the main conclusions end this paper.

2 Data Editing

Data Editing has been developed to avoid a common drawback about both Ker-
nel and K-Nearest Neighbor (K-NN) methods. These procedures take too long
to compute and need too much storage for the whole training set. However, in
many problems, it is only necessary to retain a small fraction of the training set
to approximate very well the decision boundary of the K-NN classifier. There are
many editing algorithms. Ripley [7] shows the performance of Data Editing in a
STL scheme. Choi et al. [8] work with a condensed set showing some modifica-
tions from the original Data Editing procedure. Here, we use the Condensed-NN
algorithm proposed by Hart [9], and it is specified as follows:

1. Divide the current patterns into a store and a grabbag. One possible partition
is to put the first point in the store, the rest in the bag.

2. Classify each sample in the grabbag by the 1-NN rule using the store as
training set. If the sample is incorrectly classified transfer it to the store.

3. Return to Step 2 unless no transfer occurred or the grabbag is empty.
4. Returns the store.
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The selected samples by the Condensed-NN algorithm can be used to form
a new secondary task. The samples of this reduced set are very close to the
decision frontier, and so they will performance very fast, helping the principal
task performance. In some cases, a lot of overlapping samples are in the decision
frontier. So we need to combine the well-known {K, L}-NN algorithm and the
Condensed-NN algorithm described previously. The {K, L}-NN is used to remove
the overlapping data so the Condensed-NN algorithm obtains a better outstand-
ing group of samples. To our purpose we also use the Hand & Batchelor algorithm
[10]. This method only retains points whose likelihood ratio against every class
exceeds some threshold (the densities are estimated non-parametrically).

3 Multitask Learning

In this work, we firstly consider a problem composed of two related tasks. The
task which is desired to be learnt better is called the main task and the task
whose training data are used as hints by the main one is called as the secondary
task. In order to make the content of the paper easier, the nomenclature used in
the following sections is showed in the Table 1.

Table 1. Nomenclature of mathematical symbol used in this paper

X = {xn}N
n=1...N Input set

T = {tn}N
n=1...N Target set

M = {Xm,Tm} Data set to learning the main task
S = {Xs,Ts} Data set to learning the secondary task
xn = [xn

1 , xn
2 , . . . , xn

d ] Input vector
tn
k Target of the xn corresponding to the k-th task

yn
k Network output of the xn corresponding to the k-th task

zn
j Output for the j-th neuron corresponding to the xn

In a STL framework, an ANN is trained to learn only the main task, i.e., the
network is trained using only the information corresponding to the main task,
the set M. In contrast, when MTL is used, an ANN learns all tasks at the same
time using all training data, i.e., the sets M and S. In this work, we also consider
that the input data are the same for both tasks, i.e., Xm = Xs = X.

When we use Data Editing to reduce the training data set corresponding
to the main task, i.e., the set M is reduced to Med, the STL presents some
difficulties to get an optimal performance. To reinforce it, we propose an MTL
framework, in which the information provided by a secondary related task is
used to improve the performance of the main one (the extension to more tasks
is obvious). In this approach, the secondary task is obtained from the edited set
Sed. This information works like a bias for the main task, so it is necessary that
the secondary task must be related with the main one.
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The original MTL scheme is modified to handle all tasks. In our approach,
data samples are divided into two sets, the data set for the main task (M or Med

if the edited sets are used) and the data set corresponding to the secondary task
(S or Sed). Most input vectors belong to both sets, but there are samples that
belong only to the main task and others to the secondary related tasks. So, some
modifications to the original Back-Propagation (BP) algorithm are necessaries.
If we use linear activation functions in the output units, and considering the
sum-of-squares error as the error function to be minimized during the learning
process, the error corresponding to the n-th pattern is given by:

En =
1
2

c∑

k=1

(yn
k − tnk )2 (1)

where c − 1 is the number of secondary tasks related with the main one.
As it has been already mentioned, network weights are calculated using BP

algorithm with gradient descent optimization. We use this notation for weights:
wji denotes a weight going from the input unit i to hidden unit j; and so, wkj

denotes a weight in the second layer going from hidden neuron j to output unit
k. The derivatives of (1) with respect to the first-layer and second-layer weights
are respectively given by,

∂En

∂wji
= δn

j xn
i ,

∂En

∂wkj
= δn

k zn
j (2)

where δ’s are the errors used for the weights actualization in the BP algorithm.
Weights that connect each output unit to hidden neurons are only influenced

by errors produced by the corresponding task, being updated by

δn
k = yn

k − tnk (3)

While the first layer weights are updated depending on the error of all tasks:

δn
j = zn

j (1 − zn
j )

c∑

k=1

αn
kwkjδ

n
k (4)

where αn
k represents the k-th bias for the n-th input pattern. This bias αn

k is
equal to 0 or 1 depending on the n-th pattern is associated to the k-th task. For
example, if the n-th vector belongs to all sets (i.e., it belongs to the main task
and also to all secondary tasks), αn

k is equal to 1 for all k.
In this paper, the experiment is composed of two tasks (c = 2), and so, the

implemented MTL network has two outputs, k = 1 for the main task and k = 2
for the secondary task. Therefore, the equation (4) can be written as

δn
j = zn

j (1 − zn
j )(αn

1 wj,1δ
n
1 + αn

2wj,2δ
n
2 ) (5)

4 Experiment

In order to test the proposed approach, a two-class two-dimensional problem is
used. This problem has been artificially generated, resulting two different sets,
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(a) Main task.
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(b) Secondary related task.

Fig. 2. Training sets of a two-class decision problem
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(a) Selected samples from the main
task.
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(b) Selected samples from the related
secondary task.

Fig. 3. Selected samples from data editing procedure used for the main task and the
secondary one

one of them is used as the main task and the another set as the secondary one.
Figure 2(a) shows the set corresponding to the main task, and Figure 2(b) the
data for the secondary one. It is clear to see that both tasks are clearly related,
and also, most of the input data belong to the two data sets. In each case, we
have 600 samples for the training set, 600 samples for the validation set, and
6000 samples for the test set. The two classes are equiprobable in all sets.

In addition, two reduced sets are obtained with Data Editing. Figure 3 shows
these edited data sets. From the 600 samples that compose the training sets (Fig-
ure 2), the number of samples have decreased to 88, where 45 patterns belong at
the main task (Figure 3(a)) and 49 patterns to the secondary one ((Figure 3(b)).
How it can be appreciated, the edited set (Figure 3) is a small fraction of the
original set (Figure 2) composed by samples close to the boundary. The error
propagation has not repercussion if the sample does not belong to a determinate
task. This reduction of the data set makes the performance very fast.

We compare the the main task performance of the STL and MTL over all
sets (i.e. non-edited and edited data sets). The implemented networks have two
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inputs, one output for the STL scheme and two outputs for the MTL scheme,
and 12 nodes in the hidden layer. The learning parameters are the following.
The base learning rate is dynamic, it initial value is 0.05 with an increment of
1.1 or a decrement of 0.5 depending on the performance of the validation set.
Random initial weight values are selected in the range −0.1 to 0.1 for all runs.
This experiment is repeated ten times, with 20.000 epochs for each one of them.
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Fig. 4. Training epochs vs. probability correct (measured over the test set) from the
different tested schemes

Figure 4 illustrates the evolution of the probability of correct classification
over the test set using the different tested procedures. This figure shows that the
MTL with Data Editing scheme improve the performance of the STL scheme
using Data Editing, and it maintains the advantage of quick performance.

In Table 2, we show the obtained results of the different training schemes.
These results, measured over the test set, have been selected using a validation
set. MTL approach with edited sets gets good results working with a small
samples set, reducing the training epochs and the algorithm complexity. The
performance is very fast due to the small samples set.

Table 2. Correct probability average (over the test set) and standard deviation from
the different tested schemes

Scheme %Correct std Epochs Best

STL 0.637 0.001 19990 0.640
MTL 0.808 0.003 16742 0.814
STL Ed-Set 0.588 0.004 6762 0.594
MTL Ed-Set 0.761 0.025 7635 0.782
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5 Conclusions

Multitask Learning (MTL) is a procedure for training a neural network that
learns several related tasks simultaneously considering one of them as main task
and the others as secondary tasks. In this paper, a Data Editing procedure
is used to reduce the algorithm complexity. In particular, Data Editing has
been implemented by means of {K,L}-NN and Condensed-NN algorithms. Data
Editing is a sample selection procedure that gets a reduced set of critical samples.
Samples close to the decision boundary are of special interest because they are
critical to solve the problem. Combining the main task (original data set) with
a secondary task (related set) in a MTL scheme with a Data Editing procedure,
we have checked that the number of training epochs is clearly reduced and its
performance is faster than the original MTL scheme.
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Abstract. The goal of this work is to present an efficient implementation of the
Backpropagation (BP) algorithm to train Artificial Neural Networks with gen-
eral feedforward topology. This will lead us to the “consecutive retrieval prob-
lem” that studies how to arrange efficiently sets into a sequence so that every set
appears contiguously in the sequence. The BP implementation is analyzed,
comparing efficiency results with another similar tool. Together with the BP
implementation, the data description and manipulation features of our toolkit fa-
cilitates the development of experiments in numerous fields.

1 Introduction and Motivation

The Backpropagation (BP) algorithm [11] is the most widely used supervised learning
technique to train feedforward Artificial Neural Networks (ANNs). In this work, we
present an efficient implementation of the BP algorithm to train general feedforward
ANNs, that is, networks that have no feedback.

There are many variations of the BP algorithm. The simplest implementation of BP
learning updates the network weights and biases in the direction in which the perfor-
mance function decreases most rapidly, the negative of the gradient. There are two dif-
ferent ways in which this gradient descent algorithm can be implemented: incremental
mode and batch mode. In incremental mode, the gradient is computed and the weights
are updated after each input is applied to the network. In batch mode, all the inputs
are applied to the network before the weights are updated. Incremental training is usu-
ally significantly faster than batch training. On the other hand, adding a momentum
term [10] is a standard technique that often provides faster convergence and maintain
generalization performance. Momentum allows a network to respond not only to the
local gradient, but also to recent trends in the error surface: without momentum a net-
work can get stuck in a shallow local minimum and with momentum a network can
slide through such a minimum.

By the above reasons, we have decided to implement the incremental BP algorithm
with momentum with some characteristics that most of the available BP implementa-
tions lack. Section 2 describes in more detail the most important features of our BP
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implementation regards to efficiency. This will lead us to the “consecutive retrieval
problem” [7,4] that studies how to arrange efficiently a list of sets of neurons in a vector
so that every set appears contiguously in the vector. Next, Section 3 lists some additional
characteristics of the BP implementation. Section 4 describes the data facility mecha-
nisms and presents an example of use of the application. Finally, some conclusions and
future work are drawn in Section 5.

2 An Efficient BP Algorithm for General Feedforward ANNs

2.1 Preprocessing the ANN: The Consecutive Retrieval Problem

The bottleneck in the simulation of a neural network, at least for big networks with
many connections, is the scalar product of vectors: the input vector −→x and the weight
vector −→w of each neuron, that must be executed once by input sample and unit. We must
take into account that the forward pass and the backward pass present different memory
access patterns, so a representation that improves the locality in a pass will not do it in
the other one. When the networks to be trained are big enough, the weights cannot be
stored entirely in cache memory during a complete forward or backward pass, and this
causes an important speed reduction due to the inevitable cache misses.

There seems to be a tradeoff between efficiency and flexibility: On the one hand,
some implementations are specialized in certain restricted topologies like the layered
feedforward ANNs with all-to-all connections between layers. For these specialized
topologies, storing the connection weights in matrices improves the calculation of the
scalar product by favoring data locality and simplifying data access. On the other hand,
algorithms prepared for general feedforward topologies usually represent the networks
by means of a list of neurons arranged in a topological order. Each neuron needs
information of its predecessors and this list representation simplifies the algorithm,
but the cost of traversing the data and their locality are worse than with the matrix
representation.

Our proposed implementation is able to achieve the speed of specialized BP algo-
rithms for general feedforward topologies. The activation values of neurons are arranged
in a vector as consecutively as possible by means of a preprocessing of the network
topology. In this way, given a neuron, the activation values of its predecessors is a con-
secutive subvector which can be efficiently traversed. The weights of the neuron are
stored in the same order so the scalar product of vectors −→x and −→w of each neuron, as
well as the backpropagation of the error, are improved. In order to assure this property,
some neuron values may need to be duplicated. The problem of finding the optimal
arrangement is known in the literature as “consecutive retrieval problem” [7,4]:

Let X = {1, 2, . . . , N} be a set, having P subsets denominated C1, C2, . . . , CP ,
not necessarily disjoint. The goal is to obtain a sequence A = a1, . . . , ak of el-
ements of X so that every Ci appears in A as a contiguous subsequence, while
keeping the length of A as small as possible.

This problem is related to our neural network arrangement problem as follows: X rep-
resents the set of neurons that have one or more outputs connected to another neuron. P
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is the number of neurons which are not inputs. Each set Ci represents the set of inputs
of each neuron. Finally, A is the desired vector of activation values of the neurons. The
advantage of this representation is twofold. On the one hand, iterating over a vector is
cheaper than over a linked list. On the other hand, weights are packed consecutively
in memory and the spatial cost of pointers of linked list nodes is avoided, therefore re-
ducing the number of cache misses. The cost of copying duplicated activation values is
very cheap so the obtained benefits exceed the cost of the replication.

Since the consecutive retrieval problem is proven to be NP-Complete [7,3], we need
an efficient method to obtain good approximations to the optimal solution in order to
make practical the packing of big ANNs. We have designed a greedy algorithm [13]
which achieves packing rates very superior to a “naive” consecutive arrangement.

2.2 Tests of Efficiency

The BP algorithm described above is a part of the April (A Pattern Recognizer in Lua)
toolkit which has been implemented in C++ and can be extended using the Lua [6]
scripting language. April provides a homogeneous environment to perform pattern
recognition tasks (ANNs, hidden Markov models, dynamic time warping, clustering,
and others). Neural network experiments can be easily performed in April as de-
scribed in Section 4.

We are going to compare empirically the temporal cost of AprilBP implementation
with other BP implementation: the Stuttgart Neural Network Simulator (SNNS) [14],
that is one of the most well-known tools for training ANNs. SNNS has a great descriptive
capacity and allows to train networks with any topology. In order to compare both BP
implementations, an example of OCR classification problem is used. The task consists
of classifying handwritten digits standardized to 16 × 16 black and white pixels.

A total of 1 000 image are stored in a unique image in PNG format (see Figure 1).
Since the ANN receives a digit, the input has 256 input values (the size of a image).
There is an output neuron per digit class.

...
...

...
...

...
...

...
...

...
...

Fig. 1. The OCR corpus: 1 600 × 160 pixels image containing a matrix of 100 × 10 image digits

Execution time of a complete training with validation epoch has been measured for
both tools in an AMD Athlon (1 333 MHz.) with 384 MB of RAM under Linux. Similar
results have been obtained in other architectures.
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Efficiency with layered feedforward topologies. Layered feedforward networks with
one and two hidden layers with all-to-all connections between layers have been used
(see Figure 2), where the first hidden layer has from 10 to 200 neurons and the second
layer, if used, has fewer neurons than the first one. Sigmoid activation functions have
been used, and each network has been trained for 10 epochs. The networks have been
generated and initialized with April and later have been exported to SNNS format in
order to have the same initial weights.

Fig. 2. Layered feedforward ANN used for efficiency tests. 1 and 2 hidden layers have been
used.

Figure 3 shows the temporal cost per epoch for April and SNNS and the ratio
between both costs. The first graph shows that the running time is always smaller in
April than in SNNS. In the second graph, we can see that the speed-up achieved by
April over SNNS varies between 4 and 16. For small networks, with less than 10 000
connections, April is 4 times faster. For bigger networks, April is up to 16 times
faster (when the number of connections is between 20 000 and 30 000). With more
than 30 000 connections, the difference between both tools decreases progressively un-
til, at 50 000 connections, it becomes stable around SNNS being 4 times slower than
April.
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costs (right)
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Table 1. Cache misses in training networks with different number of weights W . “L1 misses”
is the percentage of data accesses which result in L1 cache misses, and “L1&L2 misses” shows
the percentage of data accesses which miss at both L1(fastest) and L2(slightly slower) cache,
resulting in a slow access to main memory.

April SNNS
W # Accesses L1 L1&L2 # Accesses L1 L1&L2

misses misses misses misses

2 790 3.10 × 108 0.14% 0.10% 4.45 × 108 4.46% 0.05%

25 120 1.70 × 109 1.71% 0.03% 2.43 × 109 7.39% 4.81%

62 710 4.25 × 109 1.85% 1.11% 6.00 × 109 7.18% 5.63%

Repercussion of data locality in efficiency. One of the most influential factors in these
results is the locality of the data in memory. In order to corroborate this influence we
have used the valgrind 1 [9] analysis tool, which executes a program in a simulated
CPU and provides quantitative data on the number of memory accesses and cache per-
formance (see Table 1). We have trained three layered feedforward networks, each one
belonging to the three intervals that we have distinguished in the previous experiment:
a network with less than 10 000 connections, between 20 000 and 30 000 connections,
and with more than 50 000 connections. The results shown in Table 1 can be interpreted
in terms of the network size:

Small networks. (W = 2 790): the number of L1 cache misses in April is an order
of magnitude lower (0.14% as opposed to 4.46% of SNNS). In the case of L2 cache,
April has many more misses, but it also needs many fewer accesses. The better
data locality in April reveals why April is 4 times faster than SNNS.

Medium-sized networks. (W = 25 120): April displays a very small index of cache
misses: 1.71% of data accesses are L1 misses, and only 0.03% result in main mem-
ory accesses, whereas SNNS shows a 7.39% of L1 misses and a 4.81% of com-
bined cache misses, with more total accesses.This great difference is the reason
why SNNS is 16 times slower than April.

Big networks. (W = 62 710): SNNS obtains miss ratios which are similar to the ones
in medium-sized networks, and April presents a combined cache miss ratio of
1.11%. This great increase is caused by the enormous growth in data size, but the
cache-related behaviour of April is still better for both L1 and L2 caches, which
allows April to be approximately 4 times faster than SNNS. One of the reasons of
this smaller increase of cache misses in April is the use of single-precision values
instead of the double-precision ones used by SNNS.

Efficiency with general feedforward topologies. We have repeated the experiment
with networks which have each layer connected to all the previous ones (see Figure 4a),
with one and two hidden layers. We have also tested networks in which connections

1 Valgrind is a debugging and analyzing tool for the x86 architecture which detects program-
ming errors and studies the efficiency at different levels (cache, bottlenecks, etc.).
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are no longer all-to-all. We have divided the 16 × 16 pixel input in four 8 × 8 pixel
fragments (see Figure 4b). Thus, the hidden neurons are distributed in four groups, con-
necting each group to a different part of the image. The rest of neurons display all-to-all
connections. Also we have generated networks with one and two hidden layers, with the
restriction that the number of hidden neurons must be a multiple of four. Training these
topologies with April and SNNS has given analoguous time results as before. Thus,
we have verified that April is able to train efficiently general feedforward topologies
as well as specific feedforward topologies.

(a) (b)

Fig. 4. (a) Feedforward network with shortcuts between the layers: a neuron is connected to
neurons of all the previous layers. (b) Feedforward network with segmented input: the whole
16 × 16 image is divided in four 8 × 8 fragments forming four groups of hidden neurons.

3 Additional Features of the BP implementation

In addition to the usability facilities which will be described in Section 4, the following
features deserve mention:

Softmax activation function. Softmax outputs suffer from numerical instability prob-
lems and many implementations do not deal properly with them. If the outputs of a
ANN are required to be interpretable as posterior probabilities, it is needed for those
outputs to lie between zero and one and to sum to one. The purpose of the softmax
activation function [2] is to enforce these constraints on the outputs by defining the
output of each neuron as oi = exp(γi + c)/(

∑n
j=1 exp(γj + c)), for i = 1, . . . , n,

where γi are the potentials of the neurons. The value c is arbitrary and disappears
when working out the equation. Some implementations set c = min γi in order to
avoid problems of numerical instability, but numerical errors occasionally continue tak-
ing place if exp(max γi − min γi) overflows. For this reason, we use c = min γi if
max γi − min γi < c2 but use c = max γi − c2 in other case, where c2 is a constant
that depends on the floating-point data type used, avoiding this problem. Other very
useful feature of our implementation is the possibility of grouping output neurons so
that the softmax calculations are performed independently in each group. This feature,
which we have not found in other similar tools, can be useful if we want to use a given
network to estimate different probabilities simultaneously on a same input dataset.
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Tied and constant weights. It is useful to be able to indicate that certain weights of the
network are tied and have the same value. Marking certain weights of the networks as
constant, so that they do not undergo modifications during the training, is also possible.

Weight decay. Weight decay was introduced by Werbos [12] and consists of decreasing
the weights during the BP training. In addition to each update of a weight, the weight
is decreased by a part of its old value. The effect is similar to a pruning algorithm [1]:
weights are driven to zero unless reinforced by BP. In particular, if we have a weight
wij that connects the output of neuron i with neuron j, and δBP is the increment incor-
porated to that weight by the BP algorithm, �wij(t + 1) = δbp − λwij(t), being λ the
value of the weight decay parameter.

Value representation. Many ANN tools use double precision floating-point data. How-
ever, single precision (float) is enough to represent data and ANNs weights for most
applications. Moreover, using ANNs in embedded systems (PDAs, cell phones, etc.)
whose architectures do not usually feature a FPU requires a fixed-point representation
in order to accelerate the calculations enormously. We have implemented a fixed-point
version of the forward pass because a network is usually trained in a conventional com-
puter and is only used to calculate outputs in the embedded applications.

Reproducibility of experiments. Another important characteristic included in our BP
implementation is the ability to stop and resume experiments, what can be useful to
recover from system failures, migrate processes, perform grid computing, etc. There-
fore, we control all parameters of the networks and the experimentation. This includes
the pseudo-random generators used to obtain the initial weights and to shuffle the train-
ing samples. The weight values of the network can be saved without loss of accuracy,
and also the weight values from the previous iteration can be saved to calculate the
momentum step after a recovering.

4 Usability Issues

There are many factors to take into account when designing a training experiment be-
sides the speed of the BP algorithm. It is very important the possibility of describing
easily the network topology and the training, validation and test corpora. Other impor-
tant issue is the space occupied by the training data, which can be very huge, making
impractical some experimentations even with various gigabytes of main memory.

Some BP implementations offer just a library which can be used to incorporate neural
networks in any application, but which leaves the user with the responsibility of prepar-
ing the set of input and output pairs needed for training and validation. Other toolk-
its also offer a complete (graphical) environment where it is very easy to design the
neural topology, to inspect the datasets and to perform the training experiments, but
these environments are not useful for automatically testing combinations of parameters
and topologies or when very sophisticated stopping conditions are used. Our BP C++
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implementation can be used as a library, but is intended to be used with April, which
provides a homogeneous environment to perform pattern recognition tasks.

4.1 Data Description and Manipulation Facilities

Neural network experiments can be easily described in April using the Lua [6] script-
ing language. Lua is used to describe and to save general network topologies and in
general to describe experiments. Lua is an extensible procedural embedded program-
ming language especially designed for extending and customizing applications with
powerful data description facilities. Besides the Lua description facilities, April adds
the matrix and dataset classes which allow the definition and manipulation of possi-
bly huge sets of samples easier and more flexibly than simply enumerating the pairs of
inputs and outputs.

The matrix class represents conventional n-dimensional matrices and can store im-
ages, sequences of words, etc. The neural network expects one or several datasets which
represent an ordered set of patterns of a given size. Thus, the method for training a net-
work during an epoch requires two datasets whose number of patterns coincide and
whose pattern size is, respectively, the number of input and output neurons of the net.

A dataset can be defined from a n-dimensional matrix: The set of patterns is obtained
by displacing a submatrix window over the original matrix. It is possible to specify the
relative displacement between each subpattern, the starting position, the traversal order,
whether the matrix is circullary closed in some dimensions, the default values when the
windows is partially outside the matrix, etc. improving a similar feature found in SNNS.

Other types of datasets can also be defined by combining previous ones. For instance,
an indexed dataset receives a dataset whose patterns are interpreted as indexes of a
second dataset interpreted as a dictionary in order to obtain the set of patterns. This
dataset is very useful to code the input and output values of an ANN which do not need
to be explicitly stored because all datasets use lazy evaluation to compute the desired
patterns only when needed. In this way, the memory usage is practically limited to the
underlying matrices.

Also, the possibility of splitting and joining dataset allows the combination of pat-
terns from different sets and the automatic partition of a big dataset in training, vali-
dation and test datasets. These datasets together with others for selecting, filtering and
combining subpatterns offer a great deal of flexibility in the description of corpora.

4.2 Example of Use of the Application

We present in detail a very simple example for the task of handwritten digit classifica-
tion described in Section 2. First, the image of Figure 1 is loaded in a matrix and later a
dataset containing the 10 × 100 samples of size 16 × 16 pixel values is generated from
it. Later, the matrix [1 0 0 0 0 0 0 0 0 0] is iterated cicularly in order to obtain the
dataset for the associated desired output.

The corresponding training, validation and test input and output datasets are ob-
tained by slicing the former datasets. Although more complex ANN can be described,
for layered ANNs it is possible to give a simple description like “256 inputs 30
logistic 10 linear”.
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samples = matrix.loadImage("digits.png") -- loads the corpus pixel matrix
input_data = dataset.matrix(samples, { -- create a dataset from matrix
patternSize = {16,16}, -- sample size
offset = {0,0}, -- initial window position
numSteps = {100,10}, -- number of steps in each direction
stepSize = {16,16}, -- step size
orderStep = {1,0} -- step direction

})

-- matrix used for computing the output values
m2 = matrix(10,{1,0,0,0,0,0,0,0,0,0})
output_data = dataset.matrix(m2, {
patternSize = {10},
offset = {0},
numSteps = {input_data:numPatterns()},
circular = {true}, -- circular dataset
stepSize = {-1} -- the window moves backwards, "1" moves forwards

})

-- datasets created by slicing the previous input and output data
train_input = dataset.slice(input_data , 1, 600) -- first 60% of data
train_output = dataset.slice(output_data, 1, 600)
validation_input = dataset.slice(input_data ,601, 800) -- next 20% of data
validation_output= dataset.slice(output_data,601, 800)
test_input = dataset.slice(input_data ,801,1000) -- next 20% of data
test_output = dataset.slice(output_data,801,1000)

-- Layered feedforward MLP generation, a general description is also possible
the_net=mlp.generate("256 inputs 30 logistic 10 linear", rnd, -0.7, 0.7)
rnd = random(1234) -- pseudo-random generator object used for shuffling

for i=1,100 do -- Training and validation for 100 cycles,
-- more complex stopping criteria are also possible

mse_train = the_net:train {
learning_rate = 0.2,
momentum = 0.2,
input_dataset = train_input, -- input patterns
output_dataset = train_output, -- desired output patterns
shuffle = rnd -- used in sample shuffling

}
mse_val = the_net:validate {

input_dataset = validation_input, -- input patterns
output_dataset = validation_output -- desired output patterns

}
printf ("Cycle %3d MSE %f %f\n", i, mse_train, mse_val)

end

mse_test = the_net:validate {
input_dataset = test_input, -- input patterns
output_dataset = test_output -- desired output patterns

}
printf ("MSE of the test set: %f\n", mse_test)

5 Conclusions and Future Work

April toolkit is up to 16 times faster than SNNS. In addition, its capacity to train
general feedforward networks does not decrease its efficiency due to the use of data
structures with a great memory locality instead of linked lists (as SNNS). An approxi-
mation algorithm for the NP-Complete consecutive retrieval problem has been designed
in order to mantain this efficiency.
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At the present moment, the following extensions are being considered:

– Pruning algorithms. To include pruning algorithms such as optimal cerebral dam-
age [8] or optimal cerebral surgery [5].

– Recurrent networks. This type of networks has demonstrated to be very useful in
diverse fields, like in Natural Language Processing.

– Graphical interface. Adding a graphical interface could orient the application to-
wards a didactic use.

– Automatization of experiments. To be able to automatically adjust some parame-
ters of the training phase.

– Grid computing. In order to distribute an experiment in different machines, so that
each one trains a network with different topologies or different parameters.

To conclude, we want to emphasize that April includes other utilities for pattern
recognition tasks such as hybrid ANN/HMM training (which uses the proposed BP im-
plementation), finite state automata parsing, voice parametrization, dynamic time warp-
ing alignment, image preprocessing, etc.
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Abstract. Support Vector Machines (SVMs) with few support vectors
are quite desirable, as they have a fast application to new, unseen pat-
terns. In this work we shall study the coefficient structure of the dual
representation of SVMs constructed for nonlinearly separable problems
through kernel perceptron training. We shall relate them with the margin
of their support vectors (SVs) and also with the number of iterations in
which these SVs take part. These considerations will lead to a remove–
and–retrain procedure for building SVMs with a small number of SVs
where both suitably small and large coefficient SVs will be taken out
from the training sample. Besides providing a significant SV reduction,
our method’s computational cost is comparable to that of a single SVM
training.

1 Introduction

It is well known that one of the potential drawbacks of support vector machines
(SVMs) is a large number of support vectors (SVs), as this implies long com-
puting times when an SVM is applied to new patterns not seen before. This
has led to several proposals for controlling the final number of SVs. A natural
approach [4,8] is to limit beforehand the number of SV allowable and maintain
that number during training. However, choosing the right number is not easy
and the test performance of the final classifier may not be good enough. An-
other common approach [9,10] is to “grow” the final SV set, carefully selecting
new SVs to be added to an already trained SVM. This guarantees a small final
number of SVs, although probably after a somewhat involved and costly grow-
ing procedure. Other approaches start from a “full” SV set obtained by SVM
construction and either try to approximate a reduced SV set [2] or incorporate
an SV sparseness constrain to the SVM convex minimization problem [16].

We will explore here an alternative approach, where we start from a fully
trained SVM and progressively try to reduce its SV set by removing appropri-
ately selected SVs and constructing new SVMs with less SVs while also maintain-
ing the accuracy of the final classifier. One clear drawback of any such approach
would be the cost of the several retrainings needed. This makes mandatory the
use, first, of simple training procedures, but also to ensure that successive re-
trainings are significantly less costly than the initial one. We also need a criterion
� All authors have been partially supported by Spain’s TIN 2004–07676.
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to decide which SVs to take out of the final SV set. To deal with these issues
we shall use the Schlesinger–Kozinec (SK) algorithm, a classical method [12]
for perceptron training that constructs a maximal margin linear classifier for
linearly separable samples and that has been recently extended [5] to a kernel
setting and non-linearly separable problems. This requires the introduction of a
slack quantity on the SV margins to allow for patterns not correctly classified.
After briefly reviewing the SK algorithm in section 2, we shall show in section
3 that there are two ways of looking at the coefficients αi of the final SVs that
are relevant to this work. First, it turns out that the αi essentially coincide with
the margin slack variables. More precisely, a small αi is associated with an SV
correctly classified with a large margin. On the other hand, if αi is sufficiently
large, its SV will require a large slack value and, hence, a large negative margin,
and will not be correctly classified. Moreover, many final SVs are a consequence
of the training process, that uses them at some point but later concentrates in
more relevant SVs. We shall argue also that the αi coefficients somehow mea-
sure the number of times their associated SV have appeared during training. In
particular, large αi SVs imply larger training costs.

Our SV reduction procedure takes advantage of the above considerations.
In fact, small αi SVs represent “safe” patterns that could be removed without
much affecting the final classifier performance (the same can also be said of those
sample vectors for which αi = 0). On the other hand, SVs with quite large αi

correspond to hard to classify patterns that, moreover, require longer training
efforts. Thus, we will successively apply a “remove and retrain” SV selection
method, where at each step we will take out from the training sample patterns
with either zero or small αi coefficients and, also, all the large αi SVs that are
not correctly classified and retrain then a new SVM. To decide when to stop
these iterations, we will use the first type of removed SVs as a validation set,
stopping the procedure when the error over this set is no longer zero. As we
shall illustrate in section 4, this will lead to SVMs with a small number of SVs
and good test set performances, at a cost which is comparable to that of the
first perceptron training (we point out that, to begin with, the SK algorithm is
computationally competitive [5] with state of the art SVM training procedures
such as those in [7,11]).

The rest of the paper is organized as follows. In section 2 we will quickly review
SVM construction and the SK algorithm for nonlinearly separable problems with
quadratic penalties, and will analyze the above mentioned interpretation of the
SV coefficients in section 3, that also contains a detailed description of our
proposed remove and retrain procedure. Section 4 illustrates the procedure over
ten datasets and the paper ends with a short discussion section.

2 Kernel Perceptron Training

Assume we have a linearly separable training sample S = {(Xi, yi) : i =
1, . . . , N}, where yi = ±1. We shall work in a homogeneous setting, where we
consider patterns of the form X ′

i = (Xi, 1) and separating hyperplanes defined by
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W ′ = (W, b). Then W ′ ·X ′
i = W ·Xi + b, and we have to solve the minimization

problem:

min
1
2
‖W ′‖2 subject to yiW

′X ′
i ≥ 1. (1)

Those W ′ verifying the constrains in (1) are said to be in canonical form. While
not strictly equivalent to the convex minimization problem that is standard in
SVM construction [13,15], it can be argued that the solution of (1) is a good
approximation of the optimum SVM separating hyperplane, particularly for high
dimension problems. In what follows we shall drop the prime superscript, writing
from now on W and X .

Problem (1) is usually rewritten in dual form and then solved by either rel-
atively ad–hoc quadratic programming methods or, simply, by gradient ascent
in its dual form. Alternatively, an equivalent way [1] of obtaining an optimal
solution of (1) is to solve the following problem

W ∗ = arg min{‖W‖2 : W ∈ C(S̃)}, (2)

where S̃ = {yiXi : Xi ∈ S} and C(A) denotes the convex hull of a set A,
that is, the set of all linear combinations

∑
αiZi with Zi ∈ A and

∑
αi = 1.

Moreover, the maximum margin mo verifies mo = ‖W ∗‖. Notice that W ∗ is
not in canonical form, as we have yiW

∗ · Xi ≥ mo = ‖W ∗‖. The canonical
vector is then W o = W ∗/‖W ∗‖. The Schlesinger–Kozinec (SK) algorithm [12] is
a classical method of solving (2) using an update rule very close to the classical
delta rule of Frank Rosenblatt’s perceptrons. More precisely, at each step the
current weight Wt−1 is updated as

Wt = (1 − λt)Wt−1 + λtyl(t)Xl(t) (3)

where the convex factor λt is given by λt = arg minλ{‖(1 − λ)Wt−1 + λXl(t)‖},
and the updating pattern Xl(t) at step t is chosen as

l = arg mini{yiWt · Xi}; (4)

that is, Xl(t) is the pattern that determines the margin of Wt−1. Notice that
these updates keep the successive Wt in C(S̃) and also that ‖Wt‖ ≤ ‖Wt−1‖.
To provide a stopping criterion for the iterations in (3), observe that for any
W ∈ C(S̃), it follows from (2) that ‖W‖ ≥ ‖W ∗‖ = mo ≥ m(W ), where
m(W ) denotes the margin of W . Defining g(W ) = ‖W‖ − m(W ), we have
0 = g(W ∗) ≤ g(W ) for all W ∈ C(S̃. We shall use g as a criterion function
to stop perceptron training when g(Wt) becomes smaller than a specified small
value. The choice of λt guarantees that ‖Wt‖ ≤ ‖Wt−1‖. Moreover, we have
yl(t)Wt · Xl(t) = yl(t)Wt−1 · Xl(t) + λt

(
‖Xl(t)‖2 − yl(t)Wt−1 · Xl(t)

)
. Since it can

be shown that if λt < 1,

‖Xl(t)‖2 − ylWt−1 · Xl = (1 − λt)‖Wt−1 − ylXl‖2 > 0,

it follows that yl(t)Wt · Xl(t) ≥ yl(t)Wt−1 · Xl(t); that is, Wt has a larger margin
at Xl(t). Therefore, we may expect that g(Wt) ≤ g(Wt−1) and, indeed, it can be
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verified experimentally that g(Wt) decreases. Thus, the SK algorithm achieves
a maximal margin separating hyperplane. In fact, the same is true of standard
perceptrons trained under Rosenblatt’s delta rule. Notice that the delta rule
builds a weight vector W ′

t of the form W ′
t =

∑t
1 yjXj , which can be brought

into C(S̃) by setting Wt = W ′
t/t. A simple consequence of this is the update

formula
Wt = (1 − 1

t
)Wt−1 +

1
t
yl(t)Xl(t), (5)

which means that using in (3) the values 1/t instead of λt results in a convex
form of the delta rule. It can also be seen experimentally [6] that the resulting
Wt also converge to a maximal margin weight vector.

The extension of the SK algorithm (and of the convex delta rule) to a kernel
setting is fairly simple. First, writing Wt =

∑
j αt

jyjXj , it follows from (3) that
αt

j = (1 − λt)αt−1
j + λtδj,l(t). Moreover the selection of the minimum margin

vector Xl(t) and the computation of λt require the update of the quantities
‖Wt‖2 and Dt

j = yjWt · Xj, j = 1, . . . , N . For this we have

‖Wt‖2 = (1 − λt)2‖Wt−1‖2 + 2(1 − λt)λtDt−1
l + (λt)2Xl · Xl),

Dt
j = (1 − λt)Dt−1

j + λtylyjXl · Xj , (6)

and all of them can be expressed in terms of dot products. Thus, if X = φ(x)
is the non–linear transformation associated by Mercer’s theorem to a positive
definite kernel, we can replace the above dot products Xl · Xj by their kernel
counterparts K(xl, xj), which allows us to work on the extended space vectors
Xj from their lower dimensional sample counterparts xj . Moreover, it follows
from (6) that the cost of an update is O(N) kernel operations and that the cost
of a T iteration kernel perceptron training is O(T × N) such operations.

Turning our attention to non–separable problems, the standard approach in
SVM training is to relax the margin restrictions by introducing slack variables
ξi for which we allow yiW · Xi ≥ 1 − ξi, and to add a penalty C

∑
ξk
i to the

criterion function in (1). While k = 1 is usually taken, we shall work here with a
quadratic penalty choosing k = 2, the reason being that it is then straightforward
to extend the point of view in (2) to the non–linear setting. More precisely, we
shall consider extended weights W̃ and patterns X̃i defined as

W̃ =
(
W,

√
Cξ1, . . . ,

√
CξN

)
; X̃i =

(
Xi, 0, . . . ,

yi√
C

, . . . , 0
)

.

It is then easy to check that the quadratic penalty criterion function J(W, ξ) =
‖W‖2 + C

∑
ξ2
i verifies J(W, ξ) = ‖W̃‖2; moreover, the slack margin conditions

yiW · Xi ≥ 1 − ξi are equivalent to 1 ≤ yiW · Xi + ξi = yiW̃ · X̃i. This allows
the direct application of (2) to the extended weights and vectors. In particular,
we can write the optimum W̃ ∗ as W̃ ∗ =

∑
α∗

i yiX̃i with
∑

α∗
i = 1. This yields

the extended vector equalities

(W ∗,
√

Cξ∗1 , . . . ,
√

Cξ∗N ) = W̃ ∗ =
∑

α∗
i yiX̃i = (W ∗, α∗

1/
√

C, . . . , α∗
N/

√
C),
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which imply that
√

Cξ∗i = α∗
i /

√
C, that is, α∗

i = Cξ∗i . Here again we can write
W̃ ∗ in canonical form as W̃ o = W̃ ∗/‖W ∗‖2 and the margin slack values are then
ξo
i = ξ∗i /‖W̃ ∗‖2 = α∗

i /C‖W̃ ∗‖2. The previous kernel version of the SK method
can be extended to this setting simply by working with the kernel K ′(x, x′) =
K(x, x′) + 1/C. We examine next how to exploit these facts for the removal of
support vectors of kernel perceptrons.

3 Support Vector Removal and Retraining

We start by observing two possible interpretations of the final α∗
i coefficients. Re-

call that after putting the optimal W̃ ∗ in its canonical form W o, the slack margin of
a SV Xi is ξ∗i = α∗

i /C‖W̃ ∗‖2. Let us write Λ∗ = C‖W̃ ∗‖2 = C‖W ∗‖2 +
∑

(α∗
i )

2.
We then have for any SV Xi

yiW
o · Xi =

yi

‖W̃ ∗‖2

(
W̃ ∗ · Xi − ξ∗i

)
≥ 1 − ξ∗i

‖W̃ ∗‖2
= 1 − α∗

i

C‖W̃ ∗‖2
= 1 − α∗

i

Λ∗ .

Therefore, small α∗
i patterns can be considered “safe”, as they have positive

margins close to 1; moreover, they have little weight influence on the optimal
W ∗. Thus, their removal from the training set should not greatly affect the final
classifier obtained. This reduction in sample patterns should make subsequent
trainings less expensive, as training costs depend directly on the sample size.
On the other hand, large α∗

i patterns also require large slacks; in fact, their
classification will be wrong if α∗

i > Λ∗.
We can look to the α∗

i from another point of view. We have mentioned that the
SK and the convex delta rule updates lead to the same final SVs and to essentially
the same coefficients for them. For the convex delta rule, the coefficient of a given
SV represents the number of times it has been selected as the updating vector.
Notice that if T training iterations have been performed and each SV Xi has
appeared Ti times as the updating pattern, the final convex separating vector
obtained through the convex delta rule has the form

W ∗ =
1
T

T∑

1

ytXt =
N∑

1

Ti

T
yiXi �

∑
α∗

i yiXi;

thus, a large α∗
i means that the corresponding SV intervenes in a sizeable part of

the training iterations. Hence, while these SV have a considerable weight in W ∗,
they also take up a large part of SVM training. Moreover, since they will not
be correctly classified, it is conceivable that a classifier constructed after their
removal could still have a good performance.

Based on the above considerations, we will apply a remove and retrain proce-
dure that iteratively constructs a series of SVM classifiers Ct. More precisely, after
a new reduced sample SVM has been trained, we will remove all patterns with
zero coefficients or such that α∗

i > Λ∗. We will also remove small coefficient SVs,
namely those Xi such that α∗

i ≤ αMin + ρ(Λ∗ − αMin), where αMin = min{αi};
we shall take ρ = 0.02 in our experiments. To decide when to stop, we will use
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at step t a “validation” subset Vt initially empty and that will grow at each step
with the addition of the zero or small coefficient patterns that we remove. When
the error of Ct over Vt is not 0, the procedure stops and outputs the previous
classifier Ct−1. In order to achieve faster trainings, each new Ct will be built
starting from initial αi values close of those defining Ct−1. Assume that we want
to remove a certain Xl; we have to change its weight α∗

l to 0 and to reassign the
other weights as α′

i = α∗
i /(1 −α∗

l ) so that we still have a convex combination. If
we choose η = αr

l /(αr
l − 1), We can write this as an update

α′
j = (1 − η)α∗

j + ηδj,l.

Notice that the α′
j updates have again the form used in the SK algorithm; as

a consequence, D′
j and ‖W ′‖2 can also be updated according to (6). Therefore,

the cost of these margin and norm updates is of O(N) kernel operations for each
pattern to be removed. This is much smaller than the cost of the overall training;
moreover, as we shall illustrate numerically, it makes the second and successive
retrainings much faster than the first one.

4 Numerical Experiments

In this section we shall explore the evolution of the previous support vector
removal procedure over 10 datasets (see table 1) taken from the UCI prob-
lem database [14] or from the LIBSVM repository [3]. Some of these data sets,
namely, those of the heart disease, Wisconsin breast cancer or thyroid disease,
originally contain data from more than two classes. We have reduced them to
2–class problems considering their patterns as coming from either healthy or sick
patients. The fourclass problem has originally 4 classes; we use the 2 class version
in [3]. We shall work with the gaussian kernel k(x, x′) = exp

(
−‖x − x′‖2/σ2

)
,

and normalize the original patterns to componentwise 0 mean and 1 variance.
We shall also use common values σ2 = 25 and C = 20 for all datasets; the test
accuracies reported here are comparable with those achieved by other methods.

For each dataset we have performed a 10 × 10 cross validation procedure,
dividing 10 times the full datasets randomly into 10 subsets with approximately
equal sizes and have used 9 of these subsets for training and the remaining
one for test. Table 1 gives the original training sample size, the number of SVs
obtained after the first training pass and the final SV number, which is clearly
smaller in all cases. Our procedure achieves quite large SV reductions for the
fourclass problem (94.2%), Ripley (93.5%), Wisconsin breast cancer (86.7%)
and Pima (85.8%). The smallest reduction is that of the German credit problem
(15.4%); in all other cases the SV set reduction is at least of a 36% of the SVs
obtained after just one training. On the other hand, the test set accuracies after
the initial and final trainings remain essentially the same. Table 2 shows them
for all datasets together with their standard deviations. The table also shows
the significance P (t) of a Student’s t–test for different means; while the test’s
hypotheses may not hold, the significances are quite large in all cases except in
the Ripley dataset, for which a null hypothesis of equal test accuracies before
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Table 1. Starting sample size, SV # after the initial and final trainings and percentage
of SV reduction

Dataset sample s. # SV Ini. # SV Fin. % SV red.

Wisc. Br. C. 629 120.6 ± 10.2 16.1 ± 3.0 86.7

Heart disease 240 165.2 ± 6.4 69.1 ± 16.1 58.1

Ionosphere 284 143.0 ± 5.1 74.5 ± 8.3 47.9

Pima 622 554.5 ± 7.9 78.9 ± 35.9 85.8

Ripley 1125 576.0 ± 11.5 37.5 ± 6.4 93.5

Sonar 168 136.7 ± 2.5 81.9 ± 9.2 40.1

Thyroid 6480 1173.5 ± 42.7 744.9 ± 244.6 36.5

Austral. cred. 690 351.3 ± 11.4 134.3 ± 61.6 61.8

German cred. 1000 652.2 ± 8.3 551.5 ± 119.3 15.4

Fourclass 862 602.8 ± 8.4 34.8 ± 7.6 94.2

and after SV removal should be rejected. On the other hand, equality of means
cannot be rejected for the other datasets after SV removal. Even in the Ripley
problem, the average accuracy only falls slightly, passing from an average of
89.62% to an 88.53%.

The extra effort over a single training pass is also shown in table 2. In all
retrainings we have iterated the SK convex update procedure until the criterion
function g(W ) is < 0.001. The table’s sixth column gives for the entire data sets
a comparison between the number of kernel operations of a single training pass
and of the full remove and retrain procedure. As it can be seen, the extra work
is quite modest for all problems, the largest number of extra kernel operations
being made in the heart disease and Pima problems, where the SV removal and
retraining costs are about 75% and 67% more than the first full sample training.
This extra effort is essentially below 50% for all the other problems; we recall

Table 2. Test accuracies after the first training (Ini.) and after SV removal (Fin.)
and probability values of equal means t-test. Values shown represent 10 × 10 cross
validation averages and standard deviations. Columns 5 and 6 show the average number
of retrainings and the training time increases for full dataset samples.

Dataset Acc. Ini. Acc. Fin. P (t) # iters. over. cost

WBCancer 96.88 ± 1.85 96.65 ± 2.03 0.40 10.8 ± 2.1 115.17

Heartdis 80.34 ± 7.34 81.97 ± 6.70 0.11 10.8 ± 3.6 175.47

Ionosphere 91.50 ± 4.03 90.94 ± 3.92 0.32 5.9 ± 1.1 129.72

Pima 77.11 ± 4.17 76.83 ± 4.09 0.64 16.4 ± 4.2 167.10

Ripley 89.62 ± 3.00 88.53 ± 2.91 0.01 32.0 ± 3.6 151.50

Sonar 86.95 ± 6.55 87.35 ± 6.65 0.67 11.2 ± 2.1 137.27

Thyroid 97.79 ± 0.92 97.63 ± 0.88 0.22 3.5 ± 0.8 119.22

Austral. cred. 86.18 ± 2.82 85.82 ± 3.16 0.41 6.6 ± 1.9 141.50

German cred. 74.31 ± 3.72 74.28 ± 3.68 0.95 4.0 ± 2.7 149.52

Fourclass 79.18 ± 4.41 79.33 ± 3.50 0.79 27.2 ± 4.6 152.90
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[5] that the cost of the SK method is competitive with that of other state of
the art SVM construction algorithms. As mentioned above, key reasons for this
small extra complexity are the removal of those SVs that make training costlier
and the restart of subsequent trainings from α values close to the optimum ones
obtained in the previous training.

5 Conclusions

A common problem of kernel classifier construction methods is the high number
of final support vectors they must use, which results in costly classification of new
patterns. This affects support vector machines as well as kernel perceptrons. In
this paper we have shown for quadratic penalties in non separable problems how
the coefficients of a kernel perceptron are related to the SV margins and also to
the impact of a given SV during training. In turn, this coefficient interpretation
suggests which SVs to remove iteratively from an already trained classifier so
that successive trainings are faster and the final classifiers have a good test
performance. Although very simple, the procedure may lead to quite large SV
reduction while only requiring a modest extra effort. There are several points
of further research. For instance, linear penalties are likely to result in fewer
SVs than quadratic ones. Thus, a question of interest is to adapt the present
analysis to these linear penalties. On the other hand, it is clear, particularly for
large sample problems, that it is preferable to maintain a reduced number of SVs
at all times, to which the coefficient interpretations given here may be applied.
These and other related questions are presently being considered.
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Abstract. Existing algorithms for learning Bayesian network require a
lot of computation on high dimensional itemsets which affects reliability,
robustness and accuracy of these algorithms and takes up a large amount
of time. To address the above problem, we propose a new Bayesian
network learning algorithm MRMRG, Max Relevance-Min Redundancy
Greedy. MRMRG algorithm is a variant of K2 which is a well-known BN
learning algorithm. We also analyze the time complexity of MRMRG.
The experimental results show that MRMRG algorithm has much better
efficiency. It is also shown that MRMRG algorithm has better accuracy
than most of existing learning algorithms for limited sample datasets.

Keywords: Bayesian network; Max Relevance; Min Redundancy;
Greedy search.

1 Introduction

There are many problems in fields as diverse as medical diagnosis, weather fore-
cast, fault diagnosis, where there is a need for models that allow us to reason
under uncertainty and take decisions, even when our knowledge is limited. To
model this type of problems, AI community has proposed Bayesian network
which allows us to reason under uncertainty.[1] During the last two decades,
many Bayesian network learning algorithms have been proposed. But, the re-
cent explosion of high dimensional data sets in the biomedical realm and other
domains has induced a serious challenge to these BN learning algorithms. The
existing algorithms must face higher dimensional and limited sample datasets.

In general, BN learning algorithms take one of two approaches: constraint-based
methods [2], [3] and search & score methods [4], [5], [6]. The constraint-based ap-
proach estimates from the data whether certain conditional independencies hold
between variables. Typically, this estimation is performed using statistical or in-
formation theoretical measures. The search & score approach attempts to find a
graph that maximizes the selected score. Score function is usually defined as a
measure of fitness between the graph and the data. These algorithms use a score
function in combination with a search method in order to measure the goodness
of each explored structure from the space of feasible solutions. During the explo-
ration process, the score function is applied in order to evaluate the fitness of each
candidate structure to the data.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 346–356, 2007.
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Although encouraging results have been reported, the two approaches both
suffer some difficulties for high dimensional data. With the constraint-based
approach, a statistical or information theoretical measure may become unreliable
for high dimensional and limited sample datasets. If the measure would return
incorrect independence statements, errors could arise in graphical structure. The
search & score approach suffers from the exponential search space. The search
space is so vast for high dimension that the category algorithms have to use
heuristic methods to find approximately optimal Bayesian network.

The K2 algorithm [3] is a typical search & score method. Although it has
already been presented for 15 years, K2 is still one of the most effective BN
learning algorithms. Moreover, K2 is often used by other BN learning algorithms
in order to improve performance. So, it is practically valuable to improve K2
algorithm.

In this paper, we propose MRMRG algorithm that improve K2 algorithm for
high dimensional and limited sample datasets. MRMRG imports Max Relevance
- Min Redundancy feature selection technology as an efficient score function
to obtain better reliability, robustness and efficiency, even accuracy. MRMRG
proposes Local Bayesian Increment function to terminate program in order to
avoid overfitting and improve accuracy.

This paper is organized as follows. Section 2 provides a brief review of some
basic concepts and theorems. Section 3 describes K2 algorithm. In Section 4,
we propose Local Bayesian Increment function. Section 5 represents the details
of MRMRG algorithm. At the same time, we also analyze the correctness, ro-
bustness and time complexity of MRMRG. Section 6 shows an experimental
comparison among K2 and MRMRG. Finally, we conclude and present future
work.

2 Concepts and Theorems

2.1 Bayesian Network

A Bayesian network is defined as a pair B = {G, Θ}, where G is a directed acyclic
graph G = {V (G), A(G)}, with a set of nodes V (G) = {V1, . . . , Vn}, representing
a set of stochastic variables and a set of arcs A(G) ⊆ V (G)×V (G), representing
independent relationships that exist between variables. Θ represents the set of
parameters that quantifies the network. It contains a parameter θ = P (xi | πi)
for each possible value xi of Xi, and φi[j] of πi. Here πi denotes the set of parents
of Xi in G and πi is a particular instantiation of the parents.

The network structure G encodes all assertions of conditional independence
among variables. The joint probability distribution of any particular instanti-
ation of all n variables in the BN is given as P (x1, x2, . . . , xn) =

∏n
i=1 θxi|πi

,
where xi represents the instantiation of the variable Xi and πi represents the
instantiation of parents of Xi.[7]
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2.2 Mutual Information and Relative Entropy

Lemma 1 (Mutual Information and Relative Entropy)
The relative entropy DKL(P‖Q) between the true distribution P and any BN
model distribution Q is a monotonically decreasing function of the sum of mutual
information between every node Xi and it’s parents PaQ(Xi) in distribution Q.

n∑

i=1,PaQ(Xi) �=φ

MI(Xi, PaQ(Xi)),where (1)

MI(Xi, PaQ(Xi))=
∑

Xi,PaQ(Xi) �=φ

P (Xi, PaQ(Xi)) log2

(
P (Xi, PaQ(Xi))

P (Xi)P (PaQ(Xi))

)
.

Note that proof of Lemma 1 refer to Appendix in [8].

2.3 MRMR and Mutual Information

In feature selection, Maximum Mutual Information (MMI) [9] is the method
which is to find a feature set Sm with m features {xi}, which jointly have the
largest mutual information on the target class c.

In feature selection, Max Relevance-Min Redundancy (MRMR) [9] is that
suppose we already have the feature set with m−1 features Sm−1, if we want to
select one feature from the set {X − Sm−1}, we can select the feature xm that
maximizes the following formula:

xm = arg
xj∈X−Sm−1

max

⎡

⎣I(xj ; c) − 1
m − 1

∑

xi∈Sm−1

I(xj ; xi)

⎤

⎦ . (2)

Lemma 2 (MRMR and Maximum Mutual Information)
If one feature is added at one time, MRMR is equivalent to MMI.

Note that proof of Lemma 2 refer to Section 2.3 in [9].

3 K2 Algorithm

Given a complete dataset D, K2 searches for the Bayesian network G∗ with
maximal P (G, D).

Let D be a dataset of m cases, where each case contains a value for each
variable in V. D is sufficiently large. Let V be a set of n discrete variables,
where xi in V has ri possible values (vi1, vi2, . . . , viri). Let G denote a Bayesian
network structure containing just the variables in V. Each variable xi in G has
the parents set πi. Let φi[j] denote the jth unique instantiation of πi relative
to D. Suppose there are qi such unique instantiation of πi. Define Nijkto be
the number of cases in D in which variable xi is instantiated as vik and πi is

instantiated as φi[j]. Let Nij =
ri∑

k=1

Nijk.
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Given a Bayesian network model, cases occur independently. Bayesian network
prior distribution is uniform. It follows that

P (G, D) = p(G)
n∏

i=1

qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk! . (3)

Given a Bayesian network model, cases occur independently. Bayesian network
prior distribution is uniform. It follows that

g(i, πi) =
qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk! . (4)

It starts by assuming that a node has no parents, and then in every step
it adds incrementally the node which can most increase the probability of the
resulting BN, to the parents set. K2 stops adding nodes to parents set when the
addition cannot increase the probability of the BN given the data.

K2 algorithm
Input: A set of n nodes V = {x1, x2, . . . , xn}, an ordering on the nodes, an

upper bound umax on the number of parents a node may have, Preidenotes the
set of nodes that precede xi, and a dataset D = {d1, . . . , dm} containing m cases.
The dataset D is sufficiently large.

Output: For each node xi, a printout of the parents set πi of the node.
Procedure:
for i=1 to n do
begin

πi = NULL;
Pold = g(i, πi);
OK=TRUE;
while OK and (| πi |< umax) do
begin

y = arg
xj∈Prei−πi

max [g(i, πi ∪ xj)] ;

Pnew = g(i, πi ∪ xj);
if Pnew > Pold then
begin

Pold = Pnew;
πi = πi ∪ {y};

else
OK=FALSE;

end if
end while
Output(xi, πi);

end for
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4 Local Bayesian Increment Function

Let X and Y be two discrete variables, Z be a set of discrete variables, and z be
an instantiation for Z. X,Y/∈Z.

According to Moore’s recommendation [10] about chi-squared test, we assume
that the dataset D satisfying at least one of the following two conditions is
”sufficiently large” for {X∪Y}:

1. The number of cases of the dataset D is much larger than the number of the
values of {X∪Y}, such as ‖D‖ > 5 × (‖X‖ × ‖Y‖);

2. All cells of {X∪Y} in the contingency table have expected value greater than
1, and at least 80% of the cells in the contingency table about {X∪Y} have
expected value greater than 5.

According to Moore’s recommendation [10] about chi-squared test, we assume
that the sub-dataset DZ=z satisfying at least one of the following two conditions
is ”locally sufficiently large” for {X∪Y} given Z=z :

1. The number of cases of the sub-dataset DZ=z is much larger than the number
of the values of {X∪Y}, such as ‖DZ=z‖ > 5 × (‖X‖ × ‖Y‖);

2. All cells of {X∪Y} in the contingency table conditioned on Z=z have ex-
pected value greater than 1, and at least 80% of the cells in the contingency
table about {X∪Y} on Z=z have expected value greater than 5.

Let D be a dataset of m cases, where each case contains a value for each
variable. Let V be a set of n discrete variables, where xi in V has ri possible
values (vi1, vi2, . . . , viri). BP and BS denote Bayesian network structures con-
taining just the variables in V. BS exactly has one more edge y → xi than BP

has. Variable xi in BP has the parents set πi. Variable xi in BS has the parents
set πi ∪ y. Let φi[j] denote the unique instantiation of πi relative to D. Suppose
there are qi such unique instantiations of πi. Define Nijkto be the number of
cases in D in which variable xi is instantiated as vijk and πi is instantiated as
φi[j].

Let Nijk =
∑
y

Ni,{j∪y},k, Nij =
ri∑

k=1

Nijk.

θBP

ijk denotes P (xi =vik | πi = φi[j]), θBP

ijk > 0,
ri∑

k=1

θBP

ijk = 1, θBP

ij = ∪qi

j=1{θBP

ijk },

θBP

i = ∪qi

j=1{θBP

ij }, θBP = ∪n
i=1{θBP

i }. θ̂BP

ijk , θ̂BP

ij , θ̂BP

i , θ̂BP denote maximum like-
lihoods of θBP

ijk , θBP

ij , θBP

i , θBP .
Given a Bayesian network model, cases occur independently. Bayesian net-

work prior distribution is uniform. Given Bayesian network BS , there exist two
properties: Parameter Independence and Parameter Modularity. [5]

In order to control the complexity of BN model, we apply BIC (Bayesian
Information Criterion) approximation formula [11] :

BIC(BS) =
[
log

(
L

(
Θ̂

))
− 1

2
log(m)dim

(
Θ̂

)]
≈ log(P (D | BS)) (5)
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to log (P (BS , D)/P (BP , D)). BIC adds the penalty of BN structure complex-
ity to Local Bayesian Increment function in order to avoid overfitting.

For high dimensional and limited sample datasets, with the dimension increase
of current parents set πi, the maximum likelihood estimations Θ̂ of parameters
Θ in Bayesian network will be more and more unreliable because the dataset
D does not satisfy either condition of ”sufficiently large” for πi. But we find
that for some specific instantiations of πi, the sub-datasets Dπi=φi[j] are ”locally
sufficiently large” for {X∪Y} given πi = φi[j].

Definition 1 (Local Bayesian Increment Function)

Lbi(y, i, πi)
= log (P (BS , D)/P (BP , D))
= log(P (D | BS) × P (BS)) − log(P (D | BP ) × P (BP ))
≈ BIC(BS) − BIC(BP )

=

⎛

⎝
log

(
L

(
Θ̂BS

))

log
(
L

(
Θ̂BP

))

⎞

⎠ − 1
2

log(m)
[
dim

(
Θ̂BS

)
− dim

(
Θ̂BP

)]
(6)

log
(
L

(
Θ̂BS

))
− log

(
L

(
Θ̂BP

))

= log
(
P

(
D | ΘBS

))
− log

(
P

(
D | ΘBP

))

=
m∑

l=1

(
log

(
P

(
dl | ΘBS

))
− log

(
P

(
dl | ΘBP

)))

=
n∑

i=1

(
log

(
P

(
xl

i | Θ̂BS

i , πl
i

))
− log

(
P

(
xl

i | Θ̂BP

i , πl
i

)))
(7)

According to the definition of overfitting(the likelihood of the training dataset
is larger with the overfitting), we assume that the log-likelihood of xl does not
change for dl ∈ Dπi=φi[∗] in the sub-datasets Dπi=φi[∗] which are not ”locally
sufficiently large(lsl)” for {X∪Y},

log
(
P

(
xl | Θ̂BS , πl ∪ y

))
= log

(
P

(
xl | Θ̂BP , πl

))
. (8)

According to (7) and (8), we infer the following results:

log
(
L

(
Θ̂BS

))
− log

(
L

(
Θ̂BP

))

=
∑

j

ri∑

k=1

∑

y

Ni,{y∪j},k log
(

Ni,{y∪j},kNij

Ni,{y∪j}Nijk

)
, for j, Dπi=φi[j] is ”locally

sufficiently large”

=
∑

j

ri∑

k=1

∑

y

N × Ij(X,Y), for j, Dπi=φi[j] is ”locally sufficiently large” (9)
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dim
(
Θ̂BS

)
− dim

(
Θ̂BP

)
= (ry − 1)(ri − 1)qi (10)

Lbi(y, i, πi)

= log
(

P (BS , D

P (BP , D)

)

=
∑

j

ri∑

k=1

∑

y

N × Ij(X,Y) − 1
2
(ry − 1)(ri − 1)qi log(m),

for j, Dπi=φi[j] is ”locally sufficiently large”. (11)

Note: Ij(X,Y) is the mutual information between variable X and variable Y
in the sub-dataset Dπi=φi[j].

5 MRMRG Algorithm

In this section, we discuss MRMRG algorithm, Max Relevance-Min Redundancy
Greedy algorithm. For high dimensional and limited sample datasets, MRMRG
algorithm improves K2 in two ways.

Firstly, for high dimensional dataset, the computation of g(i, πi) has less and
less reliability and robustness with the dimension increase of πi, so that formula

y = arg
xj∈Prei−πi

max[g(i, πi ∪ xj)]

cannot accurately obtain node y which has the maximal mutual information
increment between node i and πi ∪ y in K2 algorithm. According to Lemma 2,
MRMRG algorithm replaces

y = arg
xj∈Prei−πi

max[g(i, πi ∪ xj)]

by

y = arg
xj∈Prei−πi

max

[
I(xi, xj) − 1

| πi |
∑

x∈πi

I(x, xj)

]
.

MRMRG reduces the dimension of the computation by 2 dimension. Therefore,
MRMRG algorithm greatly improves reliability and robustness of previous BN
learning algorithms in high dimensional and limited sample datasets.

Secondly, When the dataset D is ”sufficiently large” for {X∪Y∪πi}, MRMRG
algorithm uses Local Bayesian Increment function to control the complexity
of BN and to avoid overfitting. When dataset D is not ”sufficiently large” for
{X∪Y∪πi}, but there exist sub-datasets Dπi=φi[j] are ”locally sufficiently large”
for {X∪Y} given πi = φi[j], MRMRG algorithm can apply Local Bayesian In-
crement function to improve accuracy and avoid overfitting. The technique also
makes it unnecessary to set the maximum parents number umax of a node.
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5.1 MRMRG Algorithm

Input: A set of n nodes , an ordering on the nodes, the mutual information
between any two nodes is saved in 2-dimension array MI(n, n), prei denotes the
set of nodes that precede xi, the parents set of node xi, a dataset containing m
cases.

Output: For each node xi, a printout of the parents set of the node.
Assume to satisfy all conditions and assumptions in section 4.
Procedure:
* First Part *

/* get mutual information between any two nodes */
initialize MI(n, n) to 0;
for i=1 to n do

for j=i+1 to n do
begin

MI[i, j] = MI[j, i] = I(xi, xj);
end for

end for
* Second Part *

/* obtain a set of parents of each node, and output results */
for i=1 to n do
begin

πi=NULL;
OK=TRUE;
while OK do
begin

y = arg
xj∈Prei−πi

max
[
I(xi, xj) − 1

|πi|
∑

x∈πi

I(x, xj)
]
;

if Lbi(y, i, πi) > 0 then
πi = πi ∪ {y};

else
OK=FALSE;

end if
end while
Output(xi, πi);

end for

MRMRG algorithm has two parts:
The first part includes the computation of mutual information between any

two nodes.
In the second part, MRMRG algorithm initializes the parents set of given

node to NULL, and then add one by one the node, which can get the maximal
increment of mutual information, to the parents set, until the computation result
of Local Bayesian Increment function is no more than 0. Repeating the above
steps for every node, we can obtain an approximately optimal Bayesian network.
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5.2 The Time Complexity of MRMRG

The complexity of first part of MRMRG is O(n2).
The second part of MRMRG: The complexity of computing

y = arg
xj∈Prei−πi

max

[
I(xi, xj) − 1

| πi |
∑

x∈πi

I(x, xj)

]

is O(n). The complexity of computing Lbi(y, i, πi) is O(mnr) (Note: Let r =
max(ri)i = 1, . . . , n). The other steps in the while statement require O(1) time.
The while statement loops at most O(n) times, each time it is entered. The for
statement loops n times. In the worst case, the complexity of second part in
MRMRG is (O(n)+O(mnr))*O(n)*n=O(mn3r).

The overall time complexity of MRMRG is O(n2)+O(mn3r)=O(mn3r) at
worst. On the other hand, the worst-case time complexity of K2 is O(mn4r).

6 Experimental Results

We implemented MRMRG algorithm, K2 algorithm, TPDA algorithm and pre-
sented the experimental comparison results of the three implementations.

Tests were run on a PC with Pentium4 1.5GHz and 1GB RAM. The operating
system was Windows 2000. The program was developed under Matlab 7.0. 3
Bayesian networks were used. Table 1 shows the networks characteristics. From
each of the networks we randomly sampled 3 datasets with 500, 2000, 10000
training cases each.

Table 1. Bayesian networks

BNs Vars Num Arcs Num Max In/Out Degree Domain Range

Insur 27 52 3/7 2-5
Alarm 37 46 4/5 2-4
Munin 189 282 3/15 1-21

6.1 Comparison of Runtime Among Algorithms

A summary of the time results of the execution of all three algorithms is in
Table 2. We normalized the times reported by dividing by the corresponding
running time of MRMRG on the same datasets and reported the averages over
sample sizes. Thus, a normalized running time of greater than 1 implies a slower
algorithm than MRMRG on the same learning task. A normalized running time
of lower than 1 implies a faster algorithm than MRMRG.

From the results, we can see that MRMRG has better performance than other
two algorithms K2 and TPDA. For small sample sizes (500, 2000), MRMRG
runs several times faster than K2 and TPDA. For larger sample sizes (10000),
MRMRG performs nearly one magnitude faster than K2.
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Table 2. Normalized Runtime of Algorithms

Size MRMRG K2 TPDA

500 1.0 1.58 3.79
2000 1.0 2.39 3.26
10000 1.0 6.98 2.18

6.2 Comparison of Accuracy Among Algorithms

We compared the accuracy of bayesian networks learned by three algorithms ac-
cording to Bayesian score of every learned Bayesian netowrk. Table 3,4,5 reports
the Bayesian scores(BDeu).

Table 3. Bayesian Score BDeu(Insur)

Size MRMRG K2 TPDA

500 -19.0322 -19.5833 -28.7857
2000 -18.0233 -18.2722 -24.7111
10000 -17.8519 -17.8498 -17.8571

Table 4. Bayesian Score BDeu(Alarm)

Size MRMRG K2 TPDA

500 -13.8577 -13.9500 -18.0973
2000 -13.1732 -13.3824 -14.5286
10000 -12.9641 -12.9644 -12.9640

Table 5. Bayesian Score BDeu(Munin)

Size MRMRG K2 TPDA

500 -62.4827 -63.2500 -125.6250
2000 -61.1359 -61.3175 -143.4762
10000 -59.8601 -59.8576 -110.3646

From the results, we can see that MRMRG can learn more accurately than
K2 for limited datasets relative to the learned Bayesian network, such as In-
sur(500,2000), Alarm(500,2000), Munin(500,2000). For sufficiently large datasets
for K2 algorithm and MRMRG algorithm, the accuracy of MRMRG and K2 is
almost same, such as Insur(10000), Alarm(10000), Munin(10000).
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7 Conclusion

Accuracy, reliability, robustness and efficiency are main indices in evaluating al-
gorithms for learning Bayesian network. This paper proposes MRMRG algorithm
which applies Max Relevance-Min Redundancy technology, Local Bayesian In-
crement function. This algorithm greatly reduces the number of high dimensional
computations and improves scalability of learning. From experimental results,
MRMRG has better performance on reliability, robustness and efficiency. More-
over, for high dimensional and limited sample datasets, MRMRG also has better
accuracy than most of existing algorithms.
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On Affect and Self-adaptation: Potential

Benefits of Valence-Controlled Action-Selection
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Abstract. Psychological studies have shown that emotion and affect in-
fluence learning. We employ these findings in a machine-learning meta-
parameter context, and dynamically couple an adaptive agent’s artificial
affect to its action-selection mechanism (Boltzmann β). The agent’s per-
formance on two important learning problems is measured. The first con-
sists of learning to cope with two alternating goals. The second consists
of learning to prefer a later larger reward (global optimum) for an ear-
lier smaller one (local optimum). Results show that, compared to several
control conditions, coupling positive affect to exploitation and negative
affect to exploration has several important benefits. In the alternating-
goal task, it significantly reduces the agent’s goal-switch search peak.
The agent finds its new goal faster. In the second task, artificial affect
facilitates convergence to a global instead of a local optimum, while per-
mitting to exploit that local optimum. We conclude that affect-controlled
action-selection has adaptation benefits.

1 Introduction

Affect influences thought and behavior in many ways [1,2,3,4]. While affective
states can be complex and composed of multiple components, in this paper we
use the term affect to refer to valence: the positiveness versus negativeness of an
agent’s affective state (in our case, the agent’s mood: a long term, low intensity
affective state) [3]. Valence can be seen as a further undifferentiated component
of an affective state that defines an agent’s situation as good versus bad [5].

We focus on the influence of affect on learning. Numerous psychological studies
support the idea that enhanced learning is related to positive affect [6], while
others show that enhanced learning is related to negative affect [7], or to both
[8]. Currently it is not yet clear how affect influences learning. Computational
modeling might give insights into the possible underlying mechanisms.

From a machine learning point of view the influence of affect on learning
suggests that adaptive agents can benefit from artificial affect, once we know
how to (1) simulate affect in a way useful for learning, (2) know what parts of
the adaptive agent’s architecture can be influenced by artificial affect, and (3)
know how to connect artificial affect to the appropriate parts of that architecture.

We investigate the relation between affect and learning with a self-adaptive
agent in a simulated gridworld. Our agent autonomously influences its action-
selection mechanism. It uses artificial affect to control its amount of exploration.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 357–366, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Our agent uses a standard form of model-based reinforcement learning (see
Section 4). We present results based on two different learning tasks. In the first
the agent has to cope with two different alternating goals in a two-armed grid-
world. We call this the ”alternating goal task”. This is an important task to be
able to learn. An agent with a changing set of goals that has to cope with a
dynamic environment has to learn to modify its behavior in order to reflect a
change in the set of goals; it has to be flexible enough to give up on an old goal
and it has to be persistent enough to continue trying an active goal. In other
words the agent has to decide when to explore versus exploit its knowledge, a.k.a.
the exploration-exploitation problem [9].

The second task consists of learning to prefer a later larger reward (global op-
timum) for an earlier smaller one (local optimum). We call this task the ”Candy
task”; candy represents the local optimum being closest to the agents starting
position, while food represents the global optimum being farther away from its
starting position. The ability to learn this task is important as it enables survival
with the knowledge an agent has, while trying to find better alternatives. Failure
to do so results in getting stuck in local optima or slow convergence.

2 The Influence of Affect on Learning

In this section we review some of the evidence that affect influences natural infor-
mation processing and learning. Some studies find that negative affect enhances
learning [7]. Babies aged 7 to 9 months were measured on an attention and learn-
ing task. The main result is that negative affect correlates with faster learning.
Attention was found to mediate this influence. Negative affect related to more
diverse attention, i.e., the babies’ attention was ”exploratory”, and both nega-
tive affect and diverse attention related to faster learning. Positive affect had the
opposite effect as negative affect (i.e., slower learning and ”less exploratory” at-
tention). This relation suggests that positive affect relates to exploitation, while
negative affect relates to exploration.

Other studies suggest an inverse relation [6], and find that mild increases in
positive affect related to more flexible attention but also to more distractible
attention. So it seems that in this study positive affect facilitated a form of
exploration, positive affect removes attention bias towards solving the old task.

Of course, attention is not equivalent to learning. It is, however, strongly
related to exploration: an important precursor to learning. Flexible distribution
of attentional resources favors processing of a wide range of external stimuli. So,
in the study by Dreisbach and Goschke [6] positive affect facilitated exploration,
as it helped to remove bias towards solving the old task thereby enabling the
subject to faster adapt to the new task. In the study by Rose et al. [7] negative
affect facilitated exploration as it related to defocused attention.

Other studies, e.g., [8] show that both negative and positive affect can relate to
faster learning. The authors found that both flow (a positive state characterized
by a learner receiving the right amount of new material at the right speed [10])
and confusion related to better learning.
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Combined, these results suggest that positive and negative affective states can
help learning at different phases in the process, a point explicitly made in [8].
Our paper investigates this in an adaptive agent context.

3 Simulated Affect Influences Action Selection

To model the influence of affect on learning, we simulate affect as follows. Our
agent learns based on reinforcement learning (RL), so at every time step it
receives a reward r. Simulated affect is based on this r:

ep = (rstar − (rltar − fσltar))/2fσltar (1)

Here, ep is the measure for positive affect, where ep ranges from 0 to 1, modeling
negative affect versus positive affect respectively. The short-term running average
reinforcement signal, rstar, has a parameter star defining the window-size (in
steps) of that running average. At every step of the agent, rstar is used as input
to calculate a long-term running average reinforcement signal, rltar, with ltar a
parameter again defining the window-size. The standard deviation of rstar over
that same long-term period is denoted by σltar , and f is a multiplication factor
defining the sensibility of the measure. The standard deviation is included as a
measure to normalize the affect signal based on the natural variance of rstar .
Artificial affect measures ”how well the agent is doing compared to what it is
used to”.

Two issues regarding natural affect are important. First, in studies that mea-
sure the influence of affect on cognition, affect relates more to long-term mood
than to short-term emotion. Affect is usually induced before or during the ex-
periment aiming at a continued, moderate effect instead of short-lived intense
emotion-like effect [6,3,7]. This is reflected by the fact that ep is based on rein-
forcement signal averages, not on r itself.

Second, affect induction (the method used in psychological experiments to
investigate the influence of affect on information processing) is compatible with
the administration of reward in reinforcement learning. Affect is usually induced
by giving subjects small unanticipated rewards [1,11]. The reinforcement signal
in RL only exists if there is a difference between predicted and received reward.
Predicted rewards thus have the same effect as no reward. It seems that both
reward and positive affect follow the same rule: if it’s predicted it isn’t impor-
tant. This is reflected in our measure. It compares a short-term estimate rstar

with a long-term estimate rltar. As the first, short-term average reacts quicker to
changes in the reward signal than the second, long-term average, a comparison
between the two yields a measure for how well the agent is doing compared to
what it is used to. If the environment and the agent’s behavior in that environ-
ment do not change, ep converges to a neutral value of 0.5. This reflects the fact
that anticipated rewards do not influence affect much.

Our agent uses a Boltzmann distribution to select actions:

p(a) =
eVt(s,a)·β

∑n
b=1 eVt(s,b)·β (2)
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Here, p(a) is the probability that a certain action a out of n possible ones is
chosen, and Vt(s, a) is the value of action a in state s at time t. The inverse
temperature parameter β determines the randomness of the distribution. High
β’s result in a greedy selection strategy (low temperature, small randomness).
If β is zero the distribution function results in a random selection strategy,
regardless of the predicted reward values (high temperature, high randomness).

In our experiments artificial affect ep controls an agent’s β parameter and
thereby exploration versus exploitation. This is compatible with Doya’s approach
[12], who proposes that emotion is also a system for meta-learning.

3.1 Type-A: Positive Affect Relates to Exploitation

To investigate the influence of artificial affect on exploration, we study two types
of relations. Type-A models that positive affect increases exploitation [7]:

β = ep · (βmax − βmin) + βmin (3)

If ep increases to 1, β increases towards βmax. As ep decreases to 0, β decreases
towards βmin. So positive affect results in more exploitation, while negative
affect results in more exploration. In essence, our agent is autonomously adapting
how selective its attention process is: ”when happy, be greedy in the actions to
consider, when sad: consider all possible actions equally”.

3.2 Type-B: Negative Affect Relates to Exploitation

Type-B models the inverse of the previous relation (as suggested in [6]):

β = (1 − ep) · (βmax − βmin) + βmin (4)

As affect ep increases to 1, β decreases towards βmin and as ep decreases to
0, β consequently increases towards βmax. So positive affect results in more
exploration, while negative affect results in more exploitation. In this case our
agent uses a different way to adapt attention: ”when sad, be greedy in the actions
to consider, when happy: consider all possible actions equally”.

4 Experiment and Method

Our experiments are performed in two different simulated gridworlds (Fig. 1).
The first is a two-armed maze with a potential goal at the end of each arm.
This maze is used for the Alternating-Goal (AG) task, i.e., coping with two
alternating goals, find food or find water (only one goal is active during an
individual trial, goal reward r = +2.0). The second maze has two active goal
locations. The nearest goal location is the location of the candy (i.e., a location
with a reward r = +0.25), while the farthest goal location is the food location
(r = +1.0). This maze is used for the Candy task. The walls in the mazes are lava
patches, on which the agent can walk, but is discouraged to do so by a negative
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Fig. 1. The task-mazes used. Left maze is the Alternating-Goal task. Right maze is
the Candy task. s denotes agent’s starting position, f is food, c is candy and w is water.

reinforcement (r = −1.0). The agent learns by acting in the maze and perceiving
its direct environment using an 8-neighbor and center metric (i.e., it senses its
eight neighbors and the location it is at). An agent that arrives at a goal location
is replaced to its starting location. Agents start with an empty world model and
construct a Markov Decision Process (MDP) as usual (a perceived stimulus is a
state s in the MDP, and an action a leading from state s1 to s2 is an edge in
the MDP). The agent counts state occurrences, N(s), and uses this count in a
standard weighting mechanism. Values of states are updated using as follows:

R(s) ← R(s) + α · (r − R(s)) (5)

V (s) ← R(s) + γ ·
∑

i

V (sai)
N(sai)∑
j N(saj )

(6)

So, a state s has a learned reward R(s) and a value V (s) that incorporates pre-
dicted future reward. R(s) converges to the reward for state s with a speed pro-
portional to the learning rate α. V (s) is updated based on R(s) and the weighted
values of the next states reachable by action a1...i (with a discount factor of γ).
So, we use a standard model-based RL approach [9]. In the Alternating-Goal
task the learning rate α and discount factor γ are respectively 1.0 and 0.7, and
in the Candy task respectively 1.0 and 0.8. We have fixed the artificial affect
parameters ltar, star and f to 400, 50 and 1, respectively.

4.1 Learning Tasks

To analyze the difference in learning behavior of agents that use affect control
of type-A, B and a control condition using static β values we did the following.
In the Alternating-Goal task agents first have to learn goal one (food). After
200 trials the reinforcement for food is set to r = 0.0, while the reinforcement
for water is set to r = +2.0. The water is now the active goal location (so an
agent is only reset at its starting location if it reaches the water). This reflects a
change in goals, of which the agent is initially unaware. It has to search for the
new goal location. After 200 trails, the situation is set back; i.e., food becomes
the active goal. This is repeated 2 times, resulting in 5 learning phases (phases
0 to 4 referring to learning of food, then water, food, water, and finally food).
This represents 1 run, and we repeated these runs.

The setup of the Candy task is simpler. The agent has to learn to optimize
reward in the Candy maze. The problem for the agent is to (1) exploit the local
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reward (candy), but at the same time (2) explore and then exploit the global
reward (food). This relates to opportunism, an important ability that should be
provided by an action-selection mechanism [13].

All AG task results are based on 800 runs, while Candy task results are based
on 400 runs. We averaged the number of steps needed to get to the goal over
these runs, resulting in an average learning curve. The same was done for β (the
exploration-exploitation curve), and the agent’s quality of life (QOL) (measured
as the sum of the rewards received during 1 trial). In all plots the trials are on
the x-axis, while β, steps or quality of life on the y-axis.

4.2 Experiment 1: Alternating-Goal Task

Our main finding is that type-A (positive affect relates to exploitation, negative
to exploration) has by far the lowest switch cost between different goals, as
measured by the number of steps taken at the trial in which the goal-switch is
made (Fig. 3b). This is an important adaptation benefit. All goal-switch peaks
(phases 1–4) of the 4 variations of type-A (i.e., dotted lines labeled ”AG dyn
3–6, 3–7, 3–9, and 2–8”) are smaller than the peaks of the controls (straight
lines labeled ”AG static 3,4,5,6, and 7”) and type-B (i.e., striped lines labeled
”AG dyn inv 3–6, 3–7, 3–9 and 4–9”). Initial learning (phase 0) is marginally
influenced by affective feedback (peaks at phase 0 in Fig. 3b), as can be expected:
no goal switch occured before the initial learning phase. Closer investigation of
the first goal switch (trial 200, phase 1) shows that the trials just after the goal
switch also benefit considerably from type-A (Fig. 2b). When we computed for
all settings an average peak for trial 200, 201 and 202 together, and compared
these averages statistically, we found that type-A performs significantly better
(p < 0.001 for all comparisons, Mann-Whitney, n = 800). Analysis of the peak
at trial 800 (phase 4), reveals about the same picture. The trial in which the goal
is switched benefits significantly from type-A (p < 0.01) for all comparisons.

All other comparisons between peaks revealed significantly (p < 0.001) smaller
peaks for type-A (Fig. 3b). This effect is most clearly shown for the peaks of
phase 3 and 4, where the relative peak-height difference between type-A peaks
and static peaks ranges between 1.25 and 2. This means that using positive affect
to control action-selection in the way described in type-A can result in up to a
2 fold decrease of search investment needed to find a new goal. As expected, the
smallest difference between control and type-A is when β is small (3 or 4) in the
control condition (small β = exploration = less tied to old goal). However, small
β’s have a classical downside: less convergence due to less exploitation (Fig. 3a).
In contrast, type-A curves in Fig. 3a show that the agent does converge to the
minimum number of steps needed to get to the goal (i.e., 4).

For completeness we show the β curves for the complete phase 1 of the con-
trol group and one type-A and one type-B (Fig. 2a). These curves confirm the
expected β dynamics. For type-A, the goal-switch induces high exploration (β
near βmin) for type-A due to the lack of reinforcement (it is going worse than
expected), after which β quickly moves up to βmax, and then decays to average.
For type-B this is exactly the inverse.
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Fig. 2. (a) AG mean β for phase 1. (b) AG mean steps, detail phase 1.

Fig. 3. (a) AG all phases. (b) AG peaks at phases 0–4 (steps in trial 0, 200, 400, etc.).

Fig. 4. (a) Candy task complete, mean steps. (b) Candy task complete, mean QOL.

Fig. 5. Candy task starts learning, mean QOL
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4.3 Experiment 2: Candy Task

Type-A agents have a considerable adaptation benefit compared to control and
type-B agents. In general, type-A results in the same speed of convergence as a
high β, as shown by the learning curves of the complete task (Fig. 4a). We see
that the learning curves of ”β=6” and ”dyn 2–8” overlap considerably. Interest-
ingly, the quality of life curves show that in the beginning the QOL of the type-A
agent quickly converges to the local optimum (candy, 0.25) comparable to that
of the high β control agent (Fig. 5). At the end of the task (later trials) the
QOL of the type-A agent steadily increases towards the global optimum (food,
+1.0; Fig. 4b). This shows that type-A affective feedback helps to first exploit a
local optimum, while at a later stage explore for and exploit a global optimum.
This is a major adaptation benefit resulting from affective control of β. This is
specifically important for artifical and natural agents in real-world situations.
One wants to exploit something good and search for something better.

The control agent with β = 4 does converge to the global optimum just like
the type-A agent (Fig. 4b). However, due to continuous high randomness in
this agents action-selection mechanism this agent does not converge nicely with
regard to the steps they need to take to get that reward as compared to the
type-A agent (Fig. 4b). Also due to this high randomness this agent does not
learn the local reward consistently enough to quickly exploit it (Fig. 5). For these
smaller βs this results in a major delay in arrival at the same level of QOL as
compared to the larger βs and the type-A agent (compare the curves ”β=5” and
”dyn 2-8” in Fig. 5). The type-B agent does not perform well at converging or
at quickly exploiting the local optimum (Fig. 4a and b, Fig. 5).

5 Discussion of Results

Although our results show that adaptation benefits from affective control of
exploration versus exploitation (and specifically when positive = exploitation),
several issues exist. First, we introduce new, non-trivial, parameters to control
just one, β. Setting βmin to a very small value (i.e., close to 0) results in a problem
for type-A agents: once it explores a very negative environment it cannot easily
get out of exploration mode due to continuously receiving negative rewards that
result in even lower affect and thus in even more exploration. The only way to
get out of this is by getting completely used to the negative environment, which
might take a long time. However, the main benefit of setting meta-parameters
such as ltar, star instead of configuring β is that they can be set for a complete
(set of) learning task(s) potentially eliminating the need to adapt β using other
mechanism (such as simulated annealing) during learning. Therefore, configura-
tion of these values is more efficient. And, as our results show, the β is controlled
in such a way that the agent switches to exploration in the alternating-goal task
when needed, and it ”gets bored” in the Candy task when needed.

Second, if local and global rewards are very similar, even a type-A agent
cannot learn to prefer global reward, as the difference becomes very small. So,
the candy and food reward have to be significantly different, such that the agent
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can exploit this difference once both options have been found. You don’t walk a
long way for a little gain. The discount factor is related to this issue, as a small γ
results in discarding rewards in the future and therefore the agent is more prone
to fall for the nearer local optimum. So γ should be set such that the agent is
at least theoretically able to prefer a larger later reward for a smaller earlier one
(which is γ = 0.8 in the Candy task, as compared to 0.7 in the AG task).

5.1 Related Work

Our work relates to computational modeling of emotion and motivation based
control/action-selection. It explicitly defines a role for emotion in biasing behavior-
selection (e.g, [14]). The main difference is that we have explicitly experimented
with a psychologically plausible model of affect as a way to directly, and continu-
ously, control the randomness of action-selection.

Although affective control of exploration is promising for adaptive behavior,
our learning model is specific, and our claims hard to generalize. Other learning
architectures, such as Soar or ACT-R, should be used to further investigate the
mechanisms introduced here. Belavkin [15] has shown using ACT-R that affect
can be used to control the search through the solution space, which resulted in
better problem-solving performance. He used an information-theoretic approach
towards modeling affect that is related to the rule-state of the ACT-R agent. A
key difference is thus that our measure for affect is based on a comparison of re-
inforcement signal averages. Further we explicitly model affect based on different
theoretical views on the relation between affect and information processing and
compared these views experimentally. The Salt model [16] relates to Belavkin’s
approach in the sense that the agent’s effort to search for a solution in its memory
depends on, among other parameters, the agent’s mood valence.

Schweighofer and Doya [17] used a similar measure for ”how well the agent is
doing compared to what it is used to”; however, they use it differently. Instead
of directly controlling β, affect is used as basis for a search-based method. If a
random change to β results in positive affect (agent is doing better), the new β
is kept, and vice versa. Recently we have extended this work by comparing these
methods on the same tasks in a different learning environment (Soar-RL) [18].

6 Conclusions

We have defined a measure for affect for adaptive agents, and used it to control
action-selection. Based on experimental results with learning agents in simulated
gridworlds, we conclude that coupling positive affect to exploitation and negative
affect to exploration has several important adaptation benefits, at least in the
tasks we have experimented with. First, it significantly reduces the agent’s goal-
switch search peak when the agent learns to adapt to a new goal: the agent
finds this new goal faster. Second, artificial affect facilitates convergence to a
global instead of a local optimum, while exploiting that local optimum. However,
additional experiments are needed to verify the generality of our results, e.g., in
continuous problem spaces, and other learning architectures (see [18]).
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Abstract. One of the main challenges in the information security con-
cerns the introduction of systems able to identify intrusions. In this ambit
this work takes place describing a new Intrusion Detection System based
on anomaly approach. We realized a system with a hybrid solution be-
tween host-based and network-based approaches, and it consisted of two
subsystems: a statistical system and a neural one. The features extracted
from the network traffic belong only to the IP Header and their trend
allows us detecting through a simple visual inspection if an attack oc-
curred. Really the two-tier neural system has to indicate the status of
the system. It classifies the traffic of the monitored host, distinguishing
the background traffic from the anomalous one. Besides, a very impor-
tant aspect is that the system is able to classify different instances of the
same attack in the same class, establishing which attack occurs.

1 Introduction

Intrusion Detection Systems (IDS) are being designed to protect the availabil-
ity, confidentiality and integrity of critical networked information systems [5].
Existing intrusion detection techniques fall into two major categories: misuse
detection [6,11] and anomaly detection [1]. Misuse detection techniques try a
match between activities in an information system and signatures of known in-
trusions and signal intrusions. Anomaly detection techniques establish a profile
of the normal behaviour of a user and/or a system. They compare the observed
behaviour with the normal profile, and they signal intrusions when the observed
behaviour deviates significantly from its normal profile. Statistical modelling fol-
lowed with classical or neural network classification has been utilized in some
anomaly intrusion detection systems [13]. The work of Ghosh et al. [1] studied
the employment of neural network classifiers to detect anomalous and unknown
intrusions against a software system. Horeis [3] observed that Neural Networks
are tolerant of imprecise data and uncertain information. So, with their ability
to generalize from learned data they seem to be an appropriate approach to IDS.
Current research in the area of Intrusion Detection based on Neural Networks
shows encouraging results. Besides Neural Networks were specifically proposed
to learn the typical characteristics of system users and identify statistically sig-
nificant variations from their established behaviour [10]. The Self-Organizing

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 367–376, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



368 P. Baldassarri, A. Montesanto, and P. Puliti

Maps (SOM) developed by Kohonen [4] automatically categorizes the varieties
of input presented during the training and can then express how well new input
fit the patterns it has discerned. However the use of the SOM approach is a rel-
atively new choice for anomaly detection. Rhodes et al. [10] developed a system
that uses multiple SOM for intrusion detection. They suggest that each neural
network become a kind of specialist trained to recognize the normal activity of
a single protocol and ready to raise an alarm when a significant deviation is
detected. The paper [7] describes an anomaly approach that characterizes each
connection based on some features. Using these features, the SOM classifies the
network traffic into normal or suspicious. In [9] the authors characterize each
network connection based on a different set of features and build SOM for each
individual network service of interest.

In this work, the SOM has to classify the network traffic from and towards
a victim host: such as a web server, a mail server or a remote authentication
server. From this point of view, we realized a system similar to an IDS ”host
based”, but our original hybrid solution derives from the fact that the IDS does
not reside on the monitored host, but in another computer exclusively dedicated
to this purpose. So, the system does not depend on the operating system of
the monitored host, guarantying integrity and robustness, also in the case of
attacked and compromised system.

2 The System Overview

The proposed intrusion detection system can be classified as a hybrid IDS based
on ”anomaly detection”. The system observes the network traffic of a host, prob-
ably a server that provides network services. Under this point of view the system
is similar to a ”host based” IDS, but the hybrid solution depends on the fact
that the IDS is not implemented in the monitored host but in a different ded-
icated computer. Besides, the proposed anomaly detection system represents
an approach for the development of an ”anomaly detection” IDS based on the
integration of two systems: a statistical system and a neural one. The neural
system which receives in input the results obtained by the previous statistical
processing, does not directly process the raw data of the network traffic (as IP
addresses, port, TCP flag, and so on), but it works with more homogeneous and
processed data.

2.1 The Statistical System

The statistical system plays the role of ”discriminator” and its output has to
allow through a simple visual inspection the distinction between a normal behav-
iour and an anomalous one. The system uses fixed temporal windows, in which
the network traffic is observed and it memorizes some characteristic parameters.
We considered a temporal window of 60 seconds (corresponding to 1 period).
During each period the packets in transit in the network are acquired thanks to
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a network board in promiscuous mode and to the wincap library [12], which al-
lows us capturing packets in the lower levels of the ISO/OSI structure. From the
available features, 8 were selected for use in the system: 4 for the input packets
(the first four), and 4 for the output packets (the last four):

1. Source IP Address (for TCP, UDP and ICMP protocols);
2. Source Port (for TCP and UDP protocols);
3. Source IP Address and Source Port, IP:Port (for TCP and UDP protocols);
4. Total number of packets (for TCP, UDP and ICMP protocols);
5. Destination IP Address (for TCP, UDP and ICMP protocols);
6. Source Port (for TCP and UDP protocols);
7. Destination IP Address and Source Port, IP:Port (for TCP and UDP pro-

tocols);
8. Total number of packets (for TCP, UDP and ICMP protocols);

In order to elaborate a continuous flow of data, the statistical system uses sliding
windows including 5 periods and each window is processed as follows. In the first
period, the occurrences have to be ordered according to a decreasing sorting. This
choice derives from the fact that in this way, in our opinion, we have a common
basis to detect possible variations in the traffic observed in the following four
periods. After the sorting, the graphs are updated using the data obtained from
the four successive periods. For example in the case of a packet coming from an
IP address yet observed, in the graph the occurrence related to the IP address is
updated (increased of 1 units). Instead, in the case of an unseen IP address this
value and its occurrence are added to the queue, as the last value of the graph.
Moreover, the trend of these features was modelled using the ”first momentum”.
As final result, we obtain the values of the ”first momentum” averaged on the five
periods. The data obtained determining the ”first momentum” on the windows
consisting of 5 periods undergoes a successive processing. This processing intends
to make discrete the results of the statistical system in order to obtain more
significant data for the successive neural system.

2.2 The Neural System

The neural system based on an unsupervised learning, is the ”decisional motor”:
it has to distinguish the ”normal” traffic from the anomalous network traffic.
Besides, in order to evaluate the performances of a self-organising network model,
the architecture has been realized using the SOM. We evaluate the ability of
the SOM network to automatically and spontaneously indicates if an attack
occurred.

The figure 1 shows the two-tier neural architecture [7]. As regards the first
level the figure 1 shows the 4 maps, each of which was trained on 2 of the 8 fea-
tures: one concerning the processing of the data related to the ”IP:Port” (named
IP:Port network), the second concerning the processing of the data related to
the ”Port” (named Port network), the third concerning the processing of the
data related to the ”IP” (named IP network), and finally the fourth network
classifies the data concerning the number of packets observed both in input and
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Fig. 1. Architecture of the neural system

in output of the monitored server (named NPkt network). Each network has in
output the winner unit vector: the weight vectors of the winner unit according
to the Euclidian metric, for each input presented to each network. After the
training the nodes of each network in the first layer represent a class. For each
network, the traffic recognized as normal would belong to the same class (node),
while in the case of anomalous behaviour, different classes would identify dif-
ferent attacks. As shown in figure 1, each of the four networks of the first layer
receives in input a vector of two elements; this two-dimensional vector represents
the output of the statistical algorithm. The first element of the vector contains
the value concerning the input connections, while the second element contains
the value concerning the output connections. Each network considers only one
information: for example, the network that classifies the IP:Port data will receive
the two values (one for the input communications and the other for the output
communications) related to the IP:Port, and so on.

The second layer consisted of a single neural network (named Final network).
It receives as input the weight vectors of the four winner units, one for each
network of the first layer, and so simultaneously processes the classifications of
the first layer. The second layer must promptly communicate the status of the
network that is if the network traffic has a normal behaviour or there is an
anomalous situation.

3 The Experimental Results

In the development of an experimental project it is necessary a complete and
a wide dataset. We chose the 1999 DARPA/MIT Lincoln Laboratory intrusion
detection evaluation dataset (IDEVAL)[2] which is the only available in Internet.
It was specifically created to effect benchmark and experimentations on the IDS,
and it has the following characteristics:

– 1 Week (From 1/3/1999, 8:00 am To 6/3/1999, 6:00 am): Background
traffic;

– 2 Week (From 8/3/1999, 8:00 am To 13/3/1999, 6:00 am): Background
traffic with a low rate of attacks;



Detecting Anomalous Traffic Using Statistical Discriminator 371

– 3 Week (From 15/3/1999, 8:00 am To 20/3/1999, 6:00 am): Background
traffic;

– 4 Week (From 29/3/1999, 8:00 am To 3/4/1999, 6:00 am): Background
traffic with a high rate of attacks;

– 5 Week (From 5/4/1999, 8:00 am To 10/4/1999, 6:00 am): Background
traffic with a high rate of attacks;

This dataset was used in many works of current literature referring to the de-
velopment of IDS [8]. We used the ”entire dataset” in order to test in depth the
performances of our system. The dataset is produced in order to recreate the
background traffic and a given number of attacks in a purposely dedicated net-
work. The background traffic was generated considering both the characteristics
of the dataflow observed near to the Hanscom Air Force Base military Ameri-
can base, and the statistics on the traffic reaped from other basis. The attacks
and the hacking code are extracted from Internet or autonomously developed.
Besides, the taxonomy of attacks used for DARPA evaluation is characterized
as follows:

– Denial of Service, DoS (Mailbomb, Smurf, Udpstorm, SshProcessTable, Nep-
tune): the intruder attempts to reduce the performance of a host, possibly
going as far as making the host unavailable;

– Surveillance/Probing, PROBE (Portsweep, Mscan): the intruder attempts
to gather information about the host;

– User to Root, U2R: the intruder tries to access the superuser account by
using buffer overflow;

– Remote to Local User, R2L: the intruder attempts to gain unauthorized
access from a remote machine.

3.1 Experimental Results of the Statistical System

As explained during the description of the system (paragraph 2), through the
packets in input and in output, we observed the behaviour of one host in the
network. We chose Pascal.eyrie.af.mil with IP address: 172.16.112.50. This is a
victim host with Solaris 2.5 operating system on an UltraOne system. So, we
intend to determine if an attack or an anomaly occurs, when the statistical distri-
bution of the packets has a significant variation as regards the normal situation.
The statistical system was tested observing the network traffic of Pascal with
the data related to the five weeks, five days for each week.

Results related to the background traffic. In this paragraph we show a
sequence of graphs resulting from the processing of the statistical system related
to a day of normal traffic: the second day of the first week. In this way we could
observe the typical trend of a day containing background traffic only, pointing
out some characteristics of these trends.

The graphs in figure 2 are related to the input connections and show that the
maximum value of the averaged ”first momentum” is always nearly low. This
behaviour is also reflected in the graphs of the other day of background traffic.
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Fig. 2. Graphs related to the background traffic observed for a period in the input
packets: (a) ”IP:Port graph”; (b) ”Port graph”; (c) ”IP graph”; (d) ”NPkt graph”

Moreover, as shown in the last graph of the figure 2, the number of packets
achieves the maximum value near 600. In other day of only background traffic the
maximum number of packets can be near 1400. In the first and in the third graphs
of the figure 2, the maximum value corresponds to the 5 consecutive periods:
from the 194 to the 198 period. Analyzing the content of the data file related
to these temporal windows, we can note that the period 194 has a different
behaviour from the others: this is due to the fact that all the IP addresses are
communicating on the same TCP 25 Port. Summarizing, the ”IP:Port graph”
has rather high values where a consistent number of IP addresses are observed or
however different Ports are considered. The ”IP graph” has a similar behaviour
only in the case of a high number of IP addresses, on the contrary when an only
IP address communicates with a different number of Port, there are not high
values in the ”IP graph”. The ”Port graph” shows this aspect.

Results related to the attacks. An attack will be pointed out by some
observed parameters. For example a kind of attack could be detected by the
”IP:Port graph” and the ”IP graph”, while another kind of attack could be
detected by the ”IP:Port graph” and ”Port graph”. So, this depends on the
implicated parameters and perhaps on the typology of attack. The statistical
system has to show through a simple visual inspection if an attack occurs, but
really the neural system has to indicate the status of the system.

As an example we showed the graphs related to a particular DoS attack (Mail-
bomb attack) and so only the graphs related to the statistical characteristics that
pointed out one instance of the attack will be shown.

”Mailbomb” attack
The ”Mailbomb” attack belongs to DoS category and is based on the mailing
of a high number of e-mail against a mail server in order to crash the system.
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A typical ”Mailbomb” attack occurs through the mailing of 10000 messages from
some users (10 Mbyte of data for each user).

In IDEVAL there are three different instances of this attack against our mon-
itored server Pascal. Our statistical system was able to identify all the three
instances of this specific attack. The three graphs of the figure 3 evidence the
trend which identifies the first instance (in the second day of the second week)
of the ”Mailbomb” attack.

Fig. 3. Graphs related to traffic with attacks observed in a period in the input packets:
(a) ”IP:Port Graph”; (b)”Port Graph”;(c) ”NPkt Graph”

As we can see in figure 3 the peak of attack occurred corresponding to the
390-394 temporal window. The peak that identifies the attack has a value much
higher than the values shown for the background traffic. In particular, concerning
the input connection for the IP:Port and Port graphs the value corresponding to
the peak is 28; while for the number of observed packets the value corresponding
to the peak is 1440.

3.2 Experimental Results of the Neural System

As we said, the neural system consisted of a self-organizing neural network: the
SOM. In this paragraph, the performances of the SOM are analyzed, pointing
out the choice regarding the learning, and the choice concerning the topology
that is ”a priori” fixed. The inputs refer to temporal windows of 5 consecutive
periods. The output represents the class in which each neural network classifies
the input, both for the four networks of the first layer and for the only one
network of the second layer.

The aim of our system is to classify the background traffic in a class, while the
attacks would be classified in other classes. The best situation is that different
instances of the same attack are classified in the same class, and moreover this
class would include only one typology of attack.

The four networks of the first layer have a two-dimensional lattice of neurons
(5×5 dimension), so each network has 25 different classes in which to classify
the input pattern. The network of the second layer is a one-dimensional lattice,
with 9 neural units, which are used to distinguish the 8 different attacks and the
background traffic. Before the learning the nodes of the networks are initialized
using some values related to the windows of 5 periods extracted from the dataset.
During the learning the inputs of the neural system are presented in order to
allow the neural networks observing the trend of the statistical results refer to



374 P. Baldassarri, A. Montesanto, and P. Puliti

a complete day. For the testing, in the first experiment we only considered the
weeks 1 and 3, in order to evaluate the classification of the only background
traffic on side of the neural system.

Table 1. Results related to the background traffic

Class Background traffic
0 4%

1 92%

2 1%

3 3%

The table 1 contains the results of the classification of the second layer related
to the only background traffic. We remember that in this first experiment, we
are processing the background traffic, this implicates that the classes with a zero
rate would be considered as death units or probably they will be used to classify
the attacks.

Again for the testing, in the second experiment we considered all the five weeks
that compose the dataset. Concerning the results we expect that the classes
(4,5,6,7,8) not used for the background traffic are reserved for the attacks.

Table 2. Results of the test related to the all dataset

Attacks
Class Mailb Smurf Portsweep UdpStorm Ssh Neptune Mscan Secret
0

1

2 50%

3 67% 100% 100% 100%

4 100%

5 33%

6

7 100%

8 100% 50%

The table 2 shows the results of the classification of the attacks. First, we
analyze the 2 and the 3 classes used for the classification of a limited number of
attacks. These two classes are also used for the classification of the background
traffic, even if for a lower rate than the 1 class that it mainly characterizes the
normal traffic (see table 1). We could consider the 2 and 3 classes of the Final
Network as pre-alarm classes. That is, if some temporal windows are classified
in 2 and/or 3 classes, but all the SOM of the first layer identify the same input
as normal traffic, then even if the input is slightly different from the classical
normal trend, but there is not attack. On the contrary, if the networks of the
first layer detect an anomalous situation, the input has a behaviour that can
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be the symptom of a recognized attack. This interpretation is supported by the
fact that in several cases the temporal windows these immediately precede and
follow an attack are classified in 2 and/or 3 classes of the Final Network.

In some cases the Final Network recognized a particular attack classifying in
an only class all the instances of this attack. This happened for the different
Mailbomb instances (classified in 8 class); for the different UdpStorm instances
(classified in 4 class), for the different Neptune instances (classified in 7 class)
and finally for the two of three instances of the Smurf attack (classified in 3
class). Moreover the Final Network reserved some classes for the classification
of only one typology of attack; this means that the patterns classified in these
classes are representative of a particular attack.

4 Conclusion

In this work we proposed a new model of IDS. For this purpose we realized
a system based on an ”anomaly detection” technique that combines the ”host
based” and a ”network based” approaches, in order to exploit the advantages of
both the models. The proposed architecture consisted of two different systems.
The first is the statistical system, which is the ”discriminator”, since it allows
a first distinction between a normal behaviour and an anomalous one on the
basis of some statistical characteristics of the network traffic. The second system
is the neural system that receives as input, the output of the first system and
it is defined ”decisional motor”. This last one will communicate the status of
the network: if there is a normal situation or an attack (or anomaly) occurs. In
order to demonstrate the performances of the proposed system we showed some
experimental results, by using the 1999 DARPA dataset. The statistical system
is able to point out a 100% rate of attacks belonging to DoS category. Moreover,
a 67% rate of instances of attacks belonging to Probe category is pointed out.
The decisional motor consisted of a neural system that was able to correctly
classify the background traffic. Some classes are exclusively reserved for the
classification of the only background traffic. In fact the second layer of the neural
network classified the data related to the background traffic in 1 class with a
rate of 92%. The capability of the system to classify instances of attacks in
different classes from the background traffic evidences the ability of the system
to distinguish the normal behaviour from the malicious one. Besides the neural
system gives significant results, classifying different instances of the same attack
in the same class, and reserving this class for a specific attack. So we have not
limited our research to distinguish only the background traffic from the attacks,
but to distinguish also different attacks. This characteristic is very important for
the intervention mode.

Our analysis is based on a single source of network traffic due to the lack
of other available data. Obviously, every environment is different; we plan to
confirm our results using other sources of real traffic.
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Abstract. This work presents a noise cancellation system suitable for
different biomedical signals based on a multilayer artifical neural net-
work(ANN). The proposed method consists of a simple structure similar
to the MADALINE neuronal network (Multiple ADAptive LINear Ele-
ment). This network is a grown artificial neuronal network which allows
to optimize the number of nodes of one hidden layer and coefficients
of several matrixes. These coefficients matrixes are optimized using the
Widrow-Hoff Delta algorithm which requires smaller computational cost
than the required by the back-propagation algorithm.

The method’s performance has been obtained by computing the cross
correlation between the input and the output signals to the system. In
addition, the signal to interference ratio (SIR) has also been computed.
Making use of the aforementioned indexes it has been possible to com-
pare the different classical methods (Filter FIR, biorthogonal Wavelet
6,8, Filtered Adaptive LMS) and the proposed system based on neural
multilayer networks . The comparison shows that the ANN-based method
is able to better preserve the signal waveform at system output with
an improved noise reduction in comparison with traditional techniques.
Moreover, the ANN technique is able to reduce a great variety of noise
signals present in biomedical recordings, like high frequency noise, white
noise, movement artifacts and muscular noise.

Keywords: Biomedical Signals, Noise Reduction, Electrocardiogram,
Neural Networks.

1 Introduction

The Electrocardiogram (ECG) is a graphical representation of the electrical acti-
vity of the heart that offers information about the state of the cardiac muscle.
This representation consists of a base line and several deflections and waves (the
so called P–QRS–T).

However, due to the low amplitude of the ECG signal (1mV approx.), it has
been a traditional biomedical problem to remove as much noise as possible from
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the ECG before any extra analysis or processing. The objective of this filtering
procedure is both to reduce the noise level in the signal and to prevent the wave-
form distortion. This last issue is very important. In this way, it would be possible
to improve the diagnosis of some heart diseases and diverse pathologies[1].

The signals have been contaminated with noise without correlation with ECG’s
signals (myoelectric, thermal, etc.) which approximate to white noise. To these
signals are added other types of noise to verify the effectiveness of the methods,
as muscular and artefacts noise.

Nowadays, there is not a only one method to cancel out noise in biomedical
recordings [2]. For example: Adaptive filtering LMS [3,4], FIR filters [5] and
filters in the transform domain [6]; are several systems to cancel noise’s effects.
Besides, there are two problems to work with these filters: convergence problems
(LMS) and computational cost. Other applications based on Kalman filters [7],
neural networks [8] and Wavelets [9,10,11], are also able to reduce the ECG’s
noise but they can distort the signal and use to be computationally expensive.

The proposed system is based on a grown ANN, which optimizes the number of
neurons in the hidden layer. This method has not been applied in the cancellation
of muscular and artifacts noise in ECG signals yet. The system has important
advantages: to reduce the processing time, to provoke low signal distortion, to
reduce diverse noise types and, in addition, it can be applied to a wide range of
biomedical signals.

2 Materials

The electrocardiography treated signals validation requires a set of signals which
will have to cover the pathologies, leads, etc in real situations. For this study,
two types of signals were used: real recordings from the PhysioNet Database[12],
and synthetic signals.

550 recordings with different pathologies have been obtained from PhysioNet
with different types of QRS morphologies. These recordings were sampled at a
frequency of 360 Hz and, later, they were upsampled to obtain a frequency of
1kHz.

Table 1. Signals used for the study

No of Registers Time (seg)

Synthetic 200 1049

Real 565 106

Real+noise 550 106

Synthetic signals with different noises have been generated making use of the
ECGSyn software [12]. White noise, muscular and artefacts are included in these
registers. The sampling frequency used is 1kHz.
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3 Methods

3.1 Neural Networks

The neuronal perceptron multilayer network(MLP) using the algorithm of back-
propagation has been applied to diverse practical problems [13]. Perceptron mul-
tilayers method consists of at least three layers: A hidden entrance layer, one or
more hidden layers and an exit layer.

A way to consider the optimal number of nodes in the hidden layer is to stop
the training after a certain number of iterations and to determine how many
signals were filtered with the present number of neurons used in the hidden
layer. If the result of this test is not satisfactory it will add one or more neurons
in the hidden layer to improve the performance of the network. In these cases
the network must be completely trained [13].

An alternative that seems more attractive is the development of increasing net-
works in which nodes are added in the hidden layer in systematic form during the
learning process. With this idea, diverse structures have been proposed such as the
increasing network cascade-correlation [14], as well as neural networks [15,16,17].
These networks have been applied in the solution of diverse problems [18].

Proposed System. The proposed system consists initially in a structure similar
to the neural network[19] ADALINE (ADAptive LINear Element) as it’s shown
in the Figure 1 and 2, which is used like initial structure because it is simple and
easy to optimize using the algorithm of square minimums average, LMS [15]. It
is had initially an input layer layer, one hidden layers(with four neurons) and an
exit layer, where they will be added neurons in the intermediate layer.

Fig. 1. Structure of a network Adaline, S neurons

Once the network has converged, if the operation obtained by the system is not
the required one, a neuron is added in the hidden layer. In this case, the weights
that connect the input layer with the nodes of the intermediate layer are con-
gealed, these are been previously trained. The gains that connect the hidden layer
with the exit layer are adapted, as well as the weights that connect the layer of en-
trance with the neuron added in the intermediate layer, as it’s shown in 3.

Once trained the network, it returns to evaluate its operation. If it is not
correct, a new neuron will be added in the hidden layer. Next, the gains that
connect the hidden layer with the exit, as well as the weights connect the layer
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Fig. 2. Initial stage of the proposed neural network

of entrance with the new neuron added in the hidden layer are trained.This
procedure is repeated until obtaining the wished operation, becoming a neural
network of the type adaline multilayers (Madeline).

This new structure has got a special characteristic: it grows while it learns.
It means that the added neurons in the intermediate layer adapted weights
and gains whereas the weights of the input layer conserves the learning of the
obtained network. This mechanism, although sometimes could produce neural
networks with an sub-optimal number of neurons in the hidden layer, allows to
consider the size of the network. Thus, the added neurons allow a good operation
in the network.

In all the stages the neuronal network is adapted using the Widrow - Hoff
Delta algorithm which has obtained good results. The proposed system with
two neurons added in the hidden layer can be observed in Figure 3.

Learning Algorithm Using Rule Widrow-Hoff Delta. The network Ada-
line is a supervised learning network that needs to know the associated values
in each input. The pairs of input/output are:

{p1, t1} , {p2, t2} , ..., {pQ, tQ} (1)

Where pQis the input to the network and tQ is its corresponding wished exit,
when a input p is presented to the network, the exit of the network is compared
with the value of t (hoped exit) that is associated to him.

Adaptive LMS algorithm derives from the Widrow-Hoff rule Delta [20], A
network Adaline, is deduced of the following way, according to the procedure
described in Widrow [21,22].

W (k + 1) = W (K) + α
e(k)p(k)
|p(k)|2

(2)
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Fig. 3. Proposed Neuronal Network with two neurons in the hidden layer. The black
coefficients are constants.

In which k shows the present iteration of the update process, W (k + 1) is the
following value that will take the vector from weights and W (k) is the present
weights vector’s value. Present error e(k) is defined as the difference between
wished answer t(k) and the exit of network a(k) = WT (k)p(k) before the update:

e(k) = t(k) − WT (k)p(k) (3)

The variation of the error in each iteration is represented by:

Δe(k) = Δ(t(k) − WT (k)p(k)) = −pT (k) ∗ W (k) (4)

The main characteristic of LMS algorithm is that safes the error and it reduces
the average quadratic error. In order to explain the quadratic mean error it will
be considered a network Adaline and will be used an algorithm of approximated
steps, like Widrow and Hoff ; with this algorithm the function for the quadratic
mean error is:

e2(k) = (t(k) − a(k))2 (5)

In equation 5, t(k) shows the wanted exit in iteration k and a(k) shows the exit
of the network; the quadratic error has been replaced in iteration k, therefore in
each iteration is had a gradient of the error of the following way:

[
∇e2(k)

]
j

=
∂e2(k)
∂wi,j

= 2e(k)
∂e(k)
∂wi,j

para j = 1, 2, ...R (6)

and

[
∇e2(k)

]
R+1

=
∂e2(k)

∂b
= 2e(k)

∂e(k)
∂b

(7)



382 J. Mateo Sotos et al.

The first R elements of the error is partial derived with respect to the weights
of the network, whereas the remaining elements are partial derived with respect
to the gains.

It will be evaluated first partial derived from e(k) with respect to wi,j :

∂e(k)
∂wi,j

=
∂

[
t(k) − (wT ∗ p(k) + b

]

∂wi,j
=

∂

[
t(k) −

[
R∑

i=1

w1,ipi(k) + b

]]

∂wi,j
(8)

where pi(k) is i element of the input vector in k iteration, this can be simplified
thus:

∂e(k)
∂wi,j

= −pj(k) (9)

The final element of the gradient is obtained in a similar way, it can be
expressed as the partial derived from the error with respect to the gain:

∂e(k)
∂b

= −1 (10)

In this equation it’s possible to see the simplification advantages of the quadratic
mean error, it can be calculated by means of the error in iteration k.

The approach of ∇e(k) found in the equation 6 is replaced in the equation 2
that defines the process of update of weights for LMS algorithm; after to have
evaluated partial derived the update process can be expressed as it follows:

w(k + 1) = w(k) + 2αe(k)p(k) (11)
b(k + 1) = b(k) + 2αe(k) (12)

Now t(k) and w(k) are independent terms. The equations 11 and 12 show the
rule used by a network Adaline, the rate of learning α is constant during the
algorithm’s process.

The weights and gains algorithm for the network Adaline is expressed:

W (k + 1) = W (k) + 2αe(k)p(k) (13)
b(k + 1) = b(k) + 2αe(k) (14)

4 Results

For further research of the Neural Networks filter, it was simulated a clean
pulse signal and corrupted with different muscular and artifacts noises. It was
compared the performance of the neural network approach with the standard
filtering techniques. The Butterworth high pass digital filter was nonlinear phase
filter, so the pulse waveform should be distorted. LMS presented convergence’s
problems. The proposed system was evaluated using several types of noise in
biomedical signals as: high frequency, artefacts and muscular noise, obtaining,
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Fig. 4. General operation to reduce the muscular noise with (a) 10 hidden neurons,
(b) 11 hidden neurons and (c) 12 hidden neurons

a suitable operation in all cases. Besides, the neural network was evaluated in
order to obtain the smaller possible number of hidden neurons.

Figure 4 shows the neural network increasing proposal with 10, 11 and 12
hidden neurons respectively. In this way the weights of the neuronal network were
initialized with random uniformly distributed numbers in the interval [−0.5, 0.5].
With 12 neurons in the hidden layer is obtained the best results, more neurons
are not improved the results.

The filtered percentage can be increased optimizing the network weights by
means of a training the weights W an the gains b in the matrix.

The method’s performance has been obtained by computing the cross corre-
lation between the input and the output signals to the system. In addition, the
signal to interference ratio (SIR) has also been computed. Equation 15, shows
SIR expression where xin shows the input signal to the system, xout the output
and x the original recording without noise. This parameter has been used to
evaluate synthetic signals (without noise). In table 2 the obtained results are the
following.

SIR = 20 log

(√
E{||xin − x||2}
E{||xout − x||2}

)
(15)

Table 2 shows the cross average correlation values in synthetic signals and
real signals. Nevertheless the table 2 shows the average SIR values calculated for
synthetic recordings, contaminated with muscular noise and movement artifacts.

With high frequency noise added to the muscular noise more differences were
observed between the different tested techniques (Figure 5), the Neural Networks
obtains better cross correlation. The second method that approaches the data
is Wavelet. The adaptive methods as LMS depend on the ECG and therefore
its result is more variable. Methods FIR obtain intermediate values of noise
cancellation.
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Fig. 5. A. Input Signal. B. FIR Filter C. LMS Filter D. Wavelet Filter E. Neural Filter.

Table 2. Obtained results of the cross correlation of noise of artifacts and muscular,
average values. And Obtained results of the SIR for synthetics recordings, average
values

Artefacts Muscular SIR

Methods Synthetic Real Synthetic Real Muscular Artefacts

FIR 0, 91+
−0.04 0, 91+

−0.04 0, 93+
−0.03 0, 92+

−0.03 13.2 ± 0.3 12.2 ± 0.4

LMS 0, 64+
−0.34 0, 58+

−0.36 0, 61+
−0.32 0, 59+

−0.35 5.8 ± 2.23 10.8 ± 2.2

Wavelets 0, 93+
−0.03 0, 92+

−0.03 0, 95+
−0.02 0, 94+

−0.02 15.2 ± 0.3 14.4 ± 0.3

Neural Networks 0, 97+
−0.02 0, 96+

−0.03 0, 97+
−0.02 0, 96+

−0.02 18.2 ± 0.3 17.4 ± 0.3

5 Conclusions

The present work shows an alternative and powerful tool to reduce noise in
biomedical signals, as the electrocardiogram, and therefore is able to facilitate
the later clinical analysis and study.

The system is based on Neuronal Networks and has been proved as the better
method to reduce muscular and high frequency noise. It is possible to emphasize
as well, that this new methodology is suitable for high processing speed appli-
cations, it is of easy hardware implementation and it needs minimum memory
requirement. Finally, the neuronal network-based approach obtains better signal
reduction and low distoriton results in comparison with systems based on FIR,
LMS and Wavelets (biortogonal 6.8) and it can be applied to different types of
signals changing little network parameters.
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Departamento de Arquitectura de Computadores y Automática
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Abstract. On chip resource distribution is a problem that, due to its
complexity, is susceptible to be solved by using artificial intelligence op-
timization procedures. In this paper, a Hopfield recurrent neural network
and a Boltzmann machine are proposed for searching good solutions.

The main challenge of this approach is proposing an energy function
to be minimized so it mixes all the problem-related restrictions.

Experimental data shows that we can get good enough solutions in
a reasonable time using Hopfield nets or close to the global minimum
solutions using Boltzmann machines.

1 Introduction

One of the most complex tasks to be done when designing an integrated circuit
is how to distribute all its different elements among the available space. Usually
there are some restrictions to be accomplished when choosing a particular module
placement, all of them mainly related with power consumption, heat dissipation
and wire length issues.

More over, if instead of developing an integrated circuit, a bitstream is being
built for a FPGA device [4], the complexity of this task increases due to its
limited resources for wiring.

Taking both design models into consideration, one can conclude that the min-
imization of distances between elements to be placed is an important problem
to overcome, not only for reducing latency, but also for decreasing power con-
sumption related to communication busses.

An exhaustive searching procedure to achieve the best solution is too expen-
sive to be done. In this paper, an artificial neural network based algorithm is
proposed in order to find good enough solutions in a considerably short time.

The application of such techniques to this kind of problems is not something
new. There are previous works that propose their utilization in work fields like
improving CISC processors microcode [2]. This article, based in these researches,
enounces a general procedure for solving the placement problem, previously for-
mulated.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 387–396, 2007.
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In the next section the problem to be solved will be presented. The third
and fourth sections describe two different methodologies for solving optimiza-
tion problems: Hopfield neural nets and Boltzmann machines. After that, the
fifth section describes a procedure for applying both algorithms to the previ-
ously defined problem. Simulations results are shown in sixth section. Finally,
conclusions and further work ends this paper.

2 Problem Overview

The task to be accomplished is placing n distinct modules in n free slots in-
side a chip. Power dissipation of each module is supposed not to be important
when choosing a particular distribution. Communications are made through sin-
gle non-directional links, just for getting simplicity. The persecuted objective is
finding a distribution which allows placing all the modules in such a way that
the mean link distance is as short as possible.

The main idea is representing module placement with the binary square ma-
trix M, in which if the ith module is in the jth position then the value of element
mij will be 1; otherwise, this value must be 0.

Also, the module dependencies graph is expressed with the binary symmetric
matrix C. In this matrix, the element cij will be 1 if the ith module is related
to the jth one and it will be 0 if this condition is not satisfied.

The distance between slots is stored into the symmetric matrix D, where the
value of element dij is the square length of the link between the ith slot and the
jth slot. The square function is used in order to get a better behaviour of the
algorithm, punishing long distances and rewarding short ones. This improvement
increases the difference between the local minima in the energy function.

3 Hopfield Artificial Neural Networks

Hopfield neural networks were proposed by the physicist John J. Hopfield in
1982 [1]. These are a type of recurrent artificial neural networks in which the
input layer and the output one are the same. Also there are no hidden layers.

Uhidden = ∅ ∧ Uinput = Uoutput . (1)

Each neuron receives in its input all the output values from the rest of them,
without considering its own output value.

C = U × U − {(u, u) | u ∈ U} . (2)

Connection weights must be symmetric.

∀u, v ∈ U : wuv = wvu . (3)

The next graphic shows an example of Hopfield neural network with 3 nodes.
Notice that weights, thresholds and activation state have no specific value.
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Fig. 1. Hopfield net example

Then, the value of the neuron input network function can be calculated as
the weighted addition of all the outputs.

∀u ∈ U : fnet (u) = −→w · −→f input (u) . (4)

∀u ∈ U : fnet (u) =
∑

v∈U−{u}
wuv · foutput (v) . (5)

The activation function is usually expressed with some threshold value.

∀u ∈ U : factivation (u) =

⎧
⎪⎨

⎪⎩

1 if fnet > θu

actu if fnet = θu

0 if fnet < θu

. (6)

Also, the output function is the identity.

∀u ∈ U : foutput (u) = actu . (7)

Known all the activation states of the network neurons and all the weights
values and thresholds, the network energy function is defined as a Lyapunov
function [3] like this:

E = −1
2

∑

u,v∈U|u�=v

wu,v · actu · actv +
∑

u∈U

θu · actu . (8)

In other terms, transition between states can be calculated with two different
procedures: parallel relaxing or sequential update of neurons.

The first mechanism consists on changing all the neuron states at once, de-
pending on the current activation of them. Despite the fact that it is a very
intuitive way, it cannot be warranted that the network will achieve a stable
state. Because of this, the taken output depends on when the recursive process
is stopped.
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About sequential update, a process much simpler than the previous one, con-
sisting on calculating only the updated activation of a single neuron at a time,
the neuron to be revised should be chosen following some predefined schedule.

According to the convergence theorem to sequential update [3], every Hopfield
net tends to a stable state in a finite number of steps, independently of the
activation initial state. This state corresponds to a local minimum of the net
energy function. Then the resultant output depends on the initial state and the
neuron selection order. The necessary iterations number to achieve convergence
is always lower than n · 2n, as n is the neurons number.

Due to its characteristics, the use of this kind of networks focuses on appli-
cations such as associative memory design, patterns recognition or optimization
problem resolution.

4 Boltzmann Machine

The Boltzmann machine is a type of simulated annealing stochastic recurrent
neural network proposed by Geoffry Hinton and Terry Sejnowski [6]. It can be
seen as an improvement of the Hopfield net model.

Energy function, input function and output function are the same as in the
Hopfield net. Also weights matrix has the restrictions of the previous model.

Then, the energy function increment that results from a single unit i being 0
instead of 1 is:

ΔEi =
n∑

j=1

wij · actj − θi . (9)

Thus the probability p of a neuron i to be activated is defined by this expres-
sion:

pi =
1

1 + e−
ΔEi

T

. (10)

A possible way for calculating transitions between states is random sequential
update. This mechanism consists on updating the activation of a randomly se-
lected neuron at a time. The new value for the neuron depends on the probability
calculated with the expression (n). The Boltzmann machine must be run at the
same temperature time enough for its reaching the “thermal equilibrium”, equiv-
alent to the Hopfield net stable state when the machine temperature is very low.

Following a predefined schedule, the temperature decreases whenever the ma-
chine is at “thermal equilibrium”: Starting with a high temperature and gradu-
ally reducing it, normally multiplying it per a less-than-one factor, the conver-
gence at low temperature to a distribution where the energy fluctuates around
a global minimum is guarantied.

For a given problem, algorithm behaviour should be better if right values are
chosen to the initial temperature and scaling factor. If the initial temperature
is too high, the net will simply change its state randomly, independently of the
energy function value. But if this temperature is too low, the net will act just as
a Hopfield net.
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The scaling factor must also be carefully chosen. The closer this number is to
1, the more steps must be done. Even more, the lower this value is, the less the
probability is to find the global minimum.

5 Proposed Algorithm

This method is based in the application of the general procedure to solve op-
timization problems by using Hopfield networks. The main challenge is how to
formulate correctly the energy function, which must represent all necessary re-
strictions for getting a correct solution.

First step in this general procedure is converting the function to be optimized
into a function to be minimized. After that, the function has to be transformed
so that it responds to a Hopfield net energy function form. Then, the values
of the weights matrix and thresholds, which are needed to implement the net,
can be calculated. Finally, several net simulations must be done with different
random initial activation states, taking itself the best from all obtained solutions
as the result.

Therefore, considering the previously defined matrix M, C and D, the objec-
tive is to find the values for M which makes the links length addition minimum.
Besides, there cannot be in M more than a single 1 in each row (11) or column
(12).

∀j ∈ {1, . . . , n}
n∑

i=1

mij = 1 . (11)

∀i ∈ {1, . . . , n}
n∑

j=1

mij = 1 . (12)

Considering that C and D matrix are symmetric, the first restriction can be
expressed with the energy function (13).

E1 = −1
2

∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

cj1j2 · di1i2 · mi1j1 · mi2j2 . (13)

The restriction reflected in (11) can be expressed through the function to be
minimized (14). Analogously, restriction (12) becomes (15).

E2 =
∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

δ (j1, j1) · mi1j1 · mi2j2 −
∑

(i,j)∈{1,...,n}2

mij . (14)

E3 =
∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

δ (i1, i1) · mi1j1 · mi2j2 −
∑

(i,j)∈{1,...,n}2

mij . (15)
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Being the δ function:

δ (a, b) =

{
1 if a = b

0 otherwise
. (16)

In order to make the Hopfield net using these restrictions, necessary operations
must be done so the energy functions looks like a Lyapunov function (8).

E1 = −1
2

∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−cj1j2 · mi1j1 · mi2j2 . (17)

E2 = −1
2

∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−2 · δ (j1, j2) · mi1j1 · mi2j2 +
∑

(i,j)∈{1,...,n}2

−mij . (18)

E3 = −1
2

∑

(i1,j1)∈{1,...,n}2

(i2,j2)∈{1,...,n}2

−2 · δ (i1, i2) · mi1j1 · mi2j2 +
∑

(i,j)∈{1,...,n}2

−mij . (19)

Once the conditions are set, the resultant net energy function is obtained by
linear combining the energy functions associated with each restriction(20).

E = a · E1 + b · E2 + c · E3 . (20)

Choosing a, b and c parameters determinates how important are each condi-
tion in the global result. E2 and E1 weights must be higher than E3 so the net
application resultant solution would be valid. A possible relation between these
parameters could be the one defined in the next expression.

b

a
=

c

a
> 2 · max (dij) . (21)

If a takes 1 as its value, then b and c are the same. In this case, weights (22)
and threshold (23) values can be:

w(i1,j1)(i2,j2) = −cj1j2 · di1i2 − 2 · b · (δ (i1, i2) + δ (j1, j2)) . (22)

θ(i,j) = −2 · b . (23)

This energy function is applied to a certain problem by giving right values for
c and d in the expressions (22) and (23). Then a Hopfield net can be build with
the obtained W and θ. The sequential update method must be started with a
random initial neuron activation state. The process is repeated until it reaches
a stable state. If the result is not acceptable, all must be repeated with a new
initial activation state.
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The Hopfield net only find certain local minimum solutions. If finding a so-
lution very close to the global minimum is more important than finding a good
enough solution in a short time, the Boltzmann machine should be used. The
particular values for initial temperature and scaling factor must be calculated
by making some test to the algorithm so its behaviour is acceptable.

6 Experimental Results

Tests have been made using a 16 modules dependency graph, with 16 possible
slots to be filled. The scheme shown in figure 2 represents this graph. As it can
be observed, the structure to be optimized is composed by a loop, which encloses
the 8 firs modules, and a hierarchical tree. This allows to watch the algorithm
behaviour when processing a mixed topology configuration.

Fig. 2. Test dependency graph

All the slots, where modules are placed, have the same size and are uniformly
distributed inside a square. They are identified by numbers like this:

Fig. 3. Slots numbering

The distance between slots is calculated by adding the distance measured in
rows and columns. Then the matrix of square distances is calculated. Due to the
fact that the maximum value of this matrix is 36, b can take the value 72. If so,
weights and threshold are:

w(i1,j1)(i2,j2) = −cj1j2 · di1i2 − 144 · (δ (i1, i2) − δ (j1, j2)) . (24)

θ(i,j) = −144 . (25)
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Figure 4 shows the activation state in the distinct steps of the sequential
update method for the Hopfield net. Each black box indicates a 1 state and each
white one indicates a 0 state. Columns represent possible positions and rows
modules.

Fig. 4. Hopfield net test

At the initial state, each neuron assigned value is calculated randomly con-
sidering a 50% possibilities to be active.

After the first iteration, almost all neurons have been deactivated. This hap-
pens due to the application of the restrictions (11) and (12), which have a great
importance in the energy function.

The final stable state is reached after only two steps. At this state, loop
modules are placed down the matrix main diagonal, while those which are in the
hierarchical tree are distributed in the remaining free slots of the matrix.

This simulation has been done in a Pentium III 700MHz with 128MB ram.
The execution total time was less than 2 seconds for this test.

Table 1. Energy function values

Step Net energy

Initial 124639

1 -288

Stable -2232

It can be observed in table 1 that in each step there have only been made
those changes which produce an immediate reduction in the energy function
value. Therefore, the stable state must be an energy function local minimum.
The net convergence to right solutions demonstrates that the energy function
has been correctly formulated.

The resultant solution is interpreted as in figure 5. The boxes are the free
slots and each number is the module which is supposed to be in it.

It can be concluded, taking a close look at the solution in figure 5, that the
loop part has not been fully optimized. It was noticed in successive tests that this
behaviour keeps on whatever is the initial activation state. The reason for always
assigning these modules to main diagonal slots is that, when doing sequential
update, the matrix is always processed following a fixed order: from left to right
and then from up to down.
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Fig. 5. Hopfield net obtained solution

The figure 6 shows the normalized values for the energy function and temper-
ature for each step in a Boltzmann machine solving the same problem. It can be
observed that if the temperature is high, the energy function variation is very
high. But also, the lower the temperature is, the faster the energy value tends
to a minimum value.

Fig. 6. Boltzmann machine test

After having run 20 seconds the algorithm in the same machine as with the
Hopfield net, the resultant activation state for this simulation, wich has an energy
value of -2240, is shown in figure 7.

Fig. 7. Boltzmann machine obtained solution

7 Conclussion

Once the energy function is formulated correctly, the application of a Hopfield
net or a Boltzmann machine to a specific problem is immediate.

On the other hand, for a given number of modules, dependency graph com-
plexity does not affect the algorithm yield.
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Although good solutions in a reasonable time are found, even with such lim-
ited hardware resources, the Hopfield model behaviour is not good enough for
optimizing loop distributed modules. The problem is that this kind of neural
net is susceptible to fall into local minimums, in which a change of a module
position does not led to an energy function decrement.

Unlike Hopfield net, the Boltzmann machine should find solutions surround-
ing a global minima. Despite the fact that it is a good way to expand the solution
search field, it spends a lot of time on reaching thermal equilibrium and conver-
gence to the solution. Because of that, this procedure must only be used if the
solution improvement compensates the cost in time and memory.

Other possibility to expand the searching field is combining the proposed ap-
proximations with a genetic algorithm procedure, so all neural network solutions
will be used for generating the most part of the initial population [5].

Finally, the high memory usage due to the weights matrix could be a very
important problem, depending on how many resources are available in the ma-
chine where the algorithm is running. This matrix size grows as n4, being n the
number of modules to be placed. If there are memory space limitations, a possi-
ble solution could be calculating a connection weight only when it is necessary.
Other possible way to avoid this problem could be obtained from the existing
symmetry in the matrix, reducing memory usage in 50%.
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Abstract. Finding appropriate features is one of the key problems in
the increasing applications of rough set theory, which is also one of the
bottlenecks of the rough set methodology. Particle Swarm Optimization
(PSO) is particularly attractive for this challenging problem. In this pa-
per, we attempt to solve the problem using a particle swarm optimization
approach. The proposed approach discover the best feature combinations
in an efficient way to observe the change of positive region as the parti-
cles proceed through the search space. We evaluate the performance of
the proposed PSO algorithm with Genetic Algorithm (GA). Empirical
results indicate that the proposed algorithm could be an ideal approach
for solving the feature reduction problem when other algorithms failed
to give a better solution.

1 Introduction

Rough set theory [1,2,3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4,5,6,7,8,9,10].

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a computa-
tional point of view. Finding reducts in a large information system is still an
� Corresponding author.
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NP-hard problem [11,15]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal so-
lutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [12,13]. The heuristic algorithm is a
better choice. Hu [14] proposed a heuristic algorithm using discernibility matrix.
The approach provided a weighting mechanism to rank attributes. Zhong [15]
presented a wrapper approach using rough sets theory with greedy heuristics for
feature subset selection. The aim of feature subset selection is to find out a min-
imum set of relevant attributes that describe the dataset as well as the original
all attributes do. So finding reduct is similar to feature selection. Zhong’s algo-
rithm employed the number of consistent instances as heuristics. Banerjee [16]
presented various attempts of using Genetic Algorithms (GA) in order to obtain
reducts. Although several variants of reduct algorithms are reported in the lit-
erature, at the moment, there is no accredited best heuristic reduct algorithm.
So far, it’s still an open research area in rough sets theory.

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarm-
ing behaviors observed in flocks of birds, schools of fish, or swarms of bees, and
even human social behavior, from which the Swarm Intelligence (SI) paradigm
has emerged [17]. The swarm intelligent model helps to find optimal regions of
complex search spaces through interaction of individuals in a population of parti-
cles [18,19]. As an algorithm, its main strength is its fast convergence, which com-
pares favorably with many other global optimization algorithms [20,21]. It has
exhibited good performance across a wide range of applications [22,23,24,25,26].
The particle swarm algorithm is particularly attractive for feature selection as
there seems to be no heuristic that can guide search to the optimal minimal
feature subset. Additionally, it can be the case that particles discover the best
feature combinations as they proceed throughout the search space. This paper
investigates how particle swarm optimization algorithm may be applied to the
difficult problem of finding optimal reducts.

The rest of the paper is organized as follows. Some related terms and theorems
on rough set theory are explained briefly in Section 2. The proposed approach
based on particle swarm algorithm is presented in Section 3. In Section 4, ex-
periment results and discussions are provided in detail. Finally conclusions are
made in Section 5.

2 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and
illustrated with examples in [1,2,3,15,27,28]. Here, we illustrate only the relevant
basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
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objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃

a∈A

Va

f : U×A → V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C ∪D}, C ∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪ D, P ⊆ C ∪ D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)

The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.
Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

R−(X) =
⋃

{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (3)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard to
classification of elements of the universe.
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Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u

′

1]C , [u
′

2]C , · · · , [u
′

m]C}, Reduced Positive
Universe U

′
can be written as:

U
′
= {u

′

1, u
′

2, · · · , u
′

m}. (4)

and
POSC(D) = [u

′

i1 ]C ∪ [u
′

i2 ]C ∪ · · · ∪ [u
′

it
]C . (5)

Where ∀u
′

is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′

pos = {u
′

i1 , u
′

i2 , · · · , u
′

it
}. (6)

and ∀B ⊆ C, reduced positive region

POS
′

B(D) =
⋃

X∈U ′ /B∧X⊆U ′
pos∧|X/D|=1

X (7)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′

B = U
′

pos [28]. It is to be noted that U
′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′

pos, POS
′

B and then
compare POS

′

B with U
′

pos.

3 Particle Swarm Approach for Reduction

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consist of m attributes. We set up a search space of m dimension for the reduc-
tion problem. Accordingly each particle’s position is represented as a binary bit
string of length m. Each dimension of the particle’s position maps one condition
attribute. The domain for each dimension is limited to 0 or 1. The value ‘1’
means the corresponding attribute is selected while ‘0’ not selected. Each po-
sition can be “decoded” to a potential reduction solution, an subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence of
the attribute will not be changed during the iteration. But after updating the
velocity and position of the particles, the particle’s position may appear real val-
ues such as 0.4, etc. It is meaningless for the reduction. Therefore, we introduce
a discrete particle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
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POS
′

E = U
′

pos or not (E is the subset of attributes represented by the potential
reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′

E = U
′

pos is used as the criterion of the solution validity.
As a summary, the particle swarm model consists of a swarm of particles,

which are initialized with a population of random candidate solutions. They
move iteratively through the d-dimension problem space to search the new solu-
tions, where the fitness f can be measured by calculating the number of condi-
tion attributes in the potential reduction solution. Each particle has a position
represented by a position-vector pi (i is the index of the particle), and a veloc-
ity represented by a velocity-vector vi. Each particle remembers its own best
position so far in a vector p#

i , and its j-th dimensional value is p#
ij . The best

position-vector among the swarm so far is then stored in a vector p∗, and its
j-th dimensional value is p∗j . When the particle moves in a state space restricted
to zero and one on each dimension, the change of probability with time steps is
defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j(t − 1)). (8)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (9)

At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(10) and (11):

vij(t) = wvij(t−1)+c1r1(p
#
ij(t−1)−pij(t−1))+c2r2(p∗j (t−1)−pij(t−1)). (10)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(11)

Where c1 is a positive constant, called as coefficient of the self-recognition com-
ponent, c2 is a positive constant, called as coefficient of the social component. r1

and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,
1]. From Eq.(10), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. The pseudo-code for the
particle swarm search method is illustrated in Algorithm 1..

4 Experiment Settings, Results and Discussions

In this experiment, Genetic algorithm (GA) was used to compare the perfor-
mance with PSO. The two algorithms share many similarities [29,30]. Both
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Algorithm 1. A Rough Set Reduct Algorithm Based on Particle Swarm

01.Calculate U
′
, U

′
pos using Eqs.(4) and (6).

02.Initialize the size of the particle swarm n, and other parameters.
03.Initialize the positions and the velocities for all the particles randomly.
04.While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle,
06. if POS

′
E = U

′
pos, the fitness is punished

06. as the total number of the condition attributes,
06. else the fitness is the number of ‘1’ in the position.
07. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
08. For i= 1 to n
09. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
10. For j = 1 to d
11. Update the j-th dimension value of pi and vi

11. according to Eqs.(10) and (11);
12. Next j
13. Next i
14.End While.

methods are valid and efficient methods in numeric programming and have been
employed in various fields due to their strong convergence properties. In GA, the
probability of crossover is set to 0.8 and the probability of mutation is set to 0.08.
In PSO, self coefficient c1 and social coefficient c2 both are 1.49, and the inertia
weight w is decreasing linearly from 0.9 to 0.1. The size of the population in GA
and the swarm size in PSO both are set to (int)(10+2∗sqrt(D)), where D is the
dimension of the position, i.e., the number of condition attributes. In each trial,
the maximum number of iterations is (int)(0.1 ∗ recnum + 10 ∗ (nfields − 1)),
where recnum is the number of records/rows and nfields is the number of con-
dition attributes. Each experiment (for each algorithm) was repeated 3 times
with different random seeds. If the standard deviation is larger than 20%, the
times of trials would be set to larger, 10 or 20. We consider the datasets in Table
1 from AFS1, AiLab2 and UCI3.

Figs. 1, 2 and 3 illustrate the performance of the algorithms for lung-cancer,
lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer dataset,
the results (the number of reduced attributes) for 3 GA runs all were 10: {1, 3,
9, 12, 33, 41, 44, 47, 54, 56} (The number before the colon is the number of con-
dition attributes, the numbers in brackets are attribute index, which represents
a reduction solution). The results of 3 PSO runs were 9: { 3, 8, 9, 12, 15, 35, 47,
54, 55}, 10: {2, 3, 12, 19, 25, 27, 30, 32, 40, 56}, 8: {11, 14, 24, 30, 42, 44, 45,
50}. For lymphography datasets, the results of 3 GA runs all were 7: {2, 6, 10,

1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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13, 14, 17, 18}, the results of 3 PSO runs were 6: {2, 13, 14, 15, 16, 18}, 7: {1, 2,
13, 14, 15, 17, 18}, 7: {2, 10, 12, 13, 14, 15, 18}. For mofn-3-7-10 datasets, the
results of 3 GA runs all were 7: {3, 4, 5, 6, 7, 8, 9}, the results of 3 PSO runs all
were 7: {3, 4, 5, 6, 7, 8, 9}. Other results are shown in Table 1. PSO usually can
obtain a better result than GA, specially for a large scale problem. although GA
and PSO both got the same results, PSO usually uses only very few iterations,
as illustrated in Fig. 2.
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Fig. 1. Performance of rough set reduction for lung-cancer dataset
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Fig. 2. Performance of rough set reduction for lymphography dataset
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Fig. 3. Performance of rough set reduction for mofn-3-7-10 dataset

Table 1. Datasets used in the experiments

Dataset Size ConditionAttributes Class GA PSO

lung-cancer 32 56 3 10 8
zoo 101 16 7 5 5
corral 128 6 2 4 4
lymphography 148 18 7 6 3
hayes-roth 160 4 3 3 3
shuttle-landing-control 253 6 2 6 6
monks 432 6 2 3 3
xd6-test 512 9 2 9 9
balance-scale 625 4 3 4 4
breast-cancer-wisconsin 683 9 2 4 4
mofn-3-7-10 1024 10 2 7 7
parity5+5 1024 10 2 5 5

5 Conclusions

In this paper, we investigated the problem of finding optimal reducts using a
particle swarm optimization approach. The proposed approach discovered the
best feature combinations in an efficient way to observe the change of positive
region as the particles proceed throughout the search space. We evaluated the
performance of the proposed PSO algorithm with Genetic Algorithm (GA). The
results indicates that PSO usually required shorter time to obtain better results
than GA, specially for large scale problems, although its stability need to be im-
proved in further research. The proposed algorithm could be an ideal approach
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for solving the reduction problem when other algorithms failed to give a better
solution.
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Abstract. Selective attention to visual-spatial stimuli causes decrements
of power in alpha band and increments in beta. For steady-state visual
evoked potentials (SSVEP) selective attention affects electroencephalo-
gram (EEG) recordings, modulating the power in the range 8-27 Hz. The
same behaviour can be seen for auditory stimuli as well, although for au-
ditory steady-state response (ASSR), it is not fully confirmed yet. The de-
sign of selective attention based braincomputer interfaces (BCIs) has two
major advantages: First, no much training is needed. Second, if properly
designed, a steady-state response corresponding to spectral peaks can be
elicited, easy to filter and classify. In this paper we study the behaviour
of Kohonen Maps as feature selector for a selective attention to auditory
stimuli based BCI system.

Keywords: Brain-computer interfaces, Artificial Neural Networks, Self-
Organizing Maps (SOMs), Selective attention, Auditory Steady-state Re-
sponse.

1 Introduction

Many types of BCIs have been developed based on the classification of different
features extracted from EEG recordings. For example, BCIs based on Event-
related brain potentials (ERPs) are one of the most popular. ERPs are indicators
of brain activities that occur in preparation for, or in response to, discrete events
[1]. The P300 is an ERP with a typical latency exceeding 300 ms that shows up
after the stimulus is presented and a cognitive task, typically counting target
stimuli, is performed. One of the reasons for using the P300 in BCI systems is
because it is a large ERP with maximum amplitude in the range of units of
microvolts, big enough to be detected even in single-trial experiments [2]. Other
BCIs are based on the voluntary modulation by the subject of spectral bands,
such as alpha (8-13 Hz), beta (14-20) Hz or theta (5-8 Hz). One of the first BCIs
used the spectral power of alpha band as a feature to extract and classify, based
on the assumption that human beings can easily modify it. Recently, BCIs based
on selective attention to visual stimuli that elicit SSVEP have been developed [3].

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 407–415, 2007.
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The SSVEP is a periodic response elicited by the repetitive presentation of a visual
stimulus, at a rate of more than 6 Hz. SSVEP power extends over an extremely
narrow bandwidth as the periodicity of the response matches that of the stimulus
[4]. The SSVEP amplitude is substantially increased when attention is focused
upon the location of the flickering stimulus and it is more pronounced in recordings
over the posterior scalp contralateral to the visual field of stimulation in the range
8.6-28 Hz [5]. SSVEP based BCIs measure the spectral power at flicker frequency
in order to discriminate whether the stimuli is attended or ignored.

BCIs based on selective attention to auditory stimuli that elicit ASSRs have
not been reported yet. ASSRs are composed of a train of superimposed audi-
tory brainstem responses, that added in phase, conforms an averaged response
with most of the energy located around the frequency of repetition [6] (see Fig.
1). Treatment of ASSRs signals have two major drawbacks: On the one hand the
low amplitude, typically in the range of hundreds of nanovolts, and on the other
hand it is not clear yet the influence of selective attention on signals as auditory
brainstem responses not generated in the cortex. Peripheral effects of selective at-
tention would only occur if the auditory system is ”obliged” to do so adapting for
the most efficient result at the lowest energetic cost [7]. That could happen in a
very noisy environment with a very weak auditory stimulus.

Fig. 1. Rows one to four are simulated potentials evoked during the first 100 msec after
four auditory click stimuli, delayed 25 ms interstimulus, were applied. Last row shows
the averaged sum. ASSRs are generated, in a similar way, as an averaged sum of single
ABRs. This figure has been adapted from [6].

BCIs based on classification of features extracted from EEG recordings have
some problems in common. First, the target features are immerse in low SNR.
That is a weakness as the classification and extraction of the target features is dif-
ficult and not always successful. This issue can be minimized either by using high
energy features with amplitudes in the range of microvolts, or by grand-averaging
many trials as the SNR increases with the number of trials according to equation 1,
where N is the number of trials averaged.
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SNRnew(dB) = SNRoriginal(dB) + 10log10(N) . (1)

Another issue is the low average transfer rate. Currently, a throughput of 27.15
bits/min has been reported for SSVEP based BCIs [8]. In order to improve the
transfer rate a classification based on several features extracted simultaneously
from EEG, or the use of contextual information, when available, have been pro-
posed [9]. A third problem is that EEG signals are not considered to be stationary
and the design of experiments have to bear in mind that the same experiment on
the same subject could produce different results. In order to avoid this problem,
adaptive systems such as ANNs, can be used.

A BCI based on the simultaneous extraction of several high energy features and
its classification by means of an adaptive system seems to be the basis to enhance
performance. This paper shows the use of a Kohonen map as a feature selector.
The features under analysis are spectral power in alpha and beta bands and fre-
quencies of an ASSRs and the possible use in BCIs systems.

The organization of the rest of this paper is as follows: Section 2 describes the
stimuli and the experimental design. Section 3 presents and discuss the results
obtained and finally, in section 4, some final conclusions are stated.

2 Methodology

2.1 Recordings and Stimulation

One male subject, 30 years old, with university studies and normal hearing partic-
ipated in the experiment. The subject remained comfortably sat down in a quiet
testing room, isolated from noise and external disruptions. The subject was en-
couraged to relax and close his eyes in order to reduce the background noise level
when the EEG was being recorded.

The system used for recording was the Geodesic EEG System 200, by Electrical
Geodesic. Each electrode was amplified by 1000. Data was collected at a sampling
rate of 250 Hz, filtered with a low-pass filter of 100 Hz bandwidth and digitized
using 16 bits per sample.

The dense-array Geodesic Sensor Net with 128 channels was inmersed in a con-
tainer of electrolyte and impedance was reported below 5 kOhms. Despite the ref-
erence, commonly named channel 129, is located in the vertex for symmetry rea-
sons, it was changed during analysis off-line to the left mastoid (sensor 57). Once
applied, a test for electrolyte bridge detection was also performed. Fifteen elec-
trodes were used at positions 6, 13, 31, 38, 54, 62, 80, 88, 106, 113, 7, 32, 55, 81,
107 of Geodesic Sensor Net. Ten of those electrodes match the positions FCz, FC1,
C1, CP1, Pz, CP2, C2, FC2, CPz and Cz of standard 10-20 whereas five of them
do not have equivalent positions (see Fig. 2).

The auditory stimuli were presented simultaneously to both ears through insert
earphones at comfortable level, between 50 to 60 dB. Each stimulus consisted of a
carrier, 1kHz for left ear and 2.5kHz for right, 100 per cent amplitude-modulated
(AM) by a pure tone, 38 Hz for left ear and 42Hz for right, applied during 42 to
46 seconds. This kind of stimulus elicits an ASSR with spectral peaks around the
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Fig. 2. On the left: Central top view of electrodes position. In dark circles the electrodes
labelled according to the standard 10-20. In grey the specific electrodes for Geodesic
Sensor Net. The electrodes used for training and evaluation were FCz, FC1 C1, CP1, 54,
Pz, 79, CP2, C2, FC2, 31, CPz, Cz, 7, 106. On the rigth: Geodesic Sensor Net properly
positioned and adjusted. A towel was used to prevent the leak of electrolyte to disturb
the subject.

Fig. 3. Rectification of an AM modulated stimulus in the internal auditory system. It
illustrates that the response to an AM modulated stimulus is a spectral peak at modu-
lating frequency. This figure has been adapted from [11].
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frequencies of the modulating tones [10]. That is the expected behaviour as the
auditory system acts like an envelope detector, similar to an AM demodulator
(see Fig. 3)

In order to facilitate selective attention, the AM modulated stimuli were used
to codify different meaningful, but unknown by the subject, Morse messages. The
subject received some training in Morse before the test was executed.

2.2 Experimental Design

The experiment was performed in 2 sessions with 10 minutes intersession rest
and 10 trials per session. Each trial consists of one question with binary answer
(Yes/No). Each question was displayed on the screen, in front of the subject, for
10 seconds at a comfortable distance and height. Afterwards, two auditory stimuli
as described before were presented simultaneously to both ears. The subject was
instructed to focus attention to stimulus from left ear if the answer was Yes and
ignore the stimulus from right ear. If the answer was No, the subject had to ignore
both stimuli. Due to the design of the stimuli and the experiment, it is expected
to cause two effects during the attended condition: First, an increase of spectral
power in alpha band and a decrease in beta band. Second, enhancement of spectral
power of AM modulating frequency for the left ear (38 Hz), although the second
effect is not truly confirmed yet. Fig. 4 shows data in the frequency domain col-
lected during a trial in electrode Cz. On the left we see the EEG spectrum up to 45
Hz whereas on the right we see the ASSRs with two peaks at both AM modulating
frequencies, 38 and 42 Hz for left and right ears respectively.

As selective attention is an inherent feature of human beings, the subject did
not experiment much difficulty to focus attention to the target stimulus and to
ignore the other one. Only a little training was needed for Morse code. Despite the
subject was told to decode the Morse message each trial, the real purpose of the
message was help the subject to focus attention. Correct decoding of the message
was irrelevant to this experiment.

3 Results

The FFT was computed to measure spectral power in alpha and beta bands and
for the ASSR at frequencies 38 and 42 Hz. Noise levels in weak ASSRs recordings
were reduced increasing the duration of the trials up to 44 seconds. However in or-
der to avoid start-stop problems due to the nature of selective attention, only the
central data of each trial was submitted to Fourier analysis. All collected data dur-
ing both sessions were used to train and evaluate the SOM. Trials with amplitude
bigger than 50 microvolts were rejected, to avoid muscular artifacts.

We used a Kohonen SOM to classify the features. An array of 16-by-16 neurons
was arranged. For training we used data from fifteen electrodes collected along
twenty trials in both sessions. That makes 300 input vectors. Each 4-dimensions
vector is composed of: The spectral power of alpha and beta bands and the two
ASSRs at the frequencies of the AM modulating tones (38 and 42 Hz). Once the
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Fig. 4. On the left: EEG recording in the frequenciy domain where most of the power is
located around the alpha band. On the rigth: EEG amplitude spectrum of two ASSRs
AM modulated at both 38 and 42 Hz. The amplitude of peak at 38 Hz might be modu-
lated due to selective attention in the attended condition. The compared asymmetrical
amplitude of both peaks is not significant as it could correspond to the maximum effi-
ciency of ASSRs around 40Hz but closer to the first peak.

Fig. 5. On the left, neurons showing negative values are activated by an input vector
associated to attended stimulus. Positive values correspond to trials where the stimuli
were ignored. Neurons showing zero value are not activated by any input vector. On the
right the values are represented in grey scale with zero as neutral grey.

net was trained, 150 input vectors randomly picked from both sessions (75 for
attended condition and 75 for ignored) were presented to the network for their
classification. In this way only one neuron is activated for each input vector. As
the number of neurons is greater than the number of vectors, some neurons never
are activated, whereas some other could be activated for more than one input vec-
tor. The idea behind this is to gather input vectors in clusters related to selective
attention and subsequently analyze the values of their components. Fig. 5 shows
the array of 16-by-16 neurons. Neurons in black correspondwith neurons activated
by input vectors related to attended stimuli, whereas neurons in white correspond
to neurons activated by input vectors related to ignored stimuli. Neurons in grey
correspond to neurons not activated by any input vector.
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In order to facilitate visualization of clusters, a simple algorithm was executed
to make grey neurons become white or black making the boundaries clearer (see
Fig. 6). The SOM shows two clusters of approximately the same area, in black and
white, that correspond to the attended/ignored condition respectively. The size
of the areas matches the ratio of attended/ignored trials (50% each). The analysis
of the components of the neurons along the diagonal shows a relation between the
power in alpha band and selective attention according to [14]. Beta seems to have
the same behaviour as Alpha and that is not the expected behaviour. For spectral
power at 38 Hz we see selective attention to enhance level of attended stimulus.
For 42 Hz no clear relations can be assured.

Fig. 6. On the left, the SOM determines two clusters: In black for stimuli attended and
white for stimuli ignored. According to the topology of the SOM, the diagonal represents
the direction of maximum variation in the attended/ignored condition. On the right the
values of the four components along the 16 neurons of the diagonal.

4 Conclusions

In this paper we have presented a study of the behaviour of a Kohonen map used
as feature selection for a selective attention to auditory stimuli based BCI system.
Four different features extracted from EEG were submitted to analysis: The spec-
tral power of alpha and beta bands and the two ASSRs at the frequencies of the
AM modulating tones (38 and 42 Hz).

As it has been reported in previous papers, we have seen evidence of modulation
ofspectralpower inalphaaccordingto [13,14],betabandsandattendedASSRbyse-
lective attention.That is anadvantage forBCI systemsas selective attentionhardly
needs the subject to be trained. However we have to keep in mind that this exper-
iment has been executed only in one subject, hence no closed conclusions can be
stated. We plan to execute the experiment in a more significant number of subjects.

In further studies we will add more EEG features such as the ERPs N100 and
P300 to the four features studied in this paper as they are expected to be highly
influenced by selective attention [15].
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Abstract. Nature has been a continuous source of inspiration for many
successful techniques, algorithms and computational metaphors. We out-
line such a inspiration here, in the context of bio-inspired congestion
control (BICC) algorithms. In this paper a realistic predator-prey model
is mapped to the Internet congestion control mechanism. This mapping
leads to a bio-inspired congestion control scheme. Dynamic and equilib-
rium properties of developed algorithm are good enough according to the
simulation results.

Keywords: Communication Networks, Congestion Control, Biology,
Predator-Prey.

1 Introduction

Biologically inspired approaches have already proved successful in achieving ma-
jor breakthroughs in a wide variety of problems in information technology (IT).
A more recent trend is to explore the applicability of bio-inspired approaches
to the development of self-organizing, evolving, adaptive and autonomous in-
formation technologies. The central aim of this paper is to obtain methods on
how to engineer congestion control algorithms, which have similar high stability
and efficiency as biological entities often have. Several examples are available in
the area of computer technology. The most known examples are swarm intelli-
gence, evolutionary or genetic algorithms, and the artificial immune system. The
adapted mechanisms find application in computer networking for example in the
areas of network security [1,2], pervasive computing, and sensor networks [3].

Previous congestion control research has been heavily based on measurements
and simulations, which have intrinsic limitations. There are also some theoret-
ical frameworks and especially mathematical models that can greatly help us
understand the advantages and shortcomings of current Internet technologies
and guide us to design new protocols for identified problems and future net-
works [4,5,6,7,8,9,10,11,12].

In our previous work [13], a multidisciplinary conceptual framework has been
proposed that provides principles for designing and analyzing bio-inspired con-
gestion control algorithms. We proposed that the biological population control
approaches such as predator-prey is susceptible for mapping to the congestion
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control problem in the Internet. In [14,15] inspiring by predator-prey interaction
we developed a bio-inspired congestion control algorithm (BICC). We discussed
on how a skillful parameters setting can help us to achieve good equilibrium
properties such as fairness and performance. One of the weak points of proposed
algorithm was its dynamic properties such as stability and speed of convergence.
This paper attempts to design another bio-inspired congestion control algorithm
that has better dynamic performance in compare to BICC. This algorithm that
is called RBICC uses principals of a more realistic model of predator-prey inter-
action. RBICC not only inherent some intrinsic characteristics of biology such
as stability and robustness, but also provides us a theoretic and mathematical
framework that we can benefits from its facilities in analysis and development
of the model.

Section 2, briefly explains analogy between the biological environment and
the communication networks. Section 3 presents a methodology for applying the
realistic models of predator-prey mathematical model to the Internet congestion
control scheme. Section 4 presents an illustrative example for the proposed algo-
rithm. The implementation issues for the proposed algorithm will be discussed
in section 5 and we conclude in section 6 with future works.

2 Internet as an Ecosystem Analogy

Consider a network with a set of k source nodes and a set of k destination nodes.
We denote S = {S1, S2, ..., Sk} as the set of source nodes with identical round-
trip propagation delay (RTT), and D = {D1, D2, ..., Dk} as the set of destination
nodes. Our network model consists of a bottleneck link, with capacity of B packet
per RTT, from LAN to WAN as shown in Fig. 1 (left) and uses a window-based
algorithm for congestion control.

We propose that, this network can be imagined as an ecosystem that connects
a wide variety of habitats such as routers, hosts, and etc. We consider this net-
work from congestion control viewpoint and assume that there is some species
in these habitats such as Congestion Window (W), Packet Drop (P), Queue (q)
and link utilization (u). The size of these network elements refers to their pop-
ulation size in Internet ecosystem. Fig. 1 (right) shows the typology of Internet
ecosystem from congestion control perspective. In this ecosystem the species are
interacting and hence, the population size of each species is affected. Let the
population of W in source Si be Wi (congestion window size of connection i). It
is clear that if the population size of this species is increased, then the number
of sent packet would be inflated. Hence, in order to control the congestion in
the communication networks the population size of W (all of the Wis) must be
controlled. This means that the population control problem in the nature can
be mapped to the congestion control problem in the communication networks.
We can use the natural population control tactics for this purpose. Nature uses
many tactics such as predation, competition, parasites and etc to control the
population size of species. In this paper a methodology is proposed to use the
predation tactic to control the population size of W species.
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Fig. 1. Test network (left) and its ecological analogy (right)

Predator-Prey Interaction. This interaction refers to classical predators that
kill individuals and eat them: (1) In the absence of predators, prey would grow
exponentially. (2) The effect of predation is to reduce the prey’s growth rate.
(3) In the absence of prey, predators will decline exponentially. (4) The prey’s
contribution to the predator’s growth rate is proportional to the available prey
as well as to the size of the predator population. (5) A prey carrying capacity
puts a ceiling on the prey population. If r and f represents the number of rabbits
and foxes, then the Lotka-Volterra model [16,17] is:

dr

dt
= ar − brf (1)

df

dt
= crf − hf (2)

Where the parameters are defined by: a is the natural growth rate of rabbits. b
is the death rate per encounter of rabbits due to predation. c is the efficiency of
turning predated rabbits into foxes. h is the natural death rate of foxes in the
absence of food.

One of the unrealistic assumptions in the Lotka-Volterra model (1)-(2) is that
the prey growth is unbounded in the absence of predation. As a reasonable first
step we might expect the prey to satisfy a logistic growth [16,17], say, in the
absence of any predators, has some maximum carrying capacity:

dr

dt
= a

(
1 − r

K

)
r − brf (3)

In which K is the constant carrying capacity for the prey (r) when f = 0.

3 Congestion Control by Realistic Predator-Prey Model

In order to clarify the similarity between TCP/AQM congestion control mech-
anism and predator-prey interaction, we explain the TCP/AQM running on a
network: (1) In the absence of packet drop (P ), congestion window (W ) would
grow. (2) On the occurrence of a packet drop, congestion window size would
decline. (3) Incoming packet rate contribution to packet drop rate growth is
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proportional to available traffic intensity, as well as, the packet drop rate itself.
(4) In the absence of a packet stream, packet drop rate will decline. (5) Bot-
tleneck bandwidth is a limit for packet rate (carrying capacity). We see that
this behavior is so similar to the predator-prey interaction. A similar discussion
can also be carried out to show that the interaction of W and q (queue size) is
also similar to the predator-prey interaction. These similarities motivate us to
use Predator-Prey model to design congestion control scheme: For this purpose
we assume that there are two species P and q that prey the individuals of W
species to control its population size. Note that P and q species are not exactly
the packet drop probability and the queue size. Later we will discuss about their
interpretation in the network context. Since according to the Fig. 1, W contains
k species (W1, W2, ..., Wk), so accordingly suppose that P have also k species
(P1, P2, ..., Pk) in the congested router. To specify a congestion control system,
we can in general postulate a dynamic model of the form

Ẇi = F (Wj , P ricej) i, j = 1, 2, ..., k

˙Pricei = G(Wj , P ricej) i, j = 1, 2, ..., k

Since we adopted predator-prey interaction for population control of W , hence,
the generalized version of realistic predator-prey model of (2) and (3) is used
to drive F and G. In this model k + 1 species P1, P2, ..., Pk and q predate and
control the population size of other k species W1, W2, ..., Wk. This deliberation
leads to the following Bio-inspired distributed congestion control algorithms:

dWi

dt
= Wi

⎛

⎝hi

(
1 − Wi

Bn

)
−

k∑

j=1

bijPj − riq

⎞

⎠ i = 1, 2, ..., k (4)

dPi

dt
= Pi

⎛

⎝
k∑

j=1

cijWj − di

⎞

⎠ i = 1, 2, ..., k (5)

dq

dt
=

⎛

⎝
k∑

j=1

eijWj − m

⎞

⎠ m = Min(B, q +
k∑

j=1

Wj) (6)

In which hi is the growth rate of Wi in the absence of P and q. bji is the decrement
rate per encounter of Wi due to Pj . ri is the decrement rate per encounter of Wi

due to q. di is the decrement rate of Pi in the absence of W . cij and ej are the
efficiency of turning predated Wj into Pi and q respectively. We set Bn = 0.9B,
this means that in the absence of any Pi and q the congestion window i can grow
up to 90 percent of bottleneck bandwidth. Interpret the first term of equation
(4) as follows: when the window size is small then (hi(1−Wi/Bn)) will be large,
pushing up window growth rate. When the window size becomes large then
(hi(1 − Wi/Bn)) will be small, pushing down source rates.
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3.1 Discussion on Behavior and Parameter Setting

RBICC is a unified source/AQM in which the equation (4) refers to source algo-
rithm and the equations (5)-(6) describe the AQM algorithm. Any source that
implements RBICC maintains a variable that we call it ”Price”, as a congestion
measure. This variable is used to adjust sending rate and are updated at the
sources by using the congestion information that is sent by the routers:

Pricei =
k∑

j=1

bijPj + riq (7)

Pis and q are calculated using the equations (5)-(6). The Price is incremented if
the weighted sum of Pis and q is positive and decremented otherwise. When the
number of users increases, Pis and q grow, pushing up Price and hence marking
probability. This sends a stronger congestion signal to the sources which then
reduce their rates. When the source rates are too small, the Pis and q will be
small, pushing down Price and raising source rates, until eventually, the Price
is driven to equilibrium Pis and q. In equilibrium the queue size, the window
size and the Pis should be stabilized and hence, the following conditions must
hold for i=1, 2, ..., k:

(a)
k∑

j=1

bijPj + riq = hi

(
1 − Wi

0.9B

)
(b)

k∑

j=1

cijWj = di (c)
k∑

j=1

eijWj = m (8)

The equations (8) depict the fact that the steady state behavior of the RBICC
is significantly affected by the choice of the control parameters such as bijs, cijs,
ejs, his and dis. Other features such as stability, scalability and convergence time
are also affected by these parameters. In what follows, based on these features
we discuss how a good parameter configuration can help us for achieving better
results. We use the following settings for the parameters of proposed model:

cij = bij , hi = 0.25, di = d = 0.9B/k, r = 0.02, ei = 1wherei, j = 1, 2, ..., k (9)

cii = c1 = 0.9, cij = c2 = (1 − c1)/k ⇒
k∑

j=1

cij = 1 and c1 � c2 (10)

Where k is the number of sources sharing congested link and can be estimated
by some approaches such as in [18]. These settings lead to the following results:

– According to the (8.b) and (10), due to symmetry of cij coefficients, all of
the Wis will be equal to the d in equilibrium (fairness).

– By summing up the equations (8.b) aggregate traffic on the bottleneck link
can be computed as follows:

k∑

i=1

k∑

j=1

cijWj = kdi = 0.9B (11)
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The equation (11) shows that in equilibrium the bottleneck link is utilized
around 0.9. Since in the steady state the input rate is less than true link
capacity and hence, q approaches to zero.

– The ratio of cij/cii indicates the degree of the influence of the connection j
that share the same bottleneck link with connection i. To converge window
size to a positive value despite its share of bandwidth di, it is necessary to
satisfy the condition 0 < cij/cii < 1. Furthermore, smaller cij/cii leads to
faster convergence. Hence, if any cii be several times larger than other cijs
then equations (4)-(6) will be stable. With these discussions any cii must be
several times larger than any cij . These conditions can be hold by (10).

– According to the formal definition of queue dynamics any ei must be set to 1.
Degree of influence of queue length on Pricei is indicated by r. We set r to
0.02.

– According to (5) Pi refers to rate mismatch i.e. difference between input rate
and target capacity (di). Pi can also be an unfairness measure for source i i.e.
Pi is incremented if source i uses more than its fair share of bandwidth (di)
and is decremented otherwise. q refers to queue mismatch and is positive
if there is any waiting packet in queue. Hence the Price is positive when
the input rate exceeds the link capacity or there is excess backlog to be
cleared and is zero otherwise. This is so similar to REM [19] that measures
congestion by incoming traffic rate and queue length.

– It is desirable that in equilibrium Price has a small value that can be realized
by small Pis and q. As mentioned q approaches to zero in equilibrium. So
according to the equation (8.a) Pi will be equal to αhi (αl1) in equilibrium.
This means that hi must be set to a small non-zero value.

3.2 Scalability

When the number of connections is increased, the load on the router is increased
too. Hence this scheme cannot be scalable by number of connections. In order
to solve this problem we outline an approach in which the congested router only
use aggregated and local information to measure congestion and send it to the
sources:

By using the equation (10) we can rewrite the equation (5) as follows.

dPi

dt
= Pi

(
(c1 − c2)Wi +

(1 − c1)
∑

j Wj − 0.9B

k

)
(12)

We assume that k is large enough to regard c1 � c2 and hence, rewrite the
equation (12) as follows:

dPi

dt
= Pi

(
c1Wi +

(1 − c1)
∑

j Wj − 0.9B

k

)
(13)

In order to enable the source i to compute Pi the congested router applies (14)
and computes the Pg by using only local and aggregated information:

Pg =
(1 − c1)

∑
j Wj − 0.9B

k
(14)
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Note that Pg refers to share of any source from rate mismatch in the congested
router. The router also monitors the queue length (q) of the congested link and
then disseminates and q to all of the sources that share the congested link. Any
source i that receives Pg computes new Pi by using the equation (13). Since
c1 � c2, then by an acceptable estimation (if we assume that all of the Pis are
equal) the equation (4) can be rewritten as follows:

dWi

dt
= Wi(hi − Pi − rq) (15)

Regarding these considerations RBICC uses only local and aggregated informa-
tion in the router and in the sources, therefore it is scalable by complexity.

4 Illustrative Example

To study RBICC we apply it to the network of Fig. 1 (left) and consider a four-
connection network that has a single bottleneck link of capacity 50 pkts/RTT
(for example if RTT=20 ms and packet size=1500 Byte then this capacity will
refer to capacity of 30 Mbps). Other links of this network have bandwidth of 100
pkt/RTT. We suppose that all flows are long-lived, have the same end-to-end
propagation delay and always are active. To simulate this network behavior the
parameters of the proposed congestion control system of (4)-(6) are set according
to the (9)-(10) and leads to the following equations:

dW1/dt = W1(0.33(1 − W1/45) − 0.9P1 − 0.033P2 − 0.033P3 − 0.033P4 − 0.02q)

dW2/dt = W1(0.33(1 − W2/45) − 0.033P1 − 0.9P2 − 0.033P3 − 0.033P4 − 0.02q)

dW3/dt = W1(0.33(1 − W3/45) − 0.033P1 − 0.033P2 − 0.9P3 − 0.033P4 − 0.02q)

dW4/dt = W1(0.33(1 − W4/45) − 0.033P1 − 0.033P2 − 0.033P3 − 0.9P4 − 0.02q)

dP1/dt = P1(0.9W1 + 0.033W2 + 0.033W3 + 0.033W4 − 11.25)

dP2/dt = P2(0.033W1 + 0.93W2 + 0.033W3 + 0.033W4 − 11.25)

dP3/dt = P3(0.033W1 + 0.033W2 + 0.9W3 + 0.033W4 − 11.25)

dP4/dt = P4(0.033W1 + 0.033W2 + 0.033W3 + 0.0W4 − 11.25)

dq/dt = (W1 + W2 + W3 + W4 − Min(q + W1 + W2 + W3 + W4, 50))

Considering the following initial state we use Matlab 7.1 to solve this system.
P1(0) = P2(0) = P3(0) = P4(0) = 0.1, q(0) = 1, W1(0) = 1, W2(0) = 2,
W3(0) = 4, W4(0) = 6

The simulation results of this congestion control system are shown in figures
(2)-(5). In order to reference to the results of these figures, we note that: 1.
Utilization: According to the Fig. 3, after the startup transient of the sources,
utilization of bottleneck link remains always over the 90 percent that is good
enough.



Nature-Inspired Congestion Control 423

Table 1. Average of Wis and Pis

Traffic sources Source 1 Source 2 Source 3 Source 4

Mean of Wi 11.26 11.26 11.26 11.26
Mean of Pi 0.231 0.231 0.231 0.231

Fig. 2. Evolution of congestion windows size (Wis)

2. Fairness: At each equilibrium stage, the bandwidth is shared equally among
sources despite their heterogeneous initial state (max-min fairness [20,21]). Table
1 shows this equality.

3. Queue evolution: As can be found in Fig. 3 the queue size is zero in equilibrium
and around 3 packets in transient. This means that queuing delay and jitter is
negligible. This figure shows that if we set the queue size of the congested router
around 10 packets then there won’t be any packet loss.

4. Stability and speed of convergence: As we can see in Fig. 2, Fig. 3, Fig. 4,
and Fig.5, the source rates, queue size and the Pis has decreasing oscillation
level and track stable behavior. In steady state, there is no oscillation, and the
speed of convergence to this steady state is more than BICC algorithm. Part of
the results of BICC that had been developed based on the equation (1)-(2) is
shown in Fig. 6. Comparison of results shows that RBICC have better dynamic
performance.

Simulation results show that speed of convergence for aggregate rate is more
than any individual source. This is due to global coordination between the send-
ing sources.

5 Implementation Issues

The following algorithm summarizes the implementation process and addresses
the implementation issues of RBICC.
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Fig. 3. Aggregate load and queue size in congested router

Fig. 4. Evolution of Pis

Fig. 5. Phase-plane trajectories for stability analysis

Fig. 6. Evolution of W1 and aggregate load in BICC
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Congested router’s algorithm:
At time RTT, 2RTT, 3RTT, ... congested router:

1. Receives Ws packet from all of the sources that goes through bottle link l.
2. Computes the new Pg and q for all of the sources that use link l:

Pg =
(1 − c1)

∑
j Wj − 0.9B

k
and

dq

dt
= (

k∑

j=1

eijWj − m)

3- Computes marking probability ppg and pq through

pq = 1 − Φ−q and ppg = 1 − Φpg (Φ > 1)

Note that according to (14), Pg is non positive but q is positive always, so 0 ≤ ppg

and pq ≤ 1.
4- Uses two ECN bits [22] to communicate new Pg and q to all of the sources
that use link.

Source i’s algorithm:
At time RTT, 2RTT, 3RTT, ... source i:
1- Receives from the congested router marked packets and computes ppg and pq.
2- Extract from marking statistics the Pg and the q then computes Pi.
pg = logφ(1 − ppg), q = −logφ(1 − pq), dPi

dt = Pi(c1Wi + pg)
3- Choose a new window size for the next period:
dWi

dt = Wi(hi − Pi − rq)

The exponential form of the marking probability is critical in a large network.
When and only when, individual link marking probability is exponential in its
link price, this end-to-end marking probability will be exponentially increasing
in the sum of the link prices at all the congested links in its path [19].

6 Conclusion Remarks

In this paper we have used a model based on predator-prey interaction to design
a congestion control mechanism in communication network. We used a realistic
predator-prey model and have seen that with some consideration on parame-
ters, this model leads to a stable, fair and high performance congestion control
algorithm. The dynamic performance of this algorithm is better than the pre-
vious works. A number of avenues for future extensions remain. First this work
needs some analytical foundations. Second, with mathematical characterization
of network objective such as fairness, stability and etc. we can use mathematical
rules for definition of parameters of purposed model to achieve well-designed
communication network.
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Abstract. In this work we present a new proposal in order to model the
probability distribution in the estimation of distribution algorithms. This
approach is based on using dependency networks [1] instead of Bayesian
networks or simpler models in which structure is limited. Dependency
networks are probabilistic graphical models similar to Bayesian networks,
but with a significant difference: they allow directed cycles in the graph.
This difference can be an important advantage because of two main rea-
sons. First, in some real problems cyclic relationships appear between
variables an this fact cannot be represented in a Bayesian network. Sec-
ondly, dependency networks can be built easily due to the fact that there
is no need to check the existence of cycles as in a Bayesian network.

In this paper we propose to use a general (multivariate) model in order
to deal with a richer representation, however, in this initial approach to
the problem we also propose to constraint the construction phase in
order to use only bivariate statistics. The algorithm is compared with
classical approaches with the same complexity order, i.e. bivariate models
as chains and trees.

1 Introduction

Estimation of distribution algorithms (EDAs) [2] are, as genetic algorithms [3],
a kind of evolutionary metaheuristics. Instead of using crossover and mutation
operators EDAs are based on learning a probability distribution over the vari-
ables in the problem representation1 and sampling that distribution in order to
get the next population. Then the key point in an EDA is to estimate the joint
probability distribution pl(x) in each iteration l. Obviously this is a NP-hard
problem as soon as the number of variables increase, so we need to simplify
this problem by factorising the distribution according with the (in)dependencies
observed in the variables or genes codified in the current population. Depend-
ing on the type of dependencies allowed we have models of different complexity.
The simplest EDA is perhaps the UMDA algorithm [4] (Univariate Marginal

1 Although EDAs can deal with different representations in this paper we only used
the binary case.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 427–436, 2007.
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Distribution Algorithm) which does not consider any kind of dependencies be-
tween the variables, i.e, the joint distribution is codified as the product of the
marginal distributions. More complex proposals only consider pair-wise depen-
dencies, e.g. MIMIC [5] (Mutual Information Maximization for Input Clustering)
and COMIT [6] (Combining Optimizer with Mutual Information Trees). Finally
the richest models are those in which multivariate dependencies are allowed. In
that case the usual choice is to use a Bayesian network [7] to factorise the joint
distribution. A representative algorithm from this group is EBNA [2] (Estima-
tion of Bayesian Network Algorithm). The disadvantage of multivariate models is
the computational complexity of the learning phase. Besides, in some problems,
simpler models performs similar to multivariate models.

In this work we propose the use of a multivariate probabilistic model in the
sense that the number of dependencies are not limited a priori, but we build it as
an approximation, based on an heuristic expression, in which only second order
statistics are used (as in bivariate models), thus we maintain quadratic com-
plexity. As we will discuss later the use of dependency networks makes possible
this approximation in an easy way, on the contrary as it happens with Bayesian
networks.

This paper is organized as follows. In the next section dependency networks
are described, and in section 3 we expose our proposal for building the multi-
variate probabilistic model with a dependency network. In section 4 we preset
some experiments and their results in order to evaluate the proposed method at-
tending to convergence and scalability criteria. Finally, in section 5 we conclude
with some remarks and the outline of future research in this topic.

2 Probabilistic Graphical Models: Dependency Networks

Dependency networks (DNs) were proposed by Heckerman et al. [1] as an alter-
native to Bayesian networks (BN). They can be defined as a tuple (G,P) over a
domain X where G is a directed graph (not necessarily acyclic) and P is a
set of conditional probability distributions, one for each variable in X. Every
P ∈ P must be such that P (Xi|Pai) = P (Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn) =
P (Xi|X \ Xi). This means that the set of parents Pa(Xi) for every variable Xi

is its Markov blanket MB(Xi).
For example, if we consider a domain with three variables (Age, Gender and

Income) and they are represented by the Bayesian network shown in the figure
1(a), then the DN for the same domain must be the one in figure 1(b).

This definition requires consistency in the sense that the joint probability
distribution for X can be exactly recovered from P. This is a very restrictive
condition for automatic learning so in [1] the authors defined general dependency
networks in order to relax the factorization: P (X) ≈

∏
P (Xi|Pai).

It can be observed that a DN can be learned from data by independently
learning the parent set for each variable, which quickly lead to the design of par-
allel learning algorithms. The fact of allowing directed cycles, although enlarges
the representation issue has the disadvantage of avoiding the use of traditional
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Age Gender

Income

(a)

Age Gender

Income

(b)

Fig. 1. Example of a Bayesian and a dependency network for the same domain

BNs exact inference algorithms. In this case, Heckerman et al. in [1] propose to
use approximate inference carried out by using Gibbs sampling [1]. Sampling is
usually carried out in graphical models based EDAs by using probabilistic logic
sampling. In the case of using DNs this method cannot be applied because it
needs a topological ordering of the network variables and such an ordering can
not be assured in a DN. On the other hand, Gibbs sampling does not require
such an ordering so this will be the sampling method used in our proposal.

3 EDNA: Estimation of Dependency Networks Algorithm

In this section we present EDNA, our estimation of distribution algorithm which
is based in the use of a dependency network to model the relation among the
variables. As mentioned before, consistence condition is too strict and so we
propose the use of general DNs, because although they introduce a new level of
approximation, the resulting model is enough expressive for our goals.

EDNA fits perfectly in the canonical EDAs framework, so we only specify the
two main steps related with the probabilistic model: learning and simulation. In
the learning phase EDNA runs over all the variables and looks for the parent set
of the considered variable. This process can be done in parallel and consists in the
identification of the more relevant variables with respect to the considered one.
In our proposal the degree of dependence between variables is measured by using
mutual information (MI), which is an usual measure. As an initial approach we
can think about including as parents of Xi all those variables {Xj} such that
I(Xi, Xj) is greater than a given threshold. However, this procedure could lead
to overfitting because it is possible that a variable Xk selected as parent for Xi

makes unnecessary the inclusion of some other variables in the parent set even
if they pass the threshold. Because of this we propose an alternative approach
that consists in looking for the parent set of Xi in an iterative way. Thus, in
each step the algorithm looks for the variable Xj with highest MI with respect
to Xi, but having a small degree of relation with the current parents of Xi, that
is, I(Xi; Xk|Pai) is small. However, computing this multivariate statistics can
be computationally expensive, and given the philosophy of this initial approach,
we propose to measure this relationship between variables by using the following
(heuristic) approximation:
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I(Xi; Xj) −
∑

Xp∈Pai
I(Xp; Xj)

|Pai| + 1
.

In this way we try to take into account the current parents, concretely the average
MI between Xj and the variables already included in the parent set. Thus, if the
previous expression returns a negative value it could be interpreted as Xj does
not give new information about Xi and so it is rejected as a candidate parent
for Xi. For those candidate parents such that the previous expression returns a
positive value we act greedily and the one with greater value is selected.

In this way we try to make an approximation of a multivariate model by using
only second order statistics. Notice that this bivariate approximation can not be
directly applied to Bayesian networks because it could introduce cycles.

Figure 2 shows the pseudo-code of the described process:

For each va r i ab l e Xi ∈ X
Pai = ∅ // Parents o f v a r i ab l e Xi

candi = X − {Xi} // Candidate parents f o r Xi

While candi �= ∅
For each Xj ∈ candi a s s e s s i t by

I(Xi; Xj) −
�

Xp∈Pai
I(Xp; Xj)

|Pai| + 1
Let Xmax the v a r i ab l e with best assessment
I f Xmax has p o s i t i v e assessment Then

Pai = Pai

�
Xmax

candi = candi − Xmax

For each Xc in candi with negat iv e assessment
candi = candi − Xc

Else candi = ∅

pl(x) ∼
�n

i=1 pl(xi|Pai)

Fig. 2. Pseudo-code for estimating the population’s joint probability distribution by
using a dependency network-based factorization

With respect to the simulation phase in order to generate the new population
we use Gibbs sampling because of the reasons commented above. As it is well
known Gibbs sampling need positive conditional probability distributions to as-
sure convergence, so Laplace correction is used during probabilities estimation.
Also, there is two more parameters related with Gibbs sampling, both related
with the idea of avoiding the correlation or dependence between samples: the
burning time, i.e. the number of samples that are discarded at the beginning
of the sampling process; and the latency, that indicate the number of samples
discarded between each two valid samples.
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Concerning implementation, this algorithm has been coded by using LiO2,
a metaheuristics library developed in our group [8]. Also the rest of algorithms
used in this paper for comparison have been coded using LiO, which have similar
complexity and they are an univariate algorithm (UMDA) and two bivariate
algorithms whose structure is respectively a chain (MIMIC) and a tree (COMIT).

4 Results

In this section we present our experiments that are focused in the analysis of
two aspects: (1) convergence reliability, i.e. the number of times in which the
algorithm achieves the optimum; and (2) scalability, defined as the ability of
maintaining the algorithm performance as the dimension of problem grows.

In order to be able to drawn significant conclusions we have perform 50 inde-
pendents runs for each problem, and in the i-th run the same initial population
was used for all the algorithms considered. As stopping criterion we set a maxi-
mum of 105 evaluations. Population size is set to 10n individuals, where n is the
problem size or dimension, and only the (best) half population is used to learn
the model. In the simulation phase (Gibbs sampling) we set the burning samples
as the double of the number of variables and the latency is set to 1. After the 50
runs, and in order to assess our conclusions we carry out a parametric statistic
test. We chose a paired test because the results obtained in each generation by
each algorithm came from the same initial population.

With respect to scalability, the dependence between the performance of the
algorithm and the dimensionality of the problem is measured as the number of
iterations needed to reach the optimum value of the considered problem. The
experimental settings is the same as for the convergence analysis, but in this
case the population size is set to 100, we only perform 30 runs and five different
problem dimesion for each case are considered. For each model and each setting
(problem plus dimesion) we only consider those runs in which the optimum
fitness is reached, then the 10 best results (less iterations) are selected in order
to compute the average number of required iterations.

Regarding the test suite we have selected some problems that have been ex-
tensively used in the literature: OneMax, Plateau, CheckerBoard, Fc4 and Fc5
[2], and random decomposable problems [9], which are described as follows:

4.1 Test Functions

Function OneMax. This function is well known and implements a simple
linear problem. It can be written as

FOneMax(x) = u(x) =
n∑

i=1

xi.

2 http://www.dsi.uclm.es/simd/SOFTWARE/LIO/
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The target is maximize the function FOneMax with xi ∈ {0, 1}. The global
optimum is therefore equal to n, the problem size, and it is represented by an
individual in which all components are one (1, 1, . . . , 1)

Function Plateau. This problem was proposed in [10]. Here each individual is
a vector with size n, such that n is multiple of 3, n = m × 3. In order to define
this function is needed to use another auxiliary:

g(x1, x2, x3) =
{

1 if x1 = 1 y x2 = 1 y x3 = 1
0 otherwise

Then the Plateau function is defined as:

FPlateau(x) =
m∑

i=1

g(si)

where si = (x3i−2, x3i−1, x3i). The target is maximize this function too, that has
the same best individual than the former with value m.

CheckerBoard function. This problem [11] defines a matrix of s×s positions
with values 0 or 1. The target is make in this matrix a chess table in which
white and black cells are substituted by ones and zeros. In each position where
there was a 1 it must be surrounded by zeros in the four basic directions, and
vice versa. The positions in the borders are no taken into account. The optimum
value is 4(s − 2)2, and the problem size is n = s2. Considering the matrix as
x = [xij ]i,j=1...,s, and δ(a, b) as the delta Kronecker function, the Checkerboard
function can be written as:

FCheckerboard(x) = 4(s − 2)2 −
s−1∑

i=2

s−1∑

j=2

{δ(xij , xi−1j) +

+ δ(xij , xi+1j) + δ(xij , xij−1) + δ(xij , xij+1)}

Deceptive functions. Here are presented the functions Fc4 y Fc5 which are
two examples of deceptive functions proposed in [12]. They are decomposable
and have overlapping beetwen adjacent components. The problem size, in both
cases, is n, which is defined based on the number of subproblems m of size 5.
Before it is needed to define some auxiliary functions.

F 3
cuban1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.595 if x = (0, 0, 0)
0.200 if x = (0, 0, 1)
0.595 if x = (0, 1, 0)
0.100 if x = (0, 1, 1)
1.000 if x = (1, 0, 0)
0.050 if x = (1, 0, 1)
0.090 if x = (1, 1, 0)
0.150 if x = (1, 1, 1)

F 5
cuban1(x) =

⎧
⎨

⎩

4F 3
cuban1(x1, x2, x3) if x2 =x4

& x3=x5

0 otherwise

F 5
cuban2(x) =

⎧
⎨

⎩

u(x) if x5 = 0
0 if x1 = 0 & x5 = 1
u(x) − 2 if x1 = 1 & x5 = 1
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Fc4 function

Fc4(x) =
m∑

j=1

F 5
cuban1(sj)

where sj = (x4j−3, x4j−2, x4j−1, x4j , x4j+1), and the problem size is n = 4m+1.

Fc5 function

Fc5(x) = F 5
cuban1(s1) +

(m−1)/2∑

j=1

(
F 5

cuban2(s2j) + F 5
cuban1(s2j+1)

)

where sj = (x4j−3, x4j−2, x4j−1, x4j , x4j+1), and the problem size is n = 4m+1.

Random decomposable problems. We use this kind of problems defined in
[9]. In this work it is presented an algorithm in order to generate instances for
decomposable problems, i.e. they can be written as sum of subfunctions, and
with the possibility that they have overlapping beetwen subchains. We use some
pre-generated instances which can be got, as well as the source code for the
generator, as is shown in [13]. This instances are identified by three numbers.
The first tells the problem size (parameter n), the second tells the long of each
subchain (parameter k), and the third tells the quantity of overlap beetwen
subchains (parameter o). If m is the number of subchains,then the relation among
these parameters is:

n = k + (m − 1) ∗ (k − o)

4.2 Convergence

In order to get a good analysis of convergence we have chosen three complex
problems: Fc4, Fc5 and some instances of the random decomposable problems.
For Fc4 and Fc5 we have considered three configurations with 5, 7 and 10
subproblems, and for random decomposable problem we have chosen 6 instances
with different size and overlap. So, we test the algorithms over 12 cases.

The results obtained for these experiments are shown in table 1, where the
best value for each configuration is highlighted in bold face and a • symbol is
used to mark those results having no statistical difference with respect to the
best one according to the Student’s paired t-test used (α = 0.05).

In these tables we can see that, even for only one problem, the best model is
not always the same. As it is logical, the univariate model shows the worst results
because it is the simpler one. Nonetheless the other three are quite similar, in
almost all cases we can say the three model are statistically similar, although we
can say also that the tree model is slightly better because shows the best values
in 8 of 12 considered cases. In any case, with these results we can say that our
model is at least as good as the other models analyzed, and despite trying to be
more complete by considering multivariate dependencies, it does not introduce
more computational complexity.
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Table 1. Convergence results for the problems FC4 (a), FC5 (b) and DP (c)

m=5 m=7 m=10

Univariate 13.56 18.33 25.48

Tree •13.59 18.39 25.57
Chain •13.59 •18.38 •25.57
DN 13.59 •18.38 25.56

m=5 m=7 m=10

Univariate •14.77 20.18 28.44

Tree •14.79 20.18 28.58
Chain 14.80 •20.18 •28.57
DN •14.80 •20.18 •28.57

(a) (b)

22 4 2 31 4 1 40 4 0 42 4 2 61 4 1 80 4 0

Univariate 8.16 8.57 8.93 16.51 17.62 18.23

Tree 8.26 8.71 9.06 16.91 17.83 •18.46
Chain •8.26 •8.71 9.07 •16.84 •17.82 18.46
DN •8.25 •8.70 9.06 16.77 •17.83 •18.46

(c)

4.3 Scalability

With respect to scalability we have selected a different set of problems: Checker-
Board, OneMax and Plateau. These problems are simpler than those selected
in the previous section, but in this way the algorithms will be able to reach
the optimum value and it can be assessed the effort in terms of the number of
required iterations. The results obtained are shown graphically in the figure 3.

From these results we have to stand out that the slope of the line representing
our model is always very low, specially for the more complex problem: Checker-
board. The univariate model shows a good scalability in OneMax and Plateau,
that are easier, but its performance heavily decreases for CheckerBoard. The tree
model shows the opposite behavior, i.e., it is good for CheckerBoard but not as
good as our proposal. Finally, the chain model is comparable to the model with
DN for OneMax, but is worse in the others.

5 Conclusions and Future Work

In this work we introduce dependency networks as a probabilistic model valid for
the estimation of distribution algorithms. At a first glance, DNs main advantage
is their ability for modeling cyclic relationships between the individual compo-
nents or variables. Furthermore the construction of models based on dependency
networks can be simpler, specially compared with model based on Bayesian net-
works. These two advantages make interesting the use of dependency networks,
nonetheless we have tried to show its usefulness with some empirical results.

Here we have presented a multivariate-model EDA but with limited com-
putational complexity so only second statistics are used to approximate the
multivariate model. Our proposal is compared with other known models with
similar complexity. Attending the experiments carried out we can conclude that
EDNA has similar convergence propierties than UMDA, COMIT and MIMIC
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Fig. 3. Evolution of the needed iterations to reach the optimum value by each model
for the problems Checkerboard (a), OneMax(b) and Plateau(c)

but behaves better with respect to scalability. So, from a global analysis we can
say that this model based on DN should be take into account as a good choice.

As this work constitutes a starting point in this research line, we can expect
huge room for a future work. As an example of future research a way to improve
the results keeping the complexity of the model is to study alternative ways to
the heuristic used here, e.g. by using the approximation presented in [14]. Other
option could be to build the model without complexity restrictions and then
compare its results with algorithms like EBNA.
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Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

{jcouchet,dmanrique,lporras}@fi.upm.es

Abstract. This article proposes a context-free grammar to be used in
grammar-guided genetic programming systems to automatically design
feed-forward neural architectures. This grammar has three important fea-
tures. The sentences that belong to the grammar are binary strings that
directly encode all the valid neural architectures only. This rules out the
appearance of illegal points in the search space. Second, the grammar has
the property of being ambiguous and semantically redundant. Therefore,
there are alternative ways of reaching the optimum. Third, the grammar
starts by generating small networks. This way it can efficiently adapt to
the complexity of the problem to be solved. From the results, it is clear
that these three properties are beneficial to the convergence process of
the grammar-guided genetic programming system.

Keywords: context-free grammar, grammar-guided genetic program-
ming, feed-forward neural architecture, ambiguity, semantic redundancy.

1 Introduction

Evolutionary computation (EC) is the study of computational systems that bor-
row ideas from and are inspired by natural evolution and adaptation. EC’s pri-
mary aims are to understand the mechanism of such computational systems and
to design highly robust, flexible and efficient algorithms for solving real-world
problems that are generally very difficult for standard methods to deal with. EC
could be divided into four branches [1]: evolution strategy, evolutionary program-
ming, genetic algorithm and genetic programming. All the approaches used in
EC employ a population-based search with reproduction, mutation and selection
to find better solutions.

Grammar-guided genetic programming (GGGP) is an extension of traditional
genetic programming (GP) systems whose goals are to simplify the search space
and solve the closure problem [2]. This problem involves always generating valid
individuals (points or possible solutions that belong to the search space). To
solve the closure problem, GGGP employs a context-free grammar (CFG), which
establishes a formal definition of the syntactical restrictions of the problem to
be solved and its possible solutions. Each of the individuals handled by GGGP
is a derivation tree that generates and represents a sentence (solution) belonging
to the language defined by the CFG.
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One of the main fields of artificial intelligence research is the development of
self-adaptive systems that are capable of transforming in order to solve different
problem types. The properties of learning by examples, generalizing to unseen
data, and noise filtering make feed-forward neural networks applicable to a wide
variety of real-world tasks [3]. Despite the advantages of these networks, the
design of the neural architecture for a particular application is typically governed
by heuristics mainly due to the size and complexity of the available design space.

Feed-forward neural architectures can be evolved using evolutionary compu-
tation. The two most commonly used techniques are: genetic programming [4]
and genetic algorithms [5]. In the field of genetic programming, there have been
several approaches to efficiently codify neural networks as genotypes. An at-
tribute grammar was proposed to encode the neural design principles, as well as
structural and behavioural elements [6]. This approach provides mechanisms to
automatically translate the grammar parse trees into complete neural network
specifications in an XML-based format termed the Generic Neural Markup Lan-
guage. The main disadvantage of this approach is that it is too complex. It can
be inefficient for complex problems with an extensive search space.

As regards genetic algorithms, there are several research works on the evolu-
tion of network architectures. A new technique has been presented for incorpo-
rating human-generated advice in real time in the neural evolution of a network
[7]. The advice is given in a formal language, and a recursive algorithm converts
this into its equivalent neural network structure. The rtNEAT neuroevolution
method [8] then incorporates the advice into existing networks by evolving net-
work weights and topology. The rtNEAT encodes the network in a genome that
includes a list of connection genes, each of which specifies two connected node
genes and the weight on that connection. Other techniques explicitly separate
design and training, introducing two interconnected genetic algorithms that work
in parallel [9]. In this case, the design of the neural architectures uses the basic
architectures codification method, while the training process employs a real-
valued codification. The main drawback of this approach is the fixed length of
the codification, which is inadequate when the optimal solution is a small-sized
neural architecture.

This paper presents an ambiguous context-free grammar with semantic re-
dundancies as an efficient alternative for encoding all the possible valid one
hidden-layer feed-forward neural networks with any number of input and output
neurons and direct connections from the input layer to the output layer. Encod-
ing only one-hidden layer is not a limitation because this type of neural networks
can approximate any function with an arbitrary error [10]. The proposed gram-
mar is used in a grammar-guided genetic programming system with the genetic
operator grammar-based crossover (GBX) [11] to automatically generate neural
architectures. The performance of such a system can be improved by using am-
biguous grammars with semantic redundancies [12]. Semantic redundancy also
leads to a many-to-one mapping between the genotype and phenotype. It is
suggested that the Non Free Lunch Theorem [13] is not valid due to this non-
uniform many-to-one mapping between the description of an object and the
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actual object [14]. Experimental lab tests have been run and compared to the
attribute grammar and basic architectures encoding method, showing that the
proposed approach performs better. The system has also been successfully ap-
plied to a real-world problem: breast cancer diagnosis. Compared to the prognosis
given by expert radiologists in the subject, accuracy is good.

2 The Proposed Context-Free Grammar

A context-free grammar G is a 4-tuple G = (S, ΣN, ΣT, P ), where S ∈ ΣN is the
start variable or axiom, ΣN is a finite set called the variables or non-terminal
symbols, ΣT is a finite set, disjoint from ΣN, called the terminals and P is a
finite set of production rules, with each rule being a non-terminal and a string
of non-terminals and terminals. If u, v, and w are strings of non-terminals and
terminals, and A → w is a grammar rule, it is said that uAv yields uwv, written
uAv ⇒ uwv. Say that u derives v, written u ⇒∗ v, if u = v or if a sequence
u1, u2, · · · , uk exists for k ≥ 0 and u ⇒ u1 ⇒ · · · ⇒ uk ⇒ v. The language of the
grammar is {w ∈ Σ∗

T |S ⇒∗ w}.
Equation 1 shows the proposed ambiguous context-free grammar capable of

generating one-hidden layer feed-forward neural networks architectures with I
input neurons, i1, · · · ip, · · · , iI , O output neurons, o1, · · · or, · · · , oO, an indeter-
minate number of hidden neurons D, d1, · · ·dq, · · · , dD, and direct connections
from the input to the output layers. The sentences that belong to the grammar
are binary strings that encode the neural architectures.

GI,O = (S, ΣN, ΣT, PI,O) with:
ΣN = {S, L, R, H, A, Z, B}
ΣT = {0, 1} (1)
PI,O = {S → LR|R , R → BI·O , L → LH |H , H → AZ , B → 0|1 ,

A → 1BI−1|B1BI−2| · · · |Bj1BI−1−j| · · · |BI−21B|BI−11 ,
Z → 1BO−1|B1BO−2| · · · |Bj1BO−1−j| · · · |BO−21B|BO−11} .

Where the production rule α → β means that α yields a string composed of s
symbols β.

Architectures are encoded directly: each connection is represented explicitly
as a binary digit. The codification schemes differ depending on whether the
connections are with a hidden layer or direct connections between input and
output. Given a neuron di of the hidden layer, this can have up to a maximum
of I connections with the input layer and O with the output layer. Therefore, a
string of I + O bits represents the state of the connections of di, where 1 or 0
respectively indicate the presence or absence of a connection.

The connections of the hidden neurons are generated by the rule L → LH |H .
The recursiveness of the rule can generate strings of non-terminal symbols H
of indeterminate length D, which match architectures of D hidden neurons.
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The non-terminal H placed in the qth position generates a binary substring that
represents the state of the connections of the hidden layer neuron dq to the input
and output layer neurons. The rule H → AZ produces this state of connections.
The non-terminal A generates all the possible connections I to the input neurons
through the rule A → 1BI−1|B1BI−2| · · · |BI−11, where each non-terminal B
yields 1 or 0 through rule B → 1|0. The bit placed in position p represents the
existence or otherwise of a connection between dq and ip. Similarly, the non-
terminal Z encodes the possible O connections of the hidden neuron dq with the
output neurons o1, · · · , or, · · · , oO through rule Z → 1BO−1|B1BO−2| · · · |BO−11.

For an architecture to be valid, a hidden neuron should be connected at the
same time to an input layer neuron and output layer neuron or not be connected
to any other. More formally, if there exists a connection between ip and dk,
then there also exists another connection between dk and or. The proposed
grammar assures this behaviour by entering terminal 1 in the right-hand side of
all productions whose left-hand sides are the non-terminals A and Z.

The direct connections between the input and output layers are generated by
the rule D → BI·O. Given a neuron or of the output layer, there are a maximum
of I connections with I input neurons, where a string of I bits is necessary to
represent its state of connections. Generalizing for O output neurons, a string
of I · O bits is needed to represent the state of all its possible connections.
Each string is the one generated with the I · O non-terminal symbols B of
the production rule D → BI·O. The rth substring of length I bits represents
the state of connections of or. So, the pth position within the rth substring
encodes the connection between or and ip. This production is also employed
to generate the null architecture, which is encoded as a string of I · O zeros
(S → D; D → BI·O; B → 0).

G3,2 = (S, ΣN, ΣT, P3,2) with:
ΣN = {S, L, R, H, A, Z, B}
ΣT = {0, 1} (2)
P3,2 = {S → LR|R , R → BBBBBB , L → LH |H , H → AZ ,

B → 0|1 , A → 1BB|B1B|BB1 , Z → 1B|B1} .

Equation 2 is an example of an instance of the proposed grammar for gener-
ating architectures with any number of neurons in the hidden layer (D), three
inputs (I=3) and two outputs (O=2). On the left-hand side of Fig. 1 is one of
the possible sentences generated by the grammar defined earlier that encodes
the neural architecture shown on the right-hand side.

The substring 11011 at the start of the sentence encodes the hidden neuron
connections d1 with the input and output layers. The first three bits 110, labeled
as Input, encode the connections with the input neurons: the first 1 indicates
that d1 is connected with i1, the second that d1 and i2 are connected and the
third digit set to zero that there is no connection between d1 and i3. Similarly,
the following substring 11, labeled as Output, represents the connections of d1

with the output neurons o1 and o2.
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Fig. 1. Neural architecture codification with I = 3, D = 2 and O = 2

The grammar is ambiguous because it generates sentences that have more
than one derivation tree. Figure 2 shows two possible derivation trees for the
sentence in Fig. 1.

Fig. 2. Two of the possible derivation trees that parse the sentence 1101100101100001

The proposed grammar is not only structurally ambiguous, but it is also se-
mantically redundant: different sentences (binary strings) encode the same archi-
tecture. For example, the sentence 0010111011100001 generates a neural network
whose architecture is equivalent to the one shown in Fig. 1. The difference be-
tween them is that the position of the two hidden neurons d1 and d2 has been
swapped.

3 Neuroevolution System

The neuroevolution system responsible for automatically building the general-
ized feed-forward neural networks is composed of two modules as shown in Fig.
3: design module and training module. The design module works on the set of
all possible valid neural architectures and makes use of a GGGP system to find
the best. The input for the module is the number of input and output neurons
needed to solve a given problem. These parameters are used to instantiate (1) and
generate the grammar then used by the GGGP system. The initial population
in the GGGP is generated randomly. The initialization method starts from the
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Fig. 3. Neuroevolution system

grammar axiom and randomly continues with the non-terminal symbols of the
right-hand sides of the productions executed until no more non-terminal sym-
bols are obtained. The crossover operator is the GBX, which assures an offspring
composed of valid individuals, prevents code bloat and provides a satisfactory
trade-off between the search space exploration and the exploitation capabilities.
The mutation operator is implemented randomly selecting an individual node
for mutation. The subtree with the selected node as a root is then deleted, and
the initialization method is used to generate a new subtree with the same root.
Tournament is employed for selection and SSGA is the replacement method. The
settings used for the GGGP system are: 75% crossover, 20% straight reproduc-
tion, 5% mutation and a tournament size of 7.

The fitness function used in the GGGP system is shown in (3). This function
combines two criteria for evaluating an individual: its effectiveness, expressed as
its mean square error (MSE), and its efficiency, expressed as a function of the
number of network connections (CA). Both are weighted by a factor α ∈ [0, 1]
which can be used to adjust the level of importance.

F = α · MSE + (1 − α) · CA . (3)

The training module adapts the weights of the connections for a given network
by means of the enhanced back-propagation (EBP) method with a learning factor
of 0.1 and 0.85 of momentum. Its input is a sentence (binary string) generated
by the GGGP system. It decodes this input in its respective neural architecture
and trains it using EBP, returning its fitness to the GGGP system.

4 Results

Two different experiments were carried out to test the neuroevolution system.
First, the encoder/decoder laboratory problem with eight inputs and outputs.
This problem illustrates the performance of the proposed grammar compared
with a GGGP system using the attribute grammar encoding method and a ge-
netic algorithm using the basic architectures codification method. Second, the
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problem of prognosing breast cancer is used to test the accuracy of the pro-
posed system with a real-world problem. Each experiment was run 100 times
and average results are shown.

The objective for the encoder/decoder experiment is to find an optimal neural
architecture that is capable of returning an output vector that is equal to its
input. This experiment was carried out with a maximum of 120 generations of
30 individuals in the population. Figure 4 shows the average convergence speed
of the three different evolutionary algorithms with their respective codification
methods.

Fig. 4. Average fitness evolution for the encoder/decoder problem

The optimum architecture that solves this problem has no hidden neurons
and each of the eight input neurons di, with i ∈ [1, 8], is directly connected
to another eight output neurons oi. Therefore, we have I=8, D=0 and O=8.
Table 1 shows the relative frequency of the target architectures for the different
encoding methods used.

This table shows that the use of the proposed grammar provides clearly better
results than the other two approaches. Specifically, the neuroevolution system
achieves the optimum solution (I=8, D=0, O=8) in 87% of cases, taking an
average of 82.49 (s.d. 5.2) generations to converge. The second-best evolution-
ary system in terms of results is the one that employs the basic architectures
codification method. This system achieves the optimum solution in 62% of cases,

Table 1. Architectures output by the different encoding types

Solutions Basic architectures Attribute grammar Proposed

I=8, D=0, O=8 62% 55% 87%
I=8, D=4, O=8 25% 23% 9%
I=8, D=5, O=8 9% 13% 4%
I=8, D=6, O=8 4% 9% 0%
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taking an average of 95.2 (s.d 4.7) generations to converge. The neuroevolution
system achieves such good results because the proposed grammar is able to take
advantage of structural ambiguity and semantic redundancy to explore all pos-
sible paths that lead to the optimal architecture. An additional advantage is the
grammar’s capability to start with solutions with few hidden neurons to which
it can add depending on the problem complexity. This property is explained by
the rules L → LH |H . If the probability of selecting rule L → H is equal to
or greater than the probability of selecting the recursive rule L → LH , then
this rule cannot be executed very often in the initialization method. This cre-
ates an initial population of individuals with few hidden neurons. Using a 0.5
probability of selecting either of these two rules and applying the initialization
method 100 times to create populations of 30 individuals, we output artificial
neural networks with an average of 0.82 (s.d. 0.12) hidden neurons.

The second experiment involved searching the optimal neural architecture
that can give a prognosis of microcalcifications located in the breast tissue of
real patients from the 12 de Octubre University Hospital in Madrid. This is
a non-trivial classification problem, where a set of features describing a breast
lesion has to be assigned to a class: benign or malignant. There are eight fea-
tures describing microcalcifications: the patient’s age, site (region, side, depth),
size and number of microcalcifications in a cluster, how microcalcifications are
grouped and their appearance after visual examination. The grammar employed
can generate neural architectures with eight input neurons (I=8) for each fea-
ture, and one output neuron (O=1) for prognosis. The neuroevolution system
using this grammar was run 100 times, each with a maximum of 150 genera-
tions and a population size of 100 individuals. A set of 184 lesions, of which half
matched malignant cases, were employed to train (80%) and test (20%) the arti-
ficial neural networks built by the system. The most commonly output smallest
feed-forward neural architecture to provide the best results (Table 2) has seven
fully connected hidden neurons with no direct connections from the input to the
output. The criterion employed to compare the neural architectures output by
the neuroevolution system is based on the success and the prognosis failure rate
of lesions in the test set. It is usual in the field of medicine to use three criteria,
defined in (4) to report statistical results: accuracy (Ac), specificity (Sp) and
sensitivity (Se).

Ac =
TP + TN

# instances
; Sp =

TN

TN + FP
; Se =

TP

TP + FN
. (4)

Where TP (true positives) are the correctly classified malignant cases, TN (true
negative) are the correctly classified benign cases, FP are the incorrectly classified
benign cases and FN are the incorrectly classified malignant cases. Table 2 shows
the results in terms of Ac, Sp and Se of the prognosis given by the network
solution compared with the expert radiologists’ diagnosis. The artificial neural
network output by the proposed system outperforms the radiologists as regards
Sp and Ac, although it is worse as regards Se. This is because of the method
used by the radiologist to diagnose breast cancer: the lesion is only classified as
benign when he or she is really sure. If there is any doubt, then the lesion is
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Table 2. Prognosis results for the breast cancer problem

Accuracy Specificity Sensitivity

Proposed grammar 71% 77% 68%
Radiologist A 56% 39% 78%
Radiologist B 49% 28% 77%

classified as malignant. The system has no such prejudices, which means that it
provides better results than radiologists for true negatives, but also worse results
for false negatives, with the resulting risk for patients with cancer.

5 Conclusions

In this paper, we propose a grammar able to evolve neural architectures through
a GGGP system to find solutions to any problem that can be solved with a
feed-forward neural network. This grammar has three remarkable properties:
the sentences generated by the grammar are binary strings that belong to the
space of valid neural architectures. This reduces the GGGP system’s search
space complexity. Second, the grammar is structurally ambiguous and semanti-
cally redundant. Ambiguity enables one and the same neural architecture to be
generated from different derivation trees, whereas semantic redundancy allows
different sentences generated by the grammar to codify the same architecture.
Finally, the probability of the rule L → H being selected can control the tree
sizes of the initial population. This way, it is possible to start with composite
architectures with few hidden neurons. Then it will be the GGGP system’s evo-
lution process that gradually increases their size depending on the complexity
of the problem to be solved.

The results section shows that the GGGP system with the proposed grammar
improves the convergence speed. It does this thanks to the reduction of the
search space, ambiguity and semantic redundancy as shown in previous empirical
results. Additionally, if the Non Free Lunch Theorem does not hold because of the
proposed grammar’s semantic redundancy, then it is not necessarily true that for
every problem that the GGGP system does well on, there exists another problem
on which it does poorly. Similarly, the proposed system provides smaller neural
architectures than output by the other methods with which they were compared
because of the possibility of adapting the tree sizes to problem complexity. As a
result, a system is produced that is capable of providing high accuracy in more
complex problems like breast cancer prognosis.

We are now investigating how to define a measure of the ambiguity of a
context-free grammar. Empirical tests run have shown that if the grammar is
too ambiguous, the search space increases considerably. This causes a loss in sys-
tem performance. Therefore, the goal is to find a formal method that can estab-
lish the exact grammar ambiguity and achieve the maximum convergence speed.
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Abstract. The paper describes a methodology for constructing a pos-
sible combination of different basis functions (sigmoidal and product)
for the hidden layer of a feed forward neural network, where the ar-
chitecture, weights and node typology are learned based on evolutionary
programming. This methodology is tested using simulated Gaussian data
set classification problems with different linear correlations between in-
put variables and different variances. It was found that combined basis
functions are the more accurate for classification than pure sigmoidal
or product-unit models. Combined basis functions present competitive
results which are obtained using linear discriminant analysis, the best
classification methodology for Gaussian data sets.

1 Introduction

There are a number of neural network approaches for statistical pattern recog-
nition. One of the oldest is the perceptron network [1], in which the transfer
function is a hard threshold. This function is not differentiable at its point of
transition, and it had to be replaced by sigmoidal basis function units to con-
struct the multilayer perceptron (MLP) model. Other well-known transfer func-
tions are the linear function, often used for output units that must be capable of
producing a wide range of values, the Gaussian transfer functions used by radial
basis function architecture (RBF).

Since there are different types of basis functions which determine net typology
(MLP, RBF, PUNN, etc.) [2,3,4], both the structure and the learning capacity
of different nets depend on the problem at hand.

Sigmoidal and product unit basis functions have global support, and they
produce values significantly different from zero over an infinite domain of in-
put values. Other architectures in neural networks employ functions with local
support, using transfer functions that yield values that are not close to zero for
only a small domain of input values. These networks use Gaussian or Gaussian-
like functions. There is research comparing the functionality of sigmoidal versus
� Corresponding author.
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Gaussian functions, but the question about whether or not commonly used func-
tion types are in some sense optimal remains largely unanswered. Taking into
account the almost infinite number of possibilities, one can easily see that an
exhaustive search for function space is a NP-hard problem and so this paper
considers two specific types of basis functions, sigmoidal and product.

Except for nonlinear ability, what can not be overlooked is that MLP, RBF,
even DBF [5] neural networks all have some flaw points in local optimization
problems, needing bigger memory space, and a slower convergence speed, all
of which can hopefully ultimately be resolved by variable nonlinear function. A
combination of nonlinear transfer function neurons could implement the random
nonlinear mapping relationship between input layer and output layer, which
could allow variable transfer function neurons to have a much wider application
in pattern recognition.

The combination of sigmoidal, Gaussian or product unit activation functions
can have several advantages, if we consider a classification task which has areas
which are separate in general, but where it is difficult to situate the exact location
of the border because the best discriminant functions for each class can be very
different. The above-mentioned family of parameterized transfer functions can
provide flexible decision borders. The idea behind the combination of several
functions is to increase the good performance of a traditional sigmoidal network
by adding targeted Gaussian and/or product basis functions which will cover
the weak parts of the pure sigmoidal network.

From a theoretical point of view in this context, the work of Donoho [6]
demonstrates that any continuous function can be decomposed into two mutu-
ally exclusive functions, such as radial and crest (based on the projection). But
although theoretically this decomposition is justified, in practice it is difficult
to separate the different locations of a function. To the best of our knowledge,
no theoretical result has been found to show that some continuous function can
be decomposed into two mutually exclusive parts associated to other projection
typologies and in particular related to the hybridation of the sigmoidal/product
unit basis functions in neural networks.

The objectives proposed in this paper are various. First, we want to show
hybrid-unit neural network models for multi-class classification problems based
on a combination of the basis functions (sigmoidal and product). In that classifi-
cation problem, measurements xi, i = 1, 2, ..., k, are taken on a single individual
(or object), and the individuals are to be classified into one of the J classes
based on these measurements. Secondly, we have analyzed the accuracy of the
different basis functions in classification problems where the generated measure-
ments have Gaussian distributions with equal covariance matrices for all classes,
though in several experiments there are different variances and correlations. It
is necessary to remember that the best classifier for that classification structure
is a linear function because of the minimum Bayes error produced.

In this way we present the first studies on the use of hybrid models that
are associated with two specific types of functions used as functional projection
approximators: product (PU) and sigmoidal (SU) basis functions, yielding the
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SPU neural network as a combination of both basis functions. Evolutionary algo-
rithms are employed for the optimization of the parameters and the architecture
of the model as an alternative to the classic choice based on gradient methods,
due to the high complexity of the error functions.

2 Sigmoidal Versus Product Basis Functions for
Classification

Product-unit basis functions used in the hybridation process and their represen-
tation by means of a neural network structure is a class of high-order neural net-
work [7], having only unidirectional interlayer connections. They are also a gener-
alization of sigma-pi networks [8], which are multilayer perceptrons having high-
order connections, and functional link networks [9]. Product units enable a neural
network to form higher-order combinations of inputs, with the advantages of in-
creased information capacity and smaller network architectures when we have in-
teraction between the input variables. Thus neurons with multiplicative responses
can act as powerful computational elements in real neural networks [10].

In this work, several types of basis functions have been used, namely PU
function

Bk(x,wk) =
p∏

i=1

xwki
i k = 1, ..., m2 (1)

sigmoidal-unit basis functions, SU, in the form

Bj(x,uj) =
1

1 + exp(−uj0 −
∑p

i=1 ujixi)
j = 1, ..., m1 (2)

and a linear combination of both provided the hybrid function (SPU):

f(x) =
m1∑

j=1

αjBj(x,uj) +
m2∑

k=1

βkBk(x,wk) (3)

The method involves finding a sufficient number of basis functions (its ar-
chitecture) to permit an approach that can estimate the classification function,
in such a way, and taking into account that both types of basis functions are
universal approximators, and that for every ε > 0 it should be possible to find a
value of m1 and m2 as well as the estimators of the parameters α̂j , β̂k, ûj and
ŵk for j = 1, ..., m1 and k = 1, ..., m2 assuming that

∥∥∥∥∥∥
f(x) −

⎛

⎝
m1∑

j=1

α̂jBj(x, ûj) +
m2∑

k=1

β̂kBk(x, ŵk)

⎞

⎠

∥∥∥∥∥∥
< ε (4)

This optimization problem is similar to that involved in the “projection pur-
suit” regression model with the special feature that the “ridge functions” are
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Fig. 1. Hybrid neural network for classification

exclusively of two types. An evolutionary algorithm (EA) similar to those re-
ported by Yao and Liu [11] and Garćıa et al. [12] and have been used in this
work to obtain the ANN architecture and for estimating the coefficients of the
model. The kind of function typology proposed in (3) where we use hybrid trans-
fer functions can be represented by an ANN architecture, as shown in Figure 1,
where we consider the softmax activation function given by

gl(x, θl) =
exp fl(x, θl)∑J
l=1 exp fl(x, θl)

l = 1, 2, ..., J (5)

3 Evolutionary Algorithm

The optimization of the ANN topology consisted of the search for the struc-
ture of the sigmoid and product unit base functions that best fit the data of
the training set, by determining the values of m1 and m2 parameters related
to the optimum number of base functions of each type involved. On the other
hand, the estimation of the weights of the network is based on the evolution of
the uj and wj vectors, which determine the coefficients in each base function,
as well as with the αj and βk coefficients involved in the linear combination
of the base functions. The population of the neural networks for classification
is subject to the operations of replication and structural and parametric mu-
tations. The general structure of the evolutionary algorithm (EA) is given in
Algorithm 1..

Firs we calculate the fitness of a neural network of the population in the
form:

If we use the training data set D = {(xn,yn)} where xin > 0, ∀i, n then the
cross-entropy error function (J-class multinomial deviance) for those observa-
tions is:
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Algorithm 1. Evolutionary Programming Algorithm
1: Generate a random population of size NP
2: repeat
3: Calculate the fitness of every individual in the population.
4: Rank the individuals with respect to their fitness.
5: Copy best individual into the new population.
6: The best 10% of population individuals are replicated and substitute the worst

10% of individuals.
7: Apply parametric mutation to the best 10% of individuals.
8: Apply structural mutation to the remaining 90% of individuals.
9: until stopping criterion is fulfilled

10: Select the best individual of the population in the last generation and return it as
the final solution.

l(θ) = − 1
N

N∑

n=1

J∑

l=1

y(l)
n log gl(xn, θl)

=
1
N

N∑

n=1

[
−

J∑

l=1

y(l)
n fl(xn, θl) + log

J∑

l=1

exp fl(xn, θl)

] (6)

where θ = (θ1, θ2, ..., θJ ) , f(x) is calculated in Equation 3. Let l(θ) to be the
error function of an individual g of the population. Observe that g, obtained in
Equation 5 is a SU, PU or SPU neural network and can be seen as the multival-
uated function g(x, θ) = (g1(x, θ1), ..., gl(x, θl)). The fitness measure is a strictly
decreasing transformation of the error function l(θ) given by A(g) = 1

1+l(θ) . Over
the intermediate population the adjustement of both weights and structure of
the SU, PU or SPU networks is performed by the complementary action of two
mutation operators: parametric and structural mutation. Parametric mutation
implies a Gaussian modification in the coefficients αj , βk, and the uj and wj

vectors of the model, using a self-adaptive simulated annealing algorithm.
Parametric mutation is accomplished for each coefficient αj , βk, uij and wjk

of the model with Gaussian noise. Once the mutation is performed, the fitness of
the individual is recalculated and the usual simulated annealing algorithm [13] is
applied. Thus, if ΔA is the difference in the fitness function after and preceding
the random step, the criterion is: if ΔA ≥ 0 the step is accepted, if ΔA < 0, the
step is accepted with a probability exp(ΔA/T (g)), where the temperature T (g)
of an individual g is given by T (g) = 1 − A(g), 0 ≤ T (g) < 1.

Structural mutation modifies the topology of the neural nets, helping the
algorithm to avoid local minima and increasing the diversity of the trained indi-
viduals. Five structural mutations are applied sequentially to each network: node
deletion, connection deletion, node addition, connection addition and node fu-
sion. In this hybrid implementation of the basis functions, when a new node
should be added to the networks of size m, it is necessary to estimate the
probability of adding sigmoidal or product units base functions. We define the
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corresponding probabilities pm,S and pm,P = 1 − pm,S of adding a basis sig-
moidal or product function. These probabilities will be determined with the
same value throughout the whole evolutionary process. Finally, the stop crite-
rion is reached whenever one of the following two conditions is fulfilled: (i) the
algorithm achieves a given number of generations; (ii) there is no improvement
for a number of generations either in the average performance of the best 20%
of the population or in the fitness of the best individual.

The parameters used in the evolutionary algorithm for learning the ANN
models are common for all experiments: Components of the uj and wj vectors
and the coefficients αj and βk, are initialized in the [-5, 5] interval; the maximum
number of hidden nodes is M = 6; initially m1 = [M/2], where [.] is the entire
part function, and m2 = M − m1; and the size of the population is NR = 1000.
The number of nodes that can be added or removed in a structural mutation is
within the [1, 2] interval, and for node addition pm,S = 0.5, whereas the number
of connections that can be added or removed in a structural mutation is within
the [1, 6] interval. Finally, the accuracy of each model is assessed in terms of the
CCR for the results obtained for both data sets, that is, CCRT for the training
set, and CCRG for the generalization set. We define the corrected classified rate
by CCR = 1

N

∑N
n=1 I(C(xn) = yn), where I(.) is the zero-one loss function.

More details about the EA can be found in [2].

4 Experiments and Results

In order to gain an understanding of the accuracy of the different transfer func-
tions and hybrid transfer function in neural networks for multi-class classifi-
cations problems, we have carried out five experiments where we use a three-
dimensional, three-class synthetic data set, and where the three populations have
normal density functions N(μi,Σ). The experimental design is conducted using
a holdout cross-validation procedure where the size of the training set is ap-
proximately 3n/4 and n/4 for the generalization set, where n is the size of the
data set; for that procedure we use the NtRand 2.01 software [14]. Then, we
randomly generate 300 samples for the training set and 90 for the generaliza-
tion set. Denoting by μi for i = 1, 2, 3 the means of the generating samples for
class i, the centres are located at μ1 =(1, 0, 0), μ2 =(0, 1, 0), μ3 =(0, 0, 1).
Covariance matrices, Σ, for all the populations are isotropic and different for
each experiment, Ej , that is:

– E1) Corr(x1, x2)= 0.1, Corr(x1, x3)= 0.5, Corr(x2, x3)= 0.9, Var(xi)= 0.3.
– E2) Corr(x1, x2)= 0.1, Corr(x1, x3)= 0.5, Corr(x2, x3)= 0.9, Var(xi)= 0.6
– E3) Corr(xi, xj)= 0, Var(xi)= 0.9
– E4) Corr(x1, x2)= 0.5, Corr(x1, x3)= 0.7, Corr(x2, x3)= 0.9, Var(xi)= 0.9
– E5) Corr(xi, xj)= 0.9, Var(xi)= 0.9, Σ is singular.

Corr denotes the linear correlations between the input variables, and Var repre-
sents the variance of each variable.
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Initially, we use a linear discriminant analysis, LDA [15] for classification. It
is well known that if we assume that the cost of misclassification are equals, then
the regions of classification Ri, that minimize the expected cost are defined by

Ri : uij(x) =
[
x − 1

2
(μi + μj)

]′
Σ−1(μi − μj) > 0 i = 1, 2, 3, j �= i (7)

In this three class classification problem we first compute the coefficients of
Σ−1(μ1 − μ2), Σ−1(μ1 − μ3) and then Σ−1(μ2 − μ3) = Σ−1(μ1 − μ3) −
Σ−1(μ1 − μ2). If we calculate 1

2 (μi + μj)Σ
−1(μi − μj) we obtain the linear

discriminant functions for the experiments.

Table 1. Accuracy and statistical results of CCR provided by different basis functions
used for a three class problem using synthetic data obtained in five experiments for
thirty runs of the EA

Experiments CCRT CCRG #conn

Basis functions Mean SD Best Worst Mean SD Best Worst Mean SD

LDA 100 100 12

SU 95.43 2.19 98.66 92.33 95.33 1.36 97.77 93.33 21.00 3.33
PU 97.83 1.03 99.33 96.33 98.33 1.07 100.00 96.66 13.30 2.58
SPU 98.00 0.64 99.00 97.00 98.33 1.07 100.00 96.66 20.30 2.49

LDA 98.66 96.66 12

SU 89.00 2.61 93.66 86.00 88.66 2.55 92.22 84.44 21.50 4.45
PU 93.83 2.43 97.66 91.00 93.22 1.84 96.66 90.00 13.90 2.18
SPU 95.13 1.72 97.33 91.66 94.33 1.69 97.77 92.22 20.80 3.96

LDA 63.66 64.44 12

SU 64.06 0.82 65.33 62.66 63.77 2.92 67.77 57.77 19.40 4.85
PU 63.70 1.19 65.33 62.00 63.88 2.41 67.77 60.00 13.10 2.18
SPU 64.90 1.14 67.33 63.00 62.44 1.63 65.55 60.00 19.20 3.70

LDA 92.00 91.11 12

SU 85.73 1.64 87.66 83.00 83.33 1.95 86.66 81.11 20.60 3.06
PU 89.86 0.84 91.00 88.66 88.22 1.67 92.22 86.66 15.20 2.20
SPU 90.60 1.35 92.00 87.33 88.66 1.02 90.00 86.66 21.80 3.93
LDA Singular Matriz

SU 95.40 1.33 97.00 92.66 95.33 2.27 97.77 90.00 22.40 4.29
PU 97.30 0.67 98.33 96.33 96.77 1.61 98.88 93.33 14.80 1.87
SPU 97.83 0.52 98.33 96.66 97.00 1.28 100.00 95.55 22.60 3.23

Bold face: Best performance; SD: Standard deviation; #conn: Number of connections.

Since a goal of this work is to evaluate different ANN models supported on
three different transfer functions, namely SU, PU and SPU, we use the exper-
iments to analyze the accuracy of these models to be compared with LDA,
because the classification rule (Equation 7) produces the best Bayes error over
the training set.

To start processing data, each of the input variables were scaled in the ranks
[0.1, 0.9]. The lower bound is chosen to avoid inputs values near to 0 that can
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produce very large values of the function for negative exponents. The upper
bound is chosen near 1 to avoid dramatic changes in the outputs of the network
when there are weights with large values (especially in the exponents). The new
scaled variables are designed by x∗.

Table 2. CCR (correct classification rate) obtained for the best models for the E4
design of the synthetic data set with LDA, SU, PU and SPU models

LDA,SU,PU,SPU Training Generalization

Target/Pre. G=1 G=2 G=3 G=1 G=2 G=3

G= 1 90,84,93,90 8,12,6,7 2,4,1,3 24,26,26,25 5,4,4,4 1,0,0,1
G= 2 12,15,17,15 88,84,83,85 0,1,0,0 2,2,2,3 28,28,28,27 0,0,0,0
G= 3 1,17,2,0 1,1,1,2 98,82,97,98 0,6,1,0 0,0,0,1 30,24,29,29

CCR 92.00,83.33,91.00,91.00 91.11,86.66,92.22,90.00

Table 3. Quantification equations and accuracy provided by LDA and the optimized
SPU network topologies for the E4 and E5 designs

Equations LDA u12(x) = 2.223 + 0.833x1 − 5.278x2 + 4.167x3

u13(x) = −3.889 + 6.111x1 + 9.444x2 − 13.889x3

u23(x) = −1.667 + 5.277x1 + 14.722x2 − 18.056x3

Equations SPU f1(x) = −2.84 + 2.88B1 + 3.48B2 − 4.38B3 + 3.96B4

f2(x) = −4.98 + 5.06B2

Basis functions B1 = 1
1+exp−(−0.57+0.35x∗

2 )

B2 = (x∗
2)

5.67(x∗
3)

−4.75

B3 = (x∗
1)

−1.39(x∗
3)

1.90

B4 = (x∗
1)

2.93(x∗
2)

−0.38(x∗
3)

−0.93

Architecture=3:4:2SPU; Effective links= 14; CCRT =91; CCRG= 90

Equations SPU f1(x) = 3.95 + 5.98B1 − 2.98B2 − 10.06B4

f2(x) = 4.50 + 2.35B1 − 8.85B3 − 1.82B5

Basis functions B1 = 1
1+exp−(−5.27−2.43x∗

1 )

B2 = 1
1+exp−(−7.23−3.63x∗

3 )

B3 = (x∗
2)

−5.50(x∗
3)

−4.78

B4 = (x∗
1)

−5.03(x∗
2)

1.40(x∗
3)

3.47

B5 = (x∗
1)

3.72(x∗
2)

−4.68(x∗
3)

3.69

Architecture=3:5:2SPU; Effective links= 20; CCRT =96.66; CCRG= 100

In Table 1 we present statistical results of CCR for training and generalization
sets using SU, PU and SPU models for five experiments in 10 runs of the EA,
where in general, the SPU design produces the best basis function models. Table
2 presents the confusion matrix generated by the best models for each basis
function of these ANN and using LDA for the E4 experiment where we can see
the best CCR for Class 3 in function of its higher correlation with the other two
classes.
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Table 3 shows the best discriminant linear classifier and the best functions
for constructing the softmax classification functions using a SPU basis function
neural network for the E4 and E5 experiment. We can see that the best model
using SPU nets in experiment 4 does not have a much higher number of coef-
ficients, 14, than the model using LDA, 12. On the other hand the best SPU
model for experiment 5 presents a CCRG of the 100, classifying well all patterns
of the generalization set, while it is not possible to construct the discriminating
functions for LDA because the matrix is singular.

5 Conclusions

We propose a classification method that combines two different types of basis
functions for feed-forward neural networks, and an evolutionary algorithm that
finds the optimal structure of the model and estimates its corresponding pa-
rameters. To the best of our knowledge, this is the first study that applies a
combination of basis function neural networks using evolutionary algorithm to
solve a range of synthetic classification problems evolving both structure and
weights. Our method uses softmax transformation and the cross-entropy error
function. From a statistical point of view, the approach can be seen as nonlin-
ear multinomial logistic regression where we use evolutionary computation to
optimize log-likelihood. The designed combined basis function models provided
accurate results, more robust models, and they present results comparable to
those obtained by linear discriminant analysis, the methodology that obtains the
best Bayes error throughout the training set. On the other hand, the experimen-
tal results show that the sigmoidal-product unit model could be an interesting
alternative to resolve a classification task when the variance-covariance matrix
is singular and thus does not allow the application of the classic LDA technique.
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Abstract. In this article, a methodology to obtain the Feasible Parame-
ter Set (FPS) and a nominal model in a non-linear robust identification
problem is presented. Several norms are taken into account simultane-
ously to define the FPS which improves the model quality but, as coun-
terpart, it increases the optimization problem complexity. To determine
the FPS a multimodal optimization problem with an infinite number of
minima, which constitute the FPS, is presented and a special evolution-
ary algorithm (ε−GA) is used to characterize it. Finally, an application
to a thermal process identification, where || · ||∞ and || · ||1 norms have
been considered simultaneously, is presented to illustrate the technique.

1 Introduction

In Robust Process Control all designs are based on a nominal process model and
a reliable estimate of the uncertainty associated to this nominal model through
robust identification (RI). Uncertainty can be caused mainly by measurement
noise and model error [7] (e.g. dynamics not captured by model). Although
uncertainty can have different sources, it always will appear as an identification
error (IE) that means the difference between model and process outputs for a
specific experiment.

Two different approaches are possible in RI: stochastic or deterministic. In the
first one, the IE is assumed to be modelled as a random variable with several sta-
tistical properties. Under this approach, it is possible to use classical techniques
of identification [6] to obtain the nominal model and its uncertainty which is
related to the covariance matrix of the estimated parameters. When these as-
sumptions do not work, the deterministic approach can be more appropriated
[8], where the IE, although unknown, is assumed to be bounded.

The objective of the deterministic approach consists of the obtaining of the
nominal model and its uncertainty or directly the (FPS), i.e. the parameter set
which keeps the IE bounded for certain IE function or norms and their bounds.
� Partially supported by MEC (Spanish government) and FEDER funds: projects
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J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 457–466, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



458 J.M. Herrero et al.

When the model is linear in its parameters, the FPS is a convex polytope.
However, when the model is non-linear, the FPS can be a non-convex even
disjoint polytope, and it can be approximated by orthotopes [1], ellipsoids [3],
parallelotopics [2], which results, in a more conservative obtaining of the FPS.

There exist techniques such as interval computation [9], support vector ma-
chine [5] and others which although do not approximate the FPS, they have
either limitations (the type of function for bounding the IE, the inability to
characterize a non-convex or disjoint FPS) or their utilization is complicated
when the model is complex (non differentiable respect to its parameters, etc.).

As a consequence of these handicaps, in this work a more flexible and powerful
methodology to characterize the FPS is presented. The proposed methodology
is based on the optimization of a function which is built from IE norms and
bounds, and whose global minima will characterize the FPS. It will be a mul-
timodal function, which can be non-convex and/or present local minima, and
therefore classical optimizers (e.g. sequential quadratic programming) can be
inappropriate. Therefore the ε-GA algorithm will be used.

The paper is organized as follows. The ε-GA algorithm is described in section
II. The RI methodology is given in section III. An experimental example to
illustrate the theory is shown in section IV. Finally, some concluding remarks
are reported in section V.

2 ε-GA Evolutionary Algorithm

ε-GA [4] is an evolutionary algorithm (EA) designed to optimize multimodal
monoobjective functions which even have an infinite number of global optima.

2.1 Related Concepts of the ε-GA

The optimization problem consists of:

Definition 1. (Global minimum set) Given a finite domain D ⊆ RL, D �= ∅
and a function to optimize J : D → R, the set Θ∗ will be the global minimum
set of J if and only if Θ∗ contains all the global optima of J .

Θ∗ := {θ ∈ D : J(θ) = J∗},

being J∗ a global minimum of J for the searching space D.

From this definition, Θ∗ is assumed to be a unique set and the best that can be
made is to obtain a discretized approximation to Θ∗ in the solution space D,
that means, a finite set Θ∗

ε . For that, the solution space is divided by a grid into
boxes of width εi for each dimension i ∈ [1 . . . L] and the algorithm is forced to
produce just one solution at the same box. So, thanks to the grid, the solutions
in Θ∗

ε are forced to be well distributed and to characterize Θ∗.
Concepts such as approximation and discretization must be specified to obtain

Θ∗
ε , so quasi-global minimum and box representation definitions are shown.
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Definition 2. (Quasi-global minimum) Given a finite domain D �= ∅ and a
function to optimize J : D → R, the solution θ is considered as a quasi-global
minimum of J if and only if

J(θ) ≤ J∗ + δ,

being δ > 0 and J∗ a global minimum of J.

So, a global minimum solution is also a quasi-global minimum solution.

Definition 3. (Quasi-global minimum set) Given a finite domain D �= ∅ and a
function to optimize J : D → R, the set Θ∗∗ will be the quasi-global minimum
set of J if and only if Θ∗∗ contains all the quasi-global minimum solutions of J .

Θ∗∗ := {θ ∈ D : J(θ) ≤ J∗ + δ},

being J∗ a global minimum of J for the searching space D and δ > 0.

From this definition, Θ∗ ⊆ Θ∗∗. Besides if δ → 0 then Θ∗∗ → Θ∗.

Definition 4. (Box) Given a vector θ in the solution space D ⊆ RL, its box
for εi > 0 is defined as the vector box(θ) = [box1(θ) . . . boxL(θ)] where:

boxi(θ) =
⌊

θi − θmin
i

εi

⌋
∀i ∈ [1 . . . L].

So boxi(θ) ∈ [0 . . . (n boxi − 1)], being n boxi the number of divisions of the grid
in the dimension i

n boxi =
⌈

θmax
i − θmin

i

εi

⌉
, (θmax

i − θmin
i ) ≥ εi

where θmax
i and θmin

i determine the limits of the solution space D.

Definition 5. (Box-representation) Given two vectors θ1, θ2 ∈ D, whose images
in the space of the function J are J(θ1) and J(θ2) respectively, it is said that θ1

box-represents θ2 (denoted by θ1 
 θ2) for a certain εi > 0 if

box(θ1) = box(θ2) ∧ J(θ1) ≤ J(θ2).

Therefore, Θ∗
ε can be defined as:

Definition 6. (ε-global minimum set) Given a solution set Θ in the solution
space, the set Θ∗

ε ⊆ Θ will be an ε-global minimum set of Θ if and only if

1. It only contains quasi-global minimum solutions of Θ

Θ∗
ε ⊆ (Θ ∩ Θ∗∗).

2. Any vector in Θ ∩ Θ∗∗ has a box-representation in Θ∗
ε , that is:

∀θ ∈ Θ ∩ Θ∗∗, ∃θ∗ ∈ Θ∗
ε : θ∗ 
 θ.
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Therefore, given a set Θ, Θ∗
ε has not to be a unique set, because global minimum

solutions of Θ which share the same box can box-represent each other.

Definition 7. (Φε(Θ) set) The set of all the ε-global minimum sets of Θ will be
called as Φε(Θ).

With these definitions, it is possible to establish the procedure to manage the
contents of the archive A(t) (where the optimization problem solution Θ∗

ε will
be stored). So it is necessary to know the global minimum J∗, although it is not
always possible. The best approximation to J∗ which the algorithm can provide
will be Jmin

Θ , the approximation whose value of the function J is the smallest.

Jmin
Θ = min

θ∈Θ
J(θ).

Definition 8. (Inclusion of θ in A(t)) Given a vector in the solution space θ
and the archive A(t), θ will be included in the archive if and only if

J(θ) ≤ Jmin
A(t) + δ (1)

∧
¬∃θ∗ ∈ A(t) : J(θ∗) 
 J(θ). (2)

At the same time, the inclusion of θ in the archive could modify Jmin
A(t) (the

best solution included in A(t)), and therefore, all the solutions θ∗ satisfying this
condition

J(θ∗) > Jmin
A(t) + δ (3)

∨
J(θ) 
 J(θ∗). (4)

will be removed from A(t).

Due to the inclusion procedure of the definition 8, the contents of archive A(t)
converge towards an ε-global minimum set (the first of the proposed objectives)
as long as Jmin

A(t) converges towards the global minimum J∗. This is possible since
the algorithm can provide any solution in D with a probability greater than zero
(this is achieved by the crossover and mutation operator of the ε-GA) and it is
an elitist algorithm since the best solution will not be lost.

Coefficients εi show the desired discretization degree to apply to Θ∗
ε and they

are directly related to the physical meaning of the parameters. The lower εi is,
the higher n boxi and the solutions number |Θ∗

ε | are.

|Θ∗
ε | ≤

L∏

i=1

n boxi. (5)
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2.2 ε-GA Description

The objective of the ε-GA algorithm is to provide an ε-global minimum set, Θ∗
ε .

ε-GA uses the populations P (t), A(t) y G(t):

1. P (t) is the main population and it explores the searching space D. The
population size is NindP .

2. A(t) is the archive where Θ∗
ε is stored. Its size NindA is variable but bounded

(equation (5)).
3. G(t) is an auxiliary population which is used to store the new individuals

generated at each iteration by the algorithm. The population size is NindG.

The pseudocode of the ε-GA algorithm is given by:

1. t:=0,A(t):=∅
2. P(t):=ini random(D)
3. eval(P(t))
4. A(t):=store(P(t),A(t))
5. mode:=exploration
6. while t<t max do
7. G(t):=create(P(t),A(t))
8. eval(G(t))
9. A(t+1):=store(G(t),A(t))
10. P(t+1):=update(G(t),P(t))
11. mode:=determinemode(P(t))
12. t:=t+1
13. end while

The main steps of the above algorithm are detailed:

Step 2. Population P (0) is initialized with NindP individuals, created inside
the searching space D.

Steps 3 and 8. Function eval calculates the value of the fitness function J(θ)
for every individual θ from P (t) (step 3) or G(t) (step 8).

Step 11. The function determinemode selects the algorithm operation mode
between the exploration and exploitation modes. These modes affect the way of
creating new individuals (function create). When the population P (t) has con-
verged, the exploitation mode must be selected, by using the difference between
the best value Jmin

P (t) = minθ∈P (t) J(θ) and the worst one Jmax
P (t) = maxθ∈P (t) J(θ)

at iteration t. If Jmax
P (t) − Jmin

P (t) < δ the exploitation mode 1 will be selected, on
the contrary it will be selected the exploitation one.

Step 4 and 9. Function store analyzes whether every individual of P (t) (step
4) or G(t) (step 9) must be included in archive A(t). So the individual will have
to satisfy the inclusion condition (definition 8), and according to this definition
other individuals will be removed. When including a new individual θ1 in the

1 If Jmin
P (t) = J∗ all the individuals in P (t) will be quasi-global minimum solutions.
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archive, its box (box(θ1)) is occupied by other individual θ2 from the archive,
that is box(θ1) = box(θ2), and J(θ1) = J(θ2), finally that individual which
is nearest to the centre of the box they occupy, will be included. So, a better
distribution of the solutions inside the archive is achieved.

Step 7. Function create creates new individuals and stores them in population
G(t) using the following procedure until G(t) is full [4]:

1. Two individuals are randomly selected, θp1 from P (t), and θp2 from A(t).
2. If the algorithm operates in exploration mode θp2 is not altered whereas if

the mode is exploitation, the individual is mutated.
3. A random number u ∈ [0 . . . 1] is selected. If u > Pc/m (crossover-mutation

probability) step 3 (crossover) is taken, otherwise step 4 (mutation).
4. θp1 and θp2 are crossed over by the extended linear recombination technique.
5. θp1 and θp2 are mutated by random mutation with gaussian distribution.

Step 9. Function update updates P (t) with individuals from G(t). One individ-
ual θG from G(t) will be inserted in P (t) and it will replace θp, if J(θG) < J(θp)
being θp = argmaxθ∈P (t) J(θ) so, the contents of P (t) is converging.

Finally, when t = tmax, the individuals included in the archive A(t) will be
the solution Θ∗

ε to the multimodal optimization problem.

3 RI Problem Statement

Assuming the following model structure:

ẋ(t) = f(x(t),u(t), θ), ŷ(t, θ) = g(x(t),u(t), θ) (6)

where: f(.), g(.) are the non-linear functions of the model; θ ∈ D ⊂ RL is the
vector2 of unknown model parameters and x(t) ∈ Rn, u(t) ∈ Rm and ŷ(t, θ) ∈ Rl

are the vectors of model states, inputs and outputs respectively.
The objective is that the model behaviour (obtained by simulation) will be

the most similar possible to the real process one (obtained by experiments). This
objective is achieved by a minimization of a function which penalizes the IE.

Definition 9. (Identification Error) The identification error ej(θ) for the out-
put j ∈ [1 . . . l] is stated:

ej(θ) = yj − ŷj(θ),

where: yj = [yj(t1), yj(t2) . . . yj(tN )] are the process output j measurements3

when the inputs U = [u(t1),u(t2) . . .u(tN )] are applied to the model and
ŷj(θ) = [ŷj(t1, θ), ŷj(t2, θ) . . . ŷj(tN , θ)] are the simulated model output j when
the same inputs U are applied to the model4.
2 θ, x(t), u(t) e ŷ(t, θ) are all column vectors.
3 y(t) ∈ Rl is the column vector of process outputs.
4 N is the measurements number of each output and input. The interval between

measurements is constant ti = i · Ts, being Ts the sample time.
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It is assumed that the IE can be bounded by several norms simultaneously.

Definition 10. (IE norm) Let Ni denote the p-norm of the identification error
vector for the output j as:

Ni(θ) = ‖ej(θ)‖p, i ∈ A := [1, 2, . . . , s],

where s is the number of norms.

Therefore, there exists an FPSi consistent with each Ni and ηi bound

FPSi := {θ ∈ D : Ni(θ) ≤ ηi, ηi > 0}.

And therefore the FPS for all the norms simultaneously is stated as:

FPS := {
⋂

i∈A

FPSi} = {θ ∈ D : ∀i ∈ A, Ni(θ) ≤ ηi, ηi > 0}.

and its boundary

∂FPS := {θ ∈ D : ∃i|Ni(θ) = ηi ∧ Nj(θ) ≤ ηj , ηi, ηj > 0, i, j ∈ A}. (7)

To characterize the FPS and especially its boundary ∂FPS a function J(θ)
is stated in such a way that its global minima constitute the ∂FPS and the
FPS constitutes quasi-global minimum solutions.

J(θ) :=

⎧
⎨

⎩

∑
B Ji if B(θ) �= ∅

min(δ,
∏

A Ji) if B(θ) = ∅

where: B(θ) := {i ∈ A : Ni(θ) > ηi}, and Ji(θ) = |Ni(θ) − ηi

∣∣.
In order to select the bounds ηi on Ni, a priori process knowledge (for instance,

non-modelled dynamics) and noise characteristics must be taken into account.
However, this can be a difficult task, and many times the bounds may be selected
according to the desired performance for the model predictions.

Once the feasible parameter set FPS is determined using the identification
data Ωide = {Yide,Uide}, it must be validated by using different validation data
Ωval = {Yval,Uval}. The validation consists of checking whether the FPS con-
tains models which are consistent with data Ωval, the norms and their bounds.

4 Robust Identification. Experimental Results

A scale furnace with a resistance placed inside is considered. A fan continuously
introduces air from outside (air circulation) while energy is supplied by an ac-
tuator controlled by voltage. Using a data acquisition system, both resistance
and air temperatures are measured when voltage is applied to the process. The
dynamics of the resistance temperature can be modelled by

ẋ(t) =

(
θ1u(t)2 − θ2 (x(t) − Ta(t)) − θ3(273+x(t))4

1004

)

1000
, ŷ(t) = x(t), (8)
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where: ẋ(t) is the model state; u(t) is the input voltage with rank 0 - 100 (%); ŷ(t)
is the resistance temperature (oC) (model output); Ta(t) is the air temperature
(oC) and θ = [θ1, θ2, θ3]T are the model parameters.

Both ∞-norm N1(θ) and absolute norm N2(θ) are simultaneously used to
determine the FPS. Fig. 1 shows identification and validation data.
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Fig. 1. On the left, identification data Ωide. On the right, validation data Ωval.

Bounds η1 = 2 and η2 = 0.8 are selected in order to hold the FPS models
predictions errors not greater than 2oC and their average values not greater than
0.8oC.

The FPS is determined next by ε-GA with the following parameters: Search-
ing space θ1 ∈ [0.01 . . .0.15], θ2 ∈ [2 . . . 10.0], θ3 ∈ [0 . . . 0.8]; tmax = 9975
and ε = [0.0028, 0.16, 0.016] so the grid contains 50 divisions per dimension;
NindP = 100, NindG = 4, Pc/m = 0.1 and the parameter δ(t) is tuned as
δ(t) = δ′(t) · J̄ , in order to be useful for other optimization problems, where J̄ is
the J average for all the individuals inserted in the population P (t) during the
optimization process. δ′(t) is determined by:

δ′(t) =
δini√

1 +
((

δini

δfin

)2

− 1
)

t
(tmax−1)

, δini = 0.1, δfin = 0.01

Fig. 2 shows the ε-GA optimization process result, i.e. FPS∗. The FPS has
been characterized by 304 models from which 38 are consistent with Ωval there-
fore the FPS∗ is validated. The J(∂FPS∗) average is 0.021, which shows the
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Fig. 2. On the left top the FPS∗ models, inside searching space D, marked with ◦.
The others figures are the FPS∗ models projections.

Fig. 3. On the left: yide(t) and the FPS∗ models envelop. On the right: yval(t) and
the FPS∗ models envelop.

good algorithm convergence (the ideal J(∂FPS∗) average would be 0). The
number of function J(θ) evaluations results in 40000 which is approximately the
third part of the computational cost if the cost function had been evaluated
in every grid box. Although the accuracy obtained with the ε-GA algorithm is
higher than the exhaustive search one.

Fig. 3 shows the Yide data, and the envelop generated by the FPS∗, as well
as the Yval data and the envelop from FPS∗. These envelops show both how
the process dynamics has been modelled satisfactorily and the bounds have not
been conservatively selected.
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5 Conclusions

A methodology, based on a specific genetic algorithm ε−GA, has been devel-
oped to find the Feasible Parameter Set (FPS) of a non-linear model under
parametric uncertainty. That robust identification problem is stated by assum-
ing, simultaneously, the existence of several bounds in identification error. The
algorithm presents the following features: Assuming parametric uncertainty, all
kind of processes can be identified if its outputs can be calculated by model
simulation; because more than one norm is taken into account at the same time,
the computational cost is reduced since different FPSi intersection is done im-
plicitly; non-convex even disjoint C(FPS) can be calculated; since FPS is not
approximated by either orthotopes or ellipsoids a non-conservatism is provided
and if the experiment length N increases, the computational complexity is pre-
served and the computational burden only goes up proportionally to N.
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Abstract. We consider the numerical evolutionary optimization of dy-
namic molecular alignment by shaped femtosecond laser pulses. We study
a simplified model of this quantum control problem, which allows the full
physical investigation of the optimal solutions. By using specific vari-
ants of Derandomized Evolution Strategies, subject to parameterizations
which are known to be superior for this problem, the numerical results re-
veal different conceptual physics structures for the different optimization
procedures. These results are strong both from the algorithmic as well
as from the physics perspectives. This shows that Natural Computing
techniques can be used to derive new insights into Physics.

1 Introduction

To investigate and, more importantly, to control the motion of atoms or mole-
cules by irradiating them with laser light, one has to provide laser pulses with
durations on the same time scale as the motion of the particles. Recent techno-
logical development has made lasers with pulse lengths on the order of femtosec-
onds (1 fs=10−15s) routinely available. Moreover, the time profile of these laser
pulses can be shaped to a great extent. By applying a self-learning loop using an
evolutionary mechanism, the interaction between the system under study and
the laser field can be steered, and optimal pulse shapes for a given optimization
target can be found. To this end, the role of the experimental feedback in the
self-learning loop is played by a numerical simulation [1]. We plan to transfer,
later on, these techniques to the laboratory for experimental optimization [2].

Control of molecular motion with shaped laser pulses is subject of intense cur-
rent theoretical and experimental efforts. The success of femtosecond laser pulse
shaping can considerably contribute even to the field of computation, as its ap-
plication to Molecular Quantum Computing has been suggested (see, e.g., [3]).
More specifically, molecular alignment is of considerable interest in this context
because of its many practical consequences: a multitude of chemical and physical
� NuTech Solutions, Martin-Schmeisser-Weg 15, 44227 Dortmund, Germany.
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processes ranging from bimolecular reactions [4] to high harmonic generation [5]
are influenced by the angular distribution of the molecular sample. Furthermore,
in many fundamental molecular dissociation or ionization experiments the in-
terpretation of the collected data becomes much easier when the molecules are
known to be aligned with respect to a certain axis. Hence, techniques to generate
molecular alignment are much needed. For a review, see [6].

A recent study presented a survey of modern evolutionary approaches to the
problem, and showed that it payed off to use more elaborated optimization
schemes, and in particular Derandomized Evolution Strategies (DES), for such
a high-dimensional optimization task [7]. We rely on that study in our choice of
two DES variants.

In this study we focus in the simplified variant of the original problem, at zero
temperature and with only a single rotational level in the initial distribution.
The motivation for this simplification is to allow studying the physics nature of
the optimal solutions, which would not have been possible for the general case,
for reasons that will be explained in section 4.4 of this paper. The optimization
procedure is subject here to two different parameterizations, which have been
proposed for the laser problem [8].

The remainder of this paper is organized as follows. In section 2 we provide
the reader with the details concerning the optimization routines in use. This is
followed in section 3 with the introduction of the dynamic molecular alignment
problem. In section 4 we present the experimental procedure, and section 5
outlines the conclusions which were drawn from this study.

2 Algorithms

Based on previous experience with this laser pulse shaping problem, and due to
experimental results that showed that certain variants of Derandomized Evolu-
tion Strategies perform well with respect to other Evolutionary Algorithms on
those problems [7], we restrict our study to these state-of-the-art algorithms.
Our goal here is not to compare performance of algorithms, but rather to show
that natural computing techniques can be used to derive new insights in physics.
In this section we provide a short background of the specific variants in use.

2.1 Evolution Strategies

Evolution Strategies [9] are a canonical evolutionary algorithm for real-valued
function optimization, due to their straightforward real-valued encoding, their
specific variation operators, as well as to their high performance in this domain
in comparison with other methods on benchmark problems. The higher the di-
mensionality of the search space, the more suitable a task becomes for an ES.

2.2 Derandomized Evolution Strategies

Mutative step-size control tends to work well for the adaptation of a global
step-size, but tends to fail when it comes to the individual step size. This is
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due to several disruptive effects [10] as well as to the fact that the selection of
the strategy parameters setting is indirect. The so-called derandomized mutative
step-size control aims to tackle those disruptive effects. It is important to note
that the different variants of derandomized-ES hold different numbers of strategy
parameters to be adapted, and this is a factor in the speed of the optimization
course: it is either a linear or quadratic order in terms of the dimensionality of
the search problem n, and there seems to be a trade-off between the number of
strategy parameters and the time needed for the adaptation/learning process of
the step sizes.

The (1, λ)-DR2 Algorithm

The DR2 Algorithm [11] is considered to be the second generation of the deran-
domized Evolution Strategies. This variant uses a linear number in n of strategy
parameters, and it aims to accumulate information about the correlation or anti-
correlation of past mutation vectors in order to adapt the step size:

xg+1 = xg + δgδg
scalZ

k Zk = N (0, 1) (1)

Zg = cZsel + (1 − c)Zg−1 (2)

δg+1 = δg ·

⎛

⎝exp

⎛

⎝ |Zg|
√

n
√

c
2−c

− 1 +
1
5n

⎞

⎠

⎞

⎠
β

(3)

δg+1
scal = δg

scal ·

⎛

⎝ |Zg|√
c

2−c

+ 0.35

⎞

⎠
βscal

(4)

where ξscal = N (0, 1)+, Z ∈ {−1, +1}n, and β, βscal, b and ξk are constants.

The (μW , λ) Covariance Matrix Adaptation ES

The (μW , λ)-CMA-ES algorithm [10] is known as the state-of-the-art among
of the derandomized ES variants (could also be considered as DR4). It has
been successful for treating correlations among object variables, where it ap-
plies principal component analysis (PCA) to the selected mutations during the
evolution, also referred to as “the evolution path”, for the adaptation of the
covariance matrix of the distribution. The concept of weighted recombination
is introduced: applying intermediate multi-recombination on the best μ out of
λ with given weights {wi}μ

i=1. The result is denoted with 〈x〉W . Furthermore,
p

(g)
σ ∈ R

n is the so-called evolution path, p
(g)
c ∈ R

n, sum of weighted differences
of points 〈x〉W , C(g) ∈ R

n×n, the covariance matrix of the mutation distribution
(C(g) = B(g)D(g)

(
B(g)D(g)

)T
):

xg+1 = 〈x〉W + σgBgDgzg+1
k (5)
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pg+1
c = (1 − cc) · pg

c + cu
c · cW BgDg 〈z〉g+1

W (6)

Cg+1 = (1 − ccov) · Cg + ccov · pg+1
c

(
pg+1

c

)T
(7)

pg+1
σ = (1 − cσ) · pg

σ + cu
σ · cWBg 〈z〉g+1

W (8)

σg+1 = σg · exp

(
1
dσ

·
∥∥pg+1

σ − χ̂n

∥∥
χ̂n

)
(9)

where χ̂n is the expected length of pσ. cc, ccov, cσ and dσ are learning/adaptation
rates, {wi}μ

i=1 are the recombination weights, and cu
c :=

√
cc(2 − cc), cW :=

�
wi

μ
i=1√�

w2
i

μ
i=1

and cu
σ :=

√
cσ(2 − cσ) are derived respectively.

All weighting variables and learning rates were applied as suggested in the
given citations, and particular in [10].

3 Dynamic Molecular Alignment

In this section we describe the optimization problem under investigation. The
reader who wants to abstract from the physics details can view the problem as a
single-criterion 80-dimensional optimization task, subject to maximization, with
a punishment term for handling a physics constraint.

3.1 Quantum Control: Physics Background

The interaction of a generic linear molecule with a laser field is described within
the framework introduced in [1]. We calculate the time evolution of a thermal
ensemble of molecules quantum mechanically, by considering a single initial ro-
tational level, characterized by the rotational quantum number Jinitial = 0 (and
the projection of the angular momentum on the laser polarization axis Minitial,
respectively). We take the molecule to be a rigid rotor, which allows a descrip-
tion of its wavefunction solely in terms of the rotational wave functions |JKM〉
(where K = 0 for a diatomic molecule). Two electronic states are taken into ac-
count, the ground state denoted by X and an off-resonant excited state denoted
by A. Hence the wavefunction for a given M is expanded as

ΨM (t) =
Jmax∑

J=M

αXJM (t)ψXJM + αAJM (t)ψAJM (10)

The time dependence of the molecular wave function is given by

i
∂ΨM

∂t
= (H0 + V )ΨM (t) (11)
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The Hamiltonian consists of a molecular part H0 and the interaction with the
laser field, given by

V = μ · E(t) cos(ωt) (12)

The Eigenenergies of H0 are given by

E(J) = hcBJ(J + 1) (13)

where B is the rotational constant of the molecule. The laser field induces tran-
sitions between the rotational states which, in the off-resonant case, occur via
subsequent Raman processes. The transitions between X and A were assumed
to proceed via the selection rules ΔJ = ±1, ΔM = 0.

The envelope of the laser field (which completely determines the dynamics
after the transition to the rotating frame has been performed) is described by

E(t) =
∫

A(ω) exp(iφ(ω)t) exp(iωt) dω. (14)

The spectral function A(ω) is taken to be a fixed Gaussian. The control function
is the phase function φ(ω), which defines the phase at a set of n frequencies
that are equally distributed across the spectrum of the pulse. These parameters
are taken to be the decision parameters of the evolutionary search; the search
space is therefore an n-dimensional hypercube spanning a length of 2π in each
dimension.

3.2 Optimization

We consider the goal of optimizing the alignment of a sample of generic diatomic
molecules undergoing irradiation by a shaped femtosecond laser. We have used
the maximum

〈
cos2(θ)

〉
that occurs under field free conditions after the laser

pulse, where θ is the angle between the molecular and the laser polarization axis,
as a measure of the alignment. The temperature of the ensemble was T = 0K and
the rotational constant was chosen to be B = 5cm−1. The peak Rabi frequency
between the two electronic states X and A, that determines the interaction
strength, was ΩXA = 1.6 · 1014 s−1.

Since we want to achieve a high degree of alignment with a peak intensity
as low as possible, an additional constraint was introduced as a punishment for
pulses that are too intense. We have used

Ip =
∫

E2(t)Θ(E2(t) − Ithr) dt (15)

(where Θ(x) is the Heaviside step function) for this purpose, so that the fitness
function assigned to a pulse shape was

F = maxE(t)=0

〈
cos2(θ)

〉
− βIp. (16)

By choosing β large enough, Ithr was shown [7] to effectively operate the evo-
lutionary algorithms only on a subset of pulses whose maximum peak intensity
approaches the threshold intensity from below. We have typically used β = 1;
unless otherwise specified, Ithr was 0.36 · IFTL.
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4 Experimental Procedure

Given the optimization routines which were introduced in section 2, we describe
here the different parameterizations in use, present the numerical results, and
finally apply an analytical tool for the investigation of the optimal solutions.

4.1 Parameterization

As introduced earlier, the phase function φ(ω) is the target function to be cali-
brated. Here, two parameterizations of φ(ω) are considered.

The traditional approach was to interpolate φ(ω) at n frequencies {ωi}n
i=1;

the n values {φ(ωi)}n
i=1 are the decision parameters to be optimized. In order

to achieve a good trade-off between high resolution and optimization efficiency,
the value of n = 80 turned to be a good compromise. We define this calibration
of φ(ω), i.e. learning n = 80 function values and interpolating, as the so-called
’plain-parameterization’ optimization:

φP (ω) = (φ(ω1), φ(ω2), ..., φ(ωn)) (17)

An alternative parameterization for the phase function, which has been pre-
sented at [8], considers the Hermite polynomials,

Hk(x) = (−1)k exp
{
x2

} dk

dxk

(
exp

{
−x2

})
, k = 0, 1, ... (18)

as building blocks for the phase function, and aims to learn their coefficients in
order to form the phase function:

φH(ω) =
Kmax∑

k=0

ck · Hk(ω) (19)

Note that the Hermite polynomials form a complete set of functions over the infi-
nite interval −∞ < x < ∞ with respect to the weight function exp

{
− 1

2x2
}
. We

define this as the ’Hermite-parameterization’ optimization. Kmax = 40 turned
out to perform best.

4.2 Setup

Some technical details concerning the experimental setup and our modus operandi
are outlined:

– Every function evaluation has the duration of 7 seconds on a P4 2.6GHz.
– Based on past experience, we choose the (1, 10) strategy for the DR2; (7, 15)-

CMA for n = 40 and (8, 17)-CMA for n = 80.
– Each run is limited to 20, 000 function evaluations.
– Implementation was done in Fortran for the numerical simulation (in order to

stay close to the systems used by the physics researchers), and in MATLAB
7.0 for the optimization routines.
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4.3 The Optimization: Numerical Results

Table 1 presents the mean values and the standard deviations of the cosine-
squared alignment, obtained after 20 runs of 20, 000 function evaluations. As
can be observed, the DR2 routine clearly outperforms the CMA in the plain
parameterization, in consistency with previous results on the general problem
J initial

max = 7 (see, e.g., [7]). For the Hermite parameterization, however, the pic-
ture is different. The DR2 does not seem to deliver, and fails to obtain high-
quality solutions. The CMA does succeed in this task, with highly-satisfying
results. Essentially, this suggests that the Hermite parameterization introduces
strongly correlated decision parameters, whereas the plain parameterization can
be tackled successfully by a strategy which does not consider the correlations
between the decision parameters. It is nevertheless surprising to observe the
low performance of the CMA on the latter. We may conclude that the Hermite

Table 1. Maximizing the cosine-squared alignment over 20 runs with 20, 000 function
evaluations per run; mean and std ; the maximal value obtained is in brackets

maxE(t)=0 < cos2 (θ) > DR2 CMA

Plain Parameterization 0.9559 ± 0.0071 (0.9622) 0.9413 ± 0.0058 (0.9508)

Hermite Parameterization 0.9501 ± 0.0043 (0.9570) 0.9583 ± 0.0026 (0.9618)

parameterization is slightly better, but not dramatically superior on this sim-
plified variant, especially due to the fact that it requires the CMA routine in
order to obtain optimal solutions, in comparison to the DR2 with the plain
parameterization.

4.4 Investigation of Optimal Solutions

An optimal solution is represented by its phase function φ (ω), and the electric
field respectively, but one can also examine the revival structure. Only due
to our simplified variant, i.e. Jmax

initial = 0 at initialization, it is possi-
ble to study the population1 of the rotational levels as a function of
time. Otherwise, in the general case, all levels are initially populated, and a
thermal averaging is applied. Explicitly, the wavefunction can be expressed as a
superposition of those levels,

ψ =
∑

j

a
(t)
j · |j〉 · e−i

Ejt

� (20)

the expectation of the cosine-squared alignment (the objective function) is calcu-
lated directly from these complex amplitudes a

(t)
j , whereas the population of the

rotational levels is
∣∣∣a(t)

j

∣∣∣
2

. This population of rotational levels can be analyzed

1 The careful reader should note that ’population’ is used here exclusively in the con-
text of quantum mechanics, e.g., populating quantum levels.
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in a fairly simple technique, known as the Sliding Window Fourier Transform
(SWFT), which provides us with a powerful visual tool. Given the revival
structure of an optimal solution, a sliding time window is Fourier transformed,
to produce the frequency picture through the alignment process. This windowing
creates a transformation which is localized in time. Due to the quantization of
the rotational levels, only certain frequencies (or energy levels, respectively) are
expected to appear.

Analysis Results. We applied the SWFT routine to the optimal solutions
which were found in the various runs. Figures 3, 4, 5 and 6 visualize the typical
population process of the rotational levels for four typical solutions of the dif-
ferent optimization procedures (2 parameterizations times 2 DES variants). The
quantum energy levels are indeed observed as expected from theory.

The results reveal two different conceptual physical structures, which corre-
spond to optimal and sub-optimal solutions in terms of the success-rate, i.e.,
the cosine-squared alignment. The Plain-DR2 as well as the Hermite-CMA pro-
cedures obtain the best solutions, which share the same structure - they are
characterized by the dominant population of the 4th quantum energy level in
the SWFT picture. On the other hand, the Plain-CMA and Hermite-DR2 proce-
dures obtain inferior solutions, which are characterized by a gradually increasing
population of the energy levels.

The original revival structures for two optimal solutions, representing the
two conceptual structures, are given in Figures 1 and 2. The optimal family of
solutions (Fig. 1) presents a dramatic revival structure, with a typical strong
pulse in the train which lies on the boundary of the punished regime (I ≈ 0.36).
This pulse seems to be essential in giving the molecules the right ’kick’, and

Alignment and Revival Structure of two obtained solutions (Fig. 1 and 2).
Thin red line: alignment; thick black line: intensity of the laser pulse.
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Each of the SWFT figures (Fig. 3 - 6) represents a Fourier transform applied
to the revival structures of the optimal solutions (the thin-red alignment
curves of Fig. 1-2). The values are log-scaled, and represent how high the
rotational levels of the molecules are populated as a function of time. Thus,
an exponential envelope (Fig. 2) is represented by a gradual building-up
of frequencies (Fig. 4). Note that the quality of the laser pulse cannot be
measured in those plots.
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most likely responsible for the dominant population of the 4th quantum energy
level in the SWFT picture. The sub-optimal family of solutions (Fig. 2) yields
a revival structure with a smooth exponential envelope, and thus has a gradual
building-up of the quantum energy levels in the SWFT picture, respectively. It
typically contains a train of medium pulses and lacks a dominant one.
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We would like to emphasize the fact that we obtained the same family of
optimal solutions, with the same structure, from two different optimization ap-
proaches - the one learning a vector of successful variations of interpolated points
of the target function, whereas the other learning a covariance matrix of coef-
ficients of Hermite polynomials that span the target function. Based on our
experience with the alignment problem, and due to the new results, we claim
that this might suggest that the regime of the global optimum has been reached.
This could have some strong physics consequences, which needs to be investi-
gated carefully by the physicists, but as far as the algorithmic perspective is
concerned, this seems to be the case.

5 Discussion and Outlook

We have applied derandomized Evolution Strategies, subject to two parameter-
izations, to the numerical optimization of dynamic molecular alignment. Two
different approaches obtained optimal solutions with numerical results in the
same rank of quality. Furthermore, the investigation of the optimal solutions,
which was performed here for the first time, revealed two typical physics struc-
tures, through the time-evolution of the populated quantum energy levels. The
first structure typically contains a strong pulse, which is followed by the popula-
tion of a specific quantum rotational level for the molecules, whereas the second
structure is a train of medium pulses with an outcome of a gradual population
of the rotational levels. This confirms the multi-modality of the search space,
and provides us with strong physics intuition with respect to optimal versus
sub-optimal solutions, e.g., the shape of optimal pulses as well as the optimal
population of rotational levels. Our new observation suggests that the regime of
optimal solutions has been found.

Acknowledgments

This work is part of the research programme of the ’Stichting voor Fundamenteel
Onderzoek de Materie (FOM)’, which is financially supported by the ’Neder-
landse Organisatie voor Wetenschappelijk Onderzoek (NWO)’.

References

1. Rosca-Pruna, F., Vrakking, M.: Revival structures in picosecond laser-induced
alignment of i2 molecules. Journal of Chemical Physics 116(15) (2002) 6579–6588

2. Zamith, S. Eur. Phys. J. D 12(255) (2000)

3. Tesch, C.M., Kurtz, L., de Vivie-Riedle, R. Chem. Phys. Lett. 343 (2001)

4. Friedrich, B., Herschbach, D. Phys. Chem. Chem. Phys. 2(419) (2000)

5. Hay, N. Phys. Rev. A 65(053805) (2000)

6. Stapelfeldt, H. Rev. Mod. Phys. 75(543) (2003)



Gaining Insights into Laser Pulse Shaping by Evolution Strategies 477
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Abstract. In this work we use simulated evolution to corroborate the
adaptability of the natural genetic code. An adapted genetic algorithm
searches for optimal hypothetical codes. The adaptability is measured as
the average variation of the hydrophobicity that experiment the encoded
amino acids when errors or mutations are presented in the codons of
the hypothetical codes. Different types of mutations and base position
mutation probabilities are considered in this study.

1 Introduction and Previous Work

In this work we use a genetic algorithm as a method to corroborate the adaptabil-
ity of the natural genetic code. Although this code is not universal (for example,
mitochondrial DNA has variations), it is the one that practically is present in the
vast majority of complex genomes. The genetic code, with the four nitrogenated
bases (A, T, G and C) encodes, when grouped in genes, mainly the amino acids
that are linked to determine the proteins. That code is redundant because three
bases are needed to establish a codon that codifies each one of the 20 amino acids
that are present in proteins, plus a “stop translation” signal found at the end of
every gene. That manner, in the code, most of the amino acids are specified by
more than one codon, what implies that redundancy of the code.

Nevertheless, as there are 64 possible codons to encode the 21 meanings, a
huge number of hypothetical “genetic codes” could be defined, with different
associations than the ones of the natural genetic code. That number of possible
codes is 1.4 ·1070, as Yockey [3] has calculated, taking into account the encoding
of each each amino acid with a maximum of 6 codons (as in the natural code).

The establishment of the genetic code is still in discussion. It is not definitively
clear if it was a random assignment or it was an adaptive process by means of
natural evolution. The second case means that those codes with less harmful
effects in the possible errors of the protein synthesis machinery and in the final
proteins, have an evolutionary advantage against those codes that present a
greater number of harmful effects. An argument in favour of this possibility is
the fact that the natural genetic code appeared to be arranged such that the
amino acids with similar chemical properties are coded by similar codons. For
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example, the codons that share two of the three bases tend to correspond to
amino acids that have a similar hydrophobicity.

In a first computational experiment, Haig and Hurst [2] have corroborated it
by means of a simple simulation. They found that of 10.000 randomly generated
codes, only 2 performed better at minimizing the effects of error, when polar
requirement was taken as the amino acid property. They thus estimated that
the chance that a code as conservative as the natural code arose by chance
was 0.0002, and, therefore, concluded that the natural code was a product of
natural selection for load minimization. To quantify the efficiency of each one
of the possible codes they used a measure that considers the changes in a basic
property of the amino acids when all the possible mutations are considered in a
generated code (section 2.2 explains the measure in better detail). The property
used by the authors was the polar requirement, which may be considered a
measure of hydrophobicity, as the one that gave the most significant evidence
of load minimization from an array of four amino acid properties (hydropathy,
molecular volume, isoelectric point and the one chosen).

Freeland and Hurst [7] refined the previous estimate, with a greater sample
of 1.000.000 possible codes. The authors found 114 better codes (a proportion
of 0.000114), indicating, according to the author’s results, a refinement of the
previous estimate for relative code efficiency such that the code was even more
conservative. In addition, they extended the work to investigate the effect of
weighting transition errors differently from transversion errors and the effect
of weighting each base differently, depending on reported mistranslation biases
(section 3.2 explains these type of mutations). When they employed weightings
to allow for biases in translation, they found that only 1 in every million random
alternative codes generated was more efficient than the natural code.

Gilis et al. [1] extended Freeland and Hurst’s work taking into account the
frequency at which different amino acids occur in proteins. Their results indi-
cate that the fraction of random codes that beat the natural code decreases. In
addition, they use a new function of error measurement that evaluates in silico
the change in folding free energy caused by all possible point mutations in a set
of protein structures, being a measure of protein stability. With that function
the authors estimated that around two random codes in a billion (109) are fitter
than the natural code.

Opposite to that brute-force search of possible codes that are better adapted,
we have used simulated evolution, by means of a genetic algorithm, to have a
guided search of better adapted hypothetical codes and to have a method to
guess the progression and the difficulty to find such alternative codes, which
could serve as a method of “traceability” in the evolution of the codes in their
fight for survival in the evolution in the “RNA World”.

2 Adapted Genetic Algorithm to the Problem

Each individual of the genetic population must encode a hypothetical code. In
our solution, each individual has 64 positions, that correspond to the 64 codons,
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and each position encodes the particular amino acid associated with the codon.
A basic procedure ensures that the individuals of the initial population encode,
at least in one position, the 20 amino acids. As in Haig and Hurst [2], a fixed
number of three codons are used for the STOP label (as in the natural code),
that determines the end in the production of the protein. The genetic operators
must ensure that a given individual always encode the 21 labels.

2.1 Genetic Operators

We have used a mutation operator and a swap operator. A mutation changes
the amino acid encoded in each one of the 64 positions, according to a mutation
probability, with another different one. The mutation does not operate if the
amino acid to mutate is the unique instance in all the code. Those mutations
simulate the possible errors in the transcription process form DNA to RNA and
in the translation process when incorrect transfer RNAs join a given codon of
the messenger RNA. From our application point of view, it is the operator that
varies the number of codons associated with a particular amino acid.

Fig. 1. Swap operator (left) and mutation operator (right)

The other operator is the swap operator, hardly ever used in GA applications,
although here is perfectly suited. The operator interchanges the contents of two
genes (codons), that is, once two genes are randomly selected, the amino acids
codified by the two respective codons are swapped. Figure 1 shows the function-
ing of these genetic operators. The two operators guarantee that the 20 amino
acids are always represented in the individuals. Other operators, like the classi-
cal crossover operator, do not guarantee that important restriction. Finally, as
selection operator we have used a tournament selection.

2.2 Fitness Function

We have used as fitness function the measure used by Haig and Hurst [2] and
Freeland and Hurst [7] to quantify the relative efficiency of any given code. The
measure calculates the mean squared (MS) change in an amino acid property
resulting from all possible changes to each base of all the codons within a given
code. Any one change is calculated as the squared difference between the prop-
erty value of the amino acid coded for by the original codon and the value of
the amino acid coded for by the new (mutated) codon. The changes from and to
“stop” codons are ignored, while synonymous changes (the mutated codon en-
codes the same amino acid) are included in the calculation. Figure 2 summarizes
the error calculation, when the first base of the codon UUU is mutated, taking
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Fig. 2. Calculation of the error value of a code to define the fitness function

into account the new values of the polar requirement of the new coded amino
acids. The final error is an average of the effects of all those substitutions over
the whole code.

Many other alternative types of weighting are imaginable, being hard to know
what would be the best model relating chemical distance to code fitness, as
commented by the previously cited authors. In the MS measure we can consider
the MS1, MS2 and MS3 values that correspond to all single-base substitutions
in the first, second and third codon positions, respectively, of all the codons in a
given genetic code. The MS value (or any of the components) defines the fitness
value of a given code and the evolutionary algorithm will try to minimize it.

3 Results

3.1 Equal Transition/Transversion Bias

In this first analysis, we test the capability of simulated evolution to find better
codes than the natural one, taking into account the MS value previously com-
mented, and with an equal probability of mutations in all the three bases and
the two types of mutations. As we have outlined, Haig and Hurst [2] only found
2 alternative codes with lower MS than the natural code in a set of 10.000 ran-
domly generated codes, and Freeland and Hurst [7] refined the probability with
a greater sample of 1.000.000, where they found only 114 better codes. These
authors, when hypothetical codes were generated, have taken into account two
restrictions:

1. The codon space (the 64 codons) was divided into the 21 nonoverlapping sets
of codons observed in the natural code, each set comprising all codons spec-
ifying a particular amino acid in the natural code. Twenty sets correspond
to the amino acids and one set for the 3 stop codons.

2. Each alternative code is formed by randomly assigning each of the 20 amino
acids to one of these sets. All the three stop codons remain invariant in
position for all the alternative codes. In addition, these three codons are the
same as the ones of the natural genetic code (UAA, UAG and UGA).
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This conservative restriction, which maintains the pattern of synonymous cod-
ing found with the standard genetic code, controls, according to Freeland [6], for
possible biochemical restrictions on code variation.
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Fig. 3. Evolution of the MS without restrictions (except the number of stop codons),
and histograms of the population at the beginning and end of the evolutionary process.

We have tested the evolution with these restrictions, and with a more free
evolution with a unique restriction: we only impose three codons for the STOP
signal. Our results clearly change the analysis, as the GA easily finds better al-
ternative codes. Figure 3 shows the evolution of the MS across 250 generations
of the genetic algorithm, in that case without the 2 previously commented re-
strictions. The best individual and the average qualities of the population are
the result of an average of 10 evolutions with different initial populations. The
initial population was 1000 individuals in each one of the different tests. Larger
populations do not improve the results. The other evolutionary parameters were
a mutation probability of 0.01 and a swap probability of 0.5, although the re-
sults show little variations respect these parameters. As selection we have used
tournament with low selective pressure (tournament window of 3% of the popu-
lation). The best (minimum) MS found in one of the evolutions was 1.784, really
better than the best value found by Freeland and Hurst (∼ 4.7) and than the
value of the natural genetic code (5.19).

The MS measures of each sample of codes in each generation form a proba-
bility distribution against which the natural code MS value may be compared.
Figure 3 also shows the “histograms” of the initial population and at the end of
the evolution in generation number 250. In the histograms, the X axis gives a
particular range of categories of MS values whereas the Y coordinate indicates
the number of individuals with an MS in that category. The histogram of the
initial population presents a similar distribution as the ones of the cited authors,
as the population is random. There is not any better code (than the natural one)
by chance in that initial population. At the end of the evolutionary process the
situation was changed radically, where all the individuals have a better MS than
the one of the natural genetic code.
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The left part of Figure 4 shows the same analysis of evolution, in that case
with all the restrictions commented. Even with the restrictions, evolution finds
in few generations better codes than the natural one, although the minimum MS
values (around 3.48) are not as good as with the more free evolution. The right
part of Figure 4 shows the assignments of the amino acids to the codons in the
natural genetic code as well as in the best obtained code with those restrictions.
The polar requirement values are also showed, associated with their amino acids
of that best evolved code.

Fitness (MS)

0

1

2

3

4

5

6

7

8

9

10

1 11 21 31 41 51 61 71

generation

fit
ne

ss

Best
Average

natural code 

edoctseBtesnodoC Natural
code

CGA CGC CGG CGU AGA AGG Gly 7.9 Arg 
CUA CUC CUG CUU UUA UUG Gln 8.6 Leu 
UCA UCC UCG UCU AGC AGU Ser 7.5 Ser 
ACA ACC ACG ACU Pro 6.6 Thr 
CCA CCC CCG CCU Thr 6.6 Pro 
GCA GCC GCG GCU Val 5.6 Ala 
GGA GGC GGG GGU Ala 7.0 Gly 
GUA GUC GUG GUU His 8.4 Val 

syL3.5teMGAAAAA
nsA2.5prTUAACAA
nlG9.4ueLGACAAC
siH0.5ehPUACCAC
ulG8.4syCGAGAAG
psA9.4elIUAGCAG
ryT4.5ryTUAUCAU
syC1.01syLUGUCGU
ehP0.01nsAUUUCUU

AUA AUC AUU Arg 9.1 Ile 
teM5.21ulGGUA

prT0.31psAGGU
UAA UAG UGA Stop  Stop 

Fig. 4. Evolution of the MS with Freeland and Hurst’s restrictions (left), and best
obtained code with those restrictions (right)

An analysis of the amino acids encoded in the codons of a variety of the best
codes indicates two considerations: there is a great variety of better codes, with
very different assignments; and there are not clear coincidences between the best
codes with the assignments of the natural code. When evolution works without
restrictions (except for the stop signal), 5 amino acids incorporate the majority of
codes: alanine (Ala), asparagine (Asn), proline (Pro), serine (Ser) and threonine
(Thr), while the rest are codified by only one or two codons. These amino acids
are codified in the natural code with 6 or 4 codons (except Asn), although the
other two amino acids codified by 6 codons in the natural code (Arg and Leu)
are codified by only one codon in the majority of the best evolved codes.

If restrictions are taken into account, there are not practically any coincidences
in the amino acids assignments in the 20 sets of codons between the natural code
and the best obtained codes, such as the one showed in the right part of Figure 4.
This last result coincides with the observations of Freeland and Hurst [7], al-
though their better codes correspond to those obtained by chance in a great
number of samples. Nevertheless, the best evolves codes, like the one of figure 4,
have the same property of the natural code: amino acids that share the two first
bases have similar values of polar requirement.

3.2 Introducing Transition/Transversion Bias

In nature, transition errors tend to occur more frequently than transversion
mutations, because the unequal chemical similarity of the 4 nucleotides to one
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another [6]. A transition error is the substitution of a purine base (A, G) into
another purine, or a pyrimidine (C, U/T) into another pyrimidine (i.e., C ↔ T
and A ↔ G), whereas a transversion interchanges pyrimidines and purines (i.e.,
C, U ↔ A, G).

We can use the MS values for each code calculated at different weightings of
transition/transversion bias, and turning the MS measures into WMS measures.
That manner, at a weighting of 1, all possible mutations are equally when cal-
culating the MS values for each position of each codon. And, for example, at a
weighting of 2, the differences in amino acid attribute resulting from transition
errors were weighted twice as heavily as those resulting from transversion errors.

Freeland and Hurst [7] investigated the effect of weighting the two types of
mutations differently. The main conclusion of their work was the dramatic effect
of transition/transversion bias on the relative efficiency of the second codon
base; that is, the number of better codes (regarding WMS2) decreases almost
six fold as the transition/transversion bias increases from 1 to 5. Nevertheless,
even at higher transition/transversion bias the second base remains an order of
magnitude less relatively efficient than the first and third bases.

Another aspect was that the individual bases combine in such a way that
the overall relative efficiency of the natural code (measured by WMS) increases
with increasing transition/transversion bias up to a bias of approximately 3.
Moreover, this effect is clearer with WMS1. As commented by the authors, that
observation coincides quite well with typical empirical data, which reveal general
transition/transversion biases of between 1.7 and 5. In addition, as the causes of
that natural biases are physiochemical, basically size and shape of purines and
pyrimidines, “it seems reasonable to suppose that the biases observed now were
present to a similar extent during the early evolution of life” [7].

Figure 5 shows the evolution of the three individual components of the MS.
That means, for example, that the evolution with MS1 uses a fitness that only
considers errors in that first base. All the evolutions in that figure were with a
population of 1000 individuals and with the commented Freeland and Hurst’s
restrictions. The upper figures correspond to a weight of 1 and the figures at
the bottom part were obtained with a weight of 3. The figures also include the
improvement obtained in fitness by the best evolved individual, measured as the
final fitness respect to the corresponding MS value of the natural code.

If we consider Freeland and Hurst’s analysis, regarding the random individuals
of the first generation, the second base is clearly the worst adapted in the natural
code, since in the first generation there are random codes with better MS2,
and additionally, in less than five generations all the individuals overcome the
MS2 value of the natural code (10.56). The first base seems better adapted in
the natural code, as the simulated evolution has more difficulty to have all the
population with less MS1 than the natural MS1 value (4.88). Finally, the third
base is the best adapted in the natural code, as there are not any random codes
with lower values than the MS3 value of the natural code (0.14) and the genetic
algorithm requires a few generations to obtain better individuals, and it is not
able that the whole population gets a lower value. However, the improvements
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Fig. 5. Evolution of the individual components of MS with restrictions, with equal
transition/transversion bias (upper figures) and with a bias of 3 (bottom figures)

that can be obtained by simulated evolution are not in accordance with the
previous analysis, as the three bases present similar levels of improvement, with
the second base being the one with the worst result. Finally, with a bias of 3,
there are not any appreciable differences, with also contradicts the analysis of
the previous authors, as we cannot infer that the first base is better adapted
with that bias of 3.

3.3 Different Codon Position Errors

The previous works assumed that mistakes are equally likely to be made at any
of the three codon positions. That assumption is correct when we consider point
mutations in the DNA sequence and that are accurately translated via mRNA
into an erroneous amino acid. However, the assumption must be reconsidered if
we take into account mistranslation of mRNA. The translation machinery acts
upon mRNA reading bases in triplets (codons), and that translation accuracy
varies according to the base position of the codon. We have used the same rules
from [7], that were used to consider the empirical data, summarized as:

A Mistranslation of the second base is much less frequent than the other two
positions, and mistranslation of the first base is less frequent than the third
base position.

B The mistranslations at the second base appear to be almost-exclusively tran-
sitional in nature.

C At the first base, mistranslations appear to be fairly heavily biased toward
transitional errors.

D At the third codon position, there is very little transition bias.
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The MS calculation can be modi-
fied to take into account those rules,
weighting the errors according to
them (tMS). The left part of figure 6
shows the quantification of mistrans-
lation used in [7] as well as in our
work to weight the relative efficiency
of the three bases in the MS calcu-
lation. Freeland and Hurst [7], with
their 1 million randomly generated
codes, found only 1 with a lower tMS
value. That is, now the probability
of a code as efficient as or more ef-
ficient than the natural code evolving
by chance falls until 10−6.

The right part of figure 6 shows the evolution of tMS with the two cases
previously considered, with and without the introduction of Freeland and Hurst’s
restrictions. In both cases the improvement in fitness quality is similar respect
to an equal probability of errors in the three bases: the improvement in MS
(decrease of fitness of the best individual respect to the natural case) is 32%
with restrictions and 64.3% without restrictions. That is, both cases (MS and
tMS) provide evolution with the same level of possible optimization, although
there is more difficulty to obtain better codes by change with tMS.

4 Discussion and Conclusions

Giulio [4], in a review of the theories about the origin of the genetic code, dis-
tinguishes two basic alternatives about the evolution of the genetic code. The
stereochemical theory claims that the origin of the genetic code must lie in
the stereochemical interactions between anticodons or codons and amino acids.
On the other hand, the physicochemical theory claims that the force defining
the origin of the genetic code structure was the one that tended to reduce the
deleterious effects of physicochemical distances between amino acids codified by
codons differing in one base. The commented work of Freeland and Hurst [7] is
obviously in this line.

Yockey [3] is critic with the idea of evolution of the genetic code in the sense
of minimization of the effects of mutations. As argument he exposes that the
1.4 · 1070 possible codes couldn’t have been checked in the 8 · 108 years between
the event of Earth formation (4.6·109 years ago) and the origin of life in it (3.8·109

years ago). We do not consider this statement as a correct argument, as neither
natural evolution has to check all possible codes to minimize the deleterious
effects of mutations, nor simulated evolution checks all the possibilities in the
search space.

Nevertheless, the fact that the GA easily finds better codes than the natural
genetic code has not imply that there was not any adaptive evolution of the
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genetic code. Two considerations must be taken in this regard. Firstly, we only
have considered one (important) property. In Knight et al. [5] words “the average
effect of amino acid changes in proteins is unlikely to be perfectly recaptured by
a single linear scale of physical properties”. Secondly, we agree with the same
authors that the code could be trapped in a local, rather than global, optimum.
Again, with words from the authors “The fact that the code is not the best of
all possible codes on a particular hydrophobicity scale does not mean that it has
not evolved to minimize changes in hydrophobicity under point misreading”.
However, our results indicate that the local optimum obtained in the natural
code is not as optimal as supposed by Freeland and Hurst [7], as the simulation
of the evolution can easily find a great variety of better codes.

It has been proposed, as Knight et al. [5] pointed out, that the standard
genetic code evolved from a simpler ancestral form encoding fewer amino acids.
Our work will follow in this line, trying to find out the possible routes that
evolution could have followed once a codon with two letters coded the possible
15 amino acids (plus the stop signal), although there is not consensus about
which amino acids entered the code and in what order.
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Abstract. The new learning classifier system is described to classify
real-valued data. The approach applies the continous-valued context-free
grammar based system GCS. In order to handle effectively, the terminal
rules have been replaced by the so-called environment probing rules. The
rGCS model has been tested on the checkerboard problem.

1 Introduction

GCS is a Learning Classifer System LCS [2] introduced by Unold [4] in which
a knowledge about the solved problem is represented by context-free grammar
(CFG) in Chomsky Normal Form productions. The GCS is described in detail
in [5][6]. An integer-value representation (in fact the set of letters a-z) is used
with GCS. However, many real-world problems are not expressed in terms of a
simple non-continuous representation and several alternate representations have
been suggested to allow LCSs to handle these problems more readily (for refer-
ences see [3]). In this paper we introduce an extension to GCS that allows the
representation of continuous-valued inputs.

The remainder of this paper is organized as follows. Section 2 describes the
GCS - original Grammar Classifier System that works with sentence strings as
an input data. Section 3 introduces the new rGCS - extended system prepared
to work with real-valued input. Section 4 illustrates our experiments with the
checkerboard problem and the last one summarizes the paper and tells about
some of our future plans.

2 The GCS

The GCS operates similar to the classic LCS but differs from them in (i) rep-
resentation of classifiers population, (ii) scheme of classifiers’ matching to the
environmental state, (iii) methods of exploring new classifiers.

Population of classifiers has a form of a context-free grammar rule set in a
Chomsky Normal Form (CNF). This is not a limitation actually because every
context-free grammar can be transformed into equivalent CNF. Chomsky Normal
Form allows only production rules in the form of A → a or A → BC, where A,
B, C are the non-terminal symbols and a is a terminal symbol. The first rule is
an instance of terminal rewriting rule. These ones are not affected by the GA,
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and are generated automatically as the system meets unknown (new) terminal
symbol. Left hand side of the rule plays a role of classifier’s action while the
right side a classifier’s condition. System evolves only one grammar according
to the so-called Michigan approach. In this approach each individual classifier
– or grammar rule in GCS – is subject of the genetic algorithm’s operations.
All classifiers (rules) form a population of evolving individuals. In each cycle a
fitness calculating algorithm evaluates a value (an adaptation) of each classifier
and a discovery component operates only on a single classifier.

Automatic learning context-free grammar is realized with so-called grammat-
ical inference from text [1]. According to this technique system learns using a
training set that in this case consists of sentences both syntactically correct and
incorrect. Grammar which accepts correct sentences and rejects incorrect ones is
able to classify unseen so far sentences from a test set. Cocke-Younger-Kasami
(CYK) parser, which operates in Θ(n3) time [8], is used to parse sentences from
the sets.

Environment of classifier system is substituted by an array of CYK parser.
Classifier system matches the rules according to the current environmental state
(state of parsing) and generates an action (or set of actions in GCS) pushing the
parsing process toward the complete derivation of the sentence analyzed.

The discovery component in GCS is extended in comparison with standard
LCS. In some cases a ”covering” procedure may occur, adding some useful rules
to the system. It adds productions that allow continuing of parsing in the current
state of the system. This feature utilizes for instance the fact that accepting 2-
length sentences requires separate, designated rule in grammar in CNF.

Apart from the ”covering” a GA also explores the space searching for new,
better rules. First GCS implementation used a simple rule fitness calculation
algorithm which appreciated the ones commonly used in correct recognitions.
Later implementations introduced the ”fertility” technique, which made the rule
fitness dependant on the amount of the descendant rules (in the sentence deriva-
tion tree) [5] [6]. This approach is particularly useful since in GCS population
individuals must cooperate to parse sentences successfully. Appreciating linked
rules we help to preserve the structure of evolved grammar. In both techniques
classifiers used in parsing positive examples gain highest fitness values, unused
classifiers are placed in the middle while the classifiers that parse negative ex-
amples gain lowest possible fitness values.

3 rGCS

3.1 Overview of the rGCS

rGCS exploits the main idea of the classic GCS system. The CYK table is the
environment and the area where the rGCS operates. The learning process is
divided into the cycles. During every cycle evolved grammar is tested against
every example of the train set, then new rules are evolved or existing ones are
modified and another cycle begins (Fig. 1).
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3.2 Environment Probing Rules

Structure of the rules that are used in the very first row of the CYK table during
parsing is the main difference between the classic GCS and rGCS. Since their role
is to sense the input data and then to launch the CYK process we called them
the environment probing rules. In classic GCS system the environment situation
consisted of input string terminals so these rules were called very accurately - the
terminal rewriting rules. Now in rGCS the input data (environmental situation)
is formed by the vector of real numbers that may describe various kinds of data
(Fig. 2). Each rule has the form of

A → f (1)

where A is the non-terminal symbol, f is the real number value.
f value is used during the matching process and the non-terminal A is to put

into the first row of the CYK table. Additionally a special environment probing
rule may be used - the most general one that accepts every single input value.
This one is called the wildcard (don’t care symbol) and has the form of

F → ∗ (2)

where F is the non-terminal symbol chosen to play the role if wildcard (every
time it appears in the CYK table it means: put any value here) and ∗ mean that
any real number is accepted here.

3.3 Regular Grammar Rules

These rules are identical to the ones used in the classic GCS. They are used in
the CYK parsing process and the GA phase. They are in the form of

A → BC (3)

where A, B and C are non-terminal symbol.
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3.4 Generating the Rules

Every time the new experiment is started a set of random rules is generated.
It contains the specified number of environment probing rules and the regular
grammar rules. All non-terminals in the set are from the range limited by the
system parameter. In the environment probing rules system keeps the equal
number of various non-terminal symbols in the rules. Real number values may
be from the range determined by the minimum and the maximum value of the
input data to speed up the learning process but this is not necessary.

3.5 Matching Phase

Environment Probing Rules

Scheme 1. First a list of distances between the element of the input vector (real
number value) and the each rule’s real number value is created. Then all values
from the list are scaled using the equation:

dfi = 1 −
(

disti
maxdist

)
(4)

where dfi is the factor calculated for rule i (distance factor), disti is the distance
of rule i and maxdist - is the maximum distance value (distance value of the
most distant rule).

The most distant rule receives factor 0 and rule that is located exactly at the
input vector’s value receives 1. In the next step the rules are sorted from the
nearest one to the most distant one. Finally the equation:

pi =
dfi

posi
(5)
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where dfi is the distance factor, posi is the rule’s position on the sorted distance
list, describes the probability of each rule to be chosen. That means that 0 or
more rules may be selected to each cell of the first row of the CYK table.

Scheme 2. In this scheme just after creating the list of distances simply the
nearest rule is selected. As the result always one rule is put into the CYK cell.

Wildcard rules. If a wildcard rule exist on the system it is always used during
the environment probing because it fits to every element of the input vector. The
nonterminal desired to be the wildcard one appears then in the CYK table’s cell.

Regular grammar rules. These rules play the very same role as in the classic
GCS system. They are used in the CYK parsing process and the matching follows
the CYK algorithm procedure.

3.6 Adjusting Environment Probing Rules

As the environment probing rules match the input vector some data about the
environment is collected. Every single rule of this kind keeps the copy of its real
number factor. At the beginning of the each learning cycle it is set to the same
value as the factor itself. Just after matching phase if the rule was used this copy
is modified according to the equation:

vni = vci + wsp ∗ g ∗ ch (6)

where vni is the copy of the factor value of the i-th classifier in the population,
vci is the current factor’s value of the i-th classifier in the population, wsp
is the learning factor that is learning cycle dependant (see below), g is the
neighborhood function dependant on the rule’s position on the list sorted by the
rule’s distance from the environmental situation (see below), ch is the distance
from the rule’s factor to the environmental situation value, calculated according
to the situation:

ch = ve − vci (7)

where ve is the input vector element’s value.
Learning factor is calculated according to the rule:

wsp = pMaxLearningRate ∗
(

pMinLearningRate

pMaxLearningRate

)( cycle
pCycles )

(8)

where pMinLearningRate is the minimal learning factor value (parameter),
pMaxLearningRate is the maximal learning factor value (parameter), cycle is
the current learning cycle, pCycles is the desired learning cycles values (para-
meter).

Neighborhood function is calculated according to the equation:

g = e
−posi

ps (9)
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where posi is the rule’s position on the list sorted by the rule’s distance from
the environmental situation, ps is the neighborhood radius calculated according
to the equation:

ps = pMaxNeigbourhoodRadius ∗
(

pMinNeigbourhoodRadius

pMaxNeigbourhoodRadius

)( cycle
pCycles )

(10)
where pMinNeigbourhoodRadius is the minimal radius value (parameter) and
pMaxNeigbourhoodRadius is the maximal radius value (parameter).

It is important to work on the copy of the real number factor since we want
the system to classify each example in the learning set using the same rules.
This enables us to estimate correct competence of the current grammar evolved
by the rGCS. As soon as the cycle finishes the copy of the factor replaces the
old one moving the factor towards the values the rules accepts frequently. The
change is more significant during the initial cycles of the learning process. As
the induction goes on only small adjustments of the factors take place.

3.7 Evolving Regular Grammar Rules

Regular grammar rules are evolved just like in the classic GCS system during
the evolutionary process. Genetic algorithm is then launched at the end of the
learning cycle. Fitness evaluation uses the fertility measurement technique (see
[7] for discussion), for the rules that were present in any complete parsing tree
generated during the cycle:

fi = FTrim + (tfi ∗ FertSig) (11)

where fi is a fitness measure of i-th classifier in the population, FTrim is a
fitness trim parameter - a base value given to unused classifier, tfi is a pure
fertility measure (see below) of i-th classifier in the population, FertSig is a
fertility significance parameter.

Pure fertility parameter is calculated according to the equation:

tfi =
FertPosi − FertNegi

FertPosi + FertNegi
(12)

where FertPosi is the number of positive fertility points of i-th classifier in the
population, FertNegi is the number of negative fertility points of i-th classifier
in the population.

Rules that were unused in the complete parsing trees but still appeared in the
CYK table take the following fitness measure:

fi = FTrim + (tni ∗ FSig) (13)

where fi is a fitness measure of i-th classifier in the population, FTrim is a
fitness trim parameter - a base value given to unused classifier, tni is a pure
fitness measure (see below) of i-th classifier in the population, FSig is a fitness
significance parameter.
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Pure fitness parameter is calculated according to the equation:

tni =
PosPointsi − NegPointsi

PosPointsi + NegPointsi
(14)

where PosPointsi is the number of positive usage points of i-th classifier in the
population, NegPointsi is the number of negative usage points of i-th classifier
in the population.

It is important that the fitness of these rules is downgraded by the fitness
significance parameter. Complete trees parsing rules are more valuable for the
system as they cooperate with the others. Finally - unused rules take the constant
fitness trim value (parameter - usually 0.5).

GA in the rGCS chooses parents using the roulette-wheel or random selection,
then crossover and mutation operators are applied to the offspring with the prob-
ability given by the system parameters. The crowding technique is (discussed in)
replaces rules in the population with the offspring.

4 The Checkerboard Problem

The checkerboard problem was proposed as a benchmark in [3]. It divides the
n-dimensional space into hypercubes of two colors (i.e. black and white). Each
hypercube has the same size and is surrounded by the others with alternate
color. This means that for two dimensional space it looks like a chess or checkers
board (so that’s the source of the problem’s name). There are two parameters
describing the problem’s complexity. First - mentioned above - is the number of
space’s dimension (n). Second one is the number of divisions of each dimension of
space (nd). In the following paragraphs we use the sets of checkerboard problem
examples with n = 3 and nd = 3. We evolve grammars telling whether the
point in solution space of given coordinates is inside black or white hypercube.
Single CNF grammar can only tell us if the given example is positive (belongs
to the grammar’s language) or not. We have to choose if we evolve the grammar
related to white or black hypercubes. There are only two classes of hypercubes
so example rejected by one class’s grammar is assumed to be from the another.
Every example in the set consist of three real numbers which are coordinates and
the example’s tag telling whether example is positive or negative - depending on
the color of hypercubes we want the grammar to be evolved for. Example sets
consisted of 100 examples - 50 positive and 50 negative ones.

Parameters seeking experiments presented below helped us to choose optimal
parameters for the checkerboard problem. For N = 3 and Nd = 3 this include:

– Number of non-terminals = 6,
– Number of environment probing rules = 3,
– Number of regular grammar rules = 60,
– Crowding factor = 35,
– Crowding subpopulation = 5,
– Desired learning cycles = 50000.
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rGCS system was able to evolve perfect grammar, accepting all positive and
rejecting all negative sentences, at every single run after on average 24506 learn-
ing cycles (mean from 10 runs, min. 19898 cycles, max. 31893 cycles, see Fig. 3).
Every run ended with 100% grammar competence factor.
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Fig. 3. Minimum, mean and maximum highest grammar competence achieved during
the learning cycles

4.1 Parameter Seeking Experiments

rGCS tends to inherit a GCS property - it is quite sensitive to the system pa-
rameters settings. It looks like kind of disadvantage, however correct settings
can results with rapid grammar evolution. Our previous work discussed many
of these settings (see [5][7] for details). In this article we explain only rGCS-
specific ones. In the next paragraphs we investigate the best parameters settings
for checkerboard problem N = 3, Nd = 3. Single experiment tests a range of
settings for examined parameter while the other (constant) parameters are set
to the random values.

Number of environment probing rules. Some preliminary experiments con-
firmed our first guess that we should generate at least as many rules as the
number of classes the input vectors’ elements are divided into. That means that
checkerboard problem requires at least Nd environment probing rules. (Fig. 4a)
shows the mean (averaged over 10 runs), minimum and maximum grammar com-
petence of the grammar evolved as the function of environment probing rules.
Setting the number of environment probing rules to value lower than Nd (3
in this case) doesn’t allow the system to evolve an efficient grammar. However
higher values (> Nd) do not have any significant affect on the grammar evolu-
tion, moreover it slightly decreases the maximum competence of the grammar
developed by the system.

Number of regular grammar rules. Number of regular grammar rules de-
fines the size of the grammar evolved by the system. This parameter is used at
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the beginning of the learning process when random rules are generated. Since the
rules evolved by GA replace the old ones, the number of regular grammar rules
stays constant. (Fig. 4b) shows the mean (averaged over 10 runs), minimum and
maximum grammar competence of the grammar evolved as the function of num-
ber of regular rules parameter. More regular rules enable the system to evolve
highly efficient grammars. However complex grammars are difficult to analyze
and consume more system resources during processing.

Number of non-terminals. Number of non-terminals (NoN) parameter de-
termines how many non-terminal types of symbols (A, B, C...) are allowed in the
grammar. This doesn’t limit the number of instances of any symbol. In rGCS we
assume that the very last letter (symbol) allowed becomes a grammar starting
symbol and the letter before the last becomes a wildcard symbol. Actually this
parameter is crucial to the evolution process efficiency. (Fig. 5) shows the mean
(averaged over 10 runs), minimum and maximum grammar competence of the
grammar evolved as the function of NoN parameter. It is remarkable that lower
values of NoN parameter still allow the system to evolve an efficient grammar
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Fig. 4. Minimum, mean and maximum grammar competence as the function of the
number of environment probing rules (a) and regular grammar rules (b)
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(high maximum competence values). On the other hand worse mean competence
values prove that it is easier for the system to operate on larger grammars (6, 7
non-terminals for this problem).

5 Conclusions and Future Plans

We proved that it is possible to use a mutation of Grammar Classifier System to
solve problems represented by vectors of real numbers. So a ”real GCS” – rGCS –
hybrid system was created, that allowed us to introduce grammar classification
to a brand new set of problems. Our future plans include tuning the system,
improving some mechanisms (i.e. new GA operators). We also plan to use rGCS
on some noisy data sets.
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Abstract. This work presents the results on applying a genetic ap-
proach for solving the Dial-A-Ride Problem (DARP). The problem con-
sists of assigning and scheduling a set of user transport requests to a
fleet of available vehicles in the most efficient way according to a given
objective function. The literature offers different heuristics for solving
DARP, a well known NP-hard problem, which range from traditional in-
sertion and clustering algorithms to soft computing techniques. On the
other hand, the approach through Genetic Algorithms (GA) has been
experienced in problems of combinatorial optimization. We present our
experience and results of a study to develop and test different GAs in the
aim of finding an appropriate encoding and configuration, specifically for
the DARP problem with time windows.

1 Introduction

Genetic Algorithms (GA) have been successfully applied to diverse optimization
problems in a wide range of domains. This well-known evolutionary computation
technique inspires on nature and its evolutive mechanism to better adapt the
different species to their environment. In nature, the most adapted organisms
from the species have a higher expectancy of life and thus a higher possibility
to reproduce and leave descendants before they die.

This simple mechanism is mimicked artificially through genetic algorithms as
an effective optimization technique. By creating a specie (population of individ-
uals) that ”evolves” through selection-reproduction-mutation cycles allow us to
search in the state space of the problem under optimization. This process lasts
until the specie converges to certain characteristics, that is, a certain genomic
sequence which represents a near-optimal solution for the problem.

This bio-inspired optimization technique has been applied to a variety of op-
timization problems including scenarios that require routing and scheduling, as
the problem matter of this work.

The DARP problem consists in finding a minimal fleet of vehicles with lim-
ited capacity that must transport a set of clients from an initial pickup point
to a final delivery location. Normally ”Time Windows” constraints are added,
which specify the time intervals within which each client must be picked-up and
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delivered, generating the DARPTW (or PDPTW) problem, which is known to
be NP-hard.

Traditional approaches in Dial-a-Ride service planning are usually imple-
mented as heuristic procedures that extend basic graph search algorithms, acting
over large collections of data that describe the entities of the domain prob-
lem (vehicles, service requests, schedules). The most commercially used trans-
port planning algorithms correspond to extensions of the solomon’s heuristic
for the VRPTW [16]. An example can be found in our past research [4], where
we implemented a version of Jaw’s Advanced Dial-A-Ride with Time Windows
(ADARTW) algorithm [8].

Regarding GA-based solutions for DARP, it is hard to find works in this field
and at the best of our knowledge, no relevant work could be found. Some works
can be found on a similar but simpler problem, the VRP (Vehicle Routing Prob-
lem) from which DARP derivates. In these cases the proposed solutions make
use of the GA together with other post-optimization techniques for improving
the final solution or use the GA as a clusterization technique for assigning clients
to vehicles but not for the scheduling of the trips. This can be explained because
VRP (and hence DARP) corresponds to a deceptive problem, so traditional
Bit-String based GAs do not perform well.

In Addition, DARPTW imposes further requirements of precedence (pickup
precedes the delivery) and time-windows that make it harder to find feasible
solutions in the problem’s state space.

For all the above, the aim of this work is to provide some lights and experience
on applying genetic algorithms to the dial-a-ride problem. We pursue the objec-
tive of developing a specific GA encoding for the DARPTW problem and obtain
non deceptive results. In contrast to other research available in literature, our ap-
proach uses the genetic algorithm for the whole DARPTW problem, that is, the
assignment of clients to vehicles and their scheduling, without post-optimization
procedures.

To achieve our intentions diverse chromosome’s encoding and evolutionary
operators (selection, crossover and mutation) were implemented on a GA frame-
work. Through it, diverse GAs with different configurations of genetic operators,
chromosome’s encoding and parameters were tested under diverse request sce-
narios.

2 The DARP Problem

The problem we are treating consists of a set C of geographically distributed
transportation requests, coming from customers that should be served by a set
of identical vehicles V .

The service can be defined as picking-up the client from the origin node nsi,
and conducting it to a destination node ndi, where {nsi, ndi} ∈ N , with N the
entire set of nodes that represent the network.

The service must be executed considering a time window for delivery con-
straint defined for each customer, expressed in terms of an earliest delivery time
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and a latest delivery time, the pair (edti, ldti) with edti < ldti∀i ∈ C. In this
way, a vehicle serving the customer i must reach ndi, neither not before the edti
time, nor after the ldti time.

Two functions, DRT (N×N) ∈ � and MRT (N×N) ∈ �, define the direct ride
time (optimistic time) and the maximum ride time (pessimistic time) required
to reach the node ndj from nsi ∀i �= j. Delivery times define a time window
for pick-up, the pair (epti, lpti), where epti = edti − MRT (nsi, ndi) and lpti =
edti − DRT (nsi, ndi) (see Figure 1).

Fig. 1. Users Time Windows

In practical terms the customer is supposed to attend the vehicle at the pick-
up point not after the time epti. Vehicles are not allowed to wait for a client, so
they have to be scheduled to reach the point nsi for serving the request i not
before the time epti. On the other hand, the passenger has to be picked-up not
after the time lpti otherwise his request (theoretically) will not be satisfied.

Service requests have to be assigned to Vehicles and scheduled according to
the time restrictions. There exists no restriction about the minimum number of
passengers to serve, but the maximum capacity of the vehicles must never be
exceeded.

In our model we consider the possibility of a multi-depot scenario, that is, the
vehicle i starts from the depot DSi and after serving their last clients they turn
back to the depot DFi, where {DSi, DFi} ∈ N .

Finally, the objective function pursues the minimization of a disutility function
that considers the weighted sum of performance measures coming from the fleet
operator – number of vehicles required, total bus travel time and slack time –
and from the served users – effective waiting time and excess ride time.

3 Related Work

Research in the field of passenger transport planning systems has received an
increasing attention during last years, due to the congestion and contamination
problems, and the number of accidents generated by an always increasing num-
ber of vehicles in our cities. As response, new alternatives to satisfy transport
demands of citizens are being conceived [1].
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In literature, the passenger transportation problem can be found under dif-
ferent names. It is a sub-type of the Travel Salesman Problem (TSP) and more
specifically the Vehicle Routing Problem (VRP) and the Pickup and Delivery
Problem (PDP) devoted to goods transport. Under the name of dial-a-ride prob-
lem (DARP) were developed the first passenger-transport planning systems, usu-
ally based on greedy insertion heuristics (see [8] [14]).

The VRP has been studied more deeply as it treats a simpler planning prob-
lem; assumes a central depot for all the vehicles, considers only the picking-up
of goods (not the pickup & delivery), and therefore no disutility function exists
for the transported entities. More recent research in the field tries to include
newer techniques to improve the quality of the obtained solutions. In [11], Li
presented a meta-heuristic for the PDPTW. A tabu-search can be found in [15],
implemented for real-life problems including time-window constraints. Kohout
and Erol [10] showed an agent-based implementation that uses stochastic im-
provement in the final solutions.

As mentioned before, under some domains traditional GAs do not perform
well [6]. These are the so called deceptive problems in which the GA is not able
to converge to a near optimal solution mainly due to a bad linking of the building-
blocks. Much research can be found about this linking problem ([5][6][7]) and its
possible solutions.

On the other hand, Genetic Algorithms (GA) have been successfully used
as optimization technique in different research domains, including simple route
optimization as in [3]. In the VRP field [2] reports an hybrid GA for multiple
vehicles, that combines the genetic algorithm together with a greedy constructive
heuristic. In [12] Maeda uses GA alone for the VRP problem but with time
deadlines. Thangiah [17] uses a genetic approach for clustering initial routes. In
[9] an hybrid approach uses GA together with dynamic programming and [13]
combines GA with tabu-search.

4 GA Implementation

We have developed a GA framework for the assignment and scheduling of cus-
tomers in the Dial-a-Ride problem. Such framework was implemented as a para-
meterized C++ program able to execute different runs with different treatments
for problem parameters.

The GA tackles the whole DARPTW problem, so each individual of the pop-
ulation corresponds to an entire solution of the problem, that is, a set of vehicles
and their routes that fulfill all customer requests. In our model the chromosomes
evolve minimizing the fitness function in a continuous process that applies the
genetic operators (selection, reproduction, and mutation) over the population.
The process finishes after a pre-specified number of generations.

As mentioned earlier, in the GA framework were considered different kinds of
genetic operators and chromosome’s encoding. In particular the following ones
were implemented.
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Genotype. For the application of GA to a problem, is required to model a rep-
resentation of the solution in a chromosome. As first encoding we choose a rep-
resentation in which the chromosome is made up of a bus-passenger list, where
each bus-passenger pair corresponds to a gene as shows the Figure 2.

A simple parser was provided to decode the chromosome, which consists in
interpreting the first passenger’s occurrence always as a pick-up, and the second
one, always as a delivery. In this way the chromosome must have exactly two
genes for each passenger, which determines the length of the chromosome.

Note that these 2 genes associated to a customer (pickup/delivery) can specify
different buses. Therefore, the bus finally assigned to the customer is the one
specified by the pick-up. The bus information in the delivery gene is used as a
sort of recessive genetic material useful upon recombination.

Fig. 2. The bus-passenger encoding scheme for the chromosome

Other encodings are considered to be implemented, like the locus-bus-passenger
gene, that will allow putting the information about the relative position of the
gene in the chromosome inside the gene itself, enabling the adoption of a linkage
learning model.

Phenotype. In order to evaluate the ”quality” of a chromosome and to decide
its reproduction probability, a fitness function was defined. In the case of the
DARP problem we adopted as fitness function the disutility function already
defined by the end of Section 2.

Initial Population. The generation of an initial population that covers the whole
problem’s state-space is crucial for the final performance and convergence of a
given Genetic algorithm. In this sense, we have implemented two alternative
procedures for the population initialization: the first is the common random
generation of the chromosome’s genes at bit-level.

The second initialization procedure is based on a basic insertion heuristic for
scheduling the passengers into the available vehicles. The heuristic picks one
by one the clients from a list and tries to schedule them in the first possible
vehicle. Different solutions (population’s individuals) are generated by applying
a random ordering to the list of clients and vehicles each time the insertion
heuristic is to be used.



A Study on Genetic Algorithms for the DARP Problem 503

Selection. Firstly, a tournament selection has been used to choose the individ-
uals(mates) for reproduction. It works by choosing a number of ts (tournament
size) individuals from the population in a random way. Then the individual with
the lowest fitness value is selected (the fitness function in our case is a cost
function, so lower values are better than higher values). The number of tourna-
ments applied in a generation depends on the number of individuals required to
reproduce.

Crossover. The reproduction is the operation that produces a new individual
pertaining to a new generation, due to the combination of the genetic material
of its parents. For the framework we have already implemented the basic bit-
level one-point crossover and a modified version of the Partial Match Crossover
(PMX) which has been used in other scheduling problems with good results.

Mutation. The mutation allows an individual to slightly change the inherited
genetic material. We have already implemented a bit-level mutation and the
2-opt operator.

5 Tests and Results

Firstly, we have implemented a traditional bit-level GA model with the following
characteristics: bit-string chromosome using the bus-passenger gene, tournament
selection, and bit-level population initialization, crossover and mutation. As ex-
pected, this GA model was unable to solve small problems (no feasible solution
found) for 10 requests. This is because the DARP behaves in a deceptive way,
specially with traditional bit-string GAs.

A second implementation changed the bit-string by an integer chromosome
representation. The crossover and mutation operators together with the pop-
ulation initialization procedure were modified to operate over the integer rep-
resentation. This GA behaved well for small request sizes, up to 25 requests.
From 30 requests on, the GA was not able to arrive to any feasible solution.
This happened because the used population initialization step (random inte-
ger generation) produced too much chromosomes with unfeasible solutions. This
happened with population sizes of 50, 100 and 200 chromosomes.

A third GA implementation was done, which included an insertion heuristic
for the population initialization procedure together with the PMX crossover and
2-opt operator. The introduction of an insertion heuristic for the population
initialization procedure, allowed starting the GA with a population with some
individuals having feasible solutions. This allowed us to use the GA with request
sizes bigger than 50 but lower than 100 and to obtain better results.

With this last GA implementation different tests were carried out varying
some of the parameters. At first view, the GA seems to work more efficiently
and quickly with small sizes of requests (Under 100). For that reason we decided
to use a small number of requests (5 scenarios of 25 trip requests). In particular
we have performed an initial test of 640 runs, considering the combination of
the following parameters:
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– Scenarios: 5 demand scenarios, each with 25 trip requests distributed uni-
formly in a two hours horizon.

– Maximum number of available buses: 25
– Population size: 50 - 100 - 150 - 200 individuals.
– Number of generations: 1.000 and 11.000 generations
– Crossover probability: 0,7 - 0,8 - 0,9 - 1.0
– Mutation probability: 0,0015 and 0,0095
– Tournament size: 50% and 60% of the entire population.

Table 1 summarizes the best solutions obtained by the GA model in terms of
the fitness value, and in terms of number of vehicles. A general conclusion from
the analysis of this first study is that the ADARTW heuristic provides much
better results than the implemented GA model, in terms of the fitness function
value. However, in terms of the number of required vehicles the GA model has
produced better results than the heuristic in 4 of the five scenarios with 25 trip
requests.

Table 1. Comparison of best solutions obtained

∗Better results in (minimum) number of vehicles given by the GA program.

In the following, an analysis on the most relevant GA parameters is presented
through bar graphs and their results are analyzed and discussed.

The graph of Figure 3 (left) shows the tendency observed on the fitness func-
tion when the population size increases. Better results are given for bigger pop-
ulation sizes either with 1000 or 11000 generations. This is because a bigger
population size allows examining a larger portion of the solutions space on each
generation. It is also shown that a bigger number of generations allows for better
fitness function results, independently from the considered population sizes.

The graph of Figure 3 (right) corroborates the importance of the population
size by showing how steadily lowers the fitness mean when raising the population
size. This phenomenon is independent from the crossover probability as it is
appreciable on all its four scenarios, ranging from 70% to 100% of crossover.

The graphs of Figure 4 show the influence of the mutation probability in the
value obtained for the fitness function. The left graphic shows that independently
from the evaluated crossover probability values, the higher mutation probability
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Fig. 3. (left) Fitness mean versus population size for 1000 and 11000 generation sizes.
(right) Fitness mean versus crossover probability for population sizes of 50, 100, 150
and 200 individuals.

Fig. 4. (left) Fitness mean versus mutation probability for crossover probabilities 0,7
- 0,8 - 0,9 - 1,0.(right) Fitness mean versus population size for mutation probabilities
of 0,0015 and 0,0095

Fig. 5. (left) Number of vehicles versus population size for 1.000 and 11.000 gener-
ations. (right) Fitness mean versus population size for 50% and 60% of tournament
size.
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produces the lower fitness value (cost). In the same graphic can be appreciated
that the implemented model does not produce significant differences of fitness
function values when varying the crossover probability while the mutation prob-
ability is low, but this seems to multiply the effect in a non predictable way
when the mutation probability is higher. The right graph shows that the higher
mutation probability performed better in terms of fitness independently of the
population size.

Finally, Figure 5 shows on its left graph that the search for the optimum
number of vehicles produces better results with large number of generations,
and good results can be obtained even in the case of relatively small population
sizes. On the right graph is shown how the fitness is affected by the selection
tournament sizes of 50% and 60%. In fact, from the graphic is possible to see
that no trend exists and that one tournament size is not better not worse that
the other in a consistent way varying the population size.

6 Conclusions and Future Work

The results and experience on a study to develop and test different GAs was pre-
sented in the aim of finding an appropriate encoding and configuration, specifi-
cally for the DARP problem.

After implementing an initial configuration with bit-string chromosome which
clearly performed poorly, a better GA implementation was reached. It considered
an integer representation for the bus-passenger gene, a tournament selection
phase, the PMX operator for crossover and the 2-opt operator for mutation.
Afterward an insertion heuristic for the population initialization was included
resulting in even better behavior and results.

These solutions were comparable to the ones obtained using the ADARTW
algorithm implementation [8] regarding the number of vehicles used but not
with respect to the fitness value, aspect that can be improved in the future. In
this sense, the idea is to continue the implementation of other genetic operators
and specially the locus-bus-passenger gene encoding for implementing a linkage
learning module as the one presented by Harik [7] for better results.

Finally, with this GA configuration several tests were carried out varying the
population and tournament sizes, the crossover and mutation probabilities and
the number of generations. From these tests some conclusions drawn regarding
the factors affecting the quality of the final solution were: (corroborating) the
relevance of the population size and number of generations, the importance of a
mutation factor closer to 0.95% rather than to 0.15% and the low relevance of
the tournament size when in the range 50% - 60%.
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Universidad Politécnica de Cartagena, Cartagena 30202, Spain
juanc.martinez@upct.es

Abstract. Auscultation of the heart is a medical technique that still
today is used to provide a fast diagnosis about the heart condition. Com-
pression of the heart sounds (or phonocardiogram) is very convenient to
reduce bandwidth in telediagnosis systems that aid the physician in the
evaluation of the cardiovascular state. The compression algorithm used
depends on several parameters, which can take a diversity of values. Ge-
netic algorithms have been used to obtain the optimal set of values for
the compression parameters that optimize the performance of the com-
pression for a test set of cardiac recordings. The optimized results were
obtained very quickly, and optimal values agreed for (almost) all the test
records.

1 Introduction

Many efforts are nowadays directed towards the development of systems for car-
diac diagnosis or monitoring using the recording of heart sounds or phonocar-
diograms (PCG). To improve bandwidth and storage efficiency, the heart sounds
audio signal can be transmitted compressed using a lossy specific method based
in the wavelet transform and in additional methods to decrease the size of the
resulting signal. ASEPTIC (Aided System for Event-based Phonocardiographic
Telediagnosis with Integrated Compression) [1] is a system that analyzes remote
PCG recordings and provides the diagnosis of the cardiovascular state. The in-
put signal to ASEPTIC is usually a compressed PCG record, in order to reduce
bandwidth. Thus, a compression/decompression stage is included in ASEPTIC,
together with the main analysis stage.

The PCG compression algorithm [2] depends on a number of parameters, that
have great influence on the performance of the compression. These parameters
can be defined over a wide range of values, so deciding the optimal set of the
parameters values is not an easy task. Brute force assures to find the optimal
solution, but its high computational time to explore permutations of many pa-
rameters and values makes it not a practical solution.

In this paper we propose to use genetic algorithms (GA) to find the optimal
set of values for the compression parameters of PCG. This technique has been
already applied to compression successfully to optimize the compression para-
meters of bi-level images [3], the length of the block for image compression [4],
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or to analyze sound files to determine the chunks that are most likely to contain
irrelevant signals in audio compression [5]. GA performs an stochastic random
search over the entire space of search, which provides the optimal solution with
less computation time than other approaches.

The paper is organized as follows: section 2 provides a brief description of
the PCG compression algorithm and parameters. Section 3 describes the proce-
dure for GA optimization adapted to PCG compression, and section 4 presents
the results obtained with this technique. Finally, section 5 remarks conclusions
obtained.

2 PCG Compression

In this section, a brief description of the PCG compression algorithm and the
parameters that take part is presented, together with the expressions used to
measure the performance of the compression.

2.1 The PCG Compression Algorithm

The compression/decompression stage in ASEPTIC [1] is based in a specific al-
gorithm for PCG lossy compression [2] (Figure 1). Previously to the compression,
the PCG signal is divided in blocks of Lb samples (the last block is zero-padded
if needed), and then each block (or compression window) is compressed indepen-
dently of the others in two basic steps:

1. wavelet compression, which consists of:
– decomposition of PCG signal using the wavelet transform (WT) or the

wavelet packets transform (WPT),
– to assign value 0 to those wavelet coefficients that are below a threshold,

and
– to remove 0-coefficients from the wavelet coefficient vector, and the last

block of 0’s from the significance map vector (binary string),
2. additional compression, formed by:

– compression of the wavelet coefficient vector using lineal quantization,
and

– compression of the significance map using Run-Length-Encoding (RLE)
and Huffman coding.

2.2 Performance of the Compression

The performance of lossy compression methods is usually measured with two
parameters, considered jointly [6]: the compression rate and the distortion error.

The compression rate (CR) of a compressed signal C with respect to the
original signal X is defined as:

CR =
LX

LC
=

NB · N
LC

(1)
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Fig. 1. Block diagram of the PCG compression algorithm

where L(·) is the length in bits of the considered signal, NB is the number of
bits used to represent each sample of X, and N is the number of samples of X.

On the other side, a signal that is compressed and decompressed using lossy
techniques is not exactly equal to the original signal. This difference (distortion
error) is usually measured by the percent root-mean-square difference (PRD),
modified to be independent of the offset of the signal [7], defined as :

PRD =

√√√√
∑N

i=1(xi − x̂i)2∑N
i=1(xi − μx)2

× 100 (2)

where μx is the mean value of X, and xi and x̂i are samples of the original signal
and the decompressed (reconstructed) signal, respectively.

Since CR and PRD are related (as PRD increases, CR increases, and vicev-
ersa), it is necessary to found a trade-off between them, according to the perfor-
mance of the compression algorithm and the needs of the application.

2.3 Compression Parameters

The algorithm used to compress the PCG signal depends on the following para-
meters:

– type of wavelet transform (WT o WPT), T t,
– wavelet mother function or wavelet filter, wmf ,
– wavelet decomposition level or deep, M ,
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– number of bits used to quantize the wavelet coefficients, Nb,
– number of samples of each block (compression window) in which the original

PCG signal is divided, Lb,
– compression method, Cm, that reflects the combination between the quan-

tized thresholded wavelet coefficients (QTC) and the compressed signals
of the significance map (NZSM, RSM and HSM): QTC+NZSM (1),
QTC+RSM (2), and QTC+HSM (3).

It is also necessary to set the maximum value of the coefficients that will be
zeroed in the thresholding. The threshold thr can be set manually by the user,
although the lack of a direct relation between its value and the losses of the
compression due to thresholding makes manually setting not suitable. Another
possibility is to set the minimum percentage fraction of the coefficients energy
of the original signal that must be retained after thresholding (RtEn). Finally,
it is also possible to set one of the parameters used to measure the performance
of the compression, CR or PRD, as the target value.

For our application, the main objective for the transmission and storing of
PCG signals is to reduce the size of the recordings as much as possible but
assuring a minimum quality level (or a maximum error value) that guarantees
that those signals are still suitable to diagnose the cardiovascular condition after
decompression.

The algorithm described in [8] allows achieving compressions with a specific
PRD error, by adjusting iteratively the initial threshold that decides which
wavelet coefficients will be zeroed. For each compression window Lbi, the initial
threshold is set as , thr0

i = 2 · Cmax
i , where Cmax

i is the maximum coefficient
for the compression window Lbi. Compression is executed using thr0

i , and the
resulting PRD is computed. If PRD is in the range [0.95 · PRDtarget, 1.05 ·
PRDtarget], compression ends; if not, thri is adjusted iteratively as described
in [8] until PRD reaches the ±5% tolerance band centered at PRDtarget. After
a maximum number of iterations (25), if PRDtarget has not been reached, the
threshold that provides the best result until that moment is chosen.

Although that iterative algorithm has been proposed for ECG compression,
its use for PCG compression is straightforward. For our case, that algorithm
has been adapted so not only PRD, but also CR, can be used as target values.
Another modification made to the original algorithm concerns the method to
set the initial value of the threshold for each compression window. In [8], it
has been said that the double of the maximum coefficient is used to set thr0

i .
However, thri often takes similar values for consecutive compression windows
for a target value of PRD or CR. This can be exploited to reduce the number
of iterations. In our case, from the second to the last compression window, the
initial threshold is computed as the double of the final threshold for the previous
window: thr0

i = 2 · thri−1. Thus, the threshold for the target value is computed
with fewer iterations, so the computation time is reduced. If the threshold does
not decrease for 5 iterations, then its value is reset to 2 · Cmax

i , and the search
for the correct threshold begins from the start.
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3 Optimization of Compression Parameters

Due to the large number of parameters that take part in the compression of
PCG, and to the diversity of values that each of them can achieve, a systematic
approach based in permutations of the different parameter values to establish
the optimal set (brute force) is not efficient. Instead, an approach based in op-
timization of a cost function using GA has been used.

GA [9] are numeric optimization algorithms based in randomization and in
concepts like natural selection and evolution. GA has proven to be very robust
and effective for optimization problems too complex for the traditional optimiza-
tion techniques. The advantage is less computational time than for a systematic
search of the optimal set of parameters in the full search space defined by the
ranges of the different compression parameters.

The block diagram of the GA used for the determination of the optimal pa-
rameters for PCG compression is shown in Figure 2. Previously, each of the pa-
rameters to be optimized has been encoded as a gene. A chain of genes is called
a chromosome, and it contains the set of parameters to be optimized. Each in-
dividual of the population is characterized by its chromosome (genotype). The
GA performs the following tasks:

Fig. 2. Optimization of parameters for PCG compression using genetic algorithms

1. A new population is generated assigning random values for the chromosomes
of each individual.

2. Each individual in the initial population is evaluated for its fitness or good-
ness in solving the problem.

3. If the stop criterium is reached (at least one individual in the present popula-
tion gets the target fitness, or the maximum number of iterations is reached),
the GA ends; if not, it continues with step 4.

4. Individuals are selected for reproduction for the next generation according
to their fitness.
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5. Crossover and mutation are applied to the selected individuals (parents) in
order to create a new population (children).

6. The present population is replaced with the new chromosomes, and it con-
tinues with step 2.

The GA was executed for 50 iterations, and with a population of N = 50
individuals. Each chromosome consisted of 5 genes (each gene represents a com-
pression parameter), and each gene had a different length in bits, according to
the range it can take. Table 1 shows the genes, their possible values, and the
number of bits used for each gene.

The fitness expression has been defined in function of CR, PRD and TPS
(time need to compress 1 second of PCG signal):

fitness =
(

1
1 + K1 · PRD

)
� 1

1 + K2 · CR

�
·
(

1
1 + K3 · TPS

)K4

(3)

In this expression, the first exponential term takes values in the range [0,1],
approaching to 1 for high values of CR and low values of PRD (ideal situation).
The second exponential term reflects the influence of the compression time for
1 second of signal. One of the parameters that have greater influence in this
term is the wavelet filter. There are several filters that achieve similar values of
CR and PRD, although the higher order filters usually takes more computation
time. The second term gives priority to those filters that for similar values of CR
and PRD have lower order and so, use less computational time. Constants K1,
K2, K3 and K4 are used to modify the relative importance of the parameters.
Their values were assigned experimentally to the following: K1 = K3 = 5, K2 =
0.2, and K4 = 0.1.

Table 1. Genes of the chromosome, possible values for each gene, and number of bits
used for each one

Gene Values Num. of bits

Transform WT, WPT 1
Wavelet filter Db1–16, Sym4–16, Coif2–4 5
Decomposition level 2–9 3
Num. of quantization bits 1–16 4
log2 of the compression window length 9–12 2

The tournament selection algorithm [10] has been used to select the indi-
viduals. In it, a subset of n individuals (with 2 ≤ n ≤ 6) are chosen among
the population randomly. These individuals compete, and that with the highest
fitness wins the tournament and is selected for reproduction. This process is re-
peated N times until all the parents of the new population are determined. In
this algorithm, the probability that the winner of the tournament is the individ-
ual with the highest fitness is Pt. In our case, the values used for n and Pt have
been 5 and 1, respectively.
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The recombination of the selected individuals is done using the crossover and
mutation operators. Their probabilities have been Pc = 0.7 and Pm = 0.05, re-
spectively. The crossover algorithm uses two points, so each individual is divided
in three parts using two crossing points in bits 4 and 7. Each pair of parents
generates a pair of children exactly like the parents if Pparents ≥ Pc (with the
probability of crossing the parents, Pparents, determined randomly). However, if
Pparents < Pc, the chromosome of the first child will be formed by the parts 1
and 3 of the first parent and the part 2 of the second parent, whereas the second
child will be formed by the parts 1 and 3 of the second parent and the part 2 of
the first parent.

The mutation operator explores areas of the space of search that are not in-
cluded in the present population. All the bits of each individual remains without
changes for the next generation if Pbit > Pm; in other case, they are changed.
The probability of mutation of each bit, Pbit, is determined randomly.

4 Experimental Results

To obtain the results, two data sets have been used: set 1 is formed by 6 PCG
records, and set 2 consists of 50 real PCG records from [11], which includes those
of set 1. Set 1 includes 1 normal record, 1 prosthetic valve record, and 4 murmur
records of different pathologies, and it has been used for the optimization of the
compression parameters with GA. Set 2 includes a variety of records of many
pathologies, and it was used to determine the compression method, Cm. All
these records were stored in WAV format, with 8000Hz sampling frequency, 1
channel, and 16 bits.

The optimization of the compression parameters with GA applied to the first
5 seconds of the six records of set 1 to give generality to the results. The target
value was to retain the RtEn = 99.9% of the energy of the wavelet coefficients
of the original record. Results obtained are detailed in Table 2. This table shows
that for the six records, compression was optimized using WT with a compres-
sion window length of 212 = 4096 samples (approximately 0.5 seconds), which
corresponds to the maximum compression window length allowed. The number
of quantization bits and the level of decomposition were 7 and 4 for five of the
six records; for the remaining case, their values were 6 and 3, very similar to the
former. As for the wavelet filter, there were 3 records with Db9 as optimal value
and 3 records with Db10.

The best compression method was determined using the records of set 2. The
first 5 seconds of each record of set 2 were compressed with a target value of PRD
= 3% and with the parameters obtained from the previous GA optimization: M =
4, log2(Lb) = 12, Nb = 7 and T t = WT. Table 3 shows the three compression meth-
ods evaluated and the number of records for which the highest CR was obtained
(for the same PRD error), together with the mean CR and its standard deviation
obtained for the compression of the 50 records with each of the three compression
methods. The result of this analysis showed that the best compression method is
3, which combines the quantized signal from the wavelet coefficients (QTC) with
the significance map compressed with Huffman coding (HSM).
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Table 2. PCG compression parameters obtained for each record for the optimization
with GA using (3) as fitness function

Record Transform Wavelet Level of Num. of quantization log2 of compression
filter decomposition bits window length

dm009 WT Db9 4 7 12
dm037 WT Db10 4 7 12
dm084 WT Db9 4 7 12
dm086 WT Db10 4 7 12
dm113 WT Db9 4 7 12
dm127 WT Db10 3 6 12

Table 3. Number of records for which the indicated compression method obtained
the highest CR (for the same PRD error). Mean CR and standard deviation are also
shown for the compression of the first 5 seconds of the 50 records of set 2 with each of
the three compression methods.

Compression method Number of records Mean CR

QTC+NZSM (1) 2 9.1806 ± 7.3160
QTC+RSM (2) 10 9.5085 ± 7.2191
QTC+HSM (3) 38 9.6673 ± 7.3894

Table 4. Number of records for which the indicated wavelet filter achieved the highest
CR (for the same PRD error). Mean CR and standard deviation are also shown for
the compression of the first 5 seconds of the 50 records of set 2 with each of the two
wavelet filters.

Wavelet filter Number of records Mean CR

Daubechies 9 (Db9) 25 9,1632 ± 7,0399
Daubechies 10 (Db10) 25 9,6673 ± 7,3894

To decide which wavelet filter (Db9 or Db10) provided the best results, set 2
was used again. Compression was made with the best parameter values achieved.
Table 4 shows the number of records for which the indicated wavelet filter
achieved the highest CR (for the same PRD error), together with the mean
CR and standard deviation. Again, the two filters obtained the same number of
records for the best results. Finally, Db10 was selected, since its CR was slightly
higher than for Db9.

Finally, Table 5 sums up the optimal set of values achieved for the different
compression parameters using (3).

4.1 Computation Time

The main reason to use GA to obtain the optimal compression values is the
high computation time that a systematic exploration of the full space of search



516 J. Mart́ınez-Alajaŕın, J. Garrigós-Guerrero, and R. Ruiz-Merino

Table 5. Optimal values obtained for the compression parameters using genetic algo-
rithms and the cost function defined by (3)

Parameter Value

Transform (T t) WT
Wavelet filter (wmf) Db10
Decomposition level (M) 4
Num. of quantization bits for the wavelet coefficients (Nb) 7
log2 of the length of the compression window (log2(Lb)) 12 (4096 samples)
Compression method (Cm) 3 (QTC+HSM)

(defined by the parameters and values in Table 1) would require. For example,
for the record dm009, it has been roughly estimated that the systematic deter-
mination of the optimal set of values using a target of RtEn = 99.99% would
require 21 days (in a PC laptop with Intel Pentium IV 2.8GHz). On the other
side, the 50 iterations of the GA only took 2 hours and 37 minutes, which is
the 0.52% of the time needed for the systematic exploration. The GA reached
the optimal values at the iterations 23, 14, 27, 4, 35 and 33, for records dm009,
dm037, dm084, dm086, dm113, and dm127, respectively.

Although the systematic search could be quicker if a previous rough analysis
was done to determine the optimal region, and then a thorough analysis was
perform considering only a restricted subset of all the possible values of the
compression parameters, the computation time needed would be still too high
in comparison to what the GA needed to find the optimal solution.

The excessive computation time needed for the systematic exploration is due
to 1) the high number of evaluations needed for the compression, and 2) the high
computation time needed for some parameter values, like high values of M with
the WPT, low values of log2(Lb), and some of the wavelet filter values (Db1 and
Sym12–16).

5 Conclusions

In this paper, an optimization procedure for parameter values of PCG com-
pression has been presented. The optimal set of values obtained is that which
performs best in average for a set of representative test records, and it has been
obtained in a very reduced computational time, with respect to a full exploration
of the search space. The optimization criterium (fitness function) has considered
three parameters: compression rate, PRD error, and the time elapsed in com-
pressing 1 second of signal. This fitness function provides a reasonable criterium
for optimization, but it could be changed depending on the interest of the ap-
plication.

The analysis of the optimal values suggests that the length of the compres-
sion block should be the maximum allowed, although this can have practical
limits, depending on the platform of the implementation of the compression algo-
rithm (especially in hardware). Finally, it could be also possible to define several
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profiles, or optimal sets of values, according on the properties of the signal (am-
bient noise, normal or pathological records, etc.).
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Abstract. The article presents an integrated resolution of the joint pro-
duction and maintenance scheduling problem in hybrid flowshop. Two
resolution methods are used on the basis of a new coding to repre-
sent a joint production and maintenance scheduling: Taboo search where
we proposed an algorithm for the generation of a joint initial solution
and neighbourhood, and GA where we proposed new joint operators for
crossover and mutation. Computational experiments are conducted on a
large set of instances and the resulting genetic algorithm gives the best
results so far.

Keywords: Maintenance, Production, Joint scheduling, Genetic Algo-
rithms, Taboo Search, Hybrid Flowshop.

1 Introduction

Maintenance and production are two functions, which act on the same resources.
However the scheduling of their respective activities is independent, and does not
take into account this constraint. The interaction between maintenance and pro-
duction, particularly their joint scheduling, is relatively little studied and rather
recent in the literature. One account in the literature two joint scheduling strate-
gies which aim is to solve conflicts between production and maintenance [1]. The
sequential one consists of two steps: First the scheduling of the production jobs
then the insertion of the maintenance tasks, taking the production scheduling as
a strong constraint. The integrated one consists of a scheduling of the production
and maintenance tasks at the same time, on the basis of a joint representation
of production and maintenance data. The joint production and maintenance
scheduling is a complex problem because of the scheduling of two different ac-
tivities: production and maintenance. The problem as defined is a multicriteria
none. On one hand, one schedules the production respecting deadlines, cost
and products quality. On the other hand, one plans maintenance under the con-
straints of equipment reliability which ensures the perenniality of the production
equipment. The uncertainties related in particular to the data and target makes
us think that an approach by exact methods is not possible. Therefore we pro-
pose to use heuristic methods which solve, even partially, this type of problems.
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c© Springer-Verlag Berlin Heidelberg 2007



An Integrated Resolution of Joint Production 519

In this paper, we investigate an integrated resolution of the joint production
and maintenance scheduling problem in hybrid flowshop. Thus, the resolution of
the joint production and maintenance scheduling will be done by Taboo search
(TS) and GA. The aim being to optimize a common objective function which
takes into account the criteria of maintenance and production into same. In this
paper, we study the general hybrid flowshop scheduling problem with parallel
and identical machines at all stages. A set of n jobs J = 1, 2, . . . , n has to be
sequenced in a flowshop environment with k stages. For each stage i a set Mi =
1, 2, . . . ,mi of identical machine is considered. A job consists in a sequence of
k tasks, one task denoted by Tij for each stage. Each task within a job requires
one machine. The processing time of task Tij will be denoted by pij . it has been
proved that the problem is NP-complete even if there are two stages and there is
only one machine at one of the two stages [2], [3]; also, heuristics have been pro-
posed in the case that there is one machine at stage one and parallel machines at
stage two [4]. The maintenance used is a systematic preventive one [Barlow60].
The tasks are periodic interventions occurring every T*j periods (T*ij indicates
the ideal maintenance period of task i on the machine j). Each preventive main-
tenance task is characterized by a range of maintenance tasks pre-established by
the maintenance department or the manufacturer of the considered equipment.
It consists of a succession of elementary operations which duration p’ij is evalu-
ated with more or less certainty. Moreover, the periodicity T* of these tasks is
authorized to vary in a tolerance interval noted [Tminij,Tmaxij]. This interval
represents a compromise between the maintenance cost and the machine unavail-
ability risk. The respect of the maintenance periods influences the constraints of
the production system. The choice of systematic preventive maintenance, with
specificities such as the periodicity of the maintenance tasks, for this study, is
a consequence of its planned aspect which makes it the most adapted for the
maintenance scheduling. The rest of the paper is organized as follows. Section 2
is devoted to the resolution methods proposed to solve the joint preventive main-
tenance and production scheduling in a hybrid flowshop. We use two heuristics
on the basis of a new coding to represent a joint production and maintenance
scheduling: Taboo search where we proposed a new technique for the generation
of neighbourhood, and GA where we proposed new joint operators for crossover
and mutation. The goal is to optimize a global objective function which takes
into account maintenance and production criterion at the same time. The third
section present the various results obtained for the different methods. Finally,
we will conclude with some perspectives and extensions for this work.

2 Resolution Methods

The integrated strategy aims to optimize a global objective function which takes
into account production and maintenance data. The resolution by the integrated
strategy is based on a joint representation of production and maintenance data
before the resolution itself. We will, first, present in this section the proposed
representation of a joint production and maintenance scheduling and the global
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objective function to optimise. Then for each heuristic (Taboo search and GA)
the adaptations we proposed. We will not explain here the operating mode of GA
and Taboo search. However, the reader can refer to Goldberg’s [6] and Glover
[7] work for details.

2.1 Representation of a Joint Solution

We propose to represent each joint solution as a structure with tree fields:
- the first one is a sequence S that represents the execution order of the produc-
tion jobs in the first stage;
- the second one is a matrix R called ”order matrix” that represents the exe-
cution order of the production tasks on each machine. Each line of this matrix
relates to a machine;
- the last one is a matrix M that represents the sites of the maintenance tasks
insertion. The element M[i,j] represents the insertion of the jth maintenance task
of the ith machine, in the sequence of the tasks relating to the ith line of the
order matrix R.

Example: let us consider a HFS with two stages; compose of 3 identical machines
in the first stage (M0, M1, M2) and 2 identical machines in the second one (M3,
M4).

Sequence S 7 5 2 6 4 1 3 0

Fig. 1. Example

S= (7; 5; 2; 6; 4; 1; 3; 0)
M [4,2] = 3 means that the second maintenance task on the first machine (of
the second stage M3) is inserted in position 3, after the production job 4 corre-
sponding to the line 4 of the order matrix R.

The execution of the tasks on the five machines according of the preceding
example is the following:
M0 : P7 , M0 1, P4 , P3 , M02
M1 : P5 , P1 , M11
M2 : M21 , P2 , P6 , M22 , P0
M3 : P2 , M3 1, P5 , P4 , M32 , P3 , M33, P1
M4 : M41, P7 , P6 , P0, M42
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2.2 Global Objective Function

The goal of joint scheduling is to propose a method that provides a common
planning for the production jobs and maintenance tasks. Thus, the objective of
optimization must be a compromise between the target objective maintenance
and production functions. The constraints imposed by the customers to their
suppliers are often expressed in term of time, which lead us naturally the mini-
mization of the makespan Cmax, i.e., the completion time of the last job at the
last stage. One will note f1 the production objective function:
f1 = Cmax = Max(Cij)1

From the point of view of the supplier, the respect of the maintenance pe-
riods influences the constraints of the production system. One will note f2 the
maintenance objective function
f2 =

∑m
j=1

∑kj
k=1 E′

jk + L′
jk

With
- E′

jk : Advance of the kth occurrence of the maintenance task Mj ;
- L′

jk : Delay of the kth occurrence of the maintenance task Mj ;
- kj : Effective occurrence number of the maintenance task Mj.

To optimize the two criteria, we take into account the following common global
objectif function: f = f1 + f2

2.3 An Integrated Taboo Search

In this section, we present the new parameters of the Taboo search. We proposed
an algorithm for the generation of the initial solution and the neighbourhood.

Initial solution. Taboo search can start the search with a random solution, or
a provided one. For us a solution can be complete or partial. A complete solution
represents a joint production and maintenance scheduling solution. In this case,
a complete initial solution is obtained after the insertion of maintenance tasks on
the partial one, which represents the production scheduling, according to one of
heuristics developed by Benbbouzid & al. [8] Algorithm 1 present the generation
of a complete random solution.

Random complete solution
Begin

Generate a random production sequence S
Generate the order matrix R associated to the sequence S
Generate the maintenance matrix M by inserting maintenance tasks
on this sequence with ones of maintenance insertion heuristics [8]

End.
Algorithm 1: Generation of a random complete solution.

1 Cij: completation time of the task i on the machine j.
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Neighbourhood. The move from a solution to another in the neighbourhood
can be done by shifts in the production sequence, the maintenance sequence, or
on both at the same time. We defined two types of shifts allowing generating
neighbour solutions from the current solution. The first concerns the production
tasks and the second the maintenance tasks. The choice of the neighbour solution
is done according to one of the following strategies: Best move, First Improve
or Randomly. - Maintenance tasks shifting A maintenance task can have several
possible sites in its tolerance interval. It is thus interesting to define a solution
neighbourhood as being the whole of the possible sites for the insertion of one
or more maintenance tasks, on one or more machines. Algorithm 2 presents the
principal of this neigbourhood .

The neighbourhood with maintenance tasks shifting
Local variables.
rj [0..effective occurrence number of maintenance tasks on the machineMj];
Begin

For each machine Mj
If There are late tasks
Then Advance the task which has the greatest delay
Else Generate a random number t

If t is less than ¡rj (the Mj machine is selected)
Then Select randomly a maintenance task k on machine Mj

Shift this task on the right (Delay it)
EndIf

EndIf
EndFor

End.
Algorithm 2. Generation of neighbourhood with maintenance shifting.

- Production tasks shifting The goal of this operation is to create new indi-
viduals by changing the execution order of the production tasks, while keeping
the initial maintenance tasks site. The set of possible moves is defined by a
neighbourhood of the current sequence. Most often the following neighbourhood
structures are used:

(i) right shifting of job at ith position to (i+1)th position, i=1,,n-1; (right-
shifting-moves);

(ii) swaps of two neighbouring jobs at position i and i+1, i=1,,n-1 (swap-
moves);

(iii) exchanges of jobs placed at the ith and the jth position, i�= j (interchange-
moves);

(iv) remove the job at the ith position and insert it in the jth position
(insertion-moves).

Local search based on swap-moves is very fast, as only a low number of pos-
sible moves have to be inspected, yet the obtained solution quality is rather low
and we do not consider it further. In [12] it was shown that the neighbourhood
based on insertion-moves can be evaluated more efficiently than the one based
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on right shifting moves and additionally gives at least the same solution quality.
The number of production tasks executed on a given machine can change after
mutations on the initial production sequence because of the type of our work-
shop (HFS). For that we proposed a technique to improve the muted solution.
The principle of this improvement is presented in algorithm 3.

Improvement of muted solution
Begin

For each machine Mj
If the number of production tasks increase after mutation
Then Add randomly a site in the maintenance matrix M
Else Remove randomly a site in the maintenance matrix M
End If
Calculate the new cost.
If the cost is improved
Then Maintain this improvement
Else Reject it.
End If

EndFor
End.
Algorithm 3. Improvement of muted solution

Stopping criterion. The method tries to improve the current solution during
a certain number of iterations.

2.4 An Integrated Genetic Algorithm

We introduce in this section the new GA operators which we propose. These op-
erators have the particularity of working on a joint production and maintenance
sequence.

Reproduction Operators. A valid individual will be generated from two par-
ents. This individual will inherit its information on the production and the main-
tenance of its parents. This leads us to define the following crossover operators:

1- The crossover on Production only. We use SJOX, SJ2OX, SBOX and
SB2OX crossover [9]

2- The crossover on Maintenance only.
According to the type of our workshop (HFS) where the number of the produc-

tion jobs executed on each machine is not necessarily the same one. A crossover
on the maintenance matrix M only, without taking into account the number of
production jobs executed on each machine, according to the order matrix R,
is not enough significant, because of unauthorized site for certain maintenance
tasks. The site of maintenance tasks on a machine depends on the number of
production jobs executed on this machine. A site is called unauthorized mainte-
nance site on a machine if this one is higher than the number of production jobs
which will be executed on this machine.
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Fig. 2. Example

The third maintenance task on machine M1 has to be inserted after the fifth
production job on the same machine. However there are only tree production
jobs on machine M1: P3, P5 and P7. This is why this insertion site is called
unauthorized site.

Within this framework, we proposed five new crossovers knowing the bound
which exists between the number of production tasks and the insertion site of
maintenance tasks on the same machine.
- K-points crossover on maintenance. It consists on permuting k lines, selected
randomly, in the maintenance matrix of the two parents. For each permutation,
we must check the unauthorized sites according to the order matrix, in order to
remove them.
- Even (Odd) crossover on stages. The sites of the maintenance tasks on the
machines which are in even stages of the first parent (respectively the second
one) are recopied in the first child (respectively the second 2). And the sites of the
maintenance tasks on the machines which are in the odd stages of the first child
(respectively the second) are recopied from the odd stages of the second parent
(respectively the first one). Lastly, a checking on the child maintenance matrix
according to the order matrix is done, in order to remove the unauthorized sites.
- Even (Odd) crossover inside stages. It consists in generating k stages randomly
(k ∈ [0, number of stages - 1]).

Then for each generated stage, the sites of the maintenance tasks, on the
even machines, of the first parent (respectively the second) are recopied in the
first child (respectively the second), and the sites of the maintenance tasks, on
the odd machines, of the child 1 (respectively the second) are recopied from
the odd machines of the second parent (respectively the first). The sites of the
maintenance tasks on the machines of the stages which are not generated are
recopied directly. Lastly, a checking on the child maintenance matrix according
to the order matrix is done, in order to remove the unauthorized sites.

The mutation. The mutation can also be done on the production or mainte-
nance. Four operators of mutation are proposed:
- Random mutation on production. It consists in using right shifting moves,
swaps-moves or interchange-moves on production sequence.
- Random mutation on maintenance. It consists in selecting randomly two ma-
chines in the maintenance matrix, then permuting the insertion sites of the
maintenance tasks of these two machines, keeping the same sites for the other
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machines. Lastly, a checking on this matrix is done, in order to remove the unau-
thorized sites.
- Add/Remove mutation. It consists first to done mutation on the production
sequence and generating the corresponding order matrix. Then to copy the same
maintenance matrix with removing the unauthorized sites.

3 Computational Experiments

In this section, we present the evaluation of the results obtained by Taboo search
and GA in an integrated resolution of the joint production and maintenance
scheduling problem in HFS. We generate the benchmarks used for evaluating
the proposed heuristics; because the benchmarks proposed by Vignier [10] and
Nron [11] are not exploitable in our case as the tested objective function is the
computing time. The form of the proposed benchmarks is Tx Cy, where Tx rep-
resent the number of the production tasks, and Cy the number of stages. The
number of machines on each stage is variable, with the possibility of existence
of neck stages, in different positions. These problems have different sizes, but
do not include maintenance data. For that, we developed a generator of ran-
dom maintenance tasks to generate benchmarks in systematic preventive main-
tenance. The used parameters are: the number of machines, lower and higher
bounds for each maintenance task parameter (T*, Tmin and Tmax). Each one
of these three parameters itself is limited by two minimal and maximum val-
ues, to avoid having identical values. To carry out our tests, we generated only
one task of maintenance per machine for each problem. Moreover, the process-
ing time of a maintenance task is identical for all its occurrences. The objective
functions are the minimization of makespan for the production, the minimiza-
tion of the sum of the delays and advances for maintenance ( 2.2). Taboo search
was executed with the following parameters: Number of generations: 100; neigh-
bourhood size: 50; Taboo list size: 10; stagnation: 20. For each benchmark, the

Fig. 3. Integrated joint production and maintenance scheduling
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best result is retained. The results of GA are obtained after 100 executions of the
method. The best result is saved, as well as the associated parameters. The fol-
lowing parameters are the same for all the executions of the genetic algorithms:
crossover rate: 0.8; mutation rate: 0.1; renewal strategy: Nworst, the replace-
ment is done between the selected population and the mute one. Population
size: between 30 and 100. We use all the proposed operators. Figure 2 presents
the computational results obtained on HFS instances with t TS and GA. GA
proves its superiority over TS, since the values performed by the integrated GA
represent more than 80.

4 Conclusion

In this paper we propose an integrated Taboo search and genetic algorithm to
solve the joint production and maintenance scheduling problem in HFS. We
proposed first, a new structure with tree fields to represent a joint production
and maintenance scheduling. Then algorithms to generate an initial solution and
neighbourhood in the case of integrated TS, and new operators in the case of
integrated GA. The instance of HFS used for testing our approach proves than
integrated GA performs better than integrated TS. These preliminary experi-
ments are encouraging and prove that the approach is consistent. Despite these
results, it is necessary to improve our approach with a preliminary study which
allows deducing the best operators for each tested method. Future research will
be to investigate a bi-criterion approach to solve this problem.

References

1. Kaabi J., Contribution l’ordonnancement des activits de maintenance dans les
systmes de production. Thse de doctorat soutenue l’Universit de Franche Comt,
France, 2004.

2. Garey M.R, Johnson D.S., and Sethi R. the complexity of flowshop and jobshop
scheduling. Mathematics of Operations Researchs, 1, pp. 117-129, 1976.

3. Graham R.L., Bounds for multiprocessing timing anomalies. SIAM Journal of Ap-
plied Mathematics, 17, pp.416-429, 1969.

4. Gupta J.N.D., Tunc E.A. Schedules for a two-stages hybrid flowshop with parallel
machines at the second stage. International Journal of production Research, 29,
1489-1502, 1991.

5. Barlow R., Hunter L., Optimal preventive maintenance policies. Operations Re-
search, 8, pp. 90-100, 1960.

6. Goldberg D.E. Genetic algorithms in search, Optimisation and Machine Learning.
Addison-Wesley, Mass., 1989.

7. Glover F.Taboo search: Part I. ORSA Journal of Computing,1, pp.190-206, 1989.
8. Benbouzid F., Bessadi Y., Guebli S., Varnier C. & Zerhouni N. Rsolution du prob-

lme de l’ordonnancement conjoint maintenance/production par la stratgie squen-
tielle. MOSIM’03, 2, pp. 627-634, Toulouse (France), 2003.

9. Ruiz R., Maroto C. A genetic algorithm for hybrid flowshops with sequence de-
pendent setup times and machines eligibility. EJORS, June 2004.



An Integrated Resolution of Joint Production 527

10. Nron E., Du flowshop hybride au problme cumulatif. Thse de doctorat soutenue
l’Universit de Technologie de Compigne, France, 1999.

11. Vignier A. contribution la rsolution des problmes d’ordonnancement de type
monogamme, multimachines (flowshop hybride). Thse de doctorat soutenue
l’universit de Tours, France, 1997.

12. Taillard E. Some Efficient Heuristic Methods for the Flow Shop Sequencing Prob-
lem. European Journal of Operational Research, 47, 65-74, 1990.



Improving Cutting-Stock Plans with

Multi-objective Genetic Algorithms�
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Abstract. In this paper, we confront a variant of the cutting-stock prob-
lem with multiple objectives. The starting point is a solution calculated
by a heuristic algorithm, termed SHRP , that aims to optimize the two
main objectives, i.e. the number of cuts and the number of different
patterns. Here, we propose a multi-objective genetic algorithm to opti-
mize other secondary objectives such as changeovers, completion times
of orders pondered by priorities and open stacks. We report experimen-
tal results showing that the multi-objective genetic algorithm is able to
improve the solutions obtained by SHRP on the secondary objectives.

1 Introduction

This paper deals with a real Cutting-Stock Problem (CSP ) in manufacturing
plastic rolls. The problem is a variant of the classic CSP , as it is usually consid-
ered in the literature, with additional constraints and objective functions. We
have solved this problem in [1,2] by means of a GRASP algorithm [3] termed
Sequential Heuristic Randomized Procedure (SHRP ), which is similar to other
approaches such as the SV C algorithm proposed in [4]. Even though SHRP tries
to optimize all objective functions, in practice it is mainly effective in optimizing
the main two ones: the number of cuts and the number of patterns. It is due
to SHRP considering all objective functions in a hierarchical way that it pays
much more attention to the first two ones than to the remaining. In this work
we propose a Multi-Objective Genetic Algorithm (MOGA) that starts from a
solution computed by SHRP algorithm and tries to improve it regarding three
secondary objectives: the cost due to changeovers or setups, the orders’ comple-
tion time weighted by priorities and the maximum number of open stacks. As we
will see, the MOGA is able to improve the solutions obtained by SHRP . The
paper is organized as follows. Next section is devoted to problem formulation.
In section 3, we describe the main characteristics of the proposed MOGA. In
section 4, we report results from a small experimental study. Finally, in section
5, we summarize the main conclusions and some ideas for future work.
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2 The Production Process

Figure 1 shows the schema of the cutting machine. A number of rolls are cut
at the same time from a big roll according to a cutting pattern. Each roll is
supported by a set of cutting knives and a pressure roller of the appropriate
size. At each of the borders, a small amount of product should be discarded, so
that there is a maximum width that can be used from the big roll, there is also
a minimum width due to the limited capability of the machine to manage trim
loss. Also, there is a maximum number of rolls that can be cut at the same time.
When the next cut requires a different cutting pattern, the process incurs in a
setup cost due to changing cutting knives and pressure rollers. The problem has
also a number of constraints and optimization objectives that make it different
from conventional formulations. For example underproduction is not allowed and
the only possibility for overproduction is a stock declared by the expert. Once
a cut is completed, the rolls are packed into stacks. The stack size is fixed for
each roll width, so a given order is composed by a number of stacks, maybe
the last one being uncompleted. Naturally, only when a stack is completed it
is taken away from the proximity of the cutting machine. So, minimizing the
number of open stacks is also convenient in order to facilitate the production
process. Moreover, some orders have more priority than others. Consequently the
delivery time of orders pondered by the client priorities is an important criterion
as well.

Generated 

rolls 

Cutting 

knives 

Maximum width 

Trim loss 

Film 

movement 

Big roll 

Pressure rollers  

Trim loss 

Generated 

rolls 

Minimum width 

Fig. 1. Working schema of the cutting machine
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3 Problem Formulation

The problem is a variant of the One Dimensional Cutting-Stock Problem, also
denoted 1D − CSP . In [5] Gilmore and Gomory proposed the first model for
this problem. It is defined by the following data: (m, L, l = (l1, ..., lm), b =
(b1, ..., bm)), where L denotes the length of each stock piece (here the width of
the big roll), m denotes the number of piece types (orders) and for each type
i = 1, ..., m, li is the piece length (roll width), and bi is the order demand. A
cutting pattern describes how many items of each type are cut from a stock
length. Let column vectors Aj = (a1j , ..., amj) ∈ Zm

+ , j = 1, ..., n, represent all
possible valid cutting patterns, i.e. those satisfying

∑

i=1,...,m

aij li ≤ L

where aij is the number of pieces of order i that are generated by one application
of the cutting pattern Aj . Let xj , j = 1, ..., n, be the frequencies, i.e. the number
of times each pattern is applied in the solution. The model of Gilmore and Go-
mory aims at minimizing the number of stock pieces, or equivalently minimizing
the trim-loss, and is stated as follows

Z1D−CSP = min
∑

j=1,...,n Xj

subject to:
∑

j=1,...,n aijXj ≥ bi, i = 1, ..., m

xj ∈ Z+, j = 1, ..., n

The classic formulation given in [5] is not directly applicable to our case mainly
due to the non-overproduction constraint, but it can be easily adapted as we will
see in the sequel. We start by giving a detailed formulation of the main problem;
that considering all characteristics and optimization criteria relevant from the
point of view of the experts. As the number of optimization criteria is too large
to deal with all of them at the same time, and also as the search space could
be very large, we have opted for introducing a simplified problem; i.e. a problem
with a lower number of objective functions and also with a smaller search space
in general. Once the simplified problem is solved, the solution will be adapted
to the original problem; in this process all the objectives will be considered.

3.1 The Main Problem

In order to clarify the problem definition, we present the data of the machine
environment and the clients’ orders, the form and semantic of a problem solution,
the problem constraints and the optimization criteria in the hierarchical order
they are usually considered by the expert. Given

• The set of parameters of the cutting machine: the maximum width of a cut
Lmax, the minimum width of a cut Lmin, the maximum number of rolls that
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can be generated in a cut Cmax, the minimum and the maximum width of
a single roll, Wmin and Wmax respectively, and the increment of width �W
between two consecutive permitted roll widths.

• The setup costs. There is an elementary setup cost SC and some rules given
by the expert that allows calculating the total setup cost from a configuration
of the cutting machine to the next one. The setup cost is due to roller and
cutter changes as follows. The cost of putting in or taking off a pressure-
roller is SC; the cost of putting in an additional cutting knife is 3SC, and
the cost of dismounting a cutting knife is 2SC.

• The types of pressure-rollers PR = PR1, ..., PRp and the mapping FPR from
roll widths to pressure-rollers.

• The mapping FST from roll widths to stack sizes or number of rolls in each
stack unit.

• The orders description, given by (M = 1, ..., m, b = (b1, ..., bm), l=(l1, ..., lm),
p = (p1, ..., pm)) where for each order i = 1, ..., m, bi denotes the number of
rolls, li denotes the width of the rolls and pi the order priority.

• The stock allowed for overproduction, given by (S = {m+1, ..., m+ s}, bs =
(bm+1, ..., bm+s), ls = (lm+1, ..., lm+s)) where for each i = 1, ..., s, bm+i de-
notes the number of rolls of type m + i allowed for overproduction and lm+i

denotes the width of these rolls.
• The set of feasible cutting patterns, for the orders and stock given, A where

each Aj ∈ A is Aj = (a1j , ..., amj , a(m+1)j , ..., a(m+s)j) ∈ Zm+s
+ and denotes

that, for each i = 1, ..., m+s, aij rolls of order i are cut each time the cutting
pattern Aj is applied. A cutting pattern Aj is feasible if and only if both of
the following conditions hold

Lmin ≤ Lj =
∑

i∈M
�

S

aij li ≤ Lmax, Cj =
∑

i∈M
�

S

aij ≤ Cmax

being Lj and Cj the total width and the number of rolls of pattern Aj

respectively. Dj = Lmax − Lj denotes the trim-loss of the cutting pattern.

The objective is to obtain a cutting plan (Π, x), where Π = (A1, ..., A|Π|) ∈
AΠ and x = (x1, ..., x|Π|) ∈ Z

|Π|
+ denotes the pattern frequencies. The cutting

patterns of Π are applied sequentially, each one the number of times indicated
by its frequency. Aj

l , 0 ≤ j ≤ |Π |, 0 ≤ l ≤ xj , denotes the lth cut corresponding
to pattern Aj and CI(Aj

l ) is the cut index defined as

CI(Aj
l ) =

∑

k=1,...j−1

xk + l

Given an order i ∈ M its first roll is generated in cut Aj
l such that Aj is the

first pattern of Π with aij �= 0, this cut is denoted CUstart(i). Analogously, the
last roll of order i is generated in cut Ak

xk so that Ak is the last pattern of Π
with aik �= 0, this cut is denoted CUend(i).
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As we have considered feasible cutting patterns, the only constraint that
should be required to a solution is the following

• The set of rolls generated by the application of the cutting plan (Π, x) should
be composed by all rolls from the orders and, eventually, by a number of rolls
from the stock. That is, let si be the number of rolls of stock i ∈ S in the
solution

∀i ∈ S, si =
∑

Aj∈Π

aijxj

Then, the constraint can be expressed as follows:

∀i ∈ M,
∑

Aj∈Π

aijxj = bi

∀i ∈ S, 0 ≤ si ≤ bi

Regarding objective functions, as we have remarked, we consider two main
functions

1. Minimize the number of cuts, given by
∑

j=1,...,|Π| xj . The optimum value
is denoted z1D−CSP .

2. Minimize the setup cost, given by
∑

j=1,...,|Π| SU(Aj−1, Aj); SU(Aj−1, Aj)
being the setup cost from pattern Aj−1 to pattern Aj calculated as it is indi-
cated above. Configuration A0 refers to the situation of the cutting machine
previous to the first cut.

And three secondary functions

3. Minimize the completion times of orders weighted by their priorities given
by ∑

i∈M

CI(CUend(i))pi

4. Minimize the maximum number of open stacks along the cut sequence. Let
R(i, Aj

l ) denote the number of rolls of order i generated from the beginning
up to completion of cut Aj

l

R(i, Aj
l ) =

∑

k=1,...,j−1

aikxk + aij l

and let OS(i, Aj
l ) be 1 if after cut Aj

l there is an open stack of order i and 0
otherwise. Then, the maximum number of open stacks along the cut sequence
is given by

max
j=1,...,|Π|,l=0,...,xj

∑

i∈M

OS(i, Aj
l )
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3.2 The Simplified Problem

As the main problem has too many objectives to deal with all of them at the
same time, we have developed a two step procedure in which a simplified version
is solved and then a solution to this problem is transformed into a solution to
the main problem. This simplification consists in merging all orders with the
same width into one only, so as objectives 3 and 4 can not longer be consid-
ered. Moreover, objective 2 is simplified so as we only consider the number of
different patterns. To solve this simplified problem, in [1,2] we have proposed a
GRASP algorithm. Then, the solution given by this algorithm is transformed
into a solution to the main problem by a greedy algorithm that assigns items
to actual orders so as it tries to optimize objectives 2, 3, and 4 in hierarchical
order, while keeping the values of the first one. To be more precise, we clarify
how a simplified solution in transformed into an actual solution by means of an
example.

The problem data and final results are displayed as in the application pro-
gram. Figure 2 shows an instance and the corresponding simplified problem. A
real instance is given by a set of orders, each one defined by a client name, a order
identification number, the number of rolls, the width of the rolls and the order
priority. Additionally, the maximum and minimum allowed width of a cut should
be given, in this case 5500 and 5700 respectively, and also a stock description to
choose a number of rolls from if it is necessary in order to obtain valid cutting
patterns. In this example up to 10 rolls of each width 1100, 450 and 1150 could
be included in the cutting plan. Furthermore, some other parameters (not shown
in Figures) are necessary, for instance, two additional data should be given to
evaluate the number of open stacks and setup cost: the number of rolls that
fit in a stack (mapping FST ) and the correspondence between the size of pres-
sure rollers and the width of the supported rolls (mapping FPR). Here we have
supposed that every stack contains 4 rolls and that the correspondence between
types of pressure rollers and roll widths is the following: type 1 (0− 645), type 2
(650− 1045), type 3 (1050− 1345), type 4 (1350− 1695). All the allowed widths
are multiples of 5 and the minimum width of a roll is 250 while the maximum
is 1500. Finally, the maximum number of rolls in a pattern is 10.

As we can observe in Figure 2, the main instance with 10 orders is reduced
to a simplified instance with only 6 orders. This simplified instance is actu-
ally a conventional 1D − CSP instance with two additional constraints: the

Fig. 2. An example of problem data (main and simplified instance)
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Fig. 3. A solution to the simplified instance of Figure 2. Bold face values are stock
rolls.

 

Fig. 4. Solution to the instance (main problem) of Figure 3 obtained from the solution
of Figure 3

maximum number of rolls in a pattern and the minimum width of a pattern.
Figure 3 shows a solution to the simplified problem with 21 cuts and 4 different
patterns, where 3 stock rolls have been included in order that the last pattern
to be valid. Figure 4 shows the final solution to the main problem. The figure
shows the order identifiers, where 0 represents the stock. A solution is a sequence
of cutting patterns, where each pattern represents not only a set of roll widths,
but also the particular order the roll belongs to. The actual solution is obtained
from a simplified solution by means of a greedy algorithm that firstly considers
the whole set of individual cuts as they are expressed in the simplified solution.
Then it assigns a customer order to each one of the roll widths in the simplified
cuts, and finally considers all different actual patterns maintaining the order
derived from the simplified solution. The MOGA proposed in this paper starts
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from this solution and tries to improve it by considering different arrangements
of cuts so giving rise to different sequences of patterns and frequencies.

The changeover of each pattern refers to the cost of put in and out cutting
knives and pressure rollers from the previous pattern to the current one. As we
can observe the first pattern has a changeover cost of 28 because it is assumed
that it is necessary to put in all the 7 cutting knives and 7 pressure rollers before
this pattern. In practice, this is not often the case as a number of cutting knives
and pressure rollers remain in the machine from previous cuts. Regarding open
stacks, each column shows the number of them that remain incomplete in the
proximity of the machine from a cut to the next one, i.e. when a stack gets full
after a cut, or it is the last stack of an order, it is not considered.

4 The Multi-Objective Genetic Algorithm

According to previous section, the encoding schema is a permutation of the set
of single cuts comprising a solution. So, each chromosome is a direct represen-
tation of a solution, which is alternative to the initial solution produced by the
greedy algorithm. The starting solution is the one of figure 4 which is codified
by chromosome (1 2 3 4 5 6 7 8 . . . 21), i.e. each gene represents a single cut.
As objectives 2, 3 and 4 depends on the relative ordering of cuts and also on
their absolute position in the chromosome sequence, we have used genetic order
based operators that maintains these characteristics from parents to offsprings.

The algorithm structure is quite similar to a conventional single GA: it uses
generational replacement and roulette wheel selection. The main differences are
due to its multi-objective nature. The MOGA maintains, apart from the current
population, a set of non-dominated chromosomes. This set is updated after each
generation, so as at the completion it contains an approximation of the pareto
frontier for the problem instance.

In order to assign a single fitness to each chromosome, the whole population
is organized into dominant groups as it follows. The first group is comprised by
the non-dominated chromosomes. The second group is comprised by the non-
dominated chromosomes in the remaining population and so on. The individual
fitness is assigned so that a chromosome in a group has a larger value than
any chromosome in the subsequent groups and, inside each group, the fitness of
a chromosome is adjusted by taking into account the number of chromosomes
in its neighborhood in the space defined by the three objective functions. The
chromosomes’ neighbors are those that are in the chromosome’s niche count.
The evaluation algorithm is as follows.

Step 0. Set F to a value sufficiently large.
Step 1. Determine all non-dominated chromosomes Pc from the current popu-

lation and assign F to their fitness.
Step 2. Calculate each individual’s niche count mj :

mj =
∑

k∈Pc

sh(djk)
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where

sh(djk) =
{

1 − (djk/σshare)2 if djk < σshare

0 otherwise

and djk is the phenotypic distance between two individuals j and k in Pc

and σshare is the maximum phenotypic distance allowed between any two
chromosomes of Pc to become members of a niche.

Step 3. Calculate the shared fitness value of each chromosome by dividing it
fitness value by its niche count.

Step 4. Create the next non-dominated group with the chromosomes of Pc,
remove these chromosomes from the current population, set F to a value
lower than the lowest fitness in Pc, go to step 1 and continue the process
until the entire population is all sorted.

This evaluation algorithm is taken from [6]. In their paper, G. Zhou and M. Gen
propose a MOGA for the Multi-Criteria Minimum Spanning Tree (MCMSP ). In
the experimental study they consider only two criteria.

In order to compute djk and σshare values we have normalized distances in
each one of the three dimensions to take values in [0, 1]; this requires calculating
lower and upper bounds for each objective. The details of these calculations
are given in [7]. As we will see in the experimental study, we have determined
empirically that σshare = 0, 5 is a good choice.

5 Experimental Study

In this section we neither present results form an exhaustive experimental study
nor compare with other methods. We only give results from 3 runs, of a prototype
implemented in [7], for the problem instance commented in Figures 2, 3 and 4.
The MOGA starts from the solution of Figure 4 and searches for the pareto

Table 1. Summary of results from four runs of MOGA starting from the solution
of Figure 4 for the problem of Figure 2. Parameters of MOGA refers to /Population
size/Number of generation/Crossover probability/Mutation probability/σshare/. Each
cell shows the cost of /changeovers/weighed times/maximum open stacks.

Run 1 2 3

Parameters /200/200/0,9/0,1/0,5/ /500/500/0,9/0,1/0,5/ /700/700/0,9/0,1/0,5/

Time (s.) 37 649 1930

Pareto
frontier
reached

49/188/6 47/176/6 39/172/6
49/186/7 47/184/5 47/184/5
44/196/5 39/179/7

45/184/6
Values in bold represent solutions non-dominated for any other reached in all three
runs.
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frontier of solutions to the problem. Table 1 summarizes the values of the three
objective functions (change-overs, weighed time and maximum open stacks) for
each of the solutions in the pareto frontiers obtained in three runs with different
parameters. The target machine was Pentium 4 at 3′2GHz with HT and 1GB of
RAM. As we can observe, the quality of the solutions is in direct ratio with the
processing time given to the MOGA. The values of objective functions for the
starting solution of Figure 4 are 47/188/5, which is dominated by some of the
solutions of Table 1. Hence, it is clear that it is possible to improve the secondary
objectives in solutions obtained by procedure SHRP .

6 Concluding Remarks

In this paper we have proposed a multi-objective genetic algorithm (MOGA)
which aims to improve solutions to a real cutting stock problem obtained previ-
ously by another heuristic algorithm. This heuristic algorithm, termed SHRP ,
focuses on two objectives and considers them hierarchically. Then, the MOGA
tries to improve other three secondary objectives at the same time, while keeping
the value of the main objective. We have presented some preliminary results over
a small real problem instance showing that the proposed MOGA is able to im-
prove the secondary objective functions with respect to the initial solution, and
that it offers the expert a variety of non-dominated solutions. As future work,
we plan reconsidering the MOGA strategy in order to make it more efficient and
more flexible so that it considers the preferences of the experts with respect to
each one of the objectives.
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Abstract. We consider the fuzzy job shop problem, a job shop schedul-
ing problem with uncertain task durations and flexible due dates, with
different objective functions and a GA as solving method. We propose a
method to generate benchmark problems with variable uncertainty and
analyse the performance of the objective functions in terms of the objec-
tive values and the sensitivity to variations in the uncertainty.

1 Introduction

In the last decades, scheduling problems have been subject to intensive research
due to their multiple applications in areas of industry, finance and science [1].
To enhance the scope of applications, fuzzy scheduling has tried to model the
uncertainty and vagueness pervading real-life situations, with a great variety of
approaches, from representing incomplete or vague states of information to using
fuzzy priority rules with linguistic qualifiers or preference modelling [2],[3].

Incorporating uncertainty to scheduling usually requires a significant refor-
mulation of the problem and solving methods, in order that the problem can be
precisely stated and solved efficiently and effectively. Furthermore, in classical
scheduling the complexity of problems such as open shop and job shop means
that practical approaches to solving them usually involve heuristic strategies, for
instance, genetic algorithms, local search etc [1]. Some attempts have been made
to extend these heuristic methods to fuzzy scheduling problems. For instance,
6-point fuzzy numbers and simulated annealing are used for single objective
job shop problem in [4], while triangular fuzzy numbers and genetic algorithms
are considered for multiobjective job shop problems in [5] and [6]. Flow shop
problems with triangular fuzzy numbers are solved using an adapted Johnson’s
algorithm and evolutionary algorithms in [7], [8] and [3]. A study of critical paths
in activity networks with triangular fuzzy numbers as uncertain durations can
be found in [9] and a semantics for job shop with uncertainty is proposed in [10].
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In the sequel, we describe a fuzzy job shop problem with uncertain durations
and flexible due dates, solved by means of a genetic algorithm. We analyse the
performance of the GA using different objective functions with respect to the
objective values and the effect in the obtained schedule of variable uncertainty
in the problem data.

2 Description of the Problem

The job shop scheduling problem, also denoted JSSP, consists in scheduling a set
of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . , Mm},
subject to a set of constraints. There are precedence constraints, so each job Ji,
i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially scheduled. Also,
there are capacity constraints, whereby each task θij requires the uninterrupted
and exclusive use of one of the machines for its whole processing time. In addition,
we may consider due-date constraints, where each job has a maximum completion
time and all its tasks must be scheduled to finish before this time. The goal is to
find a feasible schedule, so that all constraints hold, which is optimal, in the sense
that its makespan (i.e., the time it takes to finish all jobs) is minimal.

2.1 Uncertain Processing Times and Flexible Constraints

In real-life applications, it is often the case that the exact duration of a task
is not known in advance. For instance, in ship-building processes, some tasks
related to piece cutting and welding are performed by a worker and, depending
on his/her level of expertise, the task will take a different time to be processed.
However, based on previous experience, an expert may have some knowledge
about the duration, thus being able to estimate, for instance, an interval for the
possible processing time or its most typical value. In the literature, it is common
to use fuzzy numbers to represent such processing times, as an alternative to
probability distributions, which require a deeper knowledge of the problem and
usually yield a complex calculus.

When there is little knowledge available, the crudest representation for uncer-
tain processing times would be a human-originated confidence interval. If some
values appear to be more plausible than others, a natural extension is a a fuzzy
interval or a fuzzy number. The simplest model of fuzzy interval is a triangular
fuzzy number or TFN, using only an interval [a1, a3] of possible values and a
single plausible value a2 in it. For a TFN A, denoted A = (a1, a2, a3), the mem-
bership function takes a triangular shape completely determined by the three
real numbers, a1 ≤ a2 ≤ a3 as follows:

μA(x) =

⎧
⎪⎨

⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

To compute the completion time of a given task, it is necessary to add the
task’s duration to its starting time. This can be done using fuzzy number addi-
tion, which in the case of TFNs A = (a1, a2, a3) and B = (b1, b2, b3) is reduced
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to adding three pairs of real numbers so A + B = (a1 + b1, a2 + b2, a3 + b3). A
consequence of this operation is that completion times are TFNs as well.

The starting time for a given task θ is calculated as the maximum between
two TFNs, the completion time of the task preceding θ in its job J and that
preceding θ in its resource M . For two TFNs A = (a1, a2, a3) and B = (b1, b2, b3),
the maximum A ∨ B is obtained by extending the lattice operation max on real
numbers using the Extension Principle. However, computing the membership
function is not trivial and the result is not guaranteed to be a TFN. For these
reasons, we approximate A∨B by a TFN, A�B = (a1 ∨b1, a2 ∨b2, a3 ∨b3). This
approximation was first proposed in [4] for 6-point fuzzy numbers, a particular
case of which are TFNs. It artificially increases the value of A ∨ B while both
sets A ∨ B and A � B have identical support and the modal point in A � B also
has full membership in A ∨ B.

Using the addition and the maximum �, it is possible to find the completion
time for each job. The fuzzy makespan Cmax would then correspond to the great-
est of these TFNs. Unfortunately, neither the maximum ∨ nor its approximation
� can be used to find such TFN, because they do not define a total ordering
in the set of TFNs. Instead, it is necessary to use a method for fuzzy number
ranking [11]. The chosen method consists in obtaining from each TFN A three
real numbers C1(A) = a1+2a2+a3

4 , C2(A) = a2, C3(A) = a3 − a1 and then use
real number comparisons to establish a total ordering. First, the TFNs are or-
dered according to the value of C1. Ties are then broken with the value C2 and,
should any ties persist, C3 is finally used. This corresponds to a lexicographical
ordering of TFNs.

To measure the non-specificity of durations and completion times, including
the makespan Cmax, we use a standard uncertainty measure for fuzzy sets, the
U -uncertainty [12]. It is a generalisation of Hartley’s measure for classical sets
which, in the particular case of a TFN A, is given by U(A) = 0 if a1 = a3 and
otherwise by the formula:

U(A) =
1 + a3 − a1

a3 − a1
ln(1 + a3 − a1) − 1 (2)

In practice, if due-date constraints exist, they are often flexible. For instance,
customers may have a preferred delivery date d1, but some delay will be allowed
until a later date d2, after which the order will be cancelled. They would be
completely satisfied if the job finishes before d1 and after this time their level of
satisfaction would decrease, until the job surpasses the later date d2, after which
date they will be clearly dissatisfied. The satisfaction of a due-date constraint
becomes a matter of degree, our degree of satisfaction that a job is finished on a
certain date. A common approach to modelling such satisfaction levels is to use
a fuzzy set D with linear decreasing membership function:

μD(x) =

⎧
⎪⎨

⎪⎩

1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(3)
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Such membership function expresses a flexible threshold “less than”, represent-
ing the satisfaction level sat(t) = μD(t) for the ending date t of the job [2].
However, when dealing with uncertain task durations, the job’s completion time
is no longer a real number t, but a TFN C. In this case, the degree to which a
completion time C satisfies the due-date constraint D may be measured using
the following agreement index [8],[5]:

AI(C, D) =
area(D ∩ C)

area(C)
(4)

2.2 Definition of the Objective Function

Let us assume that we have a schedule s such that resource and precedence
constraints hold (otherwise, the schedule is unfeasible and hence is not a solu-
tion). A fuzzy makespan Cmax may be obtained from the completion times of
all jobs Ci, i = 1, . . . , n, and, in the case that a due date Di exists for job Ji,
the agreement index AIi = AIi(Ci, Di) measures to what degree the due date is
satisfied. Based on this information, it is necessary to decide on the quality of
this schedule.

If flexible due-date constraints exist, the degree of overall due-date satisfaction
for schedule s may be obtained by combining the satisfaction degrees AIi, i =
1, . . . , n. We may expect due dates to be satisfied in average or, being more
restrictive, expect that all due dates be satisfied. The degree to which schedule
s satisfies due dates is then given, respectively, by the following:

AIav =
1
n

n∑

i=1

AIi, AImin = min
i=1,...,n

AIi (5)

Clearly, both AIav and AImin should be maximised. Notice however that the
two measures model different requirements and encourage different behaviours.

Regarding makespan, if we consider the total ordering defined by the ranking
method, minimising Cmax translates into minimising C1(Cmax). Curiously, for
TFNs this coincides with minimising the expected value for the makespan, as
defined in [13].

Given both measures of feasibility and the makespan and depending on the
final goal of the job-shop scheduling problem, the following objective functions
were defined in [14]:

f1 =
1

C1(Cmax)
, f2 = AIav, f3 = AImin, f4 =

AIav

C1(Cmax)
, f5 =

AImin

C1(Cmax)
(6)

f1 corresponds to the case when no due-date constraint is considered and the
only goal is to find a schedule with minimum makespan. Similarly, f2 and f3

correspond to the case when due-date constraints are present and makespan is
not relevant. Finally, f4 and f5 are obtained when both due-date constraints and
makespan are considered.
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An alternative definition of the objective function combining feasibility and
makespan can be given in the framework of fuzzy decision making [10],[5]:

f6 = min (μ1(AIav), μ2(AImin), μ3(C1(Cmax))) (7)

Here μi, i = 1, 2, 3, must be defined by an expert and represent the expert’s
satisfaction degrees with respect to due date constraints and makespan. This
objective function is heavily parameterised, assuming a deeper knowledge of the
problem. In the absence of an expert with such knowledge, a heuristic method
with high computational cost can be used to define the satisfaction degrees [10].

3 Using Genetic Algorithms to Solve FJSSP

In classical JSSP, the search for an optimal schedule is usually limited to the
space of active schedules. G&T Algorithm [15] is widely used to find active sched-
ules, allowing to use complementary techniques to reduce the search space [16].
It can also be used as a basis for efficient genetic algorithms (GA). We describe
a possible extension of G&T for the FJSSP (see Alg. 1) and a GA to solve the
FJSSP based on such extension (see Alg. 2). Both have been successfully used in
for the above objective functions [14],[10] and were inspired in the work from [5].

A = {θi1, i = 1, . . . , n}; /*first task of each job*/
while A �= ∅ do

Find the task θ′ ∈ A with minimum earliest completion time /*CT (θ)1*/;
Let M ′ be the machine required by θ′ and B the subset of tasks in A requiring
machine M ′;
Delete from B any task that cannot overlap with θ′; /*ST (θ)1 > CT (θ′)3*/
Select θ� ∈ B (according to some criteria) to be scheduled;
Remove θ� from A and, if θ� is not the last task of its job, insert in A the task
following θ� in the job;

Alg. 1: Fuzzy G&T

Regarding the GA, chromosomes are a direct codification of schedules. For
n jobs and m machines, each individual will be a n × m matrix, where element
(i, j) is the completion time for the task in job Ji requiring resource Mj . There-
fore, each row is the schedule of a job’s tasks over the corresponding resources.
Each chromosome in the initial population for the GA can be generated with
fuzzy G&T algorithm, choosing a task at random from the conflict set B. To
introduce diversity and prevent premature convergence, a new individual will
only be incorporated to the population if its similarity to other members of the
population is below a given threshold σ. Let PrI(θ) be the set of tasks preceding
θ in its machine according to the ordering induced by individual I and let SuI(θ)
be the set of tasks following θ in its machine w.r.t. the same ordering. Then, the
similarity between two individuals I1 and I2 is defined using phenotype distance
as follows:
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S(I1, I2) =

∑n
i=1

∑m
j=1 (|PrI1(θij) ∩ PrI2 (θij)| + |SuI1(θij) ∩ SuI2(θij)|)

n · m · (m − 1)
(8)

The value of the fitness function for a chromosome is simply the value of the
objective function for the corresponding schedule. The crossover operator, ap-
plied with probability pm, consists in performing the fuzzy G&T algorithm and
solve non-determinism situations using the information from the parents. Every
time the conflict set B has more than one element, the selected task is that with
earliest completion time in the parents, according to the ranking algorithm. The
mutation operator is embedded in the crossover operator, so that, with a given
probability pm, the task from the conflict set is selected at random.

generate initial population divided in k groups P1, . . . , Pk with K individuals each;
while terminating condition T1 is not satisfied do

for i = 1; i ≤ k; i + + do
repeat

select 2 parents at random from Pi;
obtain 3 children by crossover and mutation;
select the best of 3 children and the best of remaining children and parents
for the new population NPi;

until a new population NPi is complete
replace the worst individual in NPi with the best of Pi;

merge P1, . . . , Pk into a single population P ;
while terminating condition T2 is not satisfied do

obtain a new population from P following the scheme above;

Alg. 2: Genetic Algorithm for FJSSP

The general scheme of the GA, in Alg. 2, is designed to avoid premature
convergence by using a niche-based system. The population is initially divided in
k sub-populations, containing K individuals each. Each sub-population evolves
separately for Imin generations. At this stage, these sub-populations are merged
into a single population of N individuals, which will again evolve until a total
of Imax generations is reached.

4 Generation of New Problems for Sensitivity Analysis

Unfortunately, benchmark examples of FJSSP in the literature are scarce, clearly
a problem for any thorough experimentation, where a sufficiently large and di-
verse set of problems is needed. It is also interesting to have problems with vari-
able uncertainty, to see the consequences on the resulting schedule. For these
reasons, we propose a novel heuristic method to generate an adequate sample of
problems that allow to test the different objective functions introduced in Sec-
tion 2 and perform sensitivity analysis with respect to the problem’s uncertainty.
The underlying idea is to define new problems by “fuzzifying” benchmark crisp
problems from the literature, as done in [4] for a different fuzzy job shop.
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Given a crisp job-shop problem, capacity constraints are already defined and,
for each task θ, we take the crisp duration to be the most typical value a2. Then,
given α ∈ [0, 1], the least and greatest possible durations a1 and a3 are random
values from [max{0, int(a2(1 − α))}, a2] and [a2, int(a2(1 + α))] respectively,
where int(x) denotes the closest integer to a real number x. Different values of
α may be used to introduce more or less uncertainty in the durations, with a
maximum spread of 2αa2; in any case, crisp durations may be generated.

Due-date values are the most difficult to define. If they are too strict, the
problem will have no solution and if they are too lenient, due-date constraints
will always be satisfied, which is equivalent to having no constraints at all. For a
given job Ji, let ιi =

∑m
j=1 a2

i,j be the sum of most typical durations across all its
tasks. Also, for a given task θi,j let ρi,j be the sum of most typical durations of all
other tasks requiring the same machine as θi,j , ρi,j =

∑
θi,j �=θ:M(θ)=M(θi,j)

a2(θ),
where M(θ) denotes the machine required by task θ and a2(θ) denotes its most
typical duration. Finally, let ρi = maxj=1,...,m ρi,j be the maximum of such
values across all tasks in job Ji. Then, the earlier due date d1 is taken as a
random value from [dm, dM ], where dm = ιi + 0.5ρi and dM = ιi + ρi and the
later due date d2 is a random value from [d1, int(d1(1 + δ))], where δ ∈ [0, 1] is
a parameter that allows to have more or less flexible due dates.

5 Experimental Results

The results shown hereafter correspond to 50 problems generated from FT10,
a well-known crisp benchmark problem of size 10 × 10, using the method pro-
posed in Section 4. These 50 problems are subdivided in five families of 10
instances each, generated with different values for the uncertainty and flexi-
bility parameters α and δ: 0.05, 0.10, 0.15, 0.20 and 0.25. This will allow to
analyse the performance of the different objective functions with an increasing
level of uncertainty and flexibility in the problems. We consider the six objec-
tive functions described in Section 2, where the additional parameters for f6

are obtained with the method from [10]. For each problem and objective func-
tion, the GA from Section 3 is executed 20 times with the parameter values
used in [10] for other problems of size 10 × 10 (pm/pc/σ/N/Imin/Imax equal to
0.03/0.9/0.8/200/100/200).

A summary of the results can be seen in Table 1. It shows the average value of
AIav, AImin, C1(Cmax) as well as U(Cmax) across the problems of each family
when the six objective functions are used. The average values of U -uncertainty
of the problems’ processing times, Up, is also given for completeness.

The minimum values for U(Cmax) are always obtained with f1, i.e., when
the only objective is to minimise the makespan. However, differences among
objective functions are relatively low (between 0.22% and 8.70%) and they tend
to reduce as the problem’s U -uncertainty increases. Indeed, for those problems
generated with α = δ = 0.25, the uncertainty values are almost identical for
all six objective functions. The soving method seems to be robust to changes in
the problem’s uncertainty, with the non-specificity of the makespan depending
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Table 1. Average values of AIav, AImin, C1(Cmax) and U(Cmax)

f1 f2 f3 f4 f5 f6

AIav 0.69 0.90 0.17 0.89 0.17 0.17
α, δ = 0.05 AImin 0.01 0.16 0.00 0.16 0.00 0.00
Up = 0.67 C1(Cmax) 993.18 1146.31 1313.63 1048.75 1313.63 1313.63

U(Cmax) 2.99 3.10 3.25 3.02 3.25 3.25

AIav 0.73 0.93 0.30 0.92 0.30 0.28
α, δ = 0.10 AImin 0.03 0.35 0.09 0.33 0.09 0.05
Up = 1.04 C1(Cmax) 997.08 1118.45 1279.84 1044.33 1278.89 1282.94

U(Cmax) 3.67 3.76 3.90 3.70 3.90 3.90

AIav 0.76 0.94 0.64 0.92 0.64 0.52
α, δ = 0.15 AImin 0.06 0.48 0.43 0.37 0.43 0.25
Up = 1.29 C1(Cmax) 997.31 1111.76 1189.82 1037.39 1179.93 1212.70

U(Cmax) 4.03 4.14 4.21 4.07 4.20 4.23

AIav 0.78 0.94 0.85 0.92 0.85 0.81
α, δ = 0.20 AImin 0.09 0.49 0.64 0.40 0.62 0.52
Up = 1.47 C1(Cmax) 996.37 1107.74 1122.94 1041.04 1105.20 1096.87

U(Cmax) 4.30 4.41 4.42 4.34 4.40 4.40

AIav 0.83 0.95 0.91 0.94 0.92 0.90
α, δ = 0.25 AImin 0.23 0.63 0.76 0.61 0.75 0.67
Up = 1.65 C1(Cmax) 994.28 1092.34 1079.62 1020.64 1052.37 1038.91

U(Cmax) 4.57 4.64 4.64 4.58 4.61 4.60

mainly on the way uncertainty is propagated using TFN operations and with
little influence of the objective function used.

In Table 1, values of AImin show that the heuristic method has generated
due dates very difficult to satisfy, specially for the first two families of problems
(α and δ equal to 0.05 or 0.10). In consequence, AImin values are too low for
the objective functions f3 and f5 to guide the GA’s search procedure. That is,
the GA “evolves” almost randomly, which explains the bad performance of the
obtained solutions, compared to other objective functions.

As expected when the objective functions were introduced, the results indicate
that, when only the productivity goal of minimising Cmax is considered, f1

should be used. Notice however that the lowest values of Cmax (and those with
least uncertainty) are obtained with schedules for which at least a due-date
constraint is not satisfied at all.

Regarding due-date satisfaction, f3 cannot be used because, as mentioned
above, it is too strict when constraints are “tight” (especially for the first three
families of problems). We may feel tempted to conclude that, if the goal is to
respect delivery dates, f2 should be used. This would certainly correspond to the
motivation for its definition in Section 2. However, a more careful look shows
that, if we use f4 instead of f2, values of AIav and AImin are very similar but
C1(Cmax) decreases considerably. Indeed, comparing both functions, f2 yields
slightly better values of AIav, with a relative improvement w.r.t. f4 between
0.65% and 2.28%, but at the cost of an increase in makespan ranging from
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Fig. 1. Performance of f4 w.r.t. increasing of uncertainty

6.41% to 9.3%. That is, with f4 due date satisfaction is similar and there is the
added benefit of considerably reducing the makespan. Therefore, even if the goal
is to satisfy due dates, it seems preferable to use f4 instead of just using f2, as
first proposed.

Finally, if both optimisation of due date constraints and makespan is consid-
ered, the objective function should be f4. Clearly, it yields better results than the
other multi-objective functions f5 and f6. Additionally, the parameter setting
of f6 is much more complex and involves some heavy computation. In fact, the
results for f4 are overall the best. We have already seen that f4 is comparable to
f2 regarding delivery dates. Compared to f1, C1(Cmax) increases from 2.65% to
5.6%, being U(Cmax) only between 0.22% and 1% worse, whilst AIav improves
between 13.01% and 29.52%. Therefore, f4 may be preferable to f1, in the sense
that the increase in makespan seems to be compensated by a considerable im-
provement in due-date satisfaction. In fact, notice that f4 is the most “robust”
function, as it yields the second best solutions regarding the four performance
measures AIav , AImin, C1(Cmax) and U(Cmax) in almost all cases. Also, its
performance seems to improve with an increasing uncertainty in the input data,
as can be seen in Fig. 1.

6 Conclusions and Future Work

We have considered the FJSSP, a version of JSSP that tries to model the im-
precise nature of data in real-world problems, using fuzzy sets to represent un-
certain processing times and flexible due dates. Different objective functions are
described, considering the goals of optimising productivity or respecting delivery
dates. In order to solve the FJSSP, a GA has been described. Finally, a method
for generating test problems has been proposed and used to obtain a sample of
problem instances that allow to analyse the results of the GA with the different
objective functions in terms of the schedule’s performance and its sensitivity to
the uncertainty in the data. Results suggest that the makespan uncertainty de-
pends mainly on the fuzzy arithmetic and not on the objective function. Overall,
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it seems preferable to use the multi-objective function f4, which obtains good
results both for makespan and due dates and has the further advantage that its
definition involves no additional parameters.
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Noelia González, Camino R. Vela, and Inés González-Rodŕıguez
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Abstract. In this paper we propose a hybrid method, combining heuris-
tics and local search, to solve flow shop scheduling problems under uncer-
tainty. This method is compared with a genetic algorithm from the lit-
erature, enhanced with three new multi-objective functions. Both single
objective and multi-objective approaches are taken for two optimisation
goals: minimisation of completion time and fulfilment of due date con-
straints. We present results for newly generated examples that illustrate
the effectiveness of each method.

Keywords: fuzzy sets, flow shop scheduling, meta-heuristics, evolutive
algorithms.

1 Introduction

Scheduling problems appear profusely in areas such as industry, finance and sci-
ence, thus proving of great interest to researchers [1]. In particular, flow shop
scheduling problems (FSP) are specially suitable to manage certain manufac-
turing systems. Due to the complexity of FSP, many heuristic strategies have
been proposed in literature to solve them, for instance, genetic algorithms, lo-
cal search etc [2]. Usually these methods assume that processing times and due
dates can be modelled as deterministic values; however in real production en-
vironments, it is often necessary to deal with uncertainty or flexibility in the
process data. Incorporating uncertainty and vagueness to scheduling usually re-
quires a significant reformulation of the problem and solving methods, in order
that the problem can be precisely stated and efficiently and effectively solved.

Some authors have proposed the use of fuzzy set theory to represent uncertain
processing times or flexible constraints in scheduling problems [3], [4], [5]. For
instance, job shop problems with fuzzy durations (6-point and triangular fuzzy
numbers and λ-sets) are considered in [6] and [7], and also in [8], [9] and [10]
combined with fuzzy due dates. The methods used to solve the resulting prob-
lems range from simulated annealing, defuzzification together with Johnson’s
algorithm and single or multi-objective genetic algorithms.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 548–557, 2007.
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The flow shop problem in presence of uncertainty has been considered by a
number of authors with different definitions of the objective function and meth-
ods to solve it. In [11], the two-machine fuzzy flow shop problem is solved using
a method based on Johnson’s algorithm, adapted for triangular fuzzy processing
times using ranking techniques for the comparison of fuzzy numbers. In [5] trian-
gular fuzzy numbers and an evolutionary algorithm are used for a generic fuzzy
flow shop problem, with a comparison of different objective functions. In [4] and
[12], two GAs are described to solve a fuzzy flow shop problem, the second one
hybridised with neighbourhood search but considering fuzzy sets to model only
the due dates of the jobs. In [13] a method to maximise the satisfaction degree
of a flow shop problem with fuzzy constraints is presented.

Among heuristic methods, locally improved constructive methods have shown
to be effective and fast when dealing with scheduling problems. In this paper we
propose a new meta-heuristic method of this type based on the one presented
in [14] for the crisp flowshop scheduling problem. We compare results of this
method with those obtained with a genetic algorithm as described in [5], en-
hanced with three new multi-objective functions that take into account not only
the completion time minimisation but also the due date constraints fulfilment.

2 Description of the Problem and the Genetic Algorithm

The FSP, denoted as n/m/P/Cmax in α|β|γ notation, consists in scheduling a
set of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . , Mm},
subject to a set of constraints. There are precedence constraints, so each job Ji,
i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially scheduled. Also,
there are capacity constraints, whereby each task θij requires the uninterrupted
and exclusive use of machine Mj for its whole processing time or duration duij . In
addition, we may consider due-date constraints, where each job has a maximum
completion time and all its tasks must be scheduled to finish before this time.
The goal is twofold: we need to find a feasible schedule, so that all constraints
hold and then we want this schedule to be optimal, in the sense that its makespan
(i.e., the time it takes to finish all the jobs) is minimal.

Formally, the makespan, usually denoted by Cmax, is the completion time
C of the last scheduled job n, on the last machine, m, that is, Cmax = Cn,m.
The completion time of each scheduled job i is calculated recursively as Ci =
max{Ci,m−1; Ci−1,m} + dui,m, i = 1, . . . , n.

When a fuzzy approach is taken, job processing times and due dates are
expressed as fuzzy numbers. One of the simplest models for fuzzy processing
times is a triangular fuzzy number (TFN) denoted A = (a, b, c) with the following
membership function μA:

μA(x) =

⎧
⎪⎨

⎪⎩

x−a
b−a : a ≤ x ≤ b
c−x
c−b : b ≤ x ≤ c

0 : otherwise
(1)
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where b is the modal value (μA(b) = 1) and (c − a) is the spread of the fuzzy
number A, which is associated with its level of uncertainty.

In practice, if due-date constraints exist, they are often flexible: we are com-
pletely satisfied if the job finishes before a delivery date d1 and after this time
our level of satisfaction decreases until a later date d2, after which we are clearly
dissatisfied. A common approach to modelling such satisfaction levels is to use
a fuzzy set D with linear decreasing membership function as follows:

μD(x) =

⎧
⎪⎨

⎪⎩

1 : x < d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(2)

According to Dubois et al [3], the above membership function expresses a flexible
threshold “less than” and expresses the satisfaction level sat(t) = μD(t) for the
ending date t of the job.

The fuzzy sum and the fuzzy maximum are the two main arithmetical oper-
ations needed to calculate the objective function in scheduling problems. The
fuzzy sum is a linear shape conservative operation, while the fuzzy maximum
does not verify this property. The sum between two triangular fuzzy numbers
(TFNs) A = (a1, b1, c1) and B = (a2, b2, c2) is equal to A + B = (a1 + a2, b1 +
b2, c1 + c2). The fuzzy maximum A∨B between the same pair of fuzzy numbers
is defined using the Extension Principle but computing the membership function
is not trivial and the result is not guaranteed to be a TFN. For these reasons,
we use an approximation proposed in [6] that consists on replacing A∨B by the
TFN A�B = (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3). Both sets have identical support and the
modal point in A � B also has full membership in A ∨ B.

Unfortunately neither the maximum ∨ nor its approximation � define a total
ordering in the set of TFNs, so it is not trivial to optimise a schedule in terms
of fuzzy makespan. In the literature, this problem is tackled using some rank-
ing method for fuzzy numbers, lexicographical orderings, comparisons based on
λ-cuts or defuzzification methods. Here two different criteria are used to com-
pare TFNs taking into account the defuzzification of the makespan: the Area
Compensation criterion proposed in [15]:

FAC(A) =
a + 2b + c

4
(3)

and the Intersections Average criterion proposed in [5]:

FIA(A) =
1
3

b3 − a3 − c3 + 7abc − 5a2b − 5c2b + 2ac2 + 2ca2

b2 − 2a2 − 2c2 − ab − bc + 5ac
(4)

When due dates are considered, the parameter to evaluate the performance
of a processing order of jobs is the Agreement Index (AI) [8], [5]. The AI of a job
Ji measures the degree to which the fuzzy completion time of Ji is contained in
the job’s due date. When due date constraints are present we can find feasible
schedules maximizing the minimum or the average value of AI for the n scheduled
jobs (denoted AImin and AIave respectively).
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A scheduling problem in a fuzzy environment differs substantially from a
traditional crisp model, due to the more complex evaluation and the perfor-
mance indexes of the sequence. However, from a computational perspective, the
complexity of the problem remains unchanged. Analogously to the crisp model
described in [14], a feasible sequence of scheduled jobs may be represented by a
permutation in the number of jobs. Such permutations are the individuals of the
population for the evolutionary algorithm. This algorithm starts from an initial
population formed by Ns chromosomes randomly generated, which evolve for a
fixed number of iterations, Nit, through the application of the genetic operators.

As in [5], two different crossover operations are proposed: position based
crossover (PBC) and two points crossover (TPC); and the mutation operators
used are gene swapping operator and block swapping operator. The fitness func-
tion is a performance index of the sequence; its expression depends on the se-
lected objective and defuzzification criterion. When the minimisation of fuzzy
completion times is considered as the only aim, the fitness coincides with the
crisp defuzzified makespan calculated through one of two ranking criterion de-
scribed above. When fuzzy due dates are considered as a production goal, the
fitness function to be maximised is AImin or AIave.

3 Introduction of Heuristic Methods for Solving FFSP

According to [16], traditional construction of a heuristic method involves three
different phases: development of an index function, construction of an initial
solution and improvement of this initial solution. The heuristic method proposed
in [14] for the FSP consists in combining the index and constructive phase of
heuristic as proposed by Liu and Reeves in [17] with an improvement (or local
search) phase inspired in that proposed by Ho in [18]. We have adapted this
heuristic, designed for the crisp problem with the criterion of minimising total
flow time (Csum), in order to cope with the new fuzzy features of the FFSP and
new optimisations criteria.

3.1 Constructive Phase

The designed index function combines two parts, one considering the machine
idle time and another considering the effects on the completion times of later
jobs. We now present the two parts of the index function first and then combine
them together.

The Weighted Total Machine Idle Time. Consider any stage in the heuristic
procedure where a partial sequence S with k jobs has been constructed and a
decision is to be made for selecting one job to append to S from the set of
unscheduled jobs, U . Let Ci,j be the completion time on machine j of a job i in
U if it is chosen to be appended to S as the (k + 1)th job. Then, we define the
weighted total machine idle time between the processing of the kth job and job
i as follows:
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ITik =
m∑

j=2

wjk max {Ci,j−1 − C[k],j , 0}, (5)

where the weights are
wjk =

m

j + k(m−j)
(n−2)

(6)

and max {Ci,j−1 − C[k],j , 0} is the idle time of machine j. The form of the weight
functions is important, since the weights need first to emphasise the idle time
of the early stage machines, as they may have a greater effect on the starting
time of the jobs in U , but, as the length of S increases, the number of jobs in U
becomes small. In general, the value of the weights should decrease as either j
or k increases. It is clear that the above choice of weights does accomplish this.

The Artificial Total Flow Time. While the weighted total machine idle time
focuses more on the matching between the last job in S and the job to be
appended, artificial total flow time tries to consider the effect of this choice on
the remaining jobs in U . To consider this, the second part of the index function
is defined in the following way. When we consider appending job i to S with k
jobs, we calculate the average processing time of all the other jobs in U on each
machine and take these average processing times to be the processing times of
an artificial job p:

dupj =

∑
q∈U

q �=p
duqj

(n − k − 1)
(7)

We then calculate the completion time of job i and the completion time of
this artificial job p as if it were scheduled after job i:

Ci,1 = C[k],1 + dui1

Ci,j = max {C[k],j , Ci,j−1} + duij , j = 2, . . . , m (8)
Cp,1 = Ci,1 + dup1

Cp,j = max {Ci,j , Cp,j−1} + dupj , j = 2, . . . , m

The total artificial time ATik is defined here as the sum of completion times
of these two jobs:

ATik = Ci,m + Cp,m (9)

When scheduling the second last job, obviously this artificial total flow time is
actually the real total flow time of the last job.

The Combined Index Function for FFSP. Combining the above two parts,
the index function for choosing a job i in U to append to S with k jobs is defined
as follows.

fik = (n − k − 2)ITik + ATik (10)

The job with the minimum value of this index function is selected. Notice that
the result of this index function will be a TFN and not a crisp value, since the
durations of the tasks are TFN, and the result of a TFNs sum is another TFN.
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In order to obtain a ranking for the eligible jobs according to the described index
function, we must use any of the two presented comparison criterions (FAC and
FIA) for defuzzificating TFNs. Once we have obtained this real number we will
be able to obtain an ordered sequence of the predictably most suitable jobs.

3.2 Improvement Phase

For the improvement phase, we propose a possible adaptation to the fuzzy do-
main of the local search schema given by Ho in [18] for the FSP, that combines
two kinds of sorting methods: exchange sort and insertion sort. The essence of
exchange sort consists in systematically exchanging two items that are out of or-
der until no more such pairs exist. Two types of exchange sort, adjacent pairwise
interchange (also known as bubblesort) and non-adjacent pairwise interchange,
are proposed to improve the initial solutions. The bubblesort exchanges an adja-
cent pair of jobs, J[h] and J[h+1], when a reduction in total flow time is obtained,
where h = 1, 2, . . . , n − 1. The bubblesort terminates when no more improve-
ments can be made in a pass. The merit of bubblesort is that it guarantees to
provide a locally optimal sequence. Therefore, any non-locally optimal sequence
can definitely be improved by the bubblesort. Unlike sorting a set of numbers,
a local optimum does not guarantee the global optimum.

Hence, two additional sorting procedures are introduced to improve a locally
optimal solution obtained by the bubblesort. The first one is non-adjacent pair-
wise interchange, belonging to the exchange sort. This procedure first initialises
h = 1. It systematically considers every non-adjacent pair of jobs, i.e. J[h] and
J[h+2] and J[h+3], ..., and J[h] and J[n], and they are swapped if a reduction in
total flow time is obtained. If h < n − 2, then it increment h by one and repeats
the process, otherwise the procedure terminates. The second procedure is based
on the idea of insertion sort method. This procedure works as follows: it first
initialises h = 1, and then systematically considers inserting J[h] into the other
n − 1 positions, that is, from position 1 through position n except for position
h. The insertion is made when an improvement is obtained. If h < n, then it
increments h by one and repeats the process; otherwise, the procedure stops.
The total number of insertions made is n2 − n.

Regarding the stopping rule, existing heuristics have consistently shown that
as the number of jobs increases, the quality of heuristic solutions deteriorates
rapidly, though their quality is not very sensitive to the number of machines.
Hence, the number of improvement iterations is set as a function of n, concretely
λ = n − 4, where λ is the number of iterations. The proposed heuristic is given
in Alg. 1.

As in the constructive phase of the heuristic, here it must be considered that
all the obtained solutions, from the initial to the definitive one, are TFNs. In
order to compare the different solutions obtained we must use any of the two
presented comparison criterions (FAC , and FIA) for defuzzificating TFNs. Once
we have obtained this real numbers we will be able to decide whether a locally
improved solution is better than the previous one or not.
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initialise λ = n − 4 and i = 1;
obtain an initial solution using a constructive method;
sort the initial solution using the bubblesort method (call it current solution);
repeat

set Z1 = current solution;
sort the current solution by the insertion sort;
sort the current solution using the bubblesort method;
set Z2 = Solution from previous step;
set i = i + 1;

until i > λ or Z1 �= Z2

current solution becomes the final solution;

Algorithm 1: Heuristic method for FFSP

4 Experimental Results

Following as closely as possible the method from [5], we have generated a set of
40 problems with a number of processed parts n equal to 10 or 20 and a number
of workstations m equal to 5 or 10. For the fuzzy triangular processing times,
the modal value is obtained at random following a discrete uniform distribution
in the interval [1,B] and then, the left (b − a) and the right (c − b) spreads are
obtained at random following a discrete uniform distribution in [1, S]. Here, we
set B = 99 and S = 20, as done in [5]. Additionally, we propose to generate
fuzzy trapezoidal due dates for each a job Ji as follows. First, the earliest value
(d1) is taken at random from [dm, dM ], where dm = 0.5B(m + (i − 1))) and
dM = B(m + (i − 1)). Then, the latest value (d2) is generated by adding to d1 a
value selected at random from [1, S] according to a discrete uniform distribution.

Regarding genetic parameters, the number of chromosomes (Ns) equals the
number of jobs n, that is, 10 or 20; the mutation probability mutation (Mp)
is 0.18, and the number of iterations (Nit) is 10000 for problems 10 × 5 and
10 × 10 and 40000 for the 20 × 5 and 20 × 10 problems. Notice that our GA is a
Steady-state GA, so, in each iteration, a pair of new individuals are generated
at most.

We shall use the following notation for the different solving methods consid-
ered in this section:

– ga-mac and ga-mia: GAs for makespan optimisation with Area Compen-
sation AC and Intersections Average IA ranking methods respectively.

– ga-aid and ga-aim: GAs for due date constraints fulfilment using AIave

and AImin respectively.
– h-mac, h-mia: Heuristic methods for makespan optimisation with AC and

IA ranking methods respectively.
– moga-dac, moga-mia and moga-mac: multi-objective GAs as proposed

in [5], with the new fitness functions proposed herein, the ratio between
AIave and FAC , the ratio between AImin and FIA and the ratio between
AImin and FAC respectively.
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For each of these methods, Table 1 presents the average values of productivity
(FAC and FIA), constraint fulfilment (AImin and AIave) and CPU time across
the 40 problems. For comparison purposes, the table also presents the results
obtained with moga-dia, the multi-objective GA with the ratio between the
Average Agreement Index AIave and the defuzzified makespan using FIA as
fitness function proposed in [5].

Table 1. Average values of FAC ,FIA, AImin, AIave and time in seconds obtained for
the four families of problems

FAC FIA AIm AId t(s) FAC FIA AIm AId t(s)

10×5 10×10
ga-mac 730.3 728.7 0.47 0.90 0.17 1108.7 1106.8 0.33 0.76 0.20
ga-mia 735.8 734.3 0.52 0.90 0.27 1103.1 1100.8 0.31 0.84 0.33
ga-aim 800.3 799.4 0.78 0.95 0.16 1235.5 1235.1 0.44 0.84 0.18
ga-aid 804.7 803.9 0.72 0.96 0.18 1189.4 1188.3 0.41 0.85 0.20

moga-mac 761.1 760.01 0.78 0.96 0.17 1193.3 1191.9 0.44 0.84 0.19
moga-mia 763.2 762.1 0.78 0.96 0.17 1195.6 1194.9 0.44 0.84 0.20
moga-dac 746.6 745.5 0.69 0.95 0.17 1122.0 1119.8 0.40 0.89 0.21
moga-dia 742.6 741.2 0.72 0.93 0.18 1123.7 1121.6 0.44 0.82 0.21

h-mac 711.4 710.1 0.70 0.93 0.03 1065.6 1063.0 0.25 0.86 0.05
h-mia 748.4 747.1 0.59 0.93 0.00 1114.7 1112.5 0.30 0.88 0.00

20×5 20×10
ga-mac 1247.3 1246.1 0.46 0.90 1.23 1574.8 1572.6 0.23 0.87 1.58
ga-mia 1250.0 1248.6 0.44 0.90 1.76 1569.9 1566.9 0.20 0.86 2.38
ga-aim 1393.7 1393.3 0.84 0.97 0.99 1726.7 1725.1 0.64 0.90 1.54
ga-aid 1396.5 1395.6 0.87 0.94 1.13 1722.6 1721.3 0.60 0.94 1.58

moga-mac 1310.8 1309.7 0.85 0.97 1.20 1685.9 1683.8 0.73 0.81 1.53
moga-mia 1312.8 1311.3 0.85 0.97 1.21 1683.2 1681.1 0.63 0.90 1.60
moga-dac 1270.7 1296.1 0.79 0.98 1.23 1602.4 1599.8 0.48 0.93 1.56
moga-dia 1265.7 1264.1 0.87 0.90 1.27 1607.0 1604.2 0.51 0.93 1.60

h-mac 1215.9 1214.2 0.53 0.92 1.07 1513.5 1509.7 0.30 0.90 2.16
h-mia 1304.4 1303.5 0.65 0.94 0.03 1631.8 1628.7 0.33 0.88 0.04

Let us first analyse the performance of the different fitness functions of the
GA. As could be expected, the results indicate that, when only the productivity
goal of minimising Cmax is considered, ga-mac or ga-mia should be used. Notice
that the lowest values of Cmax are obtained with schedules for which at least a
due-date constraint is not satisfied at all, in fact these solutions are, in average,
a 45% and a 46% worst than the best value of AImin found. More surprising are
the results with respect to due-date satisfaction. At first, we may feel tempted
to conclude that, if the goal is to respect due dates ga-aim or ga-aid should be
used. However, a more careful look shows that if we use multi-objective versions
instead, due dates are satisfied to almost the same degree and there is the added
benefit of reducing the makespan and improving in productivity with a very sim-
ilar computational effort, specially with the moga-mac proposed in this work.
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If we also consider the heuristic approach, h-mac obtains the best results
when minimising makespan. However, notice that the heuristic methods are more
sensitive to the defuzzification criterion than the GA. Indeed, the GA is quite
indifferent to criterion used and, in general, relative differences between both
criteria are less than 1%. The only exception is that AImin values with moga-

dac are worse than with moga-dia while AIave values are better. On the other
hand, when h-mac is used, the values for FAC e FIA are the best but, with
h-mia, they are about 6% worse in average and they are even worse than the
values obtained with some multiobjective versions of the GA.

Regarding due-date satisfaction, AImin values for the heuristic approach are
much worse than for the GA versions where feasibility is incorporated to the
objective function and slightly better than the GA versions using only makespan.
However, results for AIave are similar to those obtained with a multiobjective
GA.

We may conclude that, even if there is not a clearly better method, the most
promising ones seem to be the heuristic approaches proposed herein. The final
decision as to what method should be used may depend on the time available to
obtain a solution: if the method must be fast, we recommend a heuristic method,
otherwise, a multiobjective GA might be used.

5 Conclusions

We have considered the FFSP, a version of FSP that tries to model the impre-
cise nature of data in real-world problems. Using a fuzzy set representation, we
have modelled uncertain processing times and flexible due-date constrains. We
have proposed a heuristic method that combines a greedy algorithm and a local
search procedure. Also, we have proposed three new multi-objective functions to
enhance the genetic algorithm proposed by [5]. We have conducted an experi-
mental study across a set of problem instances generated by ourselves to compare
our approaches with this genetic algorithm. From this study, we can conclude
that the heuristic method is the best option to optimize the makespan only.
However, in order to optimize all three objectives considered at the same time,
the genetic algorithm with one of our proposed objective functions is clearly the
best option.

In the future, we plan developing new heuristic methods to solve the FFSP.
In particular, we will try to improve the greedy algorithm strategy by means of
problem specific knowledge, in order to fulfill the due-dates requirements, but
keeping the computational cost within reasonable bounds.
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smoreno@inf.utfsm.cl, hallende@inf.utfsm.cl, saavedra@inf.utfsm.cl
2 Universidad de Valparáıso; Departamento de Ingenieŕıa Biomédica; Chile
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Abstract. One of the most important feature of the Neural Gas is
its ability to preserve the topology in the projection of highly dimen-
sional input spaces to lower dimensions vector quantizations. For this
reason, the Neural Gas has proven to be a valuable tool in data mining
applications.

In this paper an incremental ensemble method for the combination of
various Neural Gas models is proposed. Several models are trained with
bootstrap samples of the data, the “codebooks” with similar Voronoi
polygons are merged in one fused node and neighborhood relations are
established by linking similar fused nodes. The aim of combining the
Neural Gas is to improve the quality and robustness of the topological
representation of the single model. We have called this model Fusion-NG.

Computational experiments show that the Fusion-NG model effec-
tively preserves the topology of the input space and improves the repre-
sentation of the single Neural Gas model. Furthermore, the Fusion-NG
explicitly shows the neighborhood relations of it prototypes. We report
the performance results using synthetic and real datasets, the latter ob-
tained from a benchmark site.

Keywords: Machine ensembles, Neural Gas, Machine Fusion.

1 Introduction

Vector quantizations techniques have been successfully applied in several areas
as pattern recognition and data mining (see [11]). In particular the Neural Gas
(NG), introduced by Martinetz et. al. [7], is a variant of the Self Organizing Map
(SOM) where the neighborhoods are adaptively defined during training through
the ranking order of the distance of prototypes from the given training sample.

The success of these methodologies are due to their special property of effec-
tively creating spatially organized internal representations of various features of
input signals and their abstractions [4]. Tools for visualizing high dimensional
data are crucial in discovering patterns in the data, due to the complicated
relationships in real world data are difficult to perceive.
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Despite their great success, there is a need to improve the quality and perfor-
mance of the solution of these models. Recently, several techniques of machines
learning ensembles have been proposed (see for example [2], [10], [6]). The ma-
chine ensemble consists of a set of weak learners where the models decisions of
the phenomenon under study are combined to obtain a global decision. The aim
of making a machines ensemble is to improve the individual answers.

In this paper we propose an incremental ensemble method consisting of fusing
a collection of Neural Gas beginning with two models and successively increasing
the number until some stopping criterion is met. The fusion process is accom-
plished by merging similar nodes based on the information of the data modeled
by each prototype. Furthermore, the Fusion-NG connects fused nodes that are
similar in order to improve the topological representation and visualization. We
empirically show that the resulting Fusion-NG model will improve the perfor-
mance and it will be more stable than a single model even under the presence
of small quantity of additive outliers in the data.

The remainder or this paper is organized as follows. In the next section we
briefly introduce the Machines Ensemble framework. In section 3 the Neural Gas
model is introduced. Our proposal of the Fusion-NG model is stated in section
4. In section 5 we provide some simulation results on synthetic and real data
sets. Conclusions and further work are given in the last section.

2 Machines Ensembles

An ensemble of machines is a set of learners whose individual decisions are
combined in some way to produce more accurate results. The aim of combining
the decisions is to improve the quality and robustness of the results (see [6], [8]).

The task of constructing ensembles of learners consists in two parts. The first
part is achieved by creating and training a diverse set of base learners, where the
diversity of the machines can be accomplished in several ways, for example, using
different training sets [2], different training parameters or different machines.
The second part consists in combining the decisions of the individual learners,
for example voting rules are used if the learners outputs are regarded as simple
classification “labels”.

The combination of the models can be accomplished at any of these three
levels: (1) In the input space, process known as data fusion; (2) In the architec-
ture of the machines, process that we call Fusion; and (3) In the output space,
process known as aggregation. According to [8] there are generally two types of
combinations: machine selection and machine fusion. In machine selection, each
model is trained to become an expert in some local area of the total feature
space, and the output is aggregated or selected according to their performance.
In machine fusion all the learners are trained with samples of the entire feature
space, the combination process involves merging the individual machine designs
to obtain a single (stronger) expert of superior performance. For example, in [5]
a combination of classifier selection and fusion is presented.
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3 Neural Gas

In this section we briefly introduce the Neural Gas (NG) model, for further
details please refer to [7]. The “Neural-Gas” model consists of an ordered set
W = {w1, ...,wq} of q “codebooks” (prototypes or neurons) vectors wr ∈ R

d,
r = 1, .., q arranged according to a neighborhood ranking relation between the
units.

When the data vector x ∈ X ⊆ R
d is presented to the NG model, it is

projected to a neuron position by searching the best matching unit (bmu), i.e.,
the prototype that is closest to the input, and it is obtained as

c(x) = arg min
r=1..q

{‖x − wr‖} (1)

where ‖·‖ is the classical Euclidean norm. This procedure divides the manifold
X into a number of subregions Vr, r = 1..q, as follows

Vr = {x ∈ X| ‖x − wr‖ ≤ ‖x − wi‖ ∀i} (2)

these subregions are called Voronoi polygons or Voronoi polyhedra, where each
data vector x is described by its corresponding reference vector wr.

The neighborhood relation of the prototypes in the NG model is defined by
the ranking order (wi0 ,wi1 , ...,wiq−1) of the distance of the codebooks to the
given sample x, with wi0 being the closest to x, wi1 being second closest to x,
and wik

, k = 0, .., q − 1, being the reference vector for which there are k vectors
wr with ‖x − wr‖ < ‖x − wik

‖. If kr(x, W) denotes the number k associated
with each vector wr, which depends on x and the whole set W of reference
vectors, then the adaptation step for adjusting the wr’s is given by:

wr(t + 1) = wr(t) + αhλ(kr(x, W))(x − wr) r = 1, .., q (3)

where both the learning parameter function α = α(t) ∈ [0, 1] and the character-
istic decay function λ = λ(t) are monotonically decreasing functions with respect
to time. For example for α the function could be linear α(t) = α0 +(αf −α0)t/tα
or exponential α(t) = α0(αf/α0)t/tα , where α0 is the initial learning rate (< 1.0),
αf is the final rate (≈ 0.01) and tα is the maximum number of iteration steps
to arrive αf . Analogously for λ (See [12] for further details).

The neighborhood kernel hλ(kr(x, W)) is unity for kr = 0 and decays to zero
for increasing kr. In this paper we use hλ(ki(x, W)) = expki(x,W)/λ. Note that if
λ → 0 then (3) is the K-means adaptations rule, whereas for λ 	= 0 not only the
“winner” (bmu) wi0 but the second closest reference vector wi1 , third closest
vector wi2 , etc., are also updated.

To evaluate the quality of adaptation to the data the mean square quantization
error is used:

MSQE =
1

|D|
∑

xi∈D

∥∥xi − wc(xi)

∥∥2 (4)
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where |D| is the number of data that belongs to the input set D = {x1, ...,xn},
and wc(xi) is the best matching unit to the data xi defined in equation (1).

4 Fusion of Neural Gas

The Fusion-NG model is an ensemble of Neural Gas models that are combined
by fusing prototypes that are modeling similar Voronoi polygons (partitions) and
with the capability of create a lattice by connecting similar fused codebooks. The
aim of combining the NG is to improve the quality and robustness of the results
of a single model.

The effectiveness of the ensemble methods relies on creating a collection of di-
verse yet accurate learning models [6]. The diversity is created by using different
training sets. Unfortunately, we have access to one training set D = {x1, ...,xn},
and we have to imitate the process of random generation of T training sets. To
create a new training set of length n we apply the Efron’s Bootstrap sampling
technique [3], where we sample with replacement from the original training set.
Indeed, for the construction of the base NG we use the Breiman’s Bagging al-
gorithm [2] with different number of prototypes for the training phase. All the
models are trained independently with the learning rule given in equation (3).

The construction of the Fusion-NG is accomplished by incrementally com-
bining trained neural gas models Wt, t = 1, 2, ..., starting with two models and
successively adding one more NG model until a desired stopping criterion is
met. In the T -th iteration a fuse model MT is obtained by combining the first
T Neural Gas models.

Let consider the Voronoi polygon V(t)
r , defined in equation (2), of the r-th

codebook w(t)
r of the neural gas Wt and let |V(t)

r | be the number of samples that
belong to the Voronoi polygon V(t)

r .
Let qt = |Wt| the number of units of the model Wt. For each codebook

w(t)
r , r = 1..qt, t = 1..T , compute the mean square quantization error of the

prototype as

msqe(t)
r =

1

|V(t)
r |

∑

xi∈V(t)
r

∥∥∥xi − w(t)
r

∥∥∥
2

(5)

We identify all the nodes with low usage, i.e., prototypes whose Voronoi poly-
gon is almost empty and we proceed to delete all the nodes w(t)

r such that
|V(t)

r | < θu, where θu is the usage threshold.
We order all the non-deleted codebooks according to their msqe

(t)
r perfor-

mance from the smallest value to greatest in a vector [w(1), ...,w(MT )], where
MT =

∑T
t=1 qt is the total number of codebooks of all the T neural gas models.

The map j(w(t)
r ) = w(j) indexes the performance position of the units, i.e., the

prototype w(t)
r has the j-th best performance.

The co-association matrix between the data and the codebooks is the matrix
C = {Cij} of size n × MT where each component of the co-association matrix
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takes value 1 if the data xi belongs to the Voronoi polygon V(j) of the prototype
w(j) and 0 otherwise, i.e.,

Cij =
{

1 if xi ∈ V(j)

0 otherwise
(6)

where the i-th row corresponds to the i-th sample of D = {x1, ...,xn} and the
j-th column corresponds to the Voronoi polygon V(j) of the codebook w(j).

Let define the dissimilarity measure as:

ds(C·r, C·p) =
∑n

i=1 XOR(Cir, Cip)∑n
l=1 OR(Clr , Clp)

(7)

where C·r corresponds to the r-th column of the matrix C. With this measure
we construct the incidence matrix I = {Irp} of size MT × MT whose elements
are given by

Irp =
{

1 if ds(C·r, C·p) < θf

0 otherwise
(8)

where θf is the fusion threshold.
Now we consider the incidence matrix starting from the first row correspond-

ing to the unit w(1) and we add it to the set W1 together with all the similar code-
books, i.e., add to the set W1 all the codebooks w(i) such that I1i = 1, i = 1..MT .
Let s be the number of sets that have been already created. Then, with the rests
of the units, j = 2..MT , if the prototype w(j) was not previously included in any
set, increment in one the number s and create the set Ws with the prototype
w(j) and with all its similar codebooks w(i) such that Iji = 1, i = j + 1..MT .
Otherwise, if the prototype w(j) is in any previous set, all its similar nodes w(i)

that satisfy Iji = 1, i > j, are included in all the sets Wl where w(j) ∈ Wl. Sup-
pose that the final number of sets created is λ. The fused prototypes ws, s = 1..λ
will correspond to the centroid of their respective sets Ws, computed as:

ws =
1

|Ws|
∑

w(j)∈Ws

w(j) s = 1..λ (9)

The lattice of the Fusion-NG is obtained by pairwise connecting the fused
nodes. The link between the fused prototypes wk and wq is established if the
dissimilarity between the sets Wk and Wq are less than the connection threshold
θc, i.e.,

min
wr∈Wk,wq∈Wq

ds(ν(wr), ν(wq)) < θc (10)

All the established links {wk,wq} are included in the set of connections N T .
The resulting Fusion-NG model MT = M(WT , N T ) obtained at iteration T is
composed with the set of fused prototypes WT = {w1, ...,wλ} together with the
set of connections N T . If the stopping criterion is not met, we repeat the process
by incrementing in one the number of base models T , otherwise the process is
finalized.

Finally, algorithm 1 shows the Fusion process for the Neural Gas models
explained earlier.
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Algorithm 1. The Fusion-NG Algorithm
1: Given is a training data set D with n elements.
2: Initialize the parameters. Pick the usage threshold θu, the fusion threshold θf and

the connection threshold θc, 0 ≤ θf < θc ≤ 1. Select a stopping criterion. Let T = 0
and s = 1.

3: repeat
4: Increment T by one.
5: Take a bootstrap sample DT from D.
6: Create and train the NG model WT using DT as the training set.
7: Compute the msqe

(t)
r to all the prototypes w(t)

r , r = 1..qt, t = 1..T with equation
(5).

8: Order all the codebooks according to their msqe
(t)
r performance from the smallest

value to greatest in a vector [w(1), ..., w(MT )].

9: Eliminate all the nodes with low usage, i.e, delete the node w(t)
r if |V(t)

r | < θu.
10: Compute the co-association matrix C with equation (6)
11: Compute the incidence matrix I with equation (8)
12: Create the set W1 with the unit w(1) together with all the codebooks w(i) such

that I1i = 1, i = 1..MT .
13: for j = 2..MT do
14: if the prototype w(j) was not previously included in any set then
15: Increment in one the number s. Create the set Ws with the prototype w(j)

and all the codebooks w(i) that satisfy Iji = 1, i = j + 1..MT .
16: else
17: All the nodes w(i) that satisfy Iji = 1, i > j are included in all the sets Wl

where w(j) ∈ Wl.
18: end if
19: end for
20: Compute the location of the fused prototype ws as the centroid of the set Ws, s =

1..λ with equation (9). Create the set of fused prototypes WT = {w1, ..., wλ}
21: Connect all fused nodes of the set WT that satisfy the equation (10). Add the

connections to the set N T ,
22: The resulting Fusion-NG model is MT = M(WT , N T ).
23: until The stopping criterion is met.
24: Output: The Fusion-NG model MT

5 Simulation Results

In this section we empirically show the capabilities of our Fusion-NG model
proposal compared to a single Neural Gas (NG) model in both Synthetic and
Real data sets, the latter was obtained from a benchmark site.

For the synthetic experiment we used three types of synthetic data sets. The
first two data sets are the well known “Doughnut” and “Spiral” data sets (see
the first and second columns of figures 1 and 2 respectively). The third data
set, that we call the “Three Objects” consists of three types of clusters: a bi-
dimensional gaussian, a noisy sinusoidal curve and the bi-dimensional uniform
random samples (see the third column of figures 1 and 2). The models executed
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Fig. 1. Simulation Results for the Synthetic data sets without outliers: The
figures show the topology approximation of the NG (first row), the Fusion-NG (second
row) to the Doughnut (first column), Spiral (second column) and Three Objects (third
column) data sets

were the NG model (see first row of figures 1 and 2) and the Fusion-NG model
(see second row of figures 1 and 2) .

First we experiment with the synthetic data set free of outlying observations.
Figure 1 shows the topology approximation of the NG and Fusion-NG models.
Note that the two models were able to effectively learn the topologies. Neverthe-
less the Fusion-NG shows the topology relations between its neurons favoring a
better visualization.

We experiment with the synthetic data, but in this time we introduce 1% of
additive outliers. Figure 2 shows the topology approximation results. Note that
in all three cases, some prototypes of the NG were located far from the bulk of
data because they learn these outliers. However, the Fusion-NG was more stable
and resistant to the outliers in all three cases and obtained a better topological
representation of the data.

The quality of adaptation of the models to the data were computed with
equation (4). Let MSQET be the MSQE of the Fusion-NG composed by the first
T trained NG, T = 1..20. The left and the middle graphs of figure 3 shows the
ratio between the MSQET and the MSQE1 times 100% for data without outliers
and with 1% outliers respectively, where MSQE1 is the MSQE evaluation of
the first and single NG model. The left side of figure 3 shows that for the case
without outliers, the performance of the Fusion-NG improves the performance of
the single model between 15% to 24%. However, for the case with the presence of
outliers (middle graph of figure 3), the Fusion-NG obtained worse MSQE values
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Fig. 2. Simulation Results for the Synthetic Datasets with 1% outliers: The
figures show the topology approximation with outliers of the NG (first row) Fusion-
NG (second row) to the Doughnut (first column), Spiral (second column) and Three
Objects (third column) datasets
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Fig. 3. Performance Evaluation The figures shows the graphs of the ratio between
the MSQE of the Fusion-NG obtained with T models and the MSQE of the first single
NG times 100% evaluated for the “Doughnut”, “Spiral” and “Three objects” data sets
without outliers (left), with outliers (middle) and (right) the “Iris”, the “Phoneme”,
the “Wine” and the “Wisconsin Cancer” data sets

than the single model, where the MSQE for the three cases were incremented
between 115% to 290%. This increments to the MSQE is explained by the fact
that the NG is modeling the outliers implying in a lower MSQE value. This is
caused because the MSQE is not a good performance metric of the adaptation
quality under contaminated data [9].

In the experiment with real data we test the algorithm with the following
benchmarks datasets the “Iris”, the “Phoneme”, the “Wine” and the “Wisconsin
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Cancer” data sets, all were obtained from the UCI Machine Learning repository
[1]. The quality of adaptation of the models to the data were computed as in
the synthetic case. The right side of figure 3 shows that for the four cases the
performance of the Fusion-NG exponentially improves between 15% to 30% the
performance of the single model after few aggregations. This improvement of the
performance could be very crucial in a many real world applications where the
quality of the results are preferred instead of the execution time.

6 Concluding Remarks

In this paper we have introduced an ensemble framework for the Fusion of Neural
Gas models. Based in the information of the data modeled by each prototype of
the several neural gas base models, the Fusion-NG has the capability of both
fusing similar nodes and to create a lattice by connecting similar fused nodes.
The resulting model explicitly shows the relations between neighboring units
improving the representation and visualization of the single NG model.

We have empirically shown that the Fusion-NG preserves the topology of the
input space by effectively locating the prototypes improving the performance of
the single model. Furthermore the Fusion-NG is more stable and resistant to the
presence of outlying observations, obtaining a better topological representation
than the NG.

For the simulation study with synthetic data the “Doughnut”, “Spiral” and
“Three objects” data sets were used, while for the real experiment, the “Iris”,
“Phoneme”, “Wine” and the “Wisconsin Cancer” data sets were used. The
Fusion-NG outperforms the performance of the NG in MSQE and topology
preservation for both the synthetic data sets free of outliers and for the real data
sets. In the contaminated synthetic case, the Fusion-NG obtained worse MSQE
performance than the NG, however the former obtained better topological rep-
resentation. An advantage of Fusion-NG model is the lattice generated that has
an arbitrary architecture depending on the data set.

Further studies are needed in order to develop several combinations meth-
ods, to analyze the convergence properties and to determine the best ensemble
parameters. Possible interesting applications of the Fusion-NG could be Health
sciences, where the quality of the results is of paramount importance.
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Abstract. Multiobjective optimization problems have become an im-
portant issue at many engineering problems. A tradeoff between several
design criteria is required and important efforts are made for the de-
velopment of Multiobjective Optimization Techniques and, in particu-
lar, Evolutionary Multiobjective Optimization. Usually these algorithms
produce a set of optimum solutions in Pareto sense, there is not a unique
solution. The designer (Decision Maker) has to finally select one solution
for each particular problem, then he has to select from a set of Pareto
solutions, the most adequate solution according to his preferences. It is
widely accepted that visualization tools are valuable tools to provide the
Decision Maker (DM) with a meaningful way to analyze Pareto set and
then to help to select an adequate solution. This work describes a new
graphical way to represent high dimensional and large sets of Pareto
solutions, allowing an easier analysis, and helping the DM to select an
adequate solution.

1 Introduction

In numerous engineering areas the obtention of suitable designs is turned into a
multiobjective (or multicriteria) problem. That means that it is necessary to look
for a solution in the design space that satisfies several specifications (objectives)
in the performance space. In general, these specifications are in conflict with
each other, that is, there is no optimal solution for all of them simultaneously.
In this context, the solution is not unique, and there is instead a set of possible
solutions none of which is the best for all objectives. This set of optimal solutions
in the design space is called Pareto set. The region defined by the performances
(value of all objectives) for all Pareto set points is called Pareto front.

The first step to solve a multiobjective optimization problem could be to
obtain the Pareto set points (and the Pareto front). This is an open research field
where numerous techniques have already been developed [8,7]. An alternative
and very active research line is Multiobjective Evolutionary Algorithms [4,5].
In general, these algorithms supply a reasonable solution for the Pareto set and
front. The following step for the designer is to select one or several solutions inside
the Pareto set. The final solution is often selected including designer preferences
and following a handmade procedure based on designer experience.

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 568–577, 2007.
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Decision-Making methodology is a field in constant development with very
interesting solutions. It is widely accepted that visualization tools are valuable
to provide the Decision Maker a meaningful way to analyze Pareto set and select
good solutions. But these tools lose potentiality for high dimensional problems
with a large Pareto set. For a 2-Dimensional problem (and sometimes for 3-
Dimensional) it is normally easy to make an accurate graphical analysis of the
Pareto set points, but for higher dimensions it becomes more difficult. There are
several interesting alternatives offering graphical representation [1,6,9].

This work contributes a new alternative, called Layer Graph, that allows an
easier analysis of Pareto set and front becoming, a useful tool for the Deci-
sion Maker. Following sections describe the proposed graphical representation
and show simple examples. Subsequently this representation is used in a more
complex problem, in order to choose an adequate solution in a multiobjective
problem with four dimensions in the performances space and three dimensions
in the parameter space.

2 Layer Graph for Pareto Front

A multiobjective problem can be formalized as follows:

θ = [θ1, . . . , θl] ∈ D ⊆ Rl ; J(θ) = [J1(θ), . . . , Js(θ)] ; min
θ∈D

J(θ)

Without loss of generality, it consists of a simultaneous minimization of all ob-
jectives Ji(θ). In general, there is no single solution, but a set of solutions none
of which is better than the others. Using the definition of dominance, the Pareto
set Θp is the set which contains all non-dominated solutions.

It is said that a solution θ1 dominates another solution θ2, denoted by θ1 ≺ θ2,
iff

∀i ∈ B, Ji(θ1) ≤ Ji(θ2) ∧ ∃k ∈ B : Jk(θ1) < Jk(θ2) .

Therefore the Pareto optimal set ΘP , is given by

ΘP = {θ ∈ D | � θ̃ ∈ D : θ̃ ≺ θ} . (1)

ΘP is unique and normally includes infinite solutions. Hence a set Θ∗
P , with

a finite number of elements from ΘP , should be obtained (Θ∗
P is not unique).

At this point, the Decision Maker has a set as Θ∗
p ⊂ Rl, that constitutes

the Pareto set and an associated set of objective values for every point that
constitutes a description of Pareto front J(Θ∗

p) ⊂ Rs.
The Layer Graph tool is based on the classification by sorted layers according

to the proximity to the ideal point1 at the Pareto front points J(Θ∗
p).

For the definition of a layer, every objective (Ji(θ), i = 1 . . . s) is normalized
relative to its minimum and maximum values at the Pareto front, J̄i(θ):

JM
i = max

θ∈Θ∗
p

Ji(θ); Jm
i = min

θ∈Θ∗
p

Ji(θ); i = 1 . . . s (2)

1 Ideal point is a point with the minimum value of the Pareto front at each objective.
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J̄i(θ) =
(Ji(θ) − Jm

i )
JM

i − Jm
i

(3)

Assuming that nl is the number of layers required for the classification, the
normalized range of variation for each objective is divided in nl intervals of the
same length, and each one is numbered in ascending order.
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Fig. 1. Pareto front classical 2D representation and interpretation of layer for nl = 10

Then it is possible to find the number of the interval where each objective of
a point θ is situated (loi(θ), i = 1 . . . s):

loi(θ) = 
J̄i(θ) · nl� (4)

The concept of a point belonging to a layer implies that all points of a layer have
the objectives with the highest number of interval in this layer.

Then, the number of layer (Lnl
Θ∗

p
(θ)) that is assigned to a point θ ∈ Θ∗

p for a
a classification in nl layers is obtained as follows:

Lnl
Θ∗

p
(θ) = max

i=1...s
(loi(θ)) (5)

For instance, normalizing every objective J̄i(θ) ∈ [0, 1] and establishing nl =
10 layers, the ranges of values (J̄i(θ)) for each layer are: layer 1 have the worst
objectives in the range ]0, 0.1], layer 2 in the range ]0.1, 0.2], . . ., layer 10 in the
range ]0.9, 1]. A point that belongs to layer 5 has, at least, one objective value
in the range ]0.4, 0.5] and the rest of its objectives have values below 0.5.

Once every point is classified, the graphical representation of Pareto front and
Pareto set is performed with the following methodology. Each objective (Ji) and
decision variable (θj) have its own graphical representation. The vertical axis of
all graphs corresponds to layers, which means that all graphs are synchronized
relative to this axis. The horizontal axis corresponds to the value of the objective
or decision variable in physical units. Layers are shadowed in darker grey for
lower layers and lighter grey for higher layers.
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Fig. 2. Layer Graph representation for MOP1 problem (for nl = 10)

Points in higher layers correspond to points with a high value in one or more
objectives, but, obviously they must be good in at least one objective. However,
the level in the graphical representation inside a layer does not established any
classification of proximity to the ideal point. Therefore, points represented higher
inside a layer do not have to be interpreted as worse than lower ones. For an
adequate interpretation of Layer Graph, it is important to remark that each
objective and component of a point is represented at the same level position for
all graphs, which means all information of a single point is drawn at the same
position at vertical axis for all graphs Ji and θj .

The next simple example of Layer Graph is shown to clarify this new alter-
native. A classical 2D problem (MOP1) is selected, although Layer Graph is not
necessary for a 2D problem (classical representation is enough). Characteristics
of MOP1 are:

J1(θ) = θ2 ; J2(θ) = (θ − 2)2 ; min
−105≤θ≤105

[J1(θ), J2(θ)]

Figures 1 and 2 show a 2D classical representation and Layer Graph, respec-
tively, for a discrete set of Pareto points of a MOP1 problem. Figures 1 shows
the most common type of representation of a 2D Pareto front, and also the zones
corresponding to each layer are shown shadowed as on Layer Graph.

Each point of Pareto front J(Θ∗
p) corresponds to a point in each graph (J1 and

J2) on Layer Graph (see figure 2). For instance, point A on figure 1 corresponds
to points A on both graphs (J1 and J2) of figure 2, etc.

Pareto set Θ∗
p is drawn in a similar way. The classification of Pareto front

points by layers is maintained, then for each component of a Pareto set point
there is an associated graph. A point is drawn at the same level (vertical coor-
dinate) on each graph and, this level is the same for the associated Pareto front
point (see graph θ1 at figure 2).
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To show the potential of this representation, the next sections present the
application for a higher dimensional problem.

3 Three-Bar Truss Example

The optimization problem is related to the three-bar truss described in figure
3. It is a truss broadly used as benchmark to define the best solutions based
on some specifications. The truss is hyperstatic; thus the solution of balance of
forces has to be supplemented with the deformation equations. For this case,
the parameters l = 1m, β = 45o, α = 30o, F = 20kN , ρ = 7580Kg/m3 and
K = 15 euro/Kg (the material cost per Kg) proposed in [7] were selected.

The design variables correspond to the sections of the bars θ = [θ1, θ2, θ3].
The objectives correspond to the the displacement of node P (J1(θ), J2(θ)), the
total volume of the truss (J3(θ)) and the total cost of the material (J4(θ)).

L

F

F

� �

1
��

��

��

P

�� ��

Fig. 3. Three-bar truss problem β = 45o y α = 30o

The problem can be formulated as follows:

minJ(θ) = [J1(θ), J2(θ), J3(θ), J4(θ)] (6)

s.t. : 0.1 · 10−4m2 ≤ θi ≤ 2 · 10−4m2, i = 1 . . . 3,

where:
J1(θ) = δ1, J2(θ) = δ2, J3(θ) = l(

θ1

sinβ
+ θ2 +

θ3

sin α
),

J4(θ) = Kρl(
θ1

sinβ
f1 + θ2f2 +

θ3

sinα
f3).

f1, f2 y f3 are coefficients related to the manufacture cost which depend on the
section area of each bar. Theses ones can be calculated as

fi =
{

1 if 0.9e−4 ≤ θi ≤ 1.5e−4

1.4 otherwise

Deformations δ1 and δ2 are calculated as [2]:

[
δ1

δ2

]
=

l

E

[
γ11 −γ12

γ12 γ22

]−1 [
F

−F

]
,

γ11 = θ2 + θ1 sin3 β + θ3 sin3 α,
γ12 = θ1 sin2 β cosβ − θ3 sin2 α cosα,
γ22 = −θ1 sin β cos2 β − θ3 sin α cos2 α.

(7)
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where E = 200GPa. is the Young module. Besides, the problem is subject to
three constraints (σ = 200MPa.) related to the reaction forces in each bar Ni.
These reaction forces are calculated according to the following expressions [2]:

|N1|
θ1

=
E

l
(δ1 sin β − δ2 cosβ) sin β ≤ σ,

|N2|
θ2

=
E

l
δ1 ≤ σ, (8)

|N3|
θ2

=
E

l
(δ1 sin α + δ2 cosα) sin α ≤ σ. (9)

The constraints (8)(9) will be taken into account through static penalty func-
tions [3]. Therefore the objective functions results in:

J1(θ) = δ1 + C(θ), J2(θ) = δ2 + C(θ), J3(θ) = l(
θ1

sin β
+ θ2 +

θ3

sin α
) + C(θ),

J4(θ) = Kρl(
θ1

sinβ
f1 + θ2f2 +

θ3

sin α
f3) + C(θ) , C(θ) =

3∑

i=1

max

[
0,

|Ni|
θi

− σ

]
.

4 Pareto Front Analysis with Layer Graph

Pareto front has been obtained applying a ε↗-MOGA algorithm2 [5]. For the
graphical representation the number of layers is adjusted to 25. Increasing the
number of layers in the graphical representation shows the classification by lay-
ers more exactly. Figure 4 shows the layer graph representation for the set of
solutions supplied by ε↗-MOGA (1084 points).

The representation shows, at objective graphs, a ∇ layout. This has to be the
typical shape of a Pareto front. I must be remembered that all points are non-
dominated, so if one objective has lower values, then at least one of the other
objectives has to be increased. Graphically that means that points on higher
layers have to tend to the extremes of the objective range.

An advantage of this graphical representation is that it is easy to see what is
the range of objective values for points nearest to the ideal point (in this example
layer 9): J1 ∈ [0.04, 0.05] cm, J2 ∈ [0.12, 0.13] cm, J3 ∈ [420, 500] cm3 and J4 ∈
[60, 75] euros. For this layer the values of design parameters are: θ1 = 10−5 m2

or 0.5 · 10−4 m2, θ2 ∈ [0.9 · 10−4, 1.4 · 10−4] m2 and θ3 ∈ [1.5 · 10−4, 1.9 · 10−4] m2,
all this values are in physical units.

Other important characteristics can be extracted: the extremes of Pareto front
supply the worst case for all objectives (J1 ≈ 0.1 cm J2 ≈ 0.22 cm J3 ≈ 900 cm3

and J4 ≈ 145 euros). A cost (J4) under 80 euros can be easily obtained, there
are Pareto points for layers 9 to 25 (all layers with points). Displacement J2 is
higher than J1 (between 2 and 4 times higher).

2 The parameters of the algorithm were set to: NindG = 4, NindP = 100, tmax =
20000, resulting in 80100 evaluations of J1 and J2. Pc/m = 0.1, dini = 0.25, dfin =
0.1, βini = 10.0, βfin = 0.1, n box1 = n box2 = n box3 = n box4 = 50.
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Fig. 4. Layer Graph representation of Pareto front and set for Three-bar truss problem
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Fig. 5. Layer Graph representation of Pareto front and set for Three-bar truss problem.
Zoom of J1 and J2 between minimum value and 0.08 cm.

Looking at parameter design it is possible to evaluate qualitatively the Pareto
solutions. It can be seen that a good choice for θ1 is 10−5 cm2 (the lower limit).
θ3 is always over 10−4 and it has multiple solutions for 1.5 · 10−4 (the economic
limit) and for 2 ·10−4 (maximum allowed value). θ2 has no clear pattern but the
range [0.9 · 10−4, 1.4 · 10−4] m2 covers solutions for nearly all layers.

All this type of information is valuable for an adequate choice of a final so-
lution, but in order to determine a unique solution, the DM has to introduce
his preferences. For this example, it will be assumed that preferences are estab-
lished on displacement: J1 and J2 ≤ 0.08 cm. Visualization of possible solutions
is shown at figure 5 where only the preferred range of value for J1 and J2 is
shown. For J1 it is possible to satisfy constraints even for the nearest value to
ideal the point, but the limitation is in J2. The only solutions are available at
layers 23 to 25. That means the final solution has to be near to the extreme
value of the front. To select the solution, a closer analysis of layer 23 (solutions
nearest to the ideal point) is performed. Figure 6 shows the relevant informa-
tion for layer 23. An adequate solution for this problem is one of the 5 lower
points shown at this figure: J1 ≈ 0.05 cm, J2 ≈ 0.079 cm, J3 ≈ 850 cm3 and
J4 ≈ 110 euros, Design parameters for these solutions are: θ1 ≈ 1.8 · 10−4 m2,
θ2 ≈ 1.5 · 10−4 m2 and θ3 ≈ 2 · 10−4 m2.

It is easy to see that if the constraints are relaxed to J1 and J2 below 0.09 cm
the cost and volume of the truss are clearly reduced: J3 ≈ 450 cm3 and J4 ≈
75 euros.
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Fig. 6. Partial representation for layer 23 for Three-bar truss problem. Zoom of J1 and
J2 between minimum value and 0.08 cm.
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5 Conclusions

A new visualization methodology for Pareto front representation, called Layer
Graph, is presented. It allows the analysis of large high-dimensional Pareto fronts
and sets. The fundamental idea of this alternative is the classification in layers
and the synchronous representation of all objectives and parameters. It is shown
that this representation permits a good analysis of Pareto front and provides an
excellent tool to help Decision Making. In this article only some of the Pareto
front characteristics have been evaluated (closeness to ideal point, ranges of at-
tainable values) but it already gives valuable information and seems to be open
to others evaluations of different characteristics. New possibilities for incorpo-
rating designer preferences to this representation are being developed and will
contribute to improve the decision-making tools for multiobjective problems.

All developments have been made with Matlab c©. A beta version for basic
Layer Graph function and additional tools are available online at:
http://ctl-predictivo.upv.es/programas.htm
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de Cartagena, Cuartel de Antiguones, 30202 Cartagena, Spain

antonio.lozano@upct.es
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Abstract. Conductive plastics have become an alternative to tradi-
tional metallic cabinets to shield boxes from electromagnetic interfer-
ences. The wide range of available conductivities with these materials
can satisfy any particular design. A design with an outer metallic layer
and an inner layer of conductive dielectric can obtain advantages from
both materials. In this paper the design by means of genetic algorithms
of electronic systems cabinets made of new plastic materials to reduce
electromagnetic radiated interferences in enclosures with an aperture is
described. This optimization procedure requires the use of electromag-
netic simulators with a high computational cost. A 2D simulation tool is
used in this work for evaluating 3D structures, reducing drastically the
computation time. The relationship between obtained solutions and skin
depth parameter is evaluated to help in design procedures. A commercial
3D full wave electromagnetic tool has been used to validate the obtained
results.

1 Introduction

Electronic systems are enclosed in a cabinet with many functions: protection
against physical aggressions, good looking of the product, electromagnetic shield-
ing; this last feature becomes important in environments where the electromag-
netic spectrum is polluted by many radiating sources.

Enclosures have been traditionally manufactured with metals. However, there
has been a rising interest of the plastic industry on the use of conductive polymers
in electromagnetic shielding tasks in the last years due to different reasons:
they are lighter, have no corrosion problems and designs are aesthetically more
interesting. An optimized design for every application is possible due to the wide
range of available conductivities in these materials.

Genetic algorithms (GA) have become a general purpose optimization tech-
nique widely used in the last years for electromagnetic design [1]. Shielding
electromagnetic properties of a multilayer cylinder for low frequencies have been

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 578–586, 2007.
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studied through genetic algorithms in [2] by means of its analytical expressions.
On the other hand shielding properties of metallic enclosures against electromag-
netic interferences have been studied through many techniques. Analytical tools
provide fast results. In [3] an analytical and fast formulation is used to obtain the
shielding effectiveness of empty rectangular enclosures with apertures. However,
numerical methods are necessary when specific problems cannot be solved by
analytical tools although the computation time and the memory requirements
are high. In [4] the Method of Moments (MoM) is used to study the shield-
ing properties of a metallic enclosure, both empty and with inner elements as
printed circuit boards (PCBs) or absorbers. The Finite-Difference Time-Domain
(FDTD) method has also been applied to study the shielding effectiveness (SE)
of an empty metallic box with apertures [5]. In [6] a work to determine the
shielding effectiveness of a double layered spherical shell with no apertures in its
surface showed that there is an optimum conductivity for resonance suppression.
In [7] a simple approximation to study the behaviour of conductive dielectrics
inside metallic enclosures with an aperture is presented. In this paper a study of
electromagnetic interference suppression by means of GA with the aid of a 2D
simulation tool to evaluate 3D structures shows how these materials can be used
jointly with metallic enclosures to improve the shielding behaviour of a cabinet.

2 Theory

2.1 Shielding Effectiveness

Shielding effectiveness for a particular shielding configuration is defined as the
ratio between the field in the selected placement without enclosure and the field
with the enclosure. In this study the shielding effectiveness has been obtained
for the electric field

SE(dB) = 20 log10

∣∣∣∣
Ei

Et

∣∣∣∣ . (1)

For the two dimensional study the effect of the width of the aperture w is
evaluated through the following factor as reported in [7]

SE(dB) = SE2−D(dB) + 10 log10

(
b

w

)
. (2)

where b is the height of the cavity, w is the width of the aperture and SE2−D

is the shielding effectiveness obtained for the 2-D configuration through any nu-
merical method. As long as the frequency increases, new enclosure resonances
reduce the shielding properties of the cabinet. A metallic shield provides high
shielding effectiveness levels but apertures in the surface of the shield allow the
coupling of energy from the outer part to the inner one. Resonances associated
to the enclosure dimensions produce high field levels that can affect the normal
operation of inner electronic equipment. In the present study it is shown that
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Fig. 1. Studied cabinet with an external metallic layer and an inner conductive layer
(b) 2-D equivalent studied enclosure

the metallic surface can provide the required SE levels and an inner lossy layer
can be designed to absorb high field levels associated to the enclosure resonances
(Fig. 1).

The skin depth, obtained by (3), depends on frequency f and conductivity σ
and is a penetration parameter of a wave in a medium. This parameter can help
us to design the inner lossy layer.

δ =
1√

πfμ0σ
. (3)

2.2 Genetic Algorithms

Genetic algorithms are optimization procedures based on the principles of nat-
ural selection and evolution. Global optimization avoiding local minima is pro-
vided and designs with multiple parameters can be achieved. In Fig. 2 the flow
chart of the evolutionary procedure is depicted.

An initial population formed by individuals or possible solutions (dielectric
constant and conductivity σ) is randomly selected. After evaluating the initial
population, operations of selection, mutation and recombination are performed.
The best individuals have more possibilities to survive in the next generation.
Results obtained using genetic algorithms are compared to the skin depth pa-
rameter taking into account the resonance frequency of the enclosure with the
aperture, the thickness of the conductive dielectric sample and the optimum con-
ductivity obtained for the sample. Genetic algorithms have been implemented
by using a MatlabTM code [8].

In Table 1 the parameters of the GA have been listed. The fitness function
evaluates the value of Ei/Et where Ei = 1V/m and Et is the field obtained in
the location under study for the chosen resonance frequency. The number of
generations and individuals has been limited to 30 and 20, respectively, due to
the high computation times required by a two dimensional full wave simulator.
An optimal solution is obtained by GA when the number of generations and



Electromagnetic Interference Reduction in Electronic Systems 581

Fig. 2. Genetic algorithm flow chart

Table 1. Genetic algorithm parameters

Design parameters ε
′
r and σ

Population 20
Generations 30

Selection type Geometric normalized
Crossover prob. 10 crossover/generation
Crossover type Arithmetic
Mutation prob. 2 mutations/generation
Mutation type Non-uniform

ε
′
r limits 1-10
σ limits 0-600 S/m

individuals is high enough. However, the high computational cost required to
evaluate each individual with the help of an electromagnetic simulator leads to
limit the number of generations and individuals per generation. Results as the
skin depth parameter or two dimensional approaches to the solution can provide
an initial orientation to solve a more complex problem.

3 Set Up

The cabinet used for all the simulations has as inner dimensions 30 cm x 12 cm
x 30 cm. The inner layer thickness varies from 0.1 cm to 0.3 cm. The study has
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been carried out for radiated immunity configuration. A 10 cm x 0.5 cm aper-
ture in the center of the front side allows the coupling of energy from the outer
to the inner part of the cabinet. A vertically polarized plane wave excites the
housing through the front aperture and the electric field is obtained inside the
enclosure in the selected location. In order to obtain the values of electric field
inside the housing two locations have been used: the center of the box where
the first mode presents its maximum, and 7.5 cm from the aperture, close to
one of the two maxima for the second mode of the enclosure. For both locations
optimum values of dielectric constant and conductivity are obtained taking into
account the resonance frequency for these modes. Simulations have been carried
out with MatlabTM PDE Toolbox, which implements the 2D Finite Element
Method, with the aid of the empirical formula (2) to establish a direct relation-
ship with 3D results. Absorbing boundary conditions have been implemented for
the simulations.

4 Results

In Table 2 results obtained in the center of the cabinet for the first resonance
show how as long as the thickness of the inner layer increases the optimum value
for the conductivity decrease. This behavior is directly related to the values of the
skin depth as reported in [6]. In that case an approximated value of t/δ ≈ 1.15
was obtained. Concerning to ε

′

r variation it tends to the higher values of the
studied limits in this case. However obtained results show that its influence is
negligible against the conductivity of the studied material as the skin depth
does not depend on the ε

′

r. This conclusion is very interesting since both values
are usually related in fabrication processes and only the conductivity will be
interesting in electromagnetic interference reduction.

Table 2. Best values for the first resonance

Thickness t(cm) Frequency (MHz) ε
′
r σ(S/m) t/δ

0.1 692 7.64 490.31 1.15
0.2 694 8.69 126.27 1.17
0.3 696 6.08 52.97 1.14

In Table 3 the second resonance of the cabinet has been studied. Once again
results show a dependence with the skin depth parameter, pointing out the con-
ductivity as the main design parameter for this application. Best values obtained
in Table 2 have been simulated, represented and compared with the empty cabi-
net simulation from 500 MHz to 1200 MHz in Fig. 3. As the thickness of the inner
layer increases, higher values of the minimum for the resonances are obtained as
expected due to the inclusion of more absorbing material.

In Fig. 4 best values have been depicted for the second resonance. The mea-
surement position has been taken 7.5 cm from the side of the aperture. Similar
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Table 3. Best values for the second resonance

Thickness t(cm) Frequency (MHz) ε
′
r σ(S/m) t/δ

0.1 1073 7.56 302.22 1.13
0.2 1076 6.48 78.42 1.15
0.3 1079 9.11 38.14 1.20

Fig. 3. Simulation of the best values obtained for the first resonance study

Fig. 4. Simulation of the best values obtained for the second resonance study

conclusions can be extracted for this figure. For this problem the 2D solution
becomes a good approach due to the vertical invariance of the first appearing
modes although in the 2D approach the upper and bottom sides of the cavity
are not taken into account. For both preceding figures although the resonance
suppression is optimized for a specific frequency, the rest of the frequencies are
also affected in a minor way. The inclusion of a second inner layer can pro-
vide a new degree of freedom to the solution. In order to validate the described
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Fig. 5. 2D versus 3D solution for a two inner layer design

Fig. 6. Conductivity value of the best individual for Table 2

technique a comparison between a two layer design obtained with the proposed
2D model and a design obtained with the 3D model with the aid of the sim-
ulation commercial software CST Microwave StudioTM [9] has been performed
showing the goodness of the approach in Fig. 5. For this scenario the design
parameters are the conductivity of the two inner layers with a 0.1 cm thickness:
σ1 and σ2. Dielectric constant values have been fixed to 2 and σ ∈[0 300] S/m.
Solutions obtained are for the 2D case were σ1 = 14.27 S/m and σ2 = 135.43
S/m and for the 3D case σ1 = 7.92 S/m and σ2 = 151.6 S/m. Good agreement
has been found between both curves and solutions show similar values. The re-
sult obtained for this two layers case (0.1 cm + 0.1 cm) is slightly better than
the equivalent one layer solution (0.2 cm) due to the increase of the degrees of
freedom.

In Fig. 6 the evolution of the best individuals of each generation for the
conductivity value is obtained for the 2D technique in the case of the Table
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2 values. As it converges very quickly this information can be used to reduce
computation times in more complex problems.

5 Conclusion

In this study the design of electronic systems cabinets to reduce electromagnetic
radiated interferences in enclosures with an aperture has been carried out. A 2D
simulation tool has been used to evaluate 3D structures jointly with GA.

The proposed technique is applied to optimize a multilayer structure in which
the design parameters are the material permittivity and conductivity. Relation-
ship between the thickness and the conductivity of an inner conductive layer has
been evaluated with the help of the skin depth parameter showing interesting
easy design rules. An example with two layers has been included to validate
the proposed technique with the commercial software CST Microwave StudioTM

showing good agreement.
Plastic materials are very attractive to manufacture shielding cabinets for elec-

tronic equipment. Designs with the help of a full wave electromagnetic simulator
jointly with techniques as GA may improve the shielding capabilities of a pro-
tecting cabinet. On the other hand, computational times with three dimensional
CAD tools become very high. Two dimensional approaches or easy rules may be
useful to initiate three dimensional optimization processes reducing drastically
computation times in the study of problems with arbitrary shapes and contents.

Acknowledgments. This work was supported in part by Fundación Séneca
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Abstract. In this paper we present a software tool for the automatic
design of collective behaviors in animated feature films. The most suc-
cessful existing commercial solutions used in animation studios require
an explicit knowledge by the designer of the AI or other techniques and
involve the hand design of many parameters. Our main motivation con-
sists in developing a design tool that permits creating the behaviors of
the characters from a high level perspective, using general concepts re-
lated to the final desired objectives, and to judge these behaviors from
a visual point of view, thus abstracting the designer from the computa-
tional techniques in the system core. In this case, a bioinspired approach
has been followed consisting in the incremental generation of controllers
for simulated agents using evolution. An example of flocking activity is
created with the system.

Keywords: Computer Animation, Automatic Design, Collective Behav-
ior, Evolutionary Techniques.

1 Introduction

The creation of animated films with scenes containing hundreds or thousands of
characters is a highly time consuming task requiring very repetitive and tedious
manual work. In fact, classical solutions consisted simply on the replication of
the behavior of a simple character in order to create a collective behavior. In
order to automate the design of these kinds of scenes with multiple interacting
characters, the animation studios started to develop simulation tools based on
artificial intelligence techniques, where the creation of collective behaviors in
simulated agents have been widely studied.

This research has led to the conclusion that obtaining controllers for collec-
tive behaviors implies two simultaneous tasks. On one hand, the controller for
each individual participating in the collective behavior must be designed and, at
the same time, the interactions between participants so as to obtain the desired
collective goal behavior have to be programmed. Many authors have created
an environment with its physics (or operational rules) and introduced sets of
agents and some type of fixed or adaptive control strategy for each one of the
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participating individuals and tried to explain what came out. If the result was
not satisfactory, they started to fidget with environmental parameters and tried
to establish some type of relationship. This is what we would call the biological
approach: the researchers set some conditions and try to observe what comes
out. In this line, some authors take inspiration from natural systems [1],[2],[3] or
even try to reproduce complete natural closed systems [4]. Introducing evolution
in these types of systems has also been considered by many authors [1],[2],[5].
Some paradigmatic examples of this approach are Collins’ [1] AntFarm in which
cooperation among individuals is studied. Ray’s Tierra [3], which is a simulation
of an artificial ecosystem consisting of computer virtual memory (space), virtual
machine code (matter) and CPU time (energy). Sims [5] evolved virtual crea-
tures simultaneously considering their morphology and their controllers through
artificial neural networks.

Here we are more interested in what could be considered an engineering ap-
proach rather than a biological or observational approach. We want to obtain
systems that produce specific behaviors required for particular tasks or processes.
We are thus contemplating a design process with the objective of generating the
appropriate controllers for the individual entities participating in the collective
process so that the whole does what it is supposed to do. Examples of these
approaches can be found in the field of nanotechnology and nanorobotics where
thousands of individual entities must be controlled so that their collective behav-
ior is the desired one [6]. One of the classical references in the design of collective
behaviors is Reynolds [7] who successfully animated a virtual flock ecosystem,
by simulating the local behavior of the boids response to their local surround-
ings. Reynolds’ boids are purely stimulus-driven, that is, they base their action
only on direct perception input and their behavior follows a set of predefined
local rules. Tu [8] simulated a complex marine environment where fish have the
capacity to base their reactions on desires, habit strings and perceptions.

Returning to the field of film animation, the first intelligent techniques ap-
plied where based on Particle Swarm Optimization. In these systems, each par-
ticle represents a separate animated individual [9]. Examples of the use of this
technique are found in the films Gladiator or Star Wars Episode II: Attack of
the Clones. In the film Lord of the Rings: The Two Towers a scene of 50,000
battling characters was animated using a software system called MASSIVE [9].
In this case, instead of particle systems, the animators made use of an agent
based environment where the agents had complex controllers (using fuzzy logic
to design their characters’ responses) to produce particular behaviors accord-
ing to their environments. Another commercial software that has been widely
used in animation studios is Softimage Behavior that permits the designer to
implement different behavioral algorithms.

These commercial tools require an explicit knowledge of the computational
techniques underlying them by the designer and a complex design of many pa-
rameters by-hand (scripting problem). Our main motivation is related to devel-
oping a design tool that permit creating the collective behaviors from a high
level perspective, using general concepts having to do with the final desired
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Fig. 1. Simplified flow diagram of BDesigner

objective, and to judge these behaviors from a visual point of view, thus ab-
stracting the designer from the computational techniques in the system core. To
achieve these requirements, we decided to use Evolutionary Techniques as search
algorithms to obtain the controllers of the behaviors. These techniques provide
us three main advantages: it allowed using different encodings for the controllers
(they could be Artificial Neural Networks, rules, parametric functions, etc), using
non-supervised learning and selecting the controller using an indirect measure
obtained after observing the behavior through the use of a subjective fitness
function. The tool has been called BDesigner (Behavior Designer) and will be
presented in the next section.

2 The BDesigner Tool

Fig. 1 shows a simplified flow diagram of the BDesigner tool, where the three
main stages of a behavior creation are displayed: the Behavior Specification, the
System Implementation and the Controller Evolution. The first thing a designer
has to do is to specify the behavior that ”he wants to see” from his subjective
point of view through the establishment of the private and global utility functions,
which are described in the next section.

After this initial stage, the designer must implement the system by describing:

– The Environment and the Elements : the dimensions and the elements present
in the environment must be defined to create the simulation skeleton.

– The Interactions : the designer must define sensors, effectors and possible
interactions among elements and between the elements and the environment.

– The Functionalities: to simplify the creation of a complex behavior, it will
be divided into simple parts that must be defined here.
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These three stages are complementary and can be carried out without a par-
ticular order. We have developed a methodology that permits describing all the
features of an agent-simulation system and the designer must follow it in order
to define the elements present in these three stages. To simplify this task, the
definition can be carried out through the graphical interface of the BDesigner.

Finally, once the skeleton of the system has been defined, the last stage of
BDesigner (see Fig. 1) is the creation of the controllers through evolution. In
this initial implementation, each individual in the population of the evolutionary
algorithm represents a controller that controls the behavior of all the agents in
the system, this is, all the elements in the simulation have the same controller,
the one that has obtained a higher fitness value after evolution. During the
”m” generations of evolution, each individual is executed in ”n” different initial
situations that last for ”p” time steps. This way, each individual is evaluated
in n*m*p situations, providing a high level of robustness and generalization
capability to the controllers.

There are two main features in this evolution process that must be considered
in detail: the fitness function and the incremental creation of controllers.

2.1 Fitness Function

As commented before, one of the main reasons behind the application of evolu-
tionary algorithms in this tool is that they permit an abstract classification of
the controllers through the establishment of a subjective fitness function, this is,
a quantitative comparison that depends on what the designer sees in the sim-
ulator, if he likes it or not. This quantitative measure is typically denoted in
the references as the utility function [10]. The utility can be divided into pri-
vate utility and global utility. The first one is a measure that depends on each
individual’s behavior and that must be maximized. The second one depends on
the global behavior of all the agents in the system, this is, it depends on the
degree of collaboration between the elements. The maximization of the global
utility is the main objective of the collaborative systems we are dealing with,
but to define this global utility is quite complex because in most cases it cannot
be derived as a simple sum of the private utilities of all the agents.

Wolpert [10] defines the conditions the private utility function must verify so
that an improvement of its value leads to the improvement of the global utility
function. In the BDesigner tool we have used these conditions in order to create
the private utility function automatically from the global utility function, which
is the only quantity the designer must define to establish the fitness function.

2.2 Incremental Creation of Controllers

The controllers in the BDesigner tool can be represented by Artificial Neural
Networks (as we will see in the examples), rules, parametric functions, etc. The
system does not impose any restriction in this sense. As in the general case,
these controllers have as inputs the sensorial information corresponding to each
particular agent and must provide as output the action that must be executed
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through the effectors. The problem with the controllers arises from the way they
are evaluated (globally) as it is quite hard to determine a progressive construction
of complex behaviors. To solve, in part, this problem we have decided to define a
complex behavior by dividing it into simpler behaviors and using an incremental
architecture developed in our group [11] to efficiently combine them.

The approach followed to progressively construct complex behaviors and, what
is more important, reuse behaviors that have been previously obtained is de-
scribed as follows: First, simple low level behaviors, which take the control of
effectors, are identified and obtained separately or, they can be reused from pre-
viously obtained libraries. The next step is to obtain the higher level behavior
controllers. These do not take the control of effectors but modify the way lower
level behaviors act. Obviously, in many cases, the available low level behaviors
are not appropriate for the higher level modules to be able to implement the
desired global behaviors and thus it is necessary to simultaneously obtain an-
other low level behavior that complements those already present and performs
every task not covered by them. By iterating this process as required a tree-like
control architecture is obtained. Higher level modules modify the operation of
lower level modules by acting on their inputs or their outputs through product
operations. We have called these process input / sensor modulation and out-
put / effector modulation. A more formal description of the components of the
architecture can be found in [11].

The use of effector modulators leads to a continuous range of behaviors for
the transitions between those determined by the individual controllers. This is
due to the fact that effector values can now be linear combinations of those
produced by low level modules. The sensor modulators permit changing how a
module reacts under a given input pattern transforming it to a different one.
This way, it is very easy to make changes in that reaction for already learnt
input patterns. Even if the construction of the control architecture produces an
apparently hierarchical structure, this is due to the incremental nature of this
process, taking into account the way modulators act.

3 Application Example

To show the basic operation of BDesigner, a flocking behavior, similar to those
created by Reynolds [7], has been designed. In our case, we have increased the
complexity of the behavior by adding more elements to the system. The behavior
we want to simulate is the following: there is a bird flock where each bird has
an internal hunger sensor and an internal fear sensor. If the bird is hungry, it
wants to reach food and if it is not hungry, depending on the fear level, it wants
to fly close to the rest of the birds or it wants to fly alone. Two internal sensors
(hunger and fear) and an external element (food) have been added to the original
boids system. This final behavior has been divided into simpler ones according
to the philosophy previously presented.

The initial step the designer must accomplish consists in implementing the
system where the behavior will be simulated. First, the designer describes the
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environment and the elements belonging to this environment. In this case, the
environment is a wall-limited world with the height and width established by the
designer (700x1000 pixels). The necessary elements are bird elements and food
sources. Once the designer has described the elements and the environment, he
will define the sensors and effectors that allow the interaction between them. In
this example we need:

– Center of mass sensor : it measures the distance and angle to the element
neighborhood center of mass.

– Food source sensor : it measures the distance and angle to the food source.
– Hunger and Fear sensors : internal sensors that measure the hunger and fear

level of an element.
– Movement effector : effector that allows to move an element through the

environment.

To implement these sensors and effectors the designer has to set the values
of their characteristics: range, vision distance or direction on the sensors, and
maximun speed on the motion effector. As commented before, the designer di-
vides the global behavior into parts called funcionalities. The funcionalities in
this example are: Approach a food source, Escape from a food source, Approach
a group of birds and Escape from a group of birds. According to the incremental
architecture presented in section 2.2, to create the final behavior controller, we
have designed a hierarchical structure shown in Fig. 2. It contains four low level
modules acting directly over the effectors, a continuous selector that combines
the output of two low level modules depending on the fear input and an effector
modulator that combines the output of the two remaining low level modules and
the continuous selector depending on the hunger input.

Once the general structure of the controllers required to implement the final
behavior have been defined, they must be obtained through evolution. As a
general case, most of the low level behaviors will be present in the behavior
library of the system as they will have been previously obtained for other cases.
Anyway, we will describe the process assuming that none are present.

The first controller that must be implemented is the one corresponding to ap-
proaching a food source for the case when the hunger level is high. This controller
has been represented by a delay based multilayer perceptron network [12] with
2 inputs (distance and angle to the food source), one hidden layer of 4 neurons
and 2 outputs (linear and angular speed). To obtain this controller we have used
a classical genetic algorithm with 300 individuals, 80% multipoint crossover, 5%
random mutation and a tournament selection with a pool size of 2.

The global utility function establishes the fitness function of the genetic algo-
rithm and, in this case, measures the goodness of the bird motion to reach the
food source. This global utility is automatically obtained, in this simple case, as
the sum of the private utilities of all the birds in the flock. The private utility
function measures the absolute and relative distance from the bird to the food
source. With these two values, absolute and relative distance, we prevent the
private utility function value depending on the initial position of the bird. The
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Fig. 2. Final Behavior controller structure

genetic algorithm ran 450 generations containing 5 simulations with different
initial positions of 100 steps each.

Fig. 3 left shows the evolution of the fitness function (global utility) in this
case. As we can see, in about 200 generations, it reaches the maximum that is
maintained until the final generation 450. In the first generations, the controller
has already a high fitness value as a consequence to the simplicity of the desired
behavior. Anyway, if we simulate the behavior of an early controller (for exam-
ple, generation 10) we obtain a more inefficient motion than the final one. To
illustrate the behavior provided by the best individual after evolution, in Fig. 3
right we have represented the motion of the bird as is seen by the designer in
the BDesigner interface.

Fig. 3. Evolution of the fitness value for the controller of the behavior for approaching
the food (left) and final result obtained with the execution of the best controller (right)
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Fig. 4. Grouping coefficient versus the fear level (left) and final result obtained with
the execution of the best controller (right) with a fear input of 0 for all the birds

The second controller that must be implemented performs an escaping from
the food source behavior for the case when the hunger level is low. The controller
and its production is similar to the previous one. In this case, the global utility
function depends on the distance from the bird to the food source, with a higher
utility corresponding to a higher distance.

At this point, we realized that the previously obtained controllers could be
generalized to behaviors corresponding to ”Approaching a point” and ”Escaping
from a point”. This way, the behaviors of approaching and escaping from a group
of birds could be obtained directly by just changing the sensor ”distance and
angle to food source” to ”distance and angle to center of mass of a bird neigh-
bourhood”. This approach provided us with a successful result so we obtained
two new low level controllers without the need for evolving them.

Once the four low level controllers were obtained we decided to create a higher
level (second level) controller that, depending on the fear input, creates thighter
or more disperse groups of birds. This controller corresponds to a continuous se-
lector module that acts over the low level modules. To do that, this controller has
been represented by a multilayer perceptron network with 1 input (fear level),
two hidden layers of 2 neurons and 1 output (the modulation level). This mod-
ulation is performed assigning the output value provided by the network to the
approaching controller and the complementary value to the escaping controller.
To obtain this modulation controller we have used a classical genetic algorithm
with 130 individuals, 50% multipoint crossover, 15% random mutation and a
tournament selection with a pool size of 2.

In this case, the utility function only measures the goodness of the continuous
selector, because we can assume that the low level behaviors were obtained in
previous examples and work correctly. Thus we will measure only if the flock
behavior performs according to the fear level value. The genetic algorithm ran
for 1000 generations containing 2 simulations with different initial positions of 50
steps each. We obtained a controller with a successful behavior in 300 generations
of evolution.

To show the operation of this module, in Fig. 4 left we have represented the
grouping coefficient, that measures the distance between the birds, against the
fear value of the flock. As the figure shows, when the fear level reaches a value
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Fig. 5. Final behavior in the case of hunger 10 (left image) and in the case of hunger
0 and fear 10 (right image) when we execute the best controller obtained

of 0, the grouping coefficient takes high values, what means that the birds are
separated from each others. In Fig. 4 right we show this behavior with fear 0 as
the designer can see it in the BDesigner graphical user interface. If we change
the fear level, for example, to 10, the grouping coefficient decreases, what means
that the birds form a tighter group when flying together. This behavior with a
high fear value is the same as the one shown by the original Reynolds boids.

The final behavior is obtained by creating a higher level controller (third
level) that, with a high hunger level, makes the birds approach the food source
without paying attention to the fear level. In the case of a low hunger level
the birds must pay attention to the fear level flying grouped or dispersed. To
achieve this behavior, we decided to create an effector modulator controller, that
selects if the bird motion is controlled by the Approach a food source controller,
by the Escape from a food source controller or by the continuous selector. This
controller has been represented by a multilayer perceptron network with 1 input
(hunger level), one hidden layer with 3 neurons and 3 outputs. These outputs
correspond to the contribution of each module to the final values to the effectors
(linear and angular speed). To obtain this controller we have used a classical
genetic algorithm with 180 individuals, 50% multipoint crossover, 15% random
mutation and a tournament selection with a pool size of 2.

The global utility is created simply by rewarding the degree of satisfaction
of the desired behavior by the whole flock, this is, with a high hunger value,
the birds must approach the food and with a low value they must act according
to the fear level. The genetic algorithm ran for 1000 generations containing 2
simulations with different initial positions of 50 steps each. In this case, we
obtained a controller with a successful behavior in 600 generations of evolution.

In Fig. 5 left we have represented the final behavior the designer can see in
the BDesigner interface in the case of hunger 10 (left image) and in the case of
hunger 0 and fear 10 (right image) when we execute the best controller obtained.
These are just two illustrative behaviors, but we could obtain each intermediate
response of the flock by just adjusting the hunger and fear values. Obviously,
richer behaviors are obtained than in the case of using just a couple or rules.
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4 Conclusions

In this paper we have presented the BDesigner design tool that permits an
animation film designer to create and simulate collective behaviors. The main
design feature is the abstraction of the designer from the particularities of the
computational techniques applied. We have achieved this requirement by using
evolutionary algorithms to automatically obtain the controllers of the behaviors
selecting them with a high level fitness function based on quantitative measures
of the utility. To display the basic operation of BDesigner, we have developed
the controllers needed to obtain a modulated flocking behavior.
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Abstract. In this paper we propose a method for building possibilis-
tic temporal constraint networks that better summarizes the huge set of
mined timed-stamped sequences from a temporal data mining process.
It belongs to the well-known second-order data mining problem, where
the vast amount of simple sequences or patterns needs to be summa-
rized further. It is a very important topic because the huge number of
temporal associations extracted in the temporal data mining step makes
the knowledge discovery process practically unmanageable for human
experts. The method is based on the Theory of Evidence of Shafer as
a mathematical tool for obtaining the fuzzy measures involved in the
temporal network. This work also presents briefly a practical example
describing an application of this proposal in the Intensive Care domain.

1 Introduction

Temporal data mining can be defined as the activity of looking for interesting
correlations (or patterns) in large sets of temporal data accumulated for other
purposes. It has the capability of mining activity, inferring associations of con-
textual and temporal proximity, that could also indicate a cause-effect associa-
tion. This important kind of knowledge can be overlooked when the temporal
component is ignored or treated as a simple numeric attribute [10].

In [4] we presented an algorithm, named TSET , based on the inter-transac-
tional framework for mining frequent sequences from several kind of datasets,
mainly transactional and relational datasets. The improvement of the proposed
solution was the use of a unique structure to store all frequent sequences. The
data structure used is the well-known set-enumeration tree, widely used in the
data mining area, in which the temporal semantic is incorporated. The result
is a set of frequent sequences describing partially the dataset. This set forms a
potential base of temporal information that, after the experts analysis, can be
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very useful to obtain valuable knowledge. However, the overwhelming number
of discovered frequent sequences may make such task absolutely impossible in
practice. This problem can be viewed as a second-order data mining problem,
which consists in the necessity of obtaining a more understandable and useful
sort of knowledge from a huge volume of temporal associations resulting after
the data mining process. In this paper, we propose an extension of a previous
work [6], which consists on the description of the building of a special model
of temporal network formed by a set of uncertain relations amongst temporal
points. The temporal model, proposed by HadjAli, Dubois and Prade in [7], is
based on the Possibility Theory as expressive tool for the representation and ma-
nagement of uncertainty in point-based temporal relations. The uncertainty is
represented by a vector describing three possibility values, expressing the relative
plausibility of the three basic relations between two temporal points, that is,
”before”, ”at the same time” and ”after”. Thus, the authors define the basic
operations (inversion, composition, combination and negation) that allow to infer
new temporal information and to propagate uncertainty in a possibilistic way.
Once the sequences base is obtained (characterized by a frequency distribution),
we propose a Shafer Theory-based technique which: firstly divides the sequence
base into a set of nested subsets and then it normalizes the frequencies of each
nested subset so they add to 1. Secondly, for each nested subset, it builds a
temporal constraint network calculating, for each pair of temporal points or
events, the possibility degrees of the three basic temporal relations. The result
is an enumeration of temporal constraint networks that better summarizes the
temporal information existing in the dataset. In other words, they permit the
qualitative representation of uncertain temporal relations and they are based on
formal sound theory for reasoning with uncertainty.

The remainder of the paper is organized as follows. Section 2 describes briefly
the TSET algorithm and gives a formal description of the problem of mining
frequent sequences from datasets. Section 3 describes briefly the representation
aspects of the possibilistic temporal model. In Section 4 we describe the approach
for obtaining the uncertain vectors associated with the basic temporal relations
from the divided sequences base. Section 5 presents a practical experience at
Intensive Care Unit (hereinafter ICU) that illustrates the proposed approach.
Conclusions and future work are finally drawn in Section 6.

2 The TSET Algorithm

TSET is an algorithm designed for mining frequent sequences (or frequent tem-
poral pattern) from large relational datasets. It is based on the 1-dimensional
inter-transactional framework [8], and therefore, the aim is to find associations
of events amongst different records (or transactions), and not only the associa-
tions of events within records. The main improvement of TSET is that it uses a
unique tree-based structure to store all frequent sequences. The data structure
used is the well known set-enumeration tree, in which the temporal semantic is
incorporated.
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The algorithm follows the same basic principles as most apriori-based algo-
rithms [1]. Frequent sequence mining is an iterative process, and the focus is on a
level-wise pattern generation. Firstly, all frequent 1-sequences (frequent events)
are found, these are used to generate frequent 2-sequences, then 3-sequences are
found using frequent 2-sequences, and so on. In other words, (k+1)-sequences
are generated only after all k-sequences have been generated. On each cycle, the
downward closure property is used to prune the search space. This property, also
called anti-monotonicity property, indicates that if a sequence is infrequent, then
all super-sequence must also be infrequent.

In the sequel, we will introduce the terminologies and the definitions necessary
to establish the problem of mining frequent sequences from large datasets.

2.1 Concepts and Terminologies

Definition 1. A dataset D is an ordered sequence of records D[0], D[1],...,D[r−
1] where each D[i] can have c columns or attributes, A[0], ..., A[c − 1]. The 0-
attribute will be the dimensional attribute, the temporal data associated with the
record, expressed in temporal units. The rest of attributes can be quantitative or
categorical.

We assume that the domain of each attribute is a finite subset of non-negative
integers, and we also assume that the structure of time is discrete and linear.
Due to every event registered has its absolute date identified, we represent the
time for events with an absolute dating system [9].

Definition 2. An event e is a 3-tuple (A[i], v, t), where 0 < i < c, v ∈ dom{A[i]},
and t ∈ dom{A[0]}, that is, t ∈ N. Events are ”things that happen”, and they
usually represent the dynamic aspect of the world [9].

In our case, an event is related to the fact that a value v is assigned to a
certain attribute A[i] with the occurrence time t. The set of all distinct pairs
(A[i],v) can be also called event types. We will use the notation e.a, e.v, and e.t
to set and get the attribute, value, and time variables related to the event e, and
e.type to get the event type associated with it.

Definition 3. Given two events e1 and e2, we define the ≤ relation as follows:

1. e1 = e2 iff (e1.t = e2.t) ∧ (e1.a = e2.a) ∧ (e1.v = e2.v)
2. e1 < e2 iff (e1.t < e2.t) ∨ ((e1.t = e2.t) ∧ (e1.a < e2.a))
3. e1 ≤ e2 iff (e1 < e2) ∨ (e1 = e2)

We assume that a lexicographic ordering exists among the pairs (attribute, value),
the events types, in the dataset.

Definition 4. A sequence (or event sequence) is an ordered set of events S =
{e0, e1, ..., ek−1}, where for all i < j, ei < ej. Obviously, |S| = k.

Definition 5. Let Utmin be the minimal dimensional value associated to the
sequence S. In other words, Utmin = min{ei.t}, for ei ∈ S. If Utmin = 0, we say
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that S is a normalized sequence. Note that any non-normalized sequence can be
transformed into a normalized one through a normalization function.

Let Utmax be the maximal dimensional value associated to the sequence S.
This value indicates the maximum distance amongst the events belonging to the
normalized sequence S. In other words, Utmax = ek.t, where |S| = k. From both,
confidence and complexity points of view [8], this value will be always less than
or equal to a user-defined parameter called maxspan, denoted by ω.

Definition 6. The support (frequency) of a sequence is defined as:

support(S) =
fr(S)
|D| ,

where fr(S) denotes the number of occurrences of the sequence S in the dataset,
and |D| is the number of records in the dataset D, in other words, r.

Definition 7. A frequent sequence is a normalized sequence whose support is
greater than or equal to a user-specified threshold called minimum support. We
denote this user-defined parameter as minsup, or simply σ.

Definition 8. A sequence is a frequent maximal sequence if and only if it is
frequent and no proper super-sequence (superset) of it is frequent.

Given a dataset D and the user-defined parameters ω and σ, the goal of sequence
mining is to determine in the dataset the set SD,σ,ω

f , formed by all the frequent
sequences whose support are greater than or equal to σ, that is,

SD,σ,ω
f = {Si|support(Si) ≥ σ}.

This set, formed by a large number of time-stamped sequences, is the goal
of the temporal data mining algorithm and the input of the method proposed
in this paper for obtaining a temporal constraint network. Basically, the idea is
to divide it into a set of nested subsets and, for each subset, obtain a temporal
constraint model which summarize better the existing temporal information in
the sequences.

3 Representation of Uncertain Temporal Relations

In literature can be found a large amount of work trying to handle uncertainty in
temporal reasoning. However, very few work deal with time points as ontological
primitives for expressing temporal elements. Basically, two temporal point-based
approaches have been recently proposed for representing and managing uncertain
relations between events, the probabilistic model done by Ryabov and Puuro-
nen [11], and the possibilistic model proposed by HadjAli, Dubois, and Prade
[7]. In this paper, the authors argued the main differences between these two
approaches. Mainly, there are two main differences. First, the possibilistic mode-
ling can be purely qualitative, avoiding the necessity of quantifying uncertainty



A Possibilistic Approach for Mining Uncertain Temporal Relations 601

if information is poor. Second, their proposal is capable of modeling ignorance in
a non-biased way. In our case, the selection of the possibilistic model is reinforced
by the fact that we need a model which make the fusion of mined and expert
knowledge easier [3].

The selected model is based on possibility theory [2] for the representation
and management of uncertainty in temporal relations between two point-based
events. Uncertainty is represented as a vector involving three possibility va-
lues expressing the relative plausibility of the three basic relations (” < ”, ” =
”, and ” > ”) that can hold between these points. Also, they describe the in-
ference rules (that form the basis of the reasoning method) defining a set of
operations: inversion, composition, combination, and negation, the operations
that govern the uncertainty propagation in the inference process. The authors
show that the whole reasoning process can actually be handled in possibilistic
logic.

Three basic relations can hold between two temporal points, ”before (<)”, ”at
the same time (=)”, and ”after (>)”. An uncertain relation between temporal
points is expressed as any possible disjunction of basic relations:

≤ ⇐⇒ < or =
≥ ⇐⇒ > or =
	= ⇐⇒ < or >
? ⇐⇒ <, =, or >

The last case represents total ignorance, that is, any of the three basic relations
is possible. The representation is extended using the Possibility Theory for mode-
ling the plausibility degree of each basic relation. Given two temporal points,
a and b, an uncertain relation rab between them is represented by a normalized
vector Πab = (Π<

ab, Π
=
ab, Π

>
ab), such that max(Π<

ab, Π
=
ab, Π

>
ab) = 1, where Π<

ab

(respectively, Π=
ab, Π>

ab) is the possibility of a < b (respectively a = b, a > b).
From the uncertain vector (Π<

ab, Π
=
ab, Π

>
ab), and using the duality between

possibility and necessity, namely

N(A) = 1 − Π(Ac), where Ac is the complement of A

we can derive the possibility and necessity degree of each basic relation and their
disjunctions.

As,
Π≤

ab = max(Π<
ab, Π

=
ab)

Π≥
ab = max(Π=

ab, Π
>
ab)

Π �=
ab = max(Π<

ab, Π
>
ab),

we can obtain the necessity degrees of the basic relations,

N<
ab = N(a < b) = 1 − Π≥

ab
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N=
ab = N(a = b) = 1 − Π �=

ab

N>
ab = N(a > b) = 1 − Π≤

ab.

Moreover, the authors defined the rules that enable us to infer new temporal
information and to propagate uncertainty in a possibilistic way. The reasoning
tool relies on four operations expressing:

inversion ⇐⇒ r̃ab = rba

composition ⇐⇒ rac = rab ⊗ rbc

combination ⇐⇒ rab = r1ab
⊕ r2ab

negation ⇐⇒ ¬

These rules complete the definition of a model for representing and reaso-
ning with uncertain temporal relations that uses the Possibility Theory as an
expressive tool for dealing with uncertainty in temporal reasoning.

4 Extracting Uncertain Temporal Relations

In this section, we propose a technique for extract the uncertain temporal rela-
tion between each pair of event types from the sequences base. The uncertain
temporal relation is represented by an uncertain vector formed by three possibili-
ty values, expressing the plausibility degree for each basic temporal relation. We
propose the use of Shafer Theory of Evidence [12] to obtain the plausibility de-
grees from the frequencies values associated with the set of sequences. The result
will be a set of temporal constraint networks, which belong to a a suitable model
for representing and reasoning with temporal information where uncertainty is
presented.

4.1 Shafer’s Theory of Evidence

The Shafer Theory of Evidence, also known as Dempster-Shafer Theory, is a
theory of uncertainty developed specially for modelling complex systems. It is
based on a special fuzzy measure called belief measure. Beliefs can be assigned
to propositions to express the uncertainty associated to them being discerned.
Given a finite universal set U , the frame of discernment, the beliefs are usually
computed based on a density function m : 2U → [0, 1] called basic probability
assignment (bpa):

m(∅) = 0, and
∑

A⊆U
m(A) = 1.

m(A) represents the belief exactly committed to the set A. If m(A) > 0, then A
is called a focal element. The set of focal elements constitute a core:

F = {A ⊆ U : m(A) > 0}
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The core and its associated bpa define a body of evidence, from where a belief
function Bel : 2U → [0, 1], and its dual measure (the plausibility measure),
Pl : 2U → [0, 1] are defined:

Bel(A) =
∑

B|B⊆A

m(B) Pl(A) =
∑

B|B∩A �=∅
m(B).

It can be verified [12] that the functions Bel and Pl are, respectively, a possibility
(or necessity) measure if and only if the focal elements form a nested or consonant
set, that is, if it can be ordered in such a way that each is contained within the
next. In that case, the associated belief and plausibility measures posses the
following properties: For all A, B ∈ 2U ,

Bel(A ∩ B) = N(A ∩ B) = min[Bel(A), Bel(B)]

Pl(A ∪ B) = Π(A ∪ B) = max[Pl(A), P l(B)]

4.2 Calculating the Possibility Measures of Temporal Relations

In our proposal, the sequences base is formed by a set of linked nested set, each
one corresponding to a frequent maximal sequence and its subsequences. From
an algorithm point of view, each nested set corresponds with a branch of the
tree. So the proposed method build the temporal constraint networks in a linear
time, just with a depth-first traversal of the tree.

Following the notation of Shafer’s Theory, our core is each set of nested se-
quences NS ⊆ BSD,σ,ω which is formed by a set of focal elements or sequences.
We normalize the frequencies of each nested subset so they add to 1.

Let Ω be the set of event types presented in the dataset, that is,

Ω = {(A[i], v)|v ∈ dom(A[i])} .

Taking into account the maxspan constraint, the set of events is defined as an
extension of the Ω set in this way:

Ωω = {(A[i], v, t)|v ∈ dom(A[i]) ∧ 0 ≤ t ≤ w)}

This set is our frame of discernment, that is, Ωω = U . So, the set of focal
elements, the nested sequences base, is defined:

NS = {Si ⊆ Ωω|m(Si) > 0} ,

where m is the bpa function derived from the frequencies of the sequences, such
that m : 2Ωω → [0, 1],

m(∅) = 0,
∑

i

m(Si) = 1

We will denote a temporal relation between two events e1, e2 as e1Θe2. Since
we are only interested in the basic temporal relations,

Θ ∈ {<, =, >} .
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For each pair of event types presented in the nested set, we need to obtain
the possibility degree of each basic temporal relation between them. In order
to compute the possibility of a temporal relation, it is necessary to consider all
focal elements, that is, all sequences which make the temporal relation possible.
However, from complexity point of view, we will obtain the possibility degrees
from the necessity ones, calculated over the complement of the basic temporal
relation, that is,

Θc ∈ {>=, <>, <=} .

Proposition 1. Let suppose the qualitative temporal relation e1Θ
ce2. This re-

lation induces a parameterized set:

Xe1Θce2 = {(eiej)} ,

where ei, ej ∈ Ωω, ei.type = e1, ej .type = e2, and ei.tΘ
cej.t.

Proposition 2. In order to obtain the set of sequences involved in the temporal
relation, we introduce the assessment operator Γ , defined as:

Γ (Xe1Θce2) = {Si|Si ⊆ Xe1Θce2} ,

where Si ∈ NS.

Proposition 3. The possibility degree of the temporal relation e1Θe2 is defined
as:

Π(e1Θe2) = 1 − N(e1Θ
ce2) = 1 −

∑

Si∈Γ (Xe1Θe2 )

m(Si)

5 A Practical Experience at Intensive Care Unit

The Intensive Care Unit (ICU) is a medical service to provide critical attention
of medically recoverable patients. One of the fundamental characteristics of this
domain is that patients require a permanent availability of monitoring equip-
ment and specialist care. Thus, clinicians work in shifts in order to provide a 24
hours service. In this sense, the temporal evolution of patients is permanently
recorded. Physicians at ICU are daily required to provide reports, describing the
different diagnosis hypotheses that they assume and the posterior actions (tests,
treatments, or requiring new laboratory analysis). In our particular case, the
ICU service has a Health Information System (HIS) that stores this information
and generates the reports.

Due to the amount of information (different medical areas implied), and the
importance of the temporal dimension (implicitly and explicitly analysed in pa-
tients’ evolution), we consider that the ICU is a suitable domain to apply our
second-order temporal data mining proposal.

In ICU domains, as well as the final diagnosis (like other hospital services),
there are evolutive diagnoses that state the diagnostic hypotheses. These hy-
potheses are daily made by physicians during patient’s stay at the ICU service.
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Furthermore, they can be considered high-level medical information since it is
obtained from physician’s knowledge and medical observations (like EKGs, tests,
or nursing care data).

Despite the importance of other clinical information within the health record,
such as treatments or demographic data, we consider in our experiment that the
evolution of these diagnosis are a good representation of patient problems and
the discovery of temporal pattern diagnosis could be useful in many AI systems
for temporal diagnosis or prognosis.

In our experiment, each patient is represented in the database by a temporal
sequence of diagnoses (temporal points) and the data mining process results
are frequent temporal patterns (or frequent sequences) of diagnosis evolution.
In the analysis of this data, different parameters have been empirically stated
(maxspan = 24 , and support value = 3, 5, 9) depending of the dataset of 144
patients. In Table 1 is shown a summary of some of the results obtained from
the proposed data mining process.

Table 1. Practical experiments considering independent patients and complete data.
Supp = data mining parameter of minimum support. N = number of sequences ob-
tained. Max = maximum size of the sequences.

Supp Patient Patt Tot Patt
3 N= 936 Max=5 N=379374 Max=12

5 N=122 Max=3 N=115810 Max=11

9 N= 49 Max=1 N=20837 Max=9

In [5] we can see the complete example. This paper shows how a very repre-
sentative pattern is obtained from a nested set of frequent sequences.

6 Conclusions and Future Work

In this paper, we propose an initial approach for building qualitative temporal
constraint networks from a set of mined frequent sequences with the aim of
obtaining a more understandable, useful, and manageable sort of knowledge. The
selected temporal model is the proposed by HadjAli, Dubois, and Prade, which
uses the Possibility Theory as an expressive tool for representing and reasoning
with uncertain temporal relations between point-based events. We propose a
Shafer’s Theory-based technique to obtain these possibility degrees involved in
the network from the frequencies of the sequences.

In order to demonstrate the viability of this proposal we have applied it to
the temporal evolution of diagnosis hypotheses at a ICU service. Despite that
the clinical validation is not yet performed, the presented results points out the
simplicity of representation and the advantage for expert’s comprehension.

In future work, we intend to analyze in depth the networks obtained from
the set of mined frequent sequences. We also propose to extend the model of
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temporal network in order to represent not only qualitative but also quantitative
temporal relations, taking advantage of the temporal information presented in
the time-stamped sequences extracted by TSET .
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Abstract. Temporal abstraction methods produce high level descrip-
tions of a parameter evolution from collections of temporal data. As the
level of abstraction of the data is increased, it becomes easier to use them
in a reasoning process based on high-level explicit knowledge. Further-
more, the volume of data to be treated is reduced and, subsequently,
the reasoning becomes more efficient. Besides, there exist domains, such
as medicine, in which there is some imprecision when describing the
temporal location of data, especially when they are based on subjective
observations. In this work, we describe how the use of fuzzy temporal
constraint networks enables temporal imprecision to be considered in
temporal abstraction.

1 Introduction

Medical decision support systems (MDSS) apply explicit medical knowledge to
the patient’s clinical data in order to support task such as diagnosis, deciding
upon a therapy, monitoring the effects of a therapy, etc. This explicit knowledge
is commonly defined using generalizations that can be structured as association
rules, causal models or behavioural models. In other words, MDSSs deal with
knowledge expressed at a high level of abstraction. In contrast, patient data to
be used are obtained at a low abstraction level, e.g. results of laboratory analysis.
Thus, it is necessary to abstract these specific data to bring them towards the
generalizations used to formalize the knowledge and thus get a matching from
which to draw conclusions.

Time is a reference framework to describe evolutionary clinical processes and
supports the concept of change. The dynamic implicit in the evolution of data
(for example pathologies in the case of medical domains) needs to be managed
explicitly by temporal models and methods [9,7]. Data abstraction processes in
which time plays a fundamental role are known as Temporal Abstraction (TA)
processes. TA is supported on temporal reasoning methods which are basically
focused on establishing temporal relations between the instances of the concepts
� This work was supported by the Spanish Ministry of Education and Sci-

ence(MEC) and the European Regional Development Fund of the European Com-
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which make up our knowledge domain, and on obtaining different types of gener-
alizations from the raw data. The aim of TA techniques is to abstract high level
concepts and patterns from sets of temporal data, i.e. from data which contain
a time mark [9].

In this paper we present a temporal abstraction model which focuses on the
search for a possible temporal explanation of the observations collected. In our
model, an abstract explanation of the data consists of a temporal sequence of
interval states which has to account for all the data. It must be consistent with
the temporal dynamic expected and it should be as simple as possible. The
application of an abductive method formally guarantees a temporal explanation
that fulfills these conditions. We will model a part of the temporal abstraction
process as a temporal constraints satisfaction problem.

A final aspect to be considered is the possible existence of imprecision in
the temporal data as well as in the medical knowledge itself. Physicians there-
fore use ambiguous expressions like “a few minutes later”, or “some 30 or 40
minutes” instead of precise time constraints between manifestations and diag-
nostic hypothesis. Consequently, it is necessary to apply suitable techniques to
represent and manage imprecision within the time component. Our proposal is
based on Fuzzy Temporal Constraint Networks (FTCN) [6], which allows us to
capture the temporal imprecision associated to the temporal relations between
the sequences abstracted and the sequences of the measurements taken.

The rest of this paper is organized as follows. Section 2 presents the temporal
reasoning model on which our proposal is based. Section 3 provides a definition
of all the elements which make up the temporal abstraction process. Section 4
describes the proposed temporal abstraction method in detail. Finally, we include
some related works, the conclusions and some future research.

2 Temporal Framework

In our model, temporal concepts can be represented as time points or time
intervals, and they can be related by means of quantitative relations (between
points, referred to as MPP) or qualitative relations (between points, between
points and intervals and between intervals, referred to as QPP, QPI or QIP, and
QII respectively). Since reasoning with the full algebra for temporal relations is
a NP-complete problem, we have chosen one of the tractable subalgebras: the
set of convex relations implemented in FTCN formalism [6].

An FTCN is a pair N = 〈T , L〉 consisting of a finite set of temporal vari-
ables, T = {T0, T1, ..., Tn}, and a finite set of binary temporal constraints,
L = {Lij, 0 ≤ i, j ≤ n} defined on the variables of T . An FTCN can be repre-
sented by means of a directed constraint graph, where nodes represent temporal
variables and arcs represent binary temporal constraints.

Each binary constraint Lij on two temporal variables Ti and Tj is defined by
means of a fuzzy number, that is a convex possibility distribution πLij , which
restricts the possible values of the time elapsed between both temporal variables.
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An unknown relation between two variables corresponds to a universal constraint
given by πU (t) = 1, ∀t ∈ Z.1

An FTCN network N is consistent if and only if there exits a non-empty σ-
possible solution given a previously established threshold Πth for σ, being that
threshold the minimum degree of possibility allowed for all the constraints. The
inference of unknown relations is carried out by applying a constraint propa-
gation algorithm. By means of constraint propagation, a new FTCN , called
minimal, that is equivalent to the original one is obtained. The minimal network
makes all the implicit constraints in the network explicit, and always corresponds
to a complete graph with the most precise temporal information consistent with
the temporal information provided. This operation has an affordable computa-
tional cost, O(n3), by a trade off between representation capacity or expressivity
and efficiency.

Figure 1 shows an example of a temporal constraint network corresponding to
the temporal distribution of an episode of subarachnoid hemorrhage (SAH) in
a patient at ICU. In the figure, squares represent temporal intervals and circles
represent time points. Every interval can be translated into a point represen-
tation, and each qualitative relation can be translated into a quantitative one
in order to obtain a FTCN. By means of the constraint propagation, we can
know any implicit temporal relation, as for example the constraint between the
vasospasm complication and the loss of consciousness symtomp.

To fill the gap between the FTCN and the high-level temporal language, a
temporal reasoner call FuzzyTIME (Fuzzy Temporal Information Management
Engine) [2] has been implemented. FuzzyTIME provides procedures for main-
taining and querying temporal information (with both points or intervals, and
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01d   = overlaps
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2T T 3

T 5

d   =meets45

d   =(70,71,72,73,1)24

T4

d  =(0,3,6,6,1)23

T0 T1

T2 T1

T3 T2

T4 T2

T4 T5

Fig. 1. Possible FTCN example of events of a patient with subarachnoid hemorrhage
(SAH)

1 A convex possibility distribution can be represented by means of a trapezoid defined
by a 5-tuple fuzzy number (a, b, c, d, h), which indicates that the event associated to
it necessarily occurs in interval [a − c, b + d] (referred to as support), but possibly
occurs in interval [a, b] (referred to as kernel), with a possibility of h.
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quantitative or qualitative relations) at FTCN level. Within FuzzyTIME, it is
possible to formulate queries that give a necessity measure about the occur-
rence of an event in the temporal network; this ability can be used for complex
abstractions.

3 Temporal Abstraction Process

3.1 Temporal Ontology

Our temporal ontology is composed of three types of concepts domain, tem-
poral and historical[3]. Domain concepts provide the organizational structure
of the variables handled in the domain. Temporal concepts are used define the
temporal organization of those domain concepts which have a temporal com-
ponent. Historical concepts are used to describe the temporal evolution of the
various temporal concepts. From the temporal abstraction perspective, the tem-
poral concepts can be grouped together under observables and parameters. An
observable corresponds to a primitive variable of the domain whose value can be
directly measured. An observation is the result of applying a measuring action
to an observable at a given moment, and it describes the value of the observable
at the discrete instant of time at which the measurement was made. An obser-
vation m = (o, v, T ) is made up of an observable o ∈ O, a value belonging to the
set of values of the observable v ∈ V (o) and a temporal variable which indicates
the moment at which the measurement was made, T ∈ T .

A parameter represents a variable whose value cannot be directly measured
but which can be derived from the values of a given observable or, even, an-
other parameter. In other words, a parameter abstracts some characteristic of
the corresponding observable or parameter (qualitative magnitude, qualitative
trend,..). We will use P = {p1, p2, . . . , pn} to denote the set of all the para-
meters of the domain. While observations describe the evolution of observables
acquired directly, occurrences describe the temporal evolution of the parameters
and are defined in a similar way. Therefore, observables and parameters are tem-
poral concepts, while observations and occurrences are their historical concept
counterpart.

For the abstraction of states, each observable or parameter will be defined by
the following attributes:

– Persistence (δ): The period of maximum validity of an observation. In
other words, the maximum period during which we can suppose that an
observation does not change its value.

– Granularity(g): This establishes the minimum duration of a state. This
constraint allows to control that state do not change too fast.

Figure 2 shows an example of an observable, a real value of temperature, along
with an associated parameter -the presence of fever, whose possible values are
true and false. In the example, the persistence of the temperature is 1 hour and
the granularity of the fever state is 90 minutes.
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Observations
Temperature − Value

Duration> 90 Mins

trueStates
Fever − Presence

Duration > 90 Mins

false

39º38º37.5º36.5º36º

Distance > 2 Hours

Fig. 2. Example of an observable and a parameter

As a result of the repeated application of a measurement to an observable, a
sequence of observations is obtained which describes the evolution of the observ-
able. The abstracted sequence of a temporal concept is defined as a sequence of
states (which do not have to be consecutive, since gaps may exist in the explana-
tion). A state defines a time interval in which a parameter maintains a constant
qualitative value. Each state is represented by the tuple s = (p, v, T b, T e), where
p ∈ P is a parameter , v ∈ V (p) is a qualitative value belonging to the set of
values of the parameter domain, T b ∈ T is a temporal variable representing the
start of the maximum time interval in which the parameter maintain a qualita-
tive value, and T e ∈ T is a temporal variable representing the end of the said
interval. It is always assumed that T b ≺ T e since states of zero duration are not
admitted.

3.2 Temporal Abstraction Problem

The basic knowledge used to solve a temporal abstraction problem comes under
what is known as the abstraction model (AM). An AM defines the values of a pa-
rameter which are inferred from observables or from other parameters through a
set of abstraction rules (functions fo

p ) which establish a correspondence between
the possible parameter values and the possible values of the observables.

Definition 1. An abstraction model, AM , is defined by the tuple D =<
O, P, a, Fv >where:

– O is a set of observables.
– P is a set of parameters.
– a is a suprajective application a : P ∪O → P defined as ∀p′ ∈ P, ∃x ∈ O∪P |

a(x) = p′, i.e. given a parameter p′, it tells us which observable or parameter
is used for the abstraction.

– Fv is a set of abstraction rules, Fv = {fx
p }, with fx

p (Fx) = vp where Fx is a
logical formula on V (x) and vp ∈ V (p).2

For example, the series of temperature measurements would correspond to the
observables (temperature ∈ O), while the states that describe the presence or ab-
sence of fever would correspond to the abstracted parameter, fever (fever ∈ P )
2 We have defined in [3] a series of basic abstractions (qualitative, generalizations, etc)

which can be expressed in this way.
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which is associated to the observable temperature (a(fever) = temperature). A
possible abstraction rule is between temperature and fever could be f temperature

fever

(temperature > 37) = true.
Once an AM has been defined, we have the general framework in which to set

temporal abstraction problems (TAP).

Definition 2. A temporal abstraction problem, TAP , is defined by the tuple
s TAP = 〈D, NA, HA〉, where:

– D is an AM.
– NA = 〈TA, LA〉 is a FCTN in which TA is the set of all the temporal variables

of the available observations, and LA is a set of temporal constraints among
the variables of TA and the time origin T0, LA = {Li0}.

– HA is the set formed by all the available observations, HA = {(oi, vi, Ti)|oi ∈
O ∧ vi ∈ V (oi) ∧ Ti ∈ TA}.

In our case we will consider that L is a set of constraints between the time origin
and each observation, i.e. the observations are going to be associated to absolute
dates. This will allow us to work with an input sequence of data that can have a
precise time mark, as is the case of the majority of information gathering systems
(e.g. a clinical information system).

Our approach is based on the consideration that the temporal abstraction
process can be seen as an abductive process, i.e. the solution to a temporal
abstraction problem is a possible explanation of the sequence of observations
defining the TAP. We call such an explanation an abstraction hypothesis.

Definition 3. Given a TAP = 〈D, NA, HA〉, an abstraction hypothesis, AH
for that TAP can be formally defined as the tuple AH = 〈NAH , SAH , LAB〉,
where:

– NAH = 〈TAH , LAH〉 is a minimal FCTN in which TAH is a set of temporal
variables associated to the events that define the states, and LAH is a set
of temporal constraints between the temporal variables, LAH = {L(Ti, Tj) |
Ti ∈ TAH ∧ Tj ∈ TAH}.

– SAH={SAHI = (p, vi, T
b
AHi

, T e
AHi

) | p ∈ P ∧vi ∈ V (p)∧T b
AHi

∈ TAH ∧T e
AHi

∈
TAH} is the set of states representing T b

AHi
∈ TAH and T e

AHi
∈ TAH the

events at the beginning and end of the state, respectively.
– LAB is a set of temporal constraints between the temporal variables TAH

and those of TA : LAB = {L(Ti, Tj) | Ti ∈ TA ∧ Tj ∈ TAH}

As with any abductive problem, different explanations can be obtained for the
same set of input data according to how we understand the concept of explanation.
Thus, to obtain a single hypothesis abstraction it is necessary to establish some
criteria that will allow us to select the best hypothesis. The criteria that are going
to be required of an AH in our case for it to be selected as a solution are:

– Covering: Each observation has to be explained by some state, i.e. the states
included in the hypothesis must imply the observations available.
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– Temporal Consistency: The global FTCN obtained as the union of the TAP
and the AH must be consistent. (For the definition of consistency, see
Section 2).

– Exclusivity: Each observation must be included at most in a state.
– Parsimony: Every conjectured state must be supported by at least one ob-

servation. There is no need to create unnecessary states since gaps can exist
in the explanation.

– Dynamic Compatibility: The duration of each state must necessarily be
greater than the granularity and all the observations that form part of the
same state must have a distance between them of, at most, twice that of the
persistence of the associated observable. Otherwise, gaps will be created.

4 Temporal Abstraction of States Algorithm

The abstraction process we explain below rests on three pillars. In the first
place, the observations are processed increasingly. Hence, all the data processed
which have not produced any type of inconsistency will be correct, i.e. any
temporal inconsistency in the set of states is produced by the observation being
processed and it will therefore be discarded. In the second place, we consider
time to be discrete. Finally, we assume that from a single observable, various
sequences of states describing the evolution of different concept characteristics
can be obtained, i.e. different states: qualitative value, trend, gradient, etc.

Taking into account the above considerations, the temporal abstraction process
can be described considering each one of the different cases that we can find when
processing a new observation.

Case 1: Generation of a new non consecutive state. This base case deals
with the situation in which an observation has to generate a new state (the first
observation to be processed by the system or one which does not meet the per-
sistence constraints). Let us suppose that the following observation arrives mi =
(oi, vi, ti) and that we generate a new state Sj ← (p, foi

p (vi), T b
Sj

, T e
Sj

, gp, δoi),
where gp is the granularity of the parameter P and δoi is the persistence of the
observable oi. The creation of a new state gives rise to the temporal relationships
in Figure 3.

C1 and C2 constraints establish that the temporal distance between the start-
ing event T b

Sj
and the end event T b

Sj
of the state Sj and the time instant ti of

the observation mi is located within the time interval [0, δoi]. Note that theses
constraints establish the maximum period of validity for the generated state. C3
constraint establishes that the temporal distance between the starting event T b

Sj

and the end event T e
Sj

of the state is greater than the granularity gp.

Case 2: Subsumption of an observation in a state. In order to process a
new observation mi, we need to analyze the last state Sj = (p, foi

p (vi−1), T b
Sj

, T e
Sj

,

gp, δoi) associated with the observation mi−1. There are two aspects to look
at: abstract value and fulfillment of the persistence condition. The persistence
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[0, δoi
]

f oi
p (vi)

T e
sj

T b
sj [gp, +]

ti

[0, δoi
]

C1: MPP (T b
Sj

, ti, LESSEQ THAN(δoi)) and QPP (T b
Sj

, ti, BEFORE)
C2: MPP (ti, T

e
Sj

, LESSEQ THAN(δoi)) and QPP (ti, T
e
Sj

, BEFORE)

C3: MPP (T b
Sj

, T e
Sj

, MORE THAN(gp))

Fig. 3. Creating a new state

condition indicate us whether two states necessarily do not overlap or if the time
mark of the observation is consistent with the maximum period of validity for the
previous state. Given the previous assumptions, an intuitive way of checking this
condition is by using the following temporal query: IS(MPP (ti, ti−1, MORE
THAN(2 ∗ δoi + 1))). A positive answer leads us to the creation of a new state
Sj+1, analogously to the base case; a negative answer leads us to Case 2 or
Case 3.

In Case 2, we check if the values of the previous and the current observations
coincide, foi

p (vi−1) = foi
p (vi). If these values are equal, then the new observation

mi is subsumed in the previous state Sj . A subsumption process will consist of re-
tracting the temporal constraints which existed between the end of the state and
the last observation mi−1 (constraint C2 in Figure 3) and of asserting the new
temporal constraints for the end of the state T e

Sj
with mi (see C5 in Figure 4).

The rest of constraints are still fulfilled.

Case 3: Generation of a consecutive case. In the case where the observa-
tions have a different abstract value, i.e. foi

p (vi−1) �= foi
p (vi), a new state, Sj+1,

is created with the same constraints as those in Case 1. It only remains to make
it explicit that the new state is consecutive to the previous one by establishing
that distance between the extremity of the end of the previous state and the
start of the new one is a time unit. This case can be seen in Figure 5.

When the observations has been processed it is necessary to check the consis-
tency of the resulting FTCN. If the FTCN is not consistent, the observation will
be discarded, since it will be considered as wrong, and we will proceed to the
following observation. It is only necessary to verify the consistency of the states
when inserting an observation with an abstract value which differs from that
of the previous observation, since the subsumption of an observation in a state
will never cause inconsistencies within the network (see Figure 4). The same
TA process can be applied recursively to the sequence of the generated states
making the concatenation of basic abstractions possible.



TA of States Through Fuzzy Temporal Constraint Networks 615
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Fig. 5. Creation of consecutive states

5 Conclusions

This paper presents a method of temporal abstraction of states which allows
the incorporation of the concept of fuzzy time in a high level description of a
collection of temporal data. This method has been implemented in a general
framework for temporal abstraction described in [3]. The proposed method is
easily extensible since new abstractions only require the definition of the seman-
tic properties of the concepts implied and the abstractions functions for those
properties. Furthermore, the same method can be recursively applied to generate
abstract explanations from sequences of states.

The main contribution with respect to other works is the capacity to treat
temporal imprecision in the input data and in the states generated, by the use
of FTCNs. Another advantage is that the proposed method can deal homoge-
neously with disperse data or with continuous data. Similar approaches have
been proposed [9,1] but don’t consider temporal imprecision. In [5] a TA frame-
work that is also based in fuzzy time management is proposed but is limited to
the abstraction of trends through the use of temporal patterns.
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One of the main disadvantages of the proposed method is its computational
complexity due to the use of networks of constraints. Therefore, other models
are more appropriated for high frequency data with strictly numerical values
(temporal series) such as [8]. In contrast, our solution allows the processing of
observations whose value may be quantitative (e.g. temperature) or qualitative
(e.g.abdominal pain). Nevertheless, by including some additional suppositions,
it is possible to simplify the process of constraint propagation and to obtain
a similar but highly efficient method. The authors are currently developing a
method based on this idea which offers a different solution to the compromise
between expressivity, generality and efficiency.

Finally, this method has been applied in two different scenarios. The first
consists of a pre-processing step in a model for discovering temporal knowledge,
not only for a significant reduction of the volume of the data but also coping
with the problem of obtaining a more concise and complete representation. The
second case is a patient visual display unit in which a series of data abstractions
is generated from the patient’s data.
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temporal de datos. In Proceedings of the XI Conferencia de la Asociación Española
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Abstract. We describe a new software tool, called Spieldose (in Eng-
lish, musical box), suited to the automatic music composition task. Our
system is based on the paradigm of Interactive Genetic Algorithms (ab-
breviated as Interactive GA) where the parent selection stage in a typical
GA is made by the user according to his/her subjective criteria. The tool
permits to integrate the interaction between the system and the poten-
tial users when they create their melodies. One important contribution
of this work is the proposal of specific musical genetic operators (dif-
ferent types of crossover, mutation and improvement operators) which
ensure that the generated melodies are in concordance with Music The-
ory and they are also nice to listening. Moreover, our software tool can
be customized to a particular musical style by including the specific mu-
sical knowledge domain in the system. For validation purposes, we used
Spieldose to compose different pieces corresponding to the classicism.

1 Introduction

In general, Computer Music is related to the theory and application of different
techniques to the musical generation (or composition) with the aid of comput-
ers. Musical information analysis from different sources (like digital audio, digital
partitures or metadata) is also a component area in Computer Music. Therefore,
it is a multidisciplinary field related to disciplines like Digital Signal Process-
ing, Artificial Intelligence, Acoustics, Mathematics or Image Processing, among
others.

A good survey on automatic music composition is presented by López de Man-
taras and Arcos [1]. This paper describes a set of representative Computer Music
systems (related to compositional, improvisation and performance aspects) that
use AI techniques. The pioneering work in automatic music composition is due
to Hiller and Isaacson in 1958. Many fundamental compositional processes in
music may be described as taken an existing musical idea and changing it to
produce a new related piece [2]. Modern musical composers follow many times
some simple rules during their creative process. These rules refer to the intervals
between notes, to the notes used in each tone and in each musical style and to
the types of rhythmic articulations [3].

J. Mira and J.R. Álvarez (Eds.): IWINAC 2007, Part I, LNCS 4527, pp. 617–626, 2007.
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In general, music composition can be a very complex task for the people
without musical knowledge or skill. To overcome this difficulty, different auto-
matic music composition systems have been proposed since the appearance of
computers [4].

Several computational intelligence methods have been applied to music syn-
thesis and analysis tasks. Neural Networks (NN), Genetic Algorithms (GA), and
Genetic Programming (GP) are the main ones. A survey of the application of
Artificial Intelligence (AI) methods to music generation can be found in [5]. Ge-
netic and evolutionary algorithms have demonstrated to be an effective method
to find solutions in complex search spaces. Marques et al [3] have applied GA to
the generation of musical sequences using melodic and musical theory concepts.
Khalifa and Foster [6] proposed a composition system in two stages: first, musi-
cal sound patterns are identified and then they are combined in a suitable way.
The MusicBlox project [4] is based on small music fragments or blocks which
are combined using GA producing musical successful results. The combination
of GA and NN (in particular, Multilayer Perceptrons) for music composition has
also been exploited in the work by Göksu et al [7]. Some other AI techniques
like constraint programming provide a suitable tool for automatic music gener-
ation. Henz et al [8] developed an experimental platform called COMPOzE for
intention-based composition. Jewell et al [9] have described the architecture of
an agent-based distributed system which is oriented to musical composition.

This paper presents an interactive music composition system based on the
application of Genetic Algorithms (GA) to assist the user in this complex task.
Our work takes into account the fact that when several people listen to the same
musical piece, their impressions are not necessarily the same. In a related work,
Unehara et al [10][11] have also remarked that: “any music generation system
must reflect composers subjectivity towards music”. To achieve this goal, these
authors have proposed the application of Interactive GA to music composition.
In these algorithms the parent selection stage is performed the human. In this
way, our adapted GA is used as an optimization method to generate and evolve
a population of musical pieces (the individuals in a standard GA) by the ap-
plication of some specific genetic operators which are introduced to hold the
principles of Musical Theory. At each iteration during the genetic evolution, the
user selects several melodies or pieces considered as “good” candidates according
to musical subjective criteria [10]. In this way, an initial population of automat-
ically generated compositions is evolved until a termination condition is met.
These musical works, which can comply with a given musical style or author,
are generated by considering some specific compositional criteria. The developed
software tool, called Spieldose, aims to include criteria of musical composition
into the Interactive GA. This integration is the core of the proposed work and
it will be detailed in successive sections.

The rest od the paper is organized as follows. Section 2 offers a global descrip-
tion of the presented musical composition system. This description is focused on
the detailed presentation of our specific Interactive GA and on the application
Graphical User Interface (GUI). The different components of our Interactive GA
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Fig. 1. Overview of the proposed Interactive Genetic Algorithm

are detailed in Section 3. Experimental results are resumed in section 4. Section 5
outlines the conclusions and provides future research lines.

2 System Overview

Our approach is focused on an specific Interactive GA for the automatic music
composition task. These kind of GAs were initially applied to fields like the
industrial design where the fitness functions were difficult to be defined. We have
followed a similar approach as presented in [10][11] by Unehara and Osinawa.
Spieldose is a prototype tool which extends the work of these authors. We created
new types of genetic operators, in particular, new mechanisms for crossover,
mutation, improvement and invasion operations. A complete tool GUI aimed to
assist both unskilled and expert user in the music composition stages has also
been developed. Our proposed Interactive GA includes the stages represented
by the Figure 1:

– Initialization: The set of individuals that form the initial GA population are
generated in this stage. This operation is defined to produce an initial set
of musical works or melodies that are created using some specific knowledge
from music theory. In our application, we have only produced 8-bar length
musical melodies.

– Selection: The best melodies (individuals) in the population are selected by
a human expert at each iteration of the GA. In this stage, a variable-size
subset of melodies is chosen by the user (by listening them one by one)
considering his/her musical preferences or guided by the characteristics of a
predetermined musical style.

– Crossover : Those individuals selected are combined using three possible
crossover mechanisms (according to crossover probabilities), to produce a
new generation of child melodies (offspring).
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– Mutation: This operation enables the modification of some fragments (chro-
mosomes) in the new generated melodies according to a mutation probability.

– Improvement : It permits the automatic correction of some musical errors
which could be caused by the previous operators. This stage is automati-
cally performed and It strongly takes into account the considered criteria of
musical theory. It can also consider the feature of a particular musical style.

– Invasion: This stage is included to add new randomly generated individuals
to the population of musical works. It is needed to avoid the loss of diversity
in the collection of melodies after a number of evolution iterations in the
Interactive GA.

In our framework, each individual is an 8-bar melody which is codified using
the differential or relative notation as described in [12]. A melody is represented
by a sequence of notes, where each note has its pitch, length and type attributes
(as shown in Figure 2)). The corresponding data structure to represent a melody
is a vector where each position has two fields: the first one describes the note
pitch expressed in half tones (where a zero value represents a ligature of the
same pitch), and the second one implicitly codifies the note (or silence) length
using three possible capital letters: ’N’ represents a note, ’S’ represents a silence
and ’L’ stands for a note (or silence) ligature. Some complementary remarks are
now pointed out:

– Note types are also implicitly represented and each one holds a determined
number of vector positions equals to its length using as minimal reference
unit a semiquaver note (for example a black note requires four vector posi-
tions, a quaver note requires two vector positions, and so on).

– Each note pitch is expressed with respect to the previous note except for
the first note of the melody (represented by an absolute number of half
tones with respect to a reference octave). The pitch is given by a positive
or negative number of half tones required to obtain the note sound from the
previous note in the piece.

– In order to simplify the implementation of GA operators, we set the size of
all individuals (melodies) of the population to 128. This value corresponds
to 8-bar pieces at 4/4 measures, where the minimal considered note length
is a semiquaver. Therefore, length of a note is determined by adding one
to the number of consecutive ’L’ vector positions preceded by a ’N’ vector
position.

One important contribution of this works is the variety and its effective imple-
mentation of the operators in the Interactive GA. We have properly combined
in this work the knowledge of experts in Musical Theory and experts in Com-
binatorial Optimization methods. The following section describes in detail each
of the involved GA stages and their components. Another contribution of this
work is the complete graphical user interface (GUI) of Spieldose that offers the
user the appropriate functionality for the musical composition task and also the
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N N N S NL L L L L L L L L L L

4 1 2 40 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. Example of the codification of the first bar in a given melody

GUI hides the implementation details of the interactive GA. Figure 3 shows
the main GUI window of Spieldose (left) and the initialization stage window
(right). This GUI offers the user the following main options:

– Initialize a population of melodies (both initial and invader populations).
– Interactively listen to the created musical works in order to choose those

ones that are considered the best ones according to the user preferences.
– Select the best subset of melodies using a tournament algorithm.
– Save the favorite melodies at each iteration in Waveform Audio Format (wav)

and/or in text format (tex).
– Interactively edit a musical piece in text format such that the corresponding

audio is also modified at the same time (there exists a complete updated
equivalence between both formats for each melody).

– Modify different features of the proposed Interactive GA, such as the crossover
and mutation mechanisms, the population size, etc.

3 Main Components of the Interactive GA

This section describes the main components and the GA operators of our algo-
rithm, as represented in Figure 1.

3.1 Algorithm Initialization

For the generation of the initial set of melodies (individuals), we used the knowl-
edge of the experts in Musical Theory. Two main substages have been consid-
ered for this goal: (a) initialization of the common features corresponding to all
individuals in the population and (b) initialization of particular aspects from
each specific individual. All the individuals share the same time signature or
rhythms and also the harmonic structure in order to simplify the application of
the GA operators on the melodies. Of course, individuals differ in the melody
they represent (their chromosome structure). The common information to all
the individuals is generated as follows.

– The permitted rhythms are 2/4, 3/4 and 4/4, and they can be set manually
or random.

– The considered harmonic structure assigns a fundamental chord to each
of the melody bars in the musical piece. This structure determines that
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(a) (b)

Fig. 3. A view of Spieldose application GUI

a melody is correctly created and also that it is human listening. Figure 4(a)
represents a octave of three-note chords. For example, if tonic (or first) note
is C in major-chord, then this chord I is composed by the notes: C, E and G,
respectively. Figure 4(b) describes the considered tonal possibilities for each
of the 8 bars in the harmonic basis of the melodies. The first bar always
starts with a chord I (and it also represents the major/minor tonality of
the melody). Note that the bar positions in the second and third rows with
respect to the corresponding ones in the first row of Figure 4(b) means that
these chords in a given bar can be exchanged.

I I IV V I IV V I

III

IV

III

IV

II

VI

VII II

VI

VII

(a) (b)

Fig. 4. Solution initialization: the harmonic structure

As pointed out, each individual in the GA stores an 8 bars melody. Next, ee
describe the stages followed by the system to create a musical piece.

– Rhythmic structure: First, the melody rhythm is constructed. It consists in
a vector of notes as represented by the Figure 2. For this purpose, three
possible values can be assigned to the second component in each vector po-
sition: ’N’, ’S’ and ’L’. The first position in a bar of this 2-tuple vector is
assigned a value ’N’ to ensure the independence of each bar in the melody
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N SN

(a) (b)

(c)

N NL L L L L L L L LN L L L L L L L L L L L N L N L N L N L

SN NL L L L L L L L LN L L L L L L L L L L L N L N L N L N L

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 -2 0 -10 -2 0 3 0

Fig. 5. Sketch of an example of the automatic creation of a melody using the Spieldose
tool (for shortness, the first two bars are only represented)

thus discarding the ligatures between notes of different bars (Figure 5(a)).
Next, the rest of vector positions are completed by raffling the three possible
values (’N’, ’S’ and ’L’) as shown in Figure 5(b). These values can have
different probabilities of occurrence.

– Pitch sequence: The corresponding pitch values are assigned to the notes in
the rhythmic sequence (see Figure 5(c)). These values are subsequently added
to the melody such that they are chosen with a probability proportional to an
assigned pitch weight. This weight is computed according to the considered
tonality and following the compositional rules of a concrete musical style (in
our framework we have focussed on the classicism). Therefore, those notes
belonging to a considered triad chord have a higher probability to be chosen,
and later those notes with pleasant dissonances (in particular, the seventh
and ninth notes of the chord). The probabilities associated to each tonality
jump are predefined and they have been suggested by the experts in Music
Theory.

3.2 Parent Selection Scheme

This stage in our Interactive GA is performed by a tournament method and it
is the only operation than necessarily requires from the human participation.
A number of N different melodies automatically generated by the system are
presented in groups of M (where M < N). Then, after listening the M melodies,
the user chooses one in each group according to his/her musical preferences.
These selected pieces will be the parents for the next generation of individuals,
and the rest of the melodies are discarded. The tournament is a very appropriate
mechanism for implementing the selection stage in an Interactive GA since the
user is only responsible to select those individuals are the best ones in the actual
population. This task, as performed manually, requires that user listen to all the
generated musical pieces. However, it results much easier than assigning a fitness
value to each individual. While performing this stage, the user can save those
melodies considered as “good”. Moreover, there also exists the possibility to edit
and modify on-line the created melodies. This way, the user can interactively
transform some parts or aspects of the musical pieces.
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3.3 Crossover

The crossover operators aims to define new melodies using chromosomes from
two or more parents with a crossover probability. In this way, a child melody
is constructed by copying segments of chromosomes from their parent melodies.
We have implemented three different types of crossover operators:

– Type A: Two new melodies are created from two parents. For each of the
two selected 8-bar musical works, we determine two crossing points (one in
each parent), and all the bars for the two child individuals are generated by
exchanging the corresponding chromosomes of both parents.

– Type B: In this case, two new melodies are also created from two parents.
However, several (in general, more than two) crossing positions are selected
at different places in the parent melodies, and the two children are formed
by the alternate selection of chromosomes from both parents.

– Type C: This is a generalization of crossover type B that is extended to a
large number N (N > 2) of parents. As a result, N child melodies are created
by selecting several crossing points in the parents and, in a similar way, we
alternate the selection of parent chromosomes to build the N children.

It is important to remark that when using all types of crossover operators, the
new resulting melodies are automatically repaired to preserve their correspond-
ing tonality.

3.4 Mutation

It is possible to apply different types of mutation operators to the chromosomes
of the individuals. We have implemented the following ones: (a) rotation of the
notes in a segment (sequence of notes) of a melody, (b) melodic inversion of a
segment and (c) the variation of a note (in its length and/or pitch). A given
melody can mutate its chromosomes according to one of these three possibilities
with a given mutation probability.

3.5 Improvement

This is one of the most interesting contributions of our Interactive GA. In the
improvement stage, it is possible to use different heuristics to model the expert’s
musical knowledge domain with the aim to create musical works that are correct
respect to musical theory and also pleasant to be listened. As an example of
these improvements, we correct the large pitch jumps between notes of different
bars to reduce these differences to less than one octave.

3.6 Invasion

This operator also generates new melodies by a similar procedure of the initial-
ization stage. These new created individuals are added to the actual population.
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The aim of this operation is to prevent the loss of diversity and also to avoid a
premature convergence of the proposed Interactive GA after a small number of
iterations.

4 Experimental Results

Due to the subjectivity of each particular human user when composing musical
pieces with Spieldose, it is not very appropriate to show quantitative results
in this work. A way to demonstrate the validity of our proposal, is creating a
repository of musical pieces generated by Spieldose. This can be found in WAV
format at the following URL: http://gavab.escet.urjc.es/recursos.html.
All the pieces correspond to the classicism musical style. These 8-bar melodies
have been produced by applying the different crossover and mutation operators
considered by our Interactive GA. Spieldose source code in Matlab and the
application tool can also be downloaded from the previous URL.

5 Conclusion and Future Work

This paper has presented a software tool called Spieldose for assisting the human
user in the automatic music composition task. Our approach is based on the
paradigm of Interactive GA where the parent selection stage is directly performed
by the user. The application permits to integrate the interaction between the
system and users when they compose their own musical pieces. This principle is
useful both for experts in Music Theory and also for musically unskilled people.
The aim when developing this software was also to show the natural integration
of automatic music composition tasks into The GA. One main contribution is
the proposal of new genetic operators (in special, different types of crossover,
mutation and improvement operators) in the music context, to guarantee that
composed melodies respect the principles of Music Theory and they are also
pleasant to listening. This software can be customized to a particular musical
style by including in it the specific musical knowledge domain. In particular, in
order to validate our approach, we have used Spieldose to create different 8-bar
pieces emulating the classicism style. The developed GUI of Spieldose offers to an
unskilled music user the appropriate functionality for the compositional tasks.
It also enables an immediate equivalence between the textual and audio formats
of the musical work being composed.

As future work, we propose two types of improvements for Spieldose: those
referred to the Interactive GA itself, and those related to the application inter-
face. With respect to the first type, we intend to develop a system of modular
GA components which enable the user to configure his/her own Interactive GA.
As an example of this feature, new types of fitness functions could be included
for both unskilled and expert users in the musical field. These functions would
provide different weighted fitness criteria combining the user subjectivity and
the objective musical quality for melody being composed. With respect to the
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application GUI, we plan to embed into the tool a musical editor which would
display in musical notation a composed piece.
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Gil-Jiménez, P. II-222, II-251
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II-580, II-608

Madrid-Sánchez, Jaisiel I-272
Mahloul, Abid I-518
Maldonado-Bascón, S. II-222, II-251
Manrique, Daniel I-193, I-437
Maravall, Daŕıo II-337
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Mart́ın H., José Antonio I-41, II-337
Mart́ınez, Francisco I-447
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Pérez, Gabriela I-617
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Pérez-Lorenzo, J.M. II-409
Peng, Lizhi I-214
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