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Abstract. The availability of ground-truth flow field is crucial for quan-
titative evaluation of any optical flow computation method. The fidelity
of test data is also important when artificially generated. Therefore, we
generated an artificial flow field together with an artificial image sequence
based on real-world sample image. The presented framework benefits of
a two-layered approach in which user-selected foreground was locally
moved and inserted into an artificially generated background. The back-
ground is visually similar to input sample image while the foreground
is extracted from original and so is the same. The framework is capable
of generating 2D and 3D image sequences of arbitrary length. Several
examples of the version tuned to simulate real fluorescent microscope
images are presented. We also provide a brief discussion.

1 Introduction

There is hardly any new method being used in image analysis that hadn’t been
tested thoroughly beforehand. The situation is not different in the field of optical
flow computing methods. The optical flow is, according to Horn and Schunck [IJ,
the distribution of apparent velocities of movement of brightness patterns in an
image. In other words, the outcome of an optical flow method is a flow field in
which a velocity vector is assigned to every voxel in the image. The vector repre-
sents movement of a given voxel. Thus, this is often used for representation of a
movement in the sequence of images [2]. In particular, optical flow methods are
used for analysis of such time-lapse image sequences acquired from fluorescence
optical microscope [3, [4].

The most common approach to the validation of a method for computing opti-
cal flow is to compare its result to some certain flow field [5], which is commonly
termed as ground-truth flow field. Unfortunately, we don’t have the ground-truth
information at hand when testing some method on real data. Therefore, the au-
tomatic generation of pseudo-real high-fidelity data together with correct flow
field is very useful. Not only it can produce vast amount of unbiased data, it also
may speed up the tuning of an existing or newly developed optical flow compu-
tation method by allowing for its immediate evaluation over close-to-real data.
This may lead to a real improvement of the investigated method’s precision.
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We propose a framework in this paper that allows for the evaluation of optical
flow computing methods. The primary aim is to create a pair of new grayscale
images similar to the given real-world image (e.g. Fig. BA) together with ap-
propriate flow field. The framework should be flexible: it should handle global
cell motion together with independent local motions of selected intracellular
structures which is a phenomenon often observed in the field of fluorescence mi-
croscopy. It should be accurate: the created images should perfectly resemble the
real-world images as well as created flow field should describe the movements
that are displayed in the image data. Since we considered 3D image as a stack
of 2D images, we didn’t have to utilize any 3D-to-2D projection — the flow field
remained three-dimensional in this case. Hence, we referred to such a 2D or
3D flow field as to a ground-truth flow field. Last but not least, the framework
should be fast and simple to use too.

The next section describes our proposed framework. It also gives the motiva-
tion to the adopted solution by means of very decent overview of some possible
approaches. The third section will describe its behaviour and present few sample
images coming out of the system tuned to fluorescence optical microscopy. The
paper is concluded in the last section.

2 The Framework

Basically, there are just two possible approaches to obtain image sequences with
ground-truth flow fields. One may inspect the real data and manually determine
the flow field. Despite the bias [6] and possible errors, this usually leads to a te-
dious work, especially, when inspecting 3D image sequences. The other way is
to generate sequences of artificial images from scratch by exploiting some prior
knowledge of a generated scene. This is most often accomplished by taking 2D
snapshots of a changing 3D scene [7},[5, [§]. The prior knowledge is encoded in mod-
els which control everything from the shape of objects, movements, generation of
textures, noise simulation, etc. [9 [I0]. This may involve a determination of many
parameters as well as proper understanding of the modeled system. Once the two
consecutive images are created, the information about movement between these
two can be extracted from the underlying model and represented in the flow field.

We have adopted, in fact, the latter approach. Every created artificial im-
age consisted of two layers. The bottom background layer contained an artificial
background generated by the algorithm that will be described later. The back-
ground area was given by a mask image M. The parameters of the algorithm
were determined online from a real-world image which we will refer to as the
sample input image I. The foreground layer contained exact copies of regions of
the sample input image. The foreground regions were defined by a mask image
m. All images had to be of the same size. We denote the value of voxel intensity
in image I at position x as I(x). Similarly, the flow field FF holds a vector FF(x)
at each position x.

The background was subject to a global movement while the foreground was
subject to global and independent local movements. The ground-truth flow field
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was a composition of these. Since both background and foreground were given
only by mask images, we accomplished the movements using the backward trans-
formation technique [I1]. Let us write O = BackT(I, FF) and say that the image
O is the image I transformed according to the flow field FF. Basically, the back-
ward technique translates I(x + FF(x)) to O(x) for every x — voxel values move
“against” the flow field. There exists a forward transformation technique too,
refer to [I1] for more detailed explanation. Figures [l and Pl show the major pit-
falls of both techniques. The artifacts occur when the flow field is not smooth
enough. Unfortunately, that was the case owing to the local independent move-
ments. Hence, we developed the following framework in order to avoid that. We
use the notation O = Copy(I, m) to state that only a regions given by mask m
are copied from I, the rest of O remains untouched.

Fig. 1. The backward transformation. Left section: The grid represents voxels and their
boundaries. The position of coordinate of voxel A is illustrated by dashed lines. The
transformation moves value from vector’s end to its beginning. In the case of real-
valued vector (as is the one originating from voxel B), the moved value is the weighted
sum of the nearest voxels’ values with weights given by the portion of the gray area
(values of voxels F, G, H and I). More vectors from distant places (as demonstrated
with vectors originating from C and D) may fetch almost the same value when the
flow is not smooth enough. This drawback results in the “copy” effect. Middle section:
An example of input image with non-smooth flow field. Right section: A result of the
backward transformation with the “copy” effect.

The framework’s input was a sample input image I, the background mask M
and the foreground mask m. The output would consist of images I, Isng and
ground-truth flow field gtFF between @4, Ionq which denoted the first and the
second image in the created sequence, respectively. It would hold: if Vx: gt FF(x)
is an integer valued vector then Vx: I (x) = Iona(x + gtFF(x)).

The preliminary step of the algorithm was to prepare a pool R of voxel inten-
sities. Only voxels x satisfying M(x) > 0 and m(x) = 0 (exactly the background
voxels) were copied into the pool. The mean value p was computed within R
since we observed that histogram of the background voxels resembled Gaussian-
shaped distribution (Fig.[BB). Because of that, voxels with intensities ¢ for which
i & (u— o, + ko) were removed from the pool. We chose ¢ = 11 and k = 3/2
to fit the histogram better. This interval is shown as the white strip in Fig. BB.
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Fig. 2. The forward transformation. Left section: The grid represents voxels and their
boundaries. The position of coordinate of voxel A is illustrated by dashed lines. The
transformation moves value from vector’s beginning to its end. In the case of real-
valued vectors (as are those originating from voxels F, G, H and I), the value for
particular voxel must be searched for in the close vicinity (illustrated by gray region
around voxel B). The value is then weighted with weights being the distance of the
nearest vectors’ ends in each quadrant of the marked area. More vectors from distant
places (as demonstrated with vectors originating from D and E) may end up in almost
the same location when the flow is not smooth enough. This drawback results in the
“averaging” effect. Middle section: An example of input image with non-smooth flow
field. Right section: A result of the forward transformation with the “averaging” effect.

Fig. 3. Example of an image formation. A) The input image I of fluorescently marked
HP1 proteins in the HL60 cell. B) The intensity histogram of the input image at the
bottom, binary image above displays voxels with intensities in the white strip of the
histogram. C) Outcome of the rand(R) generator. D) fI from (). E) Isnq from (@). F)
The weights of the extended foreground mask,brighter intensity shows higher weights,
see section Bl G) Izng from (B). H) The map of intensity differences between I and
I2n4, the maximal brightness shows the value of 30. All images were enhanced for the
purpose of displaying.
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An artificial background was generated in two steps. First, the foreground was
replaced by interpolated values. For each x = (z,y, z), m(x) > 0 find x; and
such that

/

1 =max (¢’ <z and X' = (2/,y, z) and m(x’)

0), (1)
0) (2)

and set V, = I(x1,y, 2) and V,, = I(z2,y, 2). If there were no such x;, which
happens exceptionally only when a mask touches the image border, then set
Ve, = p and x1 to the leftmost coordinate in I. The zo was treated in the
similar fashion. The value for I(x), proportionally along z-axis, was

xo = min (2’ >z and X’ = (2, y, 2) and m(x’)

Tr — T

Va::(vwz_vwl)'l +1

+ Vi, (3)

with [ +1 = 2 — ;. The V,, and V. values were obtained in the similar fashion.
The replacing of foreground was finished by assigning (Fig. BD):

lylzVa+lal:Vy+laly Ve

Vx: ﬂ(X) = { lylzFlalz4laly if m(x) >0

(4)

I(x) otherwise .

Second, the new artificial background was generated. The fI image was con-
volved with separable averaging kernel. We used the filter é(l7 1,1,1,1,1,1,1,1)
for each axis. The new background image was then computed as

Vx: Iopa(x) = rand(R) + (fI(x) — p) (5)

where rand() is a generator of random numbers obeying uniform distribution.
The effect of this term in (B) was to uniformly choose intensity values from
the pool R. This ensured the generated background to share similar statistics,
including intensity fluctuations and noise. The last term in (B]) enabled to display
intracellular structures in the background, e.g. nucleolus as in Fig. BE. Finally,
the image was Gaussian blurred with sigma set to 0.7px.

To finish the output image Is,q, the foreground was overlaid over the artificial
background:

I5ng = Copy(I,m) . (6)

The ground-truth flow field for global movement of the whole image was cre-
ated into gtFF. We utilized an arbitrary rotation around arbitrary centre to-
gether with arbitrary translation. The flow field was created regardless of masks
m and M. In fact, any flow field could have been used provided it is reasonably
smooth. The images were transformed:

I' = BackT(I, gtFF), (7)
M = BackT(M, gtFF), (8)
m = BackT(m, gtFF) . 9)



Pseudo-real Image Sequence Generator for Optical Flow Computations 981

We repeated the process of artificial background generation in the new position
with I’ instead of I. The result was stored into I;. Note that we used the same
intensity pool R.

A random translational vector, say v;, was assigned to each component ¢ of
the mask m. For each i, we created flow field FF; and mask image m;

Vx: FF,;(x) = v, (10)

Vx: m,(x) = {

1 if x belongs to component i
. (11)
0 otherwise .

Note that FF; is uniformly filled what guarantees a smooth flow field. Inde-
pendent local movements are embedded into gtFF by computing the following
equations:

Vx: gFF(x) = gtFF(x), (12)
Vi: m/, = BackT(m;, FF;), (13)
Vi I, = BackT(I', FF;), (14)
Vi:  gtFF = Copy(BackT(gFF,FF,;), m}), (15)
Vi FF, = Copy(0,1 — m)), (16)
Vx:Vi: gtFF(x) = gtFF(x) + FF;(x) (17)

with the following interpretations: backup gtFF (I2), translate the patch corre-
sponding to each component in gtFF (3] together with its mask (3] according
to its flow field, zero the component’s flow field outside of its moved mask (I6)
and add the result to the gt FF (7). Equations (I&]) to (I7), in fact, concatenate
global and local flow fields since the movement of the foreground consisted of
global ([@) and then local (I3) movement. The image of each component was
separately moved according to its flow field ([I4)). Moving the entire image I" ac-
cording to the final gtFF would produce image corrupted by the “copy” effect
of non-smooth flow field.
Finally, the output image I 4 was computed:

Vi: I, = Copy (I}, m}) . (18)

The Copy/() operation just overlaid the moved foreground regions over the arti-
ficially generated background. Optionally, the ground-truth flow field could be
trimmed:

gtFF = Copy(0,1 — M) . (19)

The presented framework also allows for generation of an arbitrary long time-
lapse image sequence. Due to the property of the backward transformation tech-
nique, the generation proceeds from the last image I,y of the sequence, given
some n > 2, towards the first image I 4. Clearly, the last image is the artificial
substitute for the sample input image and so I can be used as a sample without
any modification. For the other images in the generated sequence, I must be
transformed to the actual position. Instead of iteratively moving the image, we
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suggest to hold the flow fields that prescribe the transformations required to get I
to the demanded position. Two flow fields should be enough. Let gtFF, ;, i < j
denote the flow between images I;n and Ij,. For the purpose of consecutive
generation of Iy, K =mn—2...1, compute

vx: gtFF, , (x) = gtFF, ;. (x) + BackT(gtFF,, ,,, gtFF; ;. 1)(x), (20)
vx: glFF, , (x) =glFF, ;. (x) + BackT(glFF, ., ,,,glFF; ;. ., )(x)  (21)

where glFF, , ., is the flow field corresponding to just the global component of
gtFF, ;.. Then, repeat the second part of the proposed framework from (@),
as if I should be created, with the following exceptions: for the background
generation use glFF, , in (@) while for the foreground movements prepare r
with gtFF, ,, in () and set gtFF = gtFF, , ;. Also start the background
generation from its second step with the convolution of fI.

3 Results and Discussion

We implemented and tested presented framework in variants utilizing both back-
ward and forward transformations. The framework was designed to transform
images only according to the smooth flow fields. This and the definition of both
transformations justify the ground-truth property of the created flow field.

Table 1. Comparisons of images I and Isna. The column heading “Ext.” shows the
number of dilations performed on the foreground mask m. The mask controlled the
foreground extraction as well as its plain overlaying! or weighted merging? (explained
in section B]). A) and B) Comparisons over two 2D images. C) Comparison over a 3D
image. D) Comparison over the same 3D image, separate pools of voxel intensities were
used for each 2D slice during the formation of the artificial background.

Ext. Corr.! Avg. diff.! RMS? Corr.2  Avg. diff.2 RMS?

A 0 0.989 3.87 5.13 0.989 3.87 5.12
1 0.989 3.80 5.03 0.989 3.85 5.05
2 0.989 3.73 4.94 0.989 3.82 5.00
3 0.989 3.68 4.90 0.989 3.83 4.98
B 0 0.992 2.76 3.83 0.992 2.77 3.85
1 0.992 2.62 3.69 0.992 2.74 3.75
2 0.993 2.41 3.46 0.992 2.62 3.58
3 0.993 2.33 3.40 0.992 2.64 3.57
c 0 0.980 3.67 4.79 0.980 3.67 4.79
1 0.980 3.73 4.89 0.980 3.81 4.92
2 0.981 3.53 4.69 0.981 3.70 4.77
3 0.981 3.42 4.59 0.981 3.66 4.72
D 0 0.982 3.15 4.16 0.982 3.16 4.17
1 0.983 3.07 4.08 0.982 3.13 4.11
2 0.983 3.00 4.03 0.983 3.11 4.08
3 0.984 2.92 3.96 0.983 3.10 4.05
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The masks were generated by thresholding of sample input image with manu-
ally chosen threshold. The thresholded output was considered as a starting point
for advanced segmentation method [I2] which produced final cell and foreground
masks. The generator was tested on several different 2D real-world images and
one such 3D image.

Fig. 4. Examples of generated pseudo-real 2D images. The I, the Is,q and the sample
input image I are shown in rows A), B) and C), respectively. Notice the similarity
between rows B) and C) in columns 1), 2) and 3). Images A4) and C4) should be similar
too. Foreground objects (the white spots) in each cell were subject to additional local
movements. 1) An example of the cell rotated 9 degrees clock-wise around its edge.
2) An example of another cell rotated 9 degrees clock-wise around its centre. 3) An
example of a similar cell with more foreground objects and with no global motion. 4)
The same as 3) but the generator based on the forward transformation was used. All
images were enhanced for the purpose of displaying.

All generated images were inspected. Since every generated image arose from
some supplied sample image I, we could compare I and Is,q. For each pair, we
computed the correlation coefficient (Corr.), average absolute difference (Avg.
diff.) and root mean squared difference (RMS). The results are summarized in
Table [l The generator achieved minimal value of 0.98 for correlation, see Fig.
BH. This quantitatively supports our observations that generated images were
very similar to their originals. A few 2D examples are shown in Fig. @l Decent
improvement was observed when artificial background of 3D images was formed
in a slice-per-slice manner what is also acknowledged in Table [l
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The image ;4 could not be evaluated quantitatively for the obvious reason.
Nevertheless, the ratio would be definitely worse since all moved images are
blurred a little. This is a feature of both backward and forward transforma-
tions when processing flow fields containing vectors with non-integer elements.
In order to make both output images appear the same, we suggest to let Isng
image perform the translation along vector (0.5,0.5,0.5) and modify the gtFF
correspondingly.

Inappropriately created foreground mask may emphasize the borders of ex-
tracted foreground when inserted into artificial background. We replaced the
Copy() operation in egs. (@) and ([I8) by the following sequence of operations:
extend the foreground mask by several dilations (the “Ext.” column in Table[]),
compute the distance transform (we used [13]) on the mask and threshold it (see
Fig.BF), insert the foreground according to the weights (for details refer to [14]).
We generally observed visually better results with this modification. According
to Table [Tl just 2 dilations achieved qualitatively better results in comparison
to overlaying of foreground driven by unmodified input mask m.

We also tried the local movements mask which permitted the foreground to
translate only inside this mask. This should prevent the structures from moving
into the regions where there were not supposed to be, i.e. outside the cell. The
masks are simple to create, for example by extending the foreground mask into
demanded directions. The generated images became even more real.

We argue against further iterations of the framework to get Ir¢n from Igy1)en.
When proceeding towards smaller k, transforming images iteratively leads to
worse quality images because of the smoothing effect (Fig.HA) of both transfor-
mations. Our suggested solution guarantees not more than two transformations
of sample input image when creating Iy, for arbitrary k € (1,n — 1).

We implemented the algorithm in C++. We confirm that forward variant is
up to two orders of magnitude slower than backward variant for 2D images. This
is mainly because of greater complexity of forward transformation in contrast to
backward transformation.

4 Conclusion

We have proposed a framework for generating time-lapse pseudo-real image data.
It allows for automatic synthesis of unbiased sequences of 2D and 3D images.
By suppling real-world sample image we could force images in the sequence to
look more realistic. The background mask of the cell and the foreground mask of
selected intracellular structures were supplied too. This gave us a layered control
over the regions where global and local movements should occur. The aim was to
automatically generate a vast amount of data together with corresponding flow
field, that we called ground-truth, in order to evaluate methods for foreground
tracking as the next step. The methodology was targeted at fluorescence optical
microscopy.

We have tested the framework mainly in 2D. From Table [[l we may conclude
that it generated images very similar to the sample image. The foreground was a
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copy from the sample image which implicitly assured its quality. The background
voxels posed the same statistics since they were generated to do so. Theoretically,
the presented framework has ambitions to work reliably on arbitrary data com-
prising of unimodal background distribution. The framework is also less sensitive
to errors in the foreground segmentation. This is due to the seamless overlaying
of the foreground. We also made use of local movements mask which gave us
ultimate control over the foreground movements.
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