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Abstract. Support vector clustering (SVC) has proven an efficient al-
gorithm for clustering of noisy and high-dimensional data sets, with ap-
plications within many fields of research. An inherent problem, however,
has been setting the parameters of the SVC algorithm. Using the recent
emergence of a method for calculating the entire regularization path of
the support vector domain description, we propose a fast method for ro-
bust pseudo-hierarchical support vector clustering (HSVC). The method
is demonstrated to work well on generated data, as well as for detecting
ischemic segments from multidimensional myocardial perfusion magnetic
resonance imaging data, giving robust results while drastically reducing
the need for parameter estimation.

1 Introduction

Support Vector Clustering (SVC) was introduced by Ben-Hur et al. [1]. SVC uses
the one-class Support Vector Domain Description (SVDD) as the basis of the
clustering algorithm. SVDD was introduced by Tax and Duin [2] in 1999, and it
is often calculated with a Gaussian kernel replacing the Euclidian inner product.
The SVDD description maps the points into a high dimensional feature space
dividing inliers from outliers, where the decision boundary consists of contours
enclosing clusters of the data points.

The clustering is done with no assumption on the number of clusters or the
shape of the clusters. Ben-Hur et. al. proposed to vary the parameters of the
SVDD in a manner that increases the number of clusters while keeping the
number of outliers and bounded support vectors (BSV) low. Strictly hierarchical
support vector clustering was presented by Ben-Hur in [3]. This algorithm applies
SVC subsequently on subsets of the data contained in clusters, and thus achieves
a hierarchy of clusters. The clustering, however, depends on the initial steps of
the division process.

Yang et al. have proposed improvements to the cluster labelling using prox-
imity graph modelling [4], similar to that of the presented method.

Recently Sjöstrand and Larsen showed that the entire regularization path of
the SVDD can be calculated efficiently [5]. This result is the backbone of the
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presented method, and allows for a robust pseudo-hierarchical support vector
clustering (HSVC). Given a scale parameter of the Gaussian kernel, a clustering
can be estimated efficiently for all values of the regularization parameter. From
this ensemble of clusterings a more robust clustering estimate is calculated. To
validate the method, the clustering was tested on both artificially generated
data, and a real work example of a high dimensional clustering problem.

2 Methods

As other SVC algorithms the basis of the current algorithm is the one-class
support vector classification. The recently emerged method for an efficient cal-
culation of the entire regularization path of the SSVD is described briefly for
completeness. It is shown that between events the discrimination function varies
monotonically, and it is concluded that the description is complete.

2.1 Support Vector Domain Description

The support vector domain description was presented by Tax and Duin[2], pos-
ing it as a quadratic optimization problem for a fixed value of the regularization
parameter. The criterion to be maximized, given a point set xi, can be formu-
lated as

min
R2, a, ξi

∑

i

ξi + λR2 , Subject to

(xi − a)(xi − a)T ≤ R2 + ξi and ξi ≥ 0 ∀ i,

where the general idea is to find the minimal sphere that encapsulates the points,
allowing some points to be outside the sphere. The regularization parameter λ
penalizes the radius R2 and for large values of λ the radius will tend to be smaller
and vice versa. Some points, the outliers, are allowed to be outside the sphere,
and the number of outliers is governed by the regularization parameter λ.

Using Lagrange multipliers this optimization problem can be restated as

max
αi

∑

i

αixixT
i − 1

λ

∑

i

∑

j

αiαjxixT
j ,

0 ≤ αi ≤ 1,
∑

i

αi = λ, (1)

where αi are the Lagrange mulitpliers and as a consequence of the Karush-
Kuhn-Tucker complimentary conditions is that for inliers αi = 0 and for outliers
αi = 1. The dimensionality can be increased using a basis expansion and substi-
tuting the dot-product with an inner product, the inner products can be replaced
by Ki,j = K(xi,xj), where K is some suitable kernel function. In the presented
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work the Gaussian kernel K(xi,xj) = e−
‖xi−xj‖2

γ was used as a kernel function.
The optimization problem is then given by

max
αi

∑

i

αiKi,i − 1
λ

∑

o

∑

j

αiαjKi,j

0 ≤ αi ≤ 1,
∑

i

αi = λ. (2)

For a given λ the squared distance from the center of the sphere to a point x is

f(x; λ) = ‖h(x) − a‖2 = K(x,x)

− 2
λ

∑

i

αiK(x,xi) +
1
λ2

∑

i

∑

j

αiαjKi,j (3)

The entire regularization path of the SVDD. Sjöstrand and Larsen have
shown that the entire regularization path of the parameter λ can be calculated
with approximately the same complexity as required for solving the initial opti-
mization problem, posed by Tax and Duin [5]. This is because the regularization
path of the parameters αi is piecewise linear. This can be realized by examining
the distance functions of two points on the boundary.

f(xh; λ) = f(xk; λ), h, k ∈ B (4)

where B is the set of points on the boundary. Formulating this equation for
different points on the boundary and using the constraint of the sum of αi gives
a complete set of equations for estimating all the αi. Let α be a vector with the
values αi and let p and q be the slope and intersection respectively, then (refer
to [5] for a detailed derivation)

α = λp + q, (5)

where p and q are constant on intervals [λl; λl+1[, which are defined as intervals
between events where a point either leaves or joins the boundary. The division
in inliers and outliers is illustrated in Figure 1.

2.2 Support Vector Clustering

The SVDD yields an explicit expression for the distance given by Eq. (3). Now
R can be calculated by

R = f(xk; λ) = Kk,k − 2
λ

∑

i

αiKk,i +
1
λ2

∑

i

∑

j

αiαjKi,j.

Consider an arbitrary point x, and define the distance function g(x, λ), as the
distance to the boundary.

g(x, λ) = f(x, λ) − R . (6)
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(d) λ = 55.0

Fig. 1. SVDD calculated for the entire regularization path. The line marks the bound-
ary between inliers and outliers, the generalized circle.

The function g is the decision criteria determining if a point is an inlier or an
outlier. In Figure 1 the discriminating function g is calculated to create the
contour dividing inliers from outliers. Though the optimization problem is to
find a circle in the space of the expanded basis, the result appears very little like
a circle in the input-space, which in this case has two dimensions. The different
enclosed areas could be considered as clusters, denoted support vector clusters.

Assigning clusters. While evaluating g(x, λ) reveals if x is an inlier or out-
lier, it does not contain any specific information on the assignment of clusters.
Inspired from Figure 1 it is observed that all paths connecting two points in two
different clusters have some points outside the clusters. The current implemen-
tation uses an adjacency matrix to determine which points are connected, and
which are not. The connection graph is sparsely built, similar to the approach
chosen by Yang et. al. [4].

Aij =
{

1 , if g(xi + μ(xj − xi)) < 0 ∀ μ ∈ [0; 1]
0 , else

}
, (7)

Connected clusters are detected from the adjacency matrix by using standard
graph theory concepts. Outliers are by definition not adjacent to any points, but
are assigned to the closest detected cluster.
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2.3 Regularized SVC Based on the Entire Regularization Path

Given a λ the clustering can be determined from the adjacency matrix (7), but
λ on the interval [0;n] gives rise to changes in the distance function, and thus
potentially the clustering. In Section 2.3 it is shown that the distance function
(3) is monotonic in the interval [λl; λl+1[ between two events, which means that
an almost complete description is obtained by detecting the clusters in the points
of the events.

Completeness of the hierarchical description. To ensure that the complete
description of the clustering path has been obtained, the distance function is
analyzed as a function of the regularization parameter λ.

g(x, λ) = f(x, λ) − R = f(x, λ) − f(xk, λ) , k ∈ B,

= K(x, x) − Kk,k − 2
λ

∑

i

αi(K(x, xi) − Kk,i). (8)

Equation (5) states the linear relation between α and λ is given by α = λp + q.
Let each Lagrange multiplier be given by αi = λpi + qi, and the derivative δg

δλ
can be calculated as

δg

δλ
=

δ

δλ

[
−2

∑

i

(pi +
qi

λ
)(K(x, xi) − Kk,i)

]

=
2
λ2

∑

i

qi(K(x, xi) − Kk,i), λ ∈]λl; λl+1[ . (9)

The only dependence on λ in Eq. (9) is on a (inverse squared) multiplicative
term. From this, it is concluded that g(x, λ) can only change sign once on the
interval [λl; λl+1], so all changes in the clustering are observed in the clustering
calculated at every event.

2.4 Pseudo-hierarchical Support Vector Clustering

The calculated clusters are often only changing slowly with changes in the regu-
larization parameter λ. When an event consists of a point leaving the boundary
to become an outlier, this does not necessarily alter the boundary much else-
where. Since the point is still close to the same cluster, and may be associated
with this, still, many clusters are close to identical. The similarity can be ob-
served in Figure 1. Moreover, the same clusters may appear again for a different
value of the regularization parameter.

The idea presented in this paper, is to collect all the similar clusterings, and
build a hierarchy of clusters, which can be thought of as being composed of other,
and obviously bigger, clusters. The toy example illustrated in Figure 1 only has a
few clusterings that are actually different, and there is a strong relation between
the different clusterings of the data, which is illustrated in Figure 2.

There is, however, no guarantee that different clusters, calculated for different
values of the regularization parameter, are nested in a strict hierarchical way. In
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Fig. 2. Hierarchical clustering: From coarse to detailed description

Fig. 3. Competing hierarchical clusterings, obtained from the entire regularization path
of the SVDD. The lines show how a cluster is split into smaller clusters. The light gray
pixels are the ones not included to describe the subclustering of the cluster. The gray
and colored points form together the whole reference data set illustrated in Figure 1.

fact multiple different hierarchical clustering may be proposed. This is illustrated
in Figure 3. Each branch of these different cluster representations demonstrate
two or more ways, the cluster could be split in smaller clusters. For each cluster,
it is known for which intervals of the regularization parameter, the cluster is
present. Also it is possible to record if the points forming the cluster are inliers
or outliers.
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Fig. 4. Clustering of the reference data set by HSVC using the cluster discrimination
feature, based on a generalized within covariance matrix

Quality measure of competing clusterings. The analysis described in the
previous sections results in a number of competing cluster representations of
the data. This analysis, however, does not directly indicate which clustering is
the preferred one. We propose a scheme similar to using the ’within’ and the
’between’ covariance matrices, trace(S−1

W SB). Instead of SW we argue that a
weighted within matrix S∗

W should be calculated, weighted by the length of the
interval where a given point is an inlier, or an outlier associated with the cluster.

S∗
W =

nclusters∑

j=1

∑

i∈Cj

1
Πj

(xi − μi)T Λj,i(xi − μi) , (10)

where Λj defines the weighting of the point, which depends linearly on the length
of the interval of λ where the point is an inlier and where it is an outlier. Πj is
a normalization constant. A potential clustering can now be assessed using the
measure trace(S∗

W
−1SB), which evaluates the variance within clusters, compared

to the introduced distance between clusters. In Figure 4 this is done for the
same generated data that was used in Figures 1 and 2. The reference data is
actually generated from three random independent distributions, generated as
mixtures of Gaussian and uniform distributions. The three different sets are
marked by the symbols ’+’, ’o’ and ’♦’ respectively. It can be observed that the
clusters ’o’ and ’♦’ overlap to some extent, whereas ’+’ seems more separated
from the other groups, and is split in two parts. In Figure 1 small values of
λ, corresponding to a high confidence in the data, results in a separation of
the two parts of the ’+’ cluster, whereas the other groups are merged into one
cluster. This is opposite for high values of the regularization parameter, where
the smaller clusters only appear to be outliers, but the two overlapping clusters
are divided. The discrimination feature removes the need to select one value of λ,
and appears to adapt to clusters of different variance. The criterion for accepting
a subclustering is introduced as a threshold on the cluster separation, given by
trace(S∗

W
−1SB). The lower the threshold, the more clusters are accepted.
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2.5 Complexity

The complexity of the algorithm is vastly reduced by calculating the entire regu-
larization path of the SVDD in an efficient sequential way, as described. The com-
plexity for the referenced algorithm is O(n2) for each step between two events. For
each event, the clusters are detected from the adjacency matrix, which can also be
calculated with a complexity of the order of O(n2). Comparing with other clusters
is done with complexity O(n · nclusters). Since the number of events is typically
in the vicinity of 3-5 n the overall complexity is polynomial with a degree around
3. On the tested example, with about 500 points in 50 dimensions the algorithm
took minutes.

3 Example Application: Detection of Ischemic Segments

To test the capability of the presented clustering algorithm, it has been applied to
detect ischemic segments from perfusion MR images. In Figure 5 selected frames
from a registered sequence of perfusion MR images of the myocardium are shown.
The segmentation was performed previously, with satisfying results [6]. Inten-
sity curves can be obtained pixel-wise from the intensity images, because of the
pixel-wise correspondence. Previously ischemic segments have usually been de-
tected using the measures time-to-peak, maximum-upslope and peak value [7]. In
a previous study we showed that a generalized version of the distances obtained
in the SVDD description corresponded well to the usual measures [8]. In Fig-
ure 6(a) the measures are illustrated. The developed HSVC method was applied
on the data, which consisted of little less than 500 pixels, and 50 time steps were
available for the intensity curve. HSVC divided data in a very few clusters, and
in Figure6(b) the curves belonging to each cluster is colored in distinct colors.

Frame 1 Frame 16 Frame 31 Frame 46

Fig. 5. Different registered frames of one of the slices of the perfusion MR images

The perfusion measures were calculated previously, and they are illustrated
in Figure 7(a-c).

The correspondence between the areas is good, and the clustering is seen to
provide a very good base for a simple cluster classification. All noise is suppressed
by the HSVC, so the cluster covers a connected region in the image. It is worth
noting that the only parameter which has been changed in this example instead
of the previous example is the width of the Gaussian kernel. So using the sta-
tistical term trace(S∗

W
−1SB) as cluster separation measure helps to reduce the

dimensionality of the estimation problem.
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(b) Intensity plots.

Fig. 6. Pixel-wise intensity plots. (a) Idealized plot, describing the perfusion parame-
ters (b) Intensity curves for the 3 detected clusters, colors correspond to clusters.
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Fig. 7. Ischemic segment detection with standard measures compared to clustering

4 Conclusion

The proposed robust pseudo-hierarchical support vector clustering (HSVC) is
demonstrated to give good results on both a random data set and in real ap-
plication, and this with the same parameters though the two data sets are very
different in range, n and dimensionality.

The proposed clustering algorithm has only one parameter, which is the
threshold for splitting clusters, and this parameter correlates strongly with the
number of clusters (and their quality in terms of separation). We therefore be-
lieve that HSVC can be a very useful tool in many applications where it is
possible to define a kernel.
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