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Abstract. This paper proposes a fast 3D reconstruction approach for efficiently
generating watertight 3D models from multiple short baseline views. Our method
is based on the combination of a GPU-based plane-sweep approach, to compute
individual dense depth maps and a subsequent robust volumetric depth map inte-
gration technique. Basically, the dense depth map values are transformed to a vol-
umetric grid, which are further embedded in a graph structure. The edge weights
of the graph are derived from the dense depth map values and if available, from
sparse 3D information. The final optimized surface is obtained as a min-cut/max-
flow solution of the weighted graph. We demonstrate the robustness and accuracy
of our proposed approach on several real world data sets.

Keywords: volumetric 3D reconstruction, graph-cut, dense depth maps, virtual
3D models.

1 Introduction

In our approach we consider the problem of creating virtual 3D models solely from a
set of digital input images, which is still a challenging problem in computer vision. The
principal reason for utilizing digital images as input source, is the independancy of the
3D reconstruction process from the size of the objects to be modeled.

Current state of the art approaches for multi-view reconstruction are divided in two
main categories: one pass (or directed) methods versus two pass (or indirect) methods.
Direct methods, recently proposed by Vogiatzis et al. [19] or Hornung and Kobbelt [9]
process all available input images from different viewpoints simultaneously. Their meth-
ods are based on finding a minimum cut in a graph structure, which is embedded in a
volumetric grid. One of the main benefits of these methods is that they generate wa-
tertight surfaces such that the final 3D model does not contain any disturbing holes.
Clearly, a drawback is that these approaches still rely on existing object silhouettes to
consider only voxels which are close to the visual hull. But, the extraction of visual hull
information, especially for complex environments, can be a tedious and time consum-
ing process. Therefore we introduce an indirect, two pass method which extracts in a
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first pass a set of dense depth maps, whereas the second pass enforces a robust integra-
tion of the depth maps to create proper and watertight 3D models. Thus, we are able
to provide intermediate results and can bring, if necessary, a human operator into the
reconstruction loop. Especially for large data sets, an user assisted visual evaluation of
intermediate results can be very helpful to detect errors at the earliest possible point in
the 3D reconstruction pipeline. Therefore, we try to combine the main benefits of both,
direct and indirect approaches. Consequently, the main contributions of our approach
are the following:

1. Our approach avoids the incorporation of visual hull information, because the ex-
traction of visual hull information is a tedious and time consuming process.

2. As a side effect of our indirect reconstruction process, we can easily bring a human
operator into the reconstruction loop for quality assessment.

3. The proposed method is able to reconstruct 3D models even from dense depth maps
containing outliers.

4. Due to the fact that our method utilizes global minimization techniques we can
guarantee a watertight and global optimized surface.

5. Our algorithm can deal with high volumetric resolutions as well as a large number
of input images.

2 Related Work

The automatic 3D reconstruction of complex objects is still an active research field
within the computer vision community. There are two major approaches to the problem
of 3D real world modeling: range-based modeling and image-based modeling. Range-
based modeling is based on laser scanners. A very well known approach in this field is
The Digital Michelangelo Project carried out by M. Levoy et.al. [15].

In this work we focus on image-based modeling, which represents the 3D reconstruc-
tion of real world objects from a dense set of photographs. A comparative evaluation
of image-based and range-based methods can be found in El-Hakim and Beraldin [5].
Image-based modeling techniques utilize in general widely available hardware and de-
veloped systems can be used for a wide range of different objects and scenes. Further-
more such algorithms produce realistic models with an increasing level of automation.

All range-based methods as well as most of the image-based modeling methods gen-
erate 2.5D heightfields. In order to generate true 3D models, a robust fusion of this
set of heightfields into a single 3D surface is necessary. The fundamentals of robust
depth image fusion in the context of laser scanned data was proposed by Curless and
Levoy [3]. The basic idea of volumetric range image integration is the conversion of
depth maps to corresponding 3D distance fields and a subsequent robust averaging of
these distance fields. The resolution and the accuracy of the final model are determined
by the quality of the source images and the resolution of the target volume. Recently,
Zach et. al. [23] introduced a fast GPU-based method, based on the original work of
Curless and Levoy [3]. Since this method is a pure local method, the final 3D model
can still contain many holes.

In contrast shape from silhouette methods try to overcome these restrictions. They
recover the shape of the objects from their contours, known as visual hull, and no depth
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map information is used. A practical system to generate 3D models from its profiles
was introduced by Wong and Cipolla [20]. This approach uses only the silhouettes of a
sculpture for both motion estimation and model reconstruction, and neither corner de-
tection nor matching is necessary. The method is robust and fast, but as drawback they
are limited to simple shaped objects. Therefore, recent developed methods combine the
visual hull information with a photo-consistency function, which is further embedded
in a graph structure. A general approach combining multi-camera stereo reconstruc-
tion with graph-cuts was presented by Kolmogorov et. al. [13]. A comparison of energy
functional types, which can be minimized using graph-cuts is given by Kolmogorov and
Zabih in [12]. Several applications of graph-cut based energy minimization for volumet-
ric reconstruction were presented in Vogiatzis et. al. [19] and Hornung and Kobbelt [9].
In these approaches, individual voxels correspond to nodes in the graph, used to deter-
mine the maximum flow. These techniques still rely on existing object silhouettes in
order to consider only voxels close to the visual hull. Additionally, visibility informa-
tion is mainly introduced from the visual hull to find occluded views for each voxel.

The inspiration for the method presented in this paper is given by a number of above
mentioned volumetric 3D reconstruction approaches and efficient energy minimization
techniques utilizing graph-cuts. More precisely, most of the above mentioned methods
have in common that it is in general difficult to generate watertight and global optimized
3D models from dense depth maps, which is the standard output of most image-based
modeling techniques. Furthermore, discussed methods either perform the 3D recon-
struction in two passes, but then can not guarantee a watertight and global optimized
surface, or in one pass, but then bypass the dense depth maps and extract the 3D model
directly. Consequently, there is still a need to combine the ideas and benefits of both
schema.

3 Dense Depth Map Estimation

Our work targets the reconstruction of objects from arbitrary image sequences taken
with a calibrated digital consumer camera. The process of camera calibration and pose
estimation, which are not the topics of this paper, are well studied problems in computer
vision and determine the internal and external parameters of a camera [8].

The set of images with known calibration and orientation is used to generate a 3D
model of the object in a fully automated manner. For dense depth map estimation a fast
reconstruction method suitable for small-baseline settings is applied for every view. Ba-
sically, we utilize a plane-sweep approach [21] to create the set of dense depth maps,
using up to 5 images simultaneously for matching (one key image in the middle and
one or two neighboring reference images on each side). For each depth value, the ref-
erence images are projected onto the key image plane, located at the given depth and
a correlation measure with respect to the key image is calculated. Occlusion handling
is addressed by the best half-sequence strategy. The set of slices filled with correlation
values comprise a data structure similar to the disparity space image. A final matching
algorithm (e.g. scanline optimization [17]) establishes the dense depth map from the
disparity space image. Depending on the resolution, plane-sweep matching requires 5.5
seconds for each reference image at an resolution of 1024x1024 pixels. More details of
our developed GPU-based plane-sweeping technique can be found in Zach et. al. [23].
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4 Graph-Cut Based Volumetric Depth Map Integration

In this section we give an overview of the basic ideas, datastructures and processing
steps of our approach. All different steps are discussed in more detail in the following
subsections. An overview is given in Figure 1.

Crust

Generation

Fig. 1. Overview of our graph-cut based volumetric depth map integration pipeline: First, dense
deph map values and if available sparse 3D information is transformed to a volumetric grid. Then,
we direct extract the surface confidence in the vicinity of the dense depth maps. Finally, a min-
cut/max-flow algorithm is performed to determine a watertight global optimized surface on the
selected volumetric resolution. Note, that all available 3D information are in same coordinate
system.

The required input for the volumetric integration approach is a set of dense depth
maps and, but not necessarily, sparse 3D information obtained beforehand as proposed
by Bauer et. al. [1]. Instead of utilizing visual hull information as proposed by Vo-
giatzis et. al. [19], we derive a so called crust band directly in the vicinity of the dense
depth maps. This crust band can be interpreted as a confidence map, which represents
the probability that the final unknown surface passes through. The confidence values
are computed as an unsigned distance function φ over the underlying volumetric grid,
which is described in more detail in section 4.1.

As soon as the confidence values are computed, we determine a global optimized
surface Sopt , which approximates the true but unknown surface, with respect to the
used energy functional. Previous work already have shown that such problems can be
efficiently solved by a min-cut/max-flow algorithm [19]. Additionally, we incorporate
sparse 3D information into our energy functional, which further enhance the obtained
3D reconstruction results.

Finally, the voxel based representation is transformed into a triangular mesh based
on a standard marching cube algorithm introduced by Lorenson and Cline [16].

4.1 Crust Generation

The first step in our approach is the determination of crust voxels lying on both sides of
the true surface. The generated crust should be as small as possible in order to obtain the
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maximal computational efficiency. On the other hand, the crust must be able to reflect
potential concavities arising in the true model geometry. Consequently, the generation
of the proper crust is non-trivial, and recently proposed strategies include incorporation
of the visual hull [19] and coarse-to-fine approaches [10].

We select a different path by employing the initial, still noisy 3D result of our effi-
cient depth map integration scheme as the primary indicator of crust voxels. Our volu-
metric depth image integration method [23] robustly averages the set of approximated
signed distance fields induced by the depth maps. For every voxel a statistic is accumu-
lated, which is based on the signed distance of the voxel to the approximately closest
surface point indicated by the current depth map. Finally, a voting scheme determines
the final signed distance value of a voxel, which can be used to extract the isosurface.
We utilize the accumulated signed distance field to determine the initial set of crust vox-
els by including voxels close to the isosurface (with respect to a user-specified distance
threshold). This set is enhanced by a number of dilation steps d to achieve a watertight
separation of interior and exterior regions. In all our experiments we generally set d = 2.

Since isosurfaces generated from signed distance tend to have unnecessary high
genus, positive surface confidences φ(v) are employed in the extraction procedure in-
stead of signed distance, using a similar approach to [10]. Voxels crossed by the iso-
surface as well as voxels which are filled from sparse 3D information have confidence
value zero (indicating high certainty), and the confidences of all other crust voxels are
initialized with 1. The confidence map φ is subsequently smoothed using a homoge-
neous diffusion scheme.

Figure 2 illustrates all intermediate results of our initial crust generation process.

(a) (b) (c) (d)

Fig. 2. This image illustrates all intermediate results showing one slice of the volumetric grid of
the St. Barbara data set. (a) Dense depth map values (light grey) and sparse 3D information (dark
grey). (b) Obtained voxel crust (green), exterior (light grey) and interior (dark grey) component
(c) Confidence band derived from dense depth map values, where darker values correspond to
higher confidence. (d) Optimal surface (blue) extracted by a min-cut/max-flow algorithm.

4.2 Surface Reconstruction

This section is dedicated to discuss our graph-cut based surface reconstruction proce-
dure. Since, our goal is to extract an optimal as well as watertight surface Sopt , we
transform the volumetric grid to a graph based structure and solve the optimization
problem by performing a min-cut/max-flow algorithm. Similar to other approaches we
minimize E(D) = ∑v∈D ω(v) where D is a weighted sum of dense depth map values.
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Fig. 3. Correspondence between crust voxels and nodes in the graph

The geometric configuration of the correspondence between crust voxels and nodes in
the graph is shown in Figure 3.

The corresponding graph, consisting of all crust voxels, is connected over a regu-
lar six-neighborhood. The edge weight ω(v) is assigned to all edges of the embedded
graph and can be derived from the unsigned distance value φ(v). Basically, ω(v) is de-
fined as ω(v) = (φ(v))s, where s can be interpreted as some kind of smoothness factor.
Additionally, as discussed in Vogiatzis et. al. [19] we add a ballooning force ωb, which
connects every crust voxel to the source node with a constant weight of ωb = λ h3, where
λ is a weight parameter and and h represents the quantized size of a voxel. The balloon-
ing force avoids a cut across thin structures of the object. As usual, interior voxels Vint

are connected to the source node and exterior voxels Vext are connected to the sink node.
As stated, for exploiting sparse 3D information we extend ω(v) in the following way:

ω(v) =

{
(φ(v))s ∀v ∈ DV

0.0 ∀v ∈ EV
(1)

where DV and EV represents dense depth map values and sparse 3D information respec-
tively.

After the min-cut/max-flow algorithm has determined the optimal surface voxels
Sopt , a standard marching cube algorithm converts the voxel based surface into a trian-
gular mesh for possible further processing.

To summarize, our approach reconstructs watertight 3D surface models, even from
non-outlier free dense depth maps. In contrast to related approaches and due to the fact
that our approach do not rely on visual hull information we avoid the complex, time
consuming and tedious task of acquiring such information. In addition, we do not need
any hole filling algorithm, since large gaps are effectively closed due to the embedded
energy functional. And finally, incorporated sparse 3D information enhances the quality
of our final 3D models.

5 Results

This section is dedicated to discuss the visual and quantitative results of our approach.
We applied our depth map integration method to several real-world data sets. All exper-
iments were performed on 4 GHZ PC with 2GB main memory and a GeForce 7800 GT
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with 256MB graphics memory. The images were taken with a calibrated digital con-
sumer camera at a geometric resolution of 4064x2704 pixels. After pose estimation, the
source views are resized to 1024x1024 pixels and the obtained dense depth map have
the same resolution (unless noted otherwise).

Table 1 demonstrates quantitative results and compares the number of input images,
target resolution, mesh complexity as well as the timing for each of our data sets. The
reconstruction time includes the dense depth map estimation as well as the volumetric
depth map integration, which is the less dominant computational factor.

Table 1. Illustration of time and space complexity for each of our data sets. The obtained recon-
struction time can be separated into a dense depth map estimation part and a volumetric depth
map integration part, which is the more dominant computational factor.

Dataset Images Resolution Triangles Time [min.]

Barbara 46 256x384x256 704446 9.5
Pedestal 74 256x256x384 890358 14.5
Temple 47 256x256x384 790186 7.5

The first data set depicted in Figure 4 shows the lime stone statue of St. Barbara,
which was reconstructed from 46 images. The statue is 55cm tall with a diameter of
13cm at the pedestal. The final 3D model was reconstructed in less than 10 minutes and
consists of approximately 700k triangles.

(a) (b) (c) (d) (e)

Fig. 4. 3D Reconstruction of the statue of St. Barbara from 46 images. (a) One input image of the
data set. (b) Obtained dense depth map. (c)-(d) Two viewpoints of the reconstructed 3D model
consisting of approximately 700k triangles. (e) Textured version of our obtained 3D reconstruc-
tion.

The second experiment (Figure 5) illustrates a pedestal (3x2x1.5 meters) of a statue
located in front of the Austrian National Library in Vienna. We obtained the final 3D
model in about 15 minutes at an geometric resolution of 900k triangles. For the recon-
struction of the pedestal we used 76 images. We are able to obtain a visually appealing
as well as watertight 3D model, even in textureless regions around the fresco’s.

Finally, Figure 6 illustrates the well known temple data set from the multi-view stereo
evaluation page [18] consisting of 47 images. The dense depth maps were obtained
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(a) (b) (c) (d) (e)

Fig. 5. 3D Reconstruction of a pedestal, located in front of the Austrian National Library from 76
images. (a) One image of the data set. (b) Obtained dense depth map. (c)-(d) Two viewpoints of
the final 3D reconstruction consisting of approximately 900k triangles. (e) Textured 3D model.

(a) (b) (c)

(d) (e) (f)

Fig. 6. 3D reconstruction of the well known temple data set from the multi-view stereo evalua-
tion page [18] consisting of 47 input images. (a) 3D reconstruction proposed by Furukawa and
Ponce [6]. (b) 3D reconstruction of Kolmogorov and Zabih [11]. (c) Obtained 3D model of Vo-
giatzis et. al. [19]. (d) 3D reconstruction of Hornung and Kobbelt [9]. (e-f) Two views of our
achieved 3D reconstruction consisting of approximately 800k triangles.

at a resolution of 640x480 pixels. The visual comparison of our results against four
other related multi-view reconstruction methods is shown in Figure 6(a-d). Figure 6(e-f)
illustrates two views of our 3D reconstruction consisting approximately 800k triangles.
Note, that all presented results, except the one shown in Figure 6(a), are utilizing graph-
cuts for global optimization. Of course, the quantitative as well as qualitative evaluation
of our results is given at the multi-view stereo evaluation page [18].
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6 Conclusion

In this paper we demonstrated a fast and robust method for the 3D reconstruction of
proper 3D models, even from non-outlier free dense depth maps. The achieved quality
of our 3D models mainly depends on the grade of the dense depth maps as well as the
selected target resolution. One main advantage of the proposed method is, that there
is no need for some kind of visual hull information during the 3D reconstruction pro-
cess. Due to a min-cut/max-flow optimization we can guarantee a watertight and global
optimized surface.

Though the results are very promising there are several improvements that can made
to our approach. Further work needs to include the already generated error map, which
provides a confidence measurement for each dense depth map value, into the cost func-
tional of the min-cut/max-flow algorithm. Finally, we plan to evaluate and compare
several edge weight functions.
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