
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 160–174, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generating Fast Feedback in Requirements Elicitation

Kurt Schneider

FG Software Engineering, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany

Kurt.Schneider@Inf.Uni-Hannover.de

Abstract. Getting feedback fast is essential during early requirements activities.
Requirements analysts need to capture interpret and validate raw requirements
and information. In larger projects, a series of interviews and workshops is
conducted. Stakeholder feedback for validation purposes is often collected in a
second series of interviews, which may take weeks to complete. However, this
may (1) delay the entire project, (2) cause stakeholders to lose interest and
commitment, and (3) result in outdated, invalid requirements. Based on our “By
Product-Approach”, we developed the “Fast Feedback” technique to collect
additional information during initial interviews. User interface mock-ups are
sketched and animated during the first interview and animated using the use
case steps as guidance. This shortcut saves one or two interview cycles. A large
administrative software project was the trigger for this work.

Keywords: Requirements elicitation, requirements validation, feedback, inter-
view technique, by-product approach, support tool.

1 Introduction: Slow Feedback in Requirements Elicitation

Stakeholder involvement is crucial during requirements elicitation [1, 2]. In software
projects that affect numerous individuals and groups of stakeholders, conducting a
satisfactory number of interviews for elicitation and validation may take very long.
The software engineering group at the Leibniz Universität Hannover was involved in
the analysis phase of a large software project for our university’s internal processes.
Since those processes affect students, administrators, and faculty of all university
departments, there are thousands of affected stakeholders. Different department
traditions result in many roles and interest groups – from Computer Science students
to Biology professors or the university Chief Information Officer (CIO). The CIO
asked our group to analyze the current situation of a number of key processes, and
also to collect requirements for a future improved version of a support system. I will
call the project uniPro in the context of this paper.

During the five months of that phase, different activities were carried out; the
requirement analysis led to interviews and meetings. There were long periods during
which requirements elicitation made no progress. Analysts could not get appointments
with many of the busy stakeholders we needed for elicitation and validation.

This situation is far from unique. In many software projects a large number of busy
stakeholders cannot be reached on short notice. This situation occurs in industry,
banks, and in the public sector. Usually, it leads to significant project delays. Project

 Generating Fast Feedback in Requirements Elicitation 161

leaders tend to get impatient and declare requirements analysis finished in a
premature state – simply because it takes so long. We consider this phenomenon a
serious and recurring pattern that deserves research attention.

We wanted to find a way to speed up the elicitation and validation phase –
including the idle times between appointments with busy stakeholders. For that
purpose, we built an information flow model using our FLOW modelling approach
[3, 4, 5]. Based on earlier work, the “By-Product Approach” [6] was proposed to
assist in a similar situation (soliciting information from prototype developers [6, 7]).
Since we wanted to affect information flows in a similar way, we applied the “By-
Product Approach” again: We developed an elicitation technique that allows instant
validation of certain elicited aspects. Fig. 1 shows how we identified the problem
using information flow analysis in uniPro. A desired future situation was also model-
led using information flows. We decided to develop a technique that instantiates the
“By-Product Approach” in order to reach that goal. We call it “Fast Feedback in RE”.

«approach»
By-Product
Approach

«method»
Information

Flow
Analysis

«technique»
Fast Feedback in RE

«information flow model»
uniPro

«information flow model»
using the techniques

Fig. 1. Instantiating the Fast Feedback technique to improve information flows (this diagram
contains type information but is not a UML model)

In this paper, we report on the Fast Feedback technique. At the same time, we
describe the process of designing that technique, as we want to encourage others to
invent and support their own, tailor-made requirements support techniques. Using
information flow analysis and the By-Product Approach can help.

In section 2, we briefly introduce information flow analysis and show how it was
applied to our problem. Section 3 presents the By-Product approach which we adopted
and tailored to solving the problem. The resulting technique is sketched in section 4. In
section 5, we discuss how it affects projects like ours and discuss implications.

2 Analyzing Information Flow

We use information flow analysis for a number of purposes, from tailoring reviews to
individual projects [8] to organizational development [9]. I explain the basics of what
we mean by “information flow analysis” and why we applied it to uniPro.

2.1 The Role of Information Flow in Software Projects

Software development has traditionally been described in terms of process models
[10]. Requirements engineering has also been modelled as process [11]. However, in

162 K. Schneider

order to understand the uniPro problem better, typical process models are too coarse.
They tend to emphasize activities and documents, while roles and oral communication
are neglected (like in the V-model www.v-model.iabg.de). However, requirements
engineering is a part of a software project. A huge amount of information is generated
and transferred through oral communication as well as through written documentat-
ion. Interviews and workshops, informal emails and personal notes during a meeting
may not appear in the process models – but they shape requirements analysis in the
real world. Effective stakeholder involvement is a key to project success [1, 2, 12].

Software projects call for written specifications. That is reasonable, and it would be
a bad idea to rely on informal or oral information flows alone. However, the advent of
agile approaches [13, 14] has pointed to the problem of over-specification, with
useless documents of several thousand pages. They delay information flows in
projects and endanger project success [15]. Light-weight practices have increased the
awareness for the agile option, even in conventional project environments: It is
sometimes advantageous to accept oral communication as an equal carrier of
requirement information flow for a specific purpose, e.g. from on-site customer to
developers, or during pair programming – or between high-level management and
project leaders in a conventional project meeting.

In our FLOW research project, we consider both communication and document-
tation essential ingredients. We want to optimize the necessary information flows in
software projects. Both documentation and communication have strengths and
weaknesses, none should be dogmatically ignored. It is in a project’s best interest to
use the best of both worlds [15]. Most software projects realize they need both:
reliable documentation for reference and long-term use; and fast and flexible
information flow through well-organized communication. However, it is essential to
coordinate both aspects, and to facilitate the transformation from one to the other.
Many consider oral communication “soft”, unreliable, and even sometimes
“unscientific”. We do not. We try to support “soft” situations with very concrete
techniques and tools.

2.2 Basic Concepts of the FLOW Modelling Technique

A modelling technique was developed in our FLOW research project at Leibniz
Universität Hannover. Since FLOW is not the main focus of this contribution, only its
core aspects will be briefly mentioned. Observations in industrial projects (like [16,
17, 18]) shaped our view of information flows. We derived a number of resulting
convictions and concepts. They are the basis of our information flow analysis.
Information flow analysis is a research topic in flux [8, 19].

Assumptions and convictions
• We are convinced of the value of combining communication and documentation.
• Oral communication and short-term storage of information in people (brains) must

be taken more seriously. It occurs in all projects, and for some purposes it works.
Writing and reading documents cannot fully replace communication.

• We introduced the notions of “solid” and “fluid information” to allude to different-
ces in a metaphorical way. Aggregate states of information share similarities with
aggregate states of matter.

 Generating Fast Feedback in Requirements Elicitation 163

The metaphor of Aggregate States of Information

Solid information refers to written or taped or other forms of readily repro-
ducible information. It can be copied and distributed independently of indi-
viduals.
Fluid information is stored in the brains of people, on handwritten sketchpads or
in personal email. Usually, it comes in smaller units and changes its shape all
the time. Only the owner can access and interpret it effectively.

Fluid information flows faster and more painless than solid information. How-
ever, there is a limited capacity for fluid information in a brain; it may be spilled
or overflow. Information leaks correspond to forgetting pieces of information.
Solid information is less flexible and harder to carry. It takes more effort to
bring it into a desired shape. However, it is easier to store over extended periods
of time. When someone wants to absorb solid information it needs to be
“melted” first (to become fluid).

The aggregate state metaphor of information conveys the idea. It should not be
overstretched.

• Experience is a special kind of information flowing in a software organization. It
often acts as catalyst: It enables a more efficient and more effective use of require-
ments or other information [3]. There is a whole body of literature on the role of
experience in software projects [20, 21, 22]. However, this aspect is beyond the
scope of this paper.

• Tools to feed back experiences to a task at hand were conceptualized by Fischer in
his Domain-Oriented Design Environments [23].

• A simple notation for information flows is a core prerequisite for reasoning about
information flows. A graphical notation is useful for discussing information flows.

We came up with a somewhat clumsy graphical notation first [24]. We boiled it down to
a core of very easy elements [8]. When we use them in companies, many people are not
even aware they “use a notation” at all. This contributes to the purpose of developing a
common understanding on their information flows. Table 1 shows the basic symbols.

Table 1. Core elements of information flow models. Often used to extend process models.

Aggregate
state

Storage Information
flow

Activity/abstraction

Solid

<Name< ><Name< >

(optional)
<kind of information>

(optional)

Fluid

< ><Name< ><Name

(optional)
<kind of information>

(optional)

(e.g. Interview)(e.g. Interview)

<activity name>

Activity with incoming and
outgoing flows (solid and fluid)

164 K. Schneider

For the purpose of this paper, the “activity” or “abstraction” symbol is rather
important. It serves three purposes:

(1) Information flows often follow processes - at least for a while. Therefore, we
often attach information flow models to portions of existing process models.
Documents and activities are common elements and synchronize both
models.

(2) At the same time, activities are treated as black boxes with an “interface” of
incoming and outgoing flows. The box can be refined to show more detailed
flows. This mechanism allows us to structure information flows
hierarchically, which is important for scaling larger models.

(3) When an activity box is introduced for a technique or activity that does not
yet exist, its flow interface specifies the activity. Techniques can be
developed to match that specification and interface, as shown in section 4.

2.3 Typical Information Flows During Requirement Analysis

Fig. 2 is an authentic initial sketch of the information flow causing delays in the
uniPro project. It is presented as a less-than-perfect sketch. It illustrates how flow
models are supposed to be used in practice: drawn by hand, not precisely following
the notation. This is an appropriate style of information flow modelling, since it
serves human discussions and understanding. The model in Fig. 2 was used to discuss
what happened in uniPro and what we considered the problem. The timeline on the
bottom was added a little later when the problem was understood better.

Time
1-2 hours hours or a few days ~ 1 hour 30 minidle (weeks) days+idle (weeks)

Fig. 2. Sketch of the initial uniPro situation during requirements analysis

Fig. 2 starts at the left showing an interview situation between a customer (“Kd”
for “Kunde” in German) and an analyst (A). They mainly talk to each other, while A
takes some handwritten notes (fluid). The dashed double arrow indicates fluid
exchange of information. The box around this interview mixes two abstraction levels
on the same diagram, (1) the interview activity box and (2) its details. They conform
to the same (outgoing) flows. In the modeled situation, use cases are written as a solid

 Generating Fast Feedback in Requirements Elicitation 165

piece of information (documents). Person A may have sketched use cases during the
interview, but rearranging steps and extensions will often leave notes unreadable for
others. They need to be cleaned up before they constitute “solid documents”
according to the above-mentioned definition of aggregate states.

In the next step, a separate role merges the use cases that refer to different tasks of
the same stakeholder and suggest a first draft of the user interface (UI). Each stake-
holder might see a different interface, and each interface will usually consist of a
number of screens. At this point in time, pencil-and-paper mock-ups are used.
According to usability engineering practices [25] the sketchy look of pencil-and-paper
prototypes is important. It reminds stakeholders to draw their attention to the pure
presence and rough position of interface elements – rather than their colors and sizes
and button shapes. Those details are not relevant yet.

In a second series of interviews, customers (Kd) are confronted with the user
interface developer, who receives fluid feedback on both the user interface and the use
cases corresponding to them. The model gets really sketchy and short at this point, but
it portrays reality: the UI modeler does not care to update any use case documents, but
rather starts to build a first electronic “demonstration” prototype (GUI-PT) based on
the feedback of all stakeholders. They can try it during a third interview, and so on.

The added timelines shows: Interviews took only one or two hours each;
preparation and analysis of interviews, as well as drawing prototypes took from some
hours to a few days. But a follow-up interview could not be scheduled within
reasonable time; in many cases, it never took place – with obvious detrimental
consequences for requirements validation.

Please note that diagram Fig. 2 does not describe a plan or an ideal process or flow:
it rather shows the actual flows that we reconstructed after we got stuck.

3 Applying the “By-product Approach”

In earlier work, we had captured design rationale [7]. Much like in the interview
situations above, there were only a few available time slots to extract knowledge and
experience from the experts. The By-Product Approach emerged from the desire to
use those time slots more effectively. The approach is motivated and described in
detail in [6].

3.1 The By-product Approach

The approach can be directly applied to the requirements analysis situation. It empha-
sizes a clear commitment to shifting effort away from the bearer of information (ratio-
nale or requirements). This is essential to making elicitation work [26]. The name
“By-Product Approach” comes from the attitude of adding extra value as a by-product
of doing something that needs to be done anyway. However, there is no magic: One
can add extra value only due to computer support built before. Developing that
program ahead of time is the investment that pays back during the interviews.

166 K. Schneider

Definition of the By-product Approach. The following definition was given in [27].
Only a few adaptations needed to be made to apply it to Fast Feedback: Underlined
terms and [remarks in brackets] are specific instantiations of more generic terms
used in [27]:

“The term approach refers to a set of guiding principles for someone to follow in
order to achieve a certain goal. The style of describing an ‘approach’ by a list of
interconnected principles was successfully used by Beck in his widely-known
description of eXtreme Programming [13].

The By-Product Approach is defined by two goals and seven principles:

Goals

• Capture requirements in analysis interviews within software projects.
• Be as little intrusive as possible to the person interviewed.

Principles

1. Focus on a project task in which requirements are surfacing (interviews)
2. Capture additional information during that task (not as a separate activity)
3. Put as little extra burden as possible on the person interviewed (but maybe

on other people like the analysts)
4. Focus on recording during the interviews, defer indexing, structuring etc. to

a follow-up activity carried out by others
5. Use a computer for recording and for capturing additional task-specific

information for structuring purposes
6. Analyze recordings, search for patterns and add value. Let the program

support you.
7. [omitted, not applicable]”

The principles call for a computer program to record extra information.

3.2 Application to Fast Feedback Interviews: The Vision

In the Fast Feedback technique, we use the By-Product principles in order to cover
both Use Cases and User Interface issues in one single interview. While only use case
information was collected in the initial scenario, we ask for user interface infor-
mation, too (“additional information”, principle 2). Here is the vision, with a preview
of the tool (Fig. 3) that we later derived from that vision:

Both kinds of information are recorded on a low-invasive computer (principles 3
and 5), an A4 tablet-PC with detached keyboard, as in Fig. 3. The screen shows a use
case template (left) and a mock-up (right) that can be connected. At first glance, the
flat tablet-PC behaves similar to a sheet of paper. However, it also interprets the use
case steps (“structuring information”, principle 5) to generate an animation of the
pencil-prototypes (exploiting structure, principle 6). Stakeholders can even “interact”
with the animation and pretend to enter data.

 Generating Fast Feedback in Requirements Elicitation 167

Fig. 3. Tablet-PC showing a use case and mock-up on a split screen, with optional keyboard

Extending the agenda of an interview by user interface issues extends interview
durations (1.5 to 2.5 hours). However, it covers (1) use case elicitation, (2) UI basic
decisions, and (3) partial validation (“as a by-product”). Adding a few minutes to an
interview is much easier than scheduling another interview. Fig. 4 shows the new
situation as an information flow abstraction.

Customer
AnalystAnalyst

Use Cases
UI Info

Improved
First Interview

using

Fast Feedback
Technique

feedback

Time
Approx. 1,5-2,5 hours

Use cases
UI sketches

animation

record of use

Saving weeks of calendar time

Compared
to initial
uniPro
interviews
(Fig. 2)

Information flow model of desired situation

Fig. 4. Specification of the new interview technique as a flow activity

The box specifies a set of flows and pieces of information we want the technique to
produce. The left part of Fig. 4 is the information flow model of the desired interview
technique. Note that the customer provides input to the technique, and receives some
feedback. At this level, we do not know how the technique will work in detail.
Constructing a technique that provides that flow interface is the next step. We
arranged flows as in Fig. 5 to match the interface.

168 K. Schneider

The gray rectangle marks that parts that belong to the Fast Feedback technique.
The flow interface surrounds this technique. There are many flows from and to the
customer, which were summarized as a single, two-directional flow in Fig. 4. In terms
of dataflow diagrams, one could call this split a “parallel decomposition” of flows
[28]. Please note that we did not exactly match the customer flows: in Fig. 4, the
customer expected to receive fluid information during the interview; in fact, all
elements he or she gets in the Fast Feedback technique are solid. This deviation was
considered acceptable, or even an improvement in interviews.

connect &
generate

Animation

Customer

Use Cases
UI Info

Animation

Analyst

customer
feedback

Animation

Use cases
UI sketches

using
&

Annotating

record of use

Fig. 5. Implementation of the Fast Feedback technique using a generator tool

Note that there are two “activity boxes” in Fig. 5. One denotes the fine-grained
activity of compiling an animation from the use cases, UI sketches, and customer
comments. The second activity lets the customer “interact” with the mock-up and
records using it. The tool implemented in Carl Volhard’s Bachelor thesis [29] offers
both boxes. The time devoted to an interview using this technique is up to 2.5 hours.
The key improvement is in shortening the information flow from use cases to
animated prototype. Instead of having two phases of manual interpretation and
creation, the automated generator shortcuts this portion to a matter of seconds. It can
be performed and iterated within the first interview. This opportunity generates more
and higher-quality feedback – fast!

Obviously, it is not the intention of this technique to replace skilled human
interface designer by a customer and an analyst scribbling on a tablet-PC. However,
when a project tries to elicit requirements and basic interaction sequences from
stakeholders, there is no need for professional user interface design; it is all about
eliciting requirements. Usability experts receive rich material from the intense new
interviews. This can empower their work, too.

4 A Technique to Generate Fast Feedback

By instantiating the By-Product Approach in order to empower interviews, the new
technique will improve information flows and, thus, speed up requirements elicitation
and validation.

 Generating Fast Feedback in Requirements Elicitation 169

4.1 Fast Feedback Needs Tool Support

The By-Product Approach explicitly calls for specific computer support. It is not just
a matter of convenience but a part of the concept to exploit computer power.
Therefore, we developed a tool to support the Fast Feedback technique [29]. In that
tool, use case templates are completed on the tablet PC (Fig. 6, left). Animated mock-
up prototypes are drawn and displayed in the same tool (Fig. 6, right).

User Interface Mockup

Step 1 assoc. to rectangle

(parts of the use case hidden
by this comment box)

Use Case Editor

Fig. 6. User interface mock-ups can be animated when connected to use case steps

The tool generates animations from the use case steps and the user interface mock-
ups (Fig. 7). Animations display the interface mock-ups in the order they are
referenced in the use case. Execution can descend to lower-level used cases,
extensions need user decisions. Portions relevant for interaction are highlighted by a
thin-line rectangle.

Stakeholders can scribble values into the mock-up input fields during the
animation; they may pretend to press buttons, make selections in lists by simply
drawing on the mock-ups (in a different color). Again, the tablet-PC is used like a
sheet of paper (Figs. 6, 7). User actions appear on the sketch, but the mock-up cannot
react to it. It is a pure mock-up. Actions are recorded and provide valuable (solid!)
information on how the stakeholders intend to use the system.

170 K. Schneider

Fig. 7. Animation with “user input” in thin-line rectangle, additional user comments (margin)

4.2 Fine Tuning Is Essential for Tool and Technique

The new interview technique has been explained above. In order to make it work,
several subtle adjustments had to be made. In particular, using the program must not
distract either partner from the main mission of the interview: eliciting requirements.
Carl Volhard, who developed the tool as part of his Bachelor thesis [29] discusses
several low- to middle-level usability issues for which he considered different
solutions. For example, he compares three options for the mechanism to link use cases
to corresponding portions of a mock-up. The thin-line rectangle was chosen. It is
often difficult to make an interaction look straight-forward.

The interview technique is supposed to be applied in the following setting:

• One or two interviewers face one (or up to three) stakeholders representing the
same stakeholder group.

• They use a tablet-PC with the recording and generator program running. It offers a
use case template and an “empty paper” view for drawing the mock-ups.

• If there are two interviewers, one will concentrate on asking and interacting with
the stakeholder. The other interviewer will fill the template.

• However, drafting the mock-ups should be done by the main interviewer in tight
interaction with the stakeholder. A stakeholder may even grab the pencil and draw
a mock-up.

• Since elicitation and validation is folded into one session, both use cases and
mock-ups will be revised and updated iteratively. During that part of the interview,
the tool must be visible for the stakeholder. A computer projector is an option, but
direct interaction with the tablet-PC is preferable.

 Generating Fast Feedback in Requirements Elicitation 171

4.3 Fast Feedback Output

The output of initial uniPro interviews consisted of a collection of hand-written notes
on paper with several informal sketches. The output of the new brand of interviews
includes:

• A set of use cases: Using a template on the tablet-PC, analysts may choose to
scribble or type what they find out about all aspects of a prototype. In particular,
there are fields for scenario and extension steps.

• A set of user interface mock-ups: Analysts and users can manually sketch
interfaces on the tablet-PC – just like on a piece of paper.

• The linked animation of use cases and mock-ups.
• A recording of the pretended use of the mock-ups, including the values they

scribbled into fields etc.
• The feedback of users to all above-mentioned aspects: Immediate modifications

can be made to use cases and mock-ups. The animation is automatically updated.
Nevertheless, we always take some paper along. When the tool is busy playing
the animation, it is better to take notes on paper.

5 Related Work and Discussion

Maiden et al. [30] describe the Mobile Scenario Presenter (MSP), a PDA-based
requirements discovery tool that allows users to step through scenarios and add
additional requirements or information. They carried out a series of studies to explore
the usability and usefulness of such a mobile device. They report users were able to
identify events in the real world and relate them to their scenarios. How to deal with
limited display and missing keyboard were identified as open research questions.

In the Fast Feedback technique, we avoided the problem of keyboard and small
display by using an A4 size Tablet-PC with optional detached keyboard. It was not
mainly selected as a mobile device, but as a “discreet” tool that starts out in the
background but allows to collect and to interpret additional information (user
interfaces). We entered the uniPro use cases and UI mock-ups to check for usability.
All use cases and mock-ups could be expressed using the tool. In the initial scenario,
they had been drawn offline in PowerPoint. Therefore, they looked “more final” than
the sketches in our tool. This “final look” may distract customers from their
premature status [25]. Usability was a high-priority quality goal and consumed a large
percentage of the development effort. As a consequence, no severe usability problems
were reported, and one uniPro analyst was so enthusiastic about the tool that she
demanded to use it on her new project immediately. A range of people from analysts
over researchers to school children were able to write steps of “a story” (use case),
draw pictures and link them for animation. Although this experience was highly
encouraging, it does not constitute a valid empirical result. We plan to conduct a
controlled experiment (or rather several case studies) on some aspects of the
interviews in the next semester. However, most relevant issues like amount of
information transferred will be very difficult to trace in a controlled experiment. Case
studies are often preferable for software engineering [31].

172 K. Schneider

Davis et al. [32] have reviewed a number of studies on different requirements
elicitation techniques. They found interviews more effective than card sorting or
thinking aloud, among others. They also found no evidence for prototypes being
helpful during elicitation. However, they point to the constraints of their review. Most
importantly, elicitation techniques were cut into facets for the purpose of the review.
According to Davis et al., the small size of their samples should also be considered.

We are convinced that a large project with a very large number of stakeholders
like uniPro will benefit from intermediate representations. In particular, feedback
from a slightly different viewpoint can facilitate interviews (UI mock-up instead of
use case). We even saw this effect when working on paper (with PowerPoint
mock-ups) before. With a tailored and optimized technique like Fast Forward, we are
confident to increase the value.

The hand-writing recognition feature was not unanimously welcome. Correcting
errors takes rather long. One should either let them in during the interview, or use the
keyboard for completing the template (Fig. 3). However, mock-ups need to be hand-
drawn [25]. Fast Feedback sessions provide validated output: use cases and mock-ups
were checked for consistency and correctness by the designer and the stakeholder.

Since we were interested in the approach of supporting requirements analysis as
such, de Vries [33] developed a quite similar tool. In a similar information flow
situation, he applied the By-Product Approach to a slightly different subject: When
people discuss their (business) activities, the technique collects add-on information on
incoming and outgoing flows. Those are compiled to generate and display processes
beyond single interviews: those processes illustrate what happens to information
someone else provides. Again, it helps stakeholders to validate what they said before.

6 Conclusions

Requirements elicitation is difficult. Requirements elicitation in a large project with
many busy stakeholders and an impatient project leader is very difficult – but it often
occurs in reality. When the findings of an interview take weeks to be validated,
requirements quality suffers. Due to the long delay, stakeholders cannot remember
details.

We tried to improve the situation by analyzing information flow and by applying
the By-Product Approach. We emphasized the problem by comparing an initial
information flow model with a desired situation model.

In this paper, a technique was introduced that instantiates the By-Product
Approach. It requires a tailor-made tool to record and automatically interpret use case
steps. At the beginning of the interview, the tool is simply used as electronic paper
with recording abilities. As the interview proceeds, additional user interface
information is added to generate a different view of the information received so far.
This provokes stakeholders to check and validate what was inferred from their input.

In the end, there is more information, highly connected and automatically recorded.
The initial investment in tool and technique pays back in fast feedback “as a by-
product”. Our tool is a feasibility prototype developed in Volhard’s Bachelor thesis
[29]. It is optimized for easy use and discreet behaviour and has been applied to
uniPro material. We consider this technique a small, but important step forward. In

 Generating Fast Feedback in Requirements Elicitation 173

addition, we want to encourage other requirements engineers to create their own
individual techniques where they see bottlenecks. Using information flow modelling
and the By-Product Approach puts tailor-made improvements in reach.

References

1. Rupp, C.: Requirements-Engineering und -Management. 3 edn. Hanser Fachbuchverlag
(2004)

2. Alexander, I.F., Stevens, R.: Writing Better Requirements, Harlow, Pearson Education
Ltd. (2002)

3. Schneider, K., Lübke, D., Flohr, T.: Softwareentwicklung zwischen Disziplin und
Schnelligkeit. Tele. Kommunikation Aktuell 59(05-06), 1–21 (2005)

4. Schneider, K.: Aggregatzustände von Anforderungen erkennen und nutzen. In: GI
Softwaretechnik-Trends, pp. 22–23 (2006)

5. Schneider, K.: Software Engineering nach Maß mit FLOW. In: SQMcongress 2006.
Düsseldorf: SQS (2006)

6. Schneider, K.: Rationale as a By-Product. In: Dutoit, A.H.M.R., Mistrik, I., Paech, B.
(eds.) Rationale Management in Software Engineering, pp. 91–109. Springer, Heidelberg
(2006)

7. Schneider, K.: Prototypes as Assets, not Toys. Why and How to Extract Knowledge from
Prototypes. In: 18th International Conference on Software Engineering (ICSE-18) Berlin,
Germany (1996)

8. Schneider, K. and Lübke, D.: Systematic Tailoring of Quality Techniques. In: World
Congress of Software Quality 2005. Munich, Germany (2005)

9. Stapel, K.: Informationsflussoptimierung eines Softwareentwicklungsprozesses in der
Bankenbranche, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz Universität
Hannover (2006)

10. Curtis, B., Kellner, M.I., Over, J.: Process modelling. Communications of the ACM
archive 35(9, Special issue on analysis and modeling in software development), 75–90
(1992)

11. Macaulay, L.A.: Requirements Engineering. Springer, Heidelberg (1995)
12. Arias, E.G., Schneider, K., Thies, S.: A continuum approach: From language of pieces to

virtual stakeholders. In: World Conference on Artificial Intelligence in Education (AI-ED
98) (1998)

13. Beck, K.: Extreme Programming Explained. Addison-Wesley, London (2000)
14. Cockburn, A.: Agile Software Development. Addison Wesley, London (2002)
15. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed.

Addison-Wesely, London (2003)
16. Schneider, K.: Active Probes: Synergy in Experience-Based Process Improvement. In:

Product Focused Software Process Improvement PROFES 2000, Springer, Heidelberg
(2000)

17. Houdek, F., Schneider, K.: Software Experience Center. The Evolution of the Experience
Factory Concept. In: International NASA-SEL Workshop (1999)

18. Manhart, P., Schneider, K.: Breaking the Ice for Agile Development of Embedded
Software - an Industry Experience. In: International Conference on Software Engineering
(ICSE 2004) Edinburgh, Scotland (2004)

19. Schneider, K., Stapel, K.: Informationsflussanalyse für angemessene Dokumentation und
verbesserte Kommunikation, SE 2007. Hamburg (2007)

174 K. Schneider

20. Basili, V., Caldiera, G.: Improve software quality by using knowledge and experience,
Fall: Sloan Management Review (1995)

21. Johannson, C., Hall, P., Coquard, M.: Talk to Paula and Peter - They are Experienced. In:
International Conference on Software Engineering and Knowledge Engineering
(SEKE’99), Workshop on Learning Software Organizations. Kaiserslautern, Germany,
Springer, Heidelberg (1999)

22. Schneider, K.: What to Expect from Software Experience Exploitation. Journal of
Universal Computer Science (J.UCS) 8(6), 44–54 (2002), www.jucs.org

23. Fischer, G.: Domain-Oriented Design Environments. Automated Software
Engineering 1(2), 177–203 (1994)

24. Sarkisyan, E.: Analyse und Definition von verschiedenen FLOW-Modellen, FG Software
Engineering, Leibniz Universität Hannover (2006)

25. Mayhew, D.J.: The Usability Engineering Lifecycle - a practitioner’s handbook for user
interface design. Morgan Kaufmann Publishers, San Francisco (1999)

26. Grudin, J.: Social evaluation of the user interface: Who does the work and who gets the
benefit. In: INTERACT’87. IFIP Conference on Human Computer Interaction. Stuttgart,
Germany (1987)

27. Schneider, K.: Aggregatzustände von Anforderungen erkennen und nutzen. GI
Softwaretechnik-Trends 26(1), 22–23 (2006)

28. DeMarco, T.: Structured Analysis and System Specification. Prentice-Hall, Englewood
Cliffs (1979)

29. Volhard, C.: Unterstützung von Use Cases und Oberflächenprototypen in Interviews zur
Prozessmodellierung, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz
Universität Hannover (2006)

30. Maiden, N., et al.: Making Mobile Requirements Engineering Tols Usable and Useful. In:
Requirements Engineering (RE 2006), IEEE Computer Society, Minneapolis, USA (2006)

31. Rombach, D., Basili, V.R., Schneider, K.: Experimental Software Engineering Issues:
Assessment and Future Directions. Dagstuhl Workshop Proceedings. Springer, Heidelberg
(2007)

32. Davis, A., et al.: Effectiveness of Requirements Engineering Techniques: Empirical
Results Derived from a Systematic Review. In: Requirements Engineering (RE 2006),
IEEE Computer Society, Minneapolis, USA (2006)

33. Vries, L.d.: Konzept und Realisierung eiens Werkzeuges zur Unterstützung von Interviews
in der Prozessmodellierung, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz
Universität Hannover (2006)

	Introduction: Slow Feedback in Requirements Elicitation
	Analyzing Information Flow
	The Role of Information Flow in Software Projects
	Basic Concepts of the FLOW Modelling Technique
	Typical Information Flows During Requirement Analysis

	Applying the “By-product Approach”
	The By-product Approach
	Application to Fast Feedback Interviews: The Vision

	A Technique to Generate Fast Feedback
	Fast Feedback Needs Tool Support
	Fine Tuning Is Essential for Tool and Technique
	Fast Feedback Output

	Related Work and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

