
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 144 – 159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handshaking Between Software Projects and
Stakeholders Using Implementation Proposals

Samuel Fricker1,2, Tony Gorschek3, and Petri Myllyperkiö4

1 ABB Switzerland Ltd., Corporate Research,
Segelhof, 5405 Baden-Daettwil, Switzerland

samuel.fricker@ch.abb.com
2 University of Zurich, Department of Informatics,

Binzmuehlestrasse 14, 8057 Zurich, Switzerland
fricker@ifi.unizh.ch

3 Blekinge Institute of Technology, School of Engineering,
PO Box 520, 372 25 Ronneby, Sweden

tony.gorschek@bth.se
4 ABB Oy, Distribution Automation
B.O. Box 699, 65101 Vaasa, Finland

petri.myllyperkio@fi.abb.com

Abstract. Handshaking between product management and R&D is key to the
success of product development projects. Traditional requirements engineering
processes build on good quality requirements specifications, which typically are
not achievable in practical circumstances, especially not in distributed devel-
opment where daily communication cannot easily be achieved to support the
understanding of the specification and tacit knowledge cannot easily be spread.
Projects thus risk misunderstanding requirements and are likely to deliver in-
adequate solutions. This paper presents an approach that uses downstream engi-
neering artifacts, design decisions, to improve upstream information, a project’s
requirements. During its preliminary validation, the approach yielded promising
results. It is well suited for distributed software projects, where the negotiation
on requirements and solution design need to be made explicit and potential
problems and misunderstandings caught at early stages.

1 Introduction

Distributed multi-site product development is increasingly becoming commonplace as
companies become global not only in terms of customer base, but also with regards to
large parts of the product development that is spread over continents and cultures.
Distribution enables companies to leverage their resources and to draw on the advan-
tage of proximity to customers and markets for large-scale product development [1].

The potential opportunities, however, also come with new challenges that affect
both product management and product development of a company, and the require-
ments engineering of products. The threat of defect increase and cost overruns in
multi-site development has been documented in literature and industry experience
reports. Some of the main problems are attributed to heterogeneous understanding of

 Handshaking Between Software Projects and Stakeholders 145

requirements, and substantial differences in domain understanding and interpretation
[2-4]. This is compounded by the fact that multi-site development usually is detrimen-
tal to informal communication between stakeholders, which include product manag-
ers, experts, and developers, as these roles are often separated geographically [2].
Informal communication and face-to-face meetings often help in augmenting imper-
fect specifications by building a common understanding of what is to be done, by
whom, and when, and indirectly passing on domain knowledge and other tacit infor-
mation crucial to the development effort. The ability for developers to seek out and
regularly communicate with domain experts is prohibited by distance: all communica-
tion is associated with administrative and planning overhead, resulting in an raised
threshold for daily validation of specification interpretations [3]. Cultural differences
between sites can also lead to issues as some management styles prohibit developers
from directly eliciting information: communication may be routed through one or a
few central managers, further congesting communication [2].

A common result of these challenges is that defects, delays, and misunderstandings
are caught very late, often during system integration. This dramatically increases the
whole product development effort and is detrimental to time-to-market, which is rec-
ognized as one of the most important factors in market-driven development [5, 6].

In response to the challenges posed by distributed development this paper presents
a technology developed in active collaboration with industry to alleviate some of the
problems and enable explicit handshaking procedures between stakeholders. The
technology, called implementation proposal, enables such handshaking by relating
software design to requirements. It was primarily motivated by challenges identified
at ABB, and relates to a case where large scale development was performed utilizing
sites spread across North America, Europe, and Asia.

Implementation proposals and their proper use enable explicit communication
between stakeholders at the critical phase of requirements interpretation, as well as
mapping the implications of design decisions to the end product. In addition, the
comparison of implementation proposals and requirements demands iteration until a
joint understanding of requirements and domain implications can be reached. A posi-
tive spin-off effect is that requirements deliverers, e.g. product managers, are able to
gauge the impact on system architecture early in the process.

The focus of this paper is on presenting the implementation proposal technology
and the organizational and process implications that follow the utilization of the tech-
nology. The experiences of using implementation proposals are based on a pilot cur-
rently underway in a large scale development effort at ABB.

The paper is structured as follows. Section 2 discusses the background and related
work. In Section 3 the implementation proposal concept and handshaking process is
presented and discussed. Section 4 presents early handshaking results. Section 5 posi-
tions handshaking with related literature. Section 6 concludes the paper.

2 Background

Large scale distributed development demands management of physical distance, time
zones, and the thin spread of domain and technology expertise, which impact re-
quirements communication [2], and management of the overall solution architecture
with multiple levels of product integration.

146 S. Fricker, T. Gorschek, and P. Myllyperkiö

Key principles that are applied to manage these issues include allocation of respon-
sibility for well-separated components of the software solution to various teams,
ownership of such a team for the overall lifecycle of their contribution, a globally
accessible requirements and configuration management infrastructure, and project roles
and practices that enable critical communication to happen among the teams as well as
between the teams and product management, project management, and architects.

The application of these principles leads to an organizational structure that is
aligned either with the structure of the software product and its related domains [7] or
with the overall development process with different roles located at different places.
Fig. 1 illustrates one such an alignment in a stylized and simplified manner that can
be observed in ABB as it relates to the case presented in this paper.

Fig. 1. Alignment of organizational structure with the structure of the software product and its
related domains

In Fig. 1, product management is responsible for a software product’s markets and
application domains and formulates relevant requirements, which are handed over to a
software architecture team. The software architects, responsible for the overall archi-
tecture of the software product, communicate requirements to development teams,
which are responsible for the development of the components assigned to them. Those
components, finally, are integrated to form the software product, which after verifica-
tion and validation gets deployed into the targeted application domains and markets.

There are several ways to handle the division of work and organizational structure
with regards to distributed development [4, 7]. First, the case of hand-off can be seen
in Fig.1, where different process steps are performed at different levels in the organi-
zation. Every such process step results in a deliverable that is handed down, like the
requirements from product management to the architecture team. This implies that the
deliverables have to be transferred across sites. Such a hand-off between sites can
cause many of the issues discussed earlier in terms of heterogeneous understanding,
and impossible compensation for imperfect deliverables due to lacking informal and
day-to-day communication.

 Handshaking Between Software Projects and Stakeholders 147

Second, the case of structural or functional division can be seen in Fig.1, where
different parts of the product itself, i.e. some feature sets, are handled exclusively by
one site. This implies that deliverables do not need to be transferred across sites, but
are created and handed over locally. The main challenge is here to minimize coordi-
nation needs by a clear division of the product with low coupling between the parts
that are distributed over sites. This is hard to achieve in practice.

In the ABB case hand-off challenges were predominant, even if some units on de-
velopment level actually were organized according to product functions. The focus of
this paper is on addressing the challenges to this type of distributed organization.

Looking at work performed previously in relation to the problem at hand, several
investigations have been conducted for identifying the main challenges and recom-
mending solutions [1-3, 5, 6]. Commonly recurring themes are face-to-face meetings
and communication between sites. Solutions include introducing requirements man-
agement platforms for global access to requirements, employing communication tech-
nologies like chat, persistent video- and teleconferencing for enhanced communication,
shared project workspaces, and configuration management systems.

A central issue was not only to address the problems of requirements understand-
ing and communication, but also to find a technology that would enable explicit map-
ping of design decisions to the product requirements. Product management was the
main author of requirements at early stages of the product development project and a
central source of domain knowledge. However, the time available to product man-
agement for communicating requirements and for validating design decisions was
limited. Thus, the communication between product management and the architecture
team had to be explicit and concrete enough to avoid misunderstandings despite hand-
off over sites, and efficient enough to make good use of time spent.

Traditional communication and face-to-face meetings are well established practices
at ABB, as are the utilization of CASE tools over sites. However, the fundamental
limitations of not being a team in one location demanded additional steps to be taken
to ensure that a common understanding had been reached. One important goal was to
increase the efficiency and effectiveness of the limited number of meetings by having
relevant decision support material created beforehand as a part of the practices. This
involved the creation of artefacts that would increase traceability between design
decisions and requirements, the two main constituents of architectural impact.

3 Implementation Proposal Concept and Handshaking Process

It is well accepted that requirements are tightly linked to solution design. This holds
for requirements and design decisions at any level of abstraction. This section elabo-
rates on this relationship for the purposes of requirements communication and nego-
tiation on an appropriate implementation approach by describing the structure and
possible forms of implementation proposals and their relationships to requirements.

The relationship between requirements and solution design is bidirectional. Not
only context and goals affect the design of a software solution, but also the emerging
capabilities of the solution influences what goals can be achieved and how effective
usage of the software shall be structured [8]. The impact of a targeted software solu-
tion on its context is particularly important to consider in situations with limited

148 S. Fricker, T. Gorschek, and P. Myllyperkiö

engineering resources, with limited capabilities of technology, and in projects that are
building on legacy, as these factors pose demands on architecture and design
regarding feasibility. The impact of a software solution is also important to consider,
when errors have been introduced in the design, due to imperfect understanding of
requirements for example, which cannot be corrected with given project resources and
deadlines, resulting in quality deficiencies and cost overruns.

3.1 Implementation Proposals

Implementation proposals support the negotiation between requirements and solution
providers, as shown in Fig. 2. The requirements provider, a stakeholder or customer
that is responsible for a problem domain, contracts a solution provider to realize a
software solution. The solution provider, the supplier or development team, is respon-
sible for creating a software solution that satisfies the requirements.

Fig. 2. Communication between requirements and solution providers through requirements and
implementation proposals

Solely focusing on requirements during negotiations is not enough as requirements
are often misunderstood and the impact of feasible architecture and design is largely
ignored. To mitigate these risks, implementation proposals are introduced. Implemen-
tation proposals describe the targeted solution and its expected impact from the per-
spective of the supplier. As Fig. 2 illustrates, implementation proposals are an answer
to requirements and flow from the solution provider to the requirements provider.

The situation described in Fig. 2 appears often in product development at ABB.
Referring to Fig. 1, the interaction pattern is of relevance between product manage-
ment, the requirements provider, and the software architecture team, the solution
provider, who need to coordinate the development of the overall software product.
The pattern is also of relevance between the software architecture team, which now
becomes the requirements provider, and every development team, the solution pro-
viders, that are responsible for the various software components. Not shown in Fig. 1
are the likely interactions between product management, the requirements provider,
and some of the development teams, the solution providers, for coordinating lower-
level requirements for design of externally visible software components.

Implementation Proposal Structure
A requirement describes a condition or capability needed by a stakeholder to solve a
problem or achieve an objective [9]. To provide such information, typical requirement
attributes, shown in Fig. 3, include a description of relevant context and assumptions

 Handshaking Between Software Projects and Stakeholders 149

(R1), the intention or goal to be achieved (R2), and the rationale behind the require-
ment (R3). Depending on the development process, these basic attributes are com-
plemented with attributes covering the source of the requirement, the urgency and
priority of the requirement, and others (R4+). While a requirement describes a prob-
lem to be solved, it is considered good practice, not to describe any potential solution
for solving the problem, for not to prematurely limiting the solution space.

Fig. 3. Structure of and relationship between requirements and implementation proposals. R1 to
R4+ are requirements attributes. I1 to I6+ are implementation proposal attributes.

To validate the understanding of a requirement and to set the right expectations on
the solution that will be delivered, the supplier answers a requirement with an imple-
mentation proposal. As Fig. 3 illustrates, the implementation proposal needs to de-
scribe at least the design decision that is considered to satisfy the requirement (I1),
and the effects of that design decision in terms of advantages and limitations (I2).
These effects correspond to the inferred architectural impact of the decision on both
the solution and the problem domains.

While the design decision and advantages and limitations attributes of the imple-
mentation proposal may be sufficient to document the results of the negotiation be-
tween stakeholder and supplier, they are often not enough to build a satisfactory level
of trust between the parties that provided information has been correctly understood.
To achieve such trust, two other attributes are introduced: assumptions used by the
supplier for understanding what is meant with the requirement (I3) and a justification
why the design decision is believed to be appropriate (I4).

The disclosure of assumptions for interpreting a requirement (I3) helps the two par-
ties to manage the ambiguity that is inherent in human communication. Such ambigu-
ity needs to be addressed in a particularly careful manner when the communication is
made difficult, for example by physical distance or differing technological and do-
main background.

Justifying the design decision relates the implementation proposal to the broader
context of the overall solution and problem (I4). The justification reveals why the
supplier has chosen the particular design and not another one. It describes the

150 S. Fricker, T. Gorschek, and P. Myllyperkiö

trade-offs that have been made between relevant requirements that possibly stand in
conflict with each other and limitations that were introduced by other design choices,
including considered technologies. It is with this understanding that a customer can
accept a design proposal that without such information may be considered sub-
optimal.

A third type of attributes supports the management of the negotiation between re-
quirements and solution providers. In early stages of requirements elaboration and
solution design, a lot of information necessary for deciding on an adequate design is
lacking. To highlight such information needs, the solution provider describes the
issues that need to be resolved to enable creating or improving the contents of the
implementation proposal (I5). Such issues become a list of actions for the stakeholder
who owns the requirement related to the implementation proposal. It is then through
providing adequate context and rationale information that the stakeholder steers the
evolution of the design. The negotiation on requirements and implementation propos-
als is considered to be concluded when all issues are resolved.

The last group of implementation proposal attributes covers information like esti-
mation of implementation effort, implementation status, and other attributes that are
specific to the chosen development process (I6+).

Relations Between Implementation Proposals and Requirements
An implementation proposal describes how a given requirement is intended to be
realized by a software solution. In some situations the design decision is not sufficient
to conclusively address the requirement, in which case the relationship is said to posi-
tively contribute to realizing the requirement. These two relationships are indicated by
the keywords realize and positively contribute to in Fig. 3.

Requirements and implementation proposals do not always stand in a one-to-one
relationship, even-though many of them do so at the conclusion of the implementa-
tion. When requirements are handed over from the requirements provider to the solu-
tion provider, the initial set of requirements is without references to implementation
proposals. Only as the solution provider’s understanding of an appropriate implemen-
tation approach matures, implementation proposals are created.

At many stages of the design process, the requirements available to the solution
provider turn out to be insufficient to make sound architectural decisions. In such
situations it is not the requirement that comes first. Rather, an implementation pro-
posal is used to elicit appropriate requirements. In this case the assumptions, justifica-
tion, and issues attributes of the implementation proposal are of major importance to
guide the stakeholders in providing the right kind of information and decision making.

An implementation proposal may positively contribute to multiple requirements.
Such a constellation may express the advantages of a design decision [10]. However,
it may also indicate a need for improving the implementation proposal: the implemen-
tation proposal not only defines what is intended to be implemented, but also how that
design decision relates to the requirement (implementation proposal attributes I3 and
I4). To improve the implementation proposal, the facets of the design decision spe-
cific to the individual requirements need to be highlighted. Then again, the situation
may also indicate a need for improving the requirements: they may be overlapping or
address similar concerns more effectively expressed by a single requirement.

 Handshaking Between Software Projects and Stakeholders 151

Further improvement needs for requirements and implementation proposals may
also be indicated by situations with one requirement affected by several implementa-
tion proposals.

- A requirement may be too abstract and needs to be refined into more detailed
requirements, which are addressed by the individual implementation proposals.

- A requirement may not be sufficiently atomic and needs to be decomposed into
its aggregated parts that are addressed by the individual implementation propos-
als.

- There may be a number of design options to satisfy a requirement. Every option
is proposed as an implementation proposal and it is up to the requirements pro-
vider to select, which of the options shall be chosen, if not all.

These constellations of how implementation proposals relate to requirements can
pinpoint various kinds of potential defects. Still, they are not a call for driving unnec-
essary formality. Rather, the discussed constellations are useful to support the hand-
shaking parties in enhancing their communication by triggering actions such as
improving information. The consideration of these constellations complements the
use of the implementation proposal attribute ‘issues to be resolved’ (I5).

The interaction between the two parties, the requirements provider and the solution
provider, supports the continuous improvement of the quality of both, requirements
and implementation proposals. The responsibility for contributing one’s part to project
success leads to a continuous mutual pull for increased quality of information. While
such a pull may be observed in a majority of projects, implementation proposals make
the status of information and the need for information improvement explicit, thus man-
ageable. Also, a learning effect can originate from such collaboration: learning how to
write requirements and implementation proposals that are understandable and useful
for the other party. Such quality improvement and learning has been observed, for
example, when testers have been involved in reviewing specifications [11].

Forms of Implementation Proposals
The description of design decisions may take different forms and levels of detail,
depending on whether high-level architecture or detailed design is captured, depend-
ing on how understanding or feasibility risks need to be addressed, and depending on
the CASE tool infrastructure in the software company.

Implementation proposals may be formulated with tools that are used for require-
ments management. The attributes suggested for describing implementation proposals
are outlined in Fig. 3. The writing style should be short and concise so that the formu-
lation of the implementation proposals does not take unnecessary time.

While a majority of implementation proposals are simple to convey, a few require
considerable elaboration. In this situation, documents are written whose structure
corresponds to the implementation proposals attributes. These documents are then
attached to the entries in the requirements management database.

Companies that adopted a model-driven development approach [12] may want to
formulate implementation proposals as part of their software model in a semi-formal
graphical language like UML [13]. The company may choose not only to document
the design decisions in such a language, but also complete implementation proposals.
This works well if the requirements are documented as part of the model.

152 S. Fricker, T. Gorschek, and P. Myllyperkiö

While a text-based or semi-formal documentation approach is useful for some
classes of requirements, others are easier to answer with prototypes. Usability re-
quirements, for example, may lead to implementation proposals that capture the de-
sign decision in form of a graphical user interface prototype or mock-up.

The goal of implementation proposals is not to prescribe form, but to support the
interaction and negotiation between requirements and solution providers. Decisions
about formality and methodology should be taken by the involved parties by consider-
ing situational contingencies to maximize efficiency and yield of communication.

3.2 Handshaking Process

To achieve an understanding between a requirements and a solution provider and to
agree on requirements and the intended solution, the two parties follow a handshaking
process that spans three phases as illustrated in Fig. 4.

Fig. 4. Overlapping handshaking activities: requirements communication, solution synthesis
and design, and negotiation using implementation proposals. The three phases A, B, and C
represent time spans with different focus with respect to handshaking activities.

Phase A connects the handshaking process with the requirements management
processes performed by the requirements provider [14] and the problem domain un-
derstanding that the requirements provider has already established prior to the hand-
shaking process. Initial requirements and information about the problem domain are
communicated to the solution provider. This set of requirements represents the start-
ing point for the work of the solution provider. It typically does not satisfy desired
qualities of requirements specifications like unambiguity and completeness [15, 16].

During Phase B, the requirements receiver synthesizes the received problem do-
main data and technology knowledge to identify implementation approaches that
would satisfy the requirements. The process of such synthesis is highly complex and
closely related to the experience of the designing people [17].

Phase C aims at achieving an agreement on the intended realization of the solution.
It is the central phase, where implementation proposals are used to validate the solu-
tion provider’s understanding of requirements, to improve the requirements, and to
validate the adequacy of the intended solution. The goals of the negotiation activities
shift over time. The later the negotiation activities are, the less likely they are to mod-
ify the design, but to correct the understanding of achievable product capabilities and
their impact.

 Handshaking Between Software Projects and Stakeholders 153

Data Flow
Fig. 5 illustrates how the requirements and the solution providers interact with each
other by describing the dataflow between their activities and information repositories.
The requirements communication and solution design processes from Fig. 4 are
shown in Fig. 5 without modification. The negotiation process covers all four activi-
ties in Fig. 5, requirements communication, solution design, and implementation
proposal formulation and review, all of which are performed iteratively. The hand-
shaking process assumes that the two parties share requirements and implementation
proposal data.

Fig. 5. Dataflow between handshaking activities and information repositories

The requirements provider communicates requirements, which are used for solu-
tion design by the solution provider. During negotiation, the solution provider formu-
lates implementation proposals that are based on that design, which are then reviewed
by the requirements provider. Reviews of implementation proposals focus on whether
the intended solution makes sense with regard to the requirements provider’s interpre-
tation of requirements. Review comments then lead to requirement improvements by
the requirements provider and to subsequent changes to solution design and imple-
mentation proposals by the solution provider.

Some of the design decisions that need to be taken by the solution provider are not
foreseeable by the requirements provider. As a consequence, insufficient information
for guiding these design decisions is provided during requirements communication.
Here, the solution provider elicits relevant information by submitting implementation
proposals for review that are not connected to requirements initially, but which are
complemented with requirements as a result of the implementation proposal reviews.
In this case the implementation proposals drive the elicitation of requirements.

Success Criteria
Commonly used criteria for evaluating the quality of requirements specifications in a
traditional unidirectional requirements communication context include completeness,
ambiguity, correctness, and consistency among others [18]. The success of handshak-
ing using implementation proposals can be evaluated with the same criteria, but

154 S. Fricker, T. Gorschek, and P. Myllyperkiö

requires a new interpretation of these criteria. For example, some of these qualities are
achieved as an inherent capability of the handshaking process, while others can be
evaluated more comprehensively because additional information is available.

Completeness is not only evaluated by considering completeness of the require-
ments with respect to goals and coverage of the problem domain, but also by asking:

- Are the implementation proposals covering all requirements?
- Are the implementation proposals sufficiently covering the intended solution?
- Are the requirements covering all implementation proposals?

The management of requirements ambiguity is a fundamental capability of the
handshaking process. A requirement can be considered understood by the require-
ments receiver, when it is covered by at least one accepted implementation proposal.

Correctness of requirements in the sense of correctly describing the desires and
needs of stakeholders and of correctly describing the properties of the problem domain
is not affected by the handshaking process and needs to be ensured by traditional re-
quirements engineering techniques. Feasibility of requirements and correctness of
architecture and design, however, is guaranteed to a large extent when requirements
and implementation proposals match. Nevertheless, such correctness holds only to the
degree as the belief is correct that the intended solution actually yields the capabilities
and impact that are described by the implementation proposals [17].

Consistency of requirements is evaluated in the handshaking process by the solu-
tion design activities. Handshaking also introduces additional consistency needs:

- Are the implementation proposals consistent among themselves?
- Are the implementation proposals consistent with the intended solution?
- Are the implementation proposals consistent with the requirements?

Evaluation of the latter, consistency between requirements and implementation
proposals, is an essential part of the review activities performed by the requirements
provider during negotiation. Achieving the former two consistency needs depends on
the practices of the solution provider.

Successful requirements engineering does not only depend on the quality of infor-
mation that is produced, but also on stakeholder satisfaction and commitment.
Implementation proposals must help to set appropriate expectations on the targeted
solution, inform about required changes in the problem domain, and ensure that the
problem domain changes are feasible and fit within the strategic orientation of the
requirements provider, thus making it possible to defend the chosen solution [19].

While much of these requirements engineering services is not explicitly captured in
the implementation proposal structure and handshaking process, relevant knowledge
and understanding emerges out of the focussed interaction between the requirements
and solution providers. Understanding is attained and expectations are set not only by
discussing requirements, but also by examining the intended solution and how it ad-
dresses the requirements. The reviews of implementation proposals, performed by the
requirements provider as part of the negotiation phase, ensure that required changes in
the problem domain are known, feasible, and aligned with strategy.

 Handshaking Between Software Projects and Stakeholders 155

4 Preliminary Experiences

The handshaking process using implementation proposals has come out of an indus-
trial need to manage the handover of requirements to a distant project team. This
section describes some preliminary experiences with handshaking and what its poten-
tial advantages and limitations are. While scientific validation of the implementation
proposal concept and handshaking process is part of ongoing research, this section
illustrates how the approach is used in a broader context.

The handshaking process was established in a globally distributed project that in-
volved about 50 engineers and that was structured according to Fig. 1. The project
was organized according to a toll-gate model [20]. Important toll-gates included the
following ones [21] and mapped to the handshaking phases (Fig. 4) as follows:

- Agree to start project: start of Phase A
- Agree on requirements and project plan: end of Phase B
- Agree on release: end of Phase C1

The toll-gate agree on requirements and project plan is interesting to study for un-
derstanding the use of handshaking in a complex product development scenario. This
toll-gate assumes that high-level architecture is defined and satisfies important
requirements. Thus, the interface between product management and the product archi-
tecture team has reached the end of Phase B. The interface between the product archi-
tecture team and the individual development teams, however, may not have progressed
so far yet, which yields similarities with concurrent engineering [22].

The timing of the toll-gates was fixed for the project. This implied a time-box-
oriented approach to achieving the goals of the project phases. For example, require-
ments were not perfect at the toll-gate agree on requirements and project plan, but the
best-possible quality within given time and resources.

Product-level handshaking was achieved with implementation proposals integrated
into a requirements management infrastructure. Both requirements and implementa-
tion proposals were captured in tabular form. Upon need, an explicating document
was created and attached to the implementation proposal.

Handshaking between product management and components with product-external
interfaces was mostly performed using prototypes. Prototype validation leads to com-
plemented requirements and subsequent modification of component design.

Handshaking between product architecture and components was not considered in
this preliminary experience. The results that were achieved with product-level hand-
shaking encouraged the architects to pilot the concept, however.

Negotiation activities typically were performed in meetings. These meetings were
used for discussing requirements and implementation proposals and for making deci-
sions. Pure text-based communication was less frequent. Text was used to document
the information gathered and decisions taken during the negotiation meetings in the
requirements management database. Thus, work with implementation proposal is not
a continuous process as Fig. 4 might suggest, but peaked where meetings took place.

1 At the time of writing, the project had passed tollgate agree on requirements and project plan.

Phases A and B were observed and phase C planned.

156 S. Fricker, T. Gorschek, and P. Myllyperkiö

Comparing the early experiences of using implementation proposals with the for-
mer requirements hand-over approach, the product manager elaborated:

- Agreement on requirements with the architects was usually not a problem. How-
ever, there were usually problems in understanding the impact of the require-
ments on the architecture, which led to unacceptable software architectures. It is
important to establish trust between product management and software develop-
ment. Implementation proposals help to see how requirements are realized before
an inadequate solution is chosen, which is difficult to change.

- Handshaking work is more structured. The implementation proposals are usually
discussed in meetings and are then used as a means to make decisions and as a
form of documenting these decisions.

- Implementation proposals are most useful in areas where risk is high.

Software architects mentioned:

- Requirements are often too fragmentary to build sound software architecture.
Implementation proposals help us to highlight important design decisions, where
input is needed from the product manager. Only when requirements and imple-
mentation proposals are completed, the toll-gate ‘agree on requirements and pro-
ject plan’ should be passed.

- The software architecture is dependent on inputs from many product managers.
Design decisions are not only influenced by one product manager, but need to ac-
count for the needs of others and for the architecture of the surrounding system.2

- It is important to allow implementation proposals be described in different forms
such as entries in the requirements management software, as architectural docu-
ments, and as prototypes.

The project changed from uni-directional communication of requirements to hand-
shaking with implementation proposals, which led to early discovery of problems,
which would have been discovered only at solution validation late in the development
process. Based on this experience, project members estimated a return on investment
between ten and fifty times the cost of the process change due to risk reduction.

Clearly, the preliminary experiences confirm the industrial need for improved
handshaking procedures. Implementation proposal-based handshaking fits well into
practical industrial distributed development and has lead to encouraging results. Still,
while managing ambiguity to improve the level of trust and managing the handshak-
ing process are perceived important and are lived by the practitioners, they are not
perceived as the silver bullet. In particular it needs to be studied how multiple stake-
holders can be addressed and what activities should accompany the use of implemen-
tation proposals to further support increase the appropriateness of a software solution.

5 Related Work

The challenge of correctly understanding requirements has already been addressed by
iterative development processes [23]. Such a process aims at reducing the risk of
costly rework by shortening the development cycle and allowing validation of partial

2 Note that such a scenario has not been discussed in this paper.

 Handshaking Between Software Projects and Stakeholders 157

work results. In principle, such a process implements a feedback paradigm [24],
where the customer is the goal-defining element and the project team the goal-
implementing element whose outputs need to be controlled.

Handshaking using implementation proposals builds on a similar feedback mecha-
nism. Handshaking, however, poses fewer requirements on the engineering results for
validation and is more focussed on the interface between customer and supplier.

In addition to partially implemented solutions that result from a full iteration, hand-
shaking accepts early work results such as design decisions, models, and prototypes
that result from solution analysis and design activities. This allows detecting errors
earlier and makes such detection independent of the development process, hence also
supporting sequential software development scenarios.

The information that is fed back during handshaking is a special form of design ra-
tionale [25]. In contrast to other design rationale approaches, handshaking aims at
ensuring that the solution provider’s intended results corresponds to the expectations
of the requirements provider, while establishing an atmosphere of trust. The design
rationale information consists here of requirements, design decisions and implementa-
tion proposals, which carry the necessary information to relate design decisions to
requirements. The notation for capturing the design rationale is intentionally left open
for adapting to domain-specific practices and development context.

6 Conclusions and Future Work

Implementation proposals contribute to a better understanding of requirements. Fo-
cussing on the interface between a stakeholder like a product manager and a devel-
opment team, the explicit description of design decisions and their impact on
requirements helps the stakeholder to understand and adjust what the development
team will build.

While not using explicitly documented implementation proposals may be sufficient
for projects with collocated development teams and stakeholders, written information
exchange must be enhanced in a distributed setting to build trust, and manage the
ongoing negotiations. Implementation proposals help achieve these goals by relating
requirements to design decisions, uncovering assumptions in the interpretation of
requirements, justifying design decisions, and highlighting issues to be resolved.

The use of implementation proposals, in addition to the obvious, also has positive
spin-off effects which can result in improved quality and catching of defects earlier in
the development process. Creating improved decision support material early in the
project process can vastly improve the accuracy of estimation and risk analysis. These
are especially important in market-driven development as time to market is crucial.

The cost of creating implementation proposals may be seen as a drawback, al-
though it should be realized that the artefacts themselves, both better requirements
and the design decisions captured by the implementation proposals, can be reused as
decision support material, design material, and bases for system test activities, effec-
tively spreading the cost over several development phases. In addition, as experience
in using implementation proposals increases, the maturity of the distributed product
development environment grows. This makes it possible to create less formal artefacts
as domain and technical understanding becomes more homogenous across the teams.

158 S. Fricker, T. Gorschek, and P. Myllyperkiö

The learning effect resulting from using implementation proposals not only spreads
domain and technical knowledge, but also supports product management in detecting
defects in requirements. Ultimately, better requirements can be written from the start.

Future research will focus on empirically validating the implementation proposal
concept for requirements handshaking in distributed software development contexts.
The yield and usability factors of the implementation proposal concept shall be inves-
tigated and compared it with traditional approaches for requirements communication.
Also, the implementation proposal concept will benefit from further development by
studying how requirements and solution design interact over multiple levels of ab-
straction and by considering more than a single requirements provider.

References

1. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global Soft-
ware Development. IEEE Software 18, 70–77 (2001)

2. Damian, D., Zowghi, D.: RE Challenges in Multi-Site Software Development Organisations.
Requirements Engineering 8, 149–160 (2003)

3. Herbsleb, J.D., Paulish, D., Bass, M.: Global Software Development at Siemens: Experience
from Nine Projects. 27th International Conference on Software Engineering. ACM, St. Louis
MO (2005)

4. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Globally Dis-
tributed Software Development. IEEE Transactions on Software Engineering 29, 481–494
(2003)

5. Dahlstedt, A., Karlsson, L., Persson, A., NattochDag, J., Regnell, B.: Market-Driven Require-
ments Engineering Processes for Software Products – a Report on Current Practices. Interna-
tional Workshop on COTS and Product Software RECOTS, Los Alamitos, CA (2003)

6. Regnell, B., Beremark, P., Eklundh, O.: A Market-Driven Requirements Engineering Process -
Results from an Industrial Process Improvement Program. Requirements Engineering 3, 121–
129 (1998)

7. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law and
Beyond. IEEE Software 16, 63–71 (1999)

8. Jackson, M.J.: Software Requirements & Specifications: a Lexicon of Practice, Principles, and
Prejudices. Addison-Wesley Pub. Co., New York Wokingham, England, Reading, Massachu-
setts (1995)

9. IEEE Computer Society. Standards Coordinating Committee.: IEEE Standard Computer Dic-
tionary: a Compilation of IEEE Standard Computer Glossaries, 610. New York, USA (1990)

10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software En-
gineering. Kluwer Academic, Boston, MA (2000)

11. Gorschek, T., Dzamashvili-Fogelström, N.: Test-case Driven Inspection of Pre-project Re-
quirements - Process Proposal and Industry Experience Report. Requirements Engineering De-
cision Support Workshop, Paris (2005)

12. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineering, Man-
agement. John Wiley, Chichester, England, Hoboken, NJ (2006)

13. Object Management Group, Unified Modeling Language (UML), Version 2.0 (2005)
14. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineering Jour-

nal 11, 79–101 (2006)
15. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-1998

 Handshaking Between Software Projects and Stakeholders 159

16. Fricker, S., Glinz, M., Kolb, P.: Case Study on Overcoming the Requirements Tar Pit. Journal
of Universal Knowledge Management 1, 85–98 (2006)

17. Kruchten, P.: Casting Software Design in the Function-Behavior-Structure Framework. IEEE
Software 22, 52–58 (2005)

18. IEEE: Recommended Practice for Software Requirements Specifications (Standard 830-1984)
IEEE Press, New York, (1984)

19. El Emam, K., Madhavji, N.H.: Measuring the Success of Requirements Engineering Processes.
IEEE Computer Society Press, Los Alamitos (1995)

20. Cooper, R.G.: Winning at New Products: Accelerating the Process from Idea to Launch.
Perseus Pub, Cambridge, Massachusetts (2001)

21. Wallin, C., Ekdahl, F., Larsson, S.: Integrating Business and Software Development Models.
IEEE Software 19, 28–33 (2002)

22. Davis, A., Sitaram, P.: A Concurrent Process Model of Software Development. ACM
SIGSOFT Software Engineering Notes 19(2), 38–51 (1994)

23. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York
(2004)

24. Klir, G.: Facets of Systems Science. Springer, Heidelberg (2006)
25. Moran, T., Carroll, J.: Design Rationale: Concepts, Techniques, and Use. Lawrence Erlbaum

Associates (1996)

	Introduction
	Background
	Implementation Proposal Concept and Handshaking Process
	Implementation Proposals
	Handshaking Process

	Preliminary Experiences
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

