

Lecture Notes in Computer Science 4542

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pete Sawyer Barbara Paech

Patrick Heymans (Eds.)

Requirements Engineering:
Foundation for
Software Quality

13th International Working Conference, REFSQ 2007
Trondheim, Norway, June 11-12, 2007
Proceedings

13

Volume Editors

Pete Sawyer
Lancaster University
Lancaster LA1 4WA, UK
E-mail: sawyer@comp.lancs.ac.uk

Barbara Paech
University of Heidelberg
69120 Heidelberg, Germany
E-mail: paech@informatik.uni-heidelberg.de

Patrick Heymans
Université Notre-Dame de la Paix
5000 Namur, Belgium
E-mail: phe@info.fundp.ac.be

Library of Congress Control Number: 2007927939

CR Subject Classification (1998): D.2.1, D.2, F.3, K.6.1, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-73030-3 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-73030-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12075614 06/3180 5 4 3 2 1 0

Preface

The 13th International Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ 2007) was held in the beautiful city of
Trondheim, Norway, during June 11–12, 2007. Twenty-seven papers written by
authors from 14 different countries were presented in themed sessions that ad-
dressed: goal-driven requirements engineering (RE); products and product-lines;
value-based RE and the value of RE; requirements elicitation; requirements
specification; industrial experience of RE; and requirements quality and qual-
ity requirements. Within these themes, the work presented spanned a range of
application domains from business systems to air traffic management, used tech-
niques that varied from ethno-methodology to formal specification and delivered
requirements for both custom systems and software product lines. This volume
of proceedings serves not only as a record of REFSQ 2007, but also represents
an excellent snapshot of the state of the art of research and practice in RE. As
such, it should be of interest to the whole RE community from students embark-
ing on their PhD to experienced practitioners interested in emerging knowledge,
techniques and methods.

June 2007 Pete Sawyer
Barbara Paech

Patrick Heymans

Organization

REFSQ is run by an Organizing Committee of three Co-chairs appointed by a
permanent advisory board. Each Co-chair serves three years, with one retiring
each year. REFSQ 2007 was co-located with CAiSE 2007.

Advisory Board

Eric Dubois (CRP Henri Tudor, Luxembourg)
Andreas L. Opdahl (University of Bergen,

Norway)
Klaus Pohl (University of Duisburg-Essen,

Germany)

Organizing Committee

Programme Chair Pete Sawyer (Lancaster University, UK)
General Chair Barbara Paech (University of Heidelberg,

Germany)
Publicity Chair Patrick Heymans (University of Namur,

Belgium)

Programme Committee

I. Alexander
T. Alspaugh
A. Aurum
F. Barbier
D.M. Berry
S. Brinkkemper
P.J. Charrel
A. Davis
E. Dubois
C. Ebert
A. Finkelstein
V. Gervasi
C. Ghezzi
M. Glinz
M. Goedicke
T. Gorschek
P. Haumer
A. Hickey

F. Houdek
M. Jirotka
S. Jones
N. Juristo
E. Kamsties
J. Krogstie
G. Lami
S. Lausen
M. Lemoine
P. Loucopoulos
K. Lyytinen
N. Maiden
R. Matulevicius
D.M. Moody
C. Ncube
B. Nuseibeh
A.L. Opdahl
A. Persson

K. Pohl
J. Ralyte
B. Ramesh
L. Rapanotti
B. Regnell
C. Rolland
M. Rossi
A. Russo
C. Salinesi
K. Sandahl
K. Schneider
A. Silva
G. Sindre
I. Sommerville
R. Wieringa
C. Wohlin
D. Zowghi

Table of Contents

REFSQ 2007 International Working Conference on Requirements
Engineering: Foundation for Software Quality . 1

Pete Sawyer, Barbara Paech, and Patrick Heymans

Comparing Goal Modelling Languages: An Experiment 18
Raimundas Matulevičius and Patrick Heymans

Automatically Generating Requirements from i* Models: Experiences
with a Complex Airport Operations System . 33

Cornelius Ncube, James Lockerbie, and Neil Maiden

Structuring the Co-design of Requirements and Architecture 48
Klaus Pohl and Ernst Sikora

A Template for Requirement Elicitation of Dependable Product
Lines . 63

Barbara Gallina and Nicolas Guelfi

A Flexible Requirements Analysis Approach for Software Product
Lines . 78

Nicolas Guelfi and Gilles Perrouin

Integrated Requirement Selection and Scheduling for the Release
Planning of a Software Product . 93

C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen

A Value-Based Approach in Requirements Engineering: Explaining
Some of the Fundamental Concepts . 109

Aybüke Aurum and Claes Wohlin

Value-Based Requirements Engineering for Value Webs 116
Novica Zarvić, Maya Daneva, and Roel Wieringa

A Quantitative Assessment of Requirements Engineering
Publications – 1963–2006 . 129

Alan Davis, Ann Hickey, Oscar Dieste, Natalia Juristo, and
Ana Moreno

Handshaking Between Software Projects and Stakeholders Using
Implementation Proposals . 144

Samuel Fricker, Tony Gorschek, and Petri Myllyperkiö

Generating Fast Feedback in Requirements Elicitation 160
Kurt Schneider

VIII Table of Contents

Informing the Specification of a Large-Scale Socio-technical System
with Models of Human Activity . 175

S. Jones, N.A.M. Maiden, S. Manning, and J. Greenwood

Integration Use Cases – An Applied UML Technique for Modeling
Functional Requirements in Service Oriented Architecture 190

Ville Alkkiomäki and Kari Smolander

Optimal-Constraint Lexicons for Requirements Specifications 203
Stephen Boyd, Didar Zowghi, and Vincenzo Gervasi

Integrating All Stages of Information Systems Development by Means
of Natural Language Processing . 218

Algirdas Laukaitis and Olegas Vasilecas

Information Flow Between Requirement Artifacts. Results of an
Empirical Study . 232

Stefan Winkler

Imperfect Requirements in Software Development . 247
Joost Noppen, Pim van den Broek, and Mehmet Aksit

Towards a Tomographic Framework for Structured Observation of
Communicative Behaviour in Hospital Wards . 262

Inger Dybdahl Sørby and Øystein Nytrø

A Quality Performance Model for Cost-Benefit Analysis of
Non-functional Requirements Applied to the Mobile Handset Domain . . . 277

Björn Regnell, Martin Höst, and Richard Berntsson Svensson

Security Requirements for Civil Aviation with UML and Goal
Orientation . 292

Robert Darimont and Michel Lemoine

Challenges for Requirements Engineering and Management in Software
Product Line Development . 300

Andreas Birk and Gerald Heller

ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 306
Taiseera Hazeem Al Balushi, Pedro R. Falcone Sampaio,
Divyesh Dabhi, and Pericles Loucopoulos

Exploring the Characteristics of NFR Methods – A Dialogue About
Two Approaches . 320

Andrea Herrmann, Daniel Kerkow, and Joerg Doerr

Defining Reference Models for Modelling Qualities: How Requirements
Engineering Techniques Can Help . 335

Thomas Rinke and Thorsten Weyer

Table of Contents IX

Integrating an Improvement Model of Handling Capacity Requirements
with the OpenUP/Basic Process . 341

Andreas Borg, Mikael Patel, and Kristian Sandahl

Mal-Activity Diagrams for Capturing Attacks on Business Processes 355
Guttorm Sindre

Towards Feature-Oriented Specification and Development with
Event-B . 367

Michael R. Poppleton

Author Index . 383

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 1–17, 2007.
© Springer-Verlag Berlin Heidelberg 2007

REFSQ 2007 International Working Conference on
Requirements Engineering: Foundation for Software

Quality

Pete Sawyer1, Barbara Paech2, and Patrick Heymans3

1 Lancaster University, Lancaster, UK. LA1 4WA
sawyer@comp.lancs.ac.uk

2 University of Heidelberg, Im Neuenheimer Feld 325, D-61920 Heidelberg
paech@informatik.uni-heidelberg.de

3 Patrick Heymans, Université Notre-Dame de la Paix, B-5000 Namur
phe@info.fundp.ac.be

Abstract. The 13th Working Conference on Requirements Engineering: Founda-
tion for Software Quality (REFSQ’07) will take place in the beautiful city of
Trondheim, Norway on the 11th and 12th June 2007. As with most previous years,
REFSQ’07 is affiliated with CAiSE. However, REFSQ’07 is significantly larger
than in previous years, both in terms of the number of submissions and the size of
the programme. 27 papers will be presented, plus a keynote address by Klaus
Pohl, and parallel sessions will be necessary to make the programme possible
within two days. However, the essential highly interactive and participatory nature
of the REFSQ ‘brand’ will be retained.

1 Introduction

There are many research groups around Europe doing excellent research in
requirements engineering (RE). Similarly, the European software and systems
engineering industry has proven receptive to innovations that help them elicit, analyse
and manage their requirements effectively. These characteristics have formed the
background to the annual series of REFSQ workshops, located in European but with
an emphatically international outlook and have, if anything, strengthened over the
lifetime of REFSQ. Over the same period, the fact that the quality of software is
critically dependent upon the requirements that specify its properties and behaviour
and constrain its design has become much more widely recognized. This dependency
is really concerned with the quality of the processes, practices and tools that help all
the actors involved in RE define the requirements, as well as the quality of the skills
possessed by, and the and training available to, these actors. It is also concerned with
the qualities that the software must exhibit and the requirements that address these
qualities – often called non-functional requirements (NFRs). There have been many
conferences and workshops on RE during REFSQ’s life-time but REFSQ has been
unique in having an explicit mission to promote the many roles of quality in RE.

In 2005, the REFSQ advisory board, comprising Eric Dubois, Andreas Opdahl and
Klaus Pohl, suggested that we should explore the possibility of expanding the scale of
REFSQ. Over the years, REFSQ had acquired a much-envied reputation for the

2 P. Sawyer, B. Paech, and P. Heymans

quality of the research reported from all over the world, the rigour of its peer-review
process and the quality of the organization which achieved excellent interaction
among workshop participants. It was felt that there was ample demand for an
expanded format, still located within Europe and still attracting contributions from all
over the world. The IEEE International Conference of Requirements Engineering
takes place in Europe only once in every three years so there should be plenty of
scope for an annual Europe-based conference on RE.

As a fist step, REFSQ’06 evolved into a working conference. For the first time,
attendance was opened beyond the set of accepted paper authors, but in other respects
the format was little changed from earlier years. 2007 marks the next incremental
shift, stemming from Klaus Pohl winning agreement from Springer to publish the
RESFQ proceedings as a volume of LNCS; the one you’re reading now. Essener
Informatik Beiträge had served REFSQ wonderfully well, but it was recognized that
publication in a volume of LNCS would bring more visibility to authors’ work and,
we hoped, stimulate increased interest from the RE community world-wide. A
REFSQ paper is recognized as a valuable addition to one’s portfolio of published
work and several REFSQ papers have acquired classic status, yet REFSQ papers
published before 2007 are hard for other researchers to acquire. The proceedings’
print run was little larger than the number of participants at each REFSQ event and
there was no maintained electronic archive. All this now changes with Springer taking
over as the proceedings publisher.

One fundamental consequence of publishing the REFSQ proceedings in LNCS was
a change to the submission date. The decision was made to make the full proceedings
available at REFSQ rather than publishing them afterwards. At previous REFSQs
participants were issued with a loosely-bound pre-proceedings at the event. The
REFSQ co-chairs and colleagues then worked very hard to compile a volume of
proceedings containing polished, formatted papers, and an event summary. The
proceedings were eventually published by Essener Informatik Beiträge and posted to
participants several months after the event.

There was much good about having pre- and post-proceedings, not least the
authors’ opportunity to polish their papers in the light of feedback following their
presentations. However, the availability, at REFSQ, of the final proceedings was
considered to be an important element in REFSQ’s evolution to conference status.
Rather than paper submissions being invited in the Spring, the deadline for
submission to REFSQ’07 was December the 20th 2006. We were very nervous about
whether this would work. We worried that it was too soon and that people would be
too busy in the lead-up to Christmas to prepare a submission. In the event, our fears
proved groundless and submissions reached a record 83. This contrasted with typical
submission rates in the 30s. 37 papers were submitted to REFSQ’06, for example.

The program committee was kept much busier than either we or they had expected
but almost all the reviews came in on time. This was a fact for which we were
immensely grateful because the deadline for getting the package of camera-ready
papers and all the other assembled material to Springer was the 9th April. In the event,
27 papers were accepted for publication, representing a healthily selective acceptance
rate of 32%. Authors and the co-chairs and their colleagues again worked very hard to
make sure reviewers’ feedback was taken into account, that the papers were formatted
correctly and dispatched to Springer within the allotted time.

 REFSQ 2007 International Working Conference on Requirements Engineering 3

2 The Program

In addition to the proceedings, a number of other changes have been made to
REFSQ’07’s format. Perhaps the major innovation is the use, for the first time, of a
keynote talk. Who better to deliver a REFSQ keynote than Klaus Pohl, one of the
world’s major figures in Software and Requirements Engineering and one of
REFSQ’s founders?

To accommodate the high number of papers accepted for presentation at
REFSQ’07, several sessions are scheduled to run in parallel. REFSQ’06 had
successfully run a number of parallel sessions, without undermining participant
interaction and the intimacy that has been such an integral part of REFSQ workshops.
To ensure that the same is true for REFSQ’07, we have been careful to retain the key
interactive elements that characterize REFSQ. As is traditional, as much time is
scheduled for discussion at the end of each paper presentation as is scheduled for the
paper presentation itself. Also in keeping with REFSQ tradition, a discussion is
scheduled to draw together the threads at the end of each paper session. Finally, to
help ensure cohesion across the programme, we have scheduled summaries of each
paper session during the closing plenary.

A problem faced by any conference organizer is how to assemble a program by
identifying coherent groupings of papers that are neither too large nor too small to
form viable sessions. REFSQ’07 was no different in this respect but after several
iterations, the thematic sessions represented by the following sub-sections emerged.

2.1 Goal-Driven RE

Using stakeholders’ goals to drive the RE process has long been recognized as a
cornerstone of effective RE. Systematically handling goals and ensuring that they are
addressed throughout the life-cycle is difficult, however. This difficulty has led to the
development of a number of notations and associated application processes, of which
KAOS and i* are two of the best-known. Proponents of both can be found and most
recognize that both have strengths. However, the selection of one to use for a particular
application has so far been uninformed by objective data about their relative merits. In
Comparing Goal Modelling Languages: an Experiment by Raimundas Matulevicius
and Patrick Heymans, KAOS and i* are evaluated in terms of the quality of the
languages themselves and the quality of the goal models that they produce. A number of
interesting conclusions are drawn that should help analysts trying to select one to use,
and also set an agenda for further research in goal-driven RE.

In Automatically Generating Requirements from i* Models: A Case Study with a
Complex Airport Operations System Cornelius Ncube, James Lockerbie and Neil
Maiden report on the use of i* with tool support to derive requirements for a complex
air traffic application. Like Matulevicius and Heymans, they identify a number of
issues arising from the use of goal models. Ncube, Lockerbie and Maidens’ focus,
however, is more on the quality of the requirements derived from the goal models
than the goal models per se.

One of the keys to the effective use of goals in RE is their integration with other
process elements and techniques. The need to derive a system architecture without
inappropriately constraining the satisfaction of system requirements is one of the key

4 P. Sawyer, B. Paech, and P. Heymans

problems of integration. In Supporting the Co-Design of Requirements and
Architecture: A Goal- and Scenario-based Approach Klaus Pohl and Ernst Sikora
propose a co-design approach to deriving the architecture and requirements in a
controlled way by maintaining system usage and system architecture viewpoints. The
role of goals is to help consolidate the two viewpoints.

2.2 Products and Product Lines

The papers in the products and product lines track nicely cover the various stages in
the RE process from elicitation to release planning. In A Template for Requirement
Elicitation of Dependable Product Lines Barbara Gallina and Nicolas Guelfi present a
template for eliciting functional and non-functional requirements for software product
lines and to help differentiate commonalities and variations between products. They
have a specific focus on the discovery of fault-tolerance requirements in a use-case
based approach.

In A Flexible Requirements Analysis Approach for Software Product Lines Nicolas
Guelfi and Gilles Perrouin describe an analysis model that helps define product line
variabilities. They seek to support the derivation of innovative products but use
constraints to exclude the derivation of products that are undesirable. The approach
uses UML, OCL and use cases, and a model transformation mechanism supports the
reuse of domain assets.

In the paper Integrated Requirement Selection and Scheduling for the Release
Planning of a Software Product Chen Li, Marjan van den Akker, Sjaak Brinkkemper
and Guido Diepen investigate the crucial issue of release scheduling using two
models based on linear programming. Simulations are used to evaluate the two new
models and compare their performance to traditional prioritization models. They
conclude that better results are achieved by the model that combines selection and
delivery since this is more tolerant of requirement dependencies.

2.3 Value Based RE and the Value of RE

One of the surprising features of RE research is that it has been so loosely coupled to
the economics of system development. We take it as an article of faith that the cost of
failing to get the requirements right has a multiplier effect across the software life-
cycle, yet we have few tools to help us assess the relative value of requirements
competing for resources. Nor do we have much quantified evidence to support our
belief that research in RE has tangible economic benefits. The first two papers in this
track explicitly address this failing. A Value-Based Approach in Requirements
Engineering: Explaining Some of the Fundamental Concepts by Aybuke Aurum and
Claes Wohlin is an extremely valuable contribution that sets out to inform the RE
community of the fundamental notion of value in RE.

In Value-Based Requirements Engineering for Value Webs Novica Zarvic, Maya
Daneva and Roel Wieringa tackle the problem of the mismatch between the needs of
distributed organizations providing and receiving services and of classical information
systems planning models which assume a single point for decision making. Their
approach is to use a value web comprising the business actors involved in an

 REFSQ 2007 International Working Conference on Requirements Engineering 5

enterprise to understand the impact of the services they offer and provide, and the
economic factors that drive decision-making.

A Quantitative Assessment of Requirements Engineering Publications -- 1963-2005
by Alan Davis, Ann Hickey, Oscar Dieste, Natalia Juristo and Ana Moreno has a very
different focus to the other two papers in this track. Instead of focusing on techniques
to understand the value of different requirements for the solution of a given problem,
their interest is on the value of RE as a discipline. The paper presents a large-scale
analysis of RE literature over a 40+ year period. The results reported represent the
first stage in an on-going analysis designed to inform RE practitioners and researchers
of ideas and developments with a long historical context.

2.4 Requirements Elicitation

The papers in this track all focus on different aspects of elicitation. In Handshaking
between Software Projects and Stakeholders Using Implementation Proposals Samuel
Fricker, Tony Gorschek and Petri Myllyperkio tackle the very practical problem
posed by the inevitable imperfections in specification documents in software
development, and particularly in distributed development projects. They use design
decision points as a mechanism for the rational down-stream maturation of
requirements.

Generating Fast Feedback in Requirements Elicitation by Kurt Schneider
advocates the delivery of feedback to stakeholders much earlier in the requirements
process than is the norm. By, for example, mocking-up user interfaces during initial
elicitation activities, analysts can gain useful validation of their ideas while retaining
stakeholders’ buy-in. The approach helps truncate the elicitation phase, ensuring that
stakeholder availability is used to its maximum benefit and avoiding many of the
problems associated with infrequent interaction between analyst and stakeholder.

In Informing the Specification of a Large-Scale Socio-Technical System with
Models of Human Activity Sara Jones, Neil Maiden, Sharon Manning and John
Greenwood describe how they used models of human activity to help inform the
development of use cases for an envisaged air traffic control system. By capturing
information about peoples’ goals, the actions they take in the course of their work, the
resources they have available and the physical context of their work, the authors were
able to identify (for example) critical areas needing support, and to distinguish
between where features of existing systems should and shouldn’t be carried over to
the envisaged systems.

The work reported in Integration Use Cases – An Applied UML Technique for
Modeling Functional Requirements in Service Oriented Architecture by Ville
Alkkiomäki and Kari Smolander also involved adaptations to the way in which use
cases are used in RE, but with a particular focus on service-based systems. The
authors propose the notion of an integration use case to model the abstract service
interface between service providers and consumers. The technique is another good
example of how the RE community is tackling the unavoidable constraints imposed
by solution architectures when the system architecture cannot simply be assumed to

6 P. Sawyer, B. Paech, and P. Heymans

follow from the requirements, but acts as a pre-existing set of protocols and
technologies that the analyst must be cognizant of.

2.5 Requirements Specification

Far from being a rather dry and static field, the papers in this session reveal that
requirements specification is an area that still provides opportunities for interesting
and important research contributions. The first two papers employ natural language
processing (NLP) techniques to improve the quality of specifications. Optimal-
Constraint Lexicons for Requirement Specifications by Stephen Boyd, Didar Zowghi
and Vincenzo Gervasi explores the use of constrained natural language (CNL) for the
expression of requirements, showing how they can be improved by driving the
definition of a CNL by exploiting semantic relationships between words in samples of
requirements. They show that this process can be supported by NLP techniques which
in turn allow for the CNL to adapt as new terms and concepts are identified within a
domain.

In the paper Integrating all Stages of Software Development by Means of Natural
Language Processing Algirdas Laukaitis and Olegas Vasilecas develop conceptual
models by using formal concept analysis to derive concept lattices from the
documents produced in information systems projects. Their work is an example of
how existing NLP tools can be configured to provide useful support for analysts faced
with large volumes of textual documentation.

The other two papers in the Requirements Specification track both deal with the
inevitability of imperfection of the documented requirements. In the paper
Information Flow Between Requirement Artifacts Stefan Winkler presents an
empirical study of how requirements artifacts are handled. He shows how different
document types are used and misused. In particular, it is common for consistencies to
be knowingly tolerated. This theme is carried through by the paper Imperfect
Requirements in Software Development by Joost Noppen, Pim Van den Broek and
Mehmet Aksit. The authors observe the inevitability of imperfect requirements and
seek to mitigate this phenomenon by managing requirements using fuzzy sets. They
conclude that doing this allows projects to become more tolerant of emerging
information during the development process than would be the case using traditional
means to cope with requirements changes.

2.6 Industrial Experience of RE

The papers in the Industrial Experience track are all informed by real industrial
experience. They are not simple reports of experiences, however, since they bring
significant insights into RE problems and propose novel solutions. Towards a
Tomographic Framework for Structured Observation of Communicative Behaviour in
Hospital Wards by Inger Dybdahl Sørby and Øystein Nytrø is rooted in experience
gained in the healthcare domain. They present experience gained from extensive
observational studies of hospital wards and conclude that such studies are a valuable
complement to other requirements discovery techniques.

 REFSQ 2007 International Working Conference on Requirements Engineering 7

A Quality Performance Model for Cost-Benefit Analysis of Non-Functional
Requirements Applied to the Mobile Handset Domain by Bjorn Regnell, Martin Host
and Richard Berntsson is informed by experience in the mobile telecommunications
domain. The authors have used interviews with requirements experts to validate a new
approach to prioritization in software release planning for embedded software
products, that is designed to help handle competing NFRs.

Security Requirements for Civil Aviation with UML and Goal Orientation by
Michel Lemoine and Robert Darimont reports the authors’ experience of studying
requirements for overcoming security failures in the airline industry. Among the
results of their work, they draw a number of interesting conclusions about the
adequacy of use cases and the capabilities of users for validating requirements.

In Challenges for Requirements Engineering and Management in Software
Product Line Development, Andreas Birk and Gerald Heller identify a number of
outstanding challenges posed to the RE community by software product lines. Based
on industrial experience, they advocate a shift of focus to SPLs by the RE research
community, and increasing the interchange between the SPL and RE research
communities.

2.7 Requirements Quality and Quality Requirements

Quality is an enduring theme of REFSQ and reports of work with a particular focus
on quality issues always form an integral part of the REFSQ program. At REFSQ’07,
the Quality track features six papers in a plenary session.

The first paper, ElicitO: A Quality Ontology-Guided NFR Elicitation Tool by
Taiseera Al Balushi, Pedro Sampaio, Divyiesh Dabhi and Pericles Loucopoulos
presents a tool designed as a memory aid for analysts to help them elicit, reason about
and quantify NFRs. The second paper, Exploring the Characteristics of NFR Methods
- a Dialogue about two Approaches by Andrea Herrmann, Daniel Kerkow and Joerg
Doerr compares two quite different NFR specification methods. As a result of their
analysis, proposals for improvements to both methods have been derived. There have
been a number of recent initiatives to define reference models for NFRs. All of the
models derived so far have been useful to some degree but all embody a number of
weaknesses. Some of these weaknesses derive from problems of scale. The work of
Thomas Rinke and Thorsten Weyer reported in Defining Reference Models for
Modeling Qualities: How Requirements Engineering Techniques can Help proposes
the use of scenarios for defining NFR reference models, with the explicit aim of
supporting scalability. The paper by Andreas Borg, Mikael Patel and Kristian
Sandahl on Integrating an Improvement Model of Handling Capacity Requirements
with OpenUP/Basic Process presents an extension to the OpenUP/Basic software
process that can handle critical capacity requirements. Mal-Activity Diagrams for
Capturing Attacks on Business Processes by Guttorm Sindre, by contrast, has a focus
on security requirements. The author proposes the use of a mal-activity diagram as a
complement to misuse cases in the early identification of security requirements.

8 P. Sawyer, B. Paech, and P. Heymans

Towards Feature-Oriented Specification and Development with Event-B by Michael
Poppleton has a focus on handling safety requirements using the Event-B language.
The scalability of formal methods in industrial software development is
acknowledged as an issue and the paper proposes an infrastructure for using Event-B
that helps alleviate the scalability problem.

3 Concluding Remarks

With 27 regular papers and a keynote address, REFSQ’07 was considerably
expanded in scale and scope from previous REFSQs. Table 1 gives a breakdown of
the national affiliations of the accepted papers’ authors. It is a list of how many
papers had one or more authors affiliated with a particular country, not the number
of authors from each country. Some papers were co-authored by pan-national teams
so the sum of the numbers in table 1 exceeds the number of papers accepted. It is
interesting that despite the relatively high number of accepted papers, only 3 were
(co-)authored from outside of Europe. This is a lower proportion than in many
previous REFSQs.

Within Europe, Germany gave the strongest showing, while Luxembourg must win
the prize for the highest proportion of REFSQ authors per head of population. Of
course, there are likely to be local effects that result in this spread of national
representation at REFSQ and which occlude any link between the data in Table 1 and
the strengths in RE practice and research across the globe. To draw any further
conclusions, we will have to await the results of further work on the significance of
RE publications by Alan Davis, Ann Hickey, Oscar Dieste, Natalia Juristo and
Ana Moreno.

Table 1. REFSQ’07 Author Affiliations by Country

Country Papers (co-)authored
Australia 2
Belgium 1
Finland 1
France 1
Germany 6
Italy 1
Lithuania 1
Luxembourg 2
Norway 2
Spain 1
Sweden 4
The Netherlands 3
United Kingdom 3
United States 1

 REFSQ 2007 International Working Conference on Requirements Engineering 9

As usual, submitting authors were asked to classify their papers according to a
number of dimensions represented by: the requirements artifacts employed in their
work, the audience at which their paper was aimed, the general class into which their
paper fell, the RE process area(s) their work concerned, the actors or performers of
the work they described, the RE techniques used and the general software engineering
context. How the accepted papers fell into these different classifications is
summarised in the appendix. There are some clear clusters. For example, most papers
proposed a solution to an RE problem, were aimed at an audience of academics and
concerned the work of requirements analysts. Modelling and elicitation were well
represented amongst the accepted papers, while no authors considered their work to
concern stakeholder agreement or quality assurance. There are clear difficulties in
applying any such classification scheme and the authors’ classifications are
sometimes only weakly related to how we classified papers in the REFSQ’07
programme. Nevertheless, the data is interesting to reflect upon and did help us try to
match papers to reviewers’ interests.

One final thing to note is that we are writing this before REFSQ’07 has taken place
so the final verdict on REFSQ’07 and the lessons to be drawn from the accepted
papers will have to wait until June the 12th when the paper presentations, the
discussions and the social events have all concluded. As usual we will write a post-
conference summary and post it on the REFSQ’07 web pages. In the meantime, we
are eagerly anticipating June the 11th.

Acknowledgements

REFSQ’07 is very much a collaborative effort involving many people. First of all, we
would like to thank Eric Dubois, Andreas Opdahl and Klaus Pohl who served on the
REFSQ Advisory Board.

We would also like to thank the members of the program committee who acted as
anonymous reviewers and provided valuable feedback to the authors:

Ian Alexander, Thomas Alspaugh, Aybüke Aurum, Frank Barbier, Daniel M.
Berry, Sjaak Brinkkemper, Pierre Jean Charrel, Alan Davis, Eric Dubois, Christof
Ebert, Anthony Finkelstein, Vincenzo Gervasi, Carlo Ghezzi, Martin Glinz, Michael
Goedicke, Tony Gorschek, Peter Haumer, Ann Hickey, Frank Houdek, Marina
Jirotka, Sara Jones, Natalia Juristo, Erik Kamsties, John Krogstie, Giuseppe Lami,
Soren Lausen, Michael Lemoine, Peri Loucopoulos, Kalle Lyytinen, Neil Maiden,
Raimundas Matulevicius, Daniel M. Moody, Cornelius Ncube, Bashar Nuseibeh,
Andreas L. Opdahl, Anne Persson, Klaus Pohl, Jolita Ralyte, Bala Ramesh, Lucia
Rapanotti, Björn Regnell, Colette Rolland, Matti Rossi, Alessandra Russo, Camille
Salinesi, Kristian Sandahl, Kurt Schneider, Andres Silva, Guttorm Sindre, Ian
Sommerville, Roel Wieringa, Claes Wohlin and Didar. Zowghi.

Finally, we are very grateful to Willi Springer for all his help and hard work during
the whole of the REFSQ’07 life-cycle – even when he was supposed to be on
holiday.

10 P. Sawyer, B. Paech, and P. Heymans

Appendix

Table A1. The Accepted Papers

1 Comparing Goal Modelling Languages: an Experiment Raimundas Matulevicius,
Patrick Heymans

2 Automatically Generating Requirements from i* Models: A Case Study with a Complex
Airport Operations System Cornelius Ncube, James Lockerbie, Neil Maiden

3 Supporting the Co-Design of Requirements and Architecture: A Goal- and Scenario-
based Approach Klaus Pohl, Ernst Sikora

4 A Template for Requirement Elicitation of Dependable Product Lines Barbara Gallina,
Nicolas Guelfi

5 A Flexible Requirements Analysis Approach for Software Product Lines Nicolas
Guelfi, Gilles Perrouin

6 Integrated Requirement Selection and Scheduling for the Release Planning of a
Software Product Chen Li, Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen

7 A Value-Based Approach in Requirements Engineering: Explaining Some of the
Fundamental Concepts Aybuke Aurum, Claes Wohlin

8 Value-Based Requirements Engineering for Value Webs Novica Zarvic, Maya
Daneva, Roel Wieringa

9 A Quantitative Assessment of Requirements Engineering Publications -- 1963-2005
Alan Davis, Ann Hickey, Oscar Dieste, Natalia Juristo, Ana Moreno

10 Handshaking between Software Projects and Stakeholders Using Implementation
Proposals Samuel Fricker, Tony Gorschek, Petri Myllyperkio

11 Generating Fast Feedback in Requirements Elicitation Kurt Schneider
12 Informing the specification of a large-scale socio-technical system with models of

human activity Sara Jones, Neil Maiden, Sharon Manning, John Greenwood
13 Integration Use Cases – An Applied UML Technique for Modeling Functional

Requirements in Service Oriented Architecture Ville Alkkiomaki, Kari Smolander
14 Optimal-Constraint Lexicons for Requirement Specifications Stephen Boyd, Didar

Zowghi, Vincenzo Gervasi
15 Integrating all stages of software development by means of natural language

processing Algirdas Laukaitis, Olegas Vasilecas
16 Information Flow Between Requirement Artifacts Stefan Winkler
17 Imperfect Requirements in Software Development Joost Noppen, Pim Van den Broek,

Mehmet Aksit
18 Towards a Tomographic Framework for Structured Observation of Communicative

Behaviour in Hospital Wards Inger Dybdahl Sørby, Øystein Nytrø
19 A Quality Performance Model for Cost-Benefit Analysis of Non-Functional

Requirements Applied to the Mobile Handset Domain Bjorn Regnell, Martin Host,
Richard Berntsson

20 Security Requirements for Civil Aviation with UML and Goal Orientation Michel
Lemoine, Robert Darimont

21 Challenges for Requirements Engineering and Management in Software Product Line
Development Andreas Birk, Gerald Heller

22 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool Taiseera Al Balushi, Pedro
Sampaio, Divyiesh Dabhi, Pericles Loucopoulos

23 Exploring the Characteristics of NFR Methods - a Dialogue about two Approaches
Andrea Herrmann, Daniel Kerkow, Joerg Doerr

24 Defining Reference Models for Modelling Qualities: How Requirements Engineering
Techniques can Help Thomas Rinke, Thorsten Weyer

25 Integrating an Improvement Model of Handling Capacity Requirements with
OpenUP/Basic Process Andreas Borg, Mikael Patel, Kristian Sandahl

26 Mal-Activity Diagrams for Capturing Attacks on Business Processes Guttorm Sindre
27 Towards feature-oriented specification and development with Event-B Michael

Poppleton

 REFSQ 2007 International Working Conference on Requirements Engineering 11

T
ab

le
 A

2
Pa

pe
r

C
la

ss

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

E
va

lu
at

io
n

of
 e

xi
st

in
g

si
tu

at
io

n
X

X

X

X

P
er

so
na

l
ex

pe
rie

nc
e

X

X

P
hi

lo
so

ph
y

P
ro

po
sa

l o
f

a
so

lu
tio

n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

V
al

id
at

io
n

of
 p

ro
po

se
d

so
lu

tio
n

X

.

12 P. Sawyer, B. Paech, and P. Heymans

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

A
gr

ee
in

g

A
na

ly
si

ng

A
ss

ur
in

g
Q

ua
lit

y

C
om

m
un

ic
-

at
in

g

X

 X

D
oc

um
en

tin
g

X

X

E
lic

iti
ng

 X

 X

X

 X

X

X

X

E
vo

lv
in

g

M
od

el
in

g
 X

 X

X

X

X

 X

X

X

X

X

X

P
rio

rit
iz

in
g

X

X

R
eu

si
ng

Tr
ac

in
g

T
ab

le
 A

3.
 P

ro
ce

ss
 A

re
a

 REFSQ 2007 International Working Conference on Requirements Engineering 13

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

A
na

ly
st

 X

 X

 X

X

 X

X
 X

X

X
X

X
X

X
X

X

A
ut

on
om

ic
sy

st
em

C
us

to
m

er

D
ev

el
op

er
 X

X

D
om

ai
n

ex
pe

rt

 X
X

X

F
in

al
 u

se
r

S
pe

ci
fie

r
 X

X

X

T
es

te
r

T
ab

le
 A

4.
Pe

rf
or

m
er

s

14 P. Sawyer, B. Paech, and P. Heymans

P

ap
er

 #

K
ey

w
or

ds

1

2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27

E
th

no
m

et
ho

d-
ol

og
y

X

Fo
rm

al

m
et

ho
ds

X

X

G
oa

l-d
riv

en

 X

X

X

In
sp

ec
tio

ns

Li
ng

ui
st

ic
s

X

X

P
at

te
rn

s

P
ro

bl
em

fra

m
es

P
ro

ce
ss

m

od
el

in
g

X

R
is

k
an

al
ys

is

S
ce

na
rio

s
an

d
us

e
ca

se
s

X

 X

X

U
M

L-
lik

e
m

od
el

s

X

X

X

V
ie

w
po

in
ts

T
ab

le
 A

5.
 T

ec
hn

iq
ue

s

 REFSQ 2007 International Working Conference on Requirements Engineering 15

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

D
om

ai
n

kn
ow

le
dg

e
so

ur
ce

s
X

X

D
om

ai
n

m
od

el
s

X
X

X

F
or

m
al

sp

ec
ifi

ca
tio

ns

X

T
es

t c
as

es

D
es

ig
n/

A
rc

hi
te

ct
ur

e
X

X

S
ou

rc
e

co
de

La
rg

e
re

qu
ire

m
en

ts
ba

se
s

B
us

in
es

s
ne

ed
s

 X

X
X

C
us

to
m

er
re

qu
ire

m
en

ts

X
X

X
X

X
X

D
ev

el
op

er
re

qu
ire

m
en

ts

X
X

X

X

C
on

tr
ac

t

U
se

r
in

te
rf

ac
e

T
ab

le
A

6.
 A

rt
ef

ac
ts

16 P. Sawyer, B. Paech, and P. Heymans

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

A
ca

de
m

ic
s

X
 X

X

 X

 X

 X

X
 X

X

 X

X
X

X
X

X
X

X
X

S
tu

de
nt

s

P
ra

ct
iti

on
er

s
X

X
X

X
X

X

R
eg

ul
at

or
s

B
us

in
es

s
de

ci
si

on
-

m
ak

er
s

 X

P
ub

lic
 p

ol
ic

y
m

ak
er

s
G

en
er

al

pu
bl

ic

T
ab

le
 A

7.
A

ud
ie

nc
e

 REFSQ 2007 International Working Conference on Requirements Engineering 17

P
ap

er
 #

K

ey
w

or
ds

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

S
er

vi
ce

-
or

ie
nt

ed
co

m
pu

tin
g

 X

 X

P
ro

du
ct

 li
ne

de

ve
lo

pm
en

t
 X

 X

 X

X

X
X

X

A
sp

ec
t

or
ie

nt
ed

de
ve

lo
pm

en
t

X

A
da

pt
iv

e/
au

to
no

m
ic

sy
st

em
s

 X

O
th

er

T
ab

le
A

8.
 S

E
 C

on
te

xt

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 18 – 32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparing Goal Modelling Languages: An Experiment

Raimundas Matulevičius and Patrick Heymans

PReCISE, Computer Science Faculty, University of Namur, Belgium
{rma, phe}@info.fundp.ac.be

Abstract. Although goal modelling is a recognised research area, only few em-
pirical studies are reported. In this work we present an experiment where the
quality of two goal languages – i* and KAOS – is investigated by means of the
semiotic quality framework. We believed that a high quality language would
contribute to effective and efficient modelling, and result in high quality mod-
els. But the experiment showed that model quality much depends on the par-
ticular language characteristics with respect to a given context. The experiment
indicated weak and strong properties of goal modelling languages. For re-
searchers, the findings point out possible language improvements. For practitio-
ners, they can facilitate decisions about language selection and use.

1 Introduction

Goal modelling is an important research area in requirements engineering (RE). In
addition to investigating what the system needs to do, it helps question why a certain
functionality is needed, and how it could be implemented [22], [24]. Current trends
towards model-driven and agent-oriented development make it likely that the impor-
tance of goal modelling will continue to increase. However, the variety of goal model-
ling languages (GML) makes it difficult to judge a language’s effectiveness and
efficiency to solve modelling problems. Although GMLs are a popular research topic,
they are still not widely accepted by practitioners. There might be several reasons.
Firstly, practitioners might not be aware of existing GMLs and their benefits. Sec-
ondly, GMLs still suffer from semantic problems [19]. Thirdly, practitioners might
not be convinced of the efficiency and effectiveness of GMLs. Fourthly, as new lan-
guages are continuously proposed and existing ones updated to new versions, the
appropriate evaluation and selection becomes difficult.

It is difficult to judge the quality of a language only from reading the documenta-
tion. On the other hand, a hands-on language application or a full-scale industrial
experiment might be too expensive and time consuming. In this work we present an
experiment performed in academic settings. We investigate the quality of two most
used GMLs – i* [28] and KAOS [15], [16]. Our research question is:

RQ: Which goal modelling language is of a better quality?

In our experiment we adapt the semiotic quality framework [12], [13] to evaluate (i)
the quality of the GMLs, and (ii) the quality of the corresponding goal models. The
findings indicate that model quality does not necessarily depend on language quality,
but rather on situational characteristics. The results also show which properties are

 Comparing Goal Modelling Languages: An Experiment 19

poorly and highly supported during model creation. For researchers, the findings
point out improvements to be made to GMLs. For practitioners, they highlight the
GMLs’ usefulness, and suggest criteria for their assessment and use.

The paper is structured as follows: Section 2 gives theoretical background. Section 3
describes the research method. Section 4 presents the results and Section 5 discusses
them. Finally, Section 6 draws the lessons and envisages future work.

2 Theory

In this section we provide the background for our research: GMLs and quality evalua-
tion. We also overview the semiotic quality framework.

2.1 Goal Modelling Languages

The literature reports on several comparisons of GMLs. On his website [24], Regev
presents a summary of goal modelling principles. In [10], Kavakli and Loucopoulos
examine 15 GMLs and classify them along four dimensions: “usage” (what RE activ-
ity does goal modelling contribute to?), “subject” (what is the nature of goals?), “rep-
resentation” (how are goals expressed?) and “development” (how are goal models
developed and used?). In [9], Kavakli proposes a unification of goal method meta-
models at the “usage” level. In [2] languages of the i* family are compared according
to their abstract syntax. The work highlights noises, silences, ambiguities, and contra-
dictions of i*, GRL and TROPOS and proposes a general abstract syntax.

Regev and Wegmann perform a comparison [25] of various meanings of goal and
related concepts found in KAOS, GBRAM and GRL. The authors provide definitions
of, and interrelations between the key constructs based on the concept of “regulation”
borrowed from system theory. Elsewhere [19], an ontological definition of GRL and
KAOS’s semantics is proposed which opens the way for a systematic and tool-
supported comparison of GML constructs.

In [1], a case study analyses KAOS and its supporting tool, Objectiver. However,
the assessment is not based on statistical results. In this work we perform an experi-
ment on i* and KAOS. We assess the quality of GMLs by investigating (i) the quality
of languages as means to create goal models, and (ii) the quality of the created goal
models.

2.2 Quality Evaluation

Evaluations of language and model quality [23] have been performed (i) through gen-
eral quality frameworks or (ii) using more detailed qualitative1 properties. In the first
case the major quality types include physical, empirical, syntactic, semantic, pragmatic,
social and organisational quality [12], [13]. In the second case, qualitative properties
depend on the object of study [3], [4]. In [5], Franch presents “a framework for metrics
on i*” that uses structural indicators for model metrics and measures. The listed proper-
ties include predictability, security, adaptability, coordinability, modularity [11],

1 We use the term ‘qualitative’ with the meaning ‘related to quality’. Thereby, we do not ex-

clude ‘quantitative’ aspects, but refer to them as ‘metrics’ and ‘measures’.

20 R. Matulevičius and P. Heymans

correctness, completeness, verifiability, modifiability and traceability [7]. The combina-
tion of quality frameworks and detailed properties results in an overall evaluation of the
quality both on high and low levels of granularity. In our experiment, we adopt the
semiotic quality framework and refine it into qualitative properties for models and
languages.

2.3 Semiotic Quality Framework

The semiotic quality framework (SEQUAL) [12], [13] adheres to a constructivistic
world-view that recognises model creation as part of a dialog between participants
whose knowledge changes as the process takes place. Physical quality pursues two
basic goals: externalisation, meaning that the explicit knowledge K of a participant
has to be externalised in the model M by the use of a modelling language L; and in-
ternalisability, meaning that the externalised model M can be made persistent and
available, enabling the stakeholders to make sense of it. Empirical quality deals with
error frequencies when reading or writing M, as well as coding and ergonomics when
using modelling tools. Syntactic quality is the correspondence between M and the
language L in which M is written. Semantic quality examines the correspondence
between M and the domain D. Pragmatic quality assesses the correspondence be-
tween M and its social as well as its technical audiences’ interpretations, respectively,
I and T. Perceived semantic quality is the correspondence between the participants’
interpretation I of M and the participants’ current explicit knowledge KS. Social qual-
ity seeks agreement among the participants’ interpretations I. Finally, organisational
quality looks at how the modelling goals G are fulfilled by M.

In [13], SEQUAL has been adapted to evaluate language, as opposed to model,
quality. Six quality areas were identified. Domain appropriateness means that L must
be powerful enough to express anything in D, and that it should refrain from allowing
to express things that are not in D. Participant language knowledge appropriateness
measures how the L statements used by the participants match K. Knowledge exter-
nalisability appropriateness means that there are no statements in K that cannot be
expressed in L. Comprehensibility appropriateness means that users understand all
statements of L. Technical actor interpretation appropriateness defines the degree to
which the language lends itself to automatic reasoning, analysis and execution. Fi-
nally, organisational appropriateness relates L to standards and other needs within
the organisational context of modelling.

Previously, SEQUAL was adapted to evaluate requirements specifications [12],
modelling languages [13], RE tools [17], guidelines [6], and interactive models [14].

2.4 Quality Framework Application

SEQUAL provides fundamental principles, but remains abstract. We thus need to
adapt it to evaluate GMLs and goal models.

Language evaluation questionnaire. In [3] it is suggested to apply SEQUAL to
language evaluation by attaching a list of criteria (Table 1) to appropriateness types.

 Comparing Goal Modelling Languages: An Experiment 21

Table 1. Criteria to evaluate language quality (adapted from [3]); not all criteria appearing in
the table were retained for the experiment, e.g. C3 which is too specific; Appr. – appropriate-
ness; D – Domain appr.; PK – Participant language knowledge appr.; KE – Knowledge
externalisability appr.; C – Comprehensibility appr.; TA – Technical actor interpretation appr.;
O – Organisational appr.

Criteria Appr. Description

C.1 Number of views covered D Views covered by the language (structural,

functional, behavioural, rule-based, actor and role).

C.2 Requirements fulfilment D Relationship between requirements and languages.

C.3 Support for distributed

enterprise paradigm

D Is the language suited for representing distributed

enterprises?

C.4 Graphical representation C To make it easier for users, the language has to

possess a graphical representation of each

construct.

C.5 Automated analysis methods TA Simulation, mathematical analysis and proof of

properties; empirical analysis and static analysis

methods.

C.6 Programmable infrastructures TA Can the language be used to generate code

skeletons for some programmable infrastructures?

C.7 Formal semantics TA Formal semantics ensures that a model cannot be

misunderstood (from a mathematical point of

view).

C.8 Available methodologies O Is the language published with some methodologies

that make it to be usable for the specific purposes?

C.9 Do tools support the language? O Impact usage and acceptance of language.

C.10 Used/supported by community O Community might include both academics and

industry.

C.11 Is it for free? O Language can be consulted and used freely; no

funds needed to acquire skills.

C.12 Is the language still used? O Is the language still improving? Are there people

still working on it?

C.13 XML support O Languages with an explicit XML format allow for

more interoperability.

C.14 Can the language be extended/

customised?

D, C Is there any controlled mechanism for extending

the language itself?

C.15 Phase(s) of the life cycle the

language is used for

D, PK Phases of life cycle include requirements, design,

implementation, execution, testing, etc.

C.16 Communication and

synchronisation

D, TA Necessary when dynamic aspects of enterprises are

modelled.

C.17Well-defined constructs KE, C Constructs should have a clear (but possibly

informal) semantics.

C.18 Number of constructs D, C, KE Ranks language according its conceptual richness.

C.19 Expressiveness power D, C, KE Relationship between number of constructs and

number of views.

C.20 Usability of language D, PK, C

C, TA, O

Users should be satisfied by language; language

should be easy to use and deemed useful.

Domain appropriateness requires that a language has a sufficient number of constructs
and views, that it can be easily extended and used in development phases. Participant
language knowledge appropriateness defines user competence to use the language in
different development phases. Means to maintain language comprehensibility appro-
priateness are graphical representation, customisability according to needs and well-
defined constructs. The latter criterion also influences knowledge externalisability
appropriateness. To deal with technical actor interpretation automated analysis

22 R. Matulevičius and P. Heymans

methods, programmable infrastructures, and formal semantics are necessary. Organ-
isational appropriateness is improved by available methodologies, supporting tools
and language usability in the community.

We adapted the criteria to a language evaluation questionnaire (LEQ) [18] consist-
ing of 24 questions. 23 of them each have a close- and an open-ended part (Fig. 1),
and there is an extra “any comments?” question. We apply the criteria that allow ex-
pressing experience after using the language, but we do not include those that require
additional factual knowledge on the language e.g. is it still maintained, does it have a
large user community, etc. The LEQ addresses nine criteria – number of constructs
(C.18), definition of constructs (C.17), language use (C.12), number of views covered
(C.1), graphical representation (C.4), tool support (C.9), phases of lifecycle the lan-
guage is used for (C.15), available methodologies (C.8) and usability of language
(C.20) (Table 7).

Model evaluation questionnaire. Davis et al. [4] describe an extensive list of quali-
tative properties for requirements specifications. In [12] these qualitative properties
are considered with respect to SEQUAL (Table 2). The qualitative property that ad-
dresses physical quality is that a specification should be electronically stored. Reus-
ability could also be considered through physical representation. But it also influences
other quality types, such as semantic (domains for actual reuse), syntactic (level of
formality of reuse), and social (reuse of agreed elements). Empirical quality is under-
stood as the ergonomic representation of the requirements model. It considers under-
stantability and concision. The goal of syntactic quality is syntactic correctness.
Although not precisely stated in [4], some semantic properties could be reduced to
syntactic qualities. Most of the properties concern semantic quality. The goals of
feasible validity and completeness are expressed through semantic completeness,
correctness, consistency, precision and others. The goal of pragmatic quality is com-
prehension. It analyses whether a specification is executable, organised and cross-
referenced. Social quality deals with agreement about requirements.

One might argue that the properties in [4] describe qualities of the requirements
specification, and not of goal models. However as discussed in [10], [22], goal model-
ling has become one of the major activities in RE, and goal models represent an in-
creasingly large portion of the specification. With thus think that the qualities largely
apply to goal modelling too. We constructed a model evaluation questionnaire
(MEQ), which included 28 questions (19 close-ended and 9 open-ended [18]).

3 Experiment Design

The experiment was executed at the University of Namur with 19 computer science
graduate students in their 2nd year (the 4th year of the whole curriculum). The experi-
ment was a part of the mandatory assignments of the RE course. The students were
asked to divide into four groups (Table 3). The treatment involved the course material
and theoretical lectures. Attending the lectures was not compulsory but participants
actively participated (minimum 17 attendants per lecture). The experiment consisted
of three steps: interviewing, creating goal models and evaluating models and GMLs.

 Comparing Goal Modelling Languages: An Experiment 23

Table 2. Qualitative properties to evaluate goal models. Qualitative properties Q.10, Q.13,
Q.20 and Q.23 were not addressed in the MEQ. Q – quality; Ph – physical quality; E – Empiri-
cal quality; Sy – Syntactic quality; Se – Semantic quality; Pr – Pragmatic quality.

Q Qualitative

properties

Property definitions

Q.1. Electronically

stored

Document is persistent and available for the audience in an electronic

format.

Ph

Q.2 Reusable Sentences, paragraphs, sections can be easily adopted and adapted for use.

Q.3 Understandable With a minimum explanation one easily comprehends all model elements.E

Q.4 Concise Short as possible without affecting any other quality of it.

Q.5 Valid All words and graphemes are part of the language.Sy

Q.6 Complete All constructs and parts required by the language grammar are present.

Q.7 Complete A model possesses the following four features: 1) Everything that the

software is supposed to do is included in the document. 2) Definitions of

the responses of the software to all realisable classes of input data in all

realisable classes of situations are included. 3) All pages are numbered, all

figures and tables are numbered, named, and referenced; all terms and units

of measure are provided; and all referenced material and sections are

presented. 4) No section is marked “to be determined”.

Q.8 Correct Every requirement represents something required of the system to be built.

Q.9 Consistent No subset of requirements stated therein conflicts. No requirement stated

conflicts with any already base-lined project documentation.

Q.10 Precise Numeric quantities are used whenever possible and appropriate levels of

precision are used for all numeric quantities.

Q.11 Traced The origin of each requirement is clear.

Q.12 Annotated by

relative importance /

stability / version

By relative importance - a reader can easily determine which elements are

the most important. By relative stability - a reader can easily determine

which elements are most likely to change. By version - a reader can easily

determine which elements will be satisfied in which product version.

Q.13 Traceable Written in a manner that facilitates the referencing of each statement.

Q.14 Verifiable There exists a finite cost effective technique that can be used to verify that

every requirement is satisfied by the system to be built.

Q.15 Achievable There exists at least one system design and implementation that correctly

implements all the requirements stated in the requirements document.

Q.16 Design-

independent

There exists more than one system design and implementation that correctly

implements all the requirements stated in the requirements document.

Q.17 At right level

of detail

The model should be specific enough so that any system built that satisfies
all goals satisfies all user needs, and abstract enough so that all systems
that satisfy all user needs also satisfy all goals in the model.

Q.18 Unambiguous Every requirement stated therein has only one possible interpretation.

Q.19 Modifiable Structure and style allow for easy, complete and consistent change.

Se

Q.20 Not redundant The same requirement is not stated more than once.

Q.21 Executable There exists a software tool capable of inputting the requirements document

and providing a dynamic behavioural model.

Q.22 Organised Contents are arranged so that readers can easily locate information, and

logical relationships among adjacent sections are apparent.

Pr

Q.23 Cross-

referenced

Cross-references are used to relate sections containing requirements to other

sections.

Interviewing. The experiment was initiated by the presentation of its settings. The
problem for which the participants had to create goal models was stated as follows:
"What are the major goals and requirements for an information system to be used by
academics and researchers at our university for reporting on scientific activities?"

24 R. Matulevičius and P. Heymans

Fig. 1. LEQ, analysis of the graphical representation criterion (excerpt)

The participants (as groups) had to elicit the needs from two users and one developer
of the existing system. All three interviewees were involved neither in the experiment
nor in its treatment. The students all chose face-to-face interviews with open-ended
questions. Each interview lasted for 30 minutes. The interviews made the participants
familiar with the problem domain and the interviewees’ goals and requirements.

Creating goal models. Each group was randomly assigned a GML (Table 3) and
hence a tool (i*/OME2 and KAOS/Objectiver3) and tutorials. The groups worked for
two weeks independently. They could always ask questions to the teaching staff.
Besides delivering goal models, the participants also acquired knowledge of the GML
they used. This phase yielded two i* and two KAOS goal models.

Table 3. Group activities

Group no (and

Activity size)

I

(5 students)

II

(5 students)

III

(5 students)

IV

(4 students)

Assigned GML i* i* KAOS KAOS

Name of created model i*_model_1 i*_model_2 KAOS_model_1 KAOS_model_2

Evaluated model (a) KAOS_model_1 KAOS_model_2 i*_model_1 i*_model_2

Evaluated GML (b) i* i* KAOS KAOS

Evaluating models and languages. The last step, performed individually, consisted
of two activities (Table 3): (a) each participant filled in a MEQ in order to assess the
quality of a goal model created by his colleagues; (b) each participant evaluated the
GML that s/he used by filling in a LEQ. In the questionnaires we used an evaluation
scale (Fig. 1) ranging from 1 to 5 (1 – lowest, 5 – highest score). Respondents could
also write free comments and observations.

4 Results

In this section we define the result analysis method and present the findings of the
experiment4. Next we discuss the threats to validity.

2 Version 3.0.
3 Release 2.0.0 Professional Edition .
4 The raw material we obtained is available as a technical report [18].

 Comparing Goal Modelling Languages: An Experiment 25

4.1 Analysis Method

We use the result analysis method described in [26] which consists of three major
phases: descriptive statistics, data reduction and hypothesis testing.

Descriptive statistics. The evaluation data for GML and goal models are ranked after
ordering criteria. We thus use the ordinal scale. We calculate median and variation
intervals. For an easier interpretation, we also calculate the mean (Tables 4 and 7).

Data reduction was applied for identification of data outliers. Fig. 2 identifies out-
liers for the i* property “more than one construct that present the same thing”. For
the evaluation presented in the histogram (a), the box plot (b) shows one outlier which
equals to “1” (here, median m = 3,5; 25% percentile lq = 3; 75% percentile uq = 4;
lower tail lt = lq – 1.5(uq – lq) = 1,5; upper tail ut = uq + 1.5(uq – lq) = 5,5). Due to
limited space we will not discuss all the outlier cases. Tables 4 and 7 present results
(except for means) after data reduction.

0

1

2

3

4

5

1 2 3 4 5

(a) (b)

Fig. 2. Data reduction

Hypothesis testing helps to evaluate the experiment statistically at a given signifi-
cance level. Based on the research question formulated in the introduction, we defined
three null hypotheses considering both the quality of goal models and the quality of
GMLs:

 H01: Goal models created using the same GML are of the same quality.
H02: Goal models created using i* and KAOS are of the same quality.
 H03: Both i* and KAOS are of the same quality to create goal models.

The alternative hypotheses (H11, H12, and H13) state that the qualities of GMLs
(resp., goal models) are different. Since the ordinal scale is used, we apply non-
parametric Wilcoxon (W) statistics on the evaluation medians.

4.2 Goal Model Evaluation

Descriptive statistics. Table 4 summarises the evaluations of model properties. When
considering means computed before data reduction, the findings indicate 13 properties
being better evaluated for i*_model_1 and 6 for i*_model_2. Understandability (Q.3)
and conciseness (Q.4) are both evaluated equally for i*_model_1 and for
KAOS_model_2. Some other properties, like availability (Q.1), syntactic validity
(Q.5), design independence (Q.16), and social reusability (Q.2.d), are evaluated high

26 R. Matulevičius and P. Heymans

for KAOS_model_2. KAOS_model_1 is found better for one property, viz. semantic
completeness (Q.7). But it also receives a high evaluation for syntactic validity (Q.5),
completeness (Q.6) and semantic reusability (Q.2.b).

Table 4. Descriptive statistics for goal model properties. M1 – mean, M2 – median, VI – varia-
tion interval; Q.2 addresses reusability (a– physical, b – syntactic, c – semantic, d – social)

i*_model_1 i*_model_2 KAOS_model_1 KAOS_model_2Pro-

perty M1 M2 VI M1 M2 VI M1 M2 VI M1 M2 VI

Mean

of M1

Q.1 4.50 4.50 {4,5} 3.67 3.00 {3,5} 3.50 3.50 {3,4} 4.00 4.00 {4} 3.92

Q.2.a 4.20 4.00 {4,5} 4.00 4.00 {4} 3.40 3.00 {2,5} 3.80 4.00 {3,5} 3.85

Q.2.b 4.20 4.00 {4,5} 3.50 4.00 {2,4} 4.00 4.00 {4} 3.00 3.00 {3} 3.68

Q.2.c 2.80 3.00 {2,4} 4.25 4.50 {3,5} 3.20 3.00 {3,4} 2.60 3.00 {2,3} 3.21

Q.2.d 4.40 4.00 {4,5} 3.75 4.00 {3,4} 3.00 3.00 {2,4} 4.25 4.00 {4,5} 3.85

Q.3 4.00 4.00 {4} 4.00 4.00 {3,5} 3.80 4.00 {3,4} 4.00 4.00 {4} 3.95

Q.4 4.00 4.00 {3,5} 2.25 2.50 {1,3} 2.20 2.00 {1,4} 4.00 4.00 {3,5} 3.11

Q.5 4.60 5.00 {4,5} 4.00 4.00 {4} 4.40 4.00 {4,5} 4.00 4.00 {3,5} 4.25

Q.6 4.40 4.00 {4,5} 3.33 4.00 {2,4} 4.20 4.00 {4,5} 2.80 2.00 {2,5} 3.68

Q.7 3.25 3.00 {3,4} 3.25 3.50 {2,4} 4.20 4.00 {4,5} 2.60 3.00 {2,3} 3.33

Q.8 3.25 3.00 {3,4} 4.00 4.00 {4} 2.50 2.50 {2,3} 3.20 3.00 {3,4} 3.24

Q.9 4.60 5.00 {4,5} 4.00 4.00 {4} 3.80 4.00 {3,4} 3.60 3.00 {2,5} 4.00

Q.17 4.25 4.00 {4,5} 2.67 2.00 {2,4} 2.00 2.00 {1,3} 2.80 3.00 {2,4} 2.93

Q.12 1.60 1.00 {1,3} 3.25 4.00 {1,4} 3.20 3.00 {1,5} 1.20 1.00 {1,2} 2.31

Q.11 4.00 4.00 {4} 5.00 5.00 {5} 2.80 3.00 {1,5} 3.00 4.00 {1,4} 3.70

Q.14 4.00 4.00 {4} 4.00 4.00 {3,5} 2.00 2.00 {2} 3.00 3.00 {3} 3.25

Q.15 4.00 4.00 {3,5} 4.00 4.00 {4} 3.50 3.50 {3,4} 3.80 4.00 {3,5} 3.83

Q.16 4.33 4.00 {4,5} 4.00 4.00 {4} 2.80 3.00 {1,4} 4.00 4.00 {3,5} 3.78

Q.18 3.20 3.00 {2,5} 3.50 3.50 {2,5} 3.40 3.00 {3,4} 3.00 3.00 {2,4} 3.28

Q.19 4.50 4.50 {4,5} 4.25 5.00 {2,5} 2.67 3.00 {2,3} 3.40 4.00 {2,4} 3.70

Q.21 4.00 4.00 {4} 3.67 3.00 {3,5} 3.50 3.50 {3,4} 2.25 2.00 {1,4} 3.35

Q.22 4.40 4.00 {4,5} 4.00 4.00 {4} 3.60 4.00 {3,4} 3.40 4.00 {2,4} 3.85

Table 5. Wilcoxon test for quality of goal models created using the same language (α=0.05)

Model Median
sum

T+ T- N p-value T
(accept H0 if min(T+,T-)<=T)

i*_model_1 84
i*_model_2 84

50 41 13 0.7869 17

KAOS_model_1 71
KAOS_model_2 73

71.50 81.50 17 0.8176 34

Hypothesis testing. To answer H01 we perform the W-test on result pairs obtained by
evaluating i* (i*_model_1 and i*_model_2) and KAOS models (KAOS_model_1 and
KAOS_model_2). See Table 5. In both cases we cannot reject H01 (minimal value of
the rank sum for positive and negative medians is above the critical W-test value).
Goal models created using the same language are of similar quality.

To analyse H02 we need to calculate the W-test four times, i.e. for each i* and
KAOS model comparison. The results (Table 6) show that we can reject the H02 hy-
potheses in favour of the i* models which are better evaluated than KAOS models
(only the comparison between i*_model_2 and KAOS_model_2 is not significant).

 Comparing Goal Modelling Languages: An Experiment 27

Table 6. Wilcoxon test for quality of goal models created using different languages (α=0.05)

Model Median
sum T+ T- N p-value T

(accept H0 if min(T+,T-)<=T)
i*_model_1 84
KAOS_model_1 71

114 22 16 0.0155 29

i*_model_1 84
KAOS_model_2 73

45 0 9 0.0039 5

i*_model_2 84
KAOS_model_1 71

109.5 10.5 15 0.0026 25

i*_model_2 84
KAOS_model_2 73

93.5 26.5 15 0.0554 25

4.3 Language Evaluation

Descriptive statistics. When considering computed means before the data reduction
seven properties of i* are better evaluated than for KAOS and fourteen properties of
KAOS are evaluated better than for i* (Table 7). Only icon understandability is
evaluated equally in both languages.

i* contains less unused constructs although participants indicated some in both
languages (e.g., i*: belief, position, and role; KAOS: obstacle, conflict, resolution,
event, and entity). i* also contains less constructs that might present different things
(e.g., agent could be both system and person) although respondents indicated some
for both languages. But KAOS contains less constructs that could present the same
thing (e.g., KAOS: assignment and responsibility; for i*: goal and softgoal, goal and
task) and less constructs which use was not understood (e.g., KAOS: domain prop-
erty, expectation vs requirement; i*: position, means-ends, and belief).

The respondents indicated that i* is better suited to present structural as well as
actor and role modelling. The other three views (rule-based, functional and behav-
ioural) are better covered by KAOS. KAOS is also better suited for different devel-
opment phases (early and late requirements, and design), it is better supported by
documentation, and has better language guidelines. Although i* is easier to use,
KAOS provides better satisfaction and is more useful. Many respondents indicated
that both languages are useful since they helped to create goal models and to finish
the task.

Hypothesis testing. Table 8 shows the summary of the W-test when applied to the
language evaluation results. The test yields a value above the critical value for the W-
test. This means that we cannot reject H03. The result shows that KAOS is better
evaluated than i* but the result is not significant.

4.4 Threats to Validity

We will analyse in turn the threats to conclusion, internal, construct and external
validity [27]. Conclusion validity deals with the experiment’s treatment. The partici-
pants were given treatment related to RE in general, but not particularly to the ex-
periment. Validity also depends on the questionnaire design. To mitigate this latter
threat, two researchers not involved in the experiment reviewed both questionnaires.

28 R. Matulevičius and P. Heymans

Table 7. Descriptive statistics for language properties; M1 – mean; M2 – median; VI – varia-
tion interval

i* evaluation KAOS evaluation Cri-
teria

Property
M1 M2 VI M1 M2 VI

Mean
of M1

C.18 Language rich enough 3.80 4 {4} 4.00 4 {4} 3.90
Constructs that were not used
(excess)

3.30 3 {2,4} 3.00 3 {3} 3.15

Construct to present different things
(overload)

3.80 4 {1,5} 3.44 3 {3} 3.62

More than one construct that present
the same thing (redundant)

3.30 4 {2,5} 3.78 3 {3,5} 3.54
C.17

Construct use not understood
(underdefined)

3.60 3.5 {2,5} 4.00 4 {4} 3.80

C.12
Completeness of tutorials and
documentation

3.60 4 {2,5} 3.78 4 {2,5} 3.69

Structure of the system 3.60 4 {3,5} 3.11 3 {2,5} 3.36
Actors and their roles 3.90 4 {4} 3.11 3 {2,4} 3.51
Rules 2.90 3 {2,4} 4.00 4 {4} 3.45
Functional view 3.30 3 {2,4} 3.89 4 {3,5} 3.59

C.1

Behavioural view 2.40 2.5 {1,4} 2.78 3 {1,4} 2.59
Icons easy to understand 3.90 4 {3,5} 3.90 4 {4,5} 3.89
Icons easy to remember 4.30 4.5 {3,5} 4.00 5 {4,5} 4.15 C.4
Sufficiently different icons 3.80 4 {2,5} 3.33 3 {2,5} 3.57

C.9 Tool coverage of expectation 3.90 4 {4} 4.22 4 {3,5} 4.06
Early requirements 3.60 4 {2,5} 4.22 4 {4} 3.91
Late requirements 2.30 2 {2,3} 3.78 4 {4} 3.04 C.15
Design 2.40 2 {1,4} 3.56 4 {2,5} 2.98

C.8 Guidelines 2.70 3 {2,4} 3.56 3 {2,5} 3.13
Language easy to use 3.90 4 {4} 3.78 4 {2,5} 3.84
Satisfied of language usage 3.60 4 {3,4} 4.00 4 {4} 3.80
Language usefulness 3.70 4 {3,4} 3.89 4 {4} 3.79

C.20

Intention to use 3.00 3 {2,5} 3.44 3 {1,5} 3.22

Table 8. Wilcoxon test for language quality (α=0.05)

Language Median
sum

T+ T- N p-value T
(accept H0 if min(T+,T-)<=T)

i* 81.5
KAOS 84

35 43 12 0.791 13

Internal validity might be affected by formation of participant groups. We were
not influencing this process, so the participants might have formed their groups
according to the known skills of their colleagues. Also, the same person who designed
the experiment also gave treatment. To decrease the threat, the participants conducted
the experiment as a self-controlled exercise.

Threats to construct validity are misinterpretation of the qualitative properties for
goal models and languages. To mitigate, we provided self-study material about the
usage of both languages. In addition, we identified data outliers using data reduction.
Having the same person in charge of both the treatment and the experiment design
(see above) has the advantage that the terminology is more consistent between the
given treatment and the one used in questionnaires.

A threat to external validity is that, being students, the participants had no real
ambition to improve the languages and models; hence the motivation for participating
in the evaluation might have been smaller than in reality. To compensate, the students

 Comparing Goal Modelling Languages: An Experiment 29

were being rewarded for better models and high participation with extra points. The
case was also of a small size and academic; the findings might be different in indus-
trial settings. Being students, the participants had basic knowledge but limited practi-
cal experience. As an advantage, they were quite homogeneous regarding age and
background: 3,5 to 4 years of the same study program, which is quite close to the
level of a junior practitioner. The use of students is a common experimentation
approach in software engineering [8], [25].

5 Discussion

In this section we discuss the quality of GMLs and of the corresponding goal models.

5.1 Language Quality

Firstly, we consider the language criteria not used in the LEQ. Both languages are
free to use; but we needed to obtain academic licenses for the tools. KAOS and i* are
mostly used in research projects5. Both languages fulfilled our experiment require-
ments: they are (i) goal-oriented, (ii) supported by tools, and (iii) supported by tutori-
als and documentation. We did not analyse distributed paradigms, automated analysis
nor communication synchronisation and exception handling, because they are specific
cases of language application. To narrow the scope of the experiment we also did not
investigate extendability, but respondents indicated UML constructs as possible im-
provements, especially, for the design phase.

Secondly, we analyse the results of the qualitative properties. Due to the goal-
oriented perspective, both languages highly support the actor and role view, but deal
much less with the other views (especially behavioural). A survey of GMLs [10]
concludes that i* is more suited for early requirements and KAOS for late require-
ments. Here, KAOS and i* are both evaluated high for early requirements, and low
for late requirements and design; KAOS’ support was deemed better than i*’s for
both phases. However, we need to balance this with the fact that the participants were
asked to create goal models, and not derive further lifecycle artefacts from it.

Respondents highlighted that it is easy to understand and to remember graphical
icons. Graphical representation for i* is evaluated higher than for KAOS. Although
[1] discusses that colours in Objectiver contribute to model understandability, respon-
dents indicated that model quality might be improved (and complexity reduced [21])
by introducing different construct shapes but not colours.

A comparison of goal modelling tools [20] reports that Objectiver (commercial
tool) is of a higher quality than OME (research prototype). The respondents con-
firmed the result, indicating that Objectiver fulfilled their expectations better.

Well-written language tutorials and documentation provide sufficient information
to understand how to use most language constructs. As others recognise, the lan-
guages lack methodological guidelines [1]. We observed the users adapting to this
situation as they acquired experience though.

5 For i*, see http://www.cs.toronto.edu/km/istar/; for KAOS, see http://www.info.ucl.ac.be/

Bienvenue/PagesPersonnelles/avl/ReqEng.html

30 R. Matulevičius and P. Heymans

Both languages possess rich sets of construct, but not all constructs are well-
defined [19]. The respondents indicated that i* (that has less constructs than KAOS)
has lower construct excess and overload (see C.17 in Table 7). On the other hand,
KAOS is deemed less redundant and underdefined than i*. The experiment indicates
a better overall quality for i* models. KAOS appears more complete in terms of con-
structs, but when one has to make a first high level goal model, the language may
appear too rich. Respondents indicated that languages are easy to use, useful, and
satisfy their needs. However they are a bit sceptical about their intention to use these
languages in the future.

5.2 Goal Model Quality

Thanks to tool support for i* and KAOS, syntactic quality (syntactic validity (Q.5)
and syntactic completeness (Q.6)) are evaluated high. But there are problems with
semantic quality where properties (such as model annotation (Q.12), verifiability
(Q.14), executability (Q.21), and semantic completeness (Q.7)) are evaluated low.
Semantic correctness limitations are indicated in [1] too. The tools are still mostly
about “drawing” [20]; they lack engineering functionality.

Model complexity is addressed through empirical quality [21]. The results indicate
as high the properties organised (Q.22) and understandable (Q.3) [1]. Understand-
ability has an inverse correlation with conciseness (Q.4). In [21] it is argued that a
model should contain 7-8 elements, but it was substantially more (20 on average) in
our models. The models were ambiguous (Q.18), due to (i) insufficiently defined
semantics [19], (ii) no usage of formal specifications [1], and (iii) no support for for-
mal specifications by the tools [20].

6 Lessons Learnt and Future Work

This paper reports on an experiment through which we investigated the quality of two
GMLs (i* and KAOS) and of goal models created using them. The findings indicate a
higher quality for the KAOS language (although the result is not significant), but it
reports higher quality for the i* goal models. The lessons learnt include:

- The semantics of GML constructs is not defined clearly enough. This results from
the evaluation of qualitative language properties and is supported by others [19].

- GMLs and their tools do not provide sufficient means to ensure semantic quality
of models. In addition to the lack of semantics, means to ensure model annotation,
verifiability and traceability are missing in the tools (see also [1], [20]).

- GMLs and goal modelling tools provide means to ensure high physical, empirical
and syntactic quality of models. Both languages and tools contribute to high model
understandability, organisation, syntactic validity and syntactic completeness, and
suggest means for syntactic, social and physical reuse.

- GMLs lack methodological guidelines, although the situation improves as users
acquire experience [1].

- The quality of individual goal models depends on particular language characteris-
tics with respect to a given context. Even if one language is evaluated better than
the other, this does not guarantee that the quality of the goal model would be bet-
ter. Model quality much depends on the user’s experience, the effort spent for
model creation and the evaluator’s subjective judgement.

 Comparing Goal Modelling Languages: An Experiment 31

The working hypothesis was that a high quality language would contribute positively
to effective and efficient modelling. This experiment showed low and high qualities
that need to be considered when evaluating, selecting and improving GMLs. Our
future work includes the repetition of similar experiments in order to validate and
enhance the findings. We also plan to investigate other GMLs. We will also continue
to investigate how goal tools support RE as well as other development phases.

References

1. Al-Subaie, H.S.F., Maibaum, T.S.E.: Evaluating the Effectiveness of a Goal-oriented Re-
quirements Engineering Method. In: Proc. of the 4th Int. workshop on Comparative
Evaluation in Requirements Engineering (CERE’06), pp. 8–19 (2006)

2. Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol,
E., Quer, C.: A Comparative Analysis of i*-based Agent-oriented Modelling Languages.
In: Proc. of the Int. workshop on Agent-oriented Software Development Methodology, pp.
43–50 (2005)

3. Berio, G., Opdahl, A., Anaya, V., Dassisti, M.: Deliverable DEM1, (last accessed
31.03.2007) (2005) www.interop-noe.org

4. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., Lede-
boer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and Measuring
Quality in a Software Requirements Specification. In: Proc. of the 1st Int. Software Met-
rics Symposium, pp. 141–152 (1993)

5. Franch, X.: On the Quantitative Analysis of Agent-oriented Methods. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

6. Hakkarainnen, S., Strašunskas, D., Hella, L., Tuxen, S.: Choosing Appropriate Method
Guidelines for Web-ontology Building. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., My-
lopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 270–287. Springer, Heidel-
berg (2005)

7. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-oriented Requirements Analy-
sis Methods. In: Proc. of the 10th joint Conf. on Requirements Engineering (RE’02), pp.
13–22 (2002)

8. Karlsson, L., Berander, P., Regnell, B., Wohlin, C.: Requirements Prioritisation: An Ex-
periment on Exhaustive Pair-Wise Comparison versus Planning Game Partitioning. In:
Proc. of the Empirical Assessment in Software Engineering, pp. 145-154 (2004)

9. Kavakli, E.: Goal-oriented Requirements Engineering: a Unifying Framework. Require-
ments Engineering Journal 6(4), 237–251 (2002)

10. Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and
Critique of Current Methods. In: Krogstie, J., Halpin, T., Siau, K. (eds.) Information Mod-
eling Methods and Methodologies, IDEA Group Publishing, pp. 102–124 (2005)

11. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 617–632.
Springer, Heidelberg (2003)

12. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In: Proc.
IFIP 8.1 working Conf. on Organisational Semiotics, pp. 231–249 (2001)

13. Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development for
Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling Language: Sys-
tem Analysis, Design and Development Issues, IDEA Group Publishing, pp. 89–106
(1998)

32 R. Matulevičius and P. Heymans

14. Krogstie, J., Jørgensen, H.D.: Quality of Interactive Models. In: Spaccapietra, S., March,
S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 251–263. Springer, Heidel-
berg (2002)

15. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Proc.
of the 5th IEEE Int. Symposium on Requirements Engineering, Toronto, pp. 249–263
(2001)

16. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering. PhD the-
sis, Universite Catholique de Louvain (2001)

17. Matulevičius, R.: Process Support for Requirements Engineering: A Requirements Engi-
neering Tool Evaluation Approach. PhD theses. Norwegian University of Science and
Technology (2005)

18. Matulevičius, R.: Experimentation with i* and KAOS Comparison of Languages, Tools
and Models. Technical report, UoN, (last accessed 31.03.2007) (2006), http://
www.info.fundp.ac.be/ rma/cigmol/deliverables/Deliverable-D1-d-experiment-tr.pdf

19. Matulevičius, R., Heymans, P., Opdahl, A.L.: Comparing GRL and KAOS using the
UEML Approach. In: Concalves, R.J., Muller, J.P., Mertins, K., Zelm, M. (eds.) Enterprise
Interoperability II. New Challenges and Approaches, pp. 77–88. Springer, Heidelberg
(2007)

20. Matulevičius, R., Heymans, P., Sindre, G.: Comparing Goal-modelling Tools with the RE-
tool Evaluation Approach. Journal of Information Technology and Control, Lithuania,
Technologija 35A(3), 276–284 (2006)

21. Moody, D: What Makes a Good Diagram? Improving the Cognitive Effectiveness of Dia-
grams in IS Development. To be published In: Proc. of the 15th Int. Conf. on Information
Systems Development (ISD 2006) (2006)

22. Mylopoulos, J.: Goal-Oriented Requirements Engineering, Part II. In: Proc. of the 14th
IEEE Int. Conf. on Requirements Engineering (RE’06), vol. 4 (2006)

23. Piattini, M., Genero, M., Poels, G.: Nelson: Towards a Framework for Conceptual Model-
ling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Concep-
tual Models, pp. 1–18. Imperial College Press, London (2005)

24. Regev, G.: Goal Driven Requirements Engineering Overview, (last accessed 31.03.2007)
http://lamswww.epfl.ch/reference/goal

25. Regev, G., Wegmann, A.: Where do Goals Come From: the Underlying Principles of
Goal-oriented Requirements Engineering. In: Proc. of the 13th IEEE Int. Conf. on Re-
quirements Engineering (RE’05), pp. 353–362 (2005)

26. Shoval, P., Yampolsky, A., Last, M.: Class Diagrams and Use Cases – Experimental Ex-
amination of the Preferred Order of Modeling. In: Proc. of the Int. workshop on Exploring
Modeling Methods for System Analysis and Design (EMMSAD’06), pp. 453–472 (2006)

27. Wohlin, C., Runeson, P., Høst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering. Kluwer Academic Publishers, Boston (2002)

28. Yu, E.: Towards Modeling and Reasoning Support for Early-phase Requirements Engi-
neering. In: Proc. of the 3rd IEEE Int. symposium on Requirements Engineering (RE’97),
pp. 226–235. IEEE Computer Society Press, Washington, DC (1997)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 33 – 47, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatically Generating Requirements from i*
Models: Experiences with a Complex Airport Operations

System

Cornelius Ncube, James Lockerbie, and Neil Maiden

Centre for HCI Design, City University London, UK
{C.Ncube,J.Lockerbie}@soi.city.ac.uk, N.A.M.Maiden@city.ac.uk

Abstract. Research undertaken in RESCUE to bridge the gap between both the
model based specification and textual representation of requirements, showed
that manually applying requirements generation patterns to i* system models
could provide requirements engineers with productivity gains. This paper re-
ports an extension to the RESCUE process in which a revised set of patterns
was implemented within our REDEPEND goal modelling tool and trialled
through a requirements engineering project for a complex airport operations
system. The paper describes how these patterns were applied automatically to i*
models in REDEPEND to generate textual candidate requirement statements,
the results of this application, the benefits of the approach to the project, and
our ongoing research in this area to improve productivity in large-scale re-
quirements engineering projects.

1 Introduction

There are many model-based specification and analysis approaches reported in the
literature to specify the requirements of computer-based systems (e.g. [2, 9]). In con-
trast, most organizations continue to represent requirements textually, both to enable
requirements to be reviewed by stakeholders, and to deliver requirements documents
that are legally binding on the contractor. Unfortunately, most modelling approaches
have not been designed to support the derivation of requirements statements from
models or to be used along side textual requirement descriptions.

This paper describes our REDEPEND tool for i* goal modelling and analysis, and
the pattern-based techniques used to automatically generate textual requirement
statements from graphical i* models. We report an approach in which we automati-
cally applied 30 simple patterns to an i* SD model [9] describing a complex environ-
mentally-friendly airport operations system to derive 578 textual requirements
statements structured using the VOLERE shell [8]. The simplicity of the patterns and
their effectiveness suggests deriving requirements statements automatically from i*
models provides productivity gains and more complete requirements coverage.

The remainder of this paper is in 7 sections. The next section introduces the
VANTAGE system. Section 3 describes the application of goal modelling in
RESCUE, and reports the i* models produced for VANTAGE. Section 4 presents the

34 C. Ncube, J. Lockerbie, and N. Maiden

REDEPEND goal modelling tool, and describes the 30 patterns that were designed to
automatically generate requirements statements from REDEPEND i* models. Section
5 describes the requirements generation process undertaken by the VANTAGE team
and presents 3 research questions. Section 6 describes the quantitative and qualitative
analysis of the generated requirements. Section 7 revisits the research questions. The
paper concludes with lessons learned, the proposals for future work to improve the
requirements generation process, and proposals for future extensions to REDEPEND.

2 The VANTAGE System

Growth and capacity of regional airports is constrained world-wide by environmental
issues, lack of accurate surveillance, and lack of integrated models for environment,
economics and airport operations. The VANTAGE (Validation of a Network-Centric,
Technology Rich ATM System Guided by the Need for Environmental Governance)
Phase-1 project, funded by the UK’s Department of Trade and Industry, is integrating
new technologies into the operations of regional airports in the UK to reduce their
environmental impact, measured as noise and gas emissions. Partners who include
Raytheon, Thales, Selex, Flight Refuelling Limited and Qinetiq are introducing new
technologies such as Surveillance systems, Approach Path Monitors, BCA Environ-
mental Support Tools (BEST), Flight displays, a Noise Monitoring system, an Emis-
sions Monitoring system and a Synthetic Environment into airport operations at
Belfast City Airport (BCA), the pilot site for the project. The objectives of the
VANTAGE project are to capture the emerging operational concepts and confirm the
enabling technologies for airport environment modelling of noise and gaseous emis-
sions. VANTAGE applies existing technologies in new areas and develops novel
solutions to problems to ensure satisfaction of all stakeholders.

3 i* System Models for VANTAGE

We applied our RESCUE process [3] to determine new requirements and opportuni-
ties arising from the technology-led changes to the complex socio-technical airport
systems at BCA, and in particular to the work practices of actors such as air traffic
controllers (ATCOs), dispatchers and refuelling staff. Requirements challenges spe-
cific to VANTAGE included exploring the complex boundaries of airport operations,
determining the impacts on work practices that might be changed, and deriving new
requirements from opportunities that emerge with the new technologies.

RESCUE adopts the established i* modelling approach [9] but extends it to model
complex technical and social systems, establish different types of system boundaries,
and generate requirement statements. i* is an approach originally developed to model
information systems composed of heterogeneous actors with different, often compet-
ing goals that depend on each other to undertake their tasks and achieve these goals –
like the socio-technical and information systems found in a complex airport opera-
tions system. The first i* model produced is the Strategic Dependency (SD) model,
which describes a network of dependency relationships among actors. The opportuni-
ties available to these actors can be explored by matching the depender who is the
actor who “wants” and the dependee who has the “ability”.

 Automatically Generating Requirements from i* Models 35

The VANTAGE SD model was developed iteratively with key stakeholders pro-
viding feedback at all stages. In stage 1, we worked with BCA internal and external
stakeholders to identify candidate VANTAGE system actors and their goals for envi-
ronmentally friendly airport operations. Having identified candidate actors, we then
solicited a dependency table that described important strategic dependencies between
actors in and around the airport. From the dependency table feedback, we then devel-
oped a first-cut SD model with airport operations actors which we only verified with
BCA stakeholders. In stage 2, VANTAGE solution providers provided their system
actors and dependencies which were then added to the basic model and linked to the
airport operations actors. In stage 3, we reviewed the SD model with all key stake-
holders for its completeness. Key systems actors such as Aircraft, Noise Monitoring
system, Emissions Monitoring system, Noise monitors and Emissions monitors were
discovered to be missing and added to the model. These system actors acted as the
glue to providing a VANTAGE solution and were not attributable to any individual
stakeholder. Also, duplicate dependencies and actors were identified and removed.
The resulting SD model was then sent to stakeholders and project partners for review
and final comments. After this, the SD model was baselined and frozen to be used as
a basis for requirements generation, as detailed in section 5.

Fig. 1. The SD Model for VANTAGE, with three expanded sample sections

Figure 1 shows the SD model for VANTAGE, with three expanded sections for
explanation purposes. The SD model was large, completely filling an A3 size page,
and specified 55 actors with 186 dependencies between them. It specifies strategic
dependencies between the VANTAGE systems (e.g. Surveillance Systems, BEST,
and Approach Path Monitor), and human roles that depend on VANTAGE systems to
do their work (e.g. ATCO and Dispatcher). These and other such dependencies inform
the discovery and specification of requirements on the future system that reflect key

36 C. Ncube, J. Lockerbie, and N. Maiden

VANTAGE project objectives such as: the application of cooperative surveillance
technology to airport surface operations (e.g. BEST-D system depends on Surveillance
Systems for the departing aircraft position report); the integration of advanced sensor
and network technology with legacy ATM systems (e.g. the Dispatcher depends on
BEST-A system to distribute updates to ETA); and a new aircraft approach/depart
trajectory for noise management and fuel burn reduction (e.g. the ATCO depends on
the Approach path monitor to monitor in-bound aircraft approach path).

The second type of i* model is the Strategic Rationale (SR) model, which provides
an intentional description of how each actor achieves its goals and soft goals. An
element is included in the SR model only if it is considered important enough to affect
the achievement of some goal [9]. Unlike in previous projects where the SR model
provided a more detailed view of the SD model – the traditional approach – we used
the SR level of abstraction to develop an environmental impact model. Through cap-
turing the domain knowledge of an expert in sustainable aviation, we were able to
create an underpinning reference model showing soft goal tradeoffs between five
major actor groups in the wider social network. We aim to report this work in the near
future.

4 REDEPEND

The i* models for VANTAGE were produced using REDEPEND, a graphical model-
ling tool provided in RESCUE. The tool provides systems engineers with i* model-
ling and analysis functions, coupled with additional functionality and the reliability of
Microsoft Office Visio 2003. REDEPEND includes two graphical palettes containing
key i* modelling constructs for producing SD and SR models. The user is able to drag
and drop the required process elements onto the REDEPEND drawing page and then
use the pre-defined links to provide the associations between the different elements
within the model.

REDEPEND has been used successfully to model complex socio-technical systems
in European air traffic control projects [5, 7]. However, although requirements ana-
lysts were able to develop and use the models within each project, some questions
were asked about the wider utility of i* modelling given the efforts needed to develop
the models in the first place. Hence, we extended REDEPEND with new productivity
features that are designed to make it more useful and usable to requirements engi-
neers. One such feature is the automatic pattern-based generation of candidate
requirement statements. This uses the SD model to generate textual requirement state-
ments to justify the effort needed to produce i* models and make requirements pro-
jects more productive. In particular, by automatically generating these candidate
requirement statements, we aim to exploit evidence that people are better at identify-
ing errors of commission rather than omission [1], which they are better at recogniz-
ing incorrect rather than missing requirements statements. We have already exploited
this general trend in human cognition for recall to be weaker than recognition when
designing the ART-SCENE scenario walkthrough tool [4].

 Automatically Generating Requirements from i* Models 37

4.1 Requirements Generation Patterns in REDEPEND

In RESCUE we designed simple patterns – recurring syntactic and semantic structures
in the i* models – that are applied automatically to any SD model expressed in
REDEPEND to generate textual requirement statements. Our patterns are not tradi-
tional in the design sense – a solution to a problem in context. Rather each pattern
defines one or more desired properties (requirements) on the future system that must
be satisfied for the SD model dependency to hold for the future system. As such, the
SD model, which has been signed off as complete and correct, informs further discov-
ery and specification of requirements statements [7].

A set of 19 patterns was originally developed during an application of RESCUE
[3] to model requirements for DMAN, a socio-technical system for scheduling and
managing the departure of aircraft from major European airports. The first 16 patterns
were specific to the i* SD model dependency, defined in terms of the dependency’s
process element (goal, task, resource or soft goal) and the types of depender and
dependee actors (new system, adjacent system, and stakeholder). The 3 additional
patterns were specified to handle composite process elements in the i* model depend-
encies. For full details, see [6].

For VANTAGE, we expanded the patterns library to cover more of the possible
combinations of the dependency’s process element and the types of depender and
dependee actors, resulting in 30 out of a possible 36 patterns. The remaining 6 pat-
terns were not created as they did not feature in the dependencies in the VANTAGE
SD model, but we aim to develop these during future project work. The first four
patterns, P1–P4, and the last two patterns, P29 and P30, are specified in Table 1.
Definitions of SD model constructs are: new software system actor (NSA); adjacent
system actor (ASA); stakeholder actor (STA); goal (G); soft goal (SG); task (T); re-
source (R); dependency association between the depender actor DR and dependee DE
actor for an outcome O (DR depends DE: O). Definitions of requirement statement
constructs are: soft goal ((SG (type)); functional requirement (FR); reliability re-
quirement (RR); availability requirement (AR); performance requirement (PR); look
and feel requirement (LFR); usability requirement (UR); interoperability requirement
(IR); and training requirement (TR). Each pattern was given a unique ID for reference
purposes.

For each pattern including a goal, task or resource as the outcome, we specify one
or more functional requirements, and a pattern-specific set of non-functional require-
ments covering reliability, performance, availability, look and feel, usability, interop-
erability and training. For example, in P2 the new system actor depends on an
adjacent system to obtain a resource, therefore we specify a functional requirement
that the new system shall receive the resource from the other system (FR). We also
specify four types of non-functional requirement statement in this pattern: for the
resource to be received reliably from the other system (RR), for the new system to be
available to receive the resource from the other system (AR), for the resource to be
received in good time (PR), and for the new system and adjacent system to be inter-
operable (IR). This demonstrates the logical and semantic relationship of the
REDEPEND patterns. For other non-functional requirement types we use the soft
goal dependency, such as in P1, to specify the associated non-functional textual re-
quirement statement (NB: there were no soft goal dependencies specified in the
VANTAGE SD model).

38 C. Ncube, J. Lockerbie, and N. Maiden

Table 1. Six extracts from the set of requirements patterns used for generating candidate
requirement statements from the SD model

ID SD dependency
(DR depends DE: O)

Candidate requirement statements

P1 NSA depends ASA: SG SG (type): The 'NSA' shall 'SG'
P2 NSA depends ASA: R FR: The 'NSA' shall receive the 'R' from the 'ASA'

RR: The 'N SA' shall receive the 'R' reliably from the 'ASA'
AR: The 'NSA' shall be available to receive the 'R' from the 'ASA'
PR: The 'NSA' shall receive the 'R' in good time from the 'ASA'
IR: The 'NSA' shall be interoperable with the 'ASA'

P3 NSA depends ASA: G FR: The 'NSA' shall attain the 'G'
FR: The 'ASA' shall provide the 'NSA' with the 'R'
FR: The 'NSA' shall receive the 'R' from the 'ASA'
RR: The 'NSA' shall receive the 'R' reliably from the 'ASA'
AR: The 'ASA' shall be available to receive the 'R' from the 'NSA'
PR: The 'NSA' shall receive the 'R' in good time from the 'ASA'
IR: The 'NSA' shall be interoperable with the 'ASA'

P4 NSA depends ASA: T FR: The 'NSA' shall 'T'
FR: The 'ASA' shall provide the 'NSA' with the 'R'
FR: The 'NSA' shall receive the 'R' from the 'ASA'
RR: The 'NSA' shall receive the 'R' reliably from the 'ASA'
AR: The 'ASA' shall be available to receive the 'R' from the 'NSA'
PR: The 'NSA' shall receive the 'R' in good time from the 'ASA'
IR: The 'NSA' shall be interoperable with the 'ASA'

… … …
P29 ASA depends ASA: T FR: The 'ASA2' shall 'T'

FR: The 'ASA2' shall provide the 'R' to the 'ASA'
AR: The 'ASA2' shall be available to the 'ASA' to the 'T' task
UR: The 'ASA2' shall undertake the 'T' task without error
PR: The 'ASA2' shall undertake the 'T' task in good time
LFR: The 'ASA' shall have an interface to enable the 'ASA2' to 'T'

P30 ASA depends ASA: R FR: The 'ASA' shall receive 'R' from the 'ASA2'
RR: The 'ASA2' shall send 'R' reliably to 'ASA'
AR: The 'ASA2' shall be available to provide 'R' to the 'ASA'
PR: The 'ASA2' shall send 'R' in good time to 'ASA'
IR: The 'ASA' shall be interoperable with 'ASA2'

4.2 Requirements Generation Features

Figure 2 demonstrates how REDEPEND generates requirements from an analyst’s
perspective. The top image shows how the requirements generation function is ac-
cessed from the REDEPEND top-line pull-down menu, and then the analyst is pre-
sented with a set of requirements generation options. The analyst can select the entire
SD model or just the checked (pre-selected) dependencies, plus more fine grain filter-
ing by the depender’s actor type (Figure 2a). The middle image shows how
REDEPEND delivers the candidate requirement statements into tailored MS Excel
sheets (Figure 2b). The analyst can sort, filter, tick and un-tick requirement statements
and add associated use case references prior to generating structured VOLERE shells
in MS Word, as depicted in the bottom image (Figure 2c). The selected requirements
are automatically generated into an MS Word document, as this is the most common
storage mechanism for requirements, used in requirements management tools such as
RequisitePro. Each requirement in the document is structured using a partially com-
plete VOLERE shell [8]. For each requirement, the shell specifies a unique identifier

 Automatically Generating Requirements from i* Models 39

for the requirement in the generation run; the requirement type; a use case reference;
the requirement description; a rationale of canned text describing how the requirement
was generated; and the source dependency in the SD model from which the require-
ment was generated.

Fig. 2. The three stages of requirements generation in REDEPEND

In the original DMAN project we prototyped pattern-based requirements genera-
tion manually with the DMAN SD model resulting in 214 new DMAN requirement
statements – almost 25% of the total number of requirements statements in the final
DMAN requirements specification. It took a systems engineer and an experienced
member of the RESCUE team a total of 3 working days to apply all of the patterns to
the dependencies in the SD model [6]. In contrast, in a trial of REDEPEND running
on a standard laptop PC it took 12 seconds to generate 287 requirements automati-
cally from the same DMAN SD model – a larger number of requirements being

a

b

c

40 C. Ncube, J. Lockerbie, and N. Maiden

generated due to refinements in the patterns. This result suggested that automatic
generation of requirements is potentially cost-effective, provided the requirements
generated are what analysts and stakeholders want. This question is explored in more
detail in section 6.

5 Requirements Generation for VANTAGE

We began by developing a process for generating and distributing the requirements
from the i* SD model, involving stakeholder input and the use of tool-based options
in REDEPEND. Next we devised a stakeholder review process, in which the stake-
holders were asked to consider whether the requirements were valid requirements on
the VANTAGE systems. Finally, we investigated the data collected and the returned
requirements to answer three questions concerning the overall productivity of the
approach and the qualities of the requirements generated.

5.1 Requirements Generation Process

The requirements generation process was performed in 3 steps: In Step 1, we gener-
ated requirements from a first-cut SD model – containing only BCA actors – which
were then sent to BCA stakeholders for validation. In Step 2, after adding new actors
to the SD diagram, we generated requirements from the entire model and then sent
them to all stakeholders. Approximately 500 candidate requirements were generated
and the stakeholders were overwhelmed by the large number. Some requirements
were valid, some needed refining, and it was also clear the patterns required a few
refinements as well. Some stakeholders provided feedback but not all. Those that
provided feedback tended to focus on the requirements that were only relevant to
them. Therefore, in Step 3, we made changes to the REDEPEND tool functionality to
enable us to generate stakeholder-specific requirements based on specific actors in the
SD model. This more direct and concise approach to requirements generation and
dissemination led to a positive response from all stakeholders.

REDEPEND provides the user with a number of possibilities for generating re-
quirements from the SD model, as depicted in Figure 2a. One option is to generate
requirements from the entire model – in this case, generating 868 candidate require-
ments. Another option enables the user to generate requirements based on the de-
pender’s actor type. Each SD actor is classified as NSA, ASA or STA, as described
earlier in section 4.2. With the entire model selected, there were 130 NSA type re-
quirements; 210 ASA type requirements; and 528 STA type requirements generated.
For VANTAGE, we chose a different option, generating requirements using checked
dependencies only. Using this option we were able to select the dependencies associ-
ated with specific actors in the SD model, and in turn generate a set of candidate re-
quirement statements tailored to each individual stakeholder. The rationale for this
was that using either of the first two options may have meant sending all 868 re-
quirements to all stakeholders for review, and clearly this would have been a difficult
task, even with the filtering capabilities in Excel.

 Automatically Generating Requirements from i* Models 41

5.2 Requirements Review Process

First we generated an actor table, listing all key actors in the SD model. We sent this
table to all key stakeholders from BCA and solution providers and asked them to
choose which actor requirements they would like to review and therefore be responsi-
ble for. We then used this feedback to produce 16 sets of requirements by actor for 5
specific groups of stakeholder – one set on Surveillance systems for Raytheon, one set
on BEST systems for Selex, two sets on the Approach Path Monitor and the
VANTAGE system for Thales, one set on FRL Displays system for Flight Refuelling
Limited, and eleven sets for BCA environmental management.

We then sent each stakeholder their relevant requirements in Excel spreadsheet
format, the VANTAGE use case model with use case précis descriptions and instruc-
tions on what to do. Each requirement is documented on a separate row as shown in
Figure 2b. The stakeholders were instructed to consider each requirement in turn, and
if they considered that the requirement is a valid requirement on a system that imple-
ments VANTAGE at BCA, then: they tick the requirement in the selection box; where
needed, they edit the text of the requirement; if really needed, they change the type of
the requirement; if possible, they link the requirement to one or more of the specified
VANTAGE use cases by inserting the use case ID; and they generate VOLERE shells
using the generation option on the spreadsheet.

The stakeholders were given a deadline to return their reviews in both forms – the
modified Excel spreadsheet and generated VOLERE shells in a Word document. All
selected requirements were later entered into the RequisitePro tool, our in-house re-
quirements management database, as part of the final specification.

5.3 Three Research Questions

Having automatically generated requirements from i* models, we analysed the
requirements and data to answer the following three questions:

Q1 Is automatically generating requirements from i* models more productive than
the other RESCUE requirements acquisition techniques used in the project?

Q2 Do requirements generated from i* models result in a more complete overall
requirements specification?

Q3 Do requirements generated from i* models differ from those derived from the
other techniques in terms of granularity, focus, clarity and precision?

Question Q1 was asked to investigate and justify the effort required to automatically
generate requirements from i* models compared to other techniques. Questions Q2
and Q3 were asked to investigate i* models’ requirements coverage.

6 Results

Overall 4 stakeholders returned their requirements reviews in time. Of these, 3 were
solution providers and the other was the BCA representative. One solution provider
did not return his reviews. Of the 868 requirements sent, 578 (i.e. 67%) were returned
as valid VANTAGE systems requirements and 290 (i.e. 33%) were rejected. These
outcomes are summarized in Table 2.

42 C. Ncube, J. Lockerbie, and N. Maiden

Table 2. Sent and returned requirements by type

Req Type Sent Reqs Returned Reqs % Returned Returned as-is Edited

AR 171 110 64% 110 0

FR 284 221 78% 208 13

IR 26 12 46% 12 0

LFR 76 49 64% 42 7

PR 124 61 49% 59 2

RR 48 16 33% 16 0

TR 82 74 90% 74 0

UR 57 35 61% 34 1

Total 868 578 67% 555 (96%) 23 (4%)

Of the accepted requirements, 96% (555) were returned un-edited and 4% (23)
were edited. Some editing was simple, for example changing the requirement ‘The
Surveillance systems shall receive ‘R’ from the Aircraft’ to ‘The Surveillance systems
shall receive the 1090 ES data messages from the Aircraft’. In this instance, the
REDEPEND pattern has detected that there is a missing ‘Resource’ dependency be-
tween the Surveillance systems and the Aircraft, hence the ‘R’. Some of the editing
was more substantial, such as the requirement ‘The Decision support tools shall have
an interface to enable the ATCO to the detect potential 4D trajectories into blocks of
defined airspace with defined environmental requirements task’ was edited to ‘The
Decision support tools shall have an interface to enable the ATCO to be aware of
potential 4D trajectories that penetrate blocks of defined airspace with defined envi-
ronmental requirements’. Some of the major editing created duplicate requirements,
although the editing did not change any requirements in absolute terms. Duplications
were created in cases where one stakeholder (i.e. BCA) returned the requirement as-is
while the other stakeholder (i.e. Thales) returned the same requirements but with
some major re-wording. A further 20 requirements were returned by the BCA stake-
holder incomplete. Two examples of such requirements are: ‘The Stand guidance
system shall provide the 'R' to the In-bound Pilot’ and ‘The Baggage handlers shall
undertake the 'T' task without error’.

Further analysis of returned requirements reveals that there were significant differ-
ences between the stakeholder types. The BCA user stakeholder rated 87% (501) of
requirements as valid to VANTAGE systems. In contrast, three of the technology
partners rated a combined total of 13% (i.e. 77 requirements) as valid requirements
for the VANTAGE system. The reasons for the differences are that the stakeholders
were using different evaluation criteria. For example the BCA stakeholder’s main
criteria was whether or not the proposed changes that would be introduced by the
VANTAGE system would add value to the airport operations, hence was keen to see
things in terms of the arrivals sequence and the departures sequence. The BCA stake-
holder was also keen to see whether the proposed changes would be more efficient
and eliminate rather than cause duplication of workload. In contrast, the technology
stakeholders looked for requirements that were only relevant to them. For example the
criteria used by Selex were: (a) Is this requirements relevant to SELEX? (b) Does the

 Automatically Generating Requirements from i* Models 43

requirements wording make sense? and (c) Is this an original or repeat requirement?
The Raytheon stakeholder used similar criteria. In contrast the Thales stakeholder
used different evaluation criteria that are shown in Table 3.

Table 3. Example criteria used by Thales to select/reject requirements

Type Requirement Text Selected / Not Selected

Functional The <external actor e.g. ATCO> shall … Not selected because outside the
VANTAGE System

Functional The <VANTAGE system element e.g.
Approach path monitor> shall …

Selected

Availability
& Reliability
& Interoperability)

…shall be available … Not selected because requirement
type too detailed at this stage

Usability …shall undertake … task without error Not selected because requirement
type too detailed at this stage

Performance The <external actor e.g. ATCO> shall
undertake … task in good time

Not selected because outside the
VANTAGE System

Look and Feel The <VANTAGE system element e.g.
Approach path monitor> shall have an
interface to <external actor e.g. ATCO>

Selected

The criteria used provide one possible explanation why the solution providers re-
jected many requirements that could not be implemented using their technologies and
why the end-users returned a high number of requirements. This also suggests that the
technology providers were more analytical when reviewing the requirements, while
the user stakeholder was probably not.

There were also significant individual differences over the same requirement be-
tween the stakeholders where one returned the requirement, whilst the other rejected
it. The Thales stakeholder rejected 31 requirements of which the BCA stakeholder
returned 17 of them and the Raytheon stakeholder 14. The Raytheon stakeholder
rejected 14 requirements that were returned by the BCA stakeholder (13) and Selex
stakeholder (1). The biggest difference involved the Selex stakeholder who rejected
78 requirements that were returned by the BCA stakeholder (76) and Raytheon stake-
holder (2). Overall, the technology stakeholders rejected more requirements while the
user stakeholder tended to return more.

7 Research Questions Revisited

We reviewed the VANTAGE requirements and data to answer three research ques-
tions:

Q1 Is automatically generating requirements from i* models more productive than
the other RESCUE requirements acquisition techniques used in the project?

The answer to question Q1 is a tentative yes. We computed the effort required by
each technique compared to the number of requirements generated. We did not

44 C. Ncube, J. Lockerbie, and N. Maiden

include the effort required to produce the SD model since this would be produced
anyway as part of the RESCUE process. The brainstorming session was conducted
over a 2 day period and 49 course-grain requirements were generated. The scenario
walkthroughs were conducted in 3 different days generating a combined total of 147
requirements. In contrast, the effort required to automatically generate requirements –
the 578 requirements from i* model – comprised of designing the REDEPEND pat-
terns (1 day), implementing the patterns in REDEPEND (1 day) and stakeholders
evaluating and returning valid VANTAGE requirements (4 days). From this, a simple
calculation shows that more requirements were generated per day from i* model than
by any other technique as indicated in Table 4.

Table 4. Productivity of generating requirements from i* models

Technique Effort Requirements Productivity
Brainstorming 2 days 49 25 req/day
Scenario
Walkthrough

3 days 147 49 req/day

i* model 6 days 578 96 req/ day

Q2 Do requirements generated from i* models result in a more complete overall
requirements specification?

The answer to question Q2 is yes. The brainstorming session generated require-
ments that were more general in nature and provided an overview of the VANTAGE
system goals. On the other hand, the scenario walkthrough generated requirements
that focused on the operationalisation of the VANTAGE system, i.e. users using the
system. In contrast, the majority of the requirements generated from i* model were
not covered by the other 2 techniques. For example, without generating requirements
from the i* model, we would not have discovered requirements for the Surveillance
systems, Noise monitoring system, Approach Path monitor – systems that are key to
VANTAGE. We also would not have discovered requirements for other external
stakeholders such as NATS, Department of Regional Development, community fo-
rum, etc. The VANTAGE specification would otherwise therefore incomplete without
i* model requirements.

Q3 Do requirements generated from i* models differ from those derived from the
other techniques in terms of granularity, focus, clarity and precision?

The answer to question Q3 is yes. A total of 770 requirements were captured and
documented as valid VANTAGE systems requirements. Of these 75% (i.e. 578) were
generated from the i* model; 19% (i.e. 143) are from the ARTSCENE scenario walk-
throughs and 6% (i.e. 49) are from the brainstorming session held at BCA with key
management and operational stakeholders. Although these results demonstrate the
utility of the approach, there are however differences in the granularity of require-
ments acquired by using the 3 techniques. The requirements from the BCA brain-
storming session are more abstract, course-grained and are expressed at system level
and define the VANTAGE vision and goals. Those from scenario walkthroughs are
more precise, detailed and expressed at use case action level. These are more opera-
tional driven and human-oriented in that they describe the desired functionality to be

 Automatically Generating Requirements from i* Models 45

provided by the VANTAGE system. In contrast, the requirements generated from the
SD model are more architectural in style. They express how the various subsystems
and human elements interact in order to achieve the main goals and aspirations of the
VANTAGE system. Table 5 shows a sample of requirements from the 3 different
techniques.

Table 5. Granularity of requirements acquired using the 3 different techniques

BCA Brainstorming Session REDEPEND Generated Scenario Walkthrough
The VANTAGE system shall
improve the allocation of
stands to landing aircraft

The Dispatcher shall be
available to provide
instructions for loading
outbound freight and baggage
to the Ramp

A dispatcher who is airside shall
be able to communicate with any
other dispatcher who is airside in
two-way verbal communication
without either dispatcher moving
from their current locations

The VANTAGE system shall
detect which aircraft and flight
triggers noise complaints from
residents

The Dispatcher shall be
available to provide
confirmation of location of
incoming load in aircraft to the
Ramp

A dispatcher shall be able to
monitor all ramp staff activities
taking place on their responsible
aircraft at all times

The VANTAGE system shall
record the track of each aircraft
and the noise emission data of
that aircraft

The In-bound Pilot shall be
available to provide load on
board information to the
Dispatcher

The dispatcher shall be able to
access quickly up-to-date
information about the refuelling
and loading of the aircraft being
turned around by that dispatcher

8 Conclusion and Lessons Learned

This paper reports the results from a real-world requirements engineering project. The
RESCUE process was used to develop the requirements specification for VANTAGE,
a socio-technical system that will integrate new technologies into the operations of
regional airports in the United Kingdom (UK) to reduce their environmental impact,
such as noise and gaseous emissions. The project team produced i* SD and SR mod-
els using the REDEPEND tool to explore system boundaries and dependencies. The
team also developed 30 patterns that were applied to the SD model to automatically
generate 868 requirement statements, of which 67% were included in the final re-
quirement specification.

Although the work was successful and productive, there are clearly some lessons to
be learned. Firstly, of the accepted requirements, 87% were returned by the user
stakeholder alone (BCA) whilst all the technology stakeholders accepted a combined
13%. The majority of the editing was done by the technology stakeholders whilst the
user stakeholder only edited 1 requirement. Two issues can be drawn from this. The
first is that the technology stakeholders tended to reject many requirements while the
user stakeholder tended to accept more. The second is that the technology stake-
holders tended to edit more while the user stakeholder edited less. This might suggest
that the stakeholders were not reviewing to the same degree of purpose.

This might also have a lot to do with how the requirements were distributed. Each
technology stakeholder reviewed only the requirements that were relevant to their
solution, while the user stakeholder reviewed requirements for the whole system. This
meant each stakeholder focussed on their own subsystems without considering the

46 C. Ncube, J. Lockerbie, and N. Maiden

overall system and its environment. The lesson learned from this is that how require-
ments are distributed to stakeholders for reviewing is important and that having each
stakeholder review only the requirements relevant to their solution might not be effec-
tive. A possible solution would be to encourage a pair-wise review process whereby
each set of requirements is reviewed by a user stakeholder and a technology stake-
holder. This might minimise the large discrepancy between the user and technology
stakeholder.

There is also a need for a rigorous process for accepting or rejecting the candidate
requirement statements. Although all stakeholders were provided with instructions,
the instructions did not include criteria and guidelines for accepting/rejecting re-
quirements. For example, all technology partners returned very few non-functional
requirements compared to the user stakeholder. Of all the accepted requirements, 38%
were functional and 62% were non-functional requirements. Of the non-functional
requirements, 92% were accepted by the user stakeholder alone while all technology
stakeholders accepted a combined 8%. A notable example can be found within the 12
interoperability and 16 reliability requirements that were accepted. Of these, the user
stakeholder accepted 17 while the three technology stakeholders accepted a combined
total of 11. This is despite the fact that VANTAGE is a seamless, integrated network-
centric system-of-systems where interoperability and reliability are the key require-
ments. One possible explanation could be that the technology stakeholders felt these
requirements could not be implemented using their technologies.

Another possible explanation why interoperability and reliability requirements
were heavily rejected could be that there was no stakeholder or project partner re-
sponsible for the integration of the VANTAGE systems. Also, there was no overall
system architecture provided to show interdependencies and interoperation among
subsystems, therefore stakeholders might not have been aware of emergent behav-
iour/properties which are inherent in a system-of-systems. Had these been provided,
the results might have been different. The SD diagram which we automatically gener-
ated requirements from was constructed from dependency tables which were elicited
from all the stakeholders who reviewed the requirements. These dependency tables
could have been sent along with the requirements.

Also, there were significant individual differences over the same requirement be-
tween stakeholders where one returned the requirement whilst the other rejected it.
Some stakeholders, especially the user, accepted a significant number of incomplete
requirements suggesting that they were reviewing at a different level of analytical
detail than the others. However, this might also have a lot to do with how require-
ments were presented to stakeholders. Presenting requirements as simple lists might
not be effective, and perhaps we need to embed them in scenarios and stories that
carry context.

One observation of the requirements generated from the SD model is that they are
more general compared to requirements generated from a scenario walkthrough. This
suggests that these requirements should be treated as mental prompts for more de-
tailed analysis. These ‘prompts’ could be used as a starting point for more detailed
requirements gathering, or to drive the scenario walkthrough process, or even as in-
puts to the creativity workshop. The generality of the SD generated requirements also
suggests that the patterns need to be further developed and enhanced. This will also
require further REDEPEND tool development to add new features to make it more

 Automatically Generating Requirements from i* Models 47

flexible. We are currently planning to add these and other new features to the
REDEPEND tool such as generating requirements from an individually selected ac-
tor; tool-based traceability of edited requirements; adding new patterns to include
more non-functional ones and to tighten the wording of patterns, especially those that
generate non-functional requirements such as interoperability and reliability. We
look forward to reporting this work in the near future.

Acknowledgements. This work was funded by the UK DTI-supported VANTAGE
Phase-1 project.

References

1. Baddeley, A.D.: Human memory: Theory and practice. Lawrence Erlbaum Associates,
Hove (1990)

2. De Landtsheer, R., Letier, E., van Laamsweerde, A.: Deriving Tabular Event-Based Speci-
fications from Goal-Oriented Requirements Models. In: Proceedings 11th IEEE Interna-
tional Conference on Requirements Engineering, pp. 200–210. IEEE Computer Society
Press, Washington, DC (2003)

3. Jones, S.V., Maiden, N.A.M.: RESCUE An Integrated Method for Specifying Requirements
for Complex Socio-Technical Systems. In: Mate, J.L., Silva, A. (eds.) Requirements Engi-
neering for Socio-Technical Systems, Ideas Group, 245–265 (2005)

4. Maiden, N.A.M.: Systematic Scenario Walkthroughs with ART-SCENE. In: Alexander,
I.F., Maiden, N.A.M. (eds.) Scenarios, Stories and Use Cases, pp. 166–178. John Wiley,
New York (2004)

5. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-Driven Re-
quirements Engineering: Synchronising Models in an Air Traffic Management Case Study.
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, Springer, Heidelberg (2004)

6. Maiden, N.A.M., Manning, S., Jones, S., Greenwood, J.: Towards Pattern Based Generation
of Requirements from Systems Models. In: Proceedings REFSQ’2004 Workshop, in con-
junction with CaiSE’2004, 7-8 2004, Riga, Latvia (2004)

7. Maiden, N.A.M., Manning, S., Jones, S., Greenwood, J.: Generating Requirements from
Systems Models using Patterns: A Case Study. Requirements Engineering Journal 10(4),
276–288 (2006)

8. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley, Lon-
don (1999)

9. Yu, E., Mylopoulos, J.M.: Understanding “Why” in Software Process Modelling, Analysis
and Design. In: Proceedings, 16th International Conference on Software Engineering, pp.
159–168. IEEE Computer Society Press, Washington, DC (1994)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 48 – 62, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Structuring the Co-design of Requirements and
Architecture

Klaus Pohl1,2 and Ernst Sikora1

1 Software Systems Engineering, University of Duisburg-Essen, Germany
{klaus.pohl,ernst.sikora}@sse.uni-due.de

2 Lero (The Irish Software Engineering Research Centre), University of Limerick, Ireland
klaus.pohl@lero.ie

Abstract. The need to co-develop requirements and architectural artefacts, es-
pecially for innovative solutions, is widely recognised and accepted. Surpris-
ingly, no comprehensive approach exists to structure the co-design process and
to support the stakeholders, requirements engineers, and system architects in
co-developing innovative requirements and architectural artefacts. In this paper,
we propose a method for the co-design of requirements and architectural arte-
facts based on two viewpoints, the system usage viewpoint and the system ar-
chitecture viewpoint. Initially, the two viewpoints are nearly decoupled. The
method consists of five sub-processes that support the development of each
viewpoint, the comparison of the two viewpoints, the consolidation of the
viewpoints, and the definition of detailed system requirements based on the two
viewpoints. The consolidation of system usage and coarse-grained system ar-
chitecture is driven by the refinement of system interaction scenarios into archi-
tectural scenarios and the refinement of the associated usage goals. Preliminary
results of applying our method in industry are reported.

Keywords: architecture, co-development, innovative systems, refinement,
requirements, scenarios.

1 Introduction

Although the need for the co-design of requirements and architecture is widely recog-
nised, no comprehensive approach for supporting the co-design of requirements and
architectural artefacts exists. For example, the twin-peaks model presented by
Nuseibeh [16] describes a spiral model-like development cycle of requirements and
architecture, but does not provide methodical guidance for co-design. Rapanotti et al.
extend Jackson’s problem frames approach to facilitate the reuse of existing architec-
tural knowledge during problem analysis [19]. However the approach aims at reuse
rather than at supporting the co-design of an innovative problem specification and an
innovative solution structure. Other approaches support the identification of architec-
turally significant requirements [2], the rewriting of requirements for leveraging the
transition to architectural design [8], and the conformance checking of the architec-
ture to requirements [6]. All these approaches assume that the requirements are

 Structuring the Co-design of Requirements and Architecture 49

essentially known beforehand. As a consequence, these approaches do not support the
co-design of requirements and architecture.

In this paper, we propose a method for refining a system vision into a set of devel-
opment artefacts which include detailed system requirements as well as the coarse-
grained system architecture. We employ goals and scenarios to support the co-design
of requirements and architectural artefacts. The use of goals and scenarios is moti-
vated by their successful application in innovative development (see e.g. [3], [15],
[18], [21]). The method consists of five sub-processes. Starting from two, initially
almost decoupled viewpoints (system usage and coarse-grained system architecture),
the sub-processes support the iterative definition, comparison and consolidation of the
system usage and system architecture viewpoints. The consolidation of system usage
and system architecture is driven by the refinement of system-interaction scenarios
into architectural scenarios and the refinement of the associated usage goals. Finally,
detailed system requirements are defined based on the consolidated system usage and
system architecture viewpoints. Our method thus accounts for the fact that system
requirements cannot be defined at the desired level of detail without making explicit
or implicit assumptions about the intended solution (for an example, see Section 2).

The main contribution of this paper is the proposed structuring of the co-design of
requirements and architectural artefacts for innovative systems into five interrelated
sub-processes. Within these sub-processes, established techniques such as goals and
scenarios are used.

The remainder of this paper is structured as follows. Section 2 illustrates the need
for the co-design of requirements and architectural artefacts using a simplified exam-
ple from the automotive domain. Section 3 provides an overview of the five sub-
processes of our method. Section 4 describes the key artefacts produced by the five
sub-processes. The objectives of the five sub-processes and their main activities are
outlined in Section 5. Section 6 concludes this paper with a summary and a brief re-
port on our experiences of applying our approach in an industrial project.

2 The Need for the Co-design of Requirements and
Architectural Artefacts: A Simplified Example

The co-design of requirements and architectural artefacts accounts for the need for
knowledge about the (coarse) solution when defining (detailed) system requirements.
We illustrate the important role that architectural knowledge plays in requirements
engineering by means of a simplified example from the automotive domain. Assume
that the stakeholders have defined the following high-level requirement for an adap-
tive cruise-control system (see [4]):

R1: The system shall ensure that the vehicle maintains a safe distance to the
vehicle ahead.

Obviously, for starting system development or commissioning the development of a
system realising this requirement, the requirements definition lacks sufficient detail.
In order to be able to define the requirement in more detail, the stakeholders have to
make assumptions about the intended solution (be it implicit or explicit). According to

50 K. Pohl and E. Sikora

our experience, in practice, in many cases assumptions about the solution are implic-
itly made, i.e. the stakeholders assume certain technical solutions and define the de-
tailed requirements based on these assumptions.

The influence of the implicit or explicit solution assumptions on the definition of
system requirements becomes obvious when considering alternative (technical) solu-
tions as the basis for the detailing of requirement R1. In the following, we outline two
possible refinements of R1 based on two different sketches of technical solutions.

Distance measurement by the vehicle
In order to maintain a safe distance to the vehicle ahead, the planned system must
acquire the current distance to the vehicle ahead. One possible solution is to equip the
system with a sensor that measures the distance to the vehicle ahead. This solution
requires at least two functional components1, a “sensor” which measures the distance
to objects in front of the vehicle and a “processing unit” that evaluates the sensor data,
determines the distance, and causes the vehicle to decelerate, if necessary. Based on
this technical solution, a (partial) coarse-grained system architecture which includes
the two functional components “sensor” and “processing unit” can be defined, and
requirement R1 is refined as follows:

R1.1a: The system must measure the distance to vehicles ahead.

R1.2a: The system must recognise a vehicle in front within a range of 200 m.

R1.3a: If the system has recognised a vehicle ahead, it must estimate the speed
of the vehicle ahead.

R1.4a: ...

Acquiring the distance by inter-vehicle communication
An alternative solution is to acquire the distance to vehicles ahead based on the ex-
change of speed and position data, communicated through an inter-vehicle communi-
cation network. Based on this solution (or the corresponding coarse-grained system
architecture), the detailing of requirement R1 looks different:

R1.1b: The system must broadcast its speed and position every 100 ms.

R1.2b: The system must evaluate and maintain the speed and position data of all
vehicles within the range of 200 m.

R1.2c: ...

The example illustrates that implicit or explicit assumptions about the coarse-
grained system architecture (representing technical solutions to the initial problem
definition) have a major impact on the definition of detailed system requirements.
Unfortunately, in requirements engineering processes, the assumptions about the
intended solution are most often not made explicit. Instead of making the assumptions
explicit, the stakeholders implicitly codify their assumptions into the requirements
definitions. For example, by defining the requirement “the system shall use ultrasound
sensors to measure the distance to vehicles ahead” an explicit assumption that the
distance to the vehicle ahead is measured with sensors (and even ultrasound sensors)

1 The term “functional component” is introduced in Section 4.

 Structuring the Co-design of Requirements and Architecture 51

is made. At the same time, other potential solutions like determining the distance
using GSP or using radar sensors are neglected. This clearly hinders the exploration
of different, innovative design solutions (e.g. inter-vehicle communication) and the
exploration of innovative system usage patterns that could be empowered by the in-
novative solutions. In other words, innovative development is impaired.

Thus, instead of defining requirements based on implicit assumptions about the
solution, requirements and architectural artefacts need to be developed concurrently,
as proposed by several research contributions, for instance, the twin-peaks model
[16]. Consequently, requirements engineering methods must account for the co-
development of requirements and architectural artefacts and support, for instance, the
exploration of innovative system usage patterns which are enabled by different, inno-
vative architectural solutions.

3 Overview on the Proposed Co-design Method

We defined requirements engineering for innovative systems as a process of “estab-
lishing an overall system vision in an existing context” [12]. In this spirit, our co-
design method supports the refinement of an overall system vision into a coherent set
of requirements and architectural artefacts. The results of applying the method include
a consolidated set of system usage goals, system interaction scenarios, and coarse-
grained architectural artefacts as well as a detailed system requirements specification
that is produced based on the consolidated goals, scenarios, and architectural artefacts
(for a description of the different artefacts, see Section 4).

SP1
Development of

the system
usage viewpoint

(usage goals &
system interaction

scenarios)

SP2
Development
of the s ystem
architecture

viewpoint
(coarse -grained

sys. architecture)

SP3
Comparison of

system usage and
system architecture

viewpoints

goals and
scenarios

goals and
scenarios

architectural
solutions

architectural
scenarios,

design ideas,
inconsistencies

consolidated
usage and

architectural
definitions

consolidated goals,
scenarios, and

architectural artefacts

SP4
Consolidation of

system usage and
system architecture

viewpoints

detected gaps and
inconsistencies

SP5
Development

of system
requirements

system vision

system vision

architectural
decisions

Fig. 1. The five sub-processes and their major interrelations

In the following, we provide an overview on the five sub-processes (SP1 to SP5;
see Fig. 1) of our method and their main interrelations:

52 K. Pohl and E. Sikora

− SP1: Development of the system usage viewpoint (the system usage goals and
system interaction scenarios). The aim of this sub-process is to establish the sys-
tem usage viewpoint. The sub-process thus refines the overall system vision into a
set of innovative system usage goals and scenarios representing innovative patterns
of interacting with the system.2

− SP2: Development of the system architecture viewpoint (the coarse-grained
system architecture). The objective of this sub-process is to establish one or multi-
ple innovative architectural solution(s) for the intended system. This sub-process is
thus mainly driven by the engineering respectively the solution perspective. Solu-
tion ideas are creatively developed, evaluated, and integrated into the overall
coarse-grained system architecture. The system usage goals and system interaction
scenarios defined by the sub-process SP1 are a valuable input for the sub-process
SP2, but have only limited influence on the coarse-grained architecture. To a large
degree, the definition of the coarse-grained architecture is influenced by the “crea-
tive power” of the engineers. It is thus, to our experience, quite likely that the
coarse-grained system architecture empowers innovative system usages not yet
conceived in sub-process SP1.

− SP3: Comparison of system usage and system architecture viewpoint. The objec-
tive of this sub-process is to compare the results of the sub-processes SP1 and SP2.
This comparison is facilitated by the refinement of the identified system interaction
scenarios into architectural scenarios (i.e. system-internal scenarios; see [17]) and
the refinement of the associated usage goals. An architectural scenario describes
the interactions between components that are necessary to realise a system interac-
tion scenario. An example is given in Section 5. The refinement of the system in-
teraction scenarios and system usage goals facilitates additional insights about both
the envisioned system usage and the proposed coarse-grained architecture. The re-
sults of this sub-process thus include, beside the architectural scenarios, new ideas
and insights concerning both the envisioned system usage and the architectural so-
lution. Moreover, inconsistencies between the defined goals/scenarios and the de-
fined architecture are very likely to be detected.

− SP4: Consolidation of system usage and system architecture viewpoint. The ob-
jective of this sub-process is to consolidate the system usage viewpoint (system us-
age goals and system interaction scenarios) with the system architecture viewpoint
(the coarse-grained system architecture) based on the insights gained, the ideas
developed, and the inconsistencies detected in sub-process SP3. Inconsistencies de-
tected between the system usage and the architecture are resolved. New ideas are
integrated by adjusting the affected artefacts. The result of this sub-process is a
consolidated set of system usage goals, system interaction scenarios, and architec-
tural artefacts.

2 We are aware that, besides the system usage, there are other factors which influence the sys-

tem design like system maintenance, development costs, laws, IT-strategy etc. We focus on
system usage since system usage is one of the key drivers for innovations. Moreover, the
principles outlined in this paper can be easily adapted to include other factors by introducing
additional kinds of goals and scenarios, e.g. maintenance and portability goals and scenarios.

 Structuring the Co-design of Requirements and Architecture 53

− SP5: Development of system requirements. The objective of this sub-process is
the definition of detailed system requirements. As a result of our method, the defi-
nition of the detailed system requirements can be based on a consolidated set of
system usage goals, system interaction scenarios, and architectural artefacts. Dur-
ing the definition of the requirements, gaps and/or inconsistencies in the system
usage and architectural artefacts are quite likely to be detected. These gaps are,
again, resolved by the sub-process SP4. The final result of sub-process SP5 is a de-
tailed specification of system requirements which are conformant to the usage
goals, scenarios, and architectural artefacts. The detailed system requirements pro-
vide, together with the system usage goals, system interaction scenarios, and
coarse-grained architectural artefacts, the basis for the definition of detailed archi-
tectural models.

The structuring of our co-design method into the five sub-processes sketched
above is based on the following three main ideas:

1. Initial separation of system usage and system architecture viewpoint: The devel-
opment of the system usage viewpoint (sub-process SP1) and the development of
the system architecture viewpoint (sub-process SP2) are performed in parallel. This
reflects the revised role of architectural design in the overall development process
of innovative systems. The sub-process concerned with the architecture viewpoint
proposes innovative solutions, which influence the envisioned system usage and
vice versa.

2. Scenario and goal-based integration of the two viewpoints: The comparison of
the two viewpoints is driven by the refinement of system interaction scenarios into
architectural scenarios along with the refinement of associated usage goals. Thus
an integration of the two viewpoints is achieved which often provides inspiration
for enhancing the envisioned system usage or identifying entirely new usage pat-
terns.

3. Definition of system requirements based on consolidated system usage and sys-
tem architecture viewpoints: The five sub-processes enable the definition of
system requirements based on a consolidated set of system usage goals, system-
interaction scenarios, and coarse-grained architectural artefacts.

The five sub-processes are iterated until a sufficient level of detail and confor-
mance of the resulting artefacts has been established. To our experience, the level of
detail and conformance required differs between application domains and is also in-
fluenced by the degree of innovation inherent to the project. We therefore suggest that
the stakeholders cooperatively decide whether an appropriate level of detail has been
attained prior to initiating successive development activities such as detailed design.

In the following sections, the high-level structure of our method is detailed. Sec-
tion 4 briefly characterises the artefacts produced by the five sub-processes. In Sec-
tion 5, the five sub-processes are described in more detail.

4 Key Artefacts

The key artefacts produced by the five sub-processes described in Section 3 can be
characterised as follows (see Fig. 2 for an overview of the artefacts):

54 K. Pohl and E. Sikora

architectural
scenarios

system inter-
action scenarios

system usage
goals

system
requirements

R1

RN

coarse-grained
system architecture

context
model

Requirements Artefacts

Architectural Artefacts

Fig. 2. Key artefacts produced and consumed by the five sub-processes of our method

• System vision: The system vision is the initial, concise description of the envi-
sioned system. An example for a system vision is: “Develop a system that supports
the driver in maintaining a safe distance to vehicles ahead on motor-ways”.

• Context model: The context model documents the (intended) embedding of the
envisioned system into its environment. The context model defines the external ac-
tors (entities in the system environment) that interact with the system. An actor
represents a human user (e.g. the driver of an automobile) or a system. In addition,
the context model characterises the principle nature of the interactions between the
system and the external actors (e.g., the driver activates and deactivates the adap-
tive cruise control system).

• System usage goals: System usage goals refine the overall system vision. A system
usage goal documents an intended high-level property of the system concerning its
usage by external actors. Goals are typically hierarchically structured. Sub-goals
are related to a super-goal by and/or refinement relationships (see e.g. [14]). An
example of a system goal is: “The system shall signal the detection of relevant ve-
hicles ahead to the driver”. Each system usage goal is associated to at least one sys-
tem interaction scenario which concretises this goal (cf. e.g. [9]).

• System interaction scenarios: System interaction scenarios define interactions
between external actors and the system (cf. “type B” and “type C” scenarios in
[17]). The documentation of system interaction scenarios is based on use case tem-
plates (cf. e.g. [10]) or a model-based technique (cf. e.g. [11]). An example of a
system interaction scenario is given in Section 5.

• Architectural scenarios (system-internal scenarios): Architectural scenarios or
system-internal scenarios (see “type A” scenarios in [17]) define interactions be-
tween system components. An architectural scenario refines a system interaction
scenario by defining the interactions between system components that are required
to realise the interactions of the system with the external actors (see Section 5 for
an example).

• Coarse-grained system architecture: The coarse-grained system architecture de-
fines a decomposition of the overall system into a set of functional components
which are interconnected via interfaces. A functional component is a coarse struc-
tural element of the intended solution representing a set of related functions. The

 Structuring the Co-design of Requirements and Architecture 55

coarse-grained architecture abstracts from certain technical aspects such as the par-
titioning of the system into software and hardware. A simplified example of a
coarse-grained architecture is presented in Section 5.

• System Requirements: System requirements subsume functional, data/structural,
and behavioural requirements as well as quality requirements like performance,
safety, or security. System requirements are documented using natural language
(e.g. based on templates) and/or requirements modelling languages (cf. [7] for ex-
amples).

5 The Five Sub-processes

In this section, we describe the objectives, key activities, and the results of the five
sub-processes sketched in Section 3. In the following, the five sub-processes are illus-
trated by means of simplified examples of an adaptive cruise control system (ACC).
For technical details on the ACC, see [4].

SP1: Development of the System Usage Viewpoint
The objective of this sub-process is to refine the overall system vision into usage sub-
goals and to define for each sub-goal at least one system interaction scenario which
documents the envisioned goal achievement. The main input to this sub-process is the
system vision. The output of this sub-process consists of a set of system usage goals, a
set of system interaction scenarios, and a context model defining the external actors.

In this sub-process, first, the potential actors (humans and/or systems) in the sys-
tem context are identified in order to determine relevant usage goals. Subsequently,
system interaction scenarios are created thus concretising the system usage goals. The
system is, initially, considered as a black box in order to avoid implicit assumptions
about the solution.

For example, the stakeholders might define the goal “Maintain a save following
distance”. To concretise the goal, the stakeholders define the following simplified
scenario:

1. The driver activates the ACC.
2. The ACC recognises a relevant vehicle ahead.
3. The ACC reduces the speed (in order to maintain a safe following distance).

To provide more detailed guidance for this sub-process, established goal- and sce-
nario-based requirements engineering approaches can be applied (cf. e.g. [1], [9],
[15], [20]).

SP2: Development of the System Architecture Viewpoint
The key objective of this sub-process is to create innovative, coarse-grained architec-
tural solutions for the planned system. The input to this sub-process consists of the
system usage goals and the system interaction scenarios defined in sub-process SP1 as
well as the overall system vision. The output is a draft of the coarse-grained system
architecture. Beside the goals and scenarios, the creativity of the engineers, known or
foreseeable technological innovations, IT-strategies, marketing strategies etc. influ-
ence this sub-process. The sub-process consists of the following four main activities:

56 K. Pohl and E. Sikora

• Analysis of system-level goals and system interaction scenarios: The objective of
this activity is to identify architecturally significant statements in system usage
goals and system interaction scenarios, which indicate, for instance, the use of spe-
cific architectural components, patterns, or styles.

• Creative development of new architectural solutions: The objective of this activity
is to propose innovative architectural solutions for the system. The goals and sce-
narios produced in sub-process SP1 are only one type of input to this activity.
Other types of input are, as stated above, for instance, knowledge about techno-
logical innovations and strategic considerations. Crucial for this activity, however,
is the creativity of the system architects or engineers. The activity produces a set of
alternative, innovative solutions for the system which take, as far as possible, the
defined goals and scenarios, the identified, architectural components, patterns, and
styles as well as the other inputs into account.

• Evaluation of the proposed architectural solutions: The goal of this activity is to
evaluate the proposed architectural solutions and to select the most appropriate so-
lution or set of solutions.

• Definition of a preliminary coarse-grained architecture: In this activity, a (partial)
coarse-grained system architecture is developed based on the architectural solu-
tion(s) selected in the evaluation activity.

Fig. 3 depicts a simple example of an initial, coarse-grained architecture consist-
ing of three components.

vehicle displays and
controls

decelerationcruise
control

Fig. 3. Simple example of an initial, coarse-grained architecture

SP3: Comparison of System Usage and System Architecture Viewpoint
The main objectives of this sub-process are to check if the architecture supports the
identified system usage goals and system interaction scenarios and to identify new
system usages based on the current coarse-grained system architecture.

To check if the architecture supports the identified system usage goals and system
interaction scenarios, the goals and scenarios are refined based on the current archi-
tecture. In other words, the system interaction scenarios are refined into architectural
scenarios (system-internal scenarios) and the system usage goals are related to archi-
tectural elements.

To identify additional system usages based on the current coarse-grained system
architecture, the stakeholders analyse, for instance, if the outputs produced by the
components or new component interactions could lead to improved or even new sys-
tem usages. The identification of new system usages is partly supported by the defini-
tion of architectural scenarios and the mapping of system usage goals to architectural
components.

 Structuring the Co-design of Requirements and Architecture 57

The two tasks described above can be defined more simply as comparing the sys-
tem usage viewpoint (the defined system usage goals and system interaction scenar-
ios) developed in the sub-process SP1 with the architecture viewpoint (the defined
coarse-grained system architecture) developed in the sub-process SP2.

To compare system interaction scenarios with the coarse-grained architecture, each
system interaction scenario is refined into an architectural scenario. This refinement
can be based on established techniques (e.g. the refinement of message sequence
charts; cf. [13]) and consists of the following three main steps:

• The system is refined into a subset of the functional components which are defined
in the coarse-grained system architecture. In the example depicted in Fig. 4, the
vehicle is detailed into three components, “displays and controls”, “cruise control”,
and “deceleration”.

• Each system interaction is assigned to the functional component that is responsible
for realising the interaction with the external actor. In the example depicted in Fig. 4,
the interaction “activate ACC” has been assigned to the component “displays and
controls”, and the interaction “range data” has been assigned to the component
“cruise control”.

• The system-internal interactions that are required to realise the interactions with
external actors are defined. In the example depicted in Fig. 4, the interactions “sig-
nal activation”, “object indication”, and “reduce speed” have been defined.

The definition of architectural scenarios enables the stakeholders to compare the
initial system interaction scenarios with the coarse-grained architecture, and to reflect
on both, the system interaction scenarios and the coarse-grained architecture. The
refinement of the system-interaction scenarios uncovers differences (shortcomings,
inconsistencies, etc.) between the system usage and the system architecture viewpoint
which require an adjustment of the two viewpoints. The detected differences could
lead to improvement suggestions for the system usage and the system architecture
viewpoints. In the following, we list some typical examples of small or large proposed
improvements:

• Redesign of the system interaction scenarios due to the innovative solution ideas
which are established in the coarse-grained architecture (e.g. the idea to employ in-
ter-vehicle communication, see Section 2).

• Definition of new system interaction scenarios induced or enforced by the com-
parison of the defined scenarios with the capabilities of the architecture.

• Redefinition of specific interactions due a particular capability offered by some
functional component.

• Definition of new system interactions since, (1) a component requires additional
inputs from an external actor, (2) a component is able to produce outputs that
would enhance system usage, or (3) an additional external actor is identified.

• Definition of additional functional components since, e.g., the envisioned system
interactions can not be realised with the components defined in the coarse-grained
architecture.

• Subdivision of a functional component into multiple components, e.g., in order to
remove detected flaws concerning performance, security, or modifiability, which
are uncovered by analysing the architectural scenarios.

58 K. Pohl and E. Sikora

• Modification of a component interface, e.g., in order to account for required com-
ponent interactions that are identified through the refinement.

The definition of an additional system interaction is illustrated in Fig. 4. In the ex-
ample, the interaction “indicate object recognition” has been added as an additional
system output which leads to an improvement of system usage.

sy
st

em
 in

te
ra

ct
io

n
sc

en
ar

io

driver vehicle

activate ACC
range data

vehicle
ahead

reduce
speed

ar
ch

ite
ct

ur
al

sc
en

ar
io

driver vehicle
ahead

displays and
controls

cruise
control deceleration

activate ACC

signal activation
range data

reduce speed

object indicationindicate
object recognition

Fig. 4. Sample refinement of a system interaction scenario into an architectural scenario

To compare the system usage goals with the coarse-grained architecture, the goals
first need to be mapped to the functional components defined in the coarse-grained
architecture. Due to the association of system usage goals with system interaction
scenarios, the refinement of the system interaction scenarios into architectural scenar-
ios (described above) provides a good starting point for this mapping. In other words,
the refinement indicates which components contribute, in principle, to which system
usage goal. The mapping of the goals to the components allows the stakeholders, for
instance, to identify goals that are not attainable by the current architecture as well as
to identify new sub-goals of existing goals or to identify entirely new goals. For in-
stance, the additional interaction “indicate object recognition” in the example scenario
in Fig. 4 may induce the definition of a new goal “inform the driver about relevant
events”. This goal could entail further changes, i.e. the signalling of other events to
the driver such as fault states of the ACC allowing the driver to react accordingly.

Overall, the refinement of the system interaction scenarios into architectural sce-
narios leads to a set of detected differences (shortcomings, inconsistencies, mis-
matches, etc.) as well as to a set of proposed changes to the system usage viewpoint
and system architecture viewpoint. To take advantage of the insights gained during
the comparison of the two viewpoints the stakeholders have to categorise and priori-
tise the detected shortcomings and suggested changes. Moreover, a change (or adapta-
tion) which looks quite simple in the fist place could turn out to have a considerable
influence, e.g. lead to a redesign of large parts of the system usage and/or system
architecture viewpoint. Thus, the proposed changes resulting from this sub-process as

 Structuring the Co-design of Requirements and Architecture 59

well as the identified shortcomings and inconsistencies are processed by a separate
sub-process (sub-process SP4).

SP4: Consolidation of System Usage and System Architecture Viewpoints
The objective of this sub-process is twofold:

• Improve and adjust the system usage goals and the system interaction scenarios
produced in sub-process SP1 based on the output of sub-process SP3.

• Improve and adjust the coarse-grained architecture developed in sub-process SP2
and the architectural scenarios according to the output of sub-process SP3.

First, each output of the sub-process SP3 is roughly assessed if it should be consid-
ered for the improvement of the two viewpoints. The goal of this assessment is to
reduce the number of improvement suggestions which have to be prioritised and ana-
lysed. We suggest to categorise the outputs into three categories: (C1) output should
definitely be considered; (C2) Unsure if output should be considered; (C3) output
should not be considered.

Second, all the outputs of sub-process SP3 assigned to the C1 and C2 categories
are prioritised. The prioritisation has to take the system usage and the architecture
viewpoints into account and is thus performed jointly by requirements engineers,
system architects, and selected additional stakeholders. In addition, the prioritisation
should consider the contribution of the proposed change to the overall system vision
and the costs of integrating the change.

Third, the ranked outputs are integrated into the coarse-grained architecture, the
system usage goals, the system interaction scenarios, and the architectural scenarios in
order to produce an as consistent as possible overall specification.

However, the adaptations may introduce new inconsistencies that are not immedi-
ately obvious. Furthermore, the changes are likely to trigger additional ideas and
insights concerning the envisioned system usage and the intended solution. Thus, in
order to facilitate the detection of inconsistencies and the generation of new ideas,
sub-process SP3 is re-executed with the results from sub-process SP4 as input. This
iteration continues until the artefacts are sufficiently aligned and stable.

SP5: Development of System Requirements
The objective of this sub-process is to specify the detailed system requirements. The
definition of the detailed system requirements is based on the consolidated system
usage and architecture viewpoints. Based on the coarse-grained architecture, the sys-
tem usage goals, and the system-interaction scenarios the stakeholders define and
document the system requirements in textual requirements specifications and/or re-
quirements models (cf. [7]).

To our experience, the definition of the detail system requirements uncovers again
shortcomings and inconsistencies in the coarse-grained architecture, the system usage
goals, the system interaction scenarios, and the system-internal scenarios. However,
the detected shortcomings and inconsistencies typically only have local effects, i.e.
can be adjusted without major redesigns and revisions of the affected artefacts. The
identified shortcomings and inconsistencies are analysed and resolved by the sub-
process SP4.

60 K. Pohl and E. Sikora

6 Conclusion and Experience

Following the observation stated in several research contributions that system re-
quirements and system architectures need to be co-developed we have proposed a
method for supporting this co-design process. The method structures the co-design
process into five interrelated sub-processes. It suggests that an innovative system
usage viewpoint (sub-process SP1) and an innovative system architecture viewpoint
(sub-process SP2) are initially developed in parallel. This reflects the different stance
that architectural design takes in the requirements engineering process for innovative
systems.

The two viewpoints are consolidated based on a comparison that is facilitated by
the refinement of system interaction scenarios into architectural scenarios and by
relating system usage goals to architectural elements. In addition, the proposed archi-
tectural solution is analysed, for instance, to identify innovative system usage pat-
terns. Identified shortcomings, inconsistencies, and improvement suggestions for
system usage and system architecture are integrated into the artefacts, and thereby the
system usage and system architecture viewpoints are consolidated.

Finally, the system requirements are defined based on the consolidated system us-
age and system architecture viewpoints. System requirements are thus defined based
on an explicitly defined coarse-grained architecture. This avoids implicit solution
assumptions creeping into the development process and supports the creative devel-
opment of innovative requirements and solutions.

We have applied our method in an industrial setting to support the requirements
engineering process of electronic control units for the powertrain of automobiles. The
method has been applied in two projects. For each project, a series of workshops has
been conducted with the stakeholders to introduce and apply our method. The projects
were not set up as carefully designed empirical studies. The observations and experi-
ences made are thus only indicative. The experiences made indicate a tendency that
the refinement of system interaction scenarios into system-internal scenarios has posi-
tive effects on the resulting requirements and architecture specifications. The partici-
pants experienced that the definition of (detailed) system requirements was eased by
the defined goals, scenarios, and architectural artefacts. In addition, by developing
and refining the scenarios, the participants identified several potential extensions and
enhancements concerning system usage and system design.

The application of the method also revealed some problems. First and not surpris-
ingly, the efforts allocated in the project plans to the requirements engineering phase
were by far to low and therefore we constantly faced the pressure to fulfil the planned
milestone concerning the requirements specification. This problem can easily be miti-
gated by adjusting the efforts according to the new development method used. Sec-
ond, the method requires a close cooperation of system architects and requirements
engineers. In order to facilitate and foster the cooperation of requirements engineers
and system architects, organisational changes are most likely required. Third, a suit-
able tool support is needed to maintain the various artefacts and, for instance, support
the refinement of the system interaction scenarios. Such tool support currently does
not exist. The lack of appropriate tool support forced the engineers to put much effort
in the management of the artefacts and their consistency. Consequently, less time was
available for creative development.

 Structuring the Co-design of Requirements and Architecture 61

We are currently working on a formalisation of our method as a basis for develop-
ing tools that support the engineering (e.g. the comparison and consolidation) and the
management of the different artefacts that are created when using our co-design
method.

Acknowledgments. The writing of this paper was partially supported by SFI grant
no. 03/CE2/I303_1.

References

1. Antón, A.I., Dempster, J., Siege, D.: Deriving Goals from a Use Case Based Requirements
Specification for an Electronic Commerce System. In: Proc. 6th Int. Workshop on Re-
quirements Engineering: Foundation for Software Quality, REFSQ’00 pp. 10-19 (2000)

2. Bachmann, F., Bass, L., Chastek, G., Donohoe, P., Peruzzi, F.: The Architecture Based
Design Method. Tech. Report CMU/SEI-2000-TR-001, Carnegie Mellon Software Engi-
neering Institute (2000)

3. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Fransisco (1998)

4. Robert Bosch GmbH: ACC Adaptive Cruise Control. The Bosch Yellow Jackets, Edition
2003; available via http://www.christiani-tvet.com

5. Carroll, J.M.: Making Use - Scenario-Based Design of Human-Computer Interactions.
MIT Press, Cambridge (2000)

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. In: SEI Series in Software Engineering, Addison-Wesley, Boston (2001)

7. Davis, A.M.: Software Requirements: Objects, Functions, and States. Prentice Hall,
Englewood Cliffs (1993)

8. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling Software Requirements and Ar-
chitectures: The CBSP Approach. In: Proc. 5th IEEE Int. Symp. on Req. Eng., RE’01, To-
ronto, Canada, pp. 202–211. IEEE Computer Society Press, Washington (2001)

9. Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements Elicitation and Validation with Real
World Scenes. IEEE Trans. on Softw. Eng. 24(12), 1036–1054 (1998)

10. Halmans, G., Pohl, K.: Communicating the Variability of a Software Product Family to
Customers. Software and Systems Modeling 2(1), 15–36 (2003)

11. ITU-T Recommendation Z.120: Message Sequence Chart (MSC). International Telecom-
munication Union (2004)

12. Jarke, M., Pohl, K.: Establishing Visions in Context: Towards a Model of Requirements
Processes. In: Proc. 14th Int. Conf. on Inf. Systems, Orlando, Florida, pp. 23–34 (1993)

13. Khendek, F., Bourduas, S., Vincent, D.: Stepwise Design with Message Sequence Charts.
In: Proc. IFIP TC6/WG6.1 - 21st Int. Conf. on Formal Techniques For Networked and
Distributed Systems, pp. 19–34. Kluwer, Dordrecht (2001)

14. Van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Proc.
5th IEEE Int. Symp. on Req, pp. 249–262. IEEE Computer Society Press, Washington,
DC (2001)

15. Maiden, N., Alexander, I. (eds.): Scenarios, Stories, Use Cases: Through the Systems De-
velopment Life-Cycle. Wiley, Chichester (2004)

16. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Computer 34(3),
115–117 (2001)

62 K. Pohl and E. Sikora

17. Pohl, K., Haumer, P.: Modelling Contextual Information about Scenarios. In: Proc. 3rd Int.
Workshop on Requirements Engineering: Foundation for Software Quality, REFSQ’97,
Barcelona, Presses Universitaires, Namur (1997)

18. Puschnig, A., Kolagari, R.T.: Requirements Engineering in the Development of Innovative
Automotive Embedded Software Systems. In: Proc. 12th IEEE Int. Req. Eng. Conf.
RE’04, Kyoto, Japan, pp. 328–333. IEEE Computer Society, Washington (2004)

19. Rapanotti, L., Hall, J.G., Jackson, M., Nuseibeh, B.: Architecture-driven Problem Decom-
position. In: Proc. 12th IEEE Int. Req. Eng. Conf. RE’04, Kyoto, Japan, pp. 80–89. IEEE
Computer Society, Washington (2004)

20. Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modeling Using Scenarios. IEEE
Trans. on Softw. Eng. 24(12), 1055–1071 (1998)

21. Rolland, C., Grosz, G., Kla, R.: Experience with Goal-Scenario Coupling in Requirements
Engineering. In: Proc. 4th IEEE Int. Symp. on Requirements Engineering, RE’99, Limer-
ick, Ireland, pp. 74–81. IEEE Computer Society Press, Washington, DC (1999)

A Template for Requirement Elicitation of

Dependable Product Lines

Barbara Gallina and Nicolas Guelfi

Laboratory for Advanced Software Systems
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359

Luxembourg-Kirchberg
{barbara.gallina,nicolas.guelfi}@uni.lu

Abstract. Engineering software quickly and at a low cost, while pre-
serving quality, is a well-known objective that has not been reached.
Reducing the development time can be achieved by reusing software com-
ponents, as proposed in the software product line development approach.
Dependability may be one of the most important attributes concerning
quality, due to negative consequences (health, cost, time, etc.) induced
by non-dependable software. Our proposal, presented in this article, is
to offer a means to elicit the requirements of a product line, such that
the dependability attribute would be explicitly considered, and such that
reuse would be achieved by differentiating commonalities and variabilities
between products. The proposed semi-formal template includes product
commonality and variability elicitation, as well as elicitation of normal,
misuse and recovery scenarios. Furthermore, we allow the elicitation of
the advanced transactional nature of scenarios, since it provides us with
a way to elicit fault tolerance requirements, which is our targeted means
to achieving dependability.

1 Introduction

The software engineering community continues to address the challenging issues
of increasing software quality while decreasing the time to market and the devel-
opment costs of the software commissioned. ”Reusability” and ”evolution” are
two keywords that seem to be part of the solution space to achieve this objective.
Since they constitute intrinsic characteristics of Software Product Line (SPL)
development approaches, we claim that these approaches may contribute signif-
icantly in the provision of a feasible solution to achieve a software development
methodology that will incorporate time/cost reduction and quality increase ca-
pabilities. Taking into consideration a product line, instead of a unique product,
implies taking into consideration commonalities and variabilities among prod-
ucts which represent, respectively, the ability of a software asset to be maintained
as a constant or to be changed. Variation points and variants are used to describe
variabilities. A variation point is the place within an artifact where a design de-
cision can be made, and variants are the design alternatives associated to this
point and have to be selected to be able to derive a product from the SPL [1].

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 63–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 B. Gallina and N. Guelfi

Commonalities and variabilities have to be carefully investigated to be able to
maximize the reuse of models, code, etc.

Quality attributes may also benefit from an SPL development approach.
Among the multitude of quality related ”ilities”, dependability is of utmost im-
portance, due to the consequences that could nagatively effect health, time and
cost. Dependability has been recognized as an important attribute since the first
NATO Software Engineering Conference (1968, Garmisch, Bavaria), when the
expression ”software crisis” was introduced to emphasize the urgency of depend-
ability. The Fault Tolerance (FT) community, for instance, developed out of the
need to provide means to tolerate faults. At that time, the research was focused
on FT implementation frameworks. Frameworks were required to support a well-
structured and coherent approach to FT in order to ensure that the additional
complexity (introduced by the implementation of FT techniques) increased the
reliability of the system, instead of reducing it (a concrete risk). Nowadays,
frameworks are still required but the investigation on them has moved from the
bottom level (implementation) to the top levels (analysis and design). Moreover
research efforts are also required to link the various abstraction levels: analysis,
design and implementation.

In the context of the CORRECT project [2], we aim at providing a rigor-
ous methodology to develop fault-tolerant distributed concurrent SPLs in the
e-Health domain. The CORRECT methodology investigates a fusion of the
Model Driven Engineering approach with the SPL development approach, in-
troducing dependability issues since the beginning of the software life cycle. To
achieve dependability, we investigate FT approaches and in particular Coordi-
nated Atomic Action (CAA), to structure the system at each abstraction level.
CORRECT starts with a requirements elicitation phase in which we consider
dependability attributes, dependability threats and dependability means (espe-
cially fault tolerance). This phase is followed by an analysis phase in which the
elicited requirements are formally specified to reach a complete and consistent set
of requirements assumptions. Design and implementation phases constitute the
last two phases of the methodology. SPLs are characterized by common assets,
which belong to the entire product line, and by variabilities, which differentiate
one product from another. The CORRECT methodology embraces domain en-
gineering and application engineering, where an application is obtained on the
basis of variants selection. In Figure 1, this derivation focuses on the first phase
of the methodology.

The rest of the paper is structured as follows. Section 2 provides background
information on SPLs, dependability and requirements elicitation. Section 3 pro-
poses a template to elicit requirements for dependable SPLs. Section 4 illustrates

Fig. 1. Deriving a Product from an SPL in the CORRECT methodology first phase

A Template for Requirement Elicitation of Dependable Product Lines 65

the template usage applied to an academic SPL. Section 5 discusses lessons
learned from the template usage. Section 6 discusses related works on non Use-
Case-based requirements elicitation approaches. Finally, Section 7, draws some
conclusions and future works.

2 Background

This section is dedicated to a brief but precise introduction of the three main
subjects and the related reusable results on which we base our template for
eliciting product line requirements: SPLs, dependability and use-case-scenario-
based elicitation.

2.1 Software Product Lines

An SPL is a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way [3].
SPL development deals with the concurrent engineering of a family of products.
Comparisons among products or among product requirements characterize the
main activity in an SPL development approach. Through comparisons, it is pos-
sible to retrieve common core assets, which represent the family identifiers and
variable assets. Common core assets imply reusable assets, while variable assets
imply product evolution.

SPL development represents the ideal development paradigm whenever a
product family may be figured out. Planning an SPL is expensive but the benefits
that follow, if multiple product line members are derived, represent a worthwhile
return on the investment. Once the SPL has been conceived, each member in
the SPL can be derived by taking advantage of all the deliverables that have
been obtained for other members in the SPL.

2.2 Dependability

Dependability, from a qualitative point of view is defined as the ability to deliver
service that can be justifiably trusted; while, from a quantitative point of view,
as the ability to avoid service failures that are more frequent and more severe
than is acceptable to the user(s) [4]. To dependability are associated attributes
to further characterize it, means to achieve it and threats which have to be faced
by the means. The attributes usually recognized are: availability, confidential-
ity, integrity (which if satisfied together identify security), reliability, safety and
maintainability. While fault prevention, fault removal, fault tolerance (FT) and
fault forecasting identify the means. Finally faults, errors and failures are the
threats.

A detailed explanation of each mentioned term is outside the scope of this
paper and we direct the interested reader to [4]. Since we mainly focus on FT,
we detail the threats concepts and the existing causality chain among them

66 B. Gallina and N. Guelfi

to understand when FT is supposed to take place. A failure is an event that
occurs when the delivered service deviates from correct service. A service fails
either because it does not comply with the functional specification or because
the specification does not adequately describe the system function. An error is
the part of the total state of the system that may (in case the error succeeds, by
propagating itself, in reaching the external system state) lead to its subsequent
service failure. A fault is the adjudged or hypothesized cause of an error. From
these definitions we can retrieve a causality chain in which a fault causes an error,
which in turn causes a failure. Recursively, a failure, since it may represent a
fault elsewhere, may cause a fault, and so on.

FT, in this chain, takes place between error and failure. Its aim is to tolerate
faults by preventing the system service to deviate from the specification. FT is
composed of 4 phases: error detection (recognition of an erroneous state), damage
confinement and assessment (estimation of the damage caused by the delay in
error detection), error recovery (which brings the system from an erroneous
state into an error-free state) and fault treatment and continued system service
(which consists of a causal analysis between faults and errors to try to identify
faults). Recovery may be carried out through Forward and/or Backward Error
Recovery (FER/BER). FER is usually applied in the case of anticipated faults
and is dependent on damage assessment and prediction; BER is more general,
independent of damage assessment and may be applied to tolerate arbitrary
faults.

FT techniques may strongly vary among types of systems. Concurrent sys-
tems, for example, have to be treated differently than sequential systems. Con-
currency may exist in three forms: independent, cooperative and competitive [5].
Independent concurrency takes place when the sets of abstract objects accessed
by each process are disjoint. Competitive concurrency is identified when the sets
of abstract objects overlap but no information flow is allowed concerning this
sharing. Cooperative concurrency takes place when the sets of abstract objects
overlap and information flows concerning the sharing are not only allowed but
constitute an intrinsic characteristic to carry out inter-process communication.

More then a decade ago an interesting fault-tolerant conceptual framework,
called Coordinated Atomic Action (CAA) [6], was introduced to deal with these
three forms of concurrency. Coordinated Atomic Action is the result of the
integration of transactions, conversations and Forward Error Recovery. The
”conversations” term was introduced to indicate a recovery structure common to
a set of interacting processes. Conversations tackle cooperative concurrency. The
recovery structure is constituted of time and space firewalls. The time firewalls
are used to checkpoint the processes state on entry (recovery line) consistently
and acceptance test them on exit. The space walls are used to delimit process
activity. A process participating in a conversation is not allowed to communicate
with processes that live outside it.

Transactions tackle competitive concurrency on external objects (objects out-
side the space walls), which have been designed and implemented separately
from those processes and objects inside the walls. Transactions should succeed

A Template for Requirement Elicitation of Dependable Product Lines 67

in avoiding the information smuggling problem, guaranteeing ACID (Atomicity,
Consistency, Isolation and Durability) properties or at least an aware relaxed
version of them. The CAA conceptual framework integrates the two previous
concepts and also adds FER, facilities to face environmental faults and to han-
dle independent concurrency. In the CAA context, the interacting processes are
called roles.

Coordinated Atomic Action is the unique framework that covers all the three
concurrency typologies. Moreover it provides guidelines to carry out coopera-
tive exception handling and to deal with concurrent exceptions through the ex-
ception resolution tree [7]. Coordinated Atomic Action represents an advanced
fault-tolerant transactional conceptual framework. Its usage justification is im-
mediately motivated whenever at least cooperative and competitive concurrency
typologies characterize the system under development. Otherwise other frame-
works may be reasonably taken into consideration.

2.3 Use Case Scenario-Based Elicitation

The requirements elicitation phase identifies the requirements discovery and doc-
umentation. To carry on the elicitation process, use case diagrams and use case
scenario-based templates have been widely used particularly for functional re-
quirements that are functions or system services. The elicitation phase is a human
centered activity and it is well experienced that people dislike the constraints im-
posed by rigid system models. Scenario-based templates collect stories, instances
concerning desired system behaviour and their simplicity is successful during the
interaction with stakeholders. Standard templates are not available, however,
many templates are extensions of the well-accepted Cockburn template [8]. A mul-
titude of extensions have been provided to be able to elicit non-functional require-
ments (which represent constraints on the system or on the development process)
along with the functional ones.

In the security domain, for instance, misuse cases have been proposed to elicit
possible threats [9,10]. Misuse cases allow the investigation of the steps (mis-
scenario) that malicious users (anti-actors) may follow to bring the system to
a failure (anti-goal). Misuse cases seem to be a useful means to elicit security
requirements and they could also be exploited in other contexts where the elici-
tation of scenarios, that may lead to failures, results to be relevant.

In the SPL development community, change cases have been suggested to
identify commonalities and variabilities. In [11], authors propose to take into con-
sideration variation points not only related to functionalities but also to actors.
In their work, authors point out that any model element may potentially be vari-
ant. To trace these variation points, they propose to use the keyword ”variant”.
In [12], an extension for SPL, called PLUC (Product Line Use Case), has been
proposed. This extension allows the elicitation of variation points among prod-
ucts and the type category (alternative, optional, parametric) of the product
functionalities.

Finally in the FT community, exceptional use cases have been conceived.
These use cases are adopted to detail the steps that should be followed to tolerate

68 B. Gallina and N. Guelfi

faults. In [13], authors propose to collect exceptions in a table dividing them into
two categories: actor-signaled exceptions and system-detected exceptions. For
each exception a use case stereotyped with <<handler>>, representing an ex-
ception handler, is then used to elicit requirements to establish what to do in case
of exceptions occurrence. In that work, coherently with [14], concurency issues
are also taken into consideration and a field, called ”frequency and multiplicity”,
is available for that purpose. Similarly, in [15], an auxiliary use case defining the
FT mechanism is associated to each use case through an <<extend>> relation-
ship. The auxiliary use case describes what has to be done in case of an exception
occurrence relative to the main scenario. In [16], the violation of the contract
defined by its pre and post conditions is elicited through a narrative description
in the ”exceptional description” field of the use case; while in the ”handler” field,
it is elicited the activity for bringing the system to an error-free state.

3 Eliciting SPL Dependability

Our solution to help the elicitation process is proposed as an extension of RE-
QET (REQuirements Elicitation Template) [17]. REQET has been conceived
to elicit SPL functional requirements. Special fields to collect information con-
cerning variabilities and commonalities are available. In REQET, non-functional
requirements, alias quality attributes, are not considered in-depth. Stakeholders
may simply list some properties that they want the final product to exhibit, but
they are not obliged to provide their domain knowledge for achieving the de-
sired properties. The REQET extension, presented in this section, called DRET
(Dependable Requirements Elicitation Template), concentrates on dependabil-
ity. Through this template it is possible to collect the domain expertise related to
this requirement and to properly distinguish the variabilities and commonalities
among products with respect to this requirement. In particular dependability
threats (related to each domain concept) are collected, and later, attributes and
means, in particular FT, are discussed and tracked in appropriate scenarios.
The template also allows the elicitation of Concurrency, Location and Duration
requirements whenever they are part of the problem space.

DRET is composed of two parts: a DOMain Elicitation Template (DOMET)
and a Use Case Elicitation Template (UCET). These templates need to be ex-
tended to be able to better elicit dependable requirements. In the following, the
DOMET and the UCET extensions will be presented.

3.1 DOMET Extension

As seen in Section 2, dependability may be hindered by threats. Threats have
to be documented and analyzed carefully in order to provide corresponding suc-
cessful countermeasures. Considering all dependability threats that the human
imagination may elaborate is a utopia. Fault assumptions constitute the typi-
cal and fundamental starting point adopted by the FT community, and mainly
based on experience and data available. In DRET therefore, the DOMET focuses

A Template for Requirement Elicitation of Dependable Product Lines 69

only on faults strongly related to the domain and assumed to become active fre-
quently. Moreover, to further reduce the faults number to be considered, we also
prioritize faults on the basis of their criticality, as others have proposed [13,18].

The data dictionary, depicted using a tabular notation and representing the
DOMET, is here extended (1) with some fields (written in bold), inspired by the
Hardware and Software Failure Mode and Effect Analysis (FMEA and SFMEA).
The field meaning is provided in the following. Name labels the concept via a
unique identifier. Var Type column is filled with one of the following keywords:
”Mand” means that the concept is mandatory in the SPL and must be present in
all SPL members; ”Alt” represents one of the alternative concepts that has to be
chosen for a given SPL member; ”Opt” represents an optional concept that may
be omitted. This field underlines commonalities and variabilities in the SPL.
Description is an informal explanation of the concept purpose, while Depen-
dencies column exposes any kind of relationship with other concept(s) such as
generalization/specialization, related alternative or optional concepts, etc. (the
nature and meaning of these dependencies is intentionally not specified to allow
a flexible description [17]). This field helps in identifying the legal combination of
concepts in the SPL, by underlining the domain constraints. Misuse & class(es)
is an informal explanation concerning the misunderstanding of the domain (the
fault). The misuse is classified according to the fault taxonomy proposed in [4].
Misuse consequence & class(es) is an informal explanation concerning the con-
sequence (failure), observable by the stakeholders, that the misunderstanding of
the domain may entail. The consequence is classified according to the failure
taxonomy proposed in [4]. Priority Level column is filled with one of the follow-
ing keywords: ”High”, ”Medium” or ”Low”. These keywords represent different
levels of priority on the basis of criticality.

Table 1. DOMET

Concept
Name

Var
Type

Description Dependencies Misuse &
class(es)

Misuse conse-
quence & class(es)

Priority
Level

3.2 UCET Extension

We provide in this section an extended version of the UCET constituted of:
Collaborative UCETs and/or Single UCETs. We use the name Single UCET
when only a single actor triggers the action and use the name Collaborative
UCET when multiple actors synchronously trigger the action. The Collaborative
UCET coordinates harmoniously the Single UCETs related to each synchronous
actor participating in the use case.

To recognize the SPL commonalities and variabilities, the template provides
three fields: selection category, variation points description and fault variation
description. To elicit FT requirements we use special purpose scenarios. Inspired
by [13,15,9,10], our template integrates mis-scenarios and recovery scenarios. As
described in Section 2, mis-scenarios identify stories in which undesired behavior

70 B. Gallina and N. Guelfi

takes place. Through these scenarios, we aim at retrieving information about the
steps that may lead a dormant fault to an active phase (error) and finally bring-
ing the system to a failure outcome. Misuse scenarios may be helpful to predict
and assess the damage caused by an active fault. To elicit mis-scenarios, the
information collected in DOMET should be exploited. Starting from the more
critical fault, with the help of stakeholders it should be possible to discover the
causality chain that may lead to a failure. Recovery scenarios represent the steps
describing what to do to handle exceptions (which are detected errors). These
scenarios are identified and, in case they provide steps to forward recover the
erroneous situation (FER), they strongly depend on mis-scenarios. In case the
recovery scenarios provide means to backward recover, information concerning
the situation is not needed and they are not mis-scenario dependent. The excep-
tion handling phase may end successfully or may only provide a degraded service.
Therefore, postconditions that are related to the different outcomes should be
defined. Distribution and duration requirements are also elicited through DRET.
Moreover, the three types of concurrency (independent, competitive and coop-
erative) may be identified whenever part of the problem space. Independent
concurrency is elicited through the Single UCET with independent resources;
cooperative concurrency is elicited through the Collaborative UCET and also
by defining the resources needed for inter-actors communication; while competi-
tive concurrency is elicited by defining the transactional nature of the resources
that may be accessed concurrently. This elicitation is essential in order to be
able to choose and motivate appropriate advanced fault-tolerant transactional
conceptual framework during further phases.

Below, the detailed structure of the Collaborative UCET is presented. The
Single UCET has a similar structure but in its case there is only a primary actor,
the Synchronization field is not present and there is also a field (called location)
to precisely state distribution. Moreover, the primary actor is synchronous if
it cooperates into a Collaborative UCET, otherwise ”synchronous” disappears
completely. The fields in italic underline the UCET template extension or mod-
ification with respect to the original one.

- ID: An identification tag of the form ”UCXX” (where X is a digit), useful
for referencing UCs within variants and for referencing cooperating Single
UCETs.

- Collaborative Use Case name: Each collaborative use case is given a
name. The name should be the goal as a short active verb phrase.

- Selection category: Specify whether the collaborative use case is manda-
tory (Mand), optional (Opt) or alternative (Alt), add the alternatives here.
This field puts in evidence commonalities and variabilities and helps in iden-
tifying the legal combination of functionalities in the SPL.

- Description: Describe the use case, one or two sentences (i.e. a longer
statement of the use case goal).

- Synchronous Primary Actors: Name all the actors that participate in
the use case. Primary actors are the actors that synchronously initiate and
terminate the collaborative use case.

A Template for Requirement Elicitation of Dependable Product Lines 71

- Synchronization: Specify here the use case IDs that have to be synchro-
nized with the collaborative use case under examination.

- Resources: List of resources that can be directly accessed by the Primary
Actors. Emphasize their transactional or cooperative sharing or independent
nature and state precisely their properties which should be guaranteed on
them (if any).

- Dependency: Describe whether the collaborative use case depends on other
collaborative use cases; that is, whether it includes or extends another col-
laborative use case. This section is very useful since here it is possible to
specify the layered structure among collaborative use cases.

- Preconditions: Specify one or more conditions that must be true at the
start of the use case.

- Postconditions: Identify the normal condition that is always true at the
end of the use case if valid scenarios have been followed (main or alternative).
Identify the exceptional condition(s) that is/are always true at the end of
the collaborative use case, if the exceptional sequence has been followed and
a partial result or the complete one has been achieved.

- Main scenario: Textual description taking the form of the input from the
actors, followed by the response of the system. The main scenario defines a
partial order over the set of operations of the possible products.

- Alternatives of the main scenario: This section provides the description
of the alternative, but still valid branches of the main sequence.

- Variation points description: Describe here the introduced variation
points and their dependencies in the use case V1,..., Vn. Variants have a
type (Mand, Alt, Opt) and a concern: data or behavior. When using a vari-
ant, parentheses may be useful to indicate a default value.

- Non-functional: Specify non-functional properties (like security, efficiency,
reliability, scalability, etc.) adding also precise exemplification (like ”it must
always be true that...”) related to the collaborative use case.

- Duration: Specify the expected duration of the collaborative use case.
- Mis-scenarios:This section provides the description of the faulty branches

of the main sequence. The execution of this scenario leads to an erroneous
state that, if detected, will be followed by a corresponding recovery scenario
(in particular a FER scenario). Otherwise, if propagated, it will lead to a fail-
ure. In this last case the failure post-condition will be evaluated to true. This
scenario is reusable whenever the fault threatens multiple SPL members.

- Fault Variation descriptions: Describe here the variation faults (faults
strongly related to the variation points) and their dependencies in the collab-
orative use case F1,..., Fn. This fields helps in identifying fault commonalities
and variabilities among products and therefore it helps in investigating suit-
able and reusable FT strategies.

- Recovery scenarios: This section provides the description of the excep-
tional branches of the main sequence. These branches are not to be confused
with the alternative ones, since their execution takes place in case of ex-
ceptional, non-valid situations. Decisions concerning what to do in case of
exceptions are specified in this section. Recovery may be carried out through

72 B. Gallina and N. Guelfi

BER and/or FER. BER is more independent from mis-scenarios. These
scenarios are reusable whenever the faults tolerated threaten multiple SPL
members.

4 Case Study

The SPL that we are using to illustrate our template is an academic one: very
simple but safety critical. It is constituted of two e-health systems, which allow
doctors to update information for patients with Type 1 diabetes. On the ba-
sis of data provided by the patient (the patient diary), the doctor updates the
patient record, which contains the following information: insulin sensitivity fac-
tors, target blood glucose, basal rates, age, gender, pregnancy status and glucose
readings history.

In the first product, the patient fills-in a diary conceived as a PDA application
connected to an ad-hoc network and communicating with the medical team.

In the second product, alternatively, the patient fills-in a paper diary and
periodically, every 3 weeks, the patient meets the doctor to evaluate the therapy
treatment. During these meetings the diary is validated and used to update the
record. The main variation point (V1) is identified by the diary format (which
has two variants: electronic or paper).

In the first product, the patient and the doctor take part in a distributed
task cooperating (cooperative concurrency) through notification data necessary
to coordinate the information updating the patient record. The record content is
fundamental to subsequent diabetes therapy treatment, since it is also used by
other systems dedicated to the insulin administering (competitive concurrency
on the patient record). The user interface on the PDA can, independently of
the patient record task, be updated (changing icons, colors, fonts, etc). This
last property is known as independent concurrency. Figure 2 illustrates the con-
currency typologies, which may be encountered in our SPL. In the following,
attention will be focused on the part depicted by white ellipses.

Fig. 2. Concurrency typologies in the software product line case study

The systems have to satisfy the following dependable requirement: it must
always be true that the patient and the doctor provide reasonable information
(security/safety). ACID properties must be guaranteed on the diary and on
the patient record concerning the following operations: reading/validating diary
while updating the record content.

DRET is applied to elicit the requirements related to the SPL described above.
Because of space reasons, the complete requirements capture is not described.

A Template for Requirement Elicitation of Dependable Product Lines 73

Table 2 partially represents the DOMET. In this table, the abbreviations M/NM
and CF mean Malicious/Non-Malicious and Content Failure.

Table 2. Partial DOMET concerning the case-study

Concept
Name

Var
Type

Description Dependencies Misuse &
class(es)

Misuse con-
sequence &
class(es)

Priority
Level

Soft Di-
ary

Alt Tabular elec-
tronic diary, in
which a patient
stores data.

Exclusive
with respect
to Paper
diary

Column mean-
ing misunder-
stood. M/NM

Wrong con-
tent. CF

High

Paper
Diary

Alt Tabular paper
diary, in which
a patient writes
data.

Exclusive
with respect
to Soft diary

Column mean-
ing misunder-
stood; Column
space not re-
spected. M/NM

Wrong con-
tent. CF

High

Patient
record

Mand Record contain-
ing patient ther-
apy data.

None Wrong informa-
tion entering.
M/NM

Wrong updat-
ing. CF

High

To illustrate the usage of the Collaborative UCET, we elicit the requirements
concerning the cooperation between the patient and the doctor in updating the
patient record (UC1). This collaboration is reflected by software functionalities
in the first product (V1=electronic) only. Therefore, one Collaborative (UC1)
and two Single UCETs (UC2 and UC3) are used to describe the first product;
while only a Single UCET (UC3) is needed for the second one (V1=paper).

- UC1
- Collaborative Use Case name: Check diary and Update patient record.
- Selection category: Alt (if V1=paper, this collaboration degenerates into

a transaction (monologue) [6], the UC3 Single UCET only is needed).
- Description: During this use case the patient record is updated by the

coordination of UC2 and UC3 (patient and doctor behavior resp.).
- Synchronous Primary Actors: Patient, Doctor.
- Synchronization: Single UC2 and Single UC3.
- Resources: patient record and diary (transactional resources) which have to

guarantee ACID properties, Notification data (cooperative sharing resource).
- Dependency: None.
- Preconditions: Doctor and Patient are ready.
- Postconditions: The patient diary and record are correctly updated (main

valid scenario postcondition); the patient diary/record are wrongly updated
(mis-scenario postcondition equivalent to the recovery scenario failure post-
condition).

- Main scenario: The patient main scenario (UC2) is executed (the patient
enters daily information). The doctor main scenario (UC3) is executed (the
patient record is updated).

74 B. Gallina and N. Guelfi

- Alternatives of the main scenario: None.
- Variation points description: V1: Type=Alt, Format={electronic, pa-

per}, Concerns=Data.
- Non-functional: Security/Safety: it must always be true that the patient

record is correctly up-to-date.
- Duration: Tx+Ty weeks (where Tx is the time during which the patient

fills in the diary and Ty is the time during which the doctor, knowing that
the diary has been completed, updates the patient record).

- Mis-scenario unaware patient: The patient misunderstands the column
meaning and enters wrong information; the doctor updates the patient record
wrongly.

- Fault Variation descriptions: F1 (in case V1=paper): Description={the
patient overflows the diary column space}. F2 (for each PL member): De-
scription={the patient misunderstands the diary column meaning}. F3 (for
each PL member): Description={the doctor gets wrong data from the diary}.
If F1 or F2, may imply F3.

- Recovery scenario from unaware patient: The erroneous condition con-
cerning the wrong information is detected. A column explanation, provided
directly by the doctor, is displayed and the patient is requested to enter the
information again (cooperative recovery).

We use a Single UCET to elicit the requirements concerning the patient
(UC2). Similarly for the doctor, a Single UCET is the good choice (UC3).

- UC2
- Single Use Case name: Keep soft diary and notify.
- Selection category: Alt (if V1=paper, the UC3 Single UCET only is

needed).
- Description: During this use case, information concerning daily glycemia

readings are entered by the patient in the diary which has a table structure.
- Primary Actor: Patient synchronous.
- Resources: Diary (transactional resource) which has to guarantee ACID

properties, Notification data (cooperative sharing resource).
- Dependency: None.
- Preconditions: Patient is able to fullfil the task. PDA is on.
- Postconditions: The diary is updated and the doctor is notified (Main);

the diary is wrongly updated (mis-scenario postcondition equivalent to the
recovery scenario failure postcondition).

- Main scenario: Patient updates the diary.
- Alternatives of the main scenario: None.
- Variation points description: V1.
- Non-functional: Security/Safety: a patient has to enter reasonable data.
- Duration: Tx weeks.
- Location: Luxembourg.
- Mis-scenario unaware patient: The patient misunderstands the column

meaning and enters wrong data which are then stored.

A Template for Requirement Elicitation of Dependable Product Lines 75

- Fault Variation descriptions: F1 (in case V1=paper): Description={the
patient overflows the column space}. F2 (for each PL member): Descrip-
tion={the patient misunderstands the column meaning}.

- Recovery scenario from unaware patient: The erroneous condition con-
cerning the wrong information is detected. A default column explanation, is
displayed and the patient is requested to enter the information again (local
recovery); a cooperative recovery takes place should the local one fail.

5 Lessons Learned from the Template Usage

The DRET template that we have presented in Section 3 has not yet been largely
used. However, by using it for eliciting the dependable requirements related to
small and academic SPL case studies, we derived the following lessons.

We realized that the UCET readability could be improved. For example, when-
ever multiple and complex mis and/or recovery scenarios are elicited, they could
be elicited in separate use cases and the use case identifier could be the key to
bridge the coupled use cases. This improved intra-use-case readibility should not
however compromise either the inter-use-cases readability or the use case man-
agement. The trade-off will depend on the required level of detail needed during
the elicitation process. We also realized that further investigations are needed.
In particular it would be useful to establish how to use DRET whenever use
cases have already been documented using another template and what process
should be followed to fill it in.

We found it valuable to have at one’s disposal appropriate fields to elicit
commonalities and variabilities (among SPL members) covering also depend-
able aspects. For example, capturing through the template the domain expertise
related to common faults allows the identification of common (and therefore
reusable) recovery strategies and the convenience evaluation of tolerating some
faults. This evaluation is based on the observation of two fields in the DOMET:
Priority Level and Var Type. A clear case of inconvenience in tolerating faults
would be the one in which a fault has low priority and it is associated to an
optional concept. A clear case of convenience would be the one in which a fault
has high priority and it is associated to a mandatory concept. We also found
it valuable to distinguish concurrency typologies thanks to the introduction of
Collaborative and Single UCETs. In fact, as discussed in Section 2.2, FT tech-
niques/conceptual framework vary depending on the concurrency typology and
therefore eliciting concurrency typology allows a more aware and appropriate
FT technique/conceptual framework choice. In case of SPLs, this choice is even
more fundamental since it effects the entire product line.

6 Non Use-Case-Based Requirements Elicitation for
SPLs

In Section 2.3, related works covering the Use-Case-based approaches for the re-
quirements elicitation were discussed. Beside these approaches, Use Case-based,

76 B. Gallina and N. Guelfi

which extend templates to include other aspects of interest, other approaches
dealing with the elicitation of SPL dependable requirements exist. Feature-
oriented approaches, for example, have been extended to take into consideration
dependability attributes, such as reliability and safety. In [19,20], authors pro-
pose a Software Fault Tree Analysis for SPLs and detailed guidelines to prune
it to obtain the corresponding FTA related to a product. In the same research
direction, in [21], authors propose an approach consisting of constructing fault-
trees to analyze causes of failures. The failures taken into consideration are the
ones associated with the features belonging to the functional feature tree. Thanks
to the analysis carried on through Fault Tree Analysis, exception handling core
assets are identified. While these works contribute to enriching feature-based
SPL domain engineering approaches our work contributes in enriching the ones
based on use-case variants.

7 Conclusion and Future Works

In this paper we have presented a template to allow the elicitation of functional
and non-functional requirements for SPLs. Among the various non-functional
requirements the template focuses on dependability, allowing elicitation of its
means, its threats and its attributes. Moreover, whenever part of the problem
space, the template reserves space to elicit concurrency, duration and distri-
bution requirements. Concurrency typology (independent, cooperative and/or
competitive) information may be used in the later phases (analysis, design, imple-
mentation) of the development methodology to establish adequate fault-tolerant
conceptual frameworks. This template intrinsically provides means to plan evo-
lution by reducing time to market and cost.

In the future, to show the template scalability, we aim at using it for the com-
plete requirements elicitation of a more complex SPL. We also aim at enriching
this work on the basis of the lessons discussed in Section 5. From a development
process point of view, we are interested in having an analysis phase just following
the requirement eliciation phase made using DRET. This analysis phase must
deliver a specification as complete and precise as possible of all the requirements
of our dependable SPL, which are elicited using DRET. To achieve the integra-
tion of DRET into the CORRECT development process, in the future we will
also define the links between DRET and the CORRECT formal analysis models.

Acknowledgements

We thank the entire CORRECT team and reviewers for their relevant comments.

References

1. Trigaux, J.C., Heymans, P.: Software product lines: State of the art. Technical
report, Technical Report for PLENTY project, Institut dInformatique FUNDP,
Namur (2003)

2. CORRECT: project supported by the Luxembourg Ministry of Higher Education
and Research under the n MEN/IST/04/04 (2004)

A Template for Requirement Elicitation of Dependable Product Lines 77

3. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. In:
SEI Series of Software Engineering, Addison Wesley, London (2001)

4. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. In: IEEE Trans. Dependable Sec. Comput.
vol. 1(1), pp. 11–33 (2004)

5. Lee, P., Anderson, T.: Fault Tolerance: Principles and Practice, 2nd edn. Prentice-
Hall, Englewood Cliffs (1990)

6. Xu, J., Randell, B., Romanovsky, A., Rubira, C.M.F., Stroud, R.J., Wu, Z.: Fault
tolerance in concurrent object-oriented software through coordinated error recov-
ery. In: Symposium on Fault-Tolerant Computing, pp. 499–508 (1995)

7. Campbell, R.H., Randell, B.: Error recovery in asynchronous systems. IEEE Trans.
Software Eng. 12(8), 811–826 (1986)

8. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, London (2000)
9. Sindre, G., Opdahl, A.: Templates for misuse case description. In: The 7 Interna-

tional Workshop on REFSQ, Switzerland (June 4-5, 2001)
10. Alexander, I.: Misuse cases help to elicit nonfunctional requirements. In: IEE CCEJ

(2001)
11. John, I., Muthig, D.: Product line modelling with generic use cases. In: SPLC-2

Workshop on Techniques for Exploiting Commonality Through Variability Man-
agement, San Diego, USA (August 19-22, 2002)

12. Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A methodology for the derivation and
verification of use cases for product lines. In: SPLC3, pp. 255–265 (2004)

13. Shui, A., Mustafiz, S., Kienzle, J., Dony, C.: Exceptional use cases. In: MoDELS,
Montego Bay, Jamaica (October 2-7, 2005)

14. Kienzle, J., Sendall, S.: Addressing concurrency in object-oriented software devel-
opment. Technical Report SOCS-TR-2004.8, School of Computer Science, McGill
University, Montreal, Canada (2004)

15. Laibinis, L., Troubitsyna, E.: Fault tolerance in use-case modeling. In: Workshop
on RHAS (September 2005)

16. de Lemos, R., Ferreira, G.R.M., Rubira, C.M.F.: Explicit representation of ex-
ception handling in the development of dependable component-based systems. In:
IEEE International HASE, pp. 182–193. IEEE Computer Society, Washington, DC
(2001)

17. Gallina, B., Guelfi, N., Monnat, A., Perrouin, G.: A template for product line
requirement elicitation. Technical Report TR-LASSY-06-08, Laboratory for Ad-
vanced Software Systems, University of Luxembourg (2006)

18. Lu, D., Lutz, R., Chang, C.: Deriving safety-related scenarios to support architec-
ture evaluation. In: Software Evolution with UML and XML, Yang, H., (ed.) pp.
32–56 (2005)

19. Dehlinger, J., Lutz, R.: Software fault tree analysis for product lines. In: 8th
IEEE International Symposium on HASE, March 24-26, Tampa, Florida, pp. 12–21
(2004)

20. Lu, D., Lutz, R.: Fault contribution trees for product families. In: 13th Interna-
tional Symposium on SRE, Annapolis, MD, pp. 231–242 (2002)

21. Noda, A., Nakanishi, T., Fukuda, A., Kitasuka, T.: Introducing fault tree analysis
into product line software engineering for exception handling feature exploitation.
In: Proc. IASTED International Conference on SE, pp. 229–234, February, Inns-
bruck, Austria (2007)

A Flexible Requirements Analysis Approach for

Software Product Lines

Nicolas Guelfi1 and Gilles Perrouin1,2

1 Laboratory for Advanced Software Systems
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg-Kirchberg, Luxembourg

2 Computer Science Department
University of Namur

Rue Grandgagnage 21
5000 Namur Belgium

{nicolas.guelfi,gilles.perrouin}@uni.lu

Abstract. Product Line Engineering (PLE) promotes the development
of applications by reusing a set of software assets belonging to a given
domain. Important research efforts have been devoted to the descrip-
tion of commonalties and variabilities among these assets yielding re-
quirements engineering techniques such as feature modeling or use case
variants. However, current product derivation techniques, which strive
to automate the derivation process, are inflexible in that they fail to
accommodate products that represent only a minor deviation from the
original product line. Furthermore, PLE methodologies do not provide
precise support to assist product derivation in such cases. In this pa-
per, we address flexibility issues by introducing an analysis model, based
on UML, OCL and use cases, that implicitly defines define product line
variabilities and boundaries by means of constraints forbidding undesired
products. Then, in order to reuse domain assets in a coherent manner,
an imperative model transformation mechanism is devised. We illustrate
this approach through a simple example.

1 Introduction

A Software Product Line (SPL), as defined by Paul Clements, is “a set of software
intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [1]. Adopting a product
line approach to software development involves addressing two equally impor-
tant issues. One is domain engineering, which is concerned with the specification
of domain features including those common to all products and those differing
amongst products, and the implementation of core assets. The other issue is
application engineering, relating to the efficient development of new members of
the product line from core assets.

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 78–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Flexible Requirements Analysis Approach for Software Product Lines 79

Various mechanisms have been proposed in order to perform domain engineer-
ing at the requirements elicitation and analysis levels. These mechanisms can be
roughly partitioned in two mainstream categories: feature models [2,3,4] and use
case variants [5,6,7]. These mechanisms allow for the explicit modeling of the
commonalties and variabilities of large product lines comprised of thousands of
features. Hence, choosing the relevant features and building products according
to them, or product derivation [8], can be a tedious and error prone task [9].
Current approaches for product derivation use these notations either automati-
cally, by configuring or generating product artifacts from SPL core assets at the
design level or by combining them with methodological guidelines. There are,
however, two main issues with these approaches. First, the existing coupling be-
tween product line models and requirements engineering notations imposes that
all variation points be explicitly known beforehand. This unnecessarily excludes
those products slightly differing from the SPL and forces its inefficient evolution.
Second, SPL methodologies offer minimal support for product derivation when
the product analyst has to address requirements that are not directly derivable
from the SPL.

In this paper, we propose to address the aforementioned issues at the require-
ments analysis level (or late requirements level) by providing flexibility both on
domain engineering models and on the application engineering process. We in-
troduce an analysis model that does not provide an explicit description of its
variation points, but defines constraints (formalized in Object Constraint Lan-
guage (OCL) [10]) to either restrict the derivable execution scenarios (described
as use cases in which steps are clarified via OCL expressions) or forbid prod-
ucts with unwanted features to be derived from domain assets. In this approach,
a product is no longer thought of as a combination of resolved specific varia-
tion points, but as a constrained reuse of domain assets. In order to support
coherent product derivation, a model transformation mechanism implementing
assets reuse specified by the product engineer and validated over the analysis
constraints is proposed. Section 2 presents the available approaches to perform
SPL-based product analysis and their limitations. Section 3 introduces the anal-
ysis model serving as the base for SPL and product specification. Section 4
describes how product specification is obtained via our generative mechanism,
while Section 5 illustrates the approach on a cash dispenser example. Finally,
Section 6 wraps up with conclusions and outlines future work.

2 Current Approaches for SPL Analysis

Current approaches to support product derivation can be organized into two
main categories according to the derivation technique they use: configuration
and transformation.

2.1 Product Derivation by Configuration

Product configuration or software mass customization [11,12] originates from the
idea that product derivation activities should be based on the parameterization of

80 N. Guelfi and G. Perrouin

the SPL core assets rather than focusing on how the individual products can be
obtained. In this context, product derivation relies on the selection of the prod-
uct features according to the variants offered by the product line requirements
description. Then, core assets are assembled according to a decision model. This
decision model contains the necessary constraints and traceability information
in order for the configuration tool to make the right decision and generate a
viable particular product.

Several configuration-based approaches [13,14,15] for product derivation are
founding their decision models on feature models. In an approach called FORM
[15], Kang et al. have extended their former FODA approach [2] with domain
engineering and application engineering phases. The authors propose to organize
feature models in several layers relating functional/non-functional requirements,
operating environment, implementation, etc. Product derivation consists of se-
lecting appropriate features in the feature models and assembling subsystems in
a bottom-up manner.

ConIPF [16] is an automated configuration methodology that builds on the
results of a European project in targeting the validation of product configuration
in an industrial (automotive) context. It bases its decision model called Com-
mon Applicable Model (CAM) [17], on a class-diagram like representation. The
CAM relates features with their realizing software and hardware assets along
with contextual information, which provides additional constraints in a single
model. Product derivation bypasses the analysis phase by allowing the selection
of high-level features within a configuration tool that automatically configures
SPL design assets to form the product.

Kobra [18,19] is an SPL development methodology that bases its derivation
on configuring and assembling Kobra Components (Komponents), which are
grouped in a framework and modeled at two levels of abstraction: specification
and realization. Specification models define the externally visible properties of
the Komponent. They are comprised of: a structural model in the form of a
UML class diagram that exposes the class and operations available via the in-
terface of the Komponent; a functional model described as Fusion [20] operation
schemata, specifying individual operation behavior; and a behavioral model us-
ing UML statechart notation describing how the Komponent reacts to external
stimuli. Furthermore, a decision model adopting a tabular notation describes the
effect a particular choice has on the aforementioned models. Realization models
detail Komponent internal design as refinements of the structural and functional
models. The “context realization” model offers a global view on the function-
alities offered by the Komponent framework and provides a resolution model
whose purpose is to determine the suitability of the Komponent framework re-
garding a particular application. The derivation process consists of selecting the
necessary features in the context realization model and then instantiating re-
alization models of the individual Komponents. Product specific requirements
have to be added either in the detailed realization models or integrated in the
framework.

A Flexible Requirements Analysis Approach for Software Product Lines 81

2.2 Product Derivation by Transformation

We believe that Model Driven Engineering (MDE) techniques [21], providing
models as useful abstractions to understand assets and transformations able to
use them as first class artifacts for product generation, has a prominent role to
play in PLE [22]. Our belief is shared by several researchers, who also propose
approaches combining PLE and MDE [8,23,24]. However, due to the novelty
of these active research fields, the work addressing this synergy remains ongo-
ing. We review the current transformation-based approaches in the following
paragraphs.

In Haugen et al. [23], a conceptual model for PLE aligned with Model Driven
Architecture (MDA) [25] models is presented. A requirements elicitation view
(Computation Independent Model (CIM) level, called “product line model”)
of the product line is described using UML 2.0 use cases. Individual products
are specified in the “product model” (CIM level and subset of the product line
model), which takes the form of an actor having association relationships with
some of the product line use cases. Core assets (Platform Independent Model
(PIM) level, called “system family model”) are described in terms of UML
2.0 composite structure diagrams extended with variations points described via
stereotypes. A Query/View/Transformation (QVT) [26] transformation relates
elements of the product line model with those of the system family model. The
actual product derivation is realized via a partly automated transformation that
takes the product and system family model and outputs an instantiated ver-
sion of the system family model, called “Product/System Model” which is also
a PIM. Finally product implementation is obtained after several refinements at
the Product Specific Model or PSM level.

Kim et al. analyze [24] the respective shortcomings of SPL engineering and
MDA and propose a method, DREAM, integrating the two concepts. In par-
ticular, for product derivation, the authors propose to instantiate, via MDA
transformation mechanisms, a framework embodying core assets on the basis of
a decision model and according to the variants selected for a specific product.
For parts of the application that are not implemented in the framework, an in-
tegration phase takes place, yielding a single product model at the PIM level.
This model may be refined to obtain PSM and final application in the same way
as Haugen et al. [23].

Finally, the most comprehensive transformational approach to product deriva-
tion has been devised by Ziadi and Jézéquel [8]. Although defined for the design
level, it also covers detailed analysis both statically and dynamically. Static
models are described in terms of UML class diagrams augmented with an UML
profile [27] in order to describe variants. OCL constraints have also been de-
fined to ensure consistency within the variants for a given SPL, e.g., to enforce
a “requires” relationship between two classes. The derivation process uses a
decision model based on design patterns to expose the variants available for
each product. As a first step, variants selection is made on this model and the
relevant classes are automatically selected. In the second and third steps, un-
used variants are removed and the model is optimized. The derivation process is

82 N. Guelfi and G. Perrouin

described in an imperative pseudo-code format supported by the Model Transfor-
mation Language (MTL) [28]. Concerning behavioral aspects, UML 2.0 sequence
diagrams are extended variability-related stereotypes, and statecharts are syn-
thesized from sequence diagrams. Behavioral derivation is formalized using an
algebraic approach.

2.3 Discussion

From this literature review, one can make two remarks. First, that all the afore-
mentioned approaches require documentation from the onset of all variabilities
within the domain requirement analysis models. Identifying in advance which
variabilities will address all customer needs is difficult and may result in pro-
viding unnecessarily large amounts of variable assets that may be difficult to
manage. Moreover, these approaches raise the issue of accommodating customer
requirements that are not directly addressable from the SPL and it forces the
whole SPL to evolve for a unique product. This is particularly problematic for ap-
proaches such as ConIPF [16] and transformation approaches that strive toward
full automation of the product derivation process. Approaches such as FORM
or KoBra may alleviate the problem by redeveloping the variants that are not
derivable from the SPL during the application engineering phase. However it is
our belief that this is not an efficient solution, as it does not foster reuse of SPL
assets.

Second, there is relatively little support for the derivation process in the ex-
isting approaches. In DREAM, little information is provided on the models em-
ployed in the different phases of their process. Furthermore, the nature of the
transformations, either concerning framework instantiation or the integration
phase, are either not discussed or are advocated to be unsupported by MDA
transformations. Haugen et al. [23] do not provide more details on the trans-
formation combining the system family model representing SPL assets and the
product model. While KoBra provides a detailed analysis model and reliable
methodological guidelines, it does not provide any means to control the product
specific features with the existing Komponent framework. Finally, FORM pro-
vides only general insights to reuse existing models in a bottom-up fashion.

We believe that in order to overcome the above issues, domain engineers need
to have more flexibility to focus on how the essential SPL features can be reused,
rather than having to document variability for the whole SPL. Product engineers
should be able to reuse SPL assets directly rather than relying on a fully dic-
tated decision model. A solution should be sought as a trade-off between an
automated derivation approach, which is too restrictive, and methodologies that
do not offer any means to control and support flexibility in product derivation.
In particular, we advocate that such a compromise should be done first at the
requirements analysis level by providing a flexible yet precise specification of the
SPL assets and also by supporting product derivation via transformation and
constraints, which implicitly define SPL boundaries. Our approach is presented
in the following sections.

A Flexible Requirements Analysis Approach for Software Product Lines 83

3 FIDJI Analysis Model

FIDJI [22] is an SPL-based methodology that is founded on the reuse of an Ar-
chitectural Framework (AF). We define such an entity as a layered set of reusable
models characterizing core assets devoted to the specification and realization of
a specific SPL. These layers emphasize the description of SPL core assets at
the analysis and design levels, while the implementation layer is constituted of
an object-oriented framework [29]. In this section, we sketch the constituents
(illustrated in Sect. 5) of the layer used at the analysis phase of the FIDJI
methodology which follows a requirements elicitation devoted to the high-level
description of SPL assets via a template [30,31] based on use case variants. The
analysis model [32] is composed of use cases, domain concepts and operation
definitions.

FIDJI analysis use cases are based on the textual template provided by Cock-
burn [33]. In addition, OCL 2.0 is used to specify not only the pre/postconditions
of a given use case, but also each of its scenario steps. Each step is expressed ei-
ther as a request to one of the system operations forming the functionality of the
use case, or as a response of the system model as a UML signal. Use cases pro-
vide only a partial view on the sequences of events that may occur in a system.
Therefore, rather than specifying extensively the variability among scenarios via
extended UML 2.0 sequence diagrams [8,27], we restrict the possible sequence of
operations in OCL expressions via the usage of state variables. These variables
are either defined for a particular domain concept or within a use case and serve
as “guards” to specify behaviors depending on previous operation occurrence.
State variables are introduced to specify the mandatory (using boolean state
variables) and alternative (using multi-valued state variables) sequences of oper-
ations natively supported by the AF. Note that this mechanism is not a decision
model since it does not forbid such operations sequences to be changed during
the product analysis phase, as shown in the next section. As noted by Warmer et
al. [34], the main issue in embedding OCL in use cases is to provide the context
over which OCL expressions are defined. We address this issue by defining a use
case component (modeled as a UML 2.0 component diagram) for each use case
defining all the UML elements necessary for the definition of OCL expressions.
Interfaces of such components contain the signature of system operations pro-
vided by the use case. Finally, a use case diagram gives an overview of all the
use cases offered by the AF and their relationships.

Analysis concepts are represented in terms of UML classes with attributes but
without any operation. Gathered in a class diagram, they give a flat represen-
tation of all data exchanged between use cases and their actors. In addition, a
“data dictionary” details in a tabular format the name, kind (concept of the AF
or signal returned to the actor), the use case(s) to which this element is related
and a textual description of its purpose.

Operations represent units of behavior that are composed to form the AF
functionality as defined by its use cases. Operations descriptions are inspired
from Fusion [20] operation schemata and declaratively specify each operation
behavior in terms of OCL pre/postconditions. State variables are also useful

84 N. Guelfi and G. Perrouin

here to indirectly express functional dependencies between system operations.
We will illustrate this usage in Section 5.

FIDJI analysis removes the description of commonalties and variabilities from
the model, which are implicitly defined as constraints on the derivation process
(explained in the following section), so that the analysis model of the AF and the
product analysis model share exactly the same notation. In order to assist AF
and product analysts in defining the SPL and deriving products, a UML profile
is defined [32]. This profile contains the definition of the FIDJI notational ele-
ments, as well as rules (formalized in OCL when possible), ensuring consistency
among the analysis model elements.

4 Product Analysis Through Model Transformations

Unlike the other SPL derivation approaches in which the derivation process
starts by resolving variability on the SPL asset models, FIDJI analysis begins
with the definition of a derivation program, yielding the product model from
AF assets by combining transformation primitives in an imperative setting. In
this section, we sketch the necessary transformation language, the manner for
which the constraints for product derivation have to be given and explain how
the validation of the derivation program is performed.

4.1 Transformation Language

Our motivation for a transformation language is to provide application analysts
with a simple way to define their products from the AF by using FIDJI dedi-
cated constructs. The language is textual and follows traditional programming
language syntax. This language is composed of two sets of constructs:

– Transformation primitives: regroups specific operations to create, update
and delete elements of the FIDJI models. They are organized in packages
dedicated to the derivation of a particular AF layer. Primitives are declara-
tively specified in terms of OCL 2.0 pre/postconditions (Fig. 1). The depicted
transformation primitive removes an operation in a classifier according to its
name.

– Language primitives: this includes traditional control sequences such as
branching (if then else) or loops (for). These constructs are interesting
for reusing the derivation programs in other products (and specifying con-
ditions on their usage), or to repetitively update a given model.

4.2 Derivation Constraints

As opposed to other approaches, the product analyst can define the desired
product via transformation primitives on the AF assets and can flexibly specify
products that were not previously expected by the original SPL and AF design-
ers without changing anything to either the AF model or the decision models.

A Flexible Requirements Analysis Approach for Software Product Lines 85

Context:removeOp(c:Classifier,opName:String)

pre: c.feature->select(oclIsTypeOf(Operation))->exists(op|op.name=

opName)

post: not c.feature->select(oclIsTypeOf(Operation))->exists(op|op.

name=opName)

Fig. 1. removeOps Definition

However, we need a mechanism to control the degree of variability that is tol-
erated within an SPL. Control is made along two dimensions. The first one is
technical. There are some changes at the analysis level that have too great an
impact on the AF at the design level. Carrying out these changes would force
the product developer so many modifications at the design level and loose all
the benefits of reusing AF’s architecture and eventually realize single product
development. The second dimension is functional. Although the AF may tolerate
changes to its assets while reusing them without any harm, we may deliberately
state that such changes are outside the scope of the SPL.

Therefore, we propose to define constraints associated with each layer of the
AF in order to inhibit undesirable derivation programs. Indeed, derivation con-
straints implicitly define SPL borders along the aforementioned two dimensions
and permit flexibility in product derivation by tolerating any product that ful-
fills these constraints. Constraints are given either using OCL invariants or via
prohibited (sub)-transformation programs and are conceptually divided in two
categories: AF derivation constraints and SPL constraints. AF derivation con-
straints are defined by AF designers and implement the technical dimension
of variability. SPL constraints implement the functional dimension of variability
and are, at the analysis level, validated according to SPL requirements elicitation
artifacts using consistency rules [31].

4.3 Derivation Process

The derivation process resides in the definition and application of a derivation
program on the AF. This process leaves the AF untouched because it transforms
elements as part of application engineering. If a product derivation is considered
to be worthwhile for inclusion in the SPL, its derivation program can be used
to update the AF accordingly. Once the derivation program has been written
by the product developer, it has to be validated over the SPL constraints before
performing actual generation of the product models. The first step is to validate
program syntax according to the rules given by the derivation language. Then,
the model of the product is built according to the derivation program and checked
against derivation constraints. If the validation of constraints ends successfully,
the last step is to resolve problems resulting from the derivation:

– UML/FIDJI profile unconformity: At the analysis level, derived use
case component diagram may violate either UML or FIDJI analysis

86 N. Guelfi and G. Perrouin

profile well-formedness rules. Consequently, the derived model may need to
be updated.

– Inconsistencies with other depending analysis models: The removal
of an operation on a derived use case component entails that its description
in the operation model is no longer valid. FIDJI analysis profile constraints
cover this kind of issue.

– Impacted Elements: In addition to the preceding point, a change on a
particular attribute of a concept or parameter of an operation may have
consequences on the other dependent elements (even if the whole model is
conforming to UML/FIDJI analysis profile). Impact analysis may be calcu-
lated in UML diagrams following the approach given by Briand et al. [35].
Because a change at the analysis level can have serious consequences at the
design level, AF developers may also provide OCL postconditions, as well
as informal information about the impact a given change on the core assets
can cause.

5 Example

In this section we exemplify our approach on a simplified case study inspired
from Automatic Teller Machines (ATM). The associated AF implementing this
SPL provides functionalities for registering with the machine via a credit card,
depositing and withdrawing money and obtaining the current balance of the
card holder’s account.

5.1 Analysis Model

Due to space reasons, we will not exhibit the full analysis model of the ATM
AF here, but rather focus on its major artifacts and, in particular, the elements
associated with the withdraw operation. Figure 2 depicts the domain model of
the ATM SPL.

ATM

UserAccount

−cardNumber : int
−name : String
−pin : int
−value : int

<<state>>

<<state>>−isAuth : boolean = false

User

<<id>>−represents

0..1

1

Fig. 2. FIDJI Domain Model for the ATM SPL

A Flexible Requirements Analysis Approach for Software Product Lines 87

The <<id >> stereotyped association between the User and UserAccount
means that UserAccount is the representation of a (human) user as a concept
of the system and serves to identify that actor in OCL expressions through-
out the analysis model, as initially introduced by Sendall and Strohmeier [36].
<<state>> stereotyped state variable isAuth tells whether the user has suc-
cessfully entered their credentials (card and pin) and may therefore access to the
ATM services. Figure 3 presents the use case component associated to Use ATM
use case (not shown here). It provides a reference on the UserAccount concept
that serves to define the use case as well as the associated operations (Fig. 4).
In addition, RetrieveNotesDisplay simulates the display of a message on the
ATM machine screen inviting the card holder to retrieve money.

<<component>>

UseATM

userAcc : UserAccount

<<signal>>

RetrieveNotesDisplay

−text : String = "Please take your money"

IUseATM

+getValue() : int
+deposit(amount : int)
+withdraw(amount : int)
+authenticate(cardNum : int, pin : int)

Fig. 3. Use ATM Use Case Component

Figure 4 gives the FIDJI specification for withdraw operation. It exemplifies
the usage of the state variable isAuth as a convenient means to access the state of
the system and provide some constraints on the possible sequence of operations
in the system (here only authenticate is allowed to modify this state variable
and therefore must be executed before withdraw).

There are also constraints that have been defined for this SPL. The first one
is an SPL derivation constraint that states no product (i.e. one particular ATM)
can be defined without the authenticate operation present in the Use Case Model
(UCM), due to obvious security reasons:

Context ATM::UCM inv:
not removeOp(IUseATM,’authenticate’)
In addition, this SPL of ATMs are only able to provide 20e notes:
Context ATM::UCM:IUseATM::deposit inv: amount.mod(20)=0
Context ATM::UCM:IUseATM::withdraw inv: amount.mod(20)=0

88 N. Guelfi and G. Perrouin

Operation Name: withdraw
Related Use Case: Use ATM

Description: Withdraws the specified amount on the user account
Parameters: amount typeOf: Integer
Sends: RetrieveNotesDisplay to userAcc.represents

Preconditions: The user has successfully entered his credentials in the ATM:
pre: userAcc.isAuth = true,
Postconditions: UserAccount have been withdrawn and user is invited to retrieve his
notes:
post: userAcc.amount = userAcc.amount@pre - amount

post: userAcc.represents^RetrieveNotesDisplay

Fig. 4. withdraw Operation Description

5.2 Product Derivation

The SPL use case is not assuming any restriction on the withdraw operation.
However, for a particular product, a bank requires that under a certain amount
on the account, it is not possible to withdraw money and the only way to have
access to this functionality again is to deposit money on the account so that it
exceeds the threshold. Thresholds are fixed by the bank in accordance with their
customers’ needs.

As stated in Section 4, the derivation process starts with the writing of the
derivation program. In our example, we will create a UML package called myATM
in the new model corresponding to our product and copy both the ATM domain
and use case models of the AF in this package, using the following primitives:
createProduct(myATM);
copyModel(ATM::Domain,myATM::Domain);
copyModel(ATM::UCM,myATM::UCM);

These operations also copy the textual artifacts (use cases and operation descrip-
tion of the operation model) that are packaged within use case components. The
next step is to add a property called thres of type Integer, to UserAccount
to store the threshold. This can be done via the following instruction in the
derivation program:
addPropToConcept(ATM::Domain::UserAccount, thres, Integer);

Then we will introduce a new state variable called isWithdrawable, that will
serve to indicate in the deposit operation for when the account can be with-
drawn again. As the main purpose of this variable is to manage the sequence of
operations between deposit and withdraw, we will not define it in UserAccount
but rather in UseATM use case component. The following primitives define a spe-
cial class (defined in the FIDJI analysis profile) stereotyped as <<UCControl>>
to store state variables, create isWithdrawable as a boolean property, and set
its default value to true:
CreateUCControl(ATM::UCM::UseATM, UseATMState);
addStateVarUCC(ATM::UCM::UseATM, isWithdrawable, boolean, true);

Figure 5 shows the derived use case component.

A Flexible Requirements Analysis Approach for Software Product Lines 89

userAcc : UserAccount

<<component>>

UseATM

<<signal>>

RetrieveNotesDisplay

−text : String = "Please take your money"

<<UCControl>>

UseATMState

−isWithdrawable : boolean = true

IUseATM

+getValue() : int
+deposit(amount : int)
+withdraw(amount : int)
+authenticate(cardNum : int, pin : int)

Fig. 5. Use ATM Use Case Component

Once the transformation program is written, the model for the product is built
and validated over the SPL constraints. OCL derivation constraints are copied
with the models and as they are attached to UML elements, the supporting case
tool will update their context automatically. Here, none of the derivation con-
straints is violated, thus we can execute it and continue the derivation process.
We now need to update the withdraw operation in the product model in order
to match its requirements. We rely on the newly defined state variable to ensure
that the account can be withdrawn before calling the operation and, after its
execution, indicating if it can be withdrawn again:

Operation Name: withdraw
Related Use Case: Use ATM
Description: Withdraws the specified amount on the user account
Parameters: amount typeOf: int
Sends: RetrieveNotesDisplay to userAcc.represents
Preconditions: The user has successfully entered his credentials in the ATM:
pre: userAcc.isAuth = true
pre: UseATMState.isWithdrawable= true
Postconditions: UserAccount have been withdrawn and user is invited to re-
trieve his notes:
post: userAcc.amount = userAcc.amount@pre - amount
post: userAcc.represents^RetrieveNotesDisplay
post: if userAcc.amount <= thres.userAcc.amount then
UseATMState.isWithdrawable= false else
UseATMState.isWithdrawable= true
endif

90 N. Guelfi and G. Perrouin

Naturally, deposit would also have to be updated by the product analyst, as
well as the textual description of the use case. The last step consists in checking
the newly derived analysis model for inconsistencies, such as suppressed oper-
ations where descriptions still exist in the operation model or incomplete data
dictionary.

6 Conclusions

In this work, we looked for a compromise between flexibility to derive unfore-
seen products of an SPL and automated techniques for product derivation. We
first introduced an analysis model supporting the description of both SPL and
product features in a precise way using UML, OCL and textual use cases. We
then defined two ways of introducing flexibility in SPL requirements analysis: by
introducing state variables to define restrictions on possible product scenarios
and by giving constraints in order to implicitly delimit SPL borders. Assistance
to product developers was provided in terms of a transformation language, al-
lowing them to derive products in a coherent manner.

There is room for improvement. We are currently studying the possibility
to map our transformation language to hybrid OCL-based languages, imple-
menting the QVT standard [26] such as ATL [37]. These transformation tech-
nologies can serve to implement transformation operations defined in Section 4.
Thus, we could take advantage of existing generic model transformation engines
and address poor tool support currently available ([38]) for MDE-based product
derivation.

Acknowledgments

The authors would like to thank Cédric Pruski for his thoughtful comments.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Ad-
dison Wesley, Reading, MA, USA (2001)

2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute (1990)

3. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams:
A Survey and A Formal Semantics. In: Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference (RE’06), Minneapolis, Minnesota,
USA (2006)

4. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-based Fea-
ture Models and their Specialization. Software Process Improvement and Prac-
tice 10(1), 7–29 (2005)

5. Fantechi, A., Gnesi, S., John, I., Lami, G., Dörr, J.: Elicitation of Use Cases for
Product Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp.
152–167. Springer, Heidelberg (2004)

A Flexible Requirements Analysis Approach for Software Product Lines 91

6. John, I., Muthig, D.: Tailoring Use Cases for Product Line Modeling. In: REPL02,
26–32 (2002)

7. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA (2004)

8. Ziadi, T., Jézéquel, J.M.: Product Line Engineering with the UML: Deriving
Products. In: Families Research Book, Springer, Heidelberg (2006)

9. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families:
Problems and Issues during Product Derivation. In: SPLC3 - 3rd Software Prod-
uct Line Conference (SPLC 2004), pp. 165–182, Boston, MA, USA (2004)

10. OMG: UML 2.0 OCL 2.0 specification. Technical Report ptc/05-06-06, Object
Management Group (2005)

11. Krueger, C.W.: Easing the Transition to Software Mass Customization. In: PFE
’01: Revised Papers from the 4th International Workshop on Software Product-
Family Engineering, London, UK, pp. 282–293. Springer, Heidelberg (2002)

12. Krueger, C.W.: New Methods in Software Product Line Development. In: 10th
International Software Product Line Conference (SPLC’06), IEEE, pp. 95–102
(2006)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Special-
ization and Multilevel Configuration of Feature Models. Software Process: Im-
provement and Practice 10(2), 143–169 (2005)

14. Griss, M.L., Favaro, J., d’ Alessandro, M.: Integrating Feature Modeling with the
RSEB. In: ICSR ’98: Proceedings of the 5th International Conference on Software
Reuse, IEEE Computer Society, Washington, DC, USA (1998)

15. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures. Ann.
Softw. Eng. 5, 143–168 (1998)

16. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor,
J.: Configuration in Industrial Product Families, The ConIPF Methodology. IOS
Press, Amsterdam (2006)

17. Krebs, T., Wolter, K., Hotz, L.: Model-based Configuration Support for Product
Derivation in Software Product Families. In: Mass Customization, Concepts -
Tools - Realization, GITO-Verlag, pp. 279–292 (2005)

18. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line Engi-
neering with UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2002)

19. Atkinson, C., Bayer, J., Muthig, D.: Component-based Product Line Develop-
ment: the KobrA approach. In: Proceedings of the first conference on Software
product lines: experience and research directions, pp. 289–309. Kluwer Academic
Publishers, Norwell, MA, USA (2000)

20. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes,
P.: Object-Oriented Development: the Fusion Method. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1994)

21. Kent, S.: Model Driven Engineering. In: IFM ’02: Proceedings of the Third Inter-
national Conference on Integrated Formal Methods, London, UK, pp. 286–298.
Springer-Verlag, Heidelberg (2002)

22. Guelfi, N., Perrouin, G.: Using Model Transformation and Architectural Frame-
works to Support the Software Development Process: the FIDJI Approach. In:
2004 Midwest Software Engineering Conference, pp. 13–22 (2004)

92 N. Guelfi and G. Perrouin

23. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Solberg, A.: An MDA-based Frame-
work for Model-Driven Product Derivation. In: Software Engineering and Appli-
cations, ACTA Press, pp. 709–714 (2004)

24. Kim, S.D., Min, H.G., Her, J.S., Chang, S.H.: DREAM: A Practical Product
Line Engineering Using Model Driven Architecture. In: ICITA ’05: Proceedings of
the Third International Conference on Information Technology and Applications
(ICITA’05), pp. 70–75. IEEE Computer Society Press, Washington, DC, USA
(2005)

25. Soley, R.: OMG: Model Driven Architecture. Technical Report omg/00-11-05,
OMG (2000)

26. OMG: MOF QVT Final Adopted Specification. Technical Report ptc/05-11-01,
OMG (2005)

27. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2003)

28. Vojtisek, D., Jézéquel, J.M.: MTL and Umlaut NG: Engine and Framework for
Model Transformation. ERCIM News, vol. 58 (2004)

29. Johnson, R.E., Foote, B.: Designing Reusable Classes. The. Journal of Object-
Oriented Programming 1(2), 22–35 (1988)

30. Gallina, B., Guelfi, N., Monnat, A., Perrouin, G.: A Template for Product Line
Requirement Elicitation. Technical Report TR-LASSY-06-08, Laboratory for Ad-
vanced Software Systems, University of Luxembourg (2006)

31. Guelfi, N., Perrouin, G.: Coherent Integration of Variability Mechanisms at the
Requirements Elicitation and Analysis Levels. In: Muthig, D., Clements, P. (eds.)
Workshop on Managing Variability for Software Product Lines: Working With
Variability Mechanisms at 10th Software Product Line Conference, Baltimore,
MD, USA (2006)

32. Perrouin, G.: Architecting Software Systems using Model Transformation and Ar-
chitectural Frameworks (BFR03/69: Second Year Final Report). Technical Report
TR-LASSY-06-02, Laboratory for Advanced Software Systems (2006)

33. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional (2001)
34. Warmer, J., Kleppe, A.: The Object Constraint Language. 2nd edn. Addison-

Wesley Longman Publishing Co., Inc. (2003)
35. Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact Analysis and Change Manage-

ment of UML Models. In: ICSM ’03: Proceedings of the International Conference
on Software Maintenance, IEEE Computer Society, Washington, DC, USA (2003)

36. Sendall, S., Strohmeier, A.: Using OCL and UML to Specify System Behavior.
In: Object Modeling with the OCL, The Rationale behind the Object Constraint
Language, London, UK, Springer-Verlag, pp. 250–280 (2002)

37. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Model Transforma-
tions in Practice Workshop at MoDELS, Montego Bay, Jamaica (2005)

38. Oldevik, J., Haugen, Ø., Møller-Pedersen, B., Solberg, A.: Evaluation Frame-
work for Model-Driven System Family Engineering Tools. In: FAMILIES Research
Book, Springer, Heidelberg (2006)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 93 – 108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrated Requirement Selection and Scheduling for
the Release Planning of a Software Product

C. Li1, J.M. van den Akker2, S. Brinkkemper2, and G. Diepen2

1 University of Twente, The Netherlands

lic@ewi.utwente.nl
2 Utrecht University, The Netherlands

{j.m.vandenakker,s.brinkkemper,diepen}@cs.uu.nl

Abstract. This paper investigates two integer linear programming models that
integrate requirement scheduling into software release planning. The first model
can schedule the development of the requirements for the new release exactly in
time so that the project span is minimized and the resource and precedence con-
straints are satisfied. The second model is for combined requirement selection
and scheduling, which can not only maximize revenues but also calculates an
on-time-delivery project schedule simultaneously. Two simulations are pre-
sented to examine the influence of precedence constraints and compare the dif-
ferences of the traditional prioritization models and the two new ones. The
simulation results suggest that requirement dependency can significantly influ-
ence the project plan and the combined model for requirement selection and
scheduling is better in the sense of efficiency and on-time delivery.

Keywords: Requirement Selection, Requirement Scheduling, Release Planning,
Integer Linear Programming (ILP), Simulation.

1 Introduction

Determining requirements for the upcoming release is a complex process [24]. With the
evident pressure on time-to-market [22, 27] and limited available resources, usually
there are more requirements than can be actually implemented. The market-driven
requirement engineering processes [6] have a strong focus on requirement prioritiza-
tion [18]. The requirement list needs to fulfill the interests of various stakeholders and
takes many variables into consideration. Several scholars have presented lists of such
variables, including: importance or business value, stakeholder preference, cost of
development, requirement quality, development risk and requirement dependencies
[8, 13, 14, and 27].

In order to deal with this multi-aspect optimization problem, several techniques have
been applied. The analytical hierarchy process (AHP) [18, 22] assesses requirements by
examining all possible requirement pairs and matrix calculations to determine a
weighted list. Jung [17] extended the work of Karlsson and Ryan [18] by using integer
linear programming (ILP) to reduce the complexity of AHP to large amounts of re-
quirements. Carlshamre [8] used ILP too on which a release planning tool was built and
added requirement dependencies as an important aspect in release planning. Ruhe and

94 C. Li et al.

Saliu [25] describe a method based on ILP to include stakeholder’s opinions for release
planning. Van den Akker et al [2] further extended the ILP technique by including
some management steering mechanisms and ran a few simulations to test the influences
of each mechanism. Besides ILP techniques, the cumulative voting method [19] allows
different stakeholders to assign a fixed amount of units among all requirements, and an
average weighted requirement list is constructed; Ruhe and Saliu [25] provide a method
called EVOLVE to allocate requirements to incremental releases. Berander and
Andrews [4], provide an extensive list of requirement prioritization techniques.

The schedule of the requirements development is also suggested as an important
issue in this field [13]. Unfortunately, few prioritization methods have taken this into
account. Scheduling requirements is considered as a next step after requirement selec-
tion [8] and the selection and scheduling processes are often used iteratively to find a
group of requirements with an on-time delivery project plan [24]. Compared to the
extensive research on requirement selection, only few researches have been performed
for the scheduling part. Given the fact that 80% of software projects are late or over
budgeted [10], a precise project plan which synchronizes the development team is
needed. A traditional way of project planning would be to compute the critical path on
the bases of the precedence dependencies, commonly depicted in Gantt chart. How-
ever, then we do not guarantee that the team capacities or skills are respected. Different
types of dependencies [7], which describe the relationships between requirements, also
increase the complexity of making a project plan.

1.1 Example of Release Planning Problem

Table 1 depicts a simplified example representation of the release planning problem.
For nine requirements with estimated revenue (in euro) and cost (in man days), the
available resources in different teams (or skills) within the given period, and the

Table 1. Example requirements sheets of a release planning problem

Release Definition 5.1

Nr. Requirement Dependency Revenue
Total

man days
Team

A
Team

B
Team

C

12 Authorization on order cancellation and removal Imp 63, 25 24 50 5 45

34 Authorization on archiving service orders 12 12 2 5 5

63 Performance improvements order processing 20 15 15

25 Inclusion graphical plan board Com 66 100 70 10 10 50

43 Link with Acrobat reader for PDF files Imp 25 10 33 33

75
Optimizing interface with international Postal code
system

Imp 25 10 15 15

35 Adaptations in rental and systems 35 40 20 20

66 Symbol import 5 10 10

67 Comparison of services per department 10 34 9 25

Total 226 279 42 77 160

Available resources (number of developers) 3 1 1 1

Available team capacity for release 180 60 60 60

Release duration 60 days

 Integrated Requirement Selection and Scheduling for the Release Planning 95

interdependencies between the requirements, the best set of requirements for a next
release needs to be determined. Here we use the six types of dependencies suggested by
Carlshamre [7]. These are given by: 1) Combination: two requirements are to be im-
plemented jointly; 2) Implication: one requirement requires another one to function; 3)
Exclusion: two requirements are conflicting to each other. 4) Revenue-based and 5)
Cost-based dependency means one requirement influences the revenue / cost of an-
other. 6) Time-related dependency means one requirement needs to be implemented
after another.

Such a type of release planning problem has been modeled as a multi-dimensional
knapsack problem [2, 8, 17, and 25]. Using ILP technique, five requirements are se-
lected (marked in grey) so that the total revenue is maximized against the available
resources. It is also possible to include requirement dependency and some management
steering mechanisms, like hiring external personnel, deadline extension, etc in the
model, we refer to van den Akker et al [2] for detail. To solve the ILP problem, we refer
to Wolsey [28] for a thorough presentation.

The next step is to schedule the selected requirement exactly in time. Here we have
to deal with dependencies that result in restrictions on time. For example, requirements
pertaining to foundational components often need to be implemented before others.
Similarly, certain capabilities (for example quality issues like safety and security) need
to be architected and built into the system rather than added on later during develop-
ment. Therefore, an optimal implementation order of the requirements is desired. In the
next section, we will illustrate how precedence constraint can influence the project
plan, the release date, as well as the requirement selection.

1.2 Problem Illustration

Here we first formally define precedence constraint. If requirement
*j

R can only start
after requirement

j
R is completely finished, then there is a precedence constraint

between
j

R and
*j

R , denoted as *j jR Rp . Usually, precedence constraints result from
dependencies. It is clear that the precedence constraint can influence the development
sequence of the requirements. However, the question is: as we have already selected the
requirements based on the available capacity, will the precedence constraint also in-
fluence the project deadline of the release?

When there are precedence constraints and different development teams, scheduling
requirements becomes a complex problem. Figure 1, provides an example of a
time-schedule for the release planning problem in Table 1.

Fig. 1. A numerical example of requirement scheduling problem

96 C. Li et al.

From Figure 1, it is clear that although the requirement selection does not exceed the
teams’ capacities, the project is delayed. The reason is that there is an implication de-
pendency and hence a precedence constraints between requirement 25 and 43. Although
team B finishes its task for R25 at day 10, it can not start to develop R43, which is de-
pendent on R25’s completion, because R25 is only available at day 50 when team C
finishes its job. So, between day 10 and day 50, team B only needs five days for R34 and
the rest 35 days are wasted on waiting team C. When R25 is finally available at day 50, it
takes team B another 33 days to develop R43, so the earliest date to finish the whole
project is at day 83 instead of the expected day 60. Obviously, the time wasted on
synchronization is not preferred. This raises an important issue how to design a schedule
which makes teams utilizing available time efficiently without waiting for others? Or in
case this problem can not be eliminated, how to minimize such waiting time and
minimize the total release project span as well? (Results are shown later in chapter 6).

Another issue is: if we need to spend too much time on waiting for others, is that
possible to re-select requirements so that the release plan fits a predetermined deadline?
For example, in the former case, if we still want to keep the 60 days as the deadline,
then we need to re-select the requirements so that the newly selected requirements can
be implemented within the time span. For this case, R43 has to be dropped to keep the
project on time.

In this paper, we will focus on solving the two problems mentioned above: under the
circumstances that there are both different development teams (or special skills) and
precedence constraints:

1. How should we schedule the requirements to minimize the project lead time, i.e.
the finishing time of the project?

2. How should we integrate the requirement selection and scheduling together so that
the revenue is maximized and the project plan is on schedule?

The focus of this paper is to provide mathematical models which can assist managers
to determine the requirement selection and scheduling for the coming release. Like any
planning, a careful estimation of the factors is the key to success. We are also fully
aware that in real world, many psychological, political and personality factors can in-
fluence the right choices. It can not be purely mathematical, but mathematical models
can be considered as a useful means of decision support.

The remaining of the paper is organized as follow. In Section 2, we first present the
relationship between precedence constraint and the requirement dependencies. Sec-
tions 3 and 4 provide ILP models for requirement scheduling and a combined method
for requirement selection and scheduling. We discuss the prototypes we developed in
Section 5. In Section 6, two simulations are presented to examine the influences of
precedence constraint on requirement scheduling and the differences between the
models. We conclude the paper and provide future research directions in Section 7.

2 A First Analysis

2.1 Precedence Constraint and Requirement Dependency

Carlshamre et, al [7] identified six types of requirement interdependencies (listed in
Table 2) for the release planning, and the first five are suggested and modeled as

 Integrated Requirement Selection and Scheduling for the Release Planning 97

important factors for requirement selection [2, 8]. With respect to time, some of the
dependencies can not only influence the requirement selection, but will also influence
the requirement scheduling. For example, if requirement

*j
R requires

j
R to function,

it is normally better to start develop
*j

R after
j

R is finished; or if requirement jR in-
fluences the implementation cost of requirement

*j
R , it is also considered better to

implement jR first [8]. So, together with the explicitly mentioned time-related
dependency, also the implication and cost-related dependencies provide precedence
constraints. Hence, when scheduling the requirements, we should take three out of the
six types of requirement dependencies into consideration. Table 2 depicts the influence
of dependencies on requirement selection and scheduling.

Table 2. The influences of dependencies on requirement selection and scheduling

Dependency
group

Dependency
type

Influence
requirement

selection

Influence
requirement
scheduling

Combination
Implication

Functional
dependency

Exclusion
Revenue-based Value-related

dependency Cost-based
Time-related
dependency

Time-related

2.2 Scheduling Without Precedence Constraint

In Figure 1, we have illustrated the scheduling problem when there are precedence
constraints and team divisions. However, scheduling will not be a problem if there are
no precedence constraints between requirements. As each team works independently,
and no synchronization is needed, they just need to randomly give a permutation of all
the development tasks of the team, and perform them one after another. In this way,
scheduling is not a problem and the deadline will not be exceeded.

2.3 Scheduling Without Team Division

In case there are precedence constraints but no team or task division, scheduling the
activities is also not a difficult issue. We can first create a Directed Acyclic Graph
(DAG) by setting the requirements

j
R as vertexes and the precedence constraint

*j j
R Rp as a directed edge

*
(,)

j j
R R . Then any topological sort [9] of the directed

acyclic graph results in a feasible schedule. This sort provides a linear order of all the
vertices such that if G contains an edge *(,)j jR R , then

j
R appears before

*j
R . We can

compute this sort in ()O N E+ time where N equals the number of requirements and
E equals the number of dependencies. Because the development works continuously
without interruption, the release deadline can also be kept.

98 C. Li et al.

3 An ILP Model for Requirement Scheduling

To schedule the requirements exactly in time, there are two issues to consider: the
limited resources available and the existence of precedence constraints between the
requirements. Within scheduling theory, the problem can be characterized as a special
case of the Resource Constraint Project Scheduling Problem (RCPSP) [21]. It is special
because the resources all have capacity 1. RCPSP is an NP-Hard problem [5]. The
problem complexity inspired many scholars to develop heuristics method [3] or exact
algorithms [11]. Here, we present an ILP model of the RCPSP formulation of our
problem.

3.1 Problem Formulation

We are given a set of n requirements{ }1 2 nR R RL . Let m be the number of
teams iG (1, 2,)i m= K . The development activity in team

i
G for requirement

j
R is

considered as one individual job—each team works independently on one requirement
and there is no predefined time restriction for the jobs within a requirement. Let us
define a set 1 2(, , ,)kX J J J= K of all the jobs with positive development time and there
are k (k m n≤ ×) jobs in the set.

Because each job belongs to only one requirement, using this attribute, we can par-
tition the set X into n disjoint subsets { }1 2() () ()nX R X R X RL where

()jX R = { kJ | job kJ is for requirement
j

R }, (1, 2,)j n= K . Similarly, one job only
belongs to one team, so we can partition the set X into m disjoint subsets
{ }1 2() () ()nX G X G X GL where ()iX G = { kJ | job kJ is in team

i
G } (1, 2,)i m= K .

Each job () ()k j iJ X R X G∈ I is associated with a parameter ija as the amount of
man days needed for Requirement

j
R in team

i
G . Assume the number of developers in

team iG is
i

Q ; we can compute the development time
k

d for job kJ is ij ia Q . Here
we assume that as soon as a team starts working on a job, they will continue work on it
until the job is complete finished.

The Precedence Constraints
We can define a set { }* *

(,)
j j j j

A R R R R= p which contains all the precedence con-
straints. We define the set H to show the precedence relationship between jobs:

{ }* * * *(,) () , (), (,)k k k j k j j jH J J J X R J X R R R A= ∈ ∈ ∈
In this way, we set all the jobs of requirement

*j
R as the successors of the jobs of

requirement
j

R and we can make sure that any job for requirement
*j

R can only start
after all the jobs for requirement

j
R are finished.

We also need to introduce two virtual jobs, the start of the project and the end of the
project. The job START must start before starting the jobs in X , the job END can only
start when all the jobs X are finished. The processing time of these two virtual jobs is 0,
and the new job set with the two additional virtual jobs is X ′ .

If job kJ does not have any successor, then we add (,)kJ END to H . Or if job kJ
does not have any predecessor then we put (,)kSTART J in H .

The precedent relationships between jobs can be represented by a directed acyclic
graph (,)G X H′= .

 Integrated Requirement Selection and Scheduling for the Release Planning 99

The Upper Bound of the Project Span
Let

max
T be the upper bound of the project span. We can set the upper bound as

1

max(())
n

k k j
j

Jd X R
=

∈∑ . The upper bound corresponds to developing requirements
one after another, i.e. without any time overlap between different requirements.

The Earliest Start
k

es and the Latest Start
k

ls of each Job kJ

For each job kJ , we can compute
k

es (earliest possible start) and
k

ls (latest possible
start) as its time window to start. To compute the time interval, we first topologically
sort the jobs, so that job kJ is before job *kJ in the order if *(,)k kJ J H∈ .

We can use a longest path algorithm (forward recursion) to compute
k

es . First, set

0
START

es = , then we go through the jobs from START to END and set

()
(,)

max
k j j

j k H

es es d
∈

= + . Similarly, we can compute the latest start
k

ls using a longest
path algorithm (backward recursion). First, set

maxEND
ls T= then we go through the jobs

from END to START and set ()
(,)
min

j k j
j k H

ls ls d
∈

= − .

The (0,1) Integer Linear Programming Model
For the integer linear programming model we use a time-indexed formulation. This
formulation has successfully been applied for machine-scheduling problems and is
known to have a strong LP-relaxation lower bound (see e.g. [1] and [12]). We discretize
time and the integer time t represents the period of [), 1t t + . For each job kJ we de-
fine a group of variable

kt
ξ within the time interval[],

k k
es ls , where t is the possible

time for kJ to start. Now
kt

ξ is a binary variable which equals 1 if and only if kJ starts
at the beginning of period t . Then we can formulate the problem as follow:

 min
END

END

t ls

ENDt

t es

t ξ
=

=

⋅∑ (3.1)

Subject to:

1
k

k

t ls

kt

t es

ξ
=

=

=∑ , for all kJ X ′∈ (3.2)

*

*

*

k k

k k

t ls t ls

kt k k t

t es t es

t d tξ ξ
= =

= =

⋅ + ≤ ⋅∑ ∑ for all *(,)k kJ J H∈ (3.3)

() (,)

1
k i

t

k
J X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()
max

0,1,t T= K , 1, ,i m= K (3.4)

{ }0,1ktξ ∈ for all [],k kt es ls∈ , kJ X ′∈ (3.5)

where in constraint (3.4), (,) max(0, 1)
k

t k t dσ = − + . Constraint (3.1) shows the ob-

jective that we want to minimize the project span. Constraint (3.2) shows a job is started
exactly once. Constraint (3.3) is the precedence constraint—one requirement can only
start after its predecessor is finished. Constraint (3.4) means a development team can
only develop at most one job at one time.

100 C. Li et al.

4 A Combined Model for Requirement Selection and Scheduling

As we have seen, there is a risk that the selected set of requirements can not be sched-
uled in time. In most of the software development process models, the selection and
scheduling are performed iteratively until a good solution is found [24]. However,
doing it iteratively is not only difficult but also time-consuming because we need to
constantly repeat the following 3 steps:

1. Drop some requirements so that the project plan is fit.
2. Re-fill in some requirements to take up the freed capacity.
3. Re-make project plan for the new group of requirements.

Because of the complexities of the knapsack model and the RCPSP model (they are
both NP-Hard), without a proper search algorithm, it is very difficult to find a solution
that can fulfill the goals of maximizing revenue and on time delivery. Even if such
searching method is found, constantly calling these two NP-hard models will be very
time consuming. A better method is demanded to solve this problem.

In this section, we will present a new ILP model which enables us to achieve the
goals of maximizing revenue and on time delivery simultaneously. In the following
section, we will present a model for combined selection and scheduling of the re-
quirements when a fixed project deadline is given.

4.1 Formulating the ILP Model

We define the requirements jR , the teams iG , the jobs kJ and the dependency set A as
the in Section 3.1. In addition, each requirement

j
R is associated with an expected

revenue
j

v . And we denote our planning period by T and define ()d T as the number
of working days in the planning period.

The Precedence Constraints
We can handle the precedence constraints similarly to Section 3.1, only that we do not
need to introduce the two virtual jobs: START & END and do not need to link them to
the jobs in X . This is because which requirements will be in the schedule is still un-
certain and the release date is already fixed.

The Earliest Start
k

es and the Latest Start
k

ls of each Job kJ

For the earliest start
k

es , we can also use the longest path algorithm from Section 3.1.
The only difference is since we do not have the virtual job START any more, we need to
set the earliest start 0

k
es = for all the jobs which do not have predecessor. We can

apply this lower bound because a requirement can only be selected and developed when
all its predecessors are selected and developed.

For the latest start
k

ls , it equals ()
k

d T d− . Please note that the method to compute

k
ls is significantly different from the scheduling model. We can not lower this upper
bound because we do not know whether the successors of a job will be selected.

It is possible that k kls es< for a certain job kJ . It then means the job can not fit in
the project time span. So the requirement

j
R which contains this job will also not be a

 Integrated Requirement Selection and Scheduling for the Release Planning 101

candidate of the next release. Hence, we can eliminate these requirements beforehand
and define a set X ′′ which contains only the feasible ones.

The (0,1) Integer Linear Programming Model
Like in [2], for each requirement jR , we define a binary decision variable

j
x associated

to it, where 1
j

x = if and only if requirement
j

R is selected. Moreover, for each job

kJ X ′′∈ , we define a group of binary decision variable
kt

ξ within its possible time
interval [,]

k k
t es ls∈ , where 1

kt
ξ = if and only if job kJ starts at time t .

We can now model the combined selection and scheduling problem as follows:

1

max
n

j j
j

v x
=
∑ (4.1)

Subject to

k

k

t ls

kt j
t es

xξ
=

=
=∑ for all ()k jJ X R∈ , 1, ,j n= K (4.2)

*j jx x≤ for all *(,)j jR R A∈ (4.3)

*

*

* *(1) ()
k k

k k

t ls t ls

kt k k t j
t es t es

t d t x d Tξ ξ
= =

= =
⋅ + ≤ ⋅ + − ⋅∑ ∑

 for all *(,)k kJ J H∈ , *()k jJ X R′ ∈ (4.4)

() (,)

1
i

t

k
k X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑ for ()max0,1,t T= K , 1, ,i m= K (4.5)

{ }, 0,1kt jxξ ∈ for all [],k kt es ls∈ , kJ X ′′∈ ,

 1, ,j n= K (4.6)

where in constraint 3.5, (,) max(0, 1)
k

t k t dσ = − + . The objective function (4.1)

shows that we want to maximize the revenue. Constraint (4.2) means that a requirement
is selected if and only if all its jobs are planned. Constraints (4.3) and (4.4) deal with the
precedence constraints. Constraint (4.3) means a requirement is only selected when its
predecessor is selected. Constraint (4.4) means the jobs for the successor requirement
can only start after all the jobs for its precedent requirements are finished. Please note,
that this constraint is different with the precedence constraint modeled in section 3.1,
because the successor job is not guaranteed to be selected. (4.5) is the resource con-
straint that one team is only able to develop one requirement at a time. Constraint (4.6)
is the binary constraint for all the variables.

Note that if we ignore the precedence constraints (4.3) and (4.4), it is another way to
represent the multi-dimensional Knapsack problem.

4.2 Extensions of the Model

Using the combined model, it is possible to model all the six types of requirement
dependency listed in Table 2. Combination, implication, exclusion and revenue-based
can be modeled the same way as in the knapsack model. Only the cost-based

102 C. Li et al.

dependency is modeled differently. It is also possible to model the conditions when
team

i
G is only available for a certain time interval instead of the whole period, or

there are holiday seasons within the period. For reasons of brevity, we refer to [20] for
details.

5 Prototype

We have implemented three Java prototypes for requirement selection & scheduling
based on the models available so far—the knapsack model, the scheduling model, and
the combined model. These prototypes run in Linux environment and make use of the
callable library of ILOG CPLEX [16] for solving the ILP problem. CPLEX is one of the
best known packages for integer linear programming.

Fig. 2. Screen shot of the scheduling prototypes

Figure 2 shows a screenshot of the prototype for the combined model. The re-
quirements are managed and stored in the database with estimated revenue, cost and
dependency. This screenshot shows the interface of the model for combined require-
ment selection and scheduling. Based on the data attributes of the requirements and the
expected release date, the requirements selection and a project plan for the next release
are calculated simultaneously.

6 Simulation Tests

In Section 1.3 we have shown that when there are different development teams and
precedence constraints, the problem of synchronization can possibly delay the whole

 Integrated Requirement Selection and Scheduling for the Release Planning 103

project. However, the size of this influence is still unknown. In addition, although the
combined model for requirement selection and scheduling can guarantee on time de-
livery, the additional constraints will possibly cause a loss of revenue. The trade off
between the time saving and the additional cost is also not clear. These concerns lead us
to investigate the following questions through simulation tests:

Simulation 1: What is the relationship between the number of time-related de-
pendencies and the possibility of running out of time in the project planning?

Simulation 2: What are the differences when we select and schedule requirements
at the same time, and when we select and schedule sequentially?

For testing the programs and comparing the models, two types of datasets were used
(available online [15] for research purpose). They were:

 Small: 9 requirements and 3 teams, release duration 60 days.
 Master: 99 requirements and 17 teams, release duration 30 days.

The Small dataset was the example dataset provide in Table 1. The Master dataset was
generated from larger real life datasets originated from a large software vender. All
team values were kept the same, but the team capacities and revenues were modified
for confidentiality reasons.

In order to make the model not case specific, we randomly generated dependencies.
We guaranteed that no cycle occurs within the dependencies. This is important because
the requirements in the cycle would be inter-waiting others’ completion and cause a
deadlock. For the small dataset, we examine the situation with 1, 2, 3 and 4 depend-
encies, while for the master dataset, we check the situation with 0.5%, 1%, 2%, and 5%
of the maximal number of possible dependencies (every two requirements are inter-
dependent. This equals 2 (1) / 2

n
C n n= ⋅ −). Note that here we mentioned the number of

dependencies we explicitly generated. There may also be some additional dependencies
induced by the generated dependencies, e.g. if Ri has to precede Ri and Rj has to precede
Rk , then also Ri has to precede Rk. For every number of dependencies, we randomly
generate 100 groups of dependencies and run 100 times.

6.1 Results of the Simulation 1: The Influence of Dependencies on Project Plan

In this simulation, we want to exam how much precedence constraint can influence the
project span. Given the small and master dataset, we first select requirement using the
knapsack model, then we randomly generate a certain amount of dependencies and
call the scheduling model to make a project plan. We then find the maximal, minimal
and average make-span, i.e. duration of the project and count how many times the
project is delayed within the 100 runs. At last, we compare the results with the lower
bound. The lower bound is the maximum value of the project make-span without
precedence constraints and the result of longest path algorithm, which relaxed the
constraint on team difference (i.e. ENDes in Section 3.1). Table 3 shows the results of
the 100 runs each row.

104 C. Li et al.

Table 3. Schedule results of the first simulation

The project span
The difference between

lower bound
Data Set

Dep
ratio

No.
Dep Max

days
Min
days

Average
days

Times of
delay

Max diff
Min
diff

Average
diff

10% 1 83 55 58.80 16 0.00% 0.00% 0.00%
20% 2 93 55 63.70 40 27.27% 0.00% 0.93%
30% 3 103 55 70.42 62 27.27% 0.00% 2.64%

Small-result
(5 Reqs, 60

days)
40% 4 108 55 75.32 76 14.55% 0.00% 2.12%

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70%
1% 29 46 30 31.38 27 8.57% 0.00% 0.22%
2% 57 69 30 36.92 76 22.58% 0.00% 2.13%

Master-result
(76 Reqs, 30

days)
5% 142 84 38 56.15 100 19.23% 0.00% 3.47%

To visualize the results, we plot the result of master data set in the following chart.
The result of small dataset keeps the same trend as the master one.

Fig. 3. Schedule results based on the master dataset

In figure 3, the left chart shows the dependency’s influence on project span and the
right chats shows the ratio of the delayed cases and on-time cases. Although the re-
quirements selected using knapsack model are expected to finish within 30 days, the
results vary a lot. When there are 0.5% or 1% of possible dependencies, the results of
the 100 runs range within a few days, the average project span is close to the release
date and the number of over-time cases is still low. The result starts to explode after 2%.
Then the project span varies a lot based on different dependencies and is on average
much higher than expected. Especially when there are 5% of possible dependencies, the
minimal case requires 38 days which means none of the 100 run are on time.

It is not difficult to conclude that precedence constraints play an important role for
release scheduling. When there are just a few dependencies, they can already greatly
influence the project span. And as the number of dependencies grows, the project span
also grows significantly. Based on the complexity of the system, the exact number of
dependencies may vary a lot, but a former survey [8] has suggested that there are at
least 80% of requirements are interdependent and most of them are implications and

 Integrated Requirement Selection and Scheduling for the Release Planning 105

cost-based, then we can assume that the exact number of dependency is at least higher
than the second row of the small and master dataset.

6.2 Results of the Simulation 2: Model Comparison

In this simulation, we compare the differences between applying the knapsack and
scheduling model subsequently (k&s), and the combined model (comb). We take the
following three steps to compare the models. Step 1, based on the small and the master
datasets, we randomly generate a group of dependencies. Step 2, we then use the
knapsack model to select the requirements and record down the dependencies within
the selected requirements, and we call the scheduling model to schedule the activities
exactly in time. Step 3, for the same dataset and dependencies we call the combined
model to select and schedule the requirement at the same time. Step 4, we compare the
revenue difference between the knapsack model and the combined model; the time
difference between the scheduling model and release date (which is the schedule result
of the combined model) and the times of delay.

 When analyzing the results, we found that when the combined model and the
knapsack model select the same requirements, the scheduling model can always find a
timely schedule. The result is not surprising but also of no interest since everything is
the same. So we decided to also make a statistics only for the delayed cases. The
computational results are shown in Table 4.

Table 4. Simulation results of model comparison

Statistics for the 100 runs Statistics only for the delayed cases

Data
Set

Dep
ratio

No.
of

Dep
Average
revenue
(comb)

Average
revenue
(k&s)

Average
project
span
(k&s)

Average
project
span

No. of
delay
(k&s)

Average
revenue
(comb)

Average
revenue
(k&s)

Average
time

(k&s)

Average
revenue

diff diff

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67%
10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67%
15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65%

Small
(9 Reqs
60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78%
0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41%
1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%
2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master
(99 Reqs
30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%

The results prove again that precedence constraints play an important role for re-
quirement selection and scheduling. As the number of constraint increase, the average
revenue of the two models decrease and the average project plan as well as the possi-
bility of delay increase. To compare the models, we plot the computational results of
master dataset in the Figure 4.

In Figure 4, the left chart shows the average revenue difference and cost difference
for the delayed cases and the right chart shows ratio of on-time cases and delayed cases.
It is clear that the combined model can not only guarantee on time delivery but also gain
more efficiency. When follow the select and then schedule process, the project stand a
high change of being delayed and this possibility grows larger and larger as the number

106 C. Li et al.

Fig. 4. Model comparison result based on master dataset

of dependencies increases. The simulation result also suggests that it is more efficient
to take the project plan issues into account when selecting the requirements, because
even if we ignore the influence on missing the deadline, the revenue loss of the com-
bined model is significantly less than the additional development time.

7 Conclusion and Future Research

The contributions of this paper are: first, we applied the RCPSP model to solve the
release planning problem based on the precedence dependencies between requirements
and the resources/skills constraints in the company. Second, we presented a new ILP
model which can combine the requirement selection and scheduling together and pro-
vide a requirement selection and on-time-delivery project plan simultaneously. At last,
we implemented the models and launched two simulations to demonstrate the appli-
cation of the models. The results indicate that the model for combined requirement
selection and scheduling can not only keep on-time-delivery but also be more efficient
than the traditional knapsack model.

The results looks very promising, but some more works still needs to be done. The
second simulation results show convincing figures to combine the requirement selec-
tion and scheduling together. More work is needed to evaluate this process improve-
ment opportunity. The first simulation results also suggest that the optimal schedule
found by integer linear programming is not far away from the critical path lower bound.
It can be interesting to investigate if there are faster algorithms for scheduling that can
get rather close to the optimum. The scalability of the models is so far unknown, more
research is needed to test it and make it applicable for larger dataset.

References

1. van den, A.J.M., van Hoesel, C.P.M., Savelsbergh, M.W.P.: A Polyhedral Approach to
Single-Machine Scheduling Problems. Mathematical Programming 85(3), 541–572 (1999)

2. van den, A.J.M., Brinkkemper, S., Diepen, G., Versendaal, J.M.: Flexible Release Planning
Using Integer Linear Programming. In: Kamsties, E., Gervasi, v., Sawyer, P. (eds.) Pro-
ceedings of the 11th International Workshop on Requirements Engineering for Software
Quality (REFSQ’05), pp. 247–262 (2005)

 Integrated Requirement Selection and Scheduling for the Release Planning 107

3. Balakrishnan, R., Leon, W.J.: Quality and Adaptability of Problem-Space Based
Neighborhoods for Resource Constrained Scheduling. In: OR Spectrum, pp. 173–182.
Springer, Heidelberg (1995)

4. Berander, P., Andrews, A.: Requirements Prioritization. Engineering and Managing Soft-
ware Requirements. In: Aurum, A., Wohlin, C. (eds.) Berlin, Germany, Springer Verlag
(2005)

5. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling Projects Subject to Resource
Constraints: Classification and Complexity. Discrete Applied Mathematics 5, 11–24 (1983)

6. Carlshamre, P., Regnell, B.: Requirements Lifecycle Management and Release Planning in
Market-Driven Requirements Engineering Processes. International Workshop on the Re-
quirements Engineering Process: Innovative Techniques, Models, and Tools to support the
RE Process, 6th-8th of September, Greenwich, UK, the DEXA Conference (2000)

7. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An industrial
survey of requirements interdependencies in software release planning. In: Proceedings of
the 5th IEEE international symposium on requirements engineering, pp. 84–91 (2001)

8. Carlshamre, P.: Release Planning in Market-Driven Software Product Development: Pro-
voking an Understanding. Requirements Engineering 7(3), 139–151 (2002)

9. Cormen, T.H., Leiserson, C.E., Riverst, R.L., Stein, C.: Introduction to algorithms, 2nd edn.
pp. 549–551. MIT Press, Cambridge (2001)

10. Cusumano, M.A.: The Business of Software. Free Press (2004)
11. Demeulemeester, E., Herroelen, W.: A Branch and Bound Procedure for the Multiple Re-

source-Constrained Project Scheduling Problem. Management Science 38, 1803–1818
(1992)

12. Dyer, M., Wolsey, L.: Formulating the Single Machine Sequencing Problem with Release
Dates as a Mixed Integer Program. Discrete Applied Mathematics 26, 255–270 (1990)

13. Firesmith, D.: Prioritizing Requirements. Journal of Object Technology 3(8), 35–47 (2004)
14. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach.

Information and Software Technology 46, 243–253 (2004)
15. http://www.cs.uu.nl/ diepen/ReqMan
16. ILOG CPLEX, http://www.ilog.com/products/cplex
17. Jung, H.-W.: Optimizing Value and Cost in Requirements Analysis, IEEE Software, pp.

74–78 (July/August 1998)
18. Karlsson, J., Ryan, K.: A cost-Value Approach for Prioritizing Requirements, IEEE Soft-

ware, pp. 67–74 (1997)
19. Leffingwell, D., Widrig, D.: Managing Software Requirements – A Unified Approach.

Addison-Wesly, Upper Saddle River, NJ (2000)
20. Li, C.: An Integer Linear Programming Approach to Product Software Release Planning and

Scheduling. Master Thesis Business Informatics of Utrecht University, pp. 22–71 (2006)
21. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An Exact Algorithm for the Re-

source-Constrained Project Scheduling Problem Based on a New Mathematical Formula-
tion. Management Science 44(5), 714–729 (1998)

22. Novorita, R., Grube, G.: Benefits of Structured Requirements Methods for Market-Based
Enterprises. In: Proceedings of International Council on Systems Engineering Sixth Annual
International Symposium on Systems Engineering: Practice and Tools (INCOSE’96),
Boston, USA (1998)

23. Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., Hjelm, T.: An Industrial Case Study
on Distributed Prioritisation in Market-Driven Requirements Engineering for Packaged
Software. Requirement Engineering 6(1), 51–62 (2001)

108 C. Li et al.

24. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer, Berlin (2005)

25. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE Soft-
ware 22(6), 47–53 (2005)

26. Sawyer, P., Sommerville, I., Kotonya, G.: Improving Market-Driven RE Processes. In:
Proceedings of International Conference on Product Focused Software Process Improve-
ment (PROFES’99), Oulu Finland (June 1999)

27. Weerd, I., van de Brinkkemper, S., Nieuwenhuis, R., Versendaal, J.M., Bijlsma, A.: To-
wards a Reference Framework for Software Product Management. In: Glinz, M., Lutz, R.R.
(eds.) 14th IEEE International Requirements Engineering Conference, Minneapolis/St.
Paul, Minnesota, pp. 319–322. IEEE Computer Society, Washington (2006)

28. Wolsey, L.A.: Integer Programming. Wiley-Interscience Series. In: Discrete Mathematics
and Optimization (1998)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 109 – 115, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Value-Based Approach in Requirements
Engineering: Explaining Some of the Fundamental

Concepts

Aybüke Aurum1,2 and Claes Wohlin2

1 School of Information Systems, Technology and Management,
University of New South Wales, Sydney 2052 Australia

aybuke@unsw.edu.au
2 School of Engineering, Blekinge Institute of Technology,

PO Box 520, SE-372 25, Ronneby, Sweden
Claes.Wohlin@bth.se

Abstract. Today’s rapid changes and global competition forces software
companies to become increasingly competitive and responsive to consumers
and market developments. The purpose of requirements engineering activities is
to add business value that is accounted for in terms of return-on-investment of a
software product. This article introduces some of the fundamental aspects of
value by borrowing theories from economic theory, discusses a number of the
challenges that face requirements engineers and finally provides a model that
illustrates value from business, product and project perspectives.

Keywords: value based approach, requirements engineering, business strategy,
technical decisions, alignment.

1 Introduction

Increasing global competition, dynamic market needs and new technologies are some
of the challenges that software companies face today. There is an incredible pressure
on these companies to achieve and sustain competitive advantage. To remain
competitive in an era of increasing uncertainty and market globalization it is
important to focus on the value of different customers and markets when developing
products. This article addresses a value-based approach in requirements engineering
(RE) when creating, measuring and managing product value through requirements
selection for a software release, and hence providing quality to the end-user.

Adding value is an economic activity that has to be taken into account from a
software business perspective. Value is created when a company makes a profit. The
critical success factor for software companies is their ability to develop a product that
meets customer requirements while offering high value that provides increased
reassurance of market success [2] and [4]. Since the ultimate aim for a software
company is to maximize value creation for a given investment, it is essential to
understand the relationships between technical decisions and the business strategy
that drives the value [5]. Boehm argues that ([4], chap 1) software engineering (SE) is

110 A. Aurum and C. Wohlin

largely practiced in a value neutral setting, i.e. every requirement is considered
equally important, even though not all requirements are equal. Furthermore, there is
often a mismatch between the decision criteria used by software developers and the
value creation criteria of organizations in which software is developed [5]. Hence, a
value based approach in RE promotes

• Alignment of technical decision with business strategy
• Sustaining competitive advantage by increasing the business and customer value
• Multiple perspectives involvement in creation of product, project and business

value.

It is important that requirements engineers understand value creation for a software
company while also taking into account the customer’s perspective. This article
a) introduces some of fundamental aspects of value, b) provides a model to illustrate
value creation for a software company; c) highlights different value perspectives in
the context of RE activities and provides a preliminary discussion on this topic.

2 Background

2.1 History of “Value” Concept

While philosophers and ethicists used to define value as a normative approach to
separate right from wrong in the 17th century, the basic concept of value in economic
theory can be traced back to the 19th century. However, the concept of a value-based
approach in software development was not used until the late 1990s.

John Stuart Mill, who had a strong influence on economic theory, defines the
concept of value, at a very high abstract level, in terms of use and exchange value
[12]. A use value is what the customer is willing to pay for the product, and an
exchange value is the market value of the product. As Mill’s definition of value
dominated economic theory in 19th century, the term “value-adding” became very
popular in the early 20th century.

In the early 20th century, the focus in product development was the product itself
(product-oriented approach) and customer value was seen as being integrated in the
product. A shift in economic theory started after World War II, in the late 1960s. By
the end of 1980s the focus of product development was placed on the relationships
between the customer service and customer needs. This approach was based on the
notion that value was related to long-term relationships between the customer and the
company (customer-oriented approach). Value was created in cooperation with
the customer where the customer was an active participant in value creation activities
[10] and [13].

In late 1990s, the concept of the value-based approach in SE was introduced in the
context of decision-making about product lines [7], managing investments in reusable
software [9] and software economics [5]. Since then the value-based approach has
attracted both software practitioners and academics and leading them to integrate
value considerations in existing and emerging software principles and practice [4].

 A Value-Based Approach in Requirements Engineering 111

2.2 Defining Value

In economic theory value constructions are built based on customers’ satisfaction,
loyalty and re-purchasing behavior [10]. In the context of software development, by
borrowing the ideas from economic theory, we believe the following fundamental
aspects of value have importance to software developers.

• Product value: This is the market value of the product (i.e. exchange value) and
related to the product, and is influenced by the quality attributes of the software
product. The value of a product increases in direct proportion to its advantage over
competitive products and decreases in proportion to its disadvantages [1].

• Customer’s perceived value: This is the benefit derived from the product and is a
measure of how much a customer is willing to pay for it. A customer’s perceived
value (i.e. use value) is influenced by his/her needs, expectations, past experience
and culture. It is defined as perceived value=perceived benefits / perceived price,
where the perceived benefits and the perceived price are both measured relative to
competing products [6] and [14].

• Relationship value: This is created through the social relationships between the
software company and the customer. It exists through the product and customer’s
perceived value.

Fig. 1. Customer’s Perceived Value and Product Value Relationship (adapted from [6])

It is important to understand the relationship between customers’ perceived value,
and the time and money spent on product development [6] (see Fig 1). A customer
views a purchase as a bargain, if the customer’s perceived value > perceived price of
the product. If the price > product cost then the software company makes a profit on
their sale. If the customer’s perceived value is assumed to be equal to the technical
performance of the product (which is the traditional approach in software
development), then the perceived value continues to increase, up to a certain point, as
more time and money are spent on product development [6] (curve 1 in Fig 1). At the
same time, the product price will increase, because of the more time and efforts put

112 A. Aurum and C. Wohlin

into product development. As a result the customer will not be able to afford the
product; he/she will start looking for similar products within the market or will decide
to wait until the product price will go down. In turn, this will cause a decline in
customer’s perceived value (curve 2 in Fig 1). Hence, it is important to understand at
which point additional effort (on product development) is not worth to marginal
improvements as it will effect product level decisions [6]. Allocation of this point
(star on curve 3 in Fig 1) will be strongly influenced by customers’ perceived value
and other products within the existing market. In the context of incremental product
development, this point needs to be re-calculated, for every requirements selection
process, when a new release is about to be made as the customer’s perceived value is
subject to change due to their varying expectation, needs and past experiences.

3 Challenges to Requirements Engineers

Although companies put a great amount of effort in their product development
process into increasing customer’s perceived value, determining how and when value
is created, measured and managed is still a challenge to software developers.

A value-based approach supports the alignment of decisions at business, project
and product level with the aim of maximizing business value while maintaining a
profit for a given investment. By following this argument, we expect that a company
needs to create, measure and manage value from business, product and project
perspectives. In other words the following value perspectives are importance to
software developers as illustrated in Fig 2:

• Value for business perspective: Business value to Software Company which
stems from product sale.

• Value for product perspective: Product value to Software Company which stems
from Customer and Market requirements.

• Value for project perspective: Project value to Software Company stems from
project budget/timing/delivery etc.

Fig 2 illustrates the relationship between the value perspectives, Software
Company and Customer. The objective of this model is to show where the value
needs to be created measured and managed. It is important to note that as the software
company aims to maximize their business value through their product sale and related
to its project, in the same way, customers’ aim to maximize the value for their own
business through the product purchase. The model also shows the relationship value
between the company and the customer which is formed through the product buy/sale
transactions between these two entities. Fig 2 also includes some additional factors
that influence the value creation/measurement/management for both the software
company and the customer, i.e. Competitor and Market.

It is important to note that there are some other factors that have an affect on value
creation such as economic movement and social culture which are not illustrated in
this model as it gets more complicated. The intention of the model in Fig 2 is to
mainly address the value perspectives from a software company point of view
and provide a guideline to practitioners to give them an idea about where the value

 A Value-Based Approach in Requirements Engineering 113

Fig. 2. Software Company-Value-Customer Triangle

needs to be created, measured and managed while making sure that the product,
project and business level decisions are aligned and different value perspectives are
involved in the decision making process.

4 Discussion

A value-based approach is about linking strategy, measurement and operational
decisions. Unfortunately there is no “one size fits all” model for software developers
that shows when and how to create, manage and measure for value.

Value creation in software development is not a one-off event rather it is an iterative
approach. It is supported by aligning product, project and business level decisions
throughout the development process [2] and [3]. This requires that software developers
firstly consider customers’ requirements, business requirements and technologic
opportunities when making decisions. Secondly, they need to have a sound
understanding of both technical and business implications of decisions that have been
made throughout the development process. Thirdly, it is essential to understand the
business dynamics that drive software development in terms of cost, time, and product
quality as well as how software processes and products interconnect.

A customer buys the product not only for its price but also for other reasons, such
as the lifestyle it creates for them. For example, George Jensen, or Efva Attling
(designers from Denmark and Sweden) manage to create lifestyles around their
products. Value creation strategies are highly contextual. Companies basically adopt
one strategy that best suits to their circumstances and that is successful within the
context of their business environment. An example of this is the Sony-Ericsson and
Siemens-Nokia marriages for their mobile phone products.

Measuring for value is always crucial for a software company. There are metrics
used to measure technical performance. In many cases, regrettably, technical
performance metrics mismatch (or disconnected) the business strategy that drives the
value in software development. Hence, alignment of key performance metrics with
strategic objectives is crucial.

114 A. Aurum and C. Wohlin

An effective management of the product development process contributes to
sustainable competitive advantage for software companies. Managing for value
requires sound understanding of company structure, business objectives, market and
product strategy as well as the social culture of the company to manage for value.

5 Conclusion

Favaro [8] points out that the purpose of the requirements process is to add business
value. This is a big challenge for requirements engineers because they are used to
operating in a value neutral setting in the past. As global competition forces companies
to become increasingly competitive and responsive to consumers and market
developments, ongoing discussion in SE indicate that a value-based approach makes
all the difference to product success. It puts the requirements engineer in the position
of managing requirements in a way that allows the company to take advantage of the
strategic business opportunities.

We believe that the alignment of technical decisions with business strategy
continues to be a challenge as requirements engineers, product managers and IT
managers operate at different levels. Product quality, its performance and
product/project cost control (short or long term) will remain important, but the
attention must be refocused on flexibility, creativity and timing. Hence,

• It is necessary to provide timely feedback between business and technical level
decision makers and to support communication between them

• It is crucial that software developers put more effort into expressing the technical
decisions as a business case while adding value to the product at hand. In the same
way, management should have a good understanding of the internal structure of the
company, the product and operation level decisions.

This article is set to provide some preliminary discussion on value aspects of RE
inspired by the importance of understanding the terminology and the concepts that we
borrow from economic theory. We are currently in contact with practitioners from
software industry to evaluate the model in Fig 2, and we are conducting industrial
studies in several countries including Sweden, Germany, Australia and China.

References

1. Alwis, D., Hlupic, V., Fitzgerald, G.: Intellectual Capital Factors that Impact of Value
Creation. In: 25th Int. Conf. Information Technology Interfaces, Cavtat, Croatia, pp.
411–416 (2003)

2. Aurum, A., Wohlin, C., Porter, A.: Aligning Software Engineering Decisions.
International Journal on Software Engineering and Knowledge Engineering
(IJSEKE) 16(6), 795–818 (2006)

3. Aurum, A., Wohlin, C. (eds.): Engineering and Managing Software Requirements.
Springer-Verlag, Heidelberg (2005)

4. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grunbacher, P. (eds.): Value-Based
Software Engineering. Springer, Heidelberg (2005)

5. Boehm, B.W., Sullivan, K.J.: Software Economics: A Roadmap. In: Proceedings of The
Future of Software Engineering Conference, pp. 319–343 (2000)

 A Value-Based Approach in Requirements Engineering 115

6. Browning, T.R.: On Customer Value and Improvement in Product Development
Processes. Systems Engineering 6(1), 49–61 (2003)

7. Faulk, S.R., Harmon, R.R., Raffo, D.M.: Value-Base Software Engineering: A Value-
Driven Approach to Product-Line Engineering. 1st International Conference on Software
Product-Line Engineering, Colorado (2000)

8. Favaro, J.: Managing Requirements for Business Value. IEEE Software, pp. 15–17 (2002)
9. Favaro, J.: Value-Based Management and Agile Methods. In: Marchesi, M., Succi, G.

(eds.) XP 2003. LNCS, vol. 2675, Springer, Heidelberg (2003)
10. Heinonen, K.: Reconceptualizing Customer Perceived Value: The Value of Time and

Place. Managing Service Quality 14(2/3), 205–215 (2004)
11. Henneberg, S.C., Pardo, C., Mouzas, S., Naude, P.: Value Dimensions and Strategies in

Dyadic Key Relationship Programmes: Dealing with Dualities. In: Proceedings on the 21st
IMP Conference, Rotterdam (2005)

12. Mill, J.S.: Principles of Political Economy with Some of Their Applications to Social
Philosophy (First published in 1848). Winch, D. (ed.) Harmondsworth, Penguin (1970)

13. Storbacka, K., Lehtinen, J.R.: Customer Relationship Management: Creating Competitive
Advantage through Win-Win Relationship Strategies. McGraw-Hill, New York (2001)

14. Weinstein, A., Johnson, W.C.: Designing and Delivering Superior Customer Value:
Concepts, Cases, and Applications. St. Lucie Press, Boca Raton, Florida, USA (1999)

Value-Based Requirements Engineering for

Value Webs

Novica Zarvić�, Maya Daneva��, and Roel Wieringa

University of Twente, Department of Computer Science, Information Systems Group
P.O. Box 217, 7500 AE Enschede, The Netherlands

{n.zarvic,m.daneva,r.j.wieringa}@ewi.utwente.nl

Abstract. Since the 1980s, requirements engineering (RE) for informa-
tion systems has been performed in practice using techniques (rather
than the full method) from Information Engineering (IE) such as busi-
ness goal analysis, function– and process modeling, and cluster analysis.
Recently, these techniques have been supplemented with portfolio man-
agement, which looks at sets of IT projects and offers fast quantitative
decision-making about continuation of IT projects. Today’s networked
world, though, poses challenges to these techniques. A major drawback
is their inability to adequately specify the requirements for IT systems
used by businesses that provide services to each other in a value web.
In this paper, we analyze this problem, and propose a solution by cou-
pling IE and portfolio management with value-based RE techniques at
the business network level. We show how these techniques interrelate,
and illustrate our approach with a small example.

Keywords: value modeling, information systems planning, portfolio
management, requirements engineering.

1 Introduction

Information Engineering (IE) arose in the 1970s out of the Business System
Planning method of IBM [1] and was codified at the end of the 1980s by James
Martin [2] and, less well-known, Clive Finkelstein [3]. Several businesses intro-
duced their own version of IE [4,5]. All these approaches share a set of techniques,
such as business goal analysis, data– function– and process modeling, and clus-
tering, and they share a focus on what is now called enterprise architecture, the
enterprise-wide set of information systems and their relationships, that should
support business goals.

IE has several shortcomings, which we will analyze later. In response to these
shortcomings companies have dropped the strict top-down method of IE, but
� Supported by the Netherlands Organisation for Scientific Research (NWO), project

638.003.407, Value-based Business-IT Alignment (VITAL).
�� Supported by the Netherlands Organisation for Scientific Research (NWO), project

632.000.000.05N01, Collaborative Alignment of cRoss-organizational ERP Systems
(CARES).

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 116–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Value-Based Requirements Engineering for Value Webs 117

continued to use the techniques in IE. In the last few years, companies have
also added quantitative decision-making tools to manage portfolios of IT invest-
ments, called portfolio management. Here, we want to discuss a particular kind
of shortcoming to which an additional response is needed: Classical IE does not
deal with IT used in value webs. By values webs we mean networks in which busi-
nesses provide e-services to each other or to consumers commercially, such as the
provision of data storage capabilities, communication capabilities, information
retrieval, multimedia access, etc. The main characteristic of a value web is a
multi-actor business setting for satisfying specific customer needs. A classical IE
technique such as business goal modeling will not suffice here, because there are
many businesses with many, partly incompatible goals. And data– and process
analysis at this level are inappropriate, because data and processes will be mostly
confidential business resources, and besides, first the web of services needs to be
designed. This calls for new techniques to identify requirements on IT in a value
web. The techniques added to IE by Tagg and Freyberg to deal with networks
still take the point of view of a single participant in the network [6] and do not
deal with all the kinds of networks that have come into existence since then.
In this paper we propose value-based RE techniques to deal with this. We will
focus on the Information Systems Planning (ISP) task, which is the task that
deals with defining an overall alignment between business and IT [7,8,9,10,11].

In section 2, we analyze the problems with IE in today’s networked business
environment. We argue in section 3 that classical IE techniques, supplemented
with portfolio management and value-based RE techniques, suffice to tackle these
problems. We illustrate this claim with a small example (section 4). Section 5
concludes the paper with a discussion of our results and of questions for further
research.

2 Problems with Traditional ISP in Value Webs

A review of the literature [10,12,13,14] reveals several problems of ISP in value
webs.

No Single Decision Point. Organizations are coordination mechanisms, in which
there is ultimately a single point of management control [15]. Even though there
are many different organizational structures, they share this hierarchical feature.
Value webs, on the other hand, have no single point of control and are at least
partly coordinated on a relational basis, where shared norms and mutual trust
play a crucial role [16,17]. In addition to hierarchical and relational coordination,
economic sociologists distinguish a third form of coordination, based on markets.
Alstyne [18] and Miles & Snow [19] give convenient overviews. Salmela & Spil [14]
and Wieringa [20] apply these ideas to IT support in value webs.

What is important for our purpose is that single enterprises, for which ISP
was developed, are hierarchical. Even though there is a trend to flattening these
structures [21], one will always find a central point of authority. Such a single
decision point is (usually) absent in value webs. This can lead to conflicts of
interest, which is a major hindrance for the systems planning process.

118 N. Zarvić, M. Daneva, and R. Wieringa

The underlying problem is that each actor in a value web is profit-and-loss
responsible. Any actor will only participate if it expects this participation to
be profitable. Each actor will make this decision for itself, but needs sufficient
information about the network in order to enter negotiations with the other
potential participants. This information must include information about who
delivers which service to whom, and what is provided in return for this. Tra-
ditional ISP simply contains no techniques to do this kind of analysis. Yet this
analysis is needed by each actor, first to decide whether to participate and sec-
ond, to identify the services to be provided to other actors. Note that this is a
management decision, but a decision that cannot be made in blissful ignorance
of the IT infrastructure. In the value webs, which we consider, the services are
delivered by the IT infrastructure, and a decision must be made whether this
can be done in a way that is economically viable for each participating actor.
Decisions about participating in a value web inextricably mix considerations of
economic viability with considerations about IT infrastructure requirements.

Legacy Systems. Traditional ISP approaches stem from the 1970s and their main
objective was to “computerize a company” [1] that previously was uncomput-
erized. Even in the network version of IE presented by Tagg and Freyberg [6],
ISP ends with the identification of new IS’s to be built. Legacy systems were no
issue, because systems had to be built from scratch. However, nowadays legacy
systems need to be considered and integrated. If possible, companies want to
be able to reuse existing systems for new business opportunities, and therefore
build underlying system architectures around these. Traditional ISP does not
contain techniques to help make the decision to reuse or adapt a legacy system,
or to acquire or develop a new system.

Speed of Change. The rapid spread of the use of the internet has led in the
late 1990s to the so-called new economy boom. A large number of internet com-
panies started up only to disappear a few years later. One of the reasons for
this is the speed of change of the relevant market. Businesses in general and
networked businesses in particular often need to adapt to given circumstances
in the market. If they do not do this in adequate time, they run the risk of
loosing their market position, i.e. they loose an eventual competitive advantage.
The top-down approach, as implied in traditional ISP approaches is known to
be very time consuming and and not flexible enough to allow for fast reaction.
Often, IS designers/planners found themselves finishing their work only to find
out that their results were no longer reflecting the actual situation of the com-
pany [22]. The speed of change that IS professionals today need to deal with is
even higher, and therefore crucial for the ISP process. Traditional ISP does not
contain guidelines for dealing with this speed of change.

No Global Modeling Possible. IE-like approaches to ISP require enterprise model-
ing be done from a global perspective. All core and supporting business processes
and data flows are subjected to analysis, modeling, and documentation. Global
modeling is difficult, resource-consuming, and problematic even for single com-
panies. One reason for this was already given above: Companies often change at a

Value-Based Requirements Engineering for Value Webs 119

speed higher than global modeling can take. In a value web, an additional reason
for the impossibility of global modeling exists: The participating business actors
will never make all information that is needed for a global model available, be-
cause much of this information is viewed as a corporate asset and is confidential.
Yet ISP requires global models in order to make architecture decisions.

3 Solutions

Portfolio Management. A portfolio is a collection of assets of interest with some
shared characteristics, and portfolio management is a method for managing these
assets for value. Note that “the term portfolio management means a dozen dif-
ferent things to a dozen different people” [23]. In economic terms, the assets in a
portfolio are viewed as investments. They can be financial assets, IT assets, real
estate, or whatever else is of value to a company and needs to be managed as a
whole. The essence of portfolio management is that the assets in a portfolio are
considered as a whole, to check whether there are redundancies, lacunas, oppor-
tunities for synergy, etc. This naturally leads to the consideration of legacy sys-
tems: Systems that are already installed and used, and add value to the company
right now. Portfolio management offers quantitative decision-making techniques,
mostly based on the net present value of investments, to decide whether to add
a required e-service to a current system or to a new system, and what the fi-
nancial risk of each of these options is. Portfolio management has been proposed
by McFarlan as an approach to managing IT investments more than 20 years
ago [24], but in practice its actual use has taken on only in recent years [25].

Portfolio management solves the problem of incorporating legacy systems into
an architecture because it provides quantitative decision-making techniques to
decide whether to add a required e-service to a legacy system or to a new sys-
tem. It takes a company-wide, global view but does not require the design of
enterprise-wide data– process– and function models. The information needed to
make this decision is mostly of a financial nature, and it is feasible to acquire
this on an enterprise-wide basis before the information is out of date. So when
practiced on an ongoing basis, portfolio management also answers the problem
of speed of change, because it represents a direct link to the applications and
therefore offers bigger flexibility than given by traditional time-consuming ISP
approaches.

Portfolio management is however practiced on a company level, not on a value
web level. It does not provide techniques to deal with the lack of a single decision
point in a network, nor with the needs to make global, network-level ISP models.
To deal with these problems, we need to turn to other techniques, discussed next.

Value Web Design. To design a value web, we must chart all business actors
(including consumers) that form a value web, and specify what is exchanged with
whom, and against which reciprocal exchange. We follow the e3-value method
introduced by Gordijn & Akkermans [26,27,28].1 In this method, a value web
1 See also http://www.e3value.com/

http://www.e3value.com/

120 N. Zarvić, M. Daneva, and R. Wieringa

is represented by a graph, called a value model, in which the nodes represent
economic actors and the arrows represent transfers of value objects. A value
object is money, goods, services or other intangibles (such as “a trustworthy
image”) offered by an actor to other actors. Because each actor in the value web
is an economic actor, it expects some value object in return. The goal of designing
a value web is to ensure that each actor can participate in an economically viable
way. To provide quantitative decision support, e3-value offers two techniques,
namely (a) the net value flow and (b) the discounted net present cash flow
(DNPC) technique. Using these techniques, each actor can estimate (based on
revenues, expenses and investments) its income (net value flow) and discount it
to its present value.

Most of the transfers of value objects in the cases we are concerned with, are
e-services (or parts of e-services). A service is defined to be a “provider/client
interaction that creates and captures value” [29]. An e-service is a service deliv-
ered over an electronic network. In our research they are usually digital objects
of value to the receiver of the value object, such as data storage services, data
retrieval services, multimedia content, communication, etc. Once the participat-
ing actors agreed on a value web design, each actor can map the services it offers
to or consumes from other actors in this web to its own internal IT infrastruc-
ture. The value model is thus a source of functional requirements on current
(legacy) or new IT systems. Additionally, the value model is a source for quality
requirements, such as scalability, interoperability, or flexibility, because the value
model (and its accompanying techniques for assessing economic sustainability)
tells us how often certain transactions will occur, with which systems a given IT
system must interoperate, and what changes we can expect in the time period
considered by the value web. We make this more concrete through an example
in Sec. 4.

First, we explain why e3-value can solve the remaining two problems with
traditional ISP, the lack of single decision point and the impossible requirement
of ISP to make global models. By its very design, e3-value charts the different
decision points in a value web and thereby supports negotiation of these eco-
nomic actors in the design of the value web. As far as a value web is actually a
web of services, provider/client identification indicates the decision points. Each
economic actor in the web is profit-and-loss responsible and the value web uses
the language understood by all economic actors: Money, or more generally, eco-
nomic value. So e3-value techniques help solve the problem that there is no
single decision point.

Secondly, e3-value does require us to make one global model. This is a model
at a very high level of aggregation that contains just enough information for the
different businesses to decide whether and how to participate in the value web.
Once an actor decided to participate, it can derive functional and nonfunctional
requirements from the value model and this can serve as the input to an ISP
process inside each actor. And inside each actor, global data–, function– and
process models need not be made; they only need to be made of the IT assets
required to participate in this particular value web. So using e3-value avoids
the global modeling problem of ISP.

Value-Based Requirements Engineering for Value Webs 121

e
3

-value model

e-services portfolios

(allocation/matching, investment

analysis, risk analysis)

ISP models of an information system

(data-, function- and process models,

etc.)

Value web level

Individual IS level

e-service descriptions,

quality attributes

e-service allocations,

quality attributes

economic

sustainability of

value model

revenue estimates

expense estimates

DNPC

estimates

Fig. 1. Relationships among the different techniques

Relationships among the techniques. Figure 1 shows the relationships among the
techniques that we propose. Value models provide information about required
e-services to be provided by a business actor in the value web, which need to be
allocated to information systems (IS) in an IT portfolio. The DNPC technique
provides estimates of net present value of value flows in the web. That can
be used by portfolio analysts to make estimates of a business actor’s expenses
needed to provide or consume the e-services in the period considered by the value
model. This leads to improved DNPC estimates, which can be used to improve
the investment analysis, etc.

Once the required e-services and their quality attributes are allocated to IS,
the business actor can identify requirements for individual IS in the portfolio,
and elaborate these using traditional ISP techniques. Note that e-services and
their quality attributes flow along bidirectional arrows. This is because portfolio
analysis can lead an actor to a decision to change its offered or consumed e-
services in the value model, and that modeling of an individual IS can lead
to improved understanding of the feasibility and expected income or expenses
generated by offering or consuming an e-service.

Note that in portfolio management, we take the point of view of an arbitrary
actor in the value web, who wants to find a way to manage its IT portfolio in
such a way that participation in the value web is estimated to be profitable. At
the value web level, by contrast, we assume a model of the value web that is
shared by all actors in the web.

4 Example

To illustrate our approach, we apply it to a small example.

Case description. Consider a small telecom company named TwenteConnect,
that serves a regional market. The company has been providing so far only fixed

122 N. Zarvić, M. Daneva, and R. Wieringa

land-line services. They did not sell any hardware components such as cell phones
to their customers. Now, TwenteConnect wants to expand to the area of mobile
phone services, again in the same region. Their expansion plan says that before
starting to target private clientele, they will run a test phase with corporate
clients. The goal is to provide the local police and the staff of the local hospital
with mobile phone connections.

TWENTECONNECT

Legend

ActorMarket segment Value activity
Value interface

with two ports

Start stimulus End point
Value exchange

Moneye.g.

Value object
AND and OR

forks/joins

Mobile phone producer

Corporate clients

Mobile phone

consumption

Hardware

distribution
Hardware sales

Mobile phones

Mobile networking

Mobile phones

Mobile phoning Fee

Fee

Fee

Fig. 2. The “TwenteConnect Mobile Phoning” - Example

Suppose, the mobile operation infrastructure is already settled and the com-
pany has all it that should be provided to the corporate clients. TwenteConnect
relies on a collaboration with a well-known mobile phone producer, whereby the
producer’s mobile phones are (i) bought by TwenteConnect at markdown prices,
(ii) bundled with communication services (calling cards, voice mail, wireless web
access, SMS) and corporate-client-specific rate plans, and (iii) offered as a value
proposition to a corporate client. Suppose the regional police service and the
general management of the local hospital opt to TwenteConnect value propo-
sition, then TwenteConnect will devise a specific fee-to-be-charged schemas on
annual basis for each of these clients and - in return, each client will receive
a customizable package of mobile communication services and staff members’
phones.

Value-Based Requirements Engineering for Value Webs 123

Value model. Figure 2 shows an e3-value model of the value web. The following
symbols are used. An actor is a participant in the value web and an independent,
rational economic entity. In our example, the mobile phone producer and Twen-
teConnect are actors. A market segment is a group of actors that share the same
needs. Actors exchange value objects with each other. A value object is anything
that is of value for at least one actor, such as money, a service, a product, or
an experience. e3-value principle of economic reciprocity is hereby assumed, so
that a transfer of a value object is always coupled to a reciprocal value transfer.
Value objects are transferred through value ports. Value interfaces are groupings
of value ports. A value exchange between two actors, then, connects two value
ports with each other and represents an atomic trade of value objects between
value ports. Value activities can be assigned to actors and represent a collection
of operational activities, which must yield profit. To show which value exchanges
are needed to fulfil a consumer need, we can draw a scenario path,, which is a
set of connected line segments that starts with a circle with a double line (rep-
resenting the occurrence of a the consumer need) and ends in single lined circle
(representing the boundary of our model). AND/OR elements can be used for
merging and splitting parts of a scenario path.

Figure 2 shows that Corporate clients buy a package from TwenteConnect in
one atomic exchange (because it is one value interface), consisting of hardware
and mobile networking. TwenteConnect buys the hardware from a mobile phone
producer.

Assessing economic sustainability of a value web. As far as a value web is a net-
work of profit-and-loss responsible businesses (or business units), each of them
has the goal to act in a profitable way. We already mentioned that we use two
techniques ensuring viable participation of the actors in a value web. Coming
back to our business case, we want to evaluate whether the test phase promisses
a (positive) net value flow for TwenteConnect. We consider that the local hos-
pital has a need of 20 and the police has a need of 80 mobile phone connections
and mobile phones, so in complete 100. For each mobile phone TwenteCon-
nect has to pay 40 Euros to the mobile phone producer (100*40e=4.000e),
but sells it for 1 Euro to its corporate clients (100*1e=100e). TwenteCon-
nect sells the connectivity as a monthly mobile phone flatrate for 15 Euros
(100*15e=1.500e/month). If we consider the time-period of one year we can
assume to get a net income of 14.100e(-4.000e+18.100e=14.100e). Note that
the second year will differ in such a way that the income will be even 18.000e,
because everybody from the police and hospital already has a mobile phone and
we assume two years of average usage of such hardware.

Furthermore, to address the time value of money, we can use DNPC. Take
the first time-period were we already calculated an undiscounted net value flow
of 14.100e. By discounting it, let’s say with an interest rate of 5%, we have
a value at the start of the first period of just 13.428,57e. If we discount the
net value flow for the second year (18.000/1.052), the value will at the start
of the first time-period be just 16.326.53e, instead of the previously calculated
net value flow of 18.000e. The DNPC approach also allows to include expenses

124 N. Zarvić, M. Daneva, and R. Wieringa

for investments. Suppose TwenteConnect needs to make an investment for a
software piece amounting to 3525e, for realizing the business case. In terms
of the DNPC this is called an upfront investment, where a special time-period
0 has to be introduced. Table 1 compares the (undiscounted) net value flow
calculations with the DNPC for the two mentioned years (period 1 and 2) with
an upfront investment period 0 to include the investment.

Table 1. Comparing evaluation approaches: net value flow vs. DNPC

Period Revenues Expenses Investments Net value flow DNPC

0 3.525 -3.525 -3.525

1 18.100 4.000 14.100 13.428,57

2 18.000 18.000 16.326,53

Total 28.575 26.230,10

Identification and allocation of e-services. As an example, consider the interac-
tion between TwenteConnect and the mobile phone producer. As represented by
the start stimulus inside the value activity Hardware Sales in TwenteConnect,
whenever TwenteConnect needs to restock on mobile phones, it buys them from
the mobile phone producer. This requires IT support for ordering, purchasing
and payment. The set of transfers of value objects between TwenteConnect and
the mobile phone producer are showing the interaction, and are thus representing
an e-service in our web of services. TwenteConnect will need to decide whether
to develop this support from scratch, or to adapt an existing (legacy) system,
or to acquire an IT product from the market to provide this support. If the
support is developed from scratch, TwenteConnect may decide to do the devel-
opment in-house or to outsource it. If the IT support is acquired on a market,
TwenteConnect has to decide whether to buy a COTS (commercial-off-the-shelf)
package or to buy the required IT-service from a third party.

These decisions are made in the context of a current portfolio of IT systems
(figure 1) and in the context of what the mobile phone producer is willing to
implement in its value interface to TwenteConnect. This leads to a mutual ad-
justment process in which everything can change:

– TwenteConnect as well as the mobile phone producer may have to change
their decisions regarding IT support for the purchasing function, because
each may have to adapt to what the other is willing to do;

– The value model may change because third parties may get involved (e.g. an
IT supplier or an outsourcing party);

– The DNPC computations may change because each of the possible decisions
about IT support influences initial as well as recurring expenses.

IT requirements are just one factor in this process of mutual adjustment (align-
ment) of IT, value model, value analysis, investment analysis, and business
processes.

Value-Based Requirements Engineering for Value Webs 125

Classical ISP techniques such as context diagrams and data models (figure 1)
can be used in all cases to document the integration with the chosen solution
with other IT of TwenteConnect. Only if TwenteConnect decides to build the
required IT support itself, will these techniques be used to document the design
of the required IT systems.

IT investment calculations. In portfolio management, the decisions how to pro-
vide the required e-services will be made financially, using classic investment anal-
ysis techniques [30,31]. For example, as part of a particular solution, additional
hardware and software may have to be bought and maintained, maintenance may
have to be bought, etc. Each of the possible solutions will have to be evaluated us-
ing a particular investment computation. Different computations are possible [31].
For instance, consider again our initial investment of 3525 e. Given this item of
information, we could calculate the length of time required to recoup the invest-
ment. This is called the payback period and would be in our case just three months.
More in line with value modeling would be to use net present value methods, in
particular to use the DNPC computations already done as part of the value web
design. The choice of investment analysis technique is actually up to each busi-
ness actor; but in combination with e3-value , a discounted evaluation technique
should be used. Each solution option has a particular set of expenses associated
with it, that are fed into the DNPC computations at the value modeling level (fig-
ure 1), which leads to updated net present value estimates that can then be used
to analyze this investment in the context of their current IT portfolio.

5 Discussion and Further Research

Summary. Information systems planning (ISP) deals with defining an overall
alignment between business and IT. Traditional ISP has a 1970s background and
assumes a single point of decision making, ignores legacy systems, and assumes a
time-consuming top-down approach in which global enterprise models are made.
These assumptions fail in modern networked businesses. Portfolio management
has come into use to deal with the problem of legacy systems and with the
current, high speed of change of business development. In this paper, we proposed
using value modeling to deal with the absence of a single decision point, and with
the problem that in a value web, no global ISP-like models can be made. We
proposed a scheme for relating all these different techniques, and illustrated our
approach with an example.

The role of ISP. In our approach, value modeling and portfolio management are
used as a front end to traditional ISP. Value modeling proposes and analyzes
possible business models for actors in a value web, where a “business model” is
“a way of doing business” for each actor. Portfolio management can be used by
a business actor in the network to map the IT services required by participating
in the value web, to its internal IT systems. ISP serves two purposes in our
approach. The first purpose of ISP is to document and maintain an enterprise-
wide IT architecture. When used for this purpose, ISP provides techniques such

126 N. Zarvić, M. Daneva, and R. Wieringa

as context modeling, data modeling and process modeling that allows business
architects, IT architects and requirements engineers to specify how particular IT
systems fit into the overall architecture of a business actor. Where portfolio man-
agement techniques focus on monetary aspects of integrating an IT system into
a portfolio, ISP techniques focus on architectural and semantic issues involved
in integrating an IT system into the set of all IT systems of a business.

The second purpose of using ISP is relevant when a particular IT system is
built rather than acquired on a market. In this case, ISP techniques will be used
in the classic ISP-way to specify the functional and non-functional requirements
of a new system.

The role of requirements engineering. Figure 1 is actually a model of how to
perform business-IT alignment in a networked context. It presents a particular
view on how to perform RE in such a context. We view all activities in the
diagram as RE activities: Value modeling and DNPC analysis identify the e-
services offered and consumed by actors in the value web, portfolio models map
the services offered and consumed by one actor onto the internal IT systems of
this actor, and ISP tells us how these services are allocated to individual systems
and are integrated into the overall IT architecture. In this context, RE comes in
many variants:

– adjusting e-services identified in the value model to the capabilities offered
by current legacy systems, or to possible new systems, or to COTS packages,
or to the capabilities offered by a third party;

– adjusting legacy systems, possible new systems, COTS, or third party ser-
vices to the requirements imposed by the value model;

– adjusting the requirements of IT systems to the capabilities of the systems
of partners to be interfaced with;

– adjusting the requirements of IT systems to what is economically profitable
according to investment analysis;

– updating the investment analysis to what is required by the e-services iden-
tified in the value model.

Clearly, we cannot claim that the above list is complete. It, though, provides
enough evidence indicating that it is not realistic to define a single RE method
that suits all the cases. Instead, what seems achievable is the definition of a set
of techniques, each one being a good fit to some cases and not to others. Our
future research will be focussed on the design of some of those techniques.

Future research. Our future research will be case-study-oriented, in which we
will perform pilot studies for organizations wishing to participate in a value
web. Our first case will concern distributed balancing services in an electricity
network [32]. Other cases will be acquired through our business partners in the
VITAL project.2

In these studies, we will focus on the alignment of functional and non-functional
requirements for e-services. We are interested in further investigating a number of
2 See http://www.vital-project.org/

http://www.vital-project.org/

Value-Based Requirements Engineering for Value Webs 127

questions: What properties of an e-service can we actually derive from a value
model? Which nonfunctional attributes can be derived from a value model and
its DNPC computations, and how much design freedom does the IT architect
have regarding some of these attributes? How do we trade off different options
for a portfolio to realize functional or nonfunctional attributes? What is the
minimum information a business actor in a value web must release in order for
other actors to be able to make their design decisions? Do all actors need one,
shared value model or can they work with incomplete models?

These are actually design questions, and therefore our studies will not be
strictly empirical case studies, in which the researcher refrains from interfering
with the subject of study. Instead we anticipate action research studies, in which
the researcher joins the subject of study in order to improve the case, learn from
this and transfer some of this knowledge to the subject of study. We will report
on the result of our action research in the future.

Acknowledgments. This paper benefited from our discussion with the other
researchers of the VITAL project team.

References

1. Martin, J.: Strategic Data Planning Methodologies. Prentice Hall, New Jersey (1982)
2. Martin, J.: Information Engineering (Three Volumes). Prentice Hall, New Jersey

(1989)
3. Finkelstein, C.: An Introduction to Information Engineering - From Strategic Plan-

ning to Information Systems. Addison Wesley, Sydney (1989)
4. Arthur Young & Company: The Arthur Young Practical Guide to Information

Engineering. Wiley (1987)
5. Binkert, C.: Eine systematische Vorgehensweise für Anwendungsprojekte. In: Bren-

ner, W., Binkert, C., Lehmann-Kahler, M. (eds.) Information Engineering in der
Praxis, Campus Verlag, Frankfurt (1996)

6. Tagg, R., Freyberg, C.: Designing Distributed and Cooperative Information Sys-
tems. International Thomson Computer Press, London (1997)

7. Cassidy, A.: A Practical Guide to Information Systems Strategic Planning. Auer-
bach Publications, Boca Raton (2006)

8. Lederer, A., Sethi, V.: The implementation of strategic information systems
methodologies. MIS Quarterly 12(3), 444–461 (1988)

9. Pant, S., Hsu, C.: Strategic Information Systems Planning. Information Resources
Management Association Conference, Atlanta (1995)

10. Pant, S., Rachivandran, T.: A framework for information systems planning for
e-business. Logistics Information Management 14(1/2), 85–98 (2001)

11. Ward, J., Peppard, J.: Strategic Planning for Information Systems. Wiley, Chich-
ester (2006)

12. Finnegan, P., Galliers, R., Powell, P.: Inter-organizational systems planning:
learning from current practices. International Journal of Technology Manage-
ment 17(1/2), 129–145 (1999)

13. Finnegan, P., Galliers, R., Powell, P.: Systems Planning in Business-to-Business
Electronic Commerce Environments. Information Technology and Management 4,
183–198 (2003)

128 N. Zarvić, M. Daneva, and R. Wieringa

14. Spalmela, H., Spil, T.: Strategic Information Systems Planning in Inter-
Organizational Networks. In: Proceedings of the 2006 European Conference on
IS Management, Leadership and Governence, pp. 179–188 (2006)

15. Jacques, E.: In praise of hierarchy. Harvard Business Review, pp. 127–133 (1990)
16. Ouchi, W.: Markets, bureaucracies, and clans. Administrative Science Quarterly 25,

129–141 (1980)
17. Powell, W.: Neither market nor hierarchy: Network forms of organization. Research

in Organizational Behavior 12, 295–336 (1990)
18. Alstyne, M.v.: The state of network organizations: A survey in three frameworks.

Journal of Organizational Computing and Electronic Commerce 7(2&3), 83–151
(1997)

19. Miles, R., Snow, C.: Causes of failure in network organizations. California Man-
agement review 34(4), 53–72 (1992)

20. Wieringa, R.J.: Information technology as coordination infrastructure. Tech-
nical Report TR-CTIT-06-23, Centre for Telematics and Information Tech-
nology, University of Twente, Enschede (2006), http://www.ub.utwente.nl/

webdocs/ctit/1/00000172.pdf

21. Laudon, K., Laudon, J.: Essentials of Management Information Systems, 5th edn.
Prentice Hall, New Jersey (2003)

22. Zarvić, H., Daneva, M.: Challenges and Solutions in Planning Information Systems
for Networked Value Constellations. In: Weske, M., Nüttgens, M. (eds.) Proceed-
ings of the EMISA 2006 workshop - Methoden, Konzepte und Technologien für
die Entwicklung von dienstbasierten Informationssystemen. vol. P-95 of LNI - Lec-
ture Notes in Informatics, Hamburg, GI - Gesellschaft für Informatik, pp. 119–131
(2006)

23. Kaplan, J.: Strategic IT Portfolio Management. Jeffrey Kaplan, PRTM, Inc. (2005)
24. McFarlan, F.: Portfolio Approach to Information Systems. Harvard Business Re-

view, pp. 142–150 (1981)
25. Kasargod, D., Bondugula, K.: Application Portfolio Management (2005)

Last visited on 11-20 (2006), http://www.infosys.com/industries/banking/

white-papers/

26. Gordijn, J.: Value-based Requirements Engineering: Exploring innovative e-
Commerce ideas. PhD thesis, Free University of Amsterdam (2002)

27. Gordijn, J., Akkermans, H.: Designing and Evaluating E-Business Models. IEEE
Intelligent Systems 16(4), 11–17 (2001)

28. Gordijn, J., Akkermans, H.: Value-based requirements engineering: exploring inno-
vative e-commerce ideas. Requirements Engineering Journal 8(2), 114–134 (2003)

29. IBM: Services Sciences, Management and Engineering (2004) http://

www.research.ibm.com/ssme/services.shtml

30. Jesus Mendes, M.d., Suomi, R., Passos, C. (eds.): Dynamic ROI Calculations
for E-Commerce Systems, Digital Communities in a Networked Society: eCom-
merce, eBusiness, and eGovernment. The Third IFIP Conference on E-Commerce,
E-Business, E-Government (I3E 2003), São Paulo, Brazil, September 21-24,2003.
IFIP Conference Proceedings, vol. 268. Kluwer, Dordrecht (2004)

31. Harrison, W., Raffo, D., Settle, J., Eickelmann, N.: Technology review: Adapting
fianancial measures: making a business case for software process improvement.
Software Quality Journal 8(3), 211–231 (1999)

32. Gordijn, J., Akkermans, H.: Business models for distributed energy resources in
a liberalized market environment. The Electric Power Systems Research Journal
(2007) Accepted; preprint available at doi:10.1016/j.epsr.2008.08.008

http://www.ub.utwente.nl/webdocs/ctit/1/00000172.pdf
http://www.ub.utwente.nl/webdocs/ctit/1/00000172.pdf
http://www.infosys.com/industries/banking/white-papers/
http://www.infosys.com/industries/banking/white-papers/
http://www.research.ibm.com/ssme/services.shtml
http://www.research.ibm.com/ssme/services.shtml

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 129 – 143, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Quantitative Assessment of Requirements
Engineering Publications – 1963–2006

Alan Davis1, Ann Hickey1, Oscar Dieste2, Natalia Juristo2, and Ana Moreno2

1 U. of Colorado at Colorado Springs
College of Business

PO Box 7150
Colorado Springs, CO 80933-7150 USA
{adavis,ahickey}@uccs.edu
2 Universidad Politécnica de Madrid

Facultad de Informática
28660 Boadilla del Monte,

Madrid, Spain
{odieste,natalia,ammoreno}@fi.upm.es

Abstract. Requirements engineering research has been conducted for over 40
years. It is important to recognize the plethora of results accumulated to date to:
(a) improve researchers’ understanding of the historical roots of our field in the
real-world and the problems that they are trying to solve, (b) expose researchers
to the breadth and depth of solutions that have been proposed, (c) provide a
synergistic basis for improving those solutions or building new ones to solve
real-world problems facing the industry today, and d) increase practitioner
awareness of available solutions. A detailed meta-analysis of the requirements
engineering literature will provide an objective overview of the advances and
current state of the discipline. This paper represents the first step in a planned
multi-year analysis. It presents the results of a demographic analysis by date,
type, outlet, author, and author affiliation for an existing database of over 4,000
requirements engineering publications.

Keywords: requirements engineering, requirements management, elicitation,
literature analysis, specification, research analysis.

1 Introduction

"Those who do not remember the past are condemned to relive it."
George Santanya [1]

Requirements engineering (RE) is the discipline of determining, analyzing, pruning,
documenting, and validating the desires, needs and requirements of stakeholders for a
system. RE research has been underway for over 40 years, yet few recently published
papers reference any works older than 3-5 years. One explanation for this may be that
researchers are aware of earlier work but dismiss it as irrelevant. Another explanation
may be that researchers do not know about the earlier work. Too often, in relatively
young disciplines like RE, researchers value only the most recent publications, and

130 A. Davis et al.

have the impression that older information is either non-existent or obsolete. How-
ever, it is this older information that provides researchers with an understanding of the
historical roots of RE, problems the discipline was created to solve, underlying prin-
ciples of the solutions provided for such problems, and the research gaps in particular
RE areas.

In summary, understanding the complete span of RE publications exposes re-
searchers to the breadth and depth of the problems and solutions that have been pro-
posed in the past and provides an objective overview of the advances in the discipline.
This understanding is essential to (a) ensure that we don’t reinvent the wheel and (b)
provide continuity from prior solutions to today’s opportunities to enable researchers
to develop solutions that are even more powerful. Finally, it is healthy for all disci-
plines to periodically take a step back to evaluate the state of their disciplines.

Analyses of the literature to achieve the above goals are fairly common in other
fields. Most disciplines have an extensive record of reviews of their literature to in-
crease researcher understanding of the full complement of their research and research
trends. For example,

• Information Systems (IS) Productivity. Athey and Plotnicki [2], Grover, et al. [3],
Im, et al. [4], and Huang and Hsu [5] are examples of analyses of IS institutional
and researcher productivity.

• IS Research Topics. Some researchers have evaluated research topics [6].
• Other Disciplines. Similar papers exist in more narrow disciplines such as

knowledge management [7] or e-commerce [8].
• Computer Science and Software Engineering. The computer science (CS) [9][10]

and software engineering (SE) [11] disciplines report results of similar analyses.
[12] is an interesting comparison of CS, SE, and IS.

The closest example to these sorts of analyses in RE is Gervasi, et al.’s [13] lexical
analysis of the annual proceedings of the Requirements Engineering: Foundation for
Software Quality (REFSQ) workshops to identify main topics and trends. However,
we are not aware of any general, broad-based analysis of RE publications similar to
those found in the IS, CS, and SE areas.

Our overall purpose is to conduct a multi-year, detailed analysis of the RE litera-
ture to provide the RE discipline the in-depth knowledge currently available in other
areas. This paper begins this process. Specifically, this paper provides a detailed
quantitative demographic analysis of the publications within RE spanning 40+ years.
It will achieve the following:

• Understanding quantitative trends in RE publications will help us determine if
there is growing, shrinking, or level interest in the RE field.

• Understanding when the earliest papers were written will enable us to begin the
process of understanding our discipline’s roots.

• Understanding RE publication outlets can be helpful when choosing an outlet for
a new paper.

• Understanding RE publication outlets will enable practitioners to locate potential
solutions to their requirements problems more easily.

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 131

• Understanding what parties are publishing papers in RE will enable us to better
understand whether RE is a solution in search of a problem or a problem in
search of a solution.

• Understanding organizational and national trends could be helpful to researchers
when seeking research partners.

Having an in-depth understanding of the literature base provides the foundation
necessary for the next phase of our research, i.e., the detailed content analysis [14] of
those publications.

2 Research Method

Our research method consists of a quantitative meta-analysis (also known as a de-
scriptive literature review) [15] of RE publications from 1963 to 2006. Fig. 1 provides
a high-level model of our current and future research activities. Since the quality and
generalizability of a descriptive literature review are dependent on the completeness
of the literature base analyzed, we explicitly chose to analyze all RE publications
versus using some sampling technique that could have biased or prevented reproduci-
bility of our results.

Content Analysis to
Categorize RE Pubs by:

RE Sub-Domain,
Interest Area,

Research Method,
Maturity, etc.

Analyze Historical
Roots by

RE Sub-Domain,
Interest Area, etc.

Future Research

Identify RE Pubs,
Authors &

Author Affiliations

Classify:
Publication Outlets,
Affiliations by Type

Analyze RE Pubs by:
Earliest Pubs

Pub. Volume/Trends
Pub. Type & Outlet

Author Productivity/Patterns
Organization Types
Author Affiliations

CURRENT RESEARCH

Analyze RE Pubs by:
RE Sub-Domain,

Interest Area,
Research Method,

Maturity, etc.

Fig. 1. Research Overview

2.1 Research Questions

In this study we deal with all publications that concern concepts of gathering, defin-
ing, pruning, and documenting requirements, needs, desires, etc. We will use the
expression “requirements engineering” to refer to any or all of the previous concepts.

Our research questions are:

• What are the earliest publications that address RE issues?
• How many publications (and pages) have been written in the field of RE, and

how has the production changed over the years?
• What have been the most popular outlets for RE publications? And, how has this

changed over time?
• How many different authors are responsible for the RE publication output? What

is the average publication output per author? How many authors team together to
author papers?

132 A. Davis et al.

• Do academic authors differ in any of their characteristics from non-academic au-
thors? Has this changed over time?

• What organizations have been responsible for writing RE papers? We want to
know the answer in general, e.g., government vs. academic vs. commercial, and
specifically, e.g., which universities, which companies and which government
agencies? And, how has this changed over time?

2.2 Data Collection

The database of 4,089 publications used in this study derives from a series of events
spanning 18 years:

• Original Paper Compilation. In 1989, one of the authors compiled an extensive
bibliography of requirements-related material for [16].

• Updated Paper Compilation. In 1992, that same author updated the extensive
bibliography for publication in [17].

• On-Line Availability. Between 1992 and 1996, the authors continued to collect
such references and commencing in 1996, posted them on-line at a site that came
to be known as REQBIB [18]. That website has been publicly available since
early 1996. It has received over 41,000 hits since that time.

• Merging of Paper and On-Line Versions. In 2001, all references (except internal
reports) that appeared in [17] were manually added to REQBIB.

• Use of Online Databases. Since 2001, we have been conducting regular online
searches of IEEE Xplore, the ACM Digital Library, ScienceDirect, Kluwer
Online, Engineering Village 2, Wiley Interscience, and SpringerLink to search
for papers whose keywords, abstracts or titles contained any combination of “re-
quirement,” “specification,” “prototype,” “analysis,” “scenario,” “conceptual
modeling,” “enterprise modeling,” and “use case.” Titles and abstracts of the re-
sulting list of papers were examined manually to determine relevance, and added
to REQBIB as appropriate.

• Search Engines. Since 2001, we have been conducting regular searches for
“software” and any combination of the aforementioned keywords using Yahoo
and Google. When these searches uncovered publications that were relevant
(based on titles only), they were added.

• Visitor Feedback. The website has always invited visitors to send us emails iden-
tifying any missing publications. Although such emails arrived weekly in the late
1990’s, it has now become a mere trickle.

• Internal Closure. The lists of references contained within approximately 50% of
the publications were examined manually for items not contained in the database.
When new items were detected, they were added to the database. We stopped af-
ter examining 50% of them because we were no longer detecting new entries, i.e.,
we had reached saturation.

• Conversion to Database. In late 2004, the REQBIB html file was translated
automatically into an Access database, and from that point on, continued mainte-
nance was conducted in parallel on both the html file (for public access) and the
Access database (for our ongoing research).

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 133

• Database Augmentation. We also augmented the database derived from REQBIB
with more complete information, including:

o Actual names (last name and first initial) of all authors were added
(REQBIB had included only the lead author’s name when there were three
or more authors).

o Authors’ affiliations were determined by examining on-line or paper ver-
sions, and were entered into the database manually. Note this resulted in
organizational affiliations of authors at the time of publication, not at the
current time. We also classified organizations as academic, industry, or
government.

• Microsoft Access queries were written for all analyses required for this research.
Query results were exported to Microsoft Excel to simplify demographic analysis
and chart generation.

The resulting database includes:

• 4,089 RE publications spanning the years from 1963 through 2006.
• We located full source (or in some cases, abstracts) for 3,661, or 86%.
• We determined the complete list of authors for 4,082, or 99.9%.

o 4,547 unique authors of RE publications
o 8,955 unique assignments of authors to publications, and we determined af-

filiations of 8,590, or 96%, of the author-pub pairs.

Although we make no claims concerning 100% completeness of our database, we
believe that it is (a) the largest ever collected, and (b) complete enough to make the
data analysis trends accurate (see Section 5 for a discussion of papers we may have
missed and the implications thereof).

3 Results

3.1 Earliest Papers

The earliest paper we found that appears to be about requirements is either from 1963
by Church [19] or 1964 by Gatto [20]. We are not absolutely positive that [19] is dis-
cussing requirements as we understand them today. It discusses the design of data
requirements for a bill-of-materials application for manufacturing, so it sounds like it is
about requirements. However, much of the paper is about topics clearly unrelated to
the subject. Gatto [20], one year later, addresses behavior of a tool used to record func-
tional and data requirements, so it clearly focuses on RE. We also uncovered internal
reports at TRW, IBM, and other companies dated 1961 through 1963, but all internal
reports have been eliminated from our study due to the lack of public accessibility.

The term “requirements engineering” appears to have its roots in the mid-1970’s at
TRW while it was working with the US Army Ballistic Missile Defense Advanced
Technology Center (BMDATC) in Huntsville, Alabama. Mack Alford and others at
TRW in Huntsville [21][22][23][24] along with their partners at BMDATC such as
Charlie Vick and Carl Davis appear to have coined the term both as a general concept

134 A. Davis et al.

as well as part of the name of the TRW tool, the Requirements Engineering Validation
System (REVS). Many of their papers reference internal reports by these authors at
TRW dating back to 1974 and 1975. Around the same period of time, Barry Boehm, at
TRW on the West Coast, was also publishing papers using the terms requirements
analysis and RE [25][26][27]. The second IEEE International Conference on Software
Engineering (ICSE) [28] in 1976 contained an entire track devoted to RE.

The term “requirements management” appears to have been used first by Herndon
and McCall [29] in 1983. Although the term was used regularly after 1983, this paper
seems to be discussing a “management methodology” for “requirements,” and just
happens to provide the words in the order “requirements management methodology.”
But, even though the paper may not have focused on the term as currently understood,
i.e., as a “methodology” for “requirements management,” its use of the term may have
been the genesis of its widespread use in RE.

3.2 Publication Volume and Trends

We have identified a total of 4,089 RE publications spanning the years from 1963
through 2006. Fig 2 shows the distribution of all publications in our collection in five-
year intervals. The RE research area has exhibited exponential growth since 1977.

0

200

400

600

800

1000

1200

1400

1600

<1967 1967-1971 1972-1976 1977-1981 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006

Half-Decade

N
u

m
b

er
 o

f
P

u
b

lic
at

io
n

s

Fig. 2. Quantity of Publications in Domain of Requirements Engineering

Explanations for the rapid growth of RE as a research area may be (a) growing
awareness that poor requirements are a major reason for failed systems [30][31], (b)
the rapid increase in complexity of the problems we are tackling using computers
and therefore in the complexity of the RE process, or (c) the addition of four new
international RE conferences and a new RE journal: International Council on Systems

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 135

Engineering (INCOSE)’s systems engineering symposia in 1991, IEEE International
Symposium on RE in 19931, IEEE International Conference on RE in 19941, REFSQ
in 1994, and Springer’s RE Journal in 1996.

3.3 Publication Types and Outlets

We investigated the publication outlets of the 4,089 publications in our database. Fig. 3
shows that over half of the items were published in conferences (the figure shows two
types of conference papers – Regular and Auxiliary – where auxiliary papers are non-
refereed, such as introductions and panel reports), about a quarter were published in
journals (the figure shows two types of journal papers – Regular and Auxiliary – where
auxiliary papers are non-refereed, such as guest editor introductions, columns, and
abstracts), and the remainder in a variety of other venues. Fig. 4 shows how the num-
ber of publications for each outlet type has changed over time. The growing supremacy
of conferences as an outlet may be because (a) conferences may be the primary outlet
for much of the significant work in computer science (see [12]) including for CS re-
searchers in RE, (b) conferences usually make more rapid acceptance decisions, or
(c) conferences are generally easier to publish in. Further analysis of the specific out-
lets highlights the leading venues for RE publications; Table 1 shows all venues
accounting for 1% or more.

Conference Paper
(Regular)
2041, 51%

Book Chapter
220, 5%

Conference Paper
(Auxiliary)
219, 5%

Journal/Magazine Article
(Regular)
1041, 26%

Journal/Magazine Article
(Auxiliary)
134, 3%

Other Periodical
209, 5%

Book
222, 5%

Fig. 3. Publication Outlets for RE Publications

3.4 Author Productivity and Authorship Patterns

We also investigated the authors of the publications. The 4,089 publications were
written by a total of 4,547 different individuals. Another analysis determined the
distribution of the number of publications per author as well as the distribution of the
number of authors per publication. Although two individuals authored or co-authored

1 Subsequently merged into the IEEE [Joint] Requirements Engineering Conference in 2002.

136 A. Davis et al.

0

100

200

300

400

500

600

700

800

900

<1967 1967-1971 1972-1976 1977-1981 1982-1986 1987-1991 1992-1996 1997-2001 2001-2006

s
n

oita cil
b

u
P

f
o

re
b

m
u

N

Book

Book Chapter

Conference Paper (Regular)

Conference Paper (Auxiliary)

Journal/Magazine Article (Regular)

Journal/Magazine Article (Auxiliary)

Other Periodical

Fig. 4. Publication Outlets by Year

over 60 publications each, this analysis, as shown in Fig 5, demonstrates that 83%
ofauthors were responsible for just one RE paper, and 93% of publications were writ-
ten by authors with 4 or fewer RE publications to their credit. Meanwhile, Fig. 6
shows that one paper had as many as 18 co-authors, although most (85.7%) have 1 to
3 co-authors.

3.5 Organization Types

We then placed each publication into one or more of three categories based on af-
filiations of its authors: academic, industry, and government. To no surprise, Table 2
shows that a majority (68.5%) of have at least one author affiliated with an academic
institution. We also analyzed the percent of papers that have authors from both aca-
demia and either industry or government and found this to be only 492, or 12%. This
low number may indicate a lack of collaboration between academe and practice and
may in part explain the difficulties we experience in RE technology transfer [32].

It is also interesting to see if there has been an increasing trend or decreasing trend in
each of these affiliation categories by year. Fig. 7 shows that involvement by commercial
organizations was much higher (65% of total research output) in the earlier decades and
decreased steadily until it reached 20%. Meanwhile, involvement by academic organiza-
tions was much lower (29% of total research output) in the earlier decades and increased
steadily to around 78%. Government involvement has consistently remained fairly low,
although our data does not indicate the percentage of either commercial or academic
research that was supported directly or indirectly by government.

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 137

Table 1. Outlets Accounting for 1% or More of All RE Publications

Outlet Conference Journ/ Mag

IEEE Intl Conf/Symp on RE (ICRE/ISRE/RE) 12.5%
Intl Symp on Systems Engineering (INCOSE) 5.4%
Requirements Engineering Journal (Springer) 4.5%
IEEE Software 2.8%
REFSQ 2.7%
IEEE Intl Comp Soft & Applic Conf (COMPSAC) 2.4%
IEEE Transactions on Software Engineering 2.4%
IEEE Conf on Software Engineering (ICSE) 2.1%
ACM Software Engineering Notes 1.7%
Information and Software Technology (Elsevier) 1.5%
Journal of Systems and Software (Elsevier) 1.4%
IEEE Hawaii Intl Conf on Sys Sciences (HICSS) 1.3%
IEEE Intl Workshop Soft Spec & Des (IWSSD) 1.1%
Conf on Advanced Info Sys Eng (CAiSE) 1.1%
Communications of the ACM (CACM) 1.0%
Other Conferences 27.7%
Other Journals 13.4%

55.3% 28.7%
Subtotals

 84.0%
Other Venues 16.0%

Total 100.0%

3.6 Author Affiliations

Individual author affiliations represent over 1,450 different organizations worldwide.
Organizations whose employees accounted for 1% or more of the publications are
shown in Table 3. This list reflects the same trends observed previously, with aca-
demic institutions representing 80% of the top 10 organizations and industry 20%.

3.7 National Analysis

To see how individual countries have contributed to this trend, let us look at a ranked
list of the top 10 RE publication-producing countries as of the end of 2006, as shown
in Fig 8. More interesting is to see how these countries have changed their level of
activity with respect to RE publications over the past 5 years. Fig 9 shows these same
countries, in their 2006 order, along with their cumulative RE publications as of 2001.
Contrasting Fig 8 and Fig 9 shows some remarkable trends:

• Decreases in output from United States (50.7% to 41.9%).
• Increases in output from Canada (4.6% to 7%), Germany (5% to 6.1%), Australia

(2.1% to 3.7%), Spain (1.5% to 3.2%), Italy (2.3% to 3.1%), France (2.1% to
2.5%), and Sweden (1.8% to 2.3%).

• UK and Japan have not changed relative output rates significantly in 5 years.

138 A. Davis et al.

0

500

1000

1500

2000

2500

3000

3500

4000

1-
2

3-
4

5-
6

7-
8

9-
10

11
-1

2

13
-1

4

15
-1

6

17
-1

8

19
-2

0

21
-2

2

23
-2

4

25
-2

6

27
-2

8

29
-3

0

31
-3

2

33
-3

4

35
-3

6

37
-3

8

39
-4

0

41
-4

2

43
-4

4

45
-4

6

47
-4

8

49
-5

0

51
-5

2

53
-5

4

55
-5

6

57
-5

8

59
-6

0

61
-6

2

63
-6

4

65
-

Number of Papers Authored by an Author

N
u

m
b

er
 o

f
A

u
th

o
rs

Mean = 2.29

Fig. 5. Number of Papers per Author

0

300

600

900

1200

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Co-Authors per Paper

N
u

m
b

er
 o

f
P

u
b

lic
at

io
n

s

Mean = 2.23

Fig. 6. Number of Authors per Publication

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 139

Table 2. Organization Affiliation Types (Total Publications: 3,680)

Papers w/at Least One Author from: Count %2

Academia 2,799 68.5
Industry 1,404 34.3
Government 217 5.3
Unknown 247 6.0
Academia and either Industry or Government 492 12.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Before 1982 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006

Years

ec r
u

o
S

m
orf

sre
pa

P
f

o
e

ga t
necre

P

Academia

Industry

Government

Fig. 7. Organization Affiliations of Authors by Year

4 Limitations

This paper is the first attempt to date of categorizing and analyzing the rich expanse
of RE publications. The research however does have some limitations. Although we
gathered a large set of RE papers, we may have omitted some:

• The mechanism we described at the beginning of this paper for populating our
database achieves closure among all publications using certain terms in their
titles and abstracts. However, it is possible that another “world” of RE research
exists that (a) does not use any of the terms listed in Section 2.2 and (b) is not
referenced by any of the items in the current database. As new search terms are
suggested to us, we regularly run additional searches to see how many more
papers are added to the database. For example, we recently searched for the

2 The percentages shown in Table 2 do not add up to 100% because those papers authored by

multiple individuals associated with different types of organizations were counted multiple
times.

140 A. Davis et al.

expressions “conceptual modeling” and “enterprise modeling” (these were not in
our original list of search terms), and found that these searches added less than
1% additional publications to our database, and no changes to the results given in
the paper. By doing these regular follow-on searches and finding so few addi-
tional items, we are validating our methodology.

Table 3. Organizations Accounting for 1% or More of All RE Publications

Organization Univ
Corp
/Gov.

City University, London (UK) 2.3%
University of Toronto (Canada) 2.1%
Lancaster University (UK) 1.3%
University of Manchester (UK) 1.2%
U. of Colorado at Colo Sprgs (USA) 1.2%
Imperial College (UK) 1.1%
AT&T (USA) 1.1%
University of Calgary (Canada) 1.1%
Fraunhofer (Germany) 1.2%
U. of Southern California (USA) 1.0%

11.3% 2.3% Total Accounted for with Above
Organizations 13.6%

UUSSAA 4411..99%%

UUKK 1155..44%%

CCaannaaddaa 77..00%%

GGeerrmmaannyy 66..11%%

AAuussttrraalliiaa 33..77%%

SSppaaiinn 33..22%%

IIttaallyy 33..11%%

JJaappaann 22..99%%

FFrraannccee 22..55%%

SSwweeddeenn 22..33%%

UUSSAA 5500..77%%

UUKK 1166..00%%

CCaannaaddaa 44..66%%

GGeerrmmaannyy 55..00%%

AAuussttrraalliiaa 22..11%%

SSppaaiinn 11..55%%

JJaappaann 33..11%%

IIttaallyy 22..33%%

FFrraannccee 22..11%%

SSwweeddeenn 11..88%%

Fig. 8. Top 10 RE Publication-Producing Co-
untries 1963-2006

Fig. 9. Year 1963-2001 Output for Same Cou-
ntries Shown in Fig 8

• It is possible that multiple authors with identical first initials and last names are
publishing in the domain of RE. In such cases, our database will count them as
the same person, but with different affiliations (unless of course they had identi-
cal affiliations as well!). The effect would be a slight understatement of the total
number of unique authors, but would not negatively affect any of the other results
presented in this paper.

• The decision on whether or not to include a candidate paper in our database was
based primarily on reading the title and abstract. Thus, we may have erroneously
included or excluded some papers based on incomplete knowledge of the actual
content of the papers.

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 141

• Our database includes publications in the English language only. We know that
many countries hold regional conferences in their national languages, and a few
countries have journals published in their national languages. We have tried to be
inclusive (e.g., we have included papers written in English whether in interna-
tional, national, or regional venues). However, it is altogether likely that we have
omitted many quality papers that have appeared in non-English speaking venues.

5 Future Research

We plan to conduct future research in a variety of areas, some similar to studies per-
formed in other fields reported previously, and some navigating entirely new territory:

5.1 Subjects of Research

What areas within RE do the papers address? How have these emphases changed over
time? For example, do the papers address:

• Expanding. Anything that attempts to add new requirements, e.g., elicitation [33],
uncovering, discovering, identifying.

• Analyzing [33]. Anything that attempts to improve the understanding of require-
ments, or anything that improves the quality, correctness, completeness, includ-
ing V&V.

• Contracting. Anything that attempts to diminish the number of requirements in
the “current set,” e.g., triage, prioritization, allocation, pruning.

• Documenting. Anything that records requirements, e.g., specification [33].
• Transitioning. Anything that shows the transition from requirements to later

stages such as testing or design.
• Evolution. Anything that addresses ongoing changes to requirements. This is in-

cluded in what Dorfman [33] calls “requirements management.”
• Unknown. We can’t tell.
• Other. Anything else. The current paper is one example.

5.2 Idea Creation and Use

For selected major concepts that we consider to be part of RE (e.g., use cases, finite
state machine-based specification), we hope to be able to trace their evolution. Such a
trace will identify the original source of the concept (regardless of name), the original
source of the term, and the primary uses of the concept. An interesting follow-on
suggested by one of our reviewers is to investigate how many of the ideas actually
found their way into practice.

5.3 Maturity of Research

How much RE research is focused on generating new ideas (i.e., Wieringa, et al.’s
[34] “proposal of solution” papers)? testing those ideas in the lab (i.e., Wieringa,
et al.’s [34] “validation research” papers)? evaluating them in practice (i.e.,

142 A. Davis et al.

Wieringa, et al.’s [34] “personal experience” papers)? We may want to categorize
all requirements publications by their level of research maturity, for example
based on the taxonomy defined by the US Federal Drug Administration and
adapted by Davis and Hickey [35] for RE.

6 Summary and Conclusions

The demographic analysis presented in this paper begins the process of increasing
awareness of the depth and breadth of the RE literature base. Some readers may be
surprised to learn that the earliest RE publications date back to 1963-64. Others will
be surprised by the historic origins of the terms “requirements engineering” and “re-
quirements management” in the 1970s and 1980s or the huge quantity of RE publica-
tions (4,089), unique authors (4,547), and unique organizational affiliations (1,450).
Younger researchers will benefit by having a much clearer understanding of author-
ship patterns and the major outlets for RE publications identified in this paper.

However, the demographic information presented in this paper represents just the
beginning of the awareness process. More importantly, the results of this paper are
essential before we can conduct a thorough content analysis of RE publications. Now
that this is completed, we can continue with in-depth content analyses to identify topics
as described in the previous section. This detailed level of awareness of RE publica-
tions will provide a basis for finding ever more powerful solutions to real-world prob-
lems facing our discipline, thereby improving the state of RE research and practice.

References

1. Santanya, G.: The Life of Reason, orig. publ. 1905, reprinted by Prometheus Books (1998)
2. Athey, S., Plotnicki, J.: An Evaluation of Research Productivity in Academic IT. Comm.

of AIS, vol. 3(7), pp. 1–20 (2000)
3. Grover, V., Segars, A., Simon, A.: An Assessment of Institutional Research Productivity

in MIS. Database 23(4), 25–29 (1999)
4. Im, K., Kim, K., Kim, J.: An Assessment of Individual and Institutional Research Produc-

tivity in MIS. Decision Line, vol. 31, pp. 8–12 (1998-1999)
5. Huang, H.-H., Hsu, J.: An Evaluation of Publication Productivity in Information Systems:

1999 to 2003. Comm. of AIS 15, 555–564 (2005)
6. Farhoomand, A., Drury, D.: A Historiographical Examination of Information Systems.

Comm. of AIS, vol. 1(Article 19) (1999)
7. Gu, Y.: Global Knowledge Management Research: A Bibliometric Analysis. Scientomet-

rics 61(2), 171–190 (2004)
8. Ngai, E., Wat, F.: A Literature Review and Classification of Electronic Commerce Re-

search. Information & Management 39(5), 415–429 (2002)
9. Ramesh, V., Glass, R., Vessey, I.: Research in Computer Science: An Empirical Study.

Journal of Systems and Software 70(1-2), 165–176 (2004)
10. Katerattanakul, P., Han, B., Hong, S.: Objective Quality Ranking of Computing Journals.

Comm. of the ACM 46(10), 111–114 (2003)
11. Glass, R., Vessey, I., Ramesh, V.: Research in Software Engineering: An Analysis of the

Literature. Info. and Software Tech. 44(8), 491–506 (2002)

 A Quantitative Assessment of Requirements Engineering Publications – 1963–2006 143

12. Glass, R., Ramesh, V., Vessey, I.: An Analysis of Research in Computing Disciplines.
Comm. of the ACM 47(6), 89–94 (2004)

13. Gervasi, V., Kamsties, E., Regnell, B., Ben Achour-Salinesi, C.: Ten Years of REFSQ: A
Quantitative Analysis. REFSQ ’04 (2004)

14. Weber, R.: Basic Content Analysis, 2nd edn. Sage, Newbury Park, CA (1990)
15. Leedy, P., Ormrod, J.: Practical Research, 8th edn. Prentice Hall, Upper Saddle River, NJ

(2005)
16. Davis, A.: Software Requirements: Analysis and Specification. Prentice Hall, Englewood

Cliffs, NJ (1990)
17. Davis, A.: Software Requirements: Objects, Functions, and States. Prentice Hall, Engle-

wood Cliffs, NJ (1993)
18. http://web.uccs.edu/adavis/reqbib
19. Church, F.: Requirements Generation, Explosions, and Bills of Materials. IBM Systems

Journal 2, 268–287 (1963)
20. Gatto, O.: Autosate. Comm. of the ACM 7(7), 425–432 (1964)
21. Alford, M., Burns, I.: R-Nets: A Graph Model for Real-Time Software Requirements. In:

Symp. Comp. Soft. Eng., Polytechnic Press, New York (1976)
22. Belford, P., et al.: Specifications: A Key to Effective Software Development. In: IEEE

Intl. Conf. Soft. Eng., IEEE Comp. Soc. Press, Los Alamitos, CA (1976)
23. Bell, T., Bixler, D.: A Flow-Oriented Requirements Statement Language. In: Symp.

Comp. Soft. Eng., Polytechnic Press, New York (1976)
24. Bell, T., Thayer, T.: Software Requirements: Are They Really a Problem? In: IEEE Intl.

Conf. Soft. Eng., IEEE Comp. Soc. Press, Los Alamitos, CA (1976)
25. Boehm, B.: Some Steps Toward Formal and Automated Aids to Software Requirements

Analysis and Design. Information Processing ’74 (1974)
26. Boehm, B., McClean, R., Urfrig, D.: Some Experience with Automated Aids to the Design

of Large-Scale Reliable Software. SIGPLAN Notices, vol. 10(6) (1975)
27. Boehm, B.: Software Engineering. IEEE Trans. Comp., vol. 25(12) (1976)
28. Second IEEE Intl. Conf. Soft. Eng., IEEE Comp. Soc. Press, Los Alamitos, CA (1976)
29. Herndon, M., McCall, J.: The Requirements Management Methodology, IEEE Comp Soft

App Conf (COMPSAC), IEEE CS Press, Los Alamitos, CA (1983)
30. Brooks, F.: No Silver Bullet. IEEE Computer 20(4), 10–19 (1987)
31. Standish Group, The Chaos Report, www.standishgroup.com
32. Hickey, A., Davis, A., Kaiser, D.: Requirements Elicitation Techniques: Analyzing the

Gap Between Technology Availability and Technology Use. Comparative Tech. Transfer
and Society 1(3), 279–302 (2003)

33. Dorfman, M.: Software Requirements Engineering. In: Software Requirements Engineer-
ing, 2nd edn., pp. 1–2. IEEE Comp. Soc. Press, Los Alamitos, CA (1997)

34. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements Engineering Paper Classi-
fication and Evaluation Criteria: A Proposal and a Discussion. Req. Eng. 11(1), 102–107
(2006)

35. Davis, A., Hickey, A.: A New Paradigm for Planning and Evaluating Requirements Engi-
neering Research. Workshop on Comparative Evaluation of Requirements Engineering
(CERE 04), Kyoto, Japan (September 2004)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 144 – 159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handshaking Between Software Projects and
Stakeholders Using Implementation Proposals

Samuel Fricker1,2, Tony Gorschek3, and Petri Myllyperkiö4

1 ABB Switzerland Ltd., Corporate Research,
Segelhof, 5405 Baden-Daettwil, Switzerland

samuel.fricker@ch.abb.com
2 University of Zurich, Department of Informatics,

Binzmuehlestrasse 14, 8057 Zurich, Switzerland
fricker@ifi.unizh.ch

3 Blekinge Institute of Technology, School of Engineering,
PO Box 520, 372 25 Ronneby, Sweden

tony.gorschek@bth.se
4 ABB Oy, Distribution Automation
B.O. Box 699, 65101 Vaasa, Finland

petri.myllyperkio@fi.abb.com

Abstract. Handshaking between product management and R&D is key to the
success of product development projects. Traditional requirements engineering
processes build on good quality requirements specifications, which typically are
not achievable in practical circumstances, especially not in distributed devel-
opment where daily communication cannot easily be achieved to support the
understanding of the specification and tacit knowledge cannot easily be spread.
Projects thus risk misunderstanding requirements and are likely to deliver in-
adequate solutions. This paper presents an approach that uses downstream engi-
neering artifacts, design decisions, to improve upstream information, a project’s
requirements. During its preliminary validation, the approach yielded promising
results. It is well suited for distributed software projects, where the negotiation
on requirements and solution design need to be made explicit and potential
problems and misunderstandings caught at early stages.

1 Introduction

Distributed multi-site product development is increasingly becoming commonplace as
companies become global not only in terms of customer base, but also with regards to
large parts of the product development that is spread over continents and cultures.
Distribution enables companies to leverage their resources and to draw on the advan-
tage of proximity to customers and markets for large-scale product development [1].

The potential opportunities, however, also come with new challenges that affect
both product management and product development of a company, and the require-
ments engineering of products. The threat of defect increase and cost overruns in
multi-site development has been documented in literature and industry experience
reports. Some of the main problems are attributed to heterogeneous understanding of

 Handshaking Between Software Projects and Stakeholders 145

requirements, and substantial differences in domain understanding and interpretation
[2-4]. This is compounded by the fact that multi-site development usually is detrimen-
tal to informal communication between stakeholders, which include product manag-
ers, experts, and developers, as these roles are often separated geographically [2].
Informal communication and face-to-face meetings often help in augmenting imper-
fect specifications by building a common understanding of what is to be done, by
whom, and when, and indirectly passing on domain knowledge and other tacit infor-
mation crucial to the development effort. The ability for developers to seek out and
regularly communicate with domain experts is prohibited by distance: all communica-
tion is associated with administrative and planning overhead, resulting in an raised
threshold for daily validation of specification interpretations [3]. Cultural differences
between sites can also lead to issues as some management styles prohibit developers
from directly eliciting information: communication may be routed through one or a
few central managers, further congesting communication [2].

A common result of these challenges is that defects, delays, and misunderstandings
are caught very late, often during system integration. This dramatically increases the
whole product development effort and is detrimental to time-to-market, which is rec-
ognized as one of the most important factors in market-driven development [5, 6].

In response to the challenges posed by distributed development this paper presents
a technology developed in active collaboration with industry to alleviate some of the
problems and enable explicit handshaking procedures between stakeholders. The
technology, called implementation proposal, enables such handshaking by relating
software design to requirements. It was primarily motivated by challenges identified
at ABB, and relates to a case where large scale development was performed utilizing
sites spread across North America, Europe, and Asia.

Implementation proposals and their proper use enable explicit communication
between stakeholders at the critical phase of requirements interpretation, as well as
mapping the implications of design decisions to the end product. In addition, the
comparison of implementation proposals and requirements demands iteration until a
joint understanding of requirements and domain implications can be reached. A posi-
tive spin-off effect is that requirements deliverers, e.g. product managers, are able to
gauge the impact on system architecture early in the process.

The focus of this paper is on presenting the implementation proposal technology
and the organizational and process implications that follow the utilization of the tech-
nology. The experiences of using implementation proposals are based on a pilot cur-
rently underway in a large scale development effort at ABB.

The paper is structured as follows. Section 2 discusses the background and related
work. In Section 3 the implementation proposal concept and handshaking process is
presented and discussed. Section 4 presents early handshaking results. Section 5 posi-
tions handshaking with related literature. Section 6 concludes the paper.

2 Background

Large scale distributed development demands management of physical distance, time
zones, and the thin spread of domain and technology expertise, which impact re-
quirements communication [2], and management of the overall solution architecture
with multiple levels of product integration.

146 S. Fricker, T. Gorschek, and P. Myllyperkiö

Key principles that are applied to manage these issues include allocation of respon-
sibility for well-separated components of the software solution to various teams,
ownership of such a team for the overall lifecycle of their contribution, a globally
accessible requirements and configuration management infrastructure, and project roles
and practices that enable critical communication to happen among the teams as well as
between the teams and product management, project management, and architects.

The application of these principles leads to an organizational structure that is
aligned either with the structure of the software product and its related domains [7] or
with the overall development process with different roles located at different places.
Fig. 1 illustrates one such an alignment in a stylized and simplified manner that can
be observed in ABB as it relates to the case presented in this paper.

Fig. 1. Alignment of organizational structure with the structure of the software product and its
related domains

In Fig. 1, product management is responsible for a software product’s markets and
application domains and formulates relevant requirements, which are handed over to a
software architecture team. The software architects, responsible for the overall archi-
tecture of the software product, communicate requirements to development teams,
which are responsible for the development of the components assigned to them. Those
components, finally, are integrated to form the software product, which after verifica-
tion and validation gets deployed into the targeted application domains and markets.

There are several ways to handle the division of work and organizational structure
with regards to distributed development [4, 7]. First, the case of hand-off can be seen
in Fig.1, where different process steps are performed at different levels in the organi-
zation. Every such process step results in a deliverable that is handed down, like the
requirements from product management to the architecture team. This implies that the
deliverables have to be transferred across sites. Such a hand-off between sites can
cause many of the issues discussed earlier in terms of heterogeneous understanding,
and impossible compensation for imperfect deliverables due to lacking informal and
day-to-day communication.

 Handshaking Between Software Projects and Stakeholders 147

Second, the case of structural or functional division can be seen in Fig.1, where
different parts of the product itself, i.e. some feature sets, are handled exclusively by
one site. This implies that deliverables do not need to be transferred across sites, but
are created and handed over locally. The main challenge is here to minimize coordi-
nation needs by a clear division of the product with low coupling between the parts
that are distributed over sites. This is hard to achieve in practice.

In the ABB case hand-off challenges were predominant, even if some units on de-
velopment level actually were organized according to product functions. The focus of
this paper is on addressing the challenges to this type of distributed organization.

Looking at work performed previously in relation to the problem at hand, several
investigations have been conducted for identifying the main challenges and recom-
mending solutions [1-3, 5, 6]. Commonly recurring themes are face-to-face meetings
and communication between sites. Solutions include introducing requirements man-
agement platforms for global access to requirements, employing communication tech-
nologies like chat, persistent video- and teleconferencing for enhanced communication,
shared project workspaces, and configuration management systems.

A central issue was not only to address the problems of requirements understand-
ing and communication, but also to find a technology that would enable explicit map-
ping of design decisions to the product requirements. Product management was the
main author of requirements at early stages of the product development project and a
central source of domain knowledge. However, the time available to product man-
agement for communicating requirements and for validating design decisions was
limited. Thus, the communication between product management and the architecture
team had to be explicit and concrete enough to avoid misunderstandings despite hand-
off over sites, and efficient enough to make good use of time spent.

Traditional communication and face-to-face meetings are well established practices
at ABB, as are the utilization of CASE tools over sites. However, the fundamental
limitations of not being a team in one location demanded additional steps to be taken
to ensure that a common understanding had been reached. One important goal was to
increase the efficiency and effectiveness of the limited number of meetings by having
relevant decision support material created beforehand as a part of the practices. This
involved the creation of artefacts that would increase traceability between design
decisions and requirements, the two main constituents of architectural impact.

3 Implementation Proposal Concept and Handshaking Process

It is well accepted that requirements are tightly linked to solution design. This holds
for requirements and design decisions at any level of abstraction. This section elabo-
rates on this relationship for the purposes of requirements communication and nego-
tiation on an appropriate implementation approach by describing the structure and
possible forms of implementation proposals and their relationships to requirements.

The relationship between requirements and solution design is bidirectional. Not
only context and goals affect the design of a software solution, but also the emerging
capabilities of the solution influences what goals can be achieved and how effective
usage of the software shall be structured [8]. The impact of a targeted software solu-
tion on its context is particularly important to consider in situations with limited

148 S. Fricker, T. Gorschek, and P. Myllyperkiö

engineering resources, with limited capabilities of technology, and in projects that are
building on legacy, as these factors pose demands on architecture and design
regarding feasibility. The impact of a software solution is also important to consider,
when errors have been introduced in the design, due to imperfect understanding of
requirements for example, which cannot be corrected with given project resources and
deadlines, resulting in quality deficiencies and cost overruns.

3.1 Implementation Proposals

Implementation proposals support the negotiation between requirements and solution
providers, as shown in Fig. 2. The requirements provider, a stakeholder or customer
that is responsible for a problem domain, contracts a solution provider to realize a
software solution. The solution provider, the supplier or development team, is respon-
sible for creating a software solution that satisfies the requirements.

Fig. 2. Communication between requirements and solution providers through requirements and
implementation proposals

Solely focusing on requirements during negotiations is not enough as requirements
are often misunderstood and the impact of feasible architecture and design is largely
ignored. To mitigate these risks, implementation proposals are introduced. Implemen-
tation proposals describe the targeted solution and its expected impact from the per-
spective of the supplier. As Fig. 2 illustrates, implementation proposals are an answer
to requirements and flow from the solution provider to the requirements provider.

The situation described in Fig. 2 appears often in product development at ABB.
Referring to Fig. 1, the interaction pattern is of relevance between product manage-
ment, the requirements provider, and the software architecture team, the solution
provider, who need to coordinate the development of the overall software product.
The pattern is also of relevance between the software architecture team, which now
becomes the requirements provider, and every development team, the solution pro-
viders, that are responsible for the various software components. Not shown in Fig. 1
are the likely interactions between product management, the requirements provider,
and some of the development teams, the solution providers, for coordinating lower-
level requirements for design of externally visible software components.

Implementation Proposal Structure
A requirement describes a condition or capability needed by a stakeholder to solve a
problem or achieve an objective [9]. To provide such information, typical requirement
attributes, shown in Fig. 3, include a description of relevant context and assumptions

 Handshaking Between Software Projects and Stakeholders 149

(R1), the intention or goal to be achieved (R2), and the rationale behind the require-
ment (R3). Depending on the development process, these basic attributes are com-
plemented with attributes covering the source of the requirement, the urgency and
priority of the requirement, and others (R4+). While a requirement describes a prob-
lem to be solved, it is considered good practice, not to describe any potential solution
for solving the problem, for not to prematurely limiting the solution space.

Fig. 3. Structure of and relationship between requirements and implementation proposals. R1 to
R4+ are requirements attributes. I1 to I6+ are implementation proposal attributes.

To validate the understanding of a requirement and to set the right expectations on
the solution that will be delivered, the supplier answers a requirement with an imple-
mentation proposal. As Fig. 3 illustrates, the implementation proposal needs to de-
scribe at least the design decision that is considered to satisfy the requirement (I1),
and the effects of that design decision in terms of advantages and limitations (I2).
These effects correspond to the inferred architectural impact of the decision on both
the solution and the problem domains.

While the design decision and advantages and limitations attributes of the imple-
mentation proposal may be sufficient to document the results of the negotiation be-
tween stakeholder and supplier, they are often not enough to build a satisfactory level
of trust between the parties that provided information has been correctly understood.
To achieve such trust, two other attributes are introduced: assumptions used by the
supplier for understanding what is meant with the requirement (I3) and a justification
why the design decision is believed to be appropriate (I4).

The disclosure of assumptions for interpreting a requirement (I3) helps the two par-
ties to manage the ambiguity that is inherent in human communication. Such ambigu-
ity needs to be addressed in a particularly careful manner when the communication is
made difficult, for example by physical distance or differing technological and do-
main background.

Justifying the design decision relates the implementation proposal to the broader
context of the overall solution and problem (I4). The justification reveals why the
supplier has chosen the particular design and not another one. It describes the

150 S. Fricker, T. Gorschek, and P. Myllyperkiö

trade-offs that have been made between relevant requirements that possibly stand in
conflict with each other and limitations that were introduced by other design choices,
including considered technologies. It is with this understanding that a customer can
accept a design proposal that without such information may be considered sub-
optimal.

A third type of attributes supports the management of the negotiation between re-
quirements and solution providers. In early stages of requirements elaboration and
solution design, a lot of information necessary for deciding on an adequate design is
lacking. To highlight such information needs, the solution provider describes the
issues that need to be resolved to enable creating or improving the contents of the
implementation proposal (I5). Such issues become a list of actions for the stakeholder
who owns the requirement related to the implementation proposal. It is then through
providing adequate context and rationale information that the stakeholder steers the
evolution of the design. The negotiation on requirements and implementation propos-
als is considered to be concluded when all issues are resolved.

The last group of implementation proposal attributes covers information like esti-
mation of implementation effort, implementation status, and other attributes that are
specific to the chosen development process (I6+).

Relations Between Implementation Proposals and Requirements
An implementation proposal describes how a given requirement is intended to be
realized by a software solution. In some situations the design decision is not sufficient
to conclusively address the requirement, in which case the relationship is said to posi-
tively contribute to realizing the requirement. These two relationships are indicated by
the keywords realize and positively contribute to in Fig. 3.

Requirements and implementation proposals do not always stand in a one-to-one
relationship, even-though many of them do so at the conclusion of the implementa-
tion. When requirements are handed over from the requirements provider to the solu-
tion provider, the initial set of requirements is without references to implementation
proposals. Only as the solution provider’s understanding of an appropriate implemen-
tation approach matures, implementation proposals are created.

At many stages of the design process, the requirements available to the solution
provider turn out to be insufficient to make sound architectural decisions. In such
situations it is not the requirement that comes first. Rather, an implementation pro-
posal is used to elicit appropriate requirements. In this case the assumptions, justifica-
tion, and issues attributes of the implementation proposal are of major importance to
guide the stakeholders in providing the right kind of information and decision making.

An implementation proposal may positively contribute to multiple requirements.
Such a constellation may express the advantages of a design decision [10]. However,
it may also indicate a need for improving the implementation proposal: the implemen-
tation proposal not only defines what is intended to be implemented, but also how that
design decision relates to the requirement (implementation proposal attributes I3 and
I4). To improve the implementation proposal, the facets of the design decision spe-
cific to the individual requirements need to be highlighted. Then again, the situation
may also indicate a need for improving the requirements: they may be overlapping or
address similar concerns more effectively expressed by a single requirement.

 Handshaking Between Software Projects and Stakeholders 151

Further improvement needs for requirements and implementation proposals may
also be indicated by situations with one requirement affected by several implementa-
tion proposals.

- A requirement may be too abstract and needs to be refined into more detailed
requirements, which are addressed by the individual implementation proposals.

- A requirement may not be sufficiently atomic and needs to be decomposed into
its aggregated parts that are addressed by the individual implementation propos-
als.

- There may be a number of design options to satisfy a requirement. Every option
is proposed as an implementation proposal and it is up to the requirements pro-
vider to select, which of the options shall be chosen, if not all.

These constellations of how implementation proposals relate to requirements can
pinpoint various kinds of potential defects. Still, they are not a call for driving unnec-
essary formality. Rather, the discussed constellations are useful to support the hand-
shaking parties in enhancing their communication by triggering actions such as
improving information. The consideration of these constellations complements the
use of the implementation proposal attribute ‘issues to be resolved’ (I5).

The interaction between the two parties, the requirements provider and the solution
provider, supports the continuous improvement of the quality of both, requirements
and implementation proposals. The responsibility for contributing one’s part to project
success leads to a continuous mutual pull for increased quality of information. While
such a pull may be observed in a majority of projects, implementation proposals make
the status of information and the need for information improvement explicit, thus man-
ageable. Also, a learning effect can originate from such collaboration: learning how to
write requirements and implementation proposals that are understandable and useful
for the other party. Such quality improvement and learning has been observed, for
example, when testers have been involved in reviewing specifications [11].

Forms of Implementation Proposals
The description of design decisions may take different forms and levels of detail,
depending on whether high-level architecture or detailed design is captured, depend-
ing on how understanding or feasibility risks need to be addressed, and depending on
the CASE tool infrastructure in the software company.

Implementation proposals may be formulated with tools that are used for require-
ments management. The attributes suggested for describing implementation proposals
are outlined in Fig. 3. The writing style should be short and concise so that the formu-
lation of the implementation proposals does not take unnecessary time.

While a majority of implementation proposals are simple to convey, a few require
considerable elaboration. In this situation, documents are written whose structure
corresponds to the implementation proposals attributes. These documents are then
attached to the entries in the requirements management database.

Companies that adopted a model-driven development approach [12] may want to
formulate implementation proposals as part of their software model in a semi-formal
graphical language like UML [13]. The company may choose not only to document
the design decisions in such a language, but also complete implementation proposals.
This works well if the requirements are documented as part of the model.

152 S. Fricker, T. Gorschek, and P. Myllyperkiö

While a text-based or semi-formal documentation approach is useful for some
classes of requirements, others are easier to answer with prototypes. Usability re-
quirements, for example, may lead to implementation proposals that capture the de-
sign decision in form of a graphical user interface prototype or mock-up.

The goal of implementation proposals is not to prescribe form, but to support the
interaction and negotiation between requirements and solution providers. Decisions
about formality and methodology should be taken by the involved parties by consider-
ing situational contingencies to maximize efficiency and yield of communication.

3.2 Handshaking Process

To achieve an understanding between a requirements and a solution provider and to
agree on requirements and the intended solution, the two parties follow a handshaking
process that spans three phases as illustrated in Fig. 4.

Fig. 4. Overlapping handshaking activities: requirements communication, solution synthesis
and design, and negotiation using implementation proposals. The three phases A, B, and C
represent time spans with different focus with respect to handshaking activities.

Phase A connects the handshaking process with the requirements management
processes performed by the requirements provider [14] and the problem domain un-
derstanding that the requirements provider has already established prior to the hand-
shaking process. Initial requirements and information about the problem domain are
communicated to the solution provider. This set of requirements represents the start-
ing point for the work of the solution provider. It typically does not satisfy desired
qualities of requirements specifications like unambiguity and completeness [15, 16].

During Phase B, the requirements receiver synthesizes the received problem do-
main data and technology knowledge to identify implementation approaches that
would satisfy the requirements. The process of such synthesis is highly complex and
closely related to the experience of the designing people [17].

Phase C aims at achieving an agreement on the intended realization of the solution.
It is the central phase, where implementation proposals are used to validate the solu-
tion provider’s understanding of requirements, to improve the requirements, and to
validate the adequacy of the intended solution. The goals of the negotiation activities
shift over time. The later the negotiation activities are, the less likely they are to mod-
ify the design, but to correct the understanding of achievable product capabilities and
their impact.

 Handshaking Between Software Projects and Stakeholders 153

Data Flow
Fig. 5 illustrates how the requirements and the solution providers interact with each
other by describing the dataflow between their activities and information repositories.
The requirements communication and solution design processes from Fig. 4 are
shown in Fig. 5 without modification. The negotiation process covers all four activi-
ties in Fig. 5, requirements communication, solution design, and implementation
proposal formulation and review, all of which are performed iteratively. The hand-
shaking process assumes that the two parties share requirements and implementation
proposal data.

Fig. 5. Dataflow between handshaking activities and information repositories

The requirements provider communicates requirements, which are used for solu-
tion design by the solution provider. During negotiation, the solution provider formu-
lates implementation proposals that are based on that design, which are then reviewed
by the requirements provider. Reviews of implementation proposals focus on whether
the intended solution makes sense with regard to the requirements provider’s interpre-
tation of requirements. Review comments then lead to requirement improvements by
the requirements provider and to subsequent changes to solution design and imple-
mentation proposals by the solution provider.

Some of the design decisions that need to be taken by the solution provider are not
foreseeable by the requirements provider. As a consequence, insufficient information
for guiding these design decisions is provided during requirements communication.
Here, the solution provider elicits relevant information by submitting implementation
proposals for review that are not connected to requirements initially, but which are
complemented with requirements as a result of the implementation proposal reviews.
In this case the implementation proposals drive the elicitation of requirements.

Success Criteria
Commonly used criteria for evaluating the quality of requirements specifications in a
traditional unidirectional requirements communication context include completeness,
ambiguity, correctness, and consistency among others [18]. The success of handshak-
ing using implementation proposals can be evaluated with the same criteria, but

154 S. Fricker, T. Gorschek, and P. Myllyperkiö

requires a new interpretation of these criteria. For example, some of these qualities are
achieved as an inherent capability of the handshaking process, while others can be
evaluated more comprehensively because additional information is available.

Completeness is not only evaluated by considering completeness of the require-
ments with respect to goals and coverage of the problem domain, but also by asking:

- Are the implementation proposals covering all requirements?
- Are the implementation proposals sufficiently covering the intended solution?
- Are the requirements covering all implementation proposals?

The management of requirements ambiguity is a fundamental capability of the
handshaking process. A requirement can be considered understood by the require-
ments receiver, when it is covered by at least one accepted implementation proposal.

Correctness of requirements in the sense of correctly describing the desires and
needs of stakeholders and of correctly describing the properties of the problem domain
is not affected by the handshaking process and needs to be ensured by traditional re-
quirements engineering techniques. Feasibility of requirements and correctness of
architecture and design, however, is guaranteed to a large extent when requirements
and implementation proposals match. Nevertheless, such correctness holds only to the
degree as the belief is correct that the intended solution actually yields the capabilities
and impact that are described by the implementation proposals [17].

Consistency of requirements is evaluated in the handshaking process by the solu-
tion design activities. Handshaking also introduces additional consistency needs:

- Are the implementation proposals consistent among themselves?
- Are the implementation proposals consistent with the intended solution?
- Are the implementation proposals consistent with the requirements?

Evaluation of the latter, consistency between requirements and implementation
proposals, is an essential part of the review activities performed by the requirements
provider during negotiation. Achieving the former two consistency needs depends on
the practices of the solution provider.

Successful requirements engineering does not only depend on the quality of infor-
mation that is produced, but also on stakeholder satisfaction and commitment.
Implementation proposals must help to set appropriate expectations on the targeted
solution, inform about required changes in the problem domain, and ensure that the
problem domain changes are feasible and fit within the strategic orientation of the
requirements provider, thus making it possible to defend the chosen solution [19].

While much of these requirements engineering services is not explicitly captured in
the implementation proposal structure and handshaking process, relevant knowledge
and understanding emerges out of the focussed interaction between the requirements
and solution providers. Understanding is attained and expectations are set not only by
discussing requirements, but also by examining the intended solution and how it ad-
dresses the requirements. The reviews of implementation proposals, performed by the
requirements provider as part of the negotiation phase, ensure that required changes in
the problem domain are known, feasible, and aligned with strategy.

 Handshaking Between Software Projects and Stakeholders 155

4 Preliminary Experiences

The handshaking process using implementation proposals has come out of an indus-
trial need to manage the handover of requirements to a distant project team. This
section describes some preliminary experiences with handshaking and what its poten-
tial advantages and limitations are. While scientific validation of the implementation
proposal concept and handshaking process is part of ongoing research, this section
illustrates how the approach is used in a broader context.

The handshaking process was established in a globally distributed project that in-
volved about 50 engineers and that was structured according to Fig. 1. The project
was organized according to a toll-gate model [20]. Important toll-gates included the
following ones [21] and mapped to the handshaking phases (Fig. 4) as follows:

- Agree to start project: start of Phase A
- Agree on requirements and project plan: end of Phase B
- Agree on release: end of Phase C1

The toll-gate agree on requirements and project plan is interesting to study for un-
derstanding the use of handshaking in a complex product development scenario. This
toll-gate assumes that high-level architecture is defined and satisfies important
requirements. Thus, the interface between product management and the product archi-
tecture team has reached the end of Phase B. The interface between the product archi-
tecture team and the individual development teams, however, may not have progressed
so far yet, which yields similarities with concurrent engineering [22].

The timing of the toll-gates was fixed for the project. This implied a time-box-
oriented approach to achieving the goals of the project phases. For example, require-
ments were not perfect at the toll-gate agree on requirements and project plan, but the
best-possible quality within given time and resources.

Product-level handshaking was achieved with implementation proposals integrated
into a requirements management infrastructure. Both requirements and implementa-
tion proposals were captured in tabular form. Upon need, an explicating document
was created and attached to the implementation proposal.

Handshaking between product management and components with product-external
interfaces was mostly performed using prototypes. Prototype validation leads to com-
plemented requirements and subsequent modification of component design.

Handshaking between product architecture and components was not considered in
this preliminary experience. The results that were achieved with product-level hand-
shaking encouraged the architects to pilot the concept, however.

Negotiation activities typically were performed in meetings. These meetings were
used for discussing requirements and implementation proposals and for making deci-
sions. Pure text-based communication was less frequent. Text was used to document
the information gathered and decisions taken during the negotiation meetings in the
requirements management database. Thus, work with implementation proposal is not
a continuous process as Fig. 4 might suggest, but peaked where meetings took place.

1 At the time of writing, the project had passed tollgate agree on requirements and project plan.

Phases A and B were observed and phase C planned.

156 S. Fricker, T. Gorschek, and P. Myllyperkiö

Comparing the early experiences of using implementation proposals with the for-
mer requirements hand-over approach, the product manager elaborated:

- Agreement on requirements with the architects was usually not a problem. How-
ever, there were usually problems in understanding the impact of the require-
ments on the architecture, which led to unacceptable software architectures. It is
important to establish trust between product management and software develop-
ment. Implementation proposals help to see how requirements are realized before
an inadequate solution is chosen, which is difficult to change.

- Handshaking work is more structured. The implementation proposals are usually
discussed in meetings and are then used as a means to make decisions and as a
form of documenting these decisions.

- Implementation proposals are most useful in areas where risk is high.

Software architects mentioned:

- Requirements are often too fragmentary to build sound software architecture.
Implementation proposals help us to highlight important design decisions, where
input is needed from the product manager. Only when requirements and imple-
mentation proposals are completed, the toll-gate ‘agree on requirements and pro-
ject plan’ should be passed.

- The software architecture is dependent on inputs from many product managers.
Design decisions are not only influenced by one product manager, but need to ac-
count for the needs of others and for the architecture of the surrounding system.2

- It is important to allow implementation proposals be described in different forms
such as entries in the requirements management software, as architectural docu-
ments, and as prototypes.

The project changed from uni-directional communication of requirements to hand-
shaking with implementation proposals, which led to early discovery of problems,
which would have been discovered only at solution validation late in the development
process. Based on this experience, project members estimated a return on investment
between ten and fifty times the cost of the process change due to risk reduction.

Clearly, the preliminary experiences confirm the industrial need for improved
handshaking procedures. Implementation proposal-based handshaking fits well into
practical industrial distributed development and has lead to encouraging results. Still,
while managing ambiguity to improve the level of trust and managing the handshak-
ing process are perceived important and are lived by the practitioners, they are not
perceived as the silver bullet. In particular it needs to be studied how multiple stake-
holders can be addressed and what activities should accompany the use of implemen-
tation proposals to further support increase the appropriateness of a software solution.

5 Related Work

The challenge of correctly understanding requirements has already been addressed by
iterative development processes [23]. Such a process aims at reducing the risk of
costly rework by shortening the development cycle and allowing validation of partial

2 Note that such a scenario has not been discussed in this paper.

 Handshaking Between Software Projects and Stakeholders 157

work results. In principle, such a process implements a feedback paradigm [24],
where the customer is the goal-defining element and the project team the goal-
implementing element whose outputs need to be controlled.

Handshaking using implementation proposals builds on a similar feedback mecha-
nism. Handshaking, however, poses fewer requirements on the engineering results for
validation and is more focussed on the interface between customer and supplier.

In addition to partially implemented solutions that result from a full iteration, hand-
shaking accepts early work results such as design decisions, models, and prototypes
that result from solution analysis and design activities. This allows detecting errors
earlier and makes such detection independent of the development process, hence also
supporting sequential software development scenarios.

The information that is fed back during handshaking is a special form of design ra-
tionale [25]. In contrast to other design rationale approaches, handshaking aims at
ensuring that the solution provider’s intended results corresponds to the expectations
of the requirements provider, while establishing an atmosphere of trust. The design
rationale information consists here of requirements, design decisions and implementa-
tion proposals, which carry the necessary information to relate design decisions to
requirements. The notation for capturing the design rationale is intentionally left open
for adapting to domain-specific practices and development context.

6 Conclusions and Future Work

Implementation proposals contribute to a better understanding of requirements. Fo-
cussing on the interface between a stakeholder like a product manager and a devel-
opment team, the explicit description of design decisions and their impact on
requirements helps the stakeholder to understand and adjust what the development
team will build.

While not using explicitly documented implementation proposals may be sufficient
for projects with collocated development teams and stakeholders, written information
exchange must be enhanced in a distributed setting to build trust, and manage the
ongoing negotiations. Implementation proposals help achieve these goals by relating
requirements to design decisions, uncovering assumptions in the interpretation of
requirements, justifying design decisions, and highlighting issues to be resolved.

The use of implementation proposals, in addition to the obvious, also has positive
spin-off effects which can result in improved quality and catching of defects earlier in
the development process. Creating improved decision support material early in the
project process can vastly improve the accuracy of estimation and risk analysis. These
are especially important in market-driven development as time to market is crucial.

The cost of creating implementation proposals may be seen as a drawback, al-
though it should be realized that the artefacts themselves, both better requirements
and the design decisions captured by the implementation proposals, can be reused as
decision support material, design material, and bases for system test activities, effec-
tively spreading the cost over several development phases. In addition, as experience
in using implementation proposals increases, the maturity of the distributed product
development environment grows. This makes it possible to create less formal artefacts
as domain and technical understanding becomes more homogenous across the teams.

158 S. Fricker, T. Gorschek, and P. Myllyperkiö

The learning effect resulting from using implementation proposals not only spreads
domain and technical knowledge, but also supports product management in detecting
defects in requirements. Ultimately, better requirements can be written from the start.

Future research will focus on empirically validating the implementation proposal
concept for requirements handshaking in distributed software development contexts.
The yield and usability factors of the implementation proposal concept shall be inves-
tigated and compared it with traditional approaches for requirements communication.
Also, the implementation proposal concept will benefit from further development by
studying how requirements and solution design interact over multiple levels of ab-
straction and by considering more than a single requirements provider.

References

1. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global Soft-
ware Development. IEEE Software 18, 70–77 (2001)

2. Damian, D., Zowghi, D.: RE Challenges in Multi-Site Software Development Organisations.
Requirements Engineering 8, 149–160 (2003)

3. Herbsleb, J.D., Paulish, D., Bass, M.: Global Software Development at Siemens: Experience
from Nine Projects. 27th International Conference on Software Engineering. ACM, St. Louis
MO (2005)

4. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Globally Dis-
tributed Software Development. IEEE Transactions on Software Engineering 29, 481–494
(2003)

5. Dahlstedt, A., Karlsson, L., Persson, A., NattochDag, J., Regnell, B.: Market-Driven Require-
ments Engineering Processes for Software Products – a Report on Current Practices. Interna-
tional Workshop on COTS and Product Software RECOTS, Los Alamitos, CA (2003)

6. Regnell, B., Beremark, P., Eklundh, O.: A Market-Driven Requirements Engineering Process -
Results from an Industrial Process Improvement Program. Requirements Engineering 3, 121–
129 (1998)

7. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law and
Beyond. IEEE Software 16, 63–71 (1999)

8. Jackson, M.J.: Software Requirements & Specifications: a Lexicon of Practice, Principles, and
Prejudices. Addison-Wesley Pub. Co., New York Wokingham, England, Reading, Massachu-
setts (1995)

9. IEEE Computer Society. Standards Coordinating Committee.: IEEE Standard Computer Dic-
tionary: a Compilation of IEEE Standard Computer Glossaries, 610. New York, USA (1990)

10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software En-
gineering. Kluwer Academic, Boston, MA (2000)

11. Gorschek, T., Dzamashvili-Fogelström, N.: Test-case Driven Inspection of Pre-project Re-
quirements - Process Proposal and Industry Experience Report. Requirements Engineering De-
cision Support Workshop, Paris (2005)

12. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineering, Man-
agement. John Wiley, Chichester, England, Hoboken, NJ (2006)

13. Object Management Group, Unified Modeling Language (UML), Version 2.0 (2005)
14. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineering Jour-

nal 11, 79–101 (2006)
15. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std 830-1998

 Handshaking Between Software Projects and Stakeholders 159

16. Fricker, S., Glinz, M., Kolb, P.: Case Study on Overcoming the Requirements Tar Pit. Journal
of Universal Knowledge Management 1, 85–98 (2006)

17. Kruchten, P.: Casting Software Design in the Function-Behavior-Structure Framework. IEEE
Software 22, 52–58 (2005)

18. IEEE: Recommended Practice for Software Requirements Specifications (Standard 830-1984)
IEEE Press, New York, (1984)

19. El Emam, K., Madhavji, N.H.: Measuring the Success of Requirements Engineering Processes.
IEEE Computer Society Press, Los Alamitos (1995)

20. Cooper, R.G.: Winning at New Products: Accelerating the Process from Idea to Launch.
Perseus Pub, Cambridge, Massachusetts (2001)

21. Wallin, C., Ekdahl, F., Larsson, S.: Integrating Business and Software Development Models.
IEEE Software 19, 28–33 (2002)

22. Davis, A., Sitaram, P.: A Concurrent Process Model of Software Development. ACM
SIGSOFT Software Engineering Notes 19(2), 38–51 (1994)

23. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York
(2004)

24. Klir, G.: Facets of Systems Science. Springer, Heidelberg (2006)
25. Moran, T., Carroll, J.: Design Rationale: Concepts, Techniques, and Use. Lawrence Erlbaum

Associates (1996)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 160–174, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generating Fast Feedback in Requirements Elicitation

Kurt Schneider

FG Software Engineering, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany

Kurt.Schneider@Inf.Uni-Hannover.de

Abstract. Getting feedback fast is essential during early requirements activities.
Requirements analysts need to capture interpret and validate raw requirements
and information. In larger projects, a series of interviews and workshops is
conducted. Stakeholder feedback for validation purposes is often collected in a
second series of interviews, which may take weeks to complete. However, this
may (1) delay the entire project, (2) cause stakeholders to lose interest and
commitment, and (3) result in outdated, invalid requirements. Based on our “By
Product-Approach”, we developed the “Fast Feedback” technique to collect
additional information during initial interviews. User interface mock-ups are
sketched and animated during the first interview and animated using the use
case steps as guidance. This shortcut saves one or two interview cycles. A large
administrative software project was the trigger for this work.

Keywords: Requirements elicitation, requirements validation, feedback, inter-
view technique, by-product approach, support tool.

1 Introduction: Slow Feedback in Requirements Elicitation

Stakeholder involvement is crucial during requirements elicitation [1, 2]. In software
projects that affect numerous individuals and groups of stakeholders, conducting a
satisfactory number of interviews for elicitation and validation may take very long.
The software engineering group at the Leibniz Universität Hannover was involved in
the analysis phase of a large software project for our university’s internal processes.
Since those processes affect students, administrators, and faculty of all university
departments, there are thousands of affected stakeholders. Different department
traditions result in many roles and interest groups – from Computer Science students
to Biology professors or the university Chief Information Officer (CIO). The CIO
asked our group to analyze the current situation of a number of key processes, and
also to collect requirements for a future improved version of a support system. I will
call the project uniPro in the context of this paper.

During the five months of that phase, different activities were carried out; the
requirement analysis led to interviews and meetings. There were long periods during
which requirements elicitation made no progress. Analysts could not get appointments
with many of the busy stakeholders we needed for elicitation and validation.

This situation is far from unique. In many software projects a large number of busy
stakeholders cannot be reached on short notice. This situation occurs in industry,
banks, and in the public sector. Usually, it leads to significant project delays. Project

 Generating Fast Feedback in Requirements Elicitation 161

leaders tend to get impatient and declare requirements analysis finished in a
premature state – simply because it takes so long. We consider this phenomenon a
serious and recurring pattern that deserves research attention.

We wanted to find a way to speed up the elicitation and validation phase –
including the idle times between appointments with busy stakeholders. For that
purpose, we built an information flow model using our FLOW modelling approach
[3, 4, 5]. Based on earlier work, the “By-Product Approach” [6] was proposed to
assist in a similar situation (soliciting information from prototype developers [6, 7]).
Since we wanted to affect information flows in a similar way, we applied the “By-
Product Approach” again: We developed an elicitation technique that allows instant
validation of certain elicited aspects. Fig. 1 shows how we identified the problem
using information flow analysis in uniPro. A desired future situation was also model-
led using information flows. We decided to develop a technique that instantiates the
“By-Product Approach” in order to reach that goal. We call it “Fast Feedback in RE”.

«approach»
By-Product
Approach

«method»
Information

Flow
Analysis

«technique»
Fast Feedback in RE

«information flow model»
uniPro

«information flow model»
using the techniques

Fig. 1. Instantiating the Fast Feedback technique to improve information flows (this diagram
contains type information but is not a UML model)

In this paper, we report on the Fast Feedback technique. At the same time, we
describe the process of designing that technique, as we want to encourage others to
invent and support their own, tailor-made requirements support techniques. Using
information flow analysis and the By-Product Approach can help.

In section 2, we briefly introduce information flow analysis and show how it was
applied to our problem. Section 3 presents the By-Product approach which we adopted
and tailored to solving the problem. The resulting technique is sketched in section 4. In
section 5, we discuss how it affects projects like ours and discuss implications.

2 Analyzing Information Flow

We use information flow analysis for a number of purposes, from tailoring reviews to
individual projects [8] to organizational development [9]. I explain the basics of what
we mean by “information flow analysis” and why we applied it to uniPro.

2.1 The Role of Information Flow in Software Projects

Software development has traditionally been described in terms of process models
[10]. Requirements engineering has also been modelled as process [11]. However, in

162 K. Schneider

order to understand the uniPro problem better, typical process models are too coarse.
They tend to emphasize activities and documents, while roles and oral communication
are neglected (like in the V-model www.v-model.iabg.de). However, requirements
engineering is a part of a software project. A huge amount of information is generated
and transferred through oral communication as well as through written documentat-
ion. Interviews and workshops, informal emails and personal notes during a meeting
may not appear in the process models – but they shape requirements analysis in the
real world. Effective stakeholder involvement is a key to project success [1, 2, 12].

Software projects call for written specifications. That is reasonable, and it would be
a bad idea to rely on informal or oral information flows alone. However, the advent of
agile approaches [13, 14] has pointed to the problem of over-specification, with
useless documents of several thousand pages. They delay information flows in
projects and endanger project success [15]. Light-weight practices have increased the
awareness for the agile option, even in conventional project environments: It is
sometimes advantageous to accept oral communication as an equal carrier of
requirement information flow for a specific purpose, e.g. from on-site customer to
developers, or during pair programming – or between high-level management and
project leaders in a conventional project meeting.

In our FLOW research project, we consider both communication and document-
tation essential ingredients. We want to optimize the necessary information flows in
software projects. Both documentation and communication have strengths and
weaknesses, none should be dogmatically ignored. It is in a project’s best interest to
use the best of both worlds [15]. Most software projects realize they need both:
reliable documentation for reference and long-term use; and fast and flexible
information flow through well-organized communication. However, it is essential to
coordinate both aspects, and to facilitate the transformation from one to the other.
Many consider oral communication “soft”, unreliable, and even sometimes
“unscientific”. We do not. We try to support “soft” situations with very concrete
techniques and tools.

2.2 Basic Concepts of the FLOW Modelling Technique

A modelling technique was developed in our FLOW research project at Leibniz
Universität Hannover. Since FLOW is not the main focus of this contribution, only its
core aspects will be briefly mentioned. Observations in industrial projects (like [16,
17, 18]) shaped our view of information flows. We derived a number of resulting
convictions and concepts. They are the basis of our information flow analysis.
Information flow analysis is a research topic in flux [8, 19].

Assumptions and convictions
• We are convinced of the value of combining communication and documentation.
• Oral communication and short-term storage of information in people (brains) must

be taken more seriously. It occurs in all projects, and for some purposes it works.
Writing and reading documents cannot fully replace communication.

• We introduced the notions of “solid” and “fluid information” to allude to different-
ces in a metaphorical way. Aggregate states of information share similarities with
aggregate states of matter.

 Generating Fast Feedback in Requirements Elicitation 163

The metaphor of Aggregate States of Information

Solid information refers to written or taped or other forms of readily repro-
ducible information. It can be copied and distributed independently of indi-
viduals.
Fluid information is stored in the brains of people, on handwritten sketchpads or
in personal email. Usually, it comes in smaller units and changes its shape all
the time. Only the owner can access and interpret it effectively.

Fluid information flows faster and more painless than solid information. How-
ever, there is a limited capacity for fluid information in a brain; it may be spilled
or overflow. Information leaks correspond to forgetting pieces of information.
Solid information is less flexible and harder to carry. It takes more effort to
bring it into a desired shape. However, it is easier to store over extended periods
of time. When someone wants to absorb solid information it needs to be
“melted” first (to become fluid).

The aggregate state metaphor of information conveys the idea. It should not be
overstretched.

• Experience is a special kind of information flowing in a software organization. It
often acts as catalyst: It enables a more efficient and more effective use of require-
ments or other information [3]. There is a whole body of literature on the role of
experience in software projects [20, 21, 22]. However, this aspect is beyond the
scope of this paper.

• Tools to feed back experiences to a task at hand were conceptualized by Fischer in
his Domain-Oriented Design Environments [23].

• A simple notation for information flows is a core prerequisite for reasoning about
information flows. A graphical notation is useful for discussing information flows.

We came up with a somewhat clumsy graphical notation first [24]. We boiled it down to
a core of very easy elements [8]. When we use them in companies, many people are not
even aware they “use a notation” at all. This contributes to the purpose of developing a
common understanding on their information flows. Table 1 shows the basic symbols.

Table 1. Core elements of information flow models. Often used to extend process models.

Aggregate
state

Storage Information
flow

Activity/abstraction

Solid

<Name< ><Name< >

(optional)
<kind of information>

(optional)

Fluid

< ><Name< ><Name

(optional)
<kind of information>

(optional)

(e.g. Interview)(e.g. Interview)

<activity name>

Activity with incoming and
outgoing flows (solid and fluid)

164 K. Schneider

For the purpose of this paper, the “activity” or “abstraction” symbol is rather
important. It serves three purposes:

(1) Information flows often follow processes - at least for a while. Therefore, we
often attach information flow models to portions of existing process models.
Documents and activities are common elements and synchronize both
models.

(2) At the same time, activities are treated as black boxes with an “interface” of
incoming and outgoing flows. The box can be refined to show more detailed
flows. This mechanism allows us to structure information flows
hierarchically, which is important for scaling larger models.

(3) When an activity box is introduced for a technique or activity that does not
yet exist, its flow interface specifies the activity. Techniques can be
developed to match that specification and interface, as shown in section 4.

2.3 Typical Information Flows During Requirement Analysis

Fig. 2 is an authentic initial sketch of the information flow causing delays in the
uniPro project. It is presented as a less-than-perfect sketch. It illustrates how flow
models are supposed to be used in practice: drawn by hand, not precisely following
the notation. This is an appropriate style of information flow modelling, since it
serves human discussions and understanding. The model in Fig. 2 was used to discuss
what happened in uniPro and what we considered the problem. The timeline on the
bottom was added a little later when the problem was understood better.

Time
1-2 hours hours or a few days ~ 1 hour 30 minidle (weeks) days+idle (weeks)

Fig. 2. Sketch of the initial uniPro situation during requirements analysis

Fig. 2 starts at the left showing an interview situation between a customer (“Kd”
for “Kunde” in German) and an analyst (A). They mainly talk to each other, while A
takes some handwritten notes (fluid). The dashed double arrow indicates fluid
exchange of information. The box around this interview mixes two abstraction levels
on the same diagram, (1) the interview activity box and (2) its details. They conform
to the same (outgoing) flows. In the modeled situation, use cases are written as a solid

 Generating Fast Feedback in Requirements Elicitation 165

piece of information (documents). Person A may have sketched use cases during the
interview, but rearranging steps and extensions will often leave notes unreadable for
others. They need to be cleaned up before they constitute “solid documents”
according to the above-mentioned definition of aggregate states.

In the next step, a separate role merges the use cases that refer to different tasks of
the same stakeholder and suggest a first draft of the user interface (UI). Each stake-
holder might see a different interface, and each interface will usually consist of a
number of screens. At this point in time, pencil-and-paper mock-ups are used.
According to usability engineering practices [25] the sketchy look of pencil-and-paper
prototypes is important. It reminds stakeholders to draw their attention to the pure
presence and rough position of interface elements – rather than their colors and sizes
and button shapes. Those details are not relevant yet.

In a second series of interviews, customers (Kd) are confronted with the user
interface developer, who receives fluid feedback on both the user interface and the use
cases corresponding to them. The model gets really sketchy and short at this point, but
it portrays reality: the UI modeler does not care to update any use case documents, but
rather starts to build a first electronic “demonstration” prototype (GUI-PT) based on
the feedback of all stakeholders. They can try it during a third interview, and so on.

The added timelines shows: Interviews took only one or two hours each;
preparation and analysis of interviews, as well as drawing prototypes took from some
hours to a few days. But a follow-up interview could not be scheduled within
reasonable time; in many cases, it never took place – with obvious detrimental
consequences for requirements validation.

Please note that diagram Fig. 2 does not describe a plan or an ideal process or flow:
it rather shows the actual flows that we reconstructed after we got stuck.

3 Applying the “By-product Approach”

In earlier work, we had captured design rationale [7]. Much like in the interview
situations above, there were only a few available time slots to extract knowledge and
experience from the experts. The By-Product Approach emerged from the desire to
use those time slots more effectively. The approach is motivated and described in
detail in [6].

3.1 The By-product Approach

The approach can be directly applied to the requirements analysis situation. It empha-
sizes a clear commitment to shifting effort away from the bearer of information (ratio-
nale or requirements). This is essential to making elicitation work [26]. The name
“By-Product Approach” comes from the attitude of adding extra value as a by-product
of doing something that needs to be done anyway. However, there is no magic: One
can add extra value only due to computer support built before. Developing that
program ahead of time is the investment that pays back during the interviews.

166 K. Schneider

Definition of the By-product Approach. The following definition was given in [27].
Only a few adaptations needed to be made to apply it to Fast Feedback: Underlined
terms and [remarks in brackets] are specific instantiations of more generic terms
used in [27]:

“The term approach refers to a set of guiding principles for someone to follow in
order to achieve a certain goal. The style of describing an ‘approach’ by a list of
interconnected principles was successfully used by Beck in his widely-known
description of eXtreme Programming [13].

The By-Product Approach is defined by two goals and seven principles:

Goals

• Capture requirements in analysis interviews within software projects.
• Be as little intrusive as possible to the person interviewed.

Principles

1. Focus on a project task in which requirements are surfacing (interviews)
2. Capture additional information during that task (not as a separate activity)
3. Put as little extra burden as possible on the person interviewed (but maybe

on other people like the analysts)
4. Focus on recording during the interviews, defer indexing, structuring etc. to

a follow-up activity carried out by others
5. Use a computer for recording and for capturing additional task-specific

information for structuring purposes
6. Analyze recordings, search for patterns and add value. Let the program

support you.
7. [omitted, not applicable]”

The principles call for a computer program to record extra information.

3.2 Application to Fast Feedback Interviews: The Vision

In the Fast Feedback technique, we use the By-Product principles in order to cover
both Use Cases and User Interface issues in one single interview. While only use case
information was collected in the initial scenario, we ask for user interface infor-
mation, too (“additional information”, principle 2). Here is the vision, with a preview
of the tool (Fig. 3) that we later derived from that vision:

Both kinds of information are recorded on a low-invasive computer (principles 3
and 5), an A4 tablet-PC with detached keyboard, as in Fig. 3. The screen shows a use
case template (left) and a mock-up (right) that can be connected. At first glance, the
flat tablet-PC behaves similar to a sheet of paper. However, it also interprets the use
case steps (“structuring information”, principle 5) to generate an animation of the
pencil-prototypes (exploiting structure, principle 6). Stakeholders can even “interact”
with the animation and pretend to enter data.

 Generating Fast Feedback in Requirements Elicitation 167

Fig. 3. Tablet-PC showing a use case and mock-up on a split screen, with optional keyboard

Extending the agenda of an interview by user interface issues extends interview
durations (1.5 to 2.5 hours). However, it covers (1) use case elicitation, (2) UI basic
decisions, and (3) partial validation (“as a by-product”). Adding a few minutes to an
interview is much easier than scheduling another interview. Fig. 4 shows the new
situation as an information flow abstraction.

Customer
AnalystAnalyst

Use Cases
UI Info

Improved
First Interview

using

Fast Feedback
Technique

feedback

Time
Approx. 1,5-2,5 hours

Use cases
UI sketches

animation

record of use

Saving weeks of calendar time

Compared
to initial
uniPro
interviews
(Fig. 2)

Information flow model of desired situation

Fig. 4. Specification of the new interview technique as a flow activity

The box specifies a set of flows and pieces of information we want the technique to
produce. The left part of Fig. 4 is the information flow model of the desired interview
technique. Note that the customer provides input to the technique, and receives some
feedback. At this level, we do not know how the technique will work in detail.
Constructing a technique that provides that flow interface is the next step. We
arranged flows as in Fig. 5 to match the interface.

168 K. Schneider

The gray rectangle marks that parts that belong to the Fast Feedback technique.
The flow interface surrounds this technique. There are many flows from and to the
customer, which were summarized as a single, two-directional flow in Fig. 4. In terms
of dataflow diagrams, one could call this split a “parallel decomposition” of flows
[28]. Please note that we did not exactly match the customer flows: in Fig. 4, the
customer expected to receive fluid information during the interview; in fact, all
elements he or she gets in the Fast Feedback technique are solid. This deviation was
considered acceptable, or even an improvement in interviews.

connect &
generate

Animation

Customer

Use Cases
UI Info

Animation

Analyst

customer
feedback

Animation

Use cases
UI sketches

using
&

Annotating

record of use

Fig. 5. Implementation of the Fast Feedback technique using a generator tool

Note that there are two “activity boxes” in Fig. 5. One denotes the fine-grained
activity of compiling an animation from the use cases, UI sketches, and customer
comments. The second activity lets the customer “interact” with the mock-up and
records using it. The tool implemented in Carl Volhard’s Bachelor thesis [29] offers
both boxes. The time devoted to an interview using this technique is up to 2.5 hours.
The key improvement is in shortening the information flow from use cases to
animated prototype. Instead of having two phases of manual interpretation and
creation, the automated generator shortcuts this portion to a matter of seconds. It can
be performed and iterated within the first interview. This opportunity generates more
and higher-quality feedback – fast!

Obviously, it is not the intention of this technique to replace skilled human
interface designer by a customer and an analyst scribbling on a tablet-PC. However,
when a project tries to elicit requirements and basic interaction sequences from
stakeholders, there is no need for professional user interface design; it is all about
eliciting requirements. Usability experts receive rich material from the intense new
interviews. This can empower their work, too.

4 A Technique to Generate Fast Feedback

By instantiating the By-Product Approach in order to empower interviews, the new
technique will improve information flows and, thus, speed up requirements elicitation
and validation.

 Generating Fast Feedback in Requirements Elicitation 169

4.1 Fast Feedback Needs Tool Support

The By-Product Approach explicitly calls for specific computer support. It is not just
a matter of convenience but a part of the concept to exploit computer power.
Therefore, we developed a tool to support the Fast Feedback technique [29]. In that
tool, use case templates are completed on the tablet PC (Fig. 6, left). Animated mock-
up prototypes are drawn and displayed in the same tool (Fig. 6, right).

User Interface Mockup

Step 1 assoc. to rectangle

(parts of the use case hidden
by this comment box)

Use Case Editor

Fig. 6. User interface mock-ups can be animated when connected to use case steps

The tool generates animations from the use case steps and the user interface mock-
ups (Fig. 7). Animations display the interface mock-ups in the order they are
referenced in the use case. Execution can descend to lower-level used cases,
extensions need user decisions. Portions relevant for interaction are highlighted by a
thin-line rectangle.

Stakeholders can scribble values into the mock-up input fields during the
animation; they may pretend to press buttons, make selections in lists by simply
drawing on the mock-ups (in a different color). Again, the tablet-PC is used like a
sheet of paper (Figs. 6, 7). User actions appear on the sketch, but the mock-up cannot
react to it. It is a pure mock-up. Actions are recorded and provide valuable (solid!)
information on how the stakeholders intend to use the system.

170 K. Schneider

Fig. 7. Animation with “user input” in thin-line rectangle, additional user comments (margin)

4.2 Fine Tuning Is Essential for Tool and Technique

The new interview technique has been explained above. In order to make it work,
several subtle adjustments had to be made. In particular, using the program must not
distract either partner from the main mission of the interview: eliciting requirements.
Carl Volhard, who developed the tool as part of his Bachelor thesis [29] discusses
several low- to middle-level usability issues for which he considered different
solutions. For example, he compares three options for the mechanism to link use cases
to corresponding portions of a mock-up. The thin-line rectangle was chosen. It is
often difficult to make an interaction look straight-forward.

The interview technique is supposed to be applied in the following setting:

• One or two interviewers face one (or up to three) stakeholders representing the
same stakeholder group.

• They use a tablet-PC with the recording and generator program running. It offers a
use case template and an “empty paper” view for drawing the mock-ups.

• If there are two interviewers, one will concentrate on asking and interacting with
the stakeholder. The other interviewer will fill the template.

• However, drafting the mock-ups should be done by the main interviewer in tight
interaction with the stakeholder. A stakeholder may even grab the pencil and draw
a mock-up.

• Since elicitation and validation is folded into one session, both use cases and
mock-ups will be revised and updated iteratively. During that part of the interview,
the tool must be visible for the stakeholder. A computer projector is an option, but
direct interaction with the tablet-PC is preferable.

 Generating Fast Feedback in Requirements Elicitation 171

4.3 Fast Feedback Output

The output of initial uniPro interviews consisted of a collection of hand-written notes
on paper with several informal sketches. The output of the new brand of interviews
includes:

• A set of use cases: Using a template on the tablet-PC, analysts may choose to
scribble or type what they find out about all aspects of a prototype. In particular,
there are fields for scenario and extension steps.

• A set of user interface mock-ups: Analysts and users can manually sketch
interfaces on the tablet-PC – just like on a piece of paper.

• The linked animation of use cases and mock-ups.
• A recording of the pretended use of the mock-ups, including the values they

scribbled into fields etc.
• The feedback of users to all above-mentioned aspects: Immediate modifications

can be made to use cases and mock-ups. The animation is automatically updated.
Nevertheless, we always take some paper along. When the tool is busy playing
the animation, it is better to take notes on paper.

5 Related Work and Discussion

Maiden et al. [30] describe the Mobile Scenario Presenter (MSP), a PDA-based
requirements discovery tool that allows users to step through scenarios and add
additional requirements or information. They carried out a series of studies to explore
the usability and usefulness of such a mobile device. They report users were able to
identify events in the real world and relate them to their scenarios. How to deal with
limited display and missing keyboard were identified as open research questions.

In the Fast Feedback technique, we avoided the problem of keyboard and small
display by using an A4 size Tablet-PC with optional detached keyboard. It was not
mainly selected as a mobile device, but as a “discreet” tool that starts out in the
background but allows to collect and to interpret additional information (user
interfaces). We entered the uniPro use cases and UI mock-ups to check for usability.
All use cases and mock-ups could be expressed using the tool. In the initial scenario,
they had been drawn offline in PowerPoint. Therefore, they looked “more final” than
the sketches in our tool. This “final look” may distract customers from their
premature status [25]. Usability was a high-priority quality goal and consumed a large
percentage of the development effort. As a consequence, no severe usability problems
were reported, and one uniPro analyst was so enthusiastic about the tool that she
demanded to use it on her new project immediately. A range of people from analysts
over researchers to school children were able to write steps of “a story” (use case),
draw pictures and link them for animation. Although this experience was highly
encouraging, it does not constitute a valid empirical result. We plan to conduct a
controlled experiment (or rather several case studies) on some aspects of the
interviews in the next semester. However, most relevant issues like amount of
information transferred will be very difficult to trace in a controlled experiment. Case
studies are often preferable for software engineering [31].

172 K. Schneider

Davis et al. [32] have reviewed a number of studies on different requirements
elicitation techniques. They found interviews more effective than card sorting or
thinking aloud, among others. They also found no evidence for prototypes being
helpful during elicitation. However, they point to the constraints of their review. Most
importantly, elicitation techniques were cut into facets for the purpose of the review.
According to Davis et al., the small size of their samples should also be considered.

We are convinced that a large project with a very large number of stakeholders
like uniPro will benefit from intermediate representations. In particular, feedback
from a slightly different viewpoint can facilitate interviews (UI mock-up instead of
use case). We even saw this effect when working on paper (with PowerPoint
mock-ups) before. With a tailored and optimized technique like Fast Forward, we are
confident to increase the value.

The hand-writing recognition feature was not unanimously welcome. Correcting
errors takes rather long. One should either let them in during the interview, or use the
keyboard for completing the template (Fig. 3). However, mock-ups need to be hand-
drawn [25]. Fast Feedback sessions provide validated output: use cases and mock-ups
were checked for consistency and correctness by the designer and the stakeholder.

Since we were interested in the approach of supporting requirements analysis as
such, de Vries [33] developed a quite similar tool. In a similar information flow
situation, he applied the By-Product Approach to a slightly different subject: When
people discuss their (business) activities, the technique collects add-on information on
incoming and outgoing flows. Those are compiled to generate and display processes
beyond single interviews: those processes illustrate what happens to information
someone else provides. Again, it helps stakeholders to validate what they said before.

6 Conclusions

Requirements elicitation is difficult. Requirements elicitation in a large project with
many busy stakeholders and an impatient project leader is very difficult – but it often
occurs in reality. When the findings of an interview take weeks to be validated,
requirements quality suffers. Due to the long delay, stakeholders cannot remember
details.

We tried to improve the situation by analyzing information flow and by applying
the By-Product Approach. We emphasized the problem by comparing an initial
information flow model with a desired situation model.

In this paper, a technique was introduced that instantiates the By-Product
Approach. It requires a tailor-made tool to record and automatically interpret use case
steps. At the beginning of the interview, the tool is simply used as electronic paper
with recording abilities. As the interview proceeds, additional user interface
information is added to generate a different view of the information received so far.
This provokes stakeholders to check and validate what was inferred from their input.

In the end, there is more information, highly connected and automatically recorded.
The initial investment in tool and technique pays back in fast feedback “as a by-
product”. Our tool is a feasibility prototype developed in Volhard’s Bachelor thesis
[29]. It is optimized for easy use and discreet behaviour and has been applied to
uniPro material. We consider this technique a small, but important step forward. In

 Generating Fast Feedback in Requirements Elicitation 173

addition, we want to encourage other requirements engineers to create their own
individual techniques where they see bottlenecks. Using information flow modelling
and the By-Product Approach puts tailor-made improvements in reach.

References

1. Rupp, C.: Requirements-Engineering und -Management. 3 edn. Hanser Fachbuchverlag
(2004)

2. Alexander, I.F., Stevens, R.: Writing Better Requirements, Harlow, Pearson Education
Ltd. (2002)

3. Schneider, K., Lübke, D., Flohr, T.: Softwareentwicklung zwischen Disziplin und
Schnelligkeit. Tele. Kommunikation Aktuell 59(05-06), 1–21 (2005)

4. Schneider, K.: Aggregatzustände von Anforderungen erkennen und nutzen. In: GI
Softwaretechnik-Trends, pp. 22–23 (2006)

5. Schneider, K.: Software Engineering nach Maß mit FLOW. In: SQMcongress 2006.
Düsseldorf: SQS (2006)

6. Schneider, K.: Rationale as a By-Product. In: Dutoit, A.H.M.R., Mistrik, I., Paech, B.
(eds.) Rationale Management in Software Engineering, pp. 91–109. Springer, Heidelberg
(2006)

7. Schneider, K.: Prototypes as Assets, not Toys. Why and How to Extract Knowledge from
Prototypes. In: 18th International Conference on Software Engineering (ICSE-18) Berlin,
Germany (1996)

8. Schneider, K. and Lübke, D.: Systematic Tailoring of Quality Techniques. In: World
Congress of Software Quality 2005. Munich, Germany (2005)

9. Stapel, K.: Informationsflussoptimierung eines Softwareentwicklungsprozesses in der
Bankenbranche, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz Universität
Hannover (2006)

10. Curtis, B., Kellner, M.I., Over, J.: Process modelling. Communications of the ACM
archive 35(9, Special issue on analysis and modeling in software development), 75–90
(1992)

11. Macaulay, L.A.: Requirements Engineering. Springer, Heidelberg (1995)
12. Arias, E.G., Schneider, K., Thies, S.: A continuum approach: From language of pieces to

virtual stakeholders. In: World Conference on Artificial Intelligence in Education (AI-ED
98) (1998)

13. Beck, K.: Extreme Programming Explained. Addison-Wesley, London (2000)
14. Cockburn, A.: Agile Software Development. Addison Wesley, London (2002)
15. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed.

Addison-Wesely, London (2003)
16. Schneider, K.: Active Probes: Synergy in Experience-Based Process Improvement. In:

Product Focused Software Process Improvement PROFES 2000, Springer, Heidelberg
(2000)

17. Houdek, F., Schneider, K.: Software Experience Center. The Evolution of the Experience
Factory Concept. In: International NASA-SEL Workshop (1999)

18. Manhart, P., Schneider, K.: Breaking the Ice for Agile Development of Embedded
Software - an Industry Experience. In: International Conference on Software Engineering
(ICSE 2004) Edinburgh, Scotland (2004)

19. Schneider, K., Stapel, K.: Informationsflussanalyse für angemessene Dokumentation und
verbesserte Kommunikation, SE 2007. Hamburg (2007)

174 K. Schneider

20. Basili, V., Caldiera, G.: Improve software quality by using knowledge and experience,
Fall: Sloan Management Review (1995)

21. Johannson, C., Hall, P., Coquard, M.: Talk to Paula and Peter - They are Experienced. In:
International Conference on Software Engineering and Knowledge Engineering
(SEKE’99), Workshop on Learning Software Organizations. Kaiserslautern, Germany,
Springer, Heidelberg (1999)

22. Schneider, K.: What to Expect from Software Experience Exploitation. Journal of
Universal Computer Science (J.UCS) 8(6), 44–54 (2002), www.jucs.org

23. Fischer, G.: Domain-Oriented Design Environments. Automated Software
Engineering 1(2), 177–203 (1994)

24. Sarkisyan, E.: Analyse und Definition von verschiedenen FLOW-Modellen, FG Software
Engineering, Leibniz Universität Hannover (2006)

25. Mayhew, D.J.: The Usability Engineering Lifecycle - a practitioner’s handbook for user
interface design. Morgan Kaufmann Publishers, San Francisco (1999)

26. Grudin, J.: Social evaluation of the user interface: Who does the work and who gets the
benefit. In: INTERACT’87. IFIP Conference on Human Computer Interaction. Stuttgart,
Germany (1987)

27. Schneider, K.: Aggregatzustände von Anforderungen erkennen und nutzen. GI
Softwaretechnik-Trends 26(1), 22–23 (2006)

28. DeMarco, T.: Structured Analysis and System Specification. Prentice-Hall, Englewood
Cliffs (1979)

29. Volhard, C.: Unterstützung von Use Cases und Oberflächenprototypen in Interviews zur
Prozessmodellierung, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz
Universität Hannover (2006)

30. Maiden, N., et al.: Making Mobile Requirements Engineering Tols Usable and Useful. In:
Requirements Engineering (RE 2006), IEEE Computer Society, Minneapolis, USA (2006)

31. Rombach, D., Basili, V.R., Schneider, K.: Experimental Software Engineering Issues:
Assessment and Future Directions. Dagstuhl Workshop Proceedings. Springer, Heidelberg
(2007)

32. Davis, A., et al.: Effectiveness of Requirements Engineering Techniques: Empirical
Results Derived from a Systematic Review. In: Requirements Engineering (RE 2006),
IEEE Computer Society, Minneapolis, USA (2006)

33. Vries, L.d.: Konzept und Realisierung eiens Werkzeuges zur Unterstützung von Interviews
in der Prozessmodellierung, Fachgebiet Software Engineering, Gottfried Wilhelm Leibniz
Universität Hannover (2006)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 175–189, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Informing the Specification of a Large-Scale Socio-
technical System with Models of Human Activity

S. Jones, N.A.M. Maiden, S. Manning, and J. Greenwood

Centre for Human-Computer Interaction Design, City University, London
 National Air Traffic Services, London, UK

s.v.jones@city.ac.uk

Abstract. In this paper, we present our experience of using rich and detailed
models of human activity in an existing socio-technical system in the domain of
air traffic control to inform a use case-based specification of an enhanced future
system, called DMAN. This work was carried out as part of a real project for
Eurocontrol, the European Organisation for the Safety of Air Navigation. We
describe, in outline, the kinds of models we used, and present some examples of
the ways in which these models influenced the specification of use cases and
requirements for the future system. We end with a discussion of lessons learnt.

Keywords: use cases, specification, socio-technical systems, domain knowledge.

1 Introduction

The literature in requirements engineering is replete with references to scenario- or
use case-based approaches to requirements elicitation, specification and validation.
However, much less is said about where the scenarios and use cases, which are the
basis of such approaches, might come from. There is plenty of guidance on how, or in
what style, use cases or scenarios should be written - see, for example, [1]. But what
about the raw materials? How do we know what should go into a use case, or even
what use cases to include in a specification in the first place?

Traditional approaches to systems analysis, such as SSADM, start by modeling the
current system. This is done at a high level of abstraction, where models represent
business events and rules, data and information flows. More recent approaches, such
as Volere [2], recommend that one of the first steps in learning what people need
should be to model the business which a new product will support, in order to obtain a
first cut model of actors and use cases for the future system. Again, this is done at a
high level of abstraction, where there is a great deal of similarity between the current
and future systems. The Unified Process also states that actors and use cases for the
initial use case model should be derived from high level business and domain models.
For example, Arlow and Neustadt [3] recommend that use case modeling should
begin by identifying actors and then considering how those actors will use the future
system. They also provide a list of questions concerning storage and retrieval of in-
formation, and notification of external events and system state changes, which the

176 S. Jones et al.

analyst can use to help refine the list of use cases initially identified. The level of
granularity at which initial specifications should be pitched is discussed by several
authors - see, for example, [4] - but the main type of information about the current
situation on which future specifications are to be based is usually information about
actors and their goals. Finally, it is noticeable that much work on use case modeling
tends to have a forward-looking focus on the ‘vision’ [5] or ‘mission statement’ [6]
for the future system. This can be problematic in situations where there is a large and
complex system already in place, and where a future system must be developed as an
evolutionary step forward from a current system, rather than a revolutionary
fresh start.

The discipline of human-computer interaction (HCI) provides a different perspec-
tive on the development of future systems. The HCI community has developed a
different range of concepts for reasoning about socio-technical systems, which fo-
cuses more on the human components of such systems than is commonly the case in
software engineering. There is also a strong tradition of using the results from in-
depth studies of current work to inform the design of future systems. A small number
of studies have been reported in the literature, in which rich and fine-grained observa-
tions of human behavior in existing systems have been used to inform the specifica-
tion of future complex and large-scale socio-technical systems. For example, Viller
and Sommerville [7] report the use of ethnographic studies to help identify use cases
in a case study also based in the domain of air traffic control. Their approach, called
Coherence, focuses on the impact of social analysis of existing systems on the design
of future systems. Bisantz et al [8], [9] have reported studies investigating the utility
of cognitive work analysis models in the design of large-scale socio-technical systems
such as a next-generation US Navy surface combatant. In particular, Bisantz et al [9]
point to pragmatic considerations which are important in selecting and adapting
methods of cognitive work analysis to fit the demands of a time-pressured design
situation, and point out the significance of developing work products which are timely
and tightly coupled to other elements of the design process in this context.

In this paper we present our experiences and observations following an attempt to
apply a range of HCI concepts and techniques to capture and record information about
an existing socio-technical system in order to inform the development of a use case
specification for a future system, called DMAN, in the domain of air traffic manage-
ment. Our aim has been to develop a practical means by which requirements and
systems engineers could use inputs from the HCI community to improve their practice
in the specification of socio-technical systems. The data we present concerns a real
project, carried out in a complex, safety-critical domain and within commercial con-
straints. Our approach to data analysis has therefore been mainly qualitative, rather
than quantitative, since it was not possible to carry out controlled experimentation
within these constraints.

Section 2 presents a brief overview of the DMAN project and the RESCUE re-
quirements process, which provides the framework within which our work was car-
ried out. Section 3 describes our choice of concepts for inclusion in models of human
activity in the current system, and section 4 presents some more detailed observations

 Informing the Specification of a Large-Scale Socio-technical System 177

regarding the way in which these concepts were used. We end with a discussion of
lessons learnt and directions for future work.

2 DMAN and the RESCUE Process

The data presented in this paper relate to work carried out in the specification of op-
erational requirements for DMAN, a socio-technical system for scheduling and man-
aging the departure of aircraft from major European airports such as Heathrow and
Charles de Gaulle. DMAN is a system that will support controllers in managing the
process of departure from an airport and through the Terminal Manoeuvring Area
(TMA). One DMAN system will manage all civil Instrument Flight Rules (IFR)
departures from all airports within a TMA. DMAN will assist controllers in maintain-
ing a high level of throughput while respecting all spacing constraints.

The specification for DMAN was developed by a requirements team which in-
cluded engineers from UK and French air traffic service providers. These engineers
modeled the DMAN system and requirements using techniques from the RESCUE
requirements process. RESCUE - Requirements Engineering with Scenarios for a
User-centred Environment – is a concurrent engineering approach, which allows us to
integrate current HCI techniques and research perspectives with current best practice
in relation to use-case based requirements specification. The RESCUE process has
already been described in a number of other publications - see, for example, [10] - and
in this paper, we provide just a brief overview.

RESCUE was initially developed to specify operational requirements for a system
called CORA-2, a system that will provide computerised assistance to air traffic con-
trollers to resolve potential conflicts between aircraft [11]. The RESCUE process has
since been applied in the specification of requirements for DMAN, as described in
this paper and in [12]; MSP, a system for scheduling aircraft from gate to gate across
multiple, multi-national sectors [13]; EASM, a system to support enhanced airspace
management [14]; and VANTAGE, a project aimed at minimizing the environmental
impact of regional airports.

The RESCUE process was developed by academic researchers from the domains
of HCI and requirements engineering, working with staff at Eurocontrol, the Euro-
pean Organisation for the Safety of Air Navigation, and was specifically targeted
towards the needs of the domain of air traffic management. Thus RESCUE focuses on
specification of requirements for critical systems, where development of new systems
is evolutionary rather than revolutionary, and where the emphasis is on getting re-
quirements right, rather than speed to market.

RESCUE is aimed at the specification of operational requirements – relatively
high-level requirements which are typically concerned with the overall functionality
of the socio-technical system, the division of labor between human and technical
components of the system, and basic statements of non-functional requirements or
constraints concerning usability, training, look and feel etc. Detailed specification of
presentation in the user interface, user interaction and information architecture comes
at a later stage in the development lifecycle.

178 S. Jones et al.

The CORA-2, DMAN and MSP projects in which RESCUE has been applied are
part of the European Air Traffic Management’s Automated Support to Air Traffic
Services (ASA) programme, whose aim is to develop concepts, requirements and
procedures for the provision of tools to enhance the air traffic control decision-
making process. The ASA programme as a whole has adopted the principle of ‘hu-
man-centred automation’. This principle asserts that ‘the human bears the ultimate
responsibility for the safety of the aviation system’, and that the controller must there-
fore remain in command of the system. The system, in turn, must provide information
consistent with controllers’ responsibilities, and presented in a format meaningful to
controllers in a given context so that controllers can monitor and understand what
their automated systems are doing. Proper consideration of the human element in the
system therefore had to be included in our process.

The RESCUE process consists of a number of sub-processes, organised into 4 on-
going streams. These streams run in parallel throughout the requirements specification
stage of a project, and are mutually supportive. The four RESCUE streams focus on
the areas of:

• Analysis of the current work domain using human activity modeling - this stream
will be described in more detail below;

• System goal modeling using the i* goal modeling approach;
• Use case modeling and specification, followed by systematic scenario walk-

throughs and scenario-driven impact analyses;
• Requirements management using VOLERE [2] implemented in Rational’s re-

quirements management tool RequisitePro in current rollouts of RESCUE.

In addition to these four streams, the RESCUE process uses the ACRE framework to
select techniques for requirements acquisition, and creativity workshops, based on
models of creative and innovative design, to discover candidate designs for the future
system, and to analyse these designs for fit with the future system’s requirements.

This paper builds on work described in [15] and focuses on the relationship be-
tween the human activity modeling and use case modeling streams.

3 Concepts Used in Models of Human Activity for DMAN

Human activity modeling in RESCUE focuses on the activity of humans in the current
system. This is in line with the principle of human-centred automation defined above.
In the human activity modeling stream of the RESCUE process, the project team
needed to understand and model the controllers’ current work in order to facilitate the
specification of technical systems that could better support that work.

The human activity modeling stream in RESCUE consists of two sub-processes –
data gathering and human activity modeling. During the first sub-process, data about
all components of the activity model are gathered and recorded, initially in a rela-
tively unstructured way. Techniques to gather this data are familiar to those in the
domains of both HCI and RE and include: observation of current system use; informal
scenario walkthroughs, using scenarios that describe how the current system is used;

 Informing the Specification of a Large-Scale Socio-technical System 179

interviews with representative human users; and analysis of verbal protocols, or re-
cordings of users talking through scenarios or tasks.

In the second sub-process, the project team creates a human activity model by
generating a number of human activity descriptions corresponding to each of the
major types of activity in the current system. This is analogous to the creation of a
use case model for the current system, consisting of a number of related use case
descriptions (UCDs), although the kinds of information recorded in human activity
descriptions are different from those which would be included in use case descrip-
tions, as described below. Once created, the human activity model is used to in-
form the development of use case descriptions for the future system during stage 2
of the RESCUE process. It is also used to validate the completed use case descrip-
tions. The rest of this section explains what kind of human activity model was used
in DMAN and why.

3.1 Basic Concepts

The categories of concepts for use in human activity descriptions in the DMAN pro-
ject were chosen with reference to the literature of task analysis, cognitive task analy-
sis and cognitive work analysis as explained in [15]. In summary, concepts used in
DMAN human activity models were as follows:

• Human actors - people involved in system;
• Goals: states of the system which one or more actors wish to bring about – where

goals may be
− high-level functional goals relating to the system as a whole, or local goals relat-

ing to particular tasks;
− individual goals, relating to single actors, or collective goals, relating to teams

of actors;
− prescribed goals or non-prescribed goals

• Actions: undertaken by actors to solve problems or achieve goals – where higher
level, generic actions may be broken down into component physical, cognitive or
communication actions

• Resources: means that are available to actors to achieve their goals;
• Resource management strategies: how actors achieve their goals with the resources

available;
• Contextual features: situational factors that influence decision-making,; and
• Constraints: environmental properties that affect decisions.

3.2 Additional Concepts for Structuring Models of Human Activity

After deciding what concepts to include in our model of human activity, our next
question concerned the way in which information relating to each of these concepts
should be structured in order to provide useful inputs into the use case writing proc-
ess. We decided to model activity in terms of a script-like representation, as the ma-
jority of the knowledge to be modeled was procedural, concerning the sequences of
actions which take place under various circumstances, and we also felt that this would

180 S. Jones et al.

map easily onto the script-like use case specifications of the future system which were
our final target. We designed a template, within which we could record knowledge
relating to each of the concepts identified above in a script-like format which would
also provide space to record:

• Administrative information, including the author, date and source of information
included, thus enabling traceability;

• A brief précis of the content of the human activity description, analogous to the
kind of précis commonly included in use case descriptions;

• A triggering event, suggested by our consideration of scripts above;
• Any pre-conditions which are necessary for the activity to take place – again this

was included because pre-conditions are normally included in use case
descriptions, and

• Differences due to variations – different but normal or equally valid ways of
achieving the relevant goal(s), as suggested by our consideration of scripts, and
again as typically included in use case descriptions.

One completed template is referred to as a Human Activity Description (HAD), and a
Human Activity Model (HAM) consists of a number of HADs, as stated earlier. An
example showing extracts from a completed HAD template is shown in figure 1,
where we can see how knowledge about each of the concepts identified above can be
placed within such a script-like representation.

Figure 1 shows extracts from one of the HADs developed for the DMAN project. It
describes what happens when a pilot calls one of the air traffic controllers, the Ground
Movement Controller (GMC), to request clearance to push back, or leave the stand
ready for take-off. Different parts of the description relate to the activity as a whole or
to particular actions, thus providing a structured but flexible description of current
work practices. For example, actors, goals, contextual features and constraints relate
to the activity as a whole, while different resources and resource management strate-
gies may relate to different actions. Note also that actions in the normal course of the
human activity description are broken down into their physical, cognitive, and com-
municative components.

Figure 2 shows extracts from a use case description developed for DMAN, in
which we can see the similarities between the concepts and structures used in the
human activity description, and those in the use case description. For example, there
are fields for describing actors, précis, triggering events, pre-conditions, normal
course (i.e. a sequence of actions), and variations in both HADs and UCDs. The rela-
tionships between some of the remaining concepts will be explained in the following
section.

4 Human Activity and Use Case Modeling in DMAN

In this section, we provide further information about the generation of human activity
models for DMAN and the relationship of these models with DMAN use cases.

 Informing the Specification of a Large-Scale Socio-technical System 181

HAD10 Runway ATCo Gives Line Up Clearance

Author ……………..
Date ……………..
Source ATC meeting 6th March / 2nd April 2003

Actors Runway ATCo, Pilot

Precis To decide when the next aircraft should line up and to communicate line up clearance to the
pilot.

Goals Decision made as to when the next aircraft can line up
Pilot given line up clearance
Strip positioned correctly in the bay
LVP or MDI procedures adhered to, if in effect

… …

Triggering event Previous aircraft has received clearance to take off OR
Runway ATCo decides that line up is appropriate

Preconditions Aircraft at holding point

Normal course 1. Departure/Air controller decides which aircraft can next line up and when
Resources – strip
Physical actions – touch strip, look at airfield, aircraft, holding point and runway, move to look
out of window
Cognitive actions – read strip information, validate visually, recognise aircraft and match with
strip, recognise when it is appropriate to give line-up clearance, formulate aircraft line up
clearance sequence, understand current airspace, runway and capacity situation

 2. Runway ATCo calls Pilot and gives line up clearance
Resources – strip, radio, headset
Physical actions – touch strip, flick radio transmission switch, look at aircraft, runway and
holding point, move to look out of window
Communication actions – talk to pilot, issue clearance, provide information
Cognitive actions – read strip information, validate visually

 3. Pilot confirms details
etc

Differences due to
variations

….

Contextual features 1. If the aircraft has a problem, i.e. technical delay, technical failure or emergency, the pilot
may call the controller
Resources – strip, radio, headset
Physical actions – touch strip, flick radio transmission switch, look at aircraft, runway and
holding point, etc
………………

Constraints Bay size – limited space for strips
Noise levels – printer, system alarms, people talking
Staff shortage
……………..

Fig. 1. Extracts from a Human Activity Description for DMAN

4.1 Data Collection and Generation of Human Activity Models

For DMAN, the data to be used in building the Human Activity Model was collected
during the course of 2 half day visits to the Visual Control Room (the control tower)
at Heathrow, during which controllers were observed at work, and subsequently inter-
viewed. An informal scenario walkthrough session was held about 2 weeks later, with
air traffic controllers from Heathrow and Gatwick. The major effort of producing the
HAM involved one full-time worker for approximately 6 weeks. The human activity
model for DMAN consisted of 15 separate human activity descriptions. Table 1 pre-
sents an overview of the numbers of elements of significant concept types identified
in sections 3.1 and 3.2 in the HAM as a whole, and on average per HAD.

182 S. Jones et al.

UC7 Give Line Up Clearance

Author ……………..
Date ……………..
Source RESCUE stage 1 document

Actors Runway ATCo, Pilot, DMAN, Departure clearance ATCo, A-SMGCS, TACT, FDPS, CDM system

Problem statement
(now)

Integrate departure clearance into departure planning process

Precis The runway becomes available for a new aircraft, or the Runway ATCo has a new aircraft under
his/her control at a runway holding point. The runway ATCo selects the next aircraft to line up,
optionally taking guidance from the DMAN recommended sequence. The Runway ATCo clears the
pilot to line up for departure. The aircraft lines up. A-SMGCS records the aircraft’s movement
and sends an update of the aircraft status to DMAN.

Requirements …

Constraints …

Added value

Justification

Triggering event The runway becomes available for a new departing aircraft.
Preconditions The next aircraft in the DMAN departure sequence is under the control of the Runway ATCo

Successful end
states

Aircraft receives line up clearance if appropriate
Aircraft does not receive line up clearance if not appropriate

Unsuccessful end
states

Aircraft receives line up clearance when not appropriate
Aircraft does not receive line up clearance when appropriate

Normal course 1. The Runway ATCo looks at the DMAN recommended sequence
 2. The Runway ATCo looks at the aircraft holding by the runway
 3. The Runway ATCo decides that the next aircraft in the DMAN sequence can line up on the

runway
 etc

Variation 3 IF the entire runway is clear and the required separation from the previous aircraft has elapsed
THEN replace step 3 with:

 3a The Runway ATCo clears the pilot to line up and take off

Fig. 2. Extracts from a Use Case Description for DMAN

Table 1. Overview of concept distributions

Concept Total no. in HAM Avg. no. per HAD Range across HADs
Actor 45 3 1 – 7
Goal 76 5 2 – 11
Triggering event 18 1 1 – 2
Precondition 19 1 0 – 3
Action (generic)
• physical action
• communication action
• cognitive action

127
221
99

255

8
15
7

17

5 – 14
4 – 24
0 – 16
3 – 29

Resource 201 13 5 – 27
Resource management strategy 25 2 0 – 4
Differences due to variations 38 3 0 - 5
Contextual features 74 5 1 – 9
Constraints 136 9 4 - 11

4.2 Usefulness of HAD Concepts

The completed HADs were made available to the engineer responsible for writing the
DMAN use case descriptions. Note that the engineer also had access to other sources
of information developed as part of the RESCUE process, including a rich context
model, a use case diagram, and ideas generated in the course of a 2 day creativity
workshop - see [10], for further information. After writing the use case descriptions,

 Informing the Specification of a Large-Scale Socio-technical System 183

this engineer was asked to provide feedback on the utility of the HADs, and particular
concepts represented within them through a questionnaire. In the questionnaire, each
of the concepts was rated for usefulness on a scale of 1 – 5, where 1 meant ‘HADs
were not useful at all in writing UCDs – it would have made no difference whether
they were available or not’, 3 meant ‘HADs were quite useful in writing UCDs’ and 5
meant ‘HADs were essential in writing UCDs – I couldn’t have done it without them’.
There was also space for providing more general comments. Overall, HADs were
judged, by the engineer who wrote the use case descriptions, to be most useful in
writing UCDs involving sequences of prescribed behaviors, for example in interac-
tions between pilots and controllers. Table 2 shows the relative usefulness ratings for
individual concepts within the HADs.

In addition to their use in writing use case descriptions, human activity descriptions
also played a significant role in validating first draft use case descriptions. Using the
human activity model, a total of 23 issues were identified for discussion in relation to
the first draft use case specification. Feedback provided by members of the require-
ments team on this basis was judged by the original author of the use case
descriptions to be ‘very useful’. We return to this issue below.

Table 2. Overview of concept utility

Concept Usefulness rating
Actor 4
Communication action 4
Action (generic) 3
Cognitive action 3
Differences due to variations 3
Triggering event 2
Precondition 2
Physical action 2
Resource 2
Goal 1
Resource management strategy 1
Contextual features 1
Constraints 1

The results we present in the rest of this section are based on a qualitative explora-
tion of the data arising from the DMAN project. It would not be meaningful to at-
tempt a precise quantification of the extent to which constructs in the human activity
model relate to those in the use case model. This is because while some elements of
the human activity descriptions can be imported directly into the use case descrip-
tions, others exert a more subtle influence, or appear in modified form, as will be seen
below. In the following paragraphs, we attempt to give a flavor of the relationships
between HADs and UCDs as a whole, and then between individual constructs in the
human activity and use case descriptions.

4.3 Overview of Relationships Between HADs and UCDs

The strength of relationships between HADs and UCDs was estimated by considering
the similarity of constituent actors, précis, actions, triggering events, goals/end states

184 S. Jones et al.

and variations. On this basis, 11 out of the 15 HADs were judged to have some rela-
tionship with UCDs in the future system specification. HADs 5, 6 and 10 had strong
relationships with UCDs 3, 4 and 7 respectively, and there was a lot of similarity
between the sequences of actions described in each case. On the other hand, much of
the human activity, especially the cognitive actions, described in HAD8 (‘depar-
ture/air controller calculates departure sequence’) and HAD9 (‘optimisation se-
quence’) was to be taken over by the DMAN system, so the relationship between
these HADs and the relevant UCDs was more complex, as will be discussed below.
HAD1 (‘receive and prepare flight strip’), HAD11 (‘departure/air controller gives
take off clearance’), HAD 12 (‘flight strip logging’) and HAD 13 (‘SVFR clearance
procedure for aircraft’) do not correspond directly to any UCDs as these are activities
in which DMAN will not play any role. Each of the remaining HADs, was weakly
associated with a UCD for the future system.

4.4 Use of Individual Concepts from the Human Activity Descriptions

In this section, we present examples to illustrate the kinds of relationships which
existed between concepts in the HAM and those in the future system specification.

Actors. Actors were judged to be very useful in writing use case descriptions. They
were typically carried over into the relevant UCDs, with some renaming of actors -
the Ground Movement Controller became the Ground Air Traffic Controller to reflect
some changes in responsibilities - and some new actors, such as the A-SGMS ground
radar system, being added in the future system.

Goals. As stated above, goals were intended to be states of the system which one or
more actors wish to bring about. HAD goals were recorded at various levels of
abstraction, some relating to high-level functional requirements for the future system,
and some relating to particular actions. Most of the goals identified were collective
goals, relating to the system as a whole. Only 2 out of a total of 76 related more to
individual workers. These concerned the desire to regulate workload, for example
‘Runway ATCO workload regulated.’ (HAD7). Only one of the goals in the Human
Activity Model which was delivered to the customer was a non-prescribed goal
(‘Aircraft adhered to targets on meeting the estimated push back time.’ – HAD4).

Goals were rated by the engineer as ‘ not useful’ in writing use case descriptions.
However, on analyzing the future system specification, it was found that goals in the
HAM typically translated either into successful end states in the relevant UCD, or
directly into requirements. For example, the goal ‘Pilot given taxi clearance’ (HAD6)
is expanded into two successful end states for UC4: ‘Aircraft is cleared to runway
holding point’ and ‘Aircraft is cleared to intermediate point on the taxi route’. The
goal ‘Slot time adhered to’ (HAD6) is operationalised in the requirement ‘FR2:
DMAN shall support ATCO to respect CFMU slots’ and the goal ‘Timely taxi clear-
ance given’ appears in the specification of the future system as the performance
requirement ‘PR12: ATCO using DMAN shall give timely taxi clearance’.

Triggering events. For the 11 HADs with relationships to particular UCDs, 5 of the
triggering events mapped onto similar triggering events in the relevant UCDs. For
example ‘Pilot calls for start up’ (HAD3) appears as ‘Pilot requests start up clearance’

 Informing the Specification of a Large-Scale Socio-technical System 185

in UCD2. 3 of the triggering events from these HADs were expanded to significantly
more complex conditions in the relevant UCDs. For example ‘Pilot calls for taxi’
(HAD6) is expanded to ‘Pilot requests taxi clearance OR taxi route becomes clear of
other conflicting traffic OR all aircraft planned for departure in advance of this one
are now ahead on the taxiway’ in UCD4.

Preconditions. Once again considering the 11 HADs with relationships to particular
UCDs, only 2 of the pre-conditions identified in HADs mapped onto similar pre-
conditions in UCDs. For example ‘Pilot is ready to start’ (HAD4) appears as ‘Flight
cleared for start up’ in UD3. Other pre-conditions listed in the UCDs are much more
concerned with specifying relevant states of the DMAN system.

Actions. Generic actions were specified at a similar level of abstraction to those in the
normal course of a use case description, for example: ‘Pilot calls for taxi’ (action 1,
HAD6). Then, the set of lower level physical, communication and cognitive actions
done by the human actor, usually an air traffic controller, in association with the
generic action were recorded, as shown in figure 1. There was a wide variation in the
number of lower level actions recorded for a single generic action. Some generic
actions had no lower level actions associated with them. This was often the case
where the generic action was performed by an actor other than an air traffic controller.
Others had up to 8 lower level, especially cognitive or physical actions associated
with them.

Actions, especially communication actions, were judged by the engineer who
wrote the use case descriptions to be very useful. They were particularly helpful in
writing use cases where the introduction of DMAN did not change the course of
events, for example where pilots and controllers must continue to interact in a pre-
scribed fashion. Some of the generic actions mapped directly onto UCD actions, for
example: ‘Pilot calls for taxi’ (action 1, HAD6) mapped to ‘The pilot requests taxi
from the Ground ATCO’ (action 1, UCD4). Some mapped onto a version of the ac-
tion in which DMAN is providing support. For example: ‘GMC locates strip in bay’
(action 2, HAD6) mapped to ‘The Ground ATCO [GMC] finds the flight in the
DMAN planned departure sequence.’ (action 2, UCD4).

Often, however, the relationship between actions in the current system and those to
be carried out in the future system was more complex. The goals of DMAN, as de-
scribed above, were basically to support controllers in achieving maximum TMA and
runway capacity, without increasing their workload, or in other words, to increase the
numbers of aircraft controllers are able to manage by reducing the amount of effort
required per aircraft. One obvious approach to this was to reduce the amount of cogni-
tive effort required in order to manage aircraft departures. Thus DMAN was designed
to support some of the more difficult cognitive tasks, such as formulating an aircraft
line up clearance sequence, and co-ordinating inbound taxiing aircraft, towed aircraft,
aircraft crossing the runway and other taxiing aircraft with aircraft departures, by calcu-
lating a proposed departure sequence which controllers could adopt and use, if they
judged it appropriate, rather than requiring controllers to formulate such a sequence
themselves as a purely cognitive activity without support. An example of this can be
seen in the relationship between HAD10 and UCD7, as shown in figures 1 and 2, where
perhaps the most difficult cognitive activity - ‘Formulate aircraft line up clearance se-
quence’ (part of action 1, HAD10) - has been taken over by DMAN, as reflected in the

186 S. Jones et al.

requirements FR68: DMAN shall calculate the departure sequence’ and ‘FR69:
DMAN shall provide ATCO with departure sequence information’, while the human
controller still has ultimate control over decisions made, and is still required to carry
out visual checks (action 2, UC7), shown as physical actions (part of action 1,
HAD10) in the Human Activity Model, before acting on DMAN’s advice.

Finally, it should be noted that the detailed information contained in the HAD ac-
tions was particularly useful in validating first draft use case descriptions. Of the 23
issues identified for discussion as part of the validation exercise, 13 related to actions
in the HAM.

Resources. The same resources were often referred to at different points within
HADs, and within the Model as a whole. Only 26 different resources were identified
as being relevant anywhere in the system. Resources were not judged to be very use-
ful in writing use case descriptions, as they would be significantly different under
DMAN. For example, paper flight strips would be replaced by electronic flight strips
once DMAN was introduced.

Resource management strategies. Resource management strategies (RMS) were
very infrequently identified. RMS were only identified as relevant for 25 actions in
the Human Activity Model as a whole, with an average of 2 per HAD. Only 2 differ-
ent RMS were identified in the Model as a whole. Resource management strategies
were judged as ‘not useful at all’ (rating 1 our of 5) in writing Use Case Descriptions.

Differences due to variations. Different practices by different controllers, and in
different airports were recorded in this section of the HAD template. A total of 38
different variations were recorded in the Model as a whole. In some Descriptions, no
variations were identified, whereas in others, there were up to 8. This field in the
Description template was rated ‘quite useful’ (3 out of 5) in writing Use Case De-
scriptions, as it gave information on the different, but equally valid, ways of carrying
out relevant tasks which may need to be supported in the future DMAN system. Some
examples of variations identified in the HAM were: ‘Ground Movement Controller
may aid optimal sequencing’ - not all GMCs do this; ‘For Gatwick, remote holds are
offered to aircraft’, which is different from other airports; ‘For inbound aircraft, the
aircraft reaches the stand’, where the normal course in the HAD refers to outbound
aircraft. As an example, the first of these lead to the identification in UC4 of a varia-
tion: ‘If the aircraft requested taxi previously but clearance was refused because of
taxiway congestion, then replace step 1 with 1a: The Ground ATCO sees that a re-
quested taxiway is now free of congestion’.

Contextual features. This section of the HAD template was intended to be used to
record what happens under unusual or irregular circumstances. For example in HAD1
we have: ‘If there is an airport, airfield or airspace emergency situation i.e. fire, bomb
alert, etc, then activity may be stopped’. Contextual features were judged ‘not useful
at all’ (rating 1 out of 5) in writing Use Case Descriptions. However, they were used
to identify different possible contexts for scenario walkthroughs, which in turn helped
to identify requirements specifying how the future system should work in exceptional
circumstances. For example, the requirement: ‘FR26: DMAN shall provide a bad
weather/emergency incident option’ was identified in the scenario walkthrough for

 Informing the Specification of a Large-Scale Socio-technical System 187

use case 1 and lead to the identification, through decomposition, of 5 additional func-
tional requirements (FR27 – 31) concerned with the provision of an emergency inci-
dent option in DMAN.

Constraints. Almost all of the constraints identified were the same for each HAD.
Most of the constraints identified related to the physical environment in which
controllers operate. However one constraint, described as ‘staff shortage’ identified a
number of times related more to the organisational environment. Constraints were
judged as ‘not useful at all’ (rating 1 out of 5) in writing Use Case Descriptions.
However, they did have implications for system requirements. For example, the
constraint of staff shortage, is reflected in requirements: ‘UR10: DMAN shall not
increase workload in order to display sequence info’ and ‘FR81: DMAN shall not
replace the Ground ATCO or Departure ATCO, but aid them in workload’ and in the
rationale to many other requirements where it is acknowledged that workload must
not increase.

5 Discussion

In this paper we have presented our experience and observations of work carried out
in the DMAN project. In this case, we were dealing with the specification of high-
level operational requirements, for a critical system, where development of the new
system would be evolutionary rather than revolutionary, and where the emphasis was
on getting requirements right, rather than speed to market. There was also a need to
follow the principle of ‘human-centred automation’, which meant that proper consid-
eration of the human element in the system had to be included in our process. We
therefore developed a template for Human Activity Descriptions, which allowed us to
build a richer and more detailed model of the current system than is typically used in
use case-based system specification. We aimed to build on the work of both Viller
and Sommerville [7] and Bisantz et al [8], [9] to develop a practical approach to the
explicit recording of knowledge about the existing socio-technical system which
would enable systems engineers to develop and critique a use case specification of the
future system.

In summary, our observations regarding the benefits of our approach in this pro-
ject, as presented in section 4.4, are as follows:

• Descriptions of cognitive actions in the human activity model were particularly
useful in identifying points where the controller needed additional support from the
new DMAN system.

• Descriptions of communication actions were judged to be very useful in writing
use case descriptions, as these would remain unchanged in the future system. How-
ever, many physical actions, such as ‘touch strip’, were simply artefacts of the way
in which the current system worked, and so were not relevant in the future system.

• Variations in the human activity model were useful and mapped directly into varia-
tions in the use case model, as did triggering events.

• Constraints in the human activity model gave requirements for the future system.
• Contextual features in the human activity model gave contexts for scenario

walkthroughs.

188 S. Jones et al.

Of course, these benefits come at a considerable cost in terms of the effort required to
generate the human activity model, and our approach would not be suitable in every
context. In order to retain benefits such as the above, while minimizing the costs, we
intend in our next project to use a more iterative approach to the development of the
human activity model. We will begin by developing a human activity diagram, analo-
gous to a use case diagram, and will use this to focus a second stage of human activity
modeling efforts on those parts of the current system which will be most affected by
the proposed future system. For example, in the case of DMAN, it would have been
helpful to have more detail in the human activity model about the way in which con-
trollers handle their strips - a part of their work which will be strongly influenced by
the introduction of DMAN, and less on how they use the radio - a part of the current
socio-technical system which will not be greatly affected by the introduction of
DMAN.

We also plan some minor changes to the human activity description template so
that concepts such as resources and resource management strategies which prompted
a lot of repetition through the course of a single description would be modeled at the
level of the description as a whole, rather than at the level of individual actions. In
the same way, some concepts, such as constraints, might be better modeled as relating
to the current system as a whole, rather than to individual human activity descriptions.

This leads us to our final point: the need for multi-disciplinary requirements and
design teams in which communication between members of the team with different
backgrounds and differing levels of domain knowledge is facilitated by the use of
explicit representations of knowledge about the system which all members of the
team can comprehend. On the basis of our experience in DMAN, we believe that
human activity models, comprising human activity descriptions written using the
template presented in this paper can provide this kind of support. Our work aims spe-
cifically to provide a way of dovetailing a range of HCI concerns with current best
practice in use case authoring. We are therefore optimistic that our work might pro-
vide a useful basis for increasing collaboration between those from backgrounds in
HCI and requirements or systems engineering in the specification of requirements for
socio-technical systems.

Acknowledgements. The authors wish to thank all members of the DMAN project
team for their participation and support throughout the project, and all those at NATS,
Sofreavia and Eurocontrol who have contributed to the development of the RESCUE
process as a whole.

References

1. Alexander, I.F., Maiden, N.A.M.: Scenarios, Stories, Use Cases. John Wiley and Sons,
Chichester (2004)

2. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley, Lon-
don (2005)

3. Arlow, J., Neustadt, I.: UML and the Unified Process. Addison-Wesley, London (2002)
4. Larman, C.: Applying UML and Patterns, 2nd edn. Prentice-Hall, Englewood Cliffs

(2001)
5. Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley, London (2003)

 Informing the Specification of a Large-Scale Socio-technical System 189

6. Kulak, D., Guiney, E.: Use Cases. Addison-Wesley, London (2000)
7. Viller, S., Sommerville, I.: Ethnographically Informed Analysis for Software Engineers.

Int. J. Human-Computer Studies 53, 169–196 (2000)
8. Bisantz, A., Ockerman, J.: Informing the Evaluation and Design of Technology in Inten-

tional Work Environments through a Focus on Artifacts and Implicit Theories. Int. J. Hu-
man-Computer Studies 56, 247–265 (2002)

9. Bisantz, A., Roth, E., Brickman, B., Gosbee, L.L., Hettinger, L., McKinney, J.: Integrating
Cognitive Analyses in a Large-Scale System Design Process. Int. J. Human-Computer
Studies 58, 177–206 (2003)

10. Jones, S., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying Requirements
for Complex Socio-Technical Systems. In: Mate, J.L., Silva, A. (eds.) Requirements Engi-
neering for Sociotechnical Systems. Idea Group Inc. (2005)

11. Maiden, N.A.M., Jones, S., Flynn, M.: Innovative Requirements Engineering Applied to
ATM. In: Proc. ATM 2003, 5th USA/Europe R&D Seminar, Budapest, (June 23–27, 2003)

12. Maiden, N.A.M., Jones, S., Manning, S., Greenwood, J., Renou, L.: Model-Driven Re-
quirements Engineering: Synchronising Models in an Air Traffic Management Case Study.
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383. Springer,
Heidelberg (2004)

13. Maiden, N.A.M., Robertson, S.: Integrating Creativity into Requirements Processes: Ex-
periences with an Air Traffic Management System. In: Proc 13th IEEE Intl. Requirements
Engineering Conf (RE05), IEEE CS Press, Washington, DC (2005)

14. Maiden, N.A.M., Ncube, C., Robertson, S.: Can Requirements be Creative? Experiences
with an Enhanced Air Space Management System (To appear). In: Proc. 29th Intl. conf. on
Software Engineering (ICSE07), IEEE CS Press, Washington, DC (2007)

15. Jones, S., Maiden, N.A.M., Manning, S., Greenwood, J.: Human Activity Modelling in the
Specification of Operational Requirements: Work in Progress. In: Bridging the Gaps II:
Bridging the Gaps between Software Engineering and Human-Computer Interaction,
Workshop W1L, 26th International Conference on Software Engineering (ICSE2004), pp.
1–8, IEE (2004)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 190–202, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integration Use Cases – An Applied UML Technique
for Modeling Functional Requirements in Service

Oriented Architecture

Ville Alkkiomäki1 and Kari Smolander2

1 Finland Post Corporation, P.O.Box 8081, 00011 Posti, Finland
alkkis@iki.fi

2 Lappeenranta University of Technology, P.O.Box 20, 53851 Finland
kari.smolander@lut.fi

Abstract. Service orientation and enterprise integration has brought new
requirements for information systems development processes and methods.
Enterprise level service oriented architecture requires a requirement engineering
approach, which takes the roles and boundaries between systems and
organizations into an account. This paper describes a new way of using UML
use cases in systems development projects involving integration and services
between systems. The technique, Integration Use Cases, emphasizes the role of
intermediate systems (such as service buses), but can be used for modeling
point-to-point integration as well. The technique has been created as a response
to experienced problems in real world systems development projects and tested
in practice in large-scale systems development. The paper introduces the
technique and provides examples and experiences from practice.

1 Introduction

The diffusion of service-oriented systems development has been rapid during the last
few years, Leavitt reported 2004 that worldwide spending on web services-based
software projects will reach $11 billion by 2008, compared to $1.1 billion on 2003
[1]. Recent surveys show that despite of this fast growth, the number of public web
services does not increase dramatically [2] and the quality of the existing services is
still poor [3]. One possible explanation to this could be that, as a novel area, service-
oriented development lacks established methods and practices that could boost the
quality and usability of built services.

Service-centric development has consequences to requirements engineering; the
earlier the requirements for the services used in the projects are discovered the easier
it will be to find reusable implementations for them [4]. Failure to understand or agree
on requirements is one of the biggest risks in systems development projects [5] [6].
The risk rises in large projects when many stakeholders and organizations are
involved. A good example of such a situation is when a system based on service
oriented architecture is specified. Service oriented projects typically cross
organizational borders and involve several organizations or subsidiaries that are
responsible for parts of the functionality. In these cases it is essential that the
boundaries between organizations are clear and understood correctly. The importance

 Integration Use Cases – An Applied UML Technique 191

of interface documentation and management should not be underestimated in projects
especially when they make changes to several systems communicating with each
other. As important it is to understand the workflows between systems and how they
link to business processes being implemented.

Integration between enterprise systems has also become more important and,
starting from mid-1990s, companies have started to adopt the concept of Enterprise
Application Integration [7]. The EAI approach introduced middleware systems as
bridges between legacy systems. The use of separate middleware or “Enterprise
Service Bus” is targeted for simplicity and manageability through the reduction of the
number of interfaces between systems, but it also usually adds one more organization
to the project. The role of this intermediate system can be also confusing to legacy
system developers, who may be more accustomed to making point-to-point interfaces.
Therefore we see that organizations need easily approachable methods and techniques
that make explicit the interfaces and services between systems and dedicated
middleware.

Another trend is the popularity of commercial application packages, which have
taken room from the in-house software development. When systems are built on top
of ready made software, it is no longer possible to freely deploy the functionality
between the systems nor to define all the interfaces independently. Lauesen reports
the system integration with existing systems as one of the key issues when acquiring
commercial-of-the-shelf or COTS software [8].

We divide enterprise integration into technical and functional integration.
Functional integration defines what data should be synchronized between the systems
and how the different data models of systems are mapped. We believe that a visual
presentation of the roles and services between systems makes this functional
integration easier to implement.

The objective of this paper is to describe a new way of using UML use cases in
systems development projects involving integration and services between systems.
The technique, Integration Use Cases, emphasizes the role of intermediate systems
(such as service buses), but it does not require such and can be used in modeling
point-to-point integration as well. The technique has been created as a response to
experienced problems in real world systems development projects and therefore we
can provide examples and experiences from these projects. We use OpenUP/Basic [9]
as an example of a software development framework in which Integration Use Cases
can be used. In practice, however, Integration Use Cases can be used as a part of any
software development process.

We use Zachman Framework [10] here to position the method into the bigger
perspective. The Zachman Framework is a framework for enterprise architecture
providing a formal and structured way of defining an enterprise. Integration Use
Cases are used to define logical relationships between systems, not for defining the
technical interfaces. If mapped into the Zachman Framework, the technique can be
used to model the Function cell in the System Model.

The layout of this paper is as follows: Integration Use Cases, an extension to UML
use case modeling is presented in Section 2. Section 3 presents with an example how
the technique can be applied during software development projects, followed by
Section 4 introducing the service repository view. The paper concludes with some
practical experiences and discussion.

192 V. Alkkiomäki and K. Smolander

2 Integration Use Cases

An Integration Use Case (IUC) represents the abstract service interface between
service provider(s) and service consumer(s). If an enterprise service bus (ESB), a
messaging queue or other middleware system is used in the system integration, then
the Integration Use Case describes also the role and actions of the middleware
between the systems. The IUCs are used to model the functional requirements of the
services only. Other techniques are needed to refine the non-functional and quality
aspects of the services.

IUCs are based on the UML standard [11] and they do not introduce any new
elements to the UML. IUC applies the standard UML elements and defines a
technique of how to model use cases with a service oriented approach. Use case
diagram was chosen since the scope is to visualize the functional requirements needed
in each system being integrated and to define the required services in between. Other
UML diagrams can be used in addition to the textual specification to define each use
case with more details.

Integration Use Cases can be used for modeling services from two different
viewpoints during their life-cycle. Services are usually and initially created into a
Project View during development projects. When projects are finished and services
are put into production, the Project View is no longer feasible as the scope of a project
very seldom includes the whole enterprise and its services. For maintenance and
classification of the services the Integration Use Cases are put into the Repository
View (see Section 4).

An IUC consists of two parts: a graphical diagram and a textual specification. In
the Zachman Framework [10] the first one could be used to visualize the system
landscape in the Function cell of the System Model and the latter one for defining
interfaces and technical processes in the Function cell of the Technology Model.

The idea behind Integration Use Cases is to make explicit the services between
systems in a complex system landscape, such as used in large enterprises. Another
target is to have an architectural view of the project that can be checked against
business process specifications.

Both asynchronous and synchronous Integration Use Cases can be seen as services.
Asynchronous services simply do not provide an immediate response and can be used
for example to synchronize data between systems. In asynchronous IUCs the provider
of the information (an asynchronous service) does not need to know who is using it or
when. In this way the systems providing and consuming the service can implement
looser coupling than in synchronous interfaces where both systems must be up and
running at the same time.

2.1 Graphical Integration Use Case Diagram

Use cases are used in modeling real world interactions of a system and its context
[12]. Integration use cases take particular account of the interfaces between systems.

To introduce the artifacts of Integration Use Cases, we take an example where a
user makes use of In-House System A to send a message to the company’s
subcontractor (Figure 1). System A calls an intermediate broker system to pass the
message to another In-House system. This system then takes care of the
communication to an external third party system.

 Integration Use Cases – An Applied UML Technique 193

Fig. 1. An example system landscape

Mapping the example into an Integration Use Case Diagram would create a model
as presented in Figure 2 below.

Fig. 2. Integration Use Case Diagram of the example landscape

Integration Use Cases can be used with or without an intermediate ESB (Enterprise
Service Bus) system. In case it does not exist, it can be replaced with an abstract
service interface “Services”, which represents the interface specification between the
service requester and the provider. Of course only synchronous interfaces can be
implemented without an ESB or other middleware and the implementation of
complex workflows between systems will be difficult without one.

194 V. Alkkiomäki and K. Smolander

Our example contains already most of the concepts of Integration Use Cases. A full
mapping of concepts into UML version 2.0 Use Cases [11] is as follows:

• Users of the in-house systems are modeled as actors
• An additional qualifier can be used to identify the business process state where

the user is acting. For example names “Customer Service Agent::Phase A” and
“Customer Service Agent::Phase B” can distinguish the roles in different phases
of the underlying business process.

• In-house systems participating to the business process are modeled as subsystems
• Interactions between systems are modeled as separate use cases within an

additional subsystem (these are called Integration Use Cases).
• If an intermediate broker system is used in the enterprise, then the subsystem is

named after it.
• If a broker system does not exist and systems call each other directly, then the

subsystem name is “Services”.
• Integration Use Cases providing synchronous services should have name

starting with “Request” or “Process” whereas IUCs providing asynchronous
services should be named starting with “Distribute”.

• Interfaces between systems are modeled with dependency relationships.
• Use cases used by a user in a business process are modeled as use cases inside the

subsystem through which they are used (these are called System Use Cases)
• External third parties participating in the interactions are modeled as actors
• Packages are used to group the IUCs in the repository. One group containing IUCs

relates to one business object.

Fig. 3. Artifacts of Integration Use Case Diagram

An example of using an IUC diagram can be found in Figure 3. An informative
metamodel of IUC artifacts is presented as an UML class diagram in Figure 4.

 Integration Use Cases – An Applied UML Technique 195

Fig. 4. An informative metamodel of IUC artifacts

2.2 Textual Integration Use Case Specification

For each Integration Use Case there should be a more precise description describing
the interface between systems and the possible functionality inside the ESB system.

The grouping of Integration Use Cases between a project and a repository view
differ significantly. For example a project may be implementing a new system to the
existing system landscape and it requires an access to the billing system, customer
data and to the system delivering products to the customer. Reuse of existing
customer and billing services and systems may require enhancements to them. During
the project it is essential to know all the changes that are needed and how separate
services are used to implement them. But when the enhancements have been
implemented and put in production, it is no longer mandatory to know, which project
implemented what enhancement. In this maintenance phase it is more valuable to
know what are the systems using some service than what is the history of
creating one.

To make the transition from the project view to the repository view easy, all
service or IUC descriptions should be written one document per an IUC basis. This
way they can be easily moved to the repository after the project.

A textual IUC specification includes at least the description of:

• The normal workflow of the IUC on an ESB System
• Alternative workflows
• Error handling
• Input / Output Data definition
• Data security classification

Different aspects of the IUC can be defined in separate phases of the project. For
example, in the early phases of the project model it is usually enough to model the
data in a general level and it can be specified more precisely in later phases with
formal languages like XML Schemas [13].

196 V. Alkkiomäki and K. Smolander

3 Project View

During development projects Integration Use Cases should be derived from the
business processes being implemented keeping in mind that the IUCs should be
reusable. Identifying IUCs require both process and architectural knowledge of the
environment. For example, in OpenUP process model [9] the IUCs should be
modeled by the architect of the project in co-operation with an analyst.

Adding Integration Use Cases to the OpenUP/Basic framework [9] can be carried
out generally as follows:

• Integration Use Case diagrams are created like other use case models in the
requirements domain [9].

• Textual Integration Use Case specifications are created like other use case artifacts
and the existing Use Case Specification template [9] can be used as the basis for
IUC Specification.

It is not mandatory to use UML or use cases when modeling the internal behavior of
in-house systems. Furthermore, a document describing the behavior of the system is
not needed when drawing use cases into IUC diagrams. One can use for example titles
of user interfaces or forms as a source for legacy system use case names, if use cases
were not originally used to model the functionality of the system. The point is to
name the functionality in the in-house system where the user action is made so that it
is meaningful and unique from both the end user and the in-house system developer
point of view. This way it is possible to check the sanity of the diagrams from the end
users point of view and create a partial mapping to the in-house system vocabulary
as well.

Similarly, service interface names or API names can be used as a basis when
naming the service providing system side use cases. The required input data can be
then easily traced from the technical documentation.

From the IUC point of view it is essential to identify the required input and output
data of the service. The minimal content of the input data consists of the data needed
to call all the services used during the IUC. Modeling the system use cases can be
used to identify deficiencies in the process between systems. In Figure 5 below, we
can notice that the data available in “Create Customer” use case does not contain the
billing address and it cannot therefore call the “Distribute New Customer Data” IUC,
which needs the data to call the creation services provided by the billing system.

Noticing these small deficiencies in input data in late phases of the project can lead
to expensive changes or quick-and-dirty solutions ruining the idea of general purpose
and reusable services.

Identifying the required output data can be done in similar fashion. If existing
services do not provide all required data, then they need to be enhanced. This is also
good to know as early as possible.

When defining the input and output data, it is a good practice to publish full
business objects to the requesting system. Publishing all data elements related for
example to a customer object makes the service more reusable as the receiving system
can decide what data elements to use and what to filter out.

 Integration Use Cases – An Applied UML Technique 197

Fig. 5. Example of input data for Integration Use Case

Use case diagrams can easily become large when modeling complex business
processes. Normal best practices for modeling use cases apply to integration use cases
as well and in complex cases the diagram should be split into smaller diagrams
representing reasonably independent parts. However, there are some issues, which are
particular for system integration and IUCs:

• Use granularity of full business objects while identifying the IUCs. Services are
more reusable when they cover full business objects and the cost for implementing
all elements of a business object aren’t usually that high comparing to the costs for
implementing only those elements needed in the first case.

• “Services” subsystem should be drawn in the middle of the diagram, as it has
central role in the system landscape.

• The services can be split into smaller services inside the system and integration use
cases, but only the composite service should be drawn on each system. Diagrams
are meant to give the overall picture of the roles and responsibilities of each system
and thus the internal implementation should be described further in the textual use
case specifications.

• A puritan implementation would require that the business logic would access the
enterprise master data through the ESB or Service layer even when the logic and
data reside in the same system. However, this is rarely neither feasible nor
possible.

3.1 An Example Business Process

In the following example we model an imaginary and simplified “Receive Order”
business process. It consists of four different phases and its purpose is to receive an
order from a customer and store it in the associated enterprise systems.

198 V. Alkkiomäki and K. Smolander

The process (Figure 6) starts when a customer calls to the company's contact center
and an agent receives the call.

The example phases are:

• Phase A: “Check if existing customer”
• The agent checks if the customer's name already exists in the systems.

• Phase B: “Check data”
• The agent asks if the customer's address is correct or types in the new address if

the customer does not exist.
• Phase C: “Make Order”

• The agent asks which product the customer wants to buy and types in the order.
• Phase D: “Add Express Fee”

• The agent asks if the customer wants to make an express order and adds an
additional fee for the order.

Fig. 6. Imaginary business process

Following the OpenUP/Basic [9] framework, an analyst would identify the needed
system use cases in the “Manage Requirements” activity and their content during the
business process:

• Phase A: Search existing customer data
• The agent needs an access to the customer data with customer name as the

search criterion.
• Phase B: Update customer data

• The agent must be able to update the customer data in all systems.
• Phase C: Order product

• The agent must be able to create an order, which is sent to the subsidiary that
actually delivers the goods as well as to the billing that will generate the bills.

• Phase D: Add Express Fee
• The agent must be able to add one time fee to the customer's next bill.

After defining the system use cases, the analyst would refine the requirements for
services and create an Integration Use Case Diagram (Figure 7). Further on, the
architect could make the decisions that the CRM system will be the master for the
customer data, the billing system for billing events and the ERP system for the
stock information. The architect also decides which systems implement each
system use cases. The analyst will then finalize the IUCs (Figure 7) based on the
decisions.

In addition, the analyst creates textual Integration Use Case specifications. An
example of textual specification is presented in Table 1 for the “Distribute Customer
Data” IUC.

 Integration Use Cases – An Applied UML Technique 199

Fig. 7. An integration use case diagram for the example business process

Table 1. Integration Use Case specification

 Integration Use Case Specification
Distribute Customer Data

Subject Specification

Basic Flow of
Events

1. The customer data update message is published through the ESB by the
customer master system.
2. The update message is delivered to the ERP system as is.
3a. The billing system requires only updates for external customers and
thus all company subsidiaries are filtered out.
3b. The message is translated into the billing system message syntax
3c. The translated message is delivered to the Billing system
4. An acknowledgement of successful distribution of the message is
returned back to the caller of the service.

Alternative Flows None

Error handling E1 - Customer data master cannot publish message.
 - The master system tries to reconnect and resend. If resends fail, it will
notify the user.

E2 – Subscribing system cannot receive the message.
 - The message is queued to a reliable storage for later delivery.

E3 – Message translation fails.
 - A rollback message is sent to the ERP system.
 - An error message is returned to the caller of the service.

200 V. Alkkiomäki and K. Smolander

Table 1. (Continued)

Input Data Customer basic data (Name, Social security number, Address, Company).
XML Schema http://xxx/yyy.xsd

Output Data Service status code and optional error message.
XML schema http://xxx/zzz.xsd

Data
classification

Classified
- Contains social security numbers of individual persons.

4 Service Repository View

The maintenance and reuse of existing service interfaces require different kind of
view than development projects. Projects usually require smaller or bigger changes to
various enterprise systems, but after the project has gone live, the project scope isn’t
often meaningful anymore. Instead, another view to the service repository is needed
for maintenance and enabling reuse in following projects.

Fig. 8. Example package of IUC’s related to the Customer business object

In the maintenance mode of Integration Use Cases, business data objects are
usually a more meaningful grouping basis for services (see Figure 8). Especially if the
company has defined an information architecture describing most important business
objects, then it should be linked to the services providing access to them as well.
Companies using Zachman Framework should use same grouping principles for IUCs
as used for grouping the objects in the Data cell of the System Model [10]. Grouping
services this way enables incremental building of services for certain business data
and reduces the risk of creating overlapping services for the same data.

 Integration Use Cases – An Applied UML Technique 201

In the maintenance mode of the IUCs the internal view of the systems providing or
consuming the services is no longer as important as during the project phase. The
interface specifications and workflows should all be finished and frozen and there
should be no major changes to the services or IUCs anymore. It makes more sense to
emphasize the loose coupling of the systems and document only which systems are
using and providing different services, not how or in which state they do so.

When major changes are required to the existing IUCs, then the project view
should be taken back into use.

IUCs or services can also have a unique identifier as part of the name. This will
help to manage large repositories.

5 Tools

As Integration Use Cases do not introduce any new concepts compared to the UML
use cases, it should be possible to use any tool compliant with UML version 2.0. A
list of tools can be found from OMG Web site [11].

Same standard tools can be used for modeling both project and repository view
diagrams. UML packages can be used for grouping the IUCs in the repository and
thus the standard grouping functionality of the tool can be used.

6 Practical Experiences and Conclusion

Deriving exact system requirements from business processes integrating multiple
systems is a difficult task. The requirement of splitting the solution into reusable
services makes it even harder. The presented technique tries to ease this through
visualization. Instead of presenting a totally new method for modeling requirements
we have tried to reuse existing best of breed tools and methods. With this approach,
the presented technique should be easier to adopt in practice among those who can
already model use cases.

The presented technique is an enhanced version of the technique used in a large
Finnish ICT enterprise, which we call Findigi below. Findigi has used IUCs to model
interactions of business critical systems since 2004. The actual technique Findigi has
used is a mixture of the two views presented in this paper. As most of the key systems
in the Findigi’s system landscape were replaced during this period, the difference
between project and repository view was not as clear as defined here. In Findigi a
significant part of the services were created from scratch during the period and thus
the grouping of services was almost the same during the project and after that in the
maintenance mode. Modeling of the IUCs has been centralized into an established
system integration competence center and only few people are required to model the
services needed by the key system of the enterprise.

There are currently (fall 2006) around 35 in-house systems in Findigi using the
services provided by the ESB layer of the enterprise. The ESB layer provides an
access to around 50 services in total and all of these have been identified and modeled
with Integration Use Cases. Each in-house system is using one to ten different
services depending on the system needs. Additionally, IUCs have been used in
defining some point-to-point integration cases, where the volume or importance of the
transactions has not required separate ESB systems to be used.

202 V. Alkkiomäki and K. Smolander

No significant changes have been made to the technique since it was taken into use
in Findigi. Currently, incremental development of services causes some difficulties, as
the modelers need to know in which project the IUCs were originally created. In this
paper we make the distinction between the project and repository view to IUCs to
overcome these difficulties. This kind of separation is not currently used in Findigi.

The point-to-point services or interfaces, which are implemented without using the
centralized ESB system, cause problems in Findigi. In these cases the IUC
documentation has not been kept up to date after the implementation project has
finished and thus the central control over these interfaces is loose compared to the
ones using the central ESB.

Applying the technique into practice should be studied further before making any
long lasting conclusions, especially about the repository view, which has not been
tested in the real life cases yet. However, the experiences in Findigi show that the
technique is usable, easy to adopt, and eases the management and specification of
requirements in service oriented architecture.

References

[1] Leavitt, N.: Are Web services finally ready to deliver? Computer 37(11): 14–18. (2004)
[2] Kim, S. M., Rosu, M. C.: A survey of public web services. In: Proceedings of the 13th

international World Wide Web Conference on Alternate Track Papers & Posters
(New York, NY, USA, May 19-21, 2004). WWW Alt. '04. ACM Press, New York, NY,
312–313 (2004)

[3] Fan, J., Kambhampati, S. 2005. A snapshot of public web services. SIGMOD Rec. 34(1),
24–32 (2005)

[4] Jones, S.V., Maiden, N.A.M., Zachos, K., Zhu, X.: How Service-Centric Systems Change
the Requirements Process”. In: Proceedings of the 11th Workshop on Requirements
Engineering: Foundation for Software Quality: REFSQ2005, Essener Informatik Beitrage
(2005)

[5] Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques,
John Wiley & Sons (2000)

[6] Bergman, M., King, J.L., Lyytinen K.: Large-Scale Requirements Analysis Revisited:
The Need for Understanding the Political Ecology of Requirements Engineering.
Requirements Engineering 7(3) 152–171 (2002)

[7] Lee, J., Siau, K., Hong, S.: Enterprise integration with ERP and EAI. Commun. ACM
46(2), 54–60 (2003)

[8] Lauesen, S. (2004). COTS Tenders and Integration Requirements. Requirements
Engineering Conference, 2004. In: Proceedings. 12th IEEE International, Vol. 1(11)

[9] Eclipse Foundation: Eclipse Process Framework Project (EPF). OpenUP/Basic,
http://www.eclipse.org/epf/.

[10] Zachman and J. A.: A framework for information systems architecture. IBM Syst. J.
26(3), 276–292 (1987)

[11] OMG: Unified Modeling Language version 2.0. Online, http://www.omg.org
[12] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language user guide.

Addison Wesley Longman Publishing Co., Inc., Redwood City, CA. (1999)
[13] W3C: XML Schema. Online, http://www.w3.org/XML/Schema.

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 203–217, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal-Constraint Lexicons for Requirements
Specifications

Stephen Boyd1, Didar Zowghi2, and Vincenzo Gervasi3

1 Softability Pty Ltd & University of Technology Sydney, Australia
2 University of Technology Sydney, Australia

3 University of Pisa, Italy
sboyd@softability.com.au

didar@it.uts.edu.au
gervasi@di.unipi.it

Abstract. Constrained Natural Languages (CNLs) are becoming an increas-
ingly popular way of writing technical documents such as requirements specifi-
cations. This is because CNLs aim to reduce the ambiguity inherent within
natural languages, whilst maintaining their readability and expressiveness.

The design of existing CNLs appears to be unfocused towards achieving
specific quality outcomes, in that the majority of lexical selections have been
based upon lexicographer preferences rather than an optimum trade-off between
quality factors such as ambiguity, readability, expressiveness, and lexical
magnitude.

In this paper we introduce the concept of ‘replaceability’ as a way of identi-
fying the lexical redundancy inherent within a sample of requirements. Our
novel and practical approach uses Natural Language Processing (NLP) tech-
niques to enable us to make dynamic trade-offs between quality factors to opti-
mise the resultant CNL. We also challenge the concept of a CNL being a
one-dimensional static language, and demonstrate that our optimal-constraint
process results in a CNL that can adapt to a changing domain while maintaining
its expressiveness.

1 Introduction

Eliminating the ambiguity inherent within a requirement specification is the seem-
ingly unattainable ambition of the systems engineering zealot. This is because ambi-
guity is characteristic of poor quality requirements, and poor quality requirements are
characteristic of challenged projects [1]. It has been suggested that the ambiguity of a
requirement can be reduced if the lexicon and/or grammar used to express the re-
quirement is constrained to a subset with stronger properties [2][3]. A Constrained
Natural Language (CNL) is a subset of a Natural Language (NL) that has been re-
stricted with respect to its grammar and/or lexicon [3]. By restricting the grammar,
complicated sentence structures can be simplified. By restricting the lexicon, unnec-
essary linguistic variations can be removed, and retained words can be less ambigu-
ously defined.

One of the biggest criticisms of CNLs is that they tend to be unnatural to read and
write [4]. Goyvaerts [5] claims that writing requirements in controlled languages is

204 S. Boyd, D. Zowghi, and V. Gervasi

20% more time consuming that writing requirements in unrestricted NLs. Somers [4]
highlights the importance of involving domain authors in all stages of CNL develop-
ment to ensure the resultant lexicon is natural w.r.t. the domain of interest.

There is a tendency to assume that reduced expressiveness is an unavoidable con-
sequence of constraining a NL. This is because the expressiveness of a language is a
measure of the variety of lexical and grammatical constructions it allows [4]. Since a
CNL constrains such lexical and grammatical constructions – the subsequent expres-
siveness of the language is expected to decline. Moreover, existing CNLs are static
languages that cannot adapt to express words that have not been designated in ad-
vance. CNLs are typically derived from large samples of naturally occurring text in a
particular domain [6]. In many cases, a combination of domain experts and automatic
parsers are used to extract domain keywords and reoccurring phrases respectively [7].
Fundamentally, this implies that a typical CNL is specific to a particular domain
[7][8], and is largely driven by the lexicographers preference. Furthermore, there is a
lack of evidence in the literature to confirm whether or not the design of existing
CNLs has been rigorously focused upon achieving specific quality outcomes such as
unambiguity, readability, and expressiveness.

In this paper we present our fully automatable approach to optimally-constraining
the lexicon of a CNL. Our approach aims to exploit important semantic relationships
between the words in a requirements sample as a way of logically reducing a NL to
achieve a desired level of language quality. We propose a new concept called ‘re-
placeability’ which builds upon an existing concept of ‘similarity’. We also show how
our CNL lexicon remains able to adapt to accommodate new lexical terms that are en-
countered post its design.

This is significant because existing CNLs tend to be the static result of lexicogra-
pher analysis. It is not clear how an existing CNL would be adapted to a new domain
– or even how it could be expanded to accommodate a larger sample of text from the
same domain. It is of course unlikely that the original lexicographers would always be
available to extend their original analysis – and even if they were, it is unlikely that
the results would be consistent. On the other hand, we are proposing a new applica-
tion for existing and well-understood Natural Language Processing (NLP) techniques
that practically eliminates the need for a lexicographer in the design of a CNL.

2 Optimal-Constraint Process – Design Goals

There are two fundamentally different constraints underlying any CNL. Firstly there
is the constraint on the words that constitute each part of speech (the lexicon), and
secondly there is the constraint on the grammatical constructions that will be allow-
able in the language. The focus of this paper is on optimally-constraining the lexicon.
We do not address the issue of constraining the grammar.

Three design goals have been selected to optimally constrain the lexicon – that is to
be readable, sufficiently expressive, and unambiguous. Our objective is to achieve the
perceived advantage of CNLs (reduced ambiguity), whilst also attempting to overcome
the perceived disadvantages (reduced readability and reduced expressiveness).

 Optimal-Constraint Lexicons for Requirements Specifications 205

2.1 Design Goal #1: To Be Readable

A popular criticism of CNLs is that they are unnatural to read and write [4]. Swaffar [9]
suggests that what makes text readable is that it “deals with topics of interest or familiar
to the intended readers (so that it allows for communication and expressions from within
readers' frame of reference).” When a lexicon is constrained, it is unlikely that all words
from within the readers' frame of reference will be contained within the constrained
lexicon. Consequently, readability is expected to decline.

We believe that when constraining a language there must be cognisance paid to the
inclusion of words from the readers' frame of reference. Since we are proposing to de-
rive the CNL from a corpus of existing requirements within the domain of interest, the
readers' frame of reference should present itself within the text. For example, by
counting the frequency of each disambiguated word within the sample, we gain some
insight into the popularity of certain words to express certain meanings. We can then
use this insight to help ensure that conventional terms are retained and unconventional
terms are replaced within the CNL.

2.2 Design Goal #2: To Be Sufficiently Expressive

It appears that there are two fundamentally different schools of thought on the concept
of expressiveness. Gnesi et al [10] and Fabbrini et al [11] imply that expressiveness
relates to the ability of a language to convey meaning to a human reader, whereas
Nyberg et al [4] believe that expressiveness of a language is some measure of the va-
riety of lexical and grammatical constructions it allows (irrespective of the reader).
Here we have two different measures of the size of a language – one relates to the
number of semantic meanings that can be generated by a language, whereas the other
relates to the number of syntactic expressions that can be generated (which is nor-
mally infinite since most useful grammars allow recursion).

Figure 1 shows that a CNL consists of a grammar and a lexicon of ‘L’ words. The
grammar consists of ‘n’ grammatical rules that apply to its eight main parts of speech
(POS) [13]. Each POS consists of ‘W’ words, with each word having ‘P’ meanings.
The CNL can generate ‘E’ expressions, with each expression having ‘M’ meanings as
interpreted by the ‘n’ stakeholders. The domain of interest is scoped by ‘R’ require-
ments. Each requirement is an expression that may (or may not) be able to be gener-
ated by the CNL – this is indicated as 0..1 multiplicity [12].

The expressiveness of a CNL is some measure of the variety of lexical and gram-
matical constructions it allows [4]. In our previous work, we proposed two measures
of expressiveness as follows [12]:

 Syntactic Expressiveness is the size of the set of unique ‘E’ expressions that can
be generated from the CNL.

 Semantic Expressiveness is the size of the set of unique ‘M’ meanings that can be
generated from the CNL.

To achieve our design goal of sufficient expressiveness means that when removing
‘L’ words from the lexicon we must ensure that the ‘M’ meanings that are relevant to
the ‘R’ requirements from our domain of interest are preserved, i.e. the intention is
only to remove redundant and irrelevant words.

206 S. Boyd, D. Zowghi, and V. Gervasi

Fig. 1. CNL Abstract Model

2.3 Design Goal #3: To Be Unambiguous

The IEEE Recommended Practice for Software Requirements Specifications [14]
states that “An SRS is unambiguous if, and only if, every requirement stated therein
has only one interpretation.” This definition is consistent with that of Kamsties [15],
Davis [16] and Harwell [17]. According to Gause and Weinberg [18], ambiguity has
two sources, missing information and communication errors. Missing information has
various reasons. For instance, humans make errors in observation and recall, tend to
leave out self-evident and other facts, and generalize incorrectly. Communication er-
rors occur because of expression inadequacies in the writing.

There is a relationship between the expressiveness of a language, and the number
of communication errors that result from the use of the language. Typically, the more
constrained the lexicon, the more polysemous each word needs to be to maintain se-
mantic expressiveness. Kamprath [7] believes that reducing polysemy is one way of
reducing communication errors, since constraining each lexical term to a single mean-
ing prevents miscommunication of the word sense. The corollary to this is of course
an increase in lexical magnitude.

We believe that there are certain parts of speech that encourage authors to “leave
out self-evident and other facts, and to generalize incorrectly”. The parts of speech we
are referring to are adjectives and adverbs. It is commonly felt that restricting the use
of adjectives and adverbs should be a goal of any CNL: authors should be forced into
using proper nouns (rather than adjectives and common nouns) and articulating per-
formance requirements unambiguously (rather than using adverbs).

3 Optimal-Constraint Process – Description

3.1 Introducing Replaceability

In this section we discuss the concept of replaceability and propose a measure that
can be used to optimise the constraining process with respect to our chosen Design

 Optimal-Constraint Lexicons for Requirements Specifications 207

Goals. Before defining replaceability, it is important to understand the underlying
concept of similarity. Measures of similarity quantify how much two meanings are
alike and are therefore useful in identifying redundancy in a language. Similarity is a
well-defined subset of relatedness which includes synonyms, hypernyms and hypo-
nyms/troponyms [21].

Whilst Miller and Charles [22] claim that similarity tools provide some measure as
to the degree of contextual interchangeability, or the degree to which one word can be
substituted by another in context, they can be misleading if used carelessly. For ex-
ample, there is a path length of four between ‘apple#n#1’1 and ‘orange#n#1’ in
WordNet (where path length is defined as the number of concepts between the two
terms), and while an apple and orange are similar in that they are both edible fruit – it
would be misguided to think that either term could replace the other in a CNL.

There is also the issue that whilst all ‘apples’ are ‘edible fruit’, not all ‘edible fruit’
are ‘apples’. In other words, whilst you may be able to replace a specific concept with
a more general concept (i.e. hypernym) – you should not replace a general concept
with a more specific concept (i.e. hyponym). This presents an ontological dimension
to the CNL design. The question here is how the relative positioning of a concept
within the semantic network affects its ability to be replaced by another (similar) con-
cept. Whilst “similarity” is a specialised form of “relatedness” [21], we propose that a
new concept “replaceability” be introduced that represents a specialised form of
“similarity”.

Replaceability: We define replaceability(x,y) as a measure of the ability of a concept
‘x’ to be replaced by another concept ‘y’ given a particular domain. Replaceability is
asymmetric because there is no guarantee that the inverse replacement will be valid.
This is particularly the case where a concept has been replaced by its hypernym (for
instance, not all ‘edible fruit’ are ‘apples’). We believe that “replaceability” should be
a function of similarity, conventionality, polysemy, and lexical ontology. We propose
the following measure:

Replaceability x,y
` a

= Similarity x,y
` a
A

F y

F x

fffffffff

A

P x

P y

ffffffff

Where:

1. Fx/Px is the frequency/polysemy of x within the requirements sample, and
2. ‘y’ is a synonym (or hypernym) of ‘x’, and
3. Similarity(x,y) ≥ Similarity Threshold, and
4. Similarity is a unity-normalised measure.

Then:
Replacebility(x,y) ≥ 1 means x can be replaced by y.
Replacebility(x,y) < 1 means x cannot be replaced by y.

(1)

This proposed measure for replaceability addresses our three design goals. Read-
ability is addressed since replaceability(x,y) is increased when ‘y’ is used more
frequently in the domain than ‘x’. Communications ambiguity is addressed since re-
placeability(x,y) is increased when ‘y’ is less polysemous than ‘x’, and ambiguity re-
lating to “incorrect generalisation” is addressed by considering the lexical ontology
and limiting replacements to synonyms and similar hypernyms only. Semantic

1 We use the notation word#pos#sense to unambiguously define the meaning of word. ap-

ple#n#1 refers to the first sense of the noun apple in WordNet.

208 S. Boyd, D. Zowghi, and V. Gervasi

Expressiveness is addressed since a word will only be replaced if there is another
word that is a synonym or a (similar) hypernym, and that is used more frequently
and/or less polysemously. If there is not a word that meets this criteria, then the origi-
nal word is retained in the CNL. I.e. if a words meaning cannot be semantically ex-
pressed by another lexical term, then the original lexical term is retained.

Despite the replaceability rule whereby a word can only be replaced by its syno-
nym or similar hypernym, there remains a potential for “incorrect generalizations”
resulting in an increase in ambiguity. A good example of this might be if our require-
ments ReqtNL sample was extracted from the specification for the Control Computer
within an Automatic External Defibrillator (AED) – a piece of medical equipment
used in the defibrillation of the heart. Within this specification, the verbs “reboot#v#1
-- cause to load an operating system and start the initial processes” and “resusci-
tate#v#1 -- cause to regain consciousness” would probably be encountered. Counting
the nodes between these two verbs in WordNet [23] we get a path length of two (re-
boot#v#1 resuscitate#v#1), which means that the concepts are very similar. Given
our proposed measure for replaceability, there is great potential for resuscitate#v#1 to
become the CNL term to replace reboot#v#1 (given the hypernymic relationship). It
would (of course) be totally unconventional to ever replace the verb reboot#v#1 with
its hypernym resuscitate#v#1. If this “incorrect generalisation” was permitted to oc-
cur, then the CNL may well increase ambiguity (rather than achieving its goal to be
unambiguous).

In the context of our AED example, the verb reboot#v#1 would likely be used
when talking about the control computer, and the verb resuscitate#v#1 would likely
be used when talking about the human patient. Interestingly, the shortest path between
the object nouns computer#n#1 and human_being#n#1 in WordNet is quite long (at a
length of 16) [23]. So although the two verbs are very similar, the fact that their object
nouns are so dissimilar may provide the extra dimension of information that is re-
quired to prevent this “incorrect generalisation”. So far we have not discussed the
scope of words (i.e. ‘x’ and ‘y’) that are measured against each other for replaceabil-
ity. For example, is it possible that we could use our knowledge of dissimilarity
between the object nouns computer#n#1 and human_being#n#1 to prevent the com-
parison of reboot#v#1 and resuscitate#v#1 (such that reboot#v#1 does not get
replaced by resuscitate#v#1)?

The replaceability measure that we presented above will work for any scope of
words and is not sensitive to inter-relationships between parts of speech. We propose
that instead of modifying the replaceability measure to account for inter-relationships
between parts of speech, we introduce the concept of Replaceability Matrices to manage
the scope of words that are appropriate to be compared to each other for replaceability.
By appropriate, we mean that the words within a single Replaceability Matrix are all
from the same part of speech, and all associate with similar words from grammatically
related parts of speech (we discuss this in more detail (for verbs) in Section 4.1.1).

3.1.1 Replaceability Matrices
The Replaceability Matrix in Table 1 is effectively an N2 matrix that we will use to
capture replaceability measurements for words from the same part of speech that are
associated with similar words from related parts of speech. We will use the Replace-
ability Matrix to constrain the lexicon, since we will be making decisions on which
words are to be replaced.

 Optimal-Constraint Lexicons for Requirements Specifications 209

Table 1. Replaceability Matrix

NL XNL(FX)(PX) YNL(FY)(PY) ZNL(FZ)(PZ)
XNL(FX)(PX) Repl(XNL,XNL) Repl(XNL,YNL) Repl(XNL,ZNL)
YNL(FY)(PY) Repl(YNL,XNL) Repl(YNL,YNL) Repl(YNL,ZNL)
ZNL(FZ)(PZ) Repl(ZNL,XNL) Repl(ZNL,YNL) Repl(ZNL,ZNL)

To understand Table 1, it is essential to understand that XNL is a concept that is
comprised of a NL lexical term X as well as a PoS and a sense (resulting from the
shallow parsing and Word Sense Disambiguation (WSD) respectively). Note that (FX)
means the Frequency of XNL as relevant to this Replaceability Matrix. Therefore, if
XNL happens to be a verb that is also used with other dissimilar subject (or object)
nouns, then it would have other FX’s as applicable to each of the other Replaceability
Matrices. Similarly, (PX) means Polysemy of XNL with respect to this specific Re-
placeability Matrix, i.e. (PX) does not mean the polysemy of XNL as found in a dic-
tionary. Using a dictionary will likely over-inflate the polysemy count of many words
that may be unambiguously used within the domain. YNL and ZNL have been used in
Table 1 to give the impression that typically there will be a number of concepts being
compared in a Replaceability Matrix. Each intersecting cell in the Replaceability Ma-
trix represents the Replaceability between two concepts, i.e. Repl(XNL,YNL) measures
the ability of concept XNL to be replaced by concept YNL. The following rule applies.

Rule #1: The concept at the start of a row is replaced by the concept corresponding to
the column having the highest replaceability value on that same row.

Notice that it is possible for a concept to be selected as the replacement for itself –
which in effect means the original NL term is retained. This is exactly how the CNL
achieves its goal of being sufficiently expressive.

3.2 Optimal-Constraint Process

Figure 2 presents the process that we have developed to optimally constrain the lexi-
con of a CNL. The process is optimised in the sense that we employ a replaceability
measure that is focused on achieving our design goals. One of the major challenges
with optimally constraining a lexicon is determining which words are redundant or ir-
relevant and can be removed without reducing the semantic expressiveness of the lan-
guage for a selected domain of interest. One of the novel contributions of this research
is the application of existing NLP tools and techniques to this process, such that the
result is goal-optimised and repeatable.

Figure 2 shows that the design process begins with a NL requirement (ReqtNL).
The first step is to shallow parse the ReqtNL to determine the parts of speech and
grammatical phrases. Shallow Parsing can be used to perform tokenisation, POS tag-
ging, and phrase boundary detection (e.g. noun phrases, verb phrases, prepositional
phrases, etc.) such that grammatical relations can be identified [19]. Word Sense Dis-
ambiguation (WSD) would then occur aiming to associate a given word in a passage
of text with the authors original intended meaning or sense [20]. At this point, each
word in each ReqtNL could be represented in the form of word#pos#sense.

210 S. Boyd, D. Zowghi, and V. Gervasi

Fig. 2. Optimal-Constraint Process Flowchart

The ‘Optimise?’ and ‘Translate?’ decision points reflect two fundamentally differ-
ent phases in the life of a constrained lexicon. The first phase could be considered the
‘setup phase’, where the ReqtNL sample would be injected into the optimal-
constraining process to update the Replaceability Matrices (recall Section 3.1.1). The
second phase could be considered the ‘operating phase’ where the established Re-
placeability Matrices are then used to replace each NL Requirement (ReqtNL) with its
semantically equivalent CNL alternative (ReqtCNL). In ‘setup phase’ the constraining
process would typically be optimising but not translating. In ‘operating phase’ the
constraining process would typically be translating but not optimising. The ‘Transla-
tion Possible?’ decision allows for the event whereby ReqtNL contains terms that have
no CNL translation in the established Replaceability Matrices. In this case it is
possible to optimise the Replaceability Matrices to accommodate the new concept –
ensuring that the constrained lexicon maintains sufficient expressiveness. Ideally, in-
experienced authors would be prevented from optimising the CNL such that is does
not accommodate their ‘bad habits’.

4 Optimal-Constraint Process – Design Decisions and Rationale

Whilst the Optimal-Constraint Process Description (Section 3) is intended to be non-
implementation specific and thus future-proof, the design decisions presented in this
section are based upon the capability of currently available technology. The expecta-
tion is that as NLP technology improves, future researchers can revise these decisions
without needing to revisit the Optimal-Constraint Process Description.

4.1 Parts of Speech to Constrain

Whilst it may be theoretically possible to apply the optimal-constraint process to each
of the eight main parts of speech, there are two reasons why we currently limit the ap-
plication of our process to verbs.

Firstly, subject and object nouns in requirement text are often domain-specific
proper nouns (e.g. the “SPS-49 Air Search Radar” rather than the “long-range high-
power radar”). The use of proper nouns also means that adjectives are rarely used in
requirement text (in fact, experts often recommend against the use of adjectives and
adverbs as they are seen as vague words [24]). Function words (determiners,

 Optimal-Constraint Lexicons for Requirements Specifications 211

prepositions, conjunctions, and pronouns) are already closed parts of speech and it
could be argued that further constraining the lexicon in these parts of speech is unnec-
essary. Interjections are, by their nature, inappropriate for use in technical writing
[13]. Therefore, when constraining the lexicon for writing requirements, it could be
argued that verbs are the only part of speech that should be constrained in this way.
Given there are over 29,000 verbs in the English language [25] and that on average,
verbs are the most polysemous part of speech [23], constraining verbs seems to be
necessary.

Secondly, the semantic networks that are in existence today do not manage hy-
pernymic or hyponymic (/troponymic) relationships between these other parts of
speech. Presently they are limited to nouns and verbs only. Miller [26] states that up-
dating WordNet with is-a relationships for adjectives and adverbs is a work in
progress.

4.1.1 Scope of Replaceability Matrices for Verbs
In Section 3.1 we introduced the concept of the Replaceability Matrix to be used as
the mechanism to manage the scope of words from the same part of speech, that are
associated with similar words from grammatically related parts of speech. For verbs,
the grammatically related parts of speech would be the subject noun and object noun
(transitive verbs). The following rule is proposed.

Rule #2: If
VerbA#Verb relates to SubjectA#Noun and ObjectA#Noun, and
VerbB#Verb relates to SubjectB#Noun and ObjectB#Noun;
then, VerbA and VerbB can only exist in the same Replaceability Matrix if SubjectA

and SubjectB are similar AND if ObjectA and ObjectB are similar.

4.2 Shallow Parsing and Word Sense Disambiguation

We decided to use the Memory Based Shallow Parser (MBSP) [27] to identify phrase
chunks in simple sentence requirements. Daelemans [27] claims that the MBSP is
over 90% accurate for noun and verb phrase detection, making the MBSP one of the
more accurate shallow parsers available. Manning [19] suggests that whilst NLP tag-
gers and chunkers can mine data automatically, it is often the case that in order to ob-
tain accurate results, the process must be highly interactive. We therefore decided to
use a human inspection to confirm the results of the MBSP.

Although there are automated WSD tools freely available, we trialled both Word-
Net::SenseRelate [28] and Sense Learner 2.0 [29] with both tools failing to accurately
disambiguate the requirement text in the majority of cases. The disappointing results
are believed to stem from the fact that WSD tools rely on contextual information to
make a probabilistic determination on the sense of each word. For example, to disam-
biguate a verb – the WSD tool would look at the sense of the surrounding nouns.
Given that in requirement specifications the surrounding nouns are typically domain
specific proper nouns, the WSD tool was unable to make sense of the necessary con-
textual information. Interestingly, Manning finds that human performance is typically
the upper bound for WSD [19]. For this reason we decided to manually disambiguate
the sense of each word. We used WordNet [23] as the reference dictionary.

212 S. Boyd, D. Zowghi, and V. Gervasi

4.3 Similarity Measurement

4.3.1 Similarity Measure
The decision has been made to use WordNet [23] as the semantic network for defin-
ing and relating lexical concepts. WordNet is an on-line lexical reference system
whose design is inspired by current psycholinguistic theories of human lexical mem-
ory. English nouns, verbs, and adjectives are organized into synonym sets, each repre-
senting one underlying lexical concept [26]. Synonym sets are then associated with
other synonym sets via lexical relationships (e.g. synonymy, antonymy, hyponomy
(“is a”), meronymy (“part of”), and morphological relationships). Word-
Net::Similarity [21] is a tool that draws upon the lexical network of WordNet to pro-
vide a measure of similarity between any two words from the same Part of Speech.
There are three inputs required for this tool to operate: word1#pos#sense,
word2#pos#sense, and the chosen Similarity Measure. The output is a value repre-
senting the similarity between the two concepts. We decided to use the Wu and
Palmer [30] similarity measure since its developers described this measure to be most
appropriate to a verb taxonomy.

4.3.2 Similarity Threshold
The Similarity Threshold is perhaps the most instrumental factor in trading off read-
ability, expressiveness, ambiguity, and lexical magnitude. In general, the higher the
Similarity Threshold the better the readability and expressiveness since there will be
fewer lexical replacements (and therefore more of the original and conventional NL
words will be available within the CNL lexicon). Ambiguity relating to “missing in-
formation” will likely be reduced with a higher similarity threshold, since there will
be a reduced potential for “incorrect generalizations”. On the other hand, it may be
possible to worsen the ambiguity relating to “communications errors” by raising the
Similarity Threshold, since words may be prevented from being replaced by less
polysemous, or more conventional alternatives.

When the Similarity Threshold is increased, so too is the number of Replaceability
Matrices, since there will be reduced similarity between Subjects and between Ob-
jects. Additionally, within each of the Replaceability Matrices, there will be reduced
similarity between verbs – resulting in reduced lexical replacements (and therefore
less reduction in the CNL lexical magnitude). In summary, the disadvantages of hav-
ing a high Similarity Threshold are that the resulting CNL lexical may be large, and
communications ambiguity may not be reduced by allowing less polysemous, or more
conventional replacements. Whilst we cannot recommend one magical similarity
threshold value that will work in all situations, we have found through our own em-
pirical research [12] that a similarity threshold of 0.6-0.7 seems to achieve a reason-
able trade-off between syntactic expressiveness and lexical magnitude when using
WordNet::Similarity with the Wu & Palmer measure.

5 Applying the Process – Example

The following example aims to solidify the readers understanding of our process by
applying it to a small sample of hypothetical requirements. Table 2 includes three

 Optimal-Constraint Lexicons for Requirements Specifications 213

columns. ‘ID’ is an arbitrary requirement identifier, ‘ReqtNL’ and ‘ReqtCNL’ present
the sample requirements before and after replacement respectively. We limit our ex-
ample to the constraining of verbs as per the decision made in Section 4.1.

Table 2. Example Requirements – ReqtNL and ReqtCNL

ID ReqtNL ReqtCNL
Req-01 The radar shall track aeroplanes… The radar shall trackobserve aeroplanes…
Req-02 The radar shall monitor helicopters… The radar shall monitorobserve helicopters…
Req-03 The radar shall observe aircraft… The radar shall observe aircraft…
Req-04 The 3d radar shall observe missiles… The 3d radar shall observe missiles…
Req-05 The radar shall monitor the interface… The radar shall monitor the interface…
Req-06 The captain shall be able to watch helicopters… The captain shall be able to watch helicopters…
Req-07 The radar shall watch meteorological balloons… The radar shall watch meteorological balloons…

Notice that Req-01-Req-07 have been simplified by truncating the Prepositional
Phrases (PP) that follow the Subject-Verb-Object triple. This is because our process
does not rely upon PP information to constrain verbs. For instance Req-06 should
probably state “The captain shall be able to watch helicopters from standing on the
bridge”. The first step of the process is to shallow parse the ReqtNL text. Using the
Memory Based Shallow Parser [27] on Req-01 gives:
[NP1

Subject The/DT radar/NNP NP1
Subject] [VP1 shall/MD track/VB VP1] [NP1

Object aeroplanes/NNP NP1
Object]

Manually using WordNet, we can then disambiguate the sense of the subject “ra-
dar” as “measuring instrument in which the echo of a pulse of microwave radiation is
used to detect and locate distant objects” which is a noun with sense #1. We repre-
sent this in shorthand as radar#n#1. Similarly we can do this for the verb “track” and
object “aeroplane” to get track#v#2 and aeroplane#n#1 respectively. We could then
continue this process for Req-02 to Req-07.

Figure 3 illustrates the result of applying Rule #2 on our sample requirements. The
“Verb” section in Figure 3 shows how we would determine the number and composi-
tion of each Replaceability Matrix based on identifying similar words from grammati-
cally related parts of speech, i.e. for verbs there is the relationship to similar subjects
and similar objects (the ovals illustrate the groupings of similar concepts).2

Fig. 3. Subject-Verb-Object Relationships

2 Note that throughout this example, we use WordNet::Similarity and the Wu & Palmer similar-

ity measure with a Similarity Threshold of 0.6.

214 S. Boyd, D. Zowghi, and V. Gervasi

Table 3 shows the first of the three Replaceability Matrices. As an example, con-
sider track#v#2 and observe#v#4 as our ‘x’ and ‘y’ respectively in the replaceability
measure. Note that observe#v#4 is a hypernym of track#v#23 in WordNet [23].

Table 3. Replaceability Matrix – Example

 VERB
 track#v#2 (1)(1) observe#v#4 (2)(1) monitor#v#1 (1)(1) watch#v#1 (1)(1)

CNL

track#v#2 (1)(1) 1 1.72 Not Hyp/Syn 0.67 observe#v#4
observe#v#4 (2)(1) Not Hyp/Syn 1 Not Hyp/Syn 0.4 observe#v#4

monitor#v#1 (1)(1) Not Hyp/Syn 1.72 1 0.67 observe#v#4
watch#v#1 (1)(1) Not Hyp/Syn Not Hyp/Syn Not Hyp/Syn 1 watch#v#1

Given that FX = 1, PX = 1, FY = 2, PY = 1, we get a replaceability measure of 1.72.
Rule #1 states that the concept at the start of the row (track#v#2) is replaced by the
concept corresponding to the column having the highest replaceability value on that
same row (observe#v#4), so the replacement for track#v#2 is observe#v#4. This same
process would be applied to all rows in the three Replaceability Matrices. Note that
we have not shown the Replaceability Matrices for Monitor#v#1 or Watch#v#1 since
these would only contain a single verb, and would end up being replaced by them-
selves – resulting in no constraining of the lexicon. The end result of this example can
be seen in Table 2 where we have re-written the requirements using the constrained
lexicon (ReqtCNL).

Some key observations from Table 2 ReqtCNL column: Notice that “observe” seems
to be a reasonable replacement for the verbs “track” and “monitor” in Req-01 and
Req-02 respectively. Notice that “monitor” in Req-05 is not replaced since it was part
of a different Replaceability Matrix (recall Figure 3). Notice that “watch” cannot be
replaced in Req-07 since the Replaceability Matrix contains no other words which are
hypernyms or synonyms (i.e. watch#v#1 is more general than the other terms).

6 Limitations and Future Work

6.1 Replaceability Measure

Our proposed measure for replaceability is somewhat simplistic in that it does not put
weightings on the relative importance of similarity vs. frequency vs. polysemy. For
instance, when considering the replaceability(x,y), this means that a ‘y’ with half the
polysemy count is equally as replaceable as a ‘y’ that is used twice as frequently. One
improvement would be to introduce weightings, whereby we could weight the relative
importance of similarity vs. frequency vs. polysemy. Furthermore we could even use
requirement weightings to put some weighting on the importance of each lexical term.

Another limitation with our proposed replaceability measure was to restrict lexical
replacements to synonyms and hypernyms only in an attempt to prevent “incorrect
generalisations” (you can’t compare apples with oranges!). In some cases, this may
prove to be overly conservative, resulting in an under-constrained CNL. There are

3 The similarity between the two terms is 0.86.

 Optimal-Constraint Lexicons for Requirements Specifications 215

possibly situations where it would be appropriate to replace a word with its coordinate
(sibling) term. For example, consider the coordinate verbs save#v#2, store#v#1, and
retain#v#3. It could be argued that a lexicon may not be optimally constrained if it
were to retain all three of these terms.

6.2 Integrating with Constrained Grammars

The ideas presented in this paper on constraining a lexicon complement current re-
search on constraining grammars. For example, ACE [2], PENG [3], and Grover [6]
all have a constrained grammar and a constrained lexicon of function words (deter-
miners, prepositions, conjunctions, and pronouns), but allow the user to invent their
own list of content words (verbs, nouns, adjectives, adverbs). The problem with this is
that there is no guidance given to the user as to how they might go about deriving
such a list (e.g. how would they decide which verbs to include?). This of course is the
very focus of our paper. Given that our process is specifically targeted at deriving
such “content words” from the domain of interest, we strongly believe that the two
branches of research are complementary (and non-overlapping). Combining these two
areas of research may empower the analyst to do consistency checking and logical
reasoning (for example they could query the resultant specification for all of the in-
puts and outputs of a specified subject noun by looking for verbs similar to “accept”
and “provide” respectively).

7 Conclusion

The aim of this paper was to present a fully automatable NLP-based process for opti-
mally constraining the lexicon of a CNL. Our optimal-constraint process is significant
since we have identified a new application for existing NLP tools and techniques that
ensures a rigorous and repeatable outcome, and means we potentially no longer re-
quire a lexicographer to manually sift through the large volume of text and make
(possibly unrepeatable and unjustifiable) subjective decisions on the content of the
lexicon. We bounded ‘optimal-constraint’ by defining three design goals for the con-
strained lexicon, to be readable, sufficiently expressive, and unambiguous. We pro-
posed a new concept ‘replaceability’, which we argued provides a better measure than
‘similarity’ as to the degree of contextual interchangeability, or the degree to which
one word can be substituted by another in context. This is because ‘replaceability’ is a
function of conventionality (frequency), polysemy, lexical ontology and similarity –
rather than similarity alone, which we argue can be misleading.

Although not a limitation of the process, we did find that the immaturity of WSD
tools prevented total automation of the process. This limitation is considered to be
time-sensitive, and reflective of the current (developmental) state of NLP technology.
It is expected that as WSD algorithms and tools improve this limitation will cease to
exist, and complete automation will be possible. Our process theoretically makes it
possible to automatically generate a constrained lexicon from a sample of require-
ments. We believe that our process is pragmatic and accessible since it relies on noth-
ing more than existing NL requirement specifications, freely available NLP tools, and
domain knowledgeable individuals.

216 S. Boyd, D. Zowghi, and V. Gervasi

The next stage in our longitudinal study will be to empirically validate that our op-
timal-constraint process actually does achieve its design goals by using a domain spe-
cific requirements sample. The resultant lexicon will then be the subject of a con-
trolled experiment to measure the effects on the respective quality factors (readability,
expressiveness, and ambiguity).

References

1. The Standish Group International CHAOS Report 1994, The Standish Group International,
Inc., Massachusetts http://www.standishgroup.com/sample_research/chaos_1994_1.php

2. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: Proceedings of the
First International Workshop on Controlled Language Applications, Belgium, pp. 124-136
(1996)

3. Schwitter, R., English, R.: as a formal specification language. In: Proceedings. 13th Inter-
national Workshop on Database and Expert Systems Applications, Aix-en-Provence, pp.
228–232 (2002)

4. Somers, H. (ed.): Computers and Translation: A Translator’s Guide, John Benjamins Pub-
lishing Company, Amsterdam (2003)

5. Goyvaerts, P.: Controlled English, Curse or Blessing? - A User’s Perspective. In: Proceed-
ings of the First International Workshop on Controlled Language Applications, Belgium
(1996)

6. Grover, C., Holt, A., Klein, M. M.: Designing a Controlled Language for Interactive
Model Checking. In: Proceedings of the Third International Workshop on Controlled Lan-
guage Applications, Washington, pp. 90–104 (2000)

7. Kamprath, C., et al.: Controlled Language for Multilingual Document Production: Experi-
ence with Caterpillar Technical English. In: Proceedings of the Second International
Workshop on Controlled Language Applications, Pennsylvania, pp. 51–61 (1998)

8. AECMA1986, AECMA/AIA Simplified English: A Guide for the Preparation of Aircraft
Maintenance Documentation in the International Aerospace Maintenance Language, Asso-
ciation Europeenne des Constructueurs de Materiel Aerospatial (1986)

9. Swaffar, J.: What makes text readable?, University of Texas, Austin,
 http://www.utexas.edu/ courses/swaffar/distance/review.html

10. Gnesi, S., et al.: An Automatic Tool for the Analysis of Natural Language Requirements.
International Journal of Computer Systems Science & Engineering 20(1), 53–62 (2005)

11. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: Achieving Quality in Natural
Language Requirements, 11th International Software Quality Week, San Francisco (1998)

12. Boyd, S., Zowghi, D., Farroukh, A.: Measuring the Expressiveness of a Constrained Natu-
ral Language: An Empirical Study. In: Proceedings of the 13th International Conference
on Requirements Engineering, Paris (2005)

13. Quirk, R., Greenbaum, S.: University Grammar of English. Longman, London (1996)
14. IEEE1993, IEEE Recommended Practice for Software Requirements Specifications,

ANSI/IEEE Standard 830-1993, New York (1993)
15. Kamsties, E., Berry, D.M., Paech, B.: Detecting Ambiguities in Requirements Documents

Using Inspections, Workshop on Inspections in Software Engineering (WISE’01), Paris
(2001) pp. 68–80 (2001)

16. Davis, A., et al.: Identifying and Measuring Quality in a Software Requirements Specifica-
tion, First International Software Metrics Symposium, Baltimore, pp. 141–152 (1993)

 Optimal-Constraint Lexicons for Requirements Specifications 217

17. Harwell, R., Aslaksen, E., Hooks, I., Mengot, R., Ptack, K.: What is a Requirement?, Pro-
ceedings of the Third Annual International Symposium, National Council of Systems En-
gineers (NCOSE), pp. 17–24 (1993)

18. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before Design, Dorset
House, New York (1989)

19. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge (1999)

20. Ide, N.V, éronis, J.: Word Sense Disambiguation: The State of the Art. Journal of Compu-
tational Linguistics 24(1), 1–40 (1998)

21. Pedersen, T., et al.: WordNet:Similarity - Measuring the Relatedness of Concepts, Nine-
teenth National Conference on Artificial Intelligence, San Jose (2004)

22. Miller, G.A., Charles, W.G.: Contextual Correlates of Semantic Similarity. Language and
Cognitive Processes 6(1), 1–28 (1998)

23. Web WordNet 2.0, Cognitive Science Laboratory Princeton University, Princeton (2003),
http://wordnet.princeton.edu/cgi-bin/webwn

24. Fabbrini, F., Fusani, M., Gnesi, G., Lami, G.: An Automatic Quality Evaluation for Natu-
ral Language Requirements. In: Proceedings of the Seventh International Workshop on
RE: Foundation for Software Quality, Interlaken, Switzerland (2001)

25. Oxford English Dictionary, Oxford University Press, New York (2006)
26. Miller, G.A., et al.: Five papers on WordNet, Special Issue of International Journal of

Lexicography, vol. 3(4) (1990)
27. Daelemans, W., Buchholz, S., Veenstra, J.: Memory-based Shallow Parsing. In: Proceed-

ings of CoNLL-99, Bergen (1999)
28. Patwardhan, S., Banerjee, S., Pederson, T.: SenseRelate: TargetWord - A Generalized

Framework for Word Sense Disambiguation, Twentieth National Conference on Artificial
Intelligence (Intelligent Systems Demonstration), Pittsburgh (2005)

29. Mihalcea, R., Faruque, E.: SenseLearner: Minimally Supervised Word Sense Disambigua-
tion for All Words in Open Text, Proceedings of ACL/SIGLEX Senseval-3, Barcelona
(2004)

30. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection, 32nd Annual Meeting of the
Association for Computational Linguistics. Las Cruces, New Mexico (1994)

Integrating All Stages of Information Systems

Development by Means of Natural Language
Processing

Algirdas Laukaitis and Olegas Vasilecas

Vilnius Gediminas Technical University , Sauletekio al. 11,
LT-10223 Vilnius-40, Lithuania

{algirdas.laukaitis,olegas}@fm.vtu.lt

Abstract. In this paper, we present the methodology and architecture
of the natural language processing integration into all stages of the infor-
mation systems development. We show that if the IS textual documen-
tation is preprocessed and integrated into the business knowledge base
development then the whole information systems modeling process can
be speeded and improved. Self-organizing map received from information
systems documentation and the formal concept analysis are suggested to
test the IS documentation comprehensibility and reusability. IBM’s In-
formation Framework (IFW) Financial Services Data Model (FSDM) has
been used for the present research. By using FSDM we demonstrate that
the IS model can be partially recreated from IS textual documents by
combining techniques based on self-organizing map and formal concept
analysis. Finally the numerical experiment is provided to show that IS
documents supplemented with the suggested techniques can be reused
in natural language interfaces and save the resources and time needed to
develop such interfaces.

Keywords: Information systems engineering, formal concept analysis,
IS documents self-organization, natural language processing.

1 Introduction

Software engineers and business analysts spend hours in defining information
systems (IS) requirements and finding common ground of understanding. Several
studies have shown that software engineers spend more than half of their time
communicating in order to get information [6]. The overwhelming majority of
IS requirements are written in natural language (NL) [16]. Then, integration
of the natural language processing (NLP) into IS requirements engineering and
modeling is an important factor in meeting challenges created by overwhelming
size of textual information.

Reusing natural language IS requirement specifications and compiling them
into formal statements has been an old challenge [2], [20]. About 15 years ago,
Kevin Ryan claimed that NLP is not mature enough to be used in requirements
engineering [19]. Nevertheless, Internet has boosted NLP research and nowadays

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 218–231, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating All Stages of Information Systems Development 219

partial natural language formalization is not seen as an unachievable goal. The
new OMG standard called Semantics in Business Vocabulary and Rules (SBVR)
[18] shows the importance and understanding among software engineers of NLP
use in the area of IS engineering. However, constructing models from a larger
set of documents remains a challenging task.

In this paper, by combining symbolic and connectionist paradigms, we present
our efforts to overcome difficulties and problems of the natural language usage
in all stages of IS development. The self-organizing map (SOM) [14] is proposed
as a tool to analyze the documents and communication utterance and the For-
mal Concept Analysis (FCA) [5] is suggested to reinterpret SOM maps topology
and to verify the comprehensibility and soundness of the information system
documentation and model. All presented ideas and methodological inference has
been tested with the IBM Information FrameWork (IFW) [10], which is a com-
prehensive set of banking specific business models from IBM corporation. For
our research we have chosen the set of models under the name Banking Data
Warehouse. Then we state the following problems: 1. How can we formally ver-
ify the IS documentation if we have at least several sentences description for
each business information system component. 2. What is the architectural so-
lution of the system where the designers, modelers, requirements engineers can
verify new pieces of textual documentation and automatically generate hierar-
chical prototypes of the information system model. 3. What components from
the new modeling system can be taken and reused as plugins in the natural lan-
guage interfaces (i.e. database querying [1]) . On the experimental bases it must
be proved that those components can compete with the existing natural language
systems.

The solutions of stated problems organize the rest of the paper as follows.
First, we present the general framework of automated model generation system
from the IS documentation and engineers utterance. Next, we present IBM’s IFW
solution and the model which we used in our experiments. There we present FCA
as the formal technique to analyze IS model on the object:attribute sets. In the
Section 4, we present the architectural solution of the natural language process-
ing (NLP) system which has been built from the open source, state-of-the-art
NLP components. Then we present an idea of the conceptual model vector space.
The motivation of introducing this step to the modeling process is that it helps
us numerically deal with the modeling documentation and its topological struc-
tures. Then SOM of the conceptual model is introduced in chapter 5. Finally to
prove the soundness of the proposed method we provide a numerical experiment
in which the ability of the system to identify concepts from users utterance is
tested. The IBM Voice Toolkit for WebSphere [11] (approach based on statistical
machine learning) solution is compared with system suggested in this paper.

2 General Framework of the Solution

Conceptual models offer an abstracted view on certain characteristics of the
domain under consideration. They are used for different purposes, such as a

220 A. Laukaitis and O. Vasilecas

communication instrument between users and developers, for managing and un-
derstanding the complexity within the application domain, etc. The presence of
tools and methodology that supports integration of the requirements documents
and communication utterance into conceptual model development is crucial for
the successful IS architectural framework development.

In this paper we suggest the use of SOM to classify IS documentation and IS
utterance on a supervised and an unsupervised basis. SOM has been extensively
studied in the field of textual analysis. Such projects like WEBSOM [12], [15]
have shown that the SOM algorithm can organize very large text collections and
that SOM is suitable for visualization and intuitive exploration of the documents
collection. The experiments with the Reuters corpus (a popular benchmark for
text classification) have been investigated in the paper [9] and there were pre-
sented evidence that SOM can outperform other alternatives.

Nevertheless, in the field of IS modeling the connectionist paradigm has been
met with some scepticism. The reason is that IS architects and modelers want
to give the credibility on how received clusters from documents processing are
related and explain semantic meaning of the underlying documents topology. To
overcome this problem we suggest that the FCA can give more on that account
by formally analyzing the set of objects and their attributes. On the other hand
when directly applied to the big data set of textual information, FCA gives
little meaning with the presentation of overwhelming lattice. Those arguments
motivate integration of the FCA and other text clustering techniques. In that
sense our work bears some resemblance with the work of Hotho et.al. [8]. They
used BiSec-kk-Means algorithm for text clustering and then FCA was applied
to explain relationships between clusters. Authors of the paper have shown the
usability of such approach in explaining the relationships between clusters of the
Reuters-21578 text collection.

Our approach differs in two important respects. First, our goal is not text
clustering. Our goal is automated generation of the ontology from textual doc-
uments if there is no knowledge base produced by human experts. In case the
knowledge base has already been developed, we seek for the method that formally
measures the comprehensibility of the knowledge base topology and in case of
new documents and concepts automatically integrates them into the knowledge
base.

The overall process of automatically clustering concepts descriptions and then
deriving concept hierarchies from SOM is presented in Figure 1. First, the corpus
is created from the model concepts descriptions and in the figure it is named as
domain descriptions. Then, vector space of the corpus is created using natural
language processing framework, domain ontology and WordNet ontology [17].
SOM is built and used for cluster analysis. Next, with conceptual context and
concept lattice (CL) improvements are made in the understanding of clusters
relationships. In parallel, CL is created directly from the conceptual model. An-
alyst can compare lattice received from IS documentation and lattice generated
from conceptual model. If both lattices are similar then we can say that the
quality of IS documentation is acceptable.

Integrating All Stages of Information Systems Development 221

Fig. 1. Process of integration: Conceptual modeling, textual descriptions clusters de-
tection and interpretation by use of FCA

3 Business Knowledge Bases and Formal Concept
Analysis

The problem with data centric enterprise wide models is that they are diffi-
cult to understand. Their abstract and generic concepts are unfamiliar to both
business users and IS professionals, and remote from their local organizational
contexts [4]. Natural language processing and understanding techniques can be
used to solve mentioned problems. But before applying the NLP techniques for
the IS engineering, we must have some formal method to deal with the sets
of {classes, object and attributes} which are products from systems of natural
language processing. In this Section we introduce the FCA as the method for
automatically building hierarchical structure of concepts (or classes) from the
{object:attribute} set.

In Figure 2 (left side) we can see an excerpt of the IBM IFW financial services
data model (FSDM) [10], which is a domain specific model, based on the ideas
from the experts in the IBM financial service solutions center. The IBM financial
services data model is shown to consist of a high level strategic classification of
domain classes integrated with particular business solutions (e.g. Credit Risk
Analysis) and logical and physical data entity-relationship (ER) models.

CL of shown model extract have been produced by FCA with Galicia software
[22] and is shown in the right side of the Figure 2. As we can see it is consistent
with the original model. It replicates underlying structure of conceptual model
originally produced by a human expert team and in addition suggests one formal
concept that aggregates Arrangement and Resource Item: the two top concepts
from the original model.

222 A. Laukaitis and O. Vasilecas

Fig. 2. Left side: A small extract from the financial services conceptual model. Right
side: CL from this conceptual model. (We see that FCA depicts the structure from the
conceptual model.)

FCA is used to represent underling data in the hierarchical form of the con-
cepts. The most adapted form in the FCA analysis for the data representation
is the CL. Due to its comprehensive form in visualising underlaying hierarchical
structure of the data and rigorous mathematical formalism FCA grown up to
mature theory for data analysis from its introduction in the 1980s [5]. FCA suc-
cessfully has been used in many applicable areas, but our interest in this paper is
the ability to use it in the area of the IS modeling. In defining the concepts and
attributes FCA takes similarities with the database theory and object orientated
system design. Due to this fact the FCA has been often applied for class diagram
design in IS [5].

For the introduction to the area of the FCA we can return to the Figure 2.
The conceptual model extract from the figure has 12 objects. Let us name it as
the set G. Let M be the set of attributes that characterise the set of objects i.e.
an attribute is includes into the set M if it is an attribute for at least one object
from the set G. In our example we have 137 attributes (the whole model has
more than 1000 objects and more than 4000 attributes). We identify the index
I as a binary relationship between two sets G and M i.e. I ⊆ G × M . In our
example the index I will mark that, eg., an attribute “interest rate” belongs to
an object “Arrangement” and that it does not belong to an object “Event”.

In order to be able to start FCA algorithms we define a triple K := (G, M, I)
which is called a formal context. Further, we define subsets A ⊆ G and B ⊆ M
as follows:

A
′
:= {m ∈ M |(g, m) ∈ I for all g ∈ G},

B
′
:= {g ∈ G|(g, m) ∈ I for all m ∈ B}.

Then a formal concept of a formal context (G, M, I) is defined as a pair (A, B)
with A ⊆ G , B ⊆ M , A

′
= B and B

′
= A. The sets A and B are called extend

Integrating All Stages of Information Systems Development 223

and intend of the formal concept (A, B) . The set of all formal concepts B(K)
of a context (G, M, I) together with the partial order (A1, B1) � (A2, B2) :⇔
A1 ⊆ A2 is called the concept lattice of context (G, M, I) .

In the Figure 2 the FCA algorithm Incremental Lattice Builder generated 11
formal concepts. In the lattice diagram, the name of an object g is attached to
the circle and represents the smallest concept with g in its extent. The name of an
attribute m is always attached to the circle representing the largest concept with
m in its intent. In the lattice diagram an object g has an attribute m if and only if
there is an ascending path from the circle labeled by g to the circle labeled by m.
The extent of the formal concept includes all objects whose labels are below in the
hierarchy, and the intent includes all attributes attached to the concepts above.
For example the concept 7 has {Building; Real Property} as extend (the label E: in
the diagram), and {Postal Address; Environmental Problem Type;Owner;... etc.}
as intent (due to the huge number of attributes they are not shown in the figure).

4 Vector Space Representation of the Conceptual Model

The vector space model (VSM) for documents transformation to the vectors is
a well-known representation approach that transforms a document to a weight
vector in automatic text clustering and classification. The method is based on the
bag-of-words approach, which ignores the ordering of words within the sentence
and uses basic occurrence information [21].

On the other hand, the vector space model’s dimensionality is based on the
total number of words in the data set and it brings difficulties for the large data
sets. The conceptual model documents corpus described above included 3587
words. The process of dimensionality reduction and noise filtering is depicted in
Figure 4. All presented processes are described in details below.

1. Transform conceptual model. In the first step we transform conceptual
model to the Web Ontology Language (OWL) structure. The motivation behind
this step is that the OWL is one of the most used standard in describing the
knowledge base and we already use it in Semantic Web applications. Additional
motivation for using OWL is the availability of the knowledge base development
tools such as Protégé -OWL editor [13] that supports OWL standard.

2. Extract triplet. The triplet: concept name, the most abstract parent con-
cept name - class label for a particular document, and description of the concept
are extracted. To be more specific, the following steps have been performed:
First we selected only concepts (entities) from ’C’ level of the conceptual model
and then selected textual description of each entity. We received 1256 docu-
ments in the corpus, each document describing one concept. Each document in
the corpus has been labeled with its original concept name and its top parent
concept name. For example the concept Employee has the following entry in
the corpus: { Concept-Employee; Parent-Individual; Top parent concept -
Involved Party ; Description - An Employee is an Individual who is currently,
potentially or previously employed by an Organization, commonly the Financial

224 A. Laukaitis and O. Vasilecas

Fig. 3. The processes of dimensionality reduction and the conceptual model SOM
design

Institution itself... }. We had to add a textual descriptions to 254 concepts. It
was done because we wanted to measure additional documentation impact on
concepts classification accuracy. The descriptions were taken from web dictio-
naries. 198 concepts have been removed due to the short textual descriptions
and our inability to enrich them from the web dictionaries. After these steps, we
obtain our final corpus, for the evaluation. It consists of the 1058 documents,
distributed over 9 top parent concepts (involved party, products, arrangement,
event, location, resource items, condition, classification, business).

3. GATE - Natural Language Processing Engine is a well-established infras-
tructure for customization and development of NLP components [3]. It is a ro-
bust and scalable infrastructure for NLP and allows users to use various modules
of NLP as the plugging. We briefly describe modules used in our research for
building concepts vector spaces. The Unicode tokeniser splits the text into sim-
ple tokens. The tagger produces a part-of-speech tag as an annotation on each
word or symbol. The gazetteer further reduces dimensionality of the documents
corpus prior to classification. Semantic tagger - provides finite state transduc-
tion over annotations based on regular expressions. It produced additional set of
named entities and we replaced each named entity with the class label. Ortho-
graphic Coreference - the module adds identity relations between named entities
found by the semantic tagger. SUPPLE is a bottom-up parser that constructs
syntax trees and logical forms for English sentences. We used it only to remove
tokens not annotated by this module. All modules within the GATE produced

Integrating All Stages of Information Systems Development 225

annotations - pairs of nodes pointing to positions inside the document content,
and a set of attribute-values, encoding linguistic information.

4. Abstraction. The basic idea of the abstraction process is to replace the terms
by more abstract concepts as defined in a given thesaurus, in order to capture
similarities at various levels of generalization. For this purpose we used WordNet
[17] and annotated GATE corpus as the background knowledge base. WordNet
consists of so-called synsets, together with a hypernym/hyponym hierarchy [7].
To modify the word vector representations, all nouns have been replaced by
WordNet corresponding concept (’synset’). Some words have several semantic
classes (’synsets’) and in that case we used a disambiguation method provided
by WordNet - the ’most common’ meaning for a word in English was our choice.
The words replaced by the GATE named entities annotation scheme were not
included for the WordNet processing.

5. Vectors space. In our experiments we used vector space of the terms vectors
weighted by tfidf (term frequency inverse document frequency)[21], which is
defined as follows:

tfidf(c, t) = tf(c, t) × log
|C|
|Ct| .

where tf(c, t) is the frequency of term t in concept description c, and C is total
number of terms and Ct is the number of concepts descriptions containing this
term. tfidf(c, t) weighs the frequency of a term in a concept description with
a factor that discounts its importance when it appears in almost all concepts
descriptions.

5 Self-organizing Map of the IS Conceptual Model

Neurally inspired systems also known as connectionist approach replace the use
of symbols in problem solving by using simple arithmetic units through the pro-
cess of adaptation. The winner-take-all algorithms also known as self-organizing
network selects the single node in a layer of nodes that responds most strongly
to the input pattern. In the past decade, SOM have been extensively studied
in the area of text clustering. The ideas and results presented here are general-
purpose and could be applied to knowledge development by mean of connection-
ist paradigm in general.

SOM consists of a regular grid of map units. Each output unit i is represented
by prototype vector, mi = [mi1...mid] where d is input vector dimension. Input
units take the input in terms of a feature vector and propagate the input onto
the output units. The number of neurons and topological structure of the grid
determines the accuracy and generalization capabilities of the SOM.

During learning the unit with the highest activation, i.e. the best matching
unit, with respect to a randomly selected input vector is adapted in a way
that it will exhibit even higher activation with respect to this input in future.
Additionally, the units in the neighborhood of the best matching unit are also
adapted to exhibit higher activation with respect to the given input.

226 A. Laukaitis and O. Vasilecas

Table 1. Classification accuracy (CA) and average quantization error (AQE) of con-
ceptual model SOM

No WordNet synsets One level Two levels Three level
hypernym replacements up hypernym up hypernym up hypernym

replacements replacements replacements

CA 29.57 29.56 41.53 39.27 26.44

ACQ 4.83 4.81 4.56 4.83 4.28

Fig. 4. SOM for the conceptual model. Labels: invol, accou, locat, arran, event, produ,
resou, condi represents concepts: involved party, accounting, location, event, product,
resource, condition.

As a result of training the SOM with IBM IFW financial warehouse conceptual
model text corpora we obtain a map which is shown in the Figure 4. SOM has
been trained for 100,000 learning iterations with learning rate set to 0.5 initially.
The learning rate decreased gradually to 0 during the learning iterations.

It was expected that if the conceptual model vector space has some clusters
that resembles conceptual model itself, then we can expect that the model will
be easier understood compared with the model of more random structure. On
a closer look at the map we can find regions containing semantically related
concepts. For example, the right side top of the final map represents a cluster of
concepts “Arrangement” and bottom right side “Resource items”. Such map can
be used as an interface to the underlying conceptual model. To obtain informa-
tion from the collection of documents the users may formulate queries describing
their information needs in terms of the features of the required concept.

Figure 5 shows the concepts lattice computed from SOM shown in the
figure 4. We obtain a list of 23 formal concepts. Each of them groups several
neurons from SOM. We can find the grouping similarity of the neurons that
are locate in the neighborhood of each other. On the other hand some concepts

Integrating All Stages of Information Systems Development 227

group neurons that are at some distance form each other. The basic idea of this
step is that we received a closed loop in the business knowledge engineering by
artificial intelligent agent. The agent classifies all IS textual information with
the SOM technique and then using FCA it builds hierarchical knowledge bases.
For the details on how to apply FCA to the cluster analysis (SOM in our case)
we refer to the paper [8]. The paper describes an algorithm which has been used
in our research.

The impact of the abstraction and natural language processing to the perfor-
mance of the information system model can be checked by classification accuracy
(CA) measure. It simply counts the minority of concepts at any grid point and
presents the count as classification error. For example, after the training each
map unit has a label assigned by highest number of concepts (Figure 4). In fig-
ure 4, the top left neuron mapped 4 concepts with the label arrangement and
2 with label event. Thus, classification accuracy for this neuron will be 66 %.
Another metric to measure classification accuracy is average quantization error
AQE. It is defined as the average distance between every input vector and its
best matching unit:

AQE =
1
N

N∑

i=1

|xi − bi|

where N is the total number of input patterns, xi is the vector of each pattern
and bi is best matching unit (BMU) for each pattern xi. Findings of the influence
of terms abstraction and natural language processing are shown in the Table 1.

We can see that the hypernym level one is optimal compared with more ab-
stracted concepts. The phenomena can be explained by fact that different senses

Fig. 5. Concepts lattice that has been received from the SOM presented in the
Figure 4

228 A. Laukaitis and O. Vasilecas

of the term if too much abstracted will be treated as the same and by this
semantics of discretionary power will be lost.

6 Experiment

In the previous sections we have shown how to build hierarchical conceptual
model from IS documentation and how formally verify business information sys-
tem model. But as mentioned in the introduction, one of the objectives in this
research project was to find the techniques and tools of IS modeling that brings
an opportunity to reuse IS model components as the final products in IS natural
language interfaces. In this paper, we argue that such component can be SOM
of the IS conceptual model.

Reusing SOM in the IS interfaces is quite simple. Each time the sentence is
presented to the system we have one activated neuron which is associated with
one concept from the conceptual model. Additionally, we have the set of formal
concepts associated with the activated neuron. Both, the label from activated
neuron and the set of formal concepts can be used by formal language generation
engines (i.e. structured query language (SQL) sentence generator for querying
databases). Then the following hypothesis is formulated in this section: SOM
received from IS documentation can compete with the state-of-the-art concept
identification solutions currently available in the market.

The following experiment has been conducted to test this hypothesis. IBM
WebSphere Voice Server NLU toolbox, which is a part of the IBM WebSphere
software platform have been chosen as the competitive solution to the one sug-
gested in this paper. From IBM presentation [11] it appeared that the system
is primarily intended to support database interfaces in the telecommunication
market. It was a challenging task to test it on more complex system e.g. a full
Enterprise conceptual model for the financial market.

SOM of the conceptual model and CL has been used as an alternative to
the IBM WebSphere Voice Server NLU solution. We have taken the black box
approach for both solutions: put the training data, compile and test the sys-
tem response for the new data set. The data set of 1058 pairs textual descrip-
tion:concept name mentioned above were constructed to train the IBM NLU
model. The same set has been used to get SOM of the business model.

Then a group consisting of 9 students has been instructed about the database
model. They have the task to present for the system 20 questions about informa-
tion related to the concept “Involved Party”. For example one of the questions
was: “How many customers we have in our system?” We scored the answers
from the system as correct if it identified the correct concept “Involved Party”.

At the beginning only 9 top concepts were considered i.e. all 1058 documents
have been labeled with the most abstract concept names from the conceptual
model. For example documents that described concepts “Loan” and “Deposit”
are labeled with the concept name “Arrangement” because concepts “Loan” and
“Deposit” are subtypes of the concept “Arrangement”.

Integrating All Stages of Information Systems Development 229

Table 2. Concept identification comparison between IBM NLU toolbox and SOM of
database conceptual model

CN=9 CN=50 CN=200 CN=400 CN=500

IBM NLU 36.82 17.26 14.82 11.15 8.22

SOM 46.73 30.70 27.11 20.53 18.83

No additional 38.24 18.43 15.72 12.77 9.52
descriptions

Next we increased the number of concept names that we put into the model
up to 50. For example documents that described concepts “Loan” and “Deposit”
have been labeled with “Loan” and “Deposit” names. Then, number of concept
names has been increased up to 200, 400 and finally 500. Table 2 shows the
results of the experiment. Column names show the number of concepts. The row
named IBM NLU represents results for the IBM WebSphere Voice Server NLU
toolbox. The row named SOM represents results for the SOM of the conceptual
model that has been constructed with the method described in this paper. The
row named No additional descriptions represent results for the SOM of the con-
ceptual model without 254 additional documents that we mentioned above. To
detect the classification error the proportion of the correctly identified concepts
has been used.

As we can see, the performance of the IBM system was similar to the SOM
response. The behavior of the IBM system is difficult to explain because it is
close system and there was no description of algorithms used. For all cases i.e.
IBM, SOM and SOM without additional descriptions the performance decreased
when the number of concepts increased. The solution that can increase accuracy
of concepts identification is suggested by comparing results in the third and
second rows of the Table 2. We see that 254 descriptions that we added to the
system significantly improved respond of the system.

7 Conclusion

Conceptual models and other forms of knowledge bases can be viewed as the
products emerged from human natural language processing. Self-organization is
the key property of human mental activity and the present research investigated
what self-organization properties can be found in the knowledge base documen-
tation. It has been suggested to build conceptual model vector space and its
SOM by comparing concept lattice received from manually constructed concep-
tual model and concept lattice received from SOM of the conceptual model. We
argued that if both concept lattices resemble each other then we can say that IS
documentation quality is acceptable.

Presented architectural solution for the software developers can be labor in-
tensive. The payoff of such approach is an ability to generate formal language
statements directly from IS documentation and IS user utterance. We have shown
that with the SOM and FCA we can indicate inadequateness of the concept de-
scriptions and improve the process of knowledge base development. Presented

230 A. Laukaitis and O. Vasilecas

methodology can serve as the tool for maintaining and improving Enterprise-
wide knowledge bases.

There were many research projects concerning questions of semantic parsing
i.e. the automatic generation of the formal language from the natural language.
But those projects were concerned only with semantic parsing as separate stage
not integrated into the process of software development. Solution presented in
this paper allows us to integrate IS design and analysis stages with the stage of
semantic parsing. In this paper we demonstrated that we can label documents
and user questions with the conceptual model concept name. In the future we
hope to extend those results by generating SQL sentences and then querying
databases. The present research has shown that if we want to build comprehen-
sible model then, we must take more attention in describing concepts by the
natural language.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Time, Tense and Aspect in Natu-
ral Language Database Interfaces. Natural Language Engineering 4, 229–276 (1998)

2. Burg, J.F.M., Riet, R.P.: Enhancing CASE Environments by Using Linguistics.
International Journal of Software Engineering and Knowledge Engineering 8(4),
435–448 (1998)

3. Cunningham, H.: GATE: a General Architecture for Text Engineering. Computers
and the Humanities 36, 223–254 (2002)

4. Darke, P., Shanks, G.: Understanding Corporate Data Models. Information and
Management 35, 19–30 (1999)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

6. Hertzum, M., Pejtersen, A.M.: The information-seeking practices of engineers:
searching for documents as well as for people. Journal of Information Processing
and Management 36, 761–778 (2000)

7. Hofmann, T.: Probabilistic latent semantic indexing. In: Research and Develop-
ment in Information Retrieval, pp. 50–57 (1999)

8. Hotho, A., Staab, S., Stumme, G.: Explaining text clustering results using seman-
tic structures. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.)
PKDD 2003. LNCS (LNAI), vol. 2838, pp. 22–26. Springer, Heidelberg (2003)

9. Hung, C., Wermter, S., Smith, P.: Hybrid Neural Document Clustering Using
Guided Self-organisation and WordNet. Issue of IEEE Intelligent Systems, pp.
68–77 (2004)

10. IBM. IBM Banking Data Warehouse General Information Manual. Available from
on the IBM corporate site (accessed July 2006) http://www.ibm.com

11. IBM Voice Toolkit V5.1 for WebSphere Studio. (accessed July 2006)
http://www-306.ibm.com/software/

12. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM self-organizing maps
of document collections. Neurocomputing 21, 101–117 (1998)

13. Knublauch, H., Fergerson, R., Noy, N.F.: The Protege-OWL plugin: an open de-
velopment environment for semantic web applications. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243.
Springer, Heidelberg (2004)

http://www.ibm.com
http://www-306.ibm.com/software/

Integrating All Stages of Information Systems Development 231

14. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)
15. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: WEBSOM for textual datamining.

Articial Intelligence Review 13(5/6), 345–364 (1999)
16. Mich, L., Franch, M., Inverardi, P.N.: Market research on requirements analysis

using linguistic tools. Requirements Engineering 9(1), 40–56 (2004)
17. Miller, G.A.: WordNet: A Dictionary Browser. In: Proc. 1st Int’l Conf. Information

in Data, pp. 25–28 (1985)
18. Object Modeling Group (OMG). Semantics of Business Vocabulary and Rules

Specification Drafted Adopted Specfication (March 2, 2006)
19. Ryan, K.: The role of natural language in requirements engineering. In: Proceed-

ings of IEEE International Symposium on Requirements Engineering, pp. 240–242.
IEEE Computer Society Press, Washington, DC (1993)

20. Rolland, C., Proix, C.: A Natural Language Approach to Requirements Engineer-
ing. 4th International CAiSE Conference, Manchester UK, pp. 257–277 (1992)

21. Salton, G.: Automatic Text Processing: The Transformation, Analysis and Re-
trieval of Information by Computer. Addison-Wesley, London (1989)

22. Valtchev, P., Grosser, D., Roume, C., Rouane, H.M.: GALICIA: an open platform
for lattices. In: de Moor, A., Ganter, B., (eds.) Using Conceptual Structures: Con-
tributions to 11th Intl. Conference on Conceptual Structures, pp. 241–254 (2003)

Information Flow Between Requirement

Artifacts.
Results of an Empirical Study

Stefan Winkler

FernUniversität in Hagen, 58084 Hagen, Germany
stefan.winkler-et@fernuni-hagen.de

Abstract. Requirements engineering is still an area of software engi-
neering in which theory and practice greatly differ. This work presents
the results of an empirical study of artifacts created and used in the
requirements engineering process. We discover that meeting notes and
lists of requirements are most commonly used, that they usually play
the role of information sources, and that specification documents are
information sinks. Furthermore we show that most projects create sev-
eral different artifacts. Finally we find out that despite the quality risks,
inconsistencies between artifacts are often accepted.

Keywords: empirical study, requirements engineering, requirements
traceability, requirements documentation, requirements artifacts.

1 Introduction and Motivation

Requirements engineering is still an area of software engineering in which the-
ory and practice greatly differ. Research keeps developing new approaches to
elicit, analyze, and document requirements. Moreover, several books (e.g. that
of Sommerville and Sawyer [1]) propose guidelines, checklists, and processes to
improve practical requirements engineering. Nonetheless, requirements engineer-
ing is still performed in an intuitive and chaotic way, as reported by Sommerville
and Ransom [2].

An important aspect when dealing with requirements is documentation. It is a
challenge to prepare requirements for different audiences and tasks of the project.
At the end of the requirements phase the software requirements specification doc-
ument (SRS [3]) contains a contract between the stakeholders. This document
serves as a detailed and authoritative description of the software system to be
developed. During development, however, technicians and project leaders prefer
a tabular reference of single requirements. Moreover, when using a model-driven
development approach documenting a subset of the requirements in the form of
diagrams and models is quite common. In some cases these can even be auto-
matically processed and transformed into parts of the implementation. In this
paper we use the word artifact according to Cleland-Huang et al. [4] to denote
all products of the requirements engineering process, be it textual documents,
document parts, models, sketches or any other form of documentation.

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Flow Between Requirement Artifacts 233

According to our own perception of industrial software projects we see that
requirements are often scattered between different artifacts. We suppose that
this leads to inconsistencies and consequently to higher costs and lower software
quality. To address these issues we have set up a research project to improve the
information flow between the requirement artifacts.

We have conducted an empirical study with the goal to support, adjust or
refute our perceptions and conclusions, to justify our research intention, and
to get input for the research. In order to confirm the problem, we wanted to
analyze how many different artifacts are used during the requirements phase,
and how they are affected by change and inconsistency. Additionally, we wanted
to find out, which requirements artifacts are used the most, and how information
flows between them. We want to use this information to concentrate our research
around these artifacts and information flows.

From these goals we have derived four core questions and initial hypotheses
around which we have built our study:

1. Which artifacts are created and used during the requirements phase? We
suppose that meeting notes and structured textual documents (like the SRS)
play a central role here.

2. How many different types of artifacts are created and used?1 We assume a
number of four or even more.

3. How big is the problem of inconsistencies between different artifacts? Up-
dates and changes can lead to hidden inconsistencies. If the second assump-
tion is correct, we also expect potential problems in this area.

4. How does information flow between the artifacts and how do the artifacts
depend on each other? We assume that meeting notes are the main source of
information, and that textual specification documents are the main sink of
information. In addition, we suppose that demonstrative forms like models
or use cases are used as intermediate documentation.

In this contribution, we present the results of our study and investigate if our
assumptions are correct. The remainder of this paper is structured as follows: In
the next section, we have a look at related studies. In Sect. 3 we describe how
we carried out the study, and we characterize the sample. In Sect. 4 we present
the results. Discussion and conclusion in Sect. 5 end this paper.

2 Related Work

When collecting industrial data, there are two approaches. Both of which have
their advantages and drawbacks. The first approach is to investigate a small num-
ber of projects or companies using qualitative methods in a case study. Thus,
more detailed data can be collected, and both environmental conditions and

1 This is in fact a variation of the first question as it can be answered using the same
data. However, we explicitly wanted to know and emphasize the amount of different
artifact types per project.

234 S. Winkler

individual characteristics can be taken into consideration. The second method
is to apply quantitative-statistical research methods like questionnaires or in-
terviews to a greater amount of participants. Here methods and questions are
more general, and so results can be blurred. The advantages, however, are that
a broader field of participants is analyzed, and the results are more universal if
a good sample is used.

Contributors in the field of case studies were among others Sommerville and
Ransom [2] as well as Gorschek and Svahnberg [5]. In both contributions, lists of
good practices are used, and companies are assessed according to these lists. Fi-
nally, the results are evaluated and compared. The work of Gorschek and Svahn-
berg [5] also mentions a series of other case studies. In the field of quantitative-
statistical studies, Paech et al. [6] list an extensive set of references along with
short summaries.

The research presented in this contribution is related to the topics consid-
ered in requirements traceability research. Earlier work in this field by Gotel
and Finkelstein [7], and Ramesh and Jarke [8] each followed a combination of
several empirical methods in order to establish a deeper understanding of the
requirements traceability problems and structures. While they concentrated on
the types of links between the different artifacts and the problems and struc-
tures of requirements traceability itself, our research focuses on which artifacts
are created and used, and which artifacts are based on which.

Some general questions in our survey also overlap with earlier publications.
Forward and Lethbridge [9,10] investigate which artifacts are created and man-
aged during software development. They consider the whole software engineering
process including design, implementation, and testing phases and provide a good
overview of all software engineering documents. Unlike them, we concentrate on
requirements artifacts. This allows us to analyze the characteristics of the more
communication- and document-centric requirements phase.

In the field of requirements engineering, Nikula et al. [11] analyze the differ-
ence between theory and practice and consider the notations and tools used.
Our survey also collects this data as an attribute of requirements artifacts. For
every artifact, we asked the participants to specify which tools were used in its
creation. We also asked which methods they used to collect the information for
the artifacts. This overlaps with the research of Neill and Laplante [12], who
concentrate on methods and techniques. As we describe in Sect. 4, our findings
regarding tools and methods are comparable to these existing studies.

One goal of our study was to analyze the specific requirements artifacts created
and used in practice. We also wanted to analyze the dependencies between them
and the information flow during the requirements phase. To our knowledge, these
topics have not yet been investigated in detail.

3 The Survey

The survey has been conducted online using an anonymous web-based question-
naire. We decided not to collect personal data to minimize privacy concerns and

Information Flow Between Requirement Artifacts 235

to avoid consequently lower participation rates. The questionnaire2 consisted of
three parts containing 19 main questions in total. The first part covered general
questions like size and fields of work of the company and own practical experi-
ence. The second part investigated, how requirements engineering is done, which
tools, techniques, methods, and types of artifacts are used, and how they are re-
lated. The last part asked questions about how projects deal with change and
inconsistency.

After creating the first version of the questionnaire, some participants were
asked to test it. The results of this pretest were used to adjust and fine-tune
content and usability. Then the questionnaire was announced and published
online for a period of about three months. During the first two weeks, about
80 industrial peers from different companies have been asked to participate and
to spread the information to other potential participants. Furthermore, a more
general call for participation was posted to several newsgroups and mailing lists
related to software and requirements engineering. This call was repeated two
weeks before the questionnaire ended.

Taking part in the survey was restricted to German-speaking countries in or-
der to reduce the danger of subjectiveness and data corruption, both in how the
questions are posed and in how the questions are understood by the participants.
Especially some of the artifacts’ names are difficult to translate unambiguously—
in fact, terms like the SRS are even ambiguous without translation as we will
discuss below. Therefore, when presenting the results in Sect. 4, we give a short
description of every artifact. In addition to the translation challenges, we ex-
pected the highest participation from the group of industrial peers we contacted
personally. All of these speak German, so there was no need to provide the
questionnaire in English.

Another restriction was announced on the introduction page of the question-
naire: The participants had to have experience in at least one industrial software
development project in which requirements were documented in any form. This
restriction was necessary because most questions regarded requirements docu-
mentation. Additionally, the inclusion of academic or private projects did not
make sense. Requirements engineering and documentation is performed very dif-
ferently in such projects.

At the end of the three months period of the study, we had a total of 37
completed questionnaires. Using the general questions in the first part, we can
characterize the sample as follows.

As illustrated in Fig. 1, about one half of the participants has worked in the
field of software for more than ten years. This is similar to the sample of Forward
and Lethbridge [9]. Regarding company size, small and smallest companies with
less than 50 employees, medium-sized companies with 50 to 250 employees, and
large companies with more than 250 employees are represented in almost equal
parts.

The companies’ fields of activity have been captured in three dimensions. First,
we asked about the ratio of software development in respect to all software-related

2 http://beamer.st.fernuni-hagen.de:8080/survey

236 S. Winkler

<= 2 2−5 5−10 > 10

0
5

10
15

4
6

9

18

(11%)
(16%)

(24%)

(49%)

IT experience

years of experience

an
sw

er
s

< 10 11−50 51−250 > 250
0

2
4

6
8

10
12

14

5

7

11

14

(14%)

(19%)

(30%)

(38%)

Company size

number of employees

an
sw

er
s

Fig. 1. Participants’ experience and company size

services. The results were again quite balanced: 14 participants (38%) declared
that their company basically did software development. Another 14 declared that
their company mostly provided non-developmental services such as consulting and
coaching and nine participants (24%) decided that their companies were involved
in both, development and other services, in equal parts.

The second question asked if services were offered internally, for example
as an IT department in a large company or externally to paying customers.
The answers show that about one half of the participants (19 answers, 51%)
were employed by companies serving external customers. Six participants (16%)
answered that their section offered services internally while the remaining 12
(32%) answered both.

Table 1 shows the third dimension which covers the industrial sectors for
which software services are offered. Please note that participants were allowed
to give more than one answer to this question.

This outline of the sample shows that the online questionnaire has accom-
plished to reach a broad area of participants over several dimensions. The results
presented in the following sections are therefore suitable to derive tendencies.

4 Results

4.1 Methods, Tools, and Artifacts

The main part of the questionnaire covered the methods, tools, and artifacts used
in a software development project. The analysis of the answers shows that re-
quirements elicitation techniques involving direct communication such as work-
shops or interviews are most frequently used. Analyzing existing systems or

Information Flow Between Requirement Artifacts 237

Table 1. Industrial sectors

Industrial sector Answers Percentage

commnuication, telecommunication 18 49%
services 17 46%
finance 15 41%
chemical, pharmaceutical, and medical industry 15 41%
insurance 13 35%
government and public institutions 13 35%
automobile 13 35%
power supply 12 32%
production of industrial goods 9 24%
other 7 19%
publishing, media 7 19%
IT, hard- and software 7 19%
production of consumer goods 6 16%
universities, schools 4 11%
sales 4 11%
consulting 3 8%
multimedia, advertisement 3 8%
culture and leisure 2 5%

documents as well as getting the requirements specification documents delivered
from customers or external projects is also quite common. Rarely used are other
methods like observation of users and existing processes or their simulation in
role-playing games.

At the tools’ side, the results show once more that text processors are the
tools most commonly used during requirements engineering. In contrast to this,
advanced tools designed especially for requirements engineering tasks are rarely
used. These findings comply with the results of Forward and Lethbridge [9],
Nikula et al. [11], and Juristo et al. [13].

Next, we examine the artifacts created and used during the requirements
phase. These are listed in Fig. 2. As stated above, communication-centric meth-
ods are the most common ones used for requirements elicitation. This is most
certainly the reason, why meeting notes are used so often (30 answers, about
81%). The same amount of participants named requirements lists. These are lists
of single sentences of requirements—often variations of the form “The system
shall/should/must. . . ”. This form of requirements is also used in most require-
ment management tools.

Structured textual documents are also a common form of requirements docu-
mentation. Unfortunately, there is a great misuse of terms for these documents.
In particular, different people refer to different contents when they are using
the term Software Requirements Specification (SRS). Nonetheless, we needed a
separation for the analysis of the information flow. Additionally, we found in our
pretest that several projects create more than one textual specification docu-
ment. For this reason, we have included three types of specification documents
as options into the questionnaire: the SRS as an overall document which is also

238 S. Winkler

0 5 10 15 20 25 30

Other Diagrams

Project plans

User documentations

Security concepts

Test specification, test cases, acceptance criteria

Scenarios

Business object diagrams

Dynamic UML−Diagrams

Process, task and workflow diagrams

Prototypes

GUI layouts

Dictionaries of business terms

Rough concepts

Functional specifications

Software requirements specifications

Use cases

Technical specifications

Lists of requirements

Meeting notes

2

3

3

7

8

8

12

12

12

12

13

16

16

17

19

21

22

30

30

amount

Fig. 2. Documentation of requirements

usually requested by the customer to be delivered as part of the contract, the
functional specification as a document which concentrates on functionality, and
the technical specification which focuses on technical descriptions. When the an-
swers of the three artifacts are grouped together, 31 participants or 84% create
at least one of these.

When considered separately, solution-oriented technical concepts or techni-
cal specifications are the most popular forms of textual specification documents
(22 answers, 59%). Their purpose is to outline technical requirements and envi-
ronmental constraints and to limit the solution space by taking first steps in the
direction of an architecture.

A form of documentation which has become more and more popular in recent
years are use cases—named by 21 participants (57%). Use cases help to describe
a system’s behavior by describing sequences of interactions between one or more
users and the system. A similar instrument are scenarios which are described
below.

Information Flow Between Requirement Artifacts 239

About half of the participants (19, that is 51%) use an SRS and 17 (47%) use
a functional concept or functional specification document to document require-
ments. The difference between these two terms is that a functional specification
usually concentrates more on the system’s behavior, while the SRS is used as
a contractual document which also contains quality requirements and environ-
mental constraints for the development itself.

Less detailed is the rough concept (sometimes also denoted as rough specifica-
tion) which is used in 16 cases (43%). This document only gives a brief overview
or even only a vision of the system or its building blocks, without specifying
details. The same number of participants (16, 43%) use a dictionary of business
terms.

Visualization is another helpful tool when eliciting, discussing and refining
requirements. 13 participants (35%) produce GUI layouts as an artifact of the
requirements engineering process. When static visualization is not sufficient,
prototypes are used to simulate parts of the future functionality or certain be-
havioral aspects. The latter is used by 12 participants (32%). Additionally, when
considered together, about half of the participants (18 answers, 49%) employ one
of the two user-oriented visualization methods.

Regarding different types of diagrams, the questionnaire presented three
options:

– process, task, and workflow diagrams to illustrate and document business
processes or tasks,

– dynamic UML diagrams used to document or structure use cases and
– business object diagrams or similar forms of class diagrams to document

entities of data and their interrelations.

Each of the three options was named by 12 participants (32%) respectively. When
considering all types of diagrams together, there were 24 participants (65%) who
stated that they use at least one kind of diagram.

Eight participants (22%) named scenarios as an instrument they use. Sce-
narios are similar to use cases which are described above. They, too, describe
interactions between users and the system. The difference is that scenarios are
at a lower level of abstraction. While use cases describe all possible paths of
interactions including variations and exceptions, scenarios only cover one case.
They are mainly used as concrete examples for a use case execution or as a draft
to be reworked later into a full use case.

Also eight participants (22%) use test cases, test plans, or acceptance criteria
as a way to document requirements. Seven (19%) have a special security concept
defining the users’ roles and rights, and other security issues. Three (8%) use
some form of project plan or user documentation respectively, and two (5%) use
diagram types not mentioned above.

With these findings we can confirm our first hypothesis: Meeting notes and
textual specification documents are the types of artifacts most commonly created
and used. Additionally, we find that the creation and use of requirements lists is
equally important which we did not anticipate.

240 S. Winkler

0
2

4
6

8

1 1 3 3 2 5 5 8 2 3 1 1 0 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

amount of different types of artifacts

an
sw

er
s

Fig. 3. Amount of different artifact types per project

As we have described above, there is a large number of different artifacts.
Different groups of people obviously use different sets of artifacts. We conclude
that requirements engineering is performed very differently and that there are
no uniform processes—if any at all. This again confirms the findings of Paech et
al. [6]. The reason for the differing processes could be situational requirements
engineering. We, however, suspect that the reason is a combination of ignorance
and pragmatic spontaneity.

Each participant selected about 7 artifacts in average as we can calculate from
the numbers above. More details about the amount of artifacts per projects is
shown by the histogram in Fig. 3. Below the bars, the quartils and the median
can be read. As with the processes there is a broad spectrum in the numbers.
The median is seven. Regarding our second initial hypothesis, we find that the
amount of different types of artifacts is seven instead of the predicted four—
higher than estimated.

This leads to the evaluation of two other questions of the questionnaire: Which
of the created artifact types are part of the contract between developer and cus-
tomer, and which of the artifact types created are actually available to the de-
velopers. The outcome here is that only in few cases one document contains all
the requirements—only one third of the participants named only one artifact to
be part of the contract. Almost half of the participants used more than two types
of artifacts as part of the contract. At the same time, developers normally have
access to more artifacts than the ones contained in the contract. This is the case
in 83% of the answers. In about 38% of the projects, developers even had full ac-
cess to all of the documents created during the requirements engineering phase. At
first glance, this seems to be logical and acceptable because developers could need
more detailed information on some requirements. But this practice bears risks of
defects when inconsistencies or ambiguities exist between the different artifacts.

Information Flow Between Requirement Artifacts 241

4.2 Change and Inconsistency

We have just shown that many projects do not maintain a central requirements
document. Instead, requirements are distributed among several artifacts. Syn-
chronizing them and keeping them consistent, results in a large amount of man-
agement overhead. This overhead grows with an increasing number of artifacts.
If it is not performed properly—which it is rarely—, this can lead to problems
when ambiguities and contradictions are discovered and noticed too late. Devel-
opers try to solve those occurrences by asking the customer. This often leads to
change requests and hence to higher costs.

The third part of our questionnaire dealt with these issues: change, inconsis-
tency, and the consequences thereof. Figure 4 illustrates on the left hand side
when (i.e. in which phase) change requests do occur. At first thought, one could
expect that most changes are requested when the product is tested and put
into operation and when the customer first comes to see the finished product.
Possibly, some changes are also filed during the development if for example the
environment changes or a new idea is brought in. But generally, one could expect
that most change requests are filed after the implementation. Instead, according
to the participants, most change requests occur during design and implementa-
tion phases. Only one participant answered that there were no change requests at
all during design, and two participants declared the absence of change requests
during implementation. This seems to confirm that unclear and ambiguous re-
quirements are a main source of change requests.

When a change request has been negotiated between the stakeholders, the
change has to be included into the requirements documents. If the requirements
are scattered between different artifacts as shown in the previous section, this

A
na

ly
si

s

D
es

ig
n

C
od

in
g

T
es

t

O
pe

ra
tio

n

0

5

10

15

20

25

30

35

27

21

12
9

6

8

15

23

22

23

2 1 2
6

8

Occurrences of change requests

an
sw

er
s

A
na

ly
si

s

D
es

ig
n

C
od

in
g

T
es

t

O
pe

ra
tio

n

0

5

10

15

20

25

30

7
10

13

8
5

17

20
18

20

19

9

3 2
5

9

Detection of inconsistencies

an
sw

er
s

never
sometimes
frequently

Fig. 4. Occurrences of change requests and detection of inconsistencies

242 S. Winkler

inclusion and the resulting rework frequently lead to inconsistencies which re-
main undetected. This is because usually only one or two of the artifacts are
updated, and implicitly existing connections between different artifacts are not
taken into account. 33 participants (about 89%) stated that they encountered
inconsistencies in requirements artifacts during their projects.

In addition, the survey shows that inconsistencies are not only introduced dur-
ing creation (45%) or change (55%) of the artifacts. They are even introduced
and accepted knowingly in most cases (85%) because maintaining all of the ar-
tifacts and eliminating all inconsistencies is considered as too costly regarding
time and resources. Our third hypothesis is therefore only partly valid: Inconsis-
tencies are not only introduced when updating artifacts, but they are introduced
and accepted intentionally because their consequences are considered less pricy
than properly maintaining the artifacts.

As the right hand side of Fig. 4 shows, the inconsistencies that are not detected
when including change requests sometimes remain undetected until late phases
of the project. Please note that the case of accepted inconsistencies has been
explicitly excluded from this question. If the inconsistencies are then detected,
they often have to be questioned, reconsidered, and negotiated. These actions
and potentially resulting changes can become very costly [14].

4.3 Flow of Information Between Artifacts

To analyze and visualize the flow of information between the different types of
artifacts, we had to collect the data using suitable questions. We chose a form
similar to an adjacency list: For every type of artifact named by a participant,
the questionnaire application generated a dynamic page. On this page she was
asked to specify from which other artifacts information was used during creation
of the respective artifact.

The original goal was to generate one graph per participant and to inspect the
graphs manually in order to identify repeating patterns. This, however, turned
out to be ineffective because of the diversity of processes and types of artifacts
used. For this reason we decided to combine all the graphs into one, which is
shown in Fig. 5.

The nodes represent the artifacts. The font size represents the number of
participants who named the artifact (see Fig. 2). The directed edges represent
the flow of information. If an edge is drawn from one node A to another node
B, this means that information from the artifact represented by A was used to
create the artifact represented by node B. Vice versa, the node B is based on,
or depends on node A. The stronger the edge is drawn, the more participants
projects specified this dependency3. To make the graph more readable, only edges
named by seven or more participants are shown and thereby isolated nodes were
omitted.

The graph shows that requirements lists are information sources. The most
and strongest edges leave this node. During refinement of the requirements both
3 The original question the participants have been asked, was: “From which other

artifacts has information been used to create or update the artifact X?”.

Information Flow Between Requirement Artifacts 243

Requirement Lists

Meeting Notes

Functional Specification

Technical Specification

Rough Concept

Use Cases

SRS

Dictionary

GUI Layouts

Scenarios

Fig. 5. Graph of information flow

meeting notes and use cases are used. These artifacts both have strong edges
going in and out. With use cases, information is structured and thus, lacks
of information can be identified. The role of meeting notes, as we see it, is
documenting ongoing discussions on the other artifacts. As information sinks, we
identify textual documents: the SRS and the technical specification. Particularly
the latter has only incoming edges in the graph.

In view of these conclusions, our fourth hypothesis turns out to be not quite
correct. It is not the meeting notes which are most frequently used as information
sources, but requirements lists. There could be several reasons for this. One of
the possible reasons is that requirements lists could be created as a draft in
preparation for interviews or workshops. In these meetings, meeting notes would
then be created. These would in turn be used to update the requirements lists.
Another possibility is that not all interviews or workshops produce meeting
notes. In that case, either another artifact, like a use case, would be created by
the attendees in collaboration, or one of the participants would create or update
an artifact from memory after the meeting.

The role of requirements lists is noteworthy. In several books (e.g. in the guide
of Sommerville and Sawyer [1]) they are seen as a central repository for require-
ments. This role would rather be that of an information sink, than that of an

244 S. Winkler

information source. Accordingly, requirements management tools are generally
built as information systems using the spreadsheet metaphor and not as elicita-
tion tools. If requirements lists are used as an information source, requirement
management tools should be improved to support this purpose.

5 Discussion and Conclusion

One lesson learned from this study is that an online questionnaire was not com-
pletely suitable. We had personally asked about 80 peers to participate. Ad-
ditionally, we have announced the questionnaire on several mailing lists and
newsgroups. From our logs we can tell that about 110 people started filling out
the questionnaire. From this number, however, only about one third has com-
pleted it. We did not collect personal data in order to avoid privacy concerns.
So we could not approach the people who canceled and ask them for reasons.
We spontaneously asked some of our peers and got the general answer that the
questionnaire was seen as too long.

After a more intensive analysis of our database regarding this point, we found
that most participants canceled between the eighth and the tenth question. Ob-
viously online questionnaires are only able to collect small amounts of data.
Alternatives are interviews or written questionnaires. Yet, both require more
effort in preparation and conduction.

Another problem we have detected arose in the part of the questionnaire that
collected the information flow data. In addition to the data presented in Sect. 4,
we also asked which stakeholders took part in the creation of each artifact. The
participants chose IT staff of the client, domain staff of the client, and IT staff of
the software developer almost to equal parts with only little variations between
the different artifacts. These results are quite unusable for the visualization of
the information flow. We can state, that these three groups usually create most
of the artifacts, but we are unable to identify the information flows between pairs
of stakeholders or between stakeholders and artifacts. This is why stakeholders
are not included in Fig. 5.

Every empirical study has to justify itself regarding internal and external
validity. The population—all software projects in German-speaking countries—
is certainly not strictly represented by the sample of this survey. On the one hand,
the sample has not been selected randomly, as would be the statistically correct
way. On the other hand, the sample is too small for a good survey. However, the
correct selection of a suitable sample in the field of software engineering is a hard
problem because there is no way to enumerate the elements of the population.
Despite these objections, we have shown in Sect. 3 that our sample and our
results are similar when compared to overlapping empirical studies. Because of
the small sample, quantitative and mathematical evaluation methods, such as
statistical tests, do not make much sense. But the structure of the sample and
the similarities with comparable studies allow us to deduce general tendencies
in a qualitative way.

Information Flow Between Requirement Artifacts 245

Initially, we have set up four hypotheses. After the evaluation, we can sum-
marize the qualitative results as follows:

1. As we have assumed, meeting notes and structured textual documents (like
the SRS) play a central role as requirements artifacts. Additionally, require-
ments lists are a form of documentation which is used as often as meeting
notes.

2. Most projects use several different types of artifacts to document require-
ments. We found an average and a median of seven artifact types. This is
more than we have anticipated.

3. We have been too optimistic in assuming that inconsistencies between ar-
tifacts are introduced without being noticed when an artifact is updated.
Instead, most participants are aware of the introduction of inconsistencies
and consciously accept it.

4. As we have shown in the previous section, requirements lists are the main
sources of information and textual documents, particularly technical spec-
ifications and SRS documents, are information sinks. In between meeting
notes and use cases are used most commonly.

Although the survey did not produce quantitative output due to a small par-
ticipation rate, some topics and starting points for further research can be iden-
tified. Firstly, the outcome of this study needs further confirmation. A follow-up
study should be conducted using a representative sample and quantitative meth-
ods. Another interesting topic for a further study would be the identification of
influence of parameters like company size or process model on artifact usage
and information flow. Due to the small response rate, such an analysis would
not have been sound in this study. Secondly, requirements engineering processes
seem to be very different in practice. Standard methodologies and processes are
obviously not used. Research should be done in how these processes could be
unified or standardized. Third, the use of requirements lists as an information
source should be investigated further to strengthen the tendency and to develop
better tool support. Finally, one of the most important findings of our survey
is the high acceptance of inconsistencies between different artifacts. We assume,
this is because proper synchronization costs too much in terms of time and
resources. This should also be confirmed by another study. Generally, further
research should be done on how to minimize these synchronization costs or how
to minimize the number of inconsistencies itself.

This work was planned as motivating study for a research project to improve
the flow of information between artifacts of the requirements engineering process
and to avoid inconsistencies between them. The main goal of this improvement
is to lower costs and to increase software quality. The results show that further
research in this area is justified.

Acknowledgments. Our thanks go to all participants of the questionnaire as
well as to Rainer Schmidberger who inspired this study, and Gabriele Bindel-
Kögel for her helpful advice in the empirical parts.

246 S. Winkler

References

1. Sommerville, I., Sawyer, P.: Requirements Engineering – a good practice guide.
John Wiley & Sons Ltd, New York (1997)

2. Sommerville, I., Ransom, J.: An Empirical Study of Industrial Requirements En-
gineering Process Assessment and Improvement. ACM Transactions on Software
Engineering and Methodology 14(1), 85–117 (2005)

3. IEEE: Guide to Software Requirements Specification, ANSI/IEEE Std 830-1984
(1984)

4. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for
managing evolutionary change. IEEE Transactions on Software Engineering 29(9),
796–810 (2003)

5. Gorschek, T., Svahnberg, M.: Requirements Experience in Practice: Studies of Six
Companies. In: Engineering and Managing Software Requirements, pp. 405–426.
Springer, Heidelberg (2005)

6. Paech, B., Koenig, T., Borner, L., Aurum, A.: An Analysis of Empirical Require-
ments Engineering Survey Data. In: Engineering and Managing Software Require-
ments, pp. 427–452. Springer, Heidelberg (2005)

7. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem. In: Proceedings of the First International Conference on Requirements
Engineering, pp. 94–101 (1994)

8. Ramesh, B., Jarke, M.: Towards reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1), 58–93 (2001)

9. Forward, A., Lethbridge, T.C.: The Relevance of Software Documentation, Tools
and Technologies: a Survey. In: DocEng ’02: Proceedings of the 2002 ACM sym-
posium on Document engineering, pp. 26–33. ACM Press, New York (2002)

10. Lethbridge, T.C., Singer, J., Forward, A.: How Software Engineers Use Documen-
tation: The State of the Practice. IEEE Software 20(6), 35–39 (2003)

11. Nikula, U., Sajaniemi, J., Kälviäinen, H.: A State-of-the-Practice Sur-
vey on Requirements Engineering in Small-and Medium-Sized Enterprises.
Technical report, Telecom Business Research Center Lappeenranta (2000)
http://www.cs.ucl.ac.uk/research/renoir/TBRC RR01.pdf

12. Neill, C.J., Laplante, P.A.: Requirements Engineering: the State of the Practice.
IEEE Software 20(6), 40–45 (2003)

13. Juristo, N., Moreno, A., Silva, A.: Is the European Industry Moving Toward Solving
Requirements Engineering Problems? IEEE Software 19(6), 70–77 (2002)

14. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

http://www.cs.ucl.ac.uk/research/renoir/TBRC_RR01.pdf

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 247–261, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Imperfect Requirements in Software Development

Joost Noppen, Pim van den Broek, and Mehmet Aksit

TRESE Software Engineering
Dept. of Computer Science

University of Twente
P.O. Box 217, 7500 AE Enschede

The Netherlands
{noppen,pimvdb,aksit}@cs.utwente.nl

Abstract. Requirement Specifications are very difficult to define. Due to lack
of information and differences in interpretation, software engineers are faced
with the necessity to redesign and iterate. This imperfection in software re-
quirement specifications is commonly addressed by incremental design. In this
paper, we advocate an approach where the imperfect requirements in require-
ment specifications are modeled by fuzzy sets. By supporting this approach
with a requirement tracing and an optimization approach, the necessity for de-
sign iteration can be reduced.

Keywords: requirements, design optimization, decision support, fuzzy.

1 Introduction

During the last decades, a considerable amount of design methods have been intro-
duced, such as Structural design [17] and the Rational Unified Process [6]. Although
there are differences among the methods, the general structure of methods is quite
similar. They all require a well-defined requirement specification, which is trans-
formed into a system design. According to [11], one major problem with software
design methods is the existence of incomplete information during the design process.
While modern software design methods acknowledge the difficulty of defining per-
fect requirements, they depend on their perfection to ensure that the resulting software
system precisely reflects the requirements. When at a later stage the requirements
change or are refined, additional iteration is needed. The task of defining requirement
specifications that are perfect enough is the responsibility of the stakeholders and
software engineers and to support this activity various approaches have been proposed
and applied. In particular, in the field of formal specification the aim is to define re-
quirement specifications in such a manner, that it becomes possible to verify the cor-
rectness of the designed system with respect to these requirements. Other approaches
try to improve requirement specifications by exhaustive descriptions and abstractions
to represent the concepts. Nonetheless, software development still suffers from imper-
fect and changing requirements.

We conclude that imperfect information is inherently present in all requirement
specifications. By application of requirements analysis, the imperfection can be re-
solved in parts of the requirements, but not completely removed from the

248 J. Noppen, P. van den Broek, and M. Aksit

requirements specification. If imperfection in requirement specifications is recognized
and taken into account during the design process, it is possible to minimize the
amount of incremental design steps that are needed to stabilize the software design.

The remainder of this paper consists of the following parts: in the next section an
example case will be presented and the problems will be identified. Section 3 de-
scribes the approach for tracing intermediate design artifacts and the approach for
dealing with imperfection in software requirements. In Section 4 we analyze the ex-
ample case using the results of section three. Related work is described in Section 5.
In Section 6 we conclude the paper.

2 Problem Statement

2.1 An Example: Traffic Management System

Consider a Traffic Management System (TMS), designed to monitor and regulate the
traffic flow on a national scale. The system is supposed to provide the necessary tech-
nical support for monitoring, controlling, managing, securing and optimizing the traf-
fic flow effectively. We will focus on the section, which handles task allocations
based on scenarios and available traffic information and has the following description.

“The TMS should provide assistance when the traffic flow is limited. It is the job of
the TMS to support operators to coordinate the activities that should reset the traffic
flow to its normal state. To achieve this, the TMS must support the action coordina-
tion for traffic flow normalization. The normalization is done by allocating tasks and
scenarios to system operators. The Task Allocation part must gather and store infor-
mation about traffic in its direct and indirect geographical vicinity. To communicate
the tasks and actions, the TMS must be able to access its connected roadside systems.
In addition, the TMS must support systems operators in identifying tasks and actions
that will normalize traffic flow as fast as possible.”

We summarize the functional requirements for the TMS as follows:

1. The TMS must support displaying relevant information to the users of the TMS
2. There should be an explicit, convenient model of tasks and scenarios
3. The system must support action coordination for optimal normalization of traf-

fic flow
4. The system should support task allocation
5. Contextual Information should be accessible
6. The TMS should be able to communicate with the roadside system

Obviously, for a system that is responsible for regulating traffic flow, it is very im-
portant that the system adheres to the described requirements to ensure traffic safety.

2.2 Imperfect Software Requirements as Input of the Software Design Process

The requirements of the TMS, at first glance, quite accurately describe what is ex-
pected from the system. However, upon closer inspection, the requirements contain
ambiguity in several definitions. For example, in the second requirement prescribes
that there should be an explicit and convenient model of tasks and scenarios.

 Imperfect Requirements in Software Development 249

However, the term convenient can imply completely different solutions from the op-
erator point-of-view and the software designer point-of-view.

The cause of the imperfection in requirement specifications is two-fold. Firstly, the
initial requirements are defined at an early phase of the design process. At this point,
it is very difficult for both the stake-holders and the software engineers to precisely
visualize the system upon completion. This partial view is exemplified by changes
that are made to the requirements along the design process, and the occurrence of new
requirements. Secondly, requirements are normally described in natural language,
which typically suffers from imperfection. Many terms in natural language have mul-
tiple meanings, are ambiguous or vague. The consequence is that the system designers
should either clarify the requirements with the stakeholders, or interpret the imperfect
requirements. However, neither approach guarantees a satisfactory result, since stake-
holders might be unable to clarify the requirements, and designers can interpret im-
perfect requirements differently from stakeholders. Formal methods, for example, can
only be used if the information you are using is perfect, which makes it impossible to
resolve all imperfect information in this manner.

As a result of the problems identified above it becomes increasingly more difficult
to balance the design and implementation of the software system with budgetary re-
strictions and time constraints. Software engineers select the system design from sev-
eral design alternatives, and try to re-use existing system parts to minimize costs and
development time. In the case of a crisp and concise requirements specification, it is
already a very challenging task, but it becomes even more difficult when the software
engineer is faced with imperfect requirements. The added difficulty is caused by the
fact that costs and development time largely depend on the components that need to
be implemented, while it is at the same time unclear which requirements are being
implemented by the respective components. The lack of a formal trace from the re-
quirements to the components that implement them, makes it impossible to systemati-
cally explore the alternative component sets that can be used to implement the system.
What is needed is an explicit relationship between the requirement and the compo-
nents that implement this particular requirement. Due to the fact that imperfect re-
quirements can become perfect at the latter stages of the design process, it becomes
imperative to be able to determine which components are no longer needed.

3 Software Design with Imperfect Information

3.1 A Trace Model for Artifacts and Relations

To resolve the problems identified in Section 2, we extend the software design such
that it is possible to capture the imperfection in the requirements accurately. The first
part of our approach extends the tracing capacities of modern design processes, such
that it becomes possible to assess individual system designs. To achieve this goal, we
present the Artifact Trace Model (ATM). The ATM captures the relationships be-
tween design artifacts of subsequent design steps. This tracing model is based on de-
sign processes that follow the analysis-synthesis approach, as for instance exemplified
in [14], known as Synbad. In an analysis-synthesis based approach, user requirements
lead to the definition of a relevant set of interrelated problems that should be solved.

250 J. Noppen, P. van den Broek, and M. Aksit

Based on this problem decomposition, the relevant domains of expertise are identi-
fied, which are commonly named solution domains. From these domains the solution
concepts are extracted that make up the system design.

In each step in Synbad, an intermediate design artifact, such as a requirement, is
transformed into new intermediate design artifacts like the problems that should be
solved to implement this requirement. In the ATM, we represent intermediate design
artifacts by circles and the activity of transforming by arrows. From a set of initial
requirements, a sequence of transformations needs to be made, until an implementable
solution is found. In order to make a complete trace model that represents design
processes, it should contain the essential building blocks that can occur. The follow-
ing building blocks can be identified: Requirement, Problem, Solution Domain, Solu-
tion, Component/Class. By connecting these building blocks, a trace of the design
process can made.

Generally, in a software design process it takes several of these sequences to com-
pletely solve a particular problem. By transforming components/classes into new
lower-level requirements, and continuing the design process in the same manner the
requirements are fulfilled. The structure of the artifact trace model allows the designer
to determine which requirements are implemented with a particular selection of com-
ponents. From a set of requirements, the components can be traced down in the ATM.
When we examine the Artifact Trace Model in Figure 2, without going into too much
detail at this point, we can trace for instance requirement R3 to the components C3.1
and C3.2. Complementary we can also see that the set C2.1.2, C2.3.1 and C2.3.2
implement requirement R2.

3.2 The Fuzzy Requirement Concept

By considering imperfect information in the design process, the software design is
less vulnerable for its alternative interpretations. Therefore, instead of intuitively as-
suming one interpretation that hopefully corresponds to the stakeholder’s intentions,
we propose to include a range of possible interpretations. To accommodate the inter-
pretations, we define the concept of a fuzzy requirement.

We assume that a crisp or perfect requirement is an element of a universe U, where
U is the set of all possible requirements. For instance, specification of the set {A, B,
C} corresponds to the requirement specification: “I need requirement A, B and C to
be fulfilled and no other from the universe U”. In the case that one or more require-
ments in this set are imperfect, they can be replaced by a fuzzy requirement. We de-
fine a fuzzy requirement to consist of the specification of a fuzzy set FS on U. The
degree of membership for each element in the fuzzy set describes the degree to which
this particular element is considered as the correct interpretation of the imperfect re-
quirement at the current point in time.

For example, suppose a stakeholder asks for I. a convenient model in the requirement
specification. The requirement set representing this specification then is { I }.Suppose
this requirement is considered an imperfect requirement, since it is not clear what con-
venient exactly means. We can interpret this requirement in a number of ways, such as:

1. An easily understandable model (0.4)
2. An easily modifiable model (0.6)
3. An easily portable model (0.8)

 Imperfect Requirements in Software Development 251

Each of these interpretations is evaluated by the stakeholders, with respect to how
well they think the respective interpretation reflects the imperfect requirement. Be-
tween parentheses, we have indicated the degree of membership, which represents
this feedback from the stakeholder. From this point, the imperfect requirement is re-
placed with the fuzzy requirement. The requirement specification thus becomes
{{1/0.4, 2/0.6, 3/0.8}}. While the definition of the member-ship values for require-
ments interpretations is far from trivial, their definition can be facilitated by offering
standardized ratings or variations and values. This part is still subject to future
research, however.

When imperfect requirements are replaced with fuzzy requirements, the design
process can be continued since the alternative interpretations are treated as normal
requirements. However, the resulting software system will likely exceed to stake-
holder requirements, since the fuzzy requirements introduce interpretations that, at
later stages, can turn out to be irrelevant. When the superfluous interpretations are
included in the design process for too long, they can lead to added workload and
overcomplete systems. To analyze the correlation that exists between the interpreta-
tions and implementation effort, the optimization capabilities of the Artifact Trace
Model can be used.

In the Artifact Trace Model, requirements are modeled by rootnodes in a graph.
Logically, a fuzzy requirement, like a perfect requirement, is represented by such a
root node. To accommodate the identified interpretations of the fuzzy requirement,
each interpretation is attached to the fuzzy requirement node as a child node. To each
interpretation the degree of membership is attributed. By treating the interpretations
of this fuzzy requirement as perfect requirements, the software engineer can design
the software system as he normally would. However, since not every interpretation is
necessary to fulfill the fuzzy requirement, a multitude of possible system configura-
tions can be derived from the included interpretations.

For example, in Figure 2 the rightmost fuzzy requirement has three interpretations
R6.1, R6.2 and R6.3. This fuzzy requirement can now be partially implemented by
implementing any subset of these interpretations. As a result, eight possible imple-
mentations can be identified: {}, {R6.1}, {R6.2}, {R6.3}, {R6.1, R6.2}, {R6.1,
R6.3}, {R6.2, R6.3} and {R6.1, R6.2, R6.3}. Obviously, implementing all interpreta-
tions takes more time and therefore will be more expensive, while implementing a
limited set of interpretations will result in a system with lower relevance but also
lower costs.

To compare the possible options for a particular fuzzy requirement, we use the
membership values that are given to its interpretations. For the relevancy value of
fuzzy requirements we can choose any function that reflects the combination of inter-
pretations. Here, we define the relevancy to be the algebraic sum of the membership
values of all implemented childnodes. The algebraic sum of two numbers A and B is
defined as A+B-AB. Since we have the membership value of the interpretation in the
requirement set are values between zero and one, the algebraic sum ensures that fuzzy
requirements does not have a relevancy larger than one. In addition, the relevancy is
always larger than or equal to the largest implemented membership value. For exam-
ple, if we would implement the components for R6.1 and R6.2 of the fuzzy require-
ment in Figure 2, the relevancy of this fuzzy requirement would become

252 J. Noppen, P. van den Broek, and M. Aksit

0.3+0.6-(0.3*0.6) = 0.72. For perfect requirements we define the relevancy to be one
if they are implemented, and zero if they are not.

With the approach described above, we can now calculate the relevancy value of
each individual requirement, both perfect and fuzzy. We define the value of the over-
all relevance of the system to be equal to the product of all requirement values. Obvi-
ously, it is possible to attribute multiple membership degrees to one interpretation,
such as one for relevance, one for urgency, etcetera. We define the over-all value of
the system as a result of these multiple attribute values to be the weighted average of
these values.

3.3 Optimization of the System Functionality Trade-Off

We can now define optimization goals and systematically search for systems that ad-
here to these goals. We can distinguish between two configurations of optimization
goals. The first configuration is aimed at the maximization of one or more attribute
values. Typically, while looking for an optimum value, a number of constraints must
be fulfilled for the other attributes. For costs, typically an upper boundary is defined,
and other system attributes mostly restricted by means of a lower bound. The second
configuration is aimed at minimization of costs for the system that is being developed.
Both configurations search for a particular optimal system among all possible systems
that can be de-rived from the Artifact Trace Model. The amount of systems that needs
to be evaluated grows exponentially with the amount of interpretations for fuzzy re-

quirements. The amount of systems with n fuzzy requirements equals, ∏
=

n

i

i

1

#2 , where

#i is the amount of interpretations for fuzzy requirement i.
To reduce this complexity, we propose the use of a heuristic approach when opti-

mizing the system design. The starting point for the heuristic approach is the system
for which all interpretations are implemented. For each system, we determine the at-
tribute values and the optimization criterion value, and we calculate the value Δ crite-
rion value / Δ attribute values. We then choose the system for which this value is the
smallest, and repeat this process for this new system. The stopping criterion for the
minimization of costs is when none of the new systems adhere to all the restrictions
on the attribute values. For the maximization of attribute values, the stopping criterion
is the system for which the costs restriction fulfilled. In a worst case scenario this heu-
ristic approach will be faced with a quadratic complexity.

4 Analysis of the Approach Using the Example Case

To demonstrate our approach, we apply it to our TMS example. We first trace the
design process while assuming that the requirements are perfect. First, the require-
ments are transformed into a set of problems that need to be solved. Second, for each
of these problems a solution domain and a solution is identified. Finally, from these
solutions an overall architecture is defined. In Table 1, the first step is described.

 Imperfect Requirements in Software Development 253

Table 1. From Requirements to Problems

Requirement Problems to be solved

1 P1 How do we display information?
P6.1

2 P2.1 How do we express Tasks and Scenarios in an extensible manner?
P2.2 How do we capture Tasks and Scenarios in a portable and exportable manner?

3 P3.1 How do we normalize traffic flow with actions?
P3.2 How do we rate normalizations with respect to each other?

4 P4.1 How do we support a generic Task Allocation Support Model?
P4.2 How do we offer this information?
P2.1

5 P5.1 How do we support interaction with the system?
P5.2 How do we define a generic model that captures contextual information
for external usage?

6 P6.1 How do we make the internal data available?
P6.2 How do we realize a constant and stable communication stream?

In this table, a number of problems are identified for each requirement. For exam-
ple, for requirement 1 the first problem P1 is to decide on the interaction mechanism,
and the second problem P6 is how this interaction will be supported by the model.
Note that a number of problems are reused for multiple requirements. For example
P2.1.2 is a problem that must be solved for both requirement 2 and requirement 3.
This reuse means that when P2.1.2 is solved, a part of requirement 2 and requirement
3 is resolved.

The next step in the design process, is to identify solutions for the problems that
have been found. In order to solve the problems, available knowledge sources on the
specific areas are used, which are part of the applicable solution domains. By choos-
ing solutions that can resolve multiple problems at the same time, the amount of effort
needed to complete the system can be reduced. For example, a uniform communica-
tion interface is a useful solution, which is used to solve P1.2.1 and P4.1.2. For prob-
lem P2.1.2, there is emphasis on the extensibility of the task and scenario model, and
for P1.2.2 there is an emphasis on genericity of the model. By capturing the models in
XML and reusing the communication facilities, these considerations can be addressed
while minimizing implementation effort. The complete set of solutions can be found
in Appendix Table 3.

As the final step, the selected solution is mapped to a component model, which lo-
calizes the functionality that is needed to implement the system. Since the decomposi-
tion of the system into solution parts, the structure is largely known. However, since a
number of solutions are too large to fit into one component and other functionality
can be provided by commercial components, the component form a more refined
model of the TMS system. The way in which the components are related to the solu-
tions is described in Appendix Table 4. In addition, in this table the time is estimated
that is expected for the implementation or adaptation of these components for the
TMS. These estimations are expressed in person-months.

The implementation of the components that are needed for the TMS sums up to
33.1 person-months. We can make a graphical depiction of the design steps that are

254 J. Noppen, P. van den Broek, and M. Aksit

R
5.2

R
2.3

R
4.1

R
6.3

R
3

R
1

P
5.2.1

P
5.2.2

P
3.1

P
3.2

P
1.1

Over
all

P
2.1.2

P
2.3.1

P
4.1.1

P
4.1.2

P
6.1.2

P
6.3.1

S
5.1.1

S
5.1.2

S
5.2.1

S
5.2.1

S
5.2.2

S
2.1.2

S
2.3.1

S
2.3.1

S
4.1.1

S
6.1.1

S
6.1.2

S
6.3.1

S
3.1

S
3.2

S
1.1

C
5.1.1

C
5.1.1

C
5.1.2

C
5.2.1

C
5.2.1

C
5.2.2

C
2.1.2

C
2.3.1

C
2.3.1

C
4.1.1

C
6.1.1

C
6.1.2

C
6.2.1

C
6.3.1

C
3.1

C
3.2

C
1.1

VIII
0.5

IX
4

X
0.5

XI
1

XII
0.1

XIII
0.5

II
3

III
1

IV
3.5

VII
1

XIV
4

XV
3

XVI
2

XVII
2

V
2

VI
2

I
3

Fig. 1. Artifact Trace Model with Crisp Requirements

described in this paragraph. This depiction is achieved by explicitly linking the arti-
facts, such as for instance requirement 1, which is decomposed into P1.1 and P1.2. In
Figure 1 the Artifact Trace Model for the TMS is depicted.

In this picture, all the relationships between the intermediate design artifacts are
depicted. In case of shared relationships, the node representing the shared artifact is
also shared by its parents. The resulting architecture is an implementation of the re-
quirements specification at the beginning of the paragraph. However, it is only ac-
ceptable if the chosen interpretations of the requirements, either chosen implicitly or
not, reflect the stakeholder desires. In the next paragraph we use fuzzy requirements
to see whether the architecture consisting of these components is the best solution.
Note that some components appear multiple times in the picture to indicate that these
components are used at multiple places in the system.

4.1 Analysis with Fuzzy Requirements

For our example, let us consider the design of a system where requirements 2, 4, 5
and 6 are identified as imperfect requirements. These four requirements are replaced
by fuzzy requirements, and for each of these requirements three possible interpreta-
tions are identified. In addition, in accordance with the stakeholders, a number be-
tween 0 and 1 is attached to each interpretation, indicating the degree to which this
interpretation is applicable, which is its membership value. In the following require-
ment specification, the interpretations are described as follows:

Requirement 1: The TMS must support displaying relevant information to the users of the
TMS
Requirement 2 Interpretations:
2.1 There must be an easily extensible model of tasks and scenarios (0.8)
2.2 There must be an easily understandable model of tasks and scenarios (0.9)
2.3 There must be an easily exportable and portable model of tasks and scenarios (0.6)
Requirement 3: The system must support action coordination for optimal normalization of
traffic flow

 Imperfect Requirements in Software Development 255

Requirement 4 Interpretations
4.1 The system must support user extensible task allocation profiles (0.6)
4.2 The system must support task allocation as individual task blocks (0.2)
4.3 The system must support task allocation with automated decision support (0.9)
Requirement 5 Interpretations
5.1 Contextual Information must be accessible internally in a generic format (0.7)
5.2 Contextual Information must be accessible externally at an interface in a generic format
(0.5)
5.3 Contextual Information must be accessible both internally and externally at an interface
in a generic format (0.3)
Requirement 6 Interpretations
6.1 The TMS must be able to communicate with the roadside system unidirectionally (0.3)
6.2 The TMS must be able to communicate with the roadside system with flexible support for
separate data formats (0.6)
6.3 The TMS must be able to communicate with the roadside system for realtime video (0.8)

In the same manner as before, the software engineers identify the problems for these
requirements.

Table 2. From Requirements to Problems

Requirement Problems to be solved
1 P1.1 How do we display information?, P6.1.2

2.1 P2.1.1 How do we support a generic model that captures tasks and scenarios?
P2.1.2 How do we express Tasks and Scenarios in an extensible manner?

2.2 P2.2.1 How do we capture tasks and scenarios in an easily understandable manner?
P2.2.2 How do we support Tasks and Scenarios while maintaining system performance?

2.3 P2.3.1 How do we capture Tasks and Scenarios in a portable and exportable manner?,
P2.1.2

3 P3.1 How do we normalize traffic flow with actions?
P3.2 How do we rate normalizations with respect to each other?

4.1 P4.1.1 How do we support a generic Task Allocation Support Model?
P4.1.2 How do we offer this information?, P2.1.2

4.2 P4.2.1 How do we offer a highly composable Task Allocation Support Model?
P4.2.2 How do we extract the information from the model?, P4.1.2

4.3 P4.3.1 How do we provide reasoning support for Task Allocation?
P4.3.2 How do we extract this information from the Reasoning System?, P4.1.2

5.1 P5.1.1 How do we define a generic model that captures contextual information for inter-
nal usage?
P5.1.2 How do we make this generic model available inside the system?

5.2 P5.2.1 How do we support interaction with the system?
P5.2.2 How do we define a generic model that captures contextual information for ex-
ternal usage?

5.3 P5.3.1 How do we define a generic model that captures contextual information for inter-
nal and external usage?, P5.1.2, P5.2.1

6.1 P6.1.1 How do we realize the unidirectional communication?
P6.1.2 How do we make the internal data available

6.2 P6.2.1 How do we achieve dynamic switching of communication protocols?, P6.1.2
6.3 P6.3.1 How do we realize a constant and stable communication stream?, P6.1.2

In Table 2, the problems are defined, which should be resolved to implement the
requirements. Note, that the interpretations replace the actual fuzzy requirements in
this design step. At this point, also the membership degrees are not considered during
the design step. These will be use during the optimization of the Artifact Trace

256 J. Noppen, P. van den Broek, and M. Aksit

Model. The subsequent steps where the problems are refined to solutions, and the
solutions to components can be found in Appendix Table 5 and 6 respectively. When
we depict this design process in an Artifact Trace Model, this results in the following
picture:

R
5.1

R
5.2

R
5.3

R
2.1

R
2.2

R
2.3

R
4.1

R
4.2

R
4.3

R
6.1

R
6.2

R
6.3

R
3

R
1

P
5.1.1

P
5.1.2

P
5.2.1

P
5.2.2

P
3.1

P
3.2

P
1.1

OROR OR OR

Over
all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P
5.3.1

P
2.1.1

P
2.1.2

P
2.2.1

P
2.2.2

P
2.3.1

P
4.1.1

P
4.1.2

P
4.2.1

P
4.3.1

P
6.1.1

P
6.1.2

P
6.2.1

P
6.3.1

P
4.2.2

P
4.3.2

S
5.1.1

S
5.1.1

S
5.1.2

S
5.3.1

S
5.2.1

S
5.2.1

S
5.2.2

S
2.1.2

S
2.2.1

S
2.2.2

S
2.3.1

S
2.3.1

S
4.1.1

S
4.2.1

S
4.2.2

S
4.3.1

S
4.3.2

S
6.1.1

S
6.1.2

S
6.2.1

S
6.3.1

S
3.1

S
3.2

S
1.1

C
5.1.1

C
5.1.1

C
5.1.1

C
5.1.2

C
5.2.1

C
5.2.1

C
5.2.2

C
5.3.1

C
2.1.2

C
2.2.1

C
2.2.2

C
2.3.1

C
2.3.1

C
4.1.1

C
4.2.1

C
4.2.2

C
4.3.1

C
4.3.2

C
6.1.1

C
6.1.2

C
6.2.1

C
6.3.1

C
3.1

C
3.2

C
1.1

XIV
2

XV
0.5

XVI
4

XVII
0.5

XVIII
1

XIX
0.1

XX
0.5

XXI
1

II
3

III
1

IV
4

V
1

VI
3.5

IX
1

X
2

XI
3

XII
2

XIII
3

XXII
4

XXIII
3

XXIV
2

XXV
2

VII
2

VIII
2

I
3

R
5.1

R
5.2

R
5.3

R
2.1

R
2.2

R
2.3

R
4.1

R
4.2

R
4.3

R
6.1

R
6.2

R
6.3

R
3

R
1

P
5.1.1

P
5.1.2

P
5.2.1

P
5.2.2

P
3.1

P
3.2

P
1.1

OROR OR OR

Over
all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P
5.3.1

P
2.1.1

P
2.1.2

P
2.2.1

P
2.2.2

P
2.3.1

P
4.1.1

P
4.1.2

P
4.2.1

P
4.3.1

P
6.1.1

P
6.1.2

P
6.2.1

P
6.3.1

P
4.2.2

P
4.3.2

S
5.1.1

S
5.1.1

S
5.1.2

S
5.3.1

S
5.2.1

S
5.2.1

S
5.2.2

S
2.1.2

S
2.2.1

S
2.2.2

S
2.3.1

S
2.3.1

S
4.1.1

S
4.2.1

S
4.2.2

S
4.3.1

S
4.3.2

S
6.1.1

S
6.1.2

S
6.2.1

S
6.3.1

S
3.1

S
3.2

S
1.1

C
5.1.1

C
5.1.1

C
5.1.1

C
5.1.2

C
5.2.1

C
5.2.1

C
5.2.2

C
5.3.1

C
2.1.2

C
2.2.1

C
2.2.2

C
2.3.1

C
2.3.1

C
4.1.1

C
4.2.1

C
4.2.2

C
4.3.1

C
4.3.2

C
6.1.1

C
6.1.2

C
6.2.1

C
6.3.1

C
3.1

C
3.2

C
1.1

XIV
2

XV
0.5

XVI
4

XVII
0.5

XVIII
1

XIX
0.1

XX
0.5

XXI
1

II
3

III
1

IV
4

V
1

VI
3.5

IX
1

X
2

XI
3

XII
2

XIII
3

XXII
4

XXIII
3

XXIV
2

XXV
2

VII
2

VIII
2

I
3

Fig. 2. Artifact Trace Model of the TMS with Fuzzy Requirements

In Figure 2 the Artifact Trace Model is depicted for the design of the TMS with
imperfect requirements. The nodes labeled OR depict the imperfect requirements, and
the fact that at least one of their respective child nodes should be implemented. For all
the components the implementation time is estimated in person-months. As indicated
in Section 3.4, only one interpretation needs to be implemented for each fuzzy re-
quirement, which means that multiple systems can be derived from the Artifact Trace
Model. To analyze how the crisp architecture compares to the possible systems that
can be derived from this Artifact Trace Model, we will optimize the system design
both for cost and relevance in the next section.

When we take as a reference point the system from Section 4.1, we see that the re-
quirements that are implemented by these components is { R1.1, R2.3, R3.1, R4.3, R5,
R6 }. When we determine the overall relevance according to our method, this results
in a relevance of 0.114. In addition, the cost for implementing all the components for
this system is 33.1 man-months. In this paragraph, we examine whether it is possible
to derive systems from the fuzzy requirement design, which either offer lower costs or
higher relevance. First, we identify the system with minimal costs, while having a
relevance of at least 0.114 , which is equal to the relevance of the system resulting
from the crisp requirements. The system that is the result of this optimization consists
of the following components: { I, II, VII, VIII, IX, XIV, XV, XVI, XVII, XVIII, XIX, XX,
XXII, XXIII }. With these components, the following requirements are implemented:
{ R1, R2.1, R3, R4.1, R5.1, R5.2, R6.1 }. The resulting architecture has a relevance of
0.122, which adheres to our constraint of minimally 0.114. Our optimization criterion,

 Imperfect Requirements in Software Development 257

cost, for this system is equal to 26.6, which is considerably lower than the 33.1 for the
crisp system. We can conclude that the optimal system that can be found using the
Artifact Trace Model, not only exhibits lower costs than the crisp system, but also has
a better relevance.

Second, we maximize relevance, while not exceeding the amount of 33.1 person-
months. Our approach comes up with a system consisting of the following compo-
nents: { I, II, VII, VIII, XII, XIII, XIV, XV, XVI, XVII, XXII, XXIII, XXIV, XXV }. With
these components the following requirements are implemented { R1, R2.1, R3, R4.3,
R5.1, R6.1, R6.2, R6.3 }. This architecture differs considerably from the system that
was designed based on perfect requirements. Especially for requirement 4 multiple
interpretations have been included, which considerably boasts the relevance of this
system. This system has a relevancy of 0.476 and the cost of implementing the com-
ponents is 33.0. For this optimization we can conclude that the resulting system has a
considerably higher relevance, and still the costs are lower than for the perfect re-
quirements system.

5 Related Work

5.1 Decision Models and Imperfection Support of Software Processes

During the last 20 years, a considerable number of design methods have been intro-
duced, such as Structural design [17] and Rational Unified Process [6]. These ap-
proaches generally differ from each other with re-spect to the adopted models, such as
functional, data-oriented, object-oriented, etcetera. These methods propose a process
which is guided by a large set of explicit and implicit heuristics rules. A method may
distinguish itself from the others by introducing and emphasizing its own design heu-
ristics. In [15], based on their heuristics, architecture design methods are classified as
artifact-driven, use-case driven and do-main-driven. In the artifact-driven approaches,
software is designed from the perspective of the available software artifacts.

An extensive number of software engineering environments have been proposed to
support software engineering methods. Most environments provide model editing,
consistency checking, version management and code generation facilities. There is a
considerable amount of research on process modeling [8][5], as well as research in the
field of assisting software designers with automated reasoning mechanisms. How-
ever, formalizing design heuristics and providing some sort of expert system support
during the design process is not exploited well. As a result, most approaches can not
deal with imperfect information in the design process. In [11], a design heuristics
support approach based on fuzzy logic is proposed. However, this work does not ad-
dress the same problem of imperfect information as defined in this paper.

Modeling imperfection in the inputs of design processes is not new. However it is
seldomly applied in the field of software design. In [1] fuzzy logic is applied to sup-
port the partial applicability of design heuristics in the OMT development process. By
applying fuzzy reasoning techniques, the inconsistency can be con-trolled and main-
tained to a point where it can be resolved by new design input. In [16], a fuzzy logic
framework is defined that can be used to model imprecise functional requirements.
After each design step the proposed solution can be compared with the requirement,

258 J. Noppen, P. van den Broek, and M. Aksit

similar to proving an invariant over a piece of code. The resulting value then indicates
to which degree the requirement holds.

In [9], an extension to decision trees (see next paragraph) is proposed. The impre-
cise attitude of the decision maker with respect to risks is modeled using techniques
from fuzzy logic, and combined with the decision optimization algorithms of prob-
abilistic decision trees. In [10], an approach is proposed to model imprecision in de-
sign inputs. This imprecision is captured using fuzzy set theory, and the imprecision is
then used to explore the possible design alternatives based on this model. In addition,
the method defines means to evaluate design alternatives based on these modeled im-
precision using fuzzy set theory. In [12], the uncertainty of market demands for soft-
ware products is captured using probabilistic models. These models are then used by a
Markov decision model to determine the implementation order of the components of
the system, in order to optimize the expected profit.

5.2 Traceability of Intermediate Design Artifacts in Software Engineering

In our approach we define a tracing model specifically aimed at capturing relation-
ships between intermediate design artifacts. Requirements tracing is a well-defined
area and has resulted in numerous techniques for tracing software design processes.
Each of these approaches is aimed at different uses, and is specifically suited to
achieve this purpose. For instance, a tracing approach based on hypertext [7] is pri-
marily aimed at easily browsing to documentation by use of hyperlinks. Other ap-
proaches are aimed at specifically linking elements together to determine coverage
and balance of intermediate design steps, such as trace matrices [4] and matrix se-
quences [3]. Another use of trace models is to analyze the fulfillment of requirements
based on the structure of the requirement trace. Examples of such approaches are as-
sumption-based truth maintenance networks [13] and constraint networks [2]. While
all these approaches have specific uses, it is not possible to apply these approaches to
work with imperfect inputs and optimize system de-signs. This limitation is caused by
in the need for specific attributes that are needed in the trace model, which are mostly
only in part captured by these tracing models.

6 Conclusions

In Section 2, imperfect information in software requirements and trading off system
functionality systematically are identified as two important problems in the design of
software systems. The first problem can lead to the development of software systems
that do not reflect the stakeholder’s intentions, since the imperfect requirements can
be interpreted differently by software engineers. The second problem is caused by the
lack of a tracing model that explicitly models the relationships between requirements
and the components that implement them. This lack makes it impossible to analyze
alternative systems based on the components that are implemented, while simultane-
ously considering cost or implementation time.

We have shown that imperfect information can be managed by describing the im-
perfect information with fuzzy sets and treat the extended requirements in the same
way as normal requirements. By adding annotations to the imperfect requirements, we

 Imperfect Requirements in Software Development 259

can model particular interests of stakeholders, such as desirability or applicability. In
addition, we have shown that the design process can be supported by tracing the trans-
formation steps that are taken from the initial requirements to the final components.
The relationship between the design elements is captured by a tree structure, which
can be used to trade off system functionality.

Our approach was demonstrated by applying the approach to an example case. In
the traditional evaluation method, one interpretation for each requirement was used.
When this system was compared to the results of our approach, it turned out to be
considerably more expensive and less adequate. To support the software engineer in
the application of this approach, a prototype tool has been implemented.

References

1. Aksit, M., Marcelloni, F.: Leaving Inconsistency Using Fuzzy Logic. Information and
Software Technology 43(10), 725–741 (2001)

2. Bowen, J., O’Grady, P., Smith, L.: A Constraint Programming Language for Life-Cycle
Engineering, Artificial Intelligence in Engineering 5(4), 206–220 (1990)

3. Brown, P.G.: QFD: Echoing the Voice of the Customer, AT&T Technical Journal, pp. 21–
31 (March/April 1991)

4. Davis, A.M.: Software Requirements: Analysis and Specification’. Prentice-Hall, Inc.,
Englewood Cliffs (1990)

5. Finkelstein, A., Kramer, J., Nuseibeh, B.: Software process modelling and technology, Re-
search Studies Press Ltd (1994)

6. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son Wesley, London, UK (1999) ISBN 0-201-57169-2

7. Kaindl, H.: The Missing Link in Requirements Engineering, ACM SIGSOFT Software
Engineering Notes 18(2), 30–39 (1993)

8. Kaiser, G.E., Popovich, S., Ben-Shaul, I.Z.: A Bi-Level Language for Software Process
Modeling. In: Tichy, W. (ed.) Configuration Management, John Wiley and Sons,
Ltd.Baffins Lane, Chichester, West Sussex PO19 1UD, England, pp. 39-72 (1994)

9. Liu, X., Da, Q.: A Decision Tree Solution Considering the Decision Maker’s Attitude. In:
Fuzzy Sets and Systems, pp. 437–454. Elsevier, North-Holland, Amsterdam (2005)

10. Law, W.S., Antonsson, E.K.: Optimization Methods for Calculating Design Imprecision,
in Advances in Design Automation, ASME, pp. 471–476 (1995)

11. Marcelloni, F., Aksit, M.: Reducing Quantization Error and Contextual Bias Problems in
Software Development Processes by Applying Fuzzy Logic. In: Proceedings 18th Int.
Conference of NAFIPS, IEEE (1999) ISBN 0-7803-5211-4

12. Noppen, J., Aksit, M., Nicola, V., Tekinerdogan, B.: Market-Driven Approach Based on
Markov Decision Theory for Optimal Use of Resources in Software Development. IEE
Proceedings Software 151(2), 85–94 (2004)

13. Smithers, T., Tang, M.X., Tomes, N.: The Maintenance of Design History in AI-Based
Design. In: Proceedings of the Colloquium by the Institution of Electrical Engineers Pro-
fessional Group C1 (Software Engineers), London, pp. 8/1–8/3 (1991)

14. Tekinerdogan, B.: Synthesis-Based Software Architecture Design, Ph.D. Thesis, Print
Partners Ipskamp, Enschede (2000) ISBN 90-365-1430-4, Also available through
http://www.cs.bilkent.edu.tr/ bedir/PhDThesis/index.htm

260 J. Noppen, P. van den Broek, and M. Aksit

15. Tekinerdogan, B., Aksit, M.: Classifying and evaluating architecture design methods. In:
Aksit, M. (ed.) Software Architecture and Component Technology, pp. 3–28. Kluwer
Academic Publishers, Boston, MA (2002)

16. Yen, J., Lee, J.: Logic as a Basis for Specifying Imprecise Requirements. In: Proceedings
of 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’93), pp. 745–749.
IEEE Computer Society Press, Washington, DC (1993)

17. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of Com-
puter Program and Systems Design. Prentice-Hall, Englewood Cliffs (1979)

Appendix

Table 3. From Problems to Solutions

Problem Solution
P1 S1 Displaying by interpretation and formatting for the affected user
P2.1 S2.1 XML Schema for Tasks and Scenarios
P2.2 S2.2.1 State and Scenario Models based on Language Constructs

S2.2.2 XML based Language Parser
P3.1 S3.1 Determine and execute traffic relocation strategies
P3.2 S3.2 Compare strategies based on completion time and congestion reduction
P4.1 S4.1 Task Allocation based on XML models
P4.2 S4.2.1 Open Source XML Parser

S4.2.2 XML Communication Component
P5.1 S5.1.1 Corba based Middleware

S5.1.2 SQL Query Component
P5.2 S5.2 Database + Standardized Database Content Output
P6.1 S6.1 Uniform Communication Interface
P6.2 S6.2.1 Video Streaming Support

S6.2.2 Corba Based Communication, S6.1

Table 4. From Solutions to Components

Solution Components Cost
S1 I Definable views on Traffic Data Component 3

S2.1 II XML Schema for Tasks and Scenarios
III Common File Format Definition

3
0.5

S2.2.1 IV State and Scenario Models in Specific Language 1
S2.2.2 V Custom Language Parser Component, III 3.5
S3.1 VI Relocation Strategy Component 2
S3.2 VII Strategies Comparison and Selection Component 2
S4.1 VIII XML Schema for Task Allocation 1

S4.2.1 IX Open Source XML Parser Component 4
S4.2.2 X XML Communication Component 0.5
S5.1.1 XI Corba Communication Components 1
S5.1.2 XII SQL Query Component 0.1
S5.2 XIII Database + Database Serializer Component 0.5
S6.1 XIV Uniform Communication Interface 3

S6.2.1 XV Dynamic Protocol Support Component
XVI Video Streaming Support Component

2
2

S6.2.2 XVII Corba Based Communication Component 4

 Imperfect Requirements in Software Development 261

Table 5. From Problems to Solutions

Problem Solution
P1.1 S1.1 Displaying by interpretation and formatting for the affected user

P2.1.1 S5.1.1
P2.1.2 S2.1.2 XML Schema for Tasks and Scenarios
P2.2.1 S2.2.1 State and Scenario Models based on StateMachines
P2.2.2 S2.2.2 State Machine Interpreter
P2.3.1 S2.3.11 State and Scenario Models based on Language Constructs

S2.3.12 XML based Language Parser
P3.1 S3.1 Determine and execute traffic relocation strategies
P3.2 S3.2 Compare strategies based on completion time and congestion reduction

P4.1.1 S4.1.1 Task Allocation based on XML Models
P4.1.2 S5.1.2, S5.1.12
P4.2.1 S4.2.1 Task Allocation based on Object Oriented Models
P4.2.2 S4.2.2 COM+ Component, S5.2.1
P4.3.1 S4.3.1 Task Allocation based Expert System
P4.3.2 S4.3.2 Text based Allocation Report
P5.1.1 S5.1.11 XML-based Model for capturing contextual information

S5.1.12 Open Source XML Parser
P5.1.2 S5.1.2 XML Communication Component
P5.2.1 S5.2.11 Corba based Middleware, S5.2.12 SQL Query Component
P5.2.2 S5.2.2 Database + Standardized Databse Content Output
P5.3.1 S5.3.1 XML Model + Database Representation, S5.1.1, S5.2.1, S5.2.2
P6.1.1 S6.1.1 Corba based Communication
P6.1.2 S6.1.2 Uniform Communication Interface
P6.2.1 S6.2.1 Dynamic Protocol Support, S6.1.1, S6.1.2
P6.3.1 S6.3.1 Video Streaming Support, S6.1.1, S6.1.2

Table 6. From Solutions to Components

Solution Components Cost
S1.1 I Definable Views on Traffic Data Component 3
S2.1.2 II XML Schema for Tasks and Scenarios, XV 3
S2.2.1 III State and Scenario Models based on State Machines, XV 1
S2.2.2 IV State Machine Interpreter Component 4
S2.3.11 V State and Scenario Models in Specific Language 1
S2.3.12 VI Custom Language Parser Component, XV 1
S3.1 VII Relocation Strategy Component 2
S3.2 VIII Strategies Comparison and Selection Component 2
S4.1.1 IX XML Schema for Task Allocation 3.5
S4.2.1 X Object Oriented Task Allocation Model 2
S4.2.2 XI COM+ Component 3
S4.3.1 XII Task Allocation Expert System 2
S4.3.2 XIII Text Based Allocation Report Extractor and Interface, XV 3
S5.1.11 XIV XML Model Schema

XV Common File Format Definition
2

0.5
S5.1.12 XVI Open Source XML Parser Component 4
S5.1.2 XVII XML Communication Component 0.5
S5.2.11 XVIII Corba Communication Components 1
S5.2.12 XIX SQL Query Component 0.1
S5.2.2 XX Database + Database Serializer Component 0.5
S5.3.1 XXI XML Schema and ER Diagram 1
S6.1.1 XXII Corba Based Communication Component 4
S6.1.2 XXIII Uniform Communication Interface 3
S6.2.1 XXIV Dynamic Protocol Support Component 2
S6.3.1 XXV Video Streaming Support Component, XXIV 2

Towards a Tomographic Framework for
Structured Observation of Communicative

Behaviour in Hospital Wards

Inger Dybdahl Sørby and Øystein Nytrø

Department of Computer and Information Science & NSEP
(Norwegian EHR Research Centre)

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

{inger.sorby,nytroe}@idi.ntnu.no

Abstract. The research presented in this paper investigates how ob-
servation of information- and communication-intensive work in hospital
wards can be used to produce requirements for mobile clinical informa-
tion systems. Over a number of years, we have explored how important
properties of clinical situations can be captured through structured ob-
servations of actors, processes, and systems. In the paper, we present
experience from four observational studies of a total of more than 400
hours in hospital wards. Based on the observational studies, we propose
a framework for structured, tomographic, observation of clinical work
practice. We also briefly discuss and illustrate how the field data can be
analyzed and used as input to the requirements engineering process.

1 Introduction

Traditional software engineering is challenged by the complexity and informa-
tion intensity of healthcare. Even at the smallest hospital, an individual clinician
takes concurrently part in many care processes, in different stages, with different
partners, often having different roles, using many means of communication, and
a variety of existing paper- and computer-based information systems. It is not
uncommon in larger Norwegian hospitals to have hundreds of separate informa-
tion systems in clinical use. An objective of hospital IT-policy is to integrate
or replace the functionality of all the specialist systems in one suitable archi-
tecture, with portal-based interfaces, and thereby improve information quality,
ease of access and information flow. However, it is a huge challenge to integrate
both information and functionality from diverse components and sources into
comprehensible user interfaces.

One of the aims in our research on context-aware mobile patient record sys-
tems has been to develop techniques for characterizing situations, procedures,
roles, actors, and problems that can be aided by the introduction of such sys-
tems. Criteria that identify where such systems will disrupt good practice are

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 262–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Tomographic Framework for Structured Observation 263

also important to establish [1]. This research on groundwork and context natu-
rally supplement various user centered requirements elicitation techniques and
methods [2,3,4].

Collecting and mapping knowledge about the information environment, the
context, for the future software system is explorative, difficult to focus and po-
tentially costly. The validity may also be problematic.

In order to improve the collection of context knowledge, we propose a frame-
work that establishes different dimensions of observations, a process for focusing
and refinement of observation protocols, and finally iterative exploration of the
collected contextual knowledge. The framework enables a tomographic, slice-
wise, view of reality by structured observation and documentation of situations,
actors, interactions, and processes. Our objectives in developing the framework
have been:

– To be able to characterize cooperative situations in a repeatable and efficient
way

– To concentrate on observable characteristics of situations, instead of implicit
characteristics and concerns like efficiency, failures, success and goals

– To be able to change perspective, level of detail, and observation technique
according to focus of interest

– To be explicit about what characteristics remain constant, and thus not
interesting, during iterated observation of other, varying characteristics.

While the framework is meant to be used in the initial stages of the requirements
engineering (RE) process, we believe that it can be useful for making scenarios
and use-cases directly based on empirical knowledge, and thereby make them
more valid, and more adaptable to changes in reality.

The paper is organized as follows: Section 2 presents the problem domain of
healthcare information systems and briefly discusses related RE issues. Section 3
reviews four succeeding observational studies with varying problem foci:

1. high-level characteristics of varying information-intensive, complex, cooper-
ative care situations in the ward with many human actors and few computer
systems

2. information use in sequences of situations related to one specific task (patient
discharge) with multiple system actors (many different information systems
and a few human actor roles, but many distinct persons in that role)

3. information use in similar situations, but with one task (medication) and
many actors

4. elicitation of situational properties from the perspective of one actor role (a
physician) over longer periods of time

In Sect. 4 various aspects of the observational studies and the framework are
explained. Section 5 provides a discussion of the approach, and finally, Sect. 6
concludes the paper and gives some paths for further improvement and validation
of our approach.

264 I.D. Sørby and Ø. Nytrø

2 Background and Related Work

The healthcare domain is characterized by a high intensity of information, knowl-
edge, and communication. Healthcare workers are to a great extent mobile while
performing patient-centered work, and they also often have to handle interrup-
tions and unexpected situations and events. The information systems used in
this domain are steeped in challenges of sociotechnical nature [5], and hence
traditional requirements elicitation and analysis techniques are not appropriate
when designing new systems.

For many years, ethnography has been recognized as an important comple-
ment to existing human centered methods by both the requirements engineering
and the HCI research communities [6], and several papers report on various
approaches to incorporating ethnography in the RE process (e.g. [7,8,9,10,11]).
Still, the practical impact of this approach has been minimal [6]. One important
reason for this is that ethnographic studies are normally very time consuming
and the unstructured, detailed field notes of the ethnographers are often diffi-
cult to transform into formal requirements. We propose an approach to overcome
some of these difficulties by performing focused, structured observation of com-
municative behaviour in hospital wards.

Our approach enables

– efficient and easy recording of field data as interpretation is done immedi-
ately during observation. This is in contrast to e.g. video recordings and
unstructured field notes.

– field data that give a reasonably ’objective’ map of reality and that are
appropriate for further quantitative and qualitative analysis

– performance in several system development stages (i.e. the approach can be
used both before and after the introduction of new information systems)

3 Observational Studies in Hospital Wards

The following sections briefly describe four observational studies performed at
a local University Hospital during the period 2002-2005. The research was per-
formed as part of the MOBEL (MOBile ELectronic patient record) project at
NTNU [1], and the main objectives have been to study and capture information
and communication patterns among healthcare workers in hospital wards, in or-
der to be able to elicit and produce comprehensive requirements for the user
interface of mobile clinical information systems.

3.1 Study 1: Characterizing Complex Cooperative Situations

The first observational study was performed in spring 2002 by two PhD students
(with background from sociology and computer science). The main purpose of
the study was to identify and characterize situations that would change, improve,
or even become superfluous by introducing a mobile, electronic patient chart in
the hospital ward. Likewise was identifying situations that would not benefit

Towards a Tomographic Framework for Structured Observation 265

from such an information system important. Five days of non-participatory ob-
servations in two hospital wards were supplemented with informal interviews
with the health personnel, and also with experiences from a more extensive ob-
servational study performed by the sociologist in a third ward. During the study,
the observers followed physicians and nurses in their daily patient-centered work,
taking free-text notes. Based on the notes and supplementary information, 11 ex-
ample scenarios were extracted. The scenarios included meetings, ward rounds,
medication administering and other important ward situations. Subsequently,
the scenarios were characterized by means of a previously developed form, con-
sisting of attributes with corresponding predefined values. The attributes were
grouped in three main sections: process attributes, input attributes, and out-
comes (see [1] and [12] for details). The main attributes were related to the pro-
duced or exchanged information; i.e. type, amount, medium/modality, informa-
tion/knowledge flow, and time perspective/validity. Other important attributes
concerned contextual information such as participants/actors and planning, del-
egation, and decision-making issues.

Table 1 shows an example scenario abstracted from the observations with
corresponding characterization.

Table 1. Example scenario and characterization

Example scenario: Medication per patient

One of the nurses in the patient care team uses information from the patient chart
to put today’s medications for the ward patients onto a medicine tray. Later, the
nurse in charge inspects the medicine tray to ensure that the medicines correspond
to what is recorded in the patient chart.

Facet Attribute Values of example scenario

Process Number of participants 2-4
Number of roles Two
Number of role levels Two
Composition Predetermined
Decomposition Yes
Scenario nature Formal
Regularity Daily
Scheduling On the spot
Variance of required info. Somewhat
Location(s) Predetermined, fixed
Spatiality One place
Temporality Asynchronous
Information exchange One-to-many
Initiation On demand/Precondition
Delay tolerance of scenario start None

Information input Novelty To some
Recorded Patient chart
Longevity Short term
Medium/mode Text
Scope All
Delay tolerance of input. info None

Outcomes/ Explicit Yes
produced output Shared Yes

Novelty To some
Recorded Patient chart
Longevity Long term
Type of produced information Cooperative, constructive
Medium/mode Text
Scope Patient care team members
Delegation of responsibility Predefined
Delegation of tasks Predefined
Delay tolerance None
Outcome type known in advance Yes

266 I.D. Sørby and Ø. Nytrø

3.2 Study 2: The Patient Discharge Process

The second observational study took place during spring 2004. The purpose
of the study was to investigate to what extent clinical information systems -
in particular the electronic patient record (EPR) system - support clinicians
in critical and information intensive tasks such as the discharge process. Prior
to the study, the initial observational framework was adjusted to fit the study
perspective: One (well-defined) sequence of situations related to the discharge of
patients in one hospital ward (i.e. preparations and writing preliminary discharge
report, discharge conversation with patient, and dictating final discharge report).
The observations were performed by two apprentices (medical students) with
little or no experience from the hospital ward. The medical students followed one
physician at a time, observing the physician’s work concerning the discharge of
patients. A total of 52 discharge processes were studied, and the observers spent
100 hours in total in the hospital ward. During the observations, the students
used a note-taking form with pre-defined information sources (e.g. Electronic
Patient Record, Patient Chart, Nurses), sequentially noting what information
that was gathered from the various sources. Later, one of the medical students
transcribed the notes to spreadsheet matrixes consisting of information types
versus information sources. The data collected from the 52 discharge processes
were summarized in one matrix and analyzed. During the analysis, the initial 14
information sources were grouped into three categories: Paper-based, electronic,
and human. The observational study and the results are described in further
detail in [13] and [14].

3.3 Study 3: Drug Prescription and Administration Situations

As part of their Master’s thesis work ([15]), two Computer Science students
developed the observational framework further in order to be able to produce
requirements for a context-aware interface for drug prescription and administra-
tion (i.e. getting, picking, controlling and delivering the prescribed medicines to
the patients, and documenting this process). Their first version was an exten-
sion of the characterization form presented in Sect. 3.1. The students collected
data by means of non-participant observation, interviews, and video recording,
focusing on situations related to drug prescription and administration. However,
when analyzing the data, the students found that the observed situations were
disconnected and the collected data were insufficient in order to capture contex-
tual attributes beyond traditional aspects such as time, place, task, and actors.
They therefore decided to focus on the patient process as sequences of related sit-
uations in order to be able to capture contextual attributes that were important
for the outcome or the decisions made in the different situations. The resulting
analysis form with an extract of the example observational data of one patient
process is shown in Fig. 1. The example data is taken from one drug adminis-
tration morning round and one pre-round situation. The column ’ID’ identifies
the main actor of the event, in this case the nurse and the resident physician.
The remaining columns contain the information source, the information type,

Towards a Tomographic Framework for Structured Observation 267

S
itu

a
tio

n

n
o

.

ID In
fo

rm
a

tio
n

s
o

u
rc

e

In
fo

rm
a

tio
n

D
ire

c
tio

n

P
u

rp
o

s
e

R
e

s
u

lt

T
y
p

e

T
rig

g
e

r

L
o

c
a

tio
n

P
a
rtic

ip
a
n

ts

P
h

y
s
ic

a
l

R
e

s
u

lt o
f

L
e

a
d

in
g

 to

8.1 Nur. Patient chart
(F1a)

Regular med. I/O Look up
medications
and dosage

Sign.

8.2 Nur. Marevan form INR I/O Determine
dosage

Sign.

8.3 Nur. Patient Drug O Administer
drug

Received

D
rug adm

in.

R
egular

P
at. room

, hallw
.

N
urse

T
rolley: hallw

ay,
2 beds, 2 pat.

9.1 Res. Patient list I Overview
9.2 Res. Patient chart

(F1a)
Regular med. O Sign. Sign.

9.3 Res. Patient record Record note I Understand
the intention
behind the note

Nothing
new??

9.4 Res. Test result Blood I Overview
9.5 Res. Nurse Intestinal

function
I S9.6

9.6 Res. Check list Intestinal
function

O S9.5

9.7 Res. Test result Urine O Sign. Sign.
9.8 Res. Test result Blood I Check
9.9 Res. Patient chart

(F1b)
Fluid (in) I Control fluid

balance
Not
dehydrated

9.10 Res. Nurse Drug effect I Control drug
effect

Seems less
Stiff

S9.11
S9.12

9.11 Res. Patient list Drug effect O Reminder S9.10
9.12 Res. Supervision Neurological I Check Old: Start

paroxan
S9.10

9.13 Res. Nurse Network meeting I

P
re-rounds

R
egular

G
roup room

R
esident, nurse

S7.2

Fig. 1. Analysis form with example data from observation of drug administering and
pre-rounds situation, Department of Geriatrics (translated from Norwegian)

information flow direction (in/out), the purpose and result of the event, and some
general values valid for all the events of the situation. The two last columns refer
to the relationship between various elements of the sequence.

3.4 Study 4: Following Physicians

A fourth instance of the observational framework was developed and used during
a two-months period of extensive observation in two different hospital wards in
2005 [16,17]. One fifth year medical student performed non-participatory obser-
vations of physicians’ clinical work (e.g. pre-rounds meetings and ward rounds).
The participants included both chief physicians, residents, and interns. The ex-
ample data presented in this paper was collected at the Department of Cardi-
ology. During the observational study, the medical student spent 20 days in the
hospital wards. The student followed one physician at a time, recording infor-
mation about various clinical situations by the means of an observational note
taking form based on and adapted from the form described in Sect. 3.3. The
student recorded information about sequences of events in each situation. The
recorded information contained situation activity with associated trigger/rule,
location, main actor and role, co-actors, patient ID, illness history, reason for
admission, situation start and end time, information sources, information types,
purpose, results, and advance knowledge. Most of the recorded information was
coded on-site by means of pre-defined values, while for instance ’illness history’,
’advance knowledge’, and ’purpose’ consisted of short free-text notes. An ex-
tract of the recorded data is shown in Fig. 2. In the example figure, the free-text

268 I.D. Sørby and Ø. Nytrø
A

c
ti

v
it

y
/

T
ri

g
g

e
r

R
u

le

P
la

c
e

M
a
in

 a
c

to
r

R
o

le

C
o

-a
c
to

rs

R
o

le
(s

)

P
a
ti

e
n

t-
ID

R
e
a
s
o

n
 f

o
r

a
d

m
is

s
io

n

(R
fA

)

T
im

e

In
fo

rm
a
it

o
n

S
o

u
rc

e

D
ir

e
c

ti
o

n
 I
/O

In
fo

rm
a

ti
o

n

P
u

rp
o

s
e

P
a
ti

e
n

t

c
a
te

g
o

ry

Pre-
rounds Continue after interruption OFF4 Res9 PR Nur9 GR P57

Admitted due to unstable
angina. Must be carefully
watched when considering
further treatment.

10:50 PATLIST I NAME Name of the patient
New patient for the
pysician.
Under investigation

NUR I NEW Changes since admission

EPR I ALL Overview of patient

NUR O FINDEX Info. about examination

PC I MED Review med.

11:05 PC O MED Sign

Examin.

The physician is under specialization and
is obliged to perform a certain number of
US examinations. Will receive a pager call
if such an examin. is to be performed

OFF4 Res9 PR
HP13 on
phone
(Nur9GR)

Ex 11:10
The physician is paged from the
ultrasound lab. Both the patient and the
ultrasound machine are ready

LAB2 Res9 PR HP13 Ex 11:45 Perform US examination

Suppl.
work

Quest. arose after pre-rounds. Asks before
patient rounds in order to be able to give
the answer to the patient during rounds

LAB3 Res9 PR HP12 Ex P55 As previously described 11:50

Discuss with colleague if the patient can
delay aniography until tomorrow or if the
pat. should start on K-vit. and wait for
INR level to decrease until tomorrow.

New patient for the
pysician.
Particular
examination

Rounds After pre-rounds PR10 Res9 PR Nur9 GR P41 Like Day 12 12:02 PATLIST I NAMEROOM Overview of name of patient and where
patient is placed Under investigation

PAT O MED Inform about cease of med

PAT O FINDEX Info about result of examination

12:08 PAT I NEW Changes since yesterday

Fig. 2. Extract of observational data collected at Department of Cardiology (trans-
lated from Norwegian). The perspective is one resident physician ("Res9") in several
situations (pre-rounds, examination, supplementary work, and rounds) with different
patients ("P57", "P55" and "P41"), various information sources (Patient list, nurse,
electronic patient record (EPR), Patient chart (PC), and Patient), and co-actors (one
nurse ("Nur9") and two head physicians ("HP12" and "HP13").

columns ’Illness history’, ’Result’, and ’Advance knowledge’ have been removed
in order to make the figure more readable.

3.5 Lessons Learned

The first observational study described in Sect. 3.1 lead to a number of rep-
resentative ward scenarios. The scenarios provided useful insight into the daily
patient-centered work of clinicians. However, the situations were detached and
further analysis would require more detailed information about the various situ-
ations. When preparing the second observational study, the focus was therefore
narrowed into one specific procedure: the patient discharge. The first study was
performed by observers with little domain knowledge. For the second study, two
medical students were hired. Knowing the terminology and understanding the
vocabulary of the clinicians, the students were able to grasp much more of what
they observed than the first observers. The students had little or no experi-
ence from the hospital ward, and hence they were open minded and they also
found the observational study interesting as their own domain knowledge was
increased. In order to make the observations efficient, an observation form was
developed prior to the data collection, consisting of several pre-defined informa-
tion sources and several other fields for free-text notes. The evaluation of the
second observational study led to the conclusion that using medical students
(apprentices) for data collection was very beneficial. This became evident in the
third observational study, which was performed by two computer science mas-
ter’s students. Without prior domain knowledge, the students initially had to
spend several days in the hospital ward in order to be able to understand what

Towards a Tomographic Framework for Structured Observation 269

was going on before they could start developing the observation form and con-
centrate on their main task. Based on the observation form from Study 2, the
students developed several iterations (stage 1 and 2 of Fig. 3) and tested them
in the ward. They also used the resulting data to improve some prototypes of
a user interface for a medicine adminstration module. The fourth observational
study was based on the experiences from the previous studies. A medical student
was hired to perform the data collection, and the observation form was adapted
in order to comprise more information regarding the patient illness histories and
the physicians’ background knowledge. This lead to a form consisting mostly of
coded information but also some free-text columns.

Table 2 summarizes the different examples presented in Sect. 3 with respect
to different features of the observations.

Table 2. Summary of observational studies

Study 1 Study 2 Study 3 Study 4
Overview Discharge Medication Physician

Type of obser- Non-participatory ob- Non-participatory ob- Non-participatory ob- Non-participatory,
vational method/ servation by observer servation, and talk- servation, possibly talk-aloud obser-
observer with some domain kn- aloud by somewhat with interface logging/ vation by somewhat

owledge experienced clinician recording, by observer experienced observer
observer with knowledge of in apprentice role

information represen-
tation and systems

Perspective An omniscient obser- All actors (physician, The medication plan/ The physician
ver information systems) system

Level of detail Wide, non-focused, Fixing situation, pro- Fixing actors (sys- Fixing role. Repeat
high-level, with mini- cess and actor attri- tem and user) over role
mal domain butes. Repeat over

situation.

Sequential span Repeated over many Repeated with roles, Repeated with roles, Repeated with role
situations actors, task and situ- information systems constant

ations constant. Chan- and situations con-
ging individuals (pati- stant. Changing con-
ents and physicians) text or location of

the situation.
Changing patients.

Sit. attributes Process, actors, no (1) + information so- (2) + context of situ- (3) + background
/recorded info. information charac- urce and sink, infor- ation information

terization and no mation type, named
task sequences roles, communicative

acts, action seq-
uences

4 A Framework for Structured Observation

The following sections introduces some definitions and goes on to explain the
proposed observational framework.

4.1 Definitions

In order to simplify the further discussion, the following informal definitions are
used:

– A situation is a time-limited sequence of actions/tasks for an individual
patient in which the cast (actors filling roles) does not change, and which
has an identifiable start, preconditions, end, and result. Classification of

270 I.D. Sørby and Ø. Nytrø

Fig. 3. Framework application process

situations is determined by which attributes of the situations we observe.
A situation is for example medication, in which an actor performs specific
tasks (administering drugs to patients). The actions or tasks may or may
not be observed.

– An actor is either a system or a person that fills a role in a situation.
– A role is a set of abilities associated with an actor (in a situation).
– Situation attributes can be used to define or characterize observed situations

by a range of predefined values. The attributes can be grouped into several
facets of the situations (e.g. process related attributes and information re-
lated attributes), and they may be implicit, as common knowledge among
the participants, or explicit, and can be observed by a (trained) observer.
Examples of explicit situation attributes are number of participants, type
and source of an information element, location, and possibly dependent sit-
uations (for a specific perspective). Implicit attributes may be preconditions
for the situation, whether the situation was planned or unplanned, and de-
gree of programming (i.e. according to a standard procedure).

4.2 Framework Application

The proposed observational framework is, as the term implies, something that
has to be adjusted and adapted to a specific use. The framework consists of four
separate stages as illustrated in Fig. 3. The stages are described in the following
sections:

Stage one: Focusing and developing observation forms. The first stage
of the observational framework is to identify the specific focus of the observa-
tion, engaging one or more observers, and deciding on observation and data
collection techniques (i.e. developing observational forms, deciding which at-
tributes to include in the form, and identifying the range of the attribute
values).

Stage two: Data collection and transcription. Based on the techniques
and perspectives chosen in stage one, the observational studies are performed
and the data is recorded and transcribed. The output of this stage are the
actual transcribed observations.

Stage three: Explorative selection. Stage three of the framework concerns
the process of transforming the field data into data that can be analyzed and

Towards a Tomographic Framework for Structured Observation 271

processed. This includes selecting ’tomographic segments’ of the total span
of observational data.

Stage four: Analysis and abstraction. Stage four involves analysis and
abstraction of the data. Appropriate analysis tools and methods must be
carefully selected, depending on the outcome of the former stages of the
framework process, the nature of the recorded data, and the amount of data
(i.e. qualitative vs. quantitative analysis).

4.3 Focusing and Iterative Development of Observation Forms

Our observational framework identifies several dimensions of observation that
have to be considered when planning the observational study:

I. Perspective of observation. Which is the situation as confined to the per-
spective from a specific actor, individual, role, system, or artifact. For exam-
ple, we can observe the hospital as viewed from a specific patient, from the
nurse team leader (instantiated by several persons) or from a specific sys-
tem (e.g. the patient chart). Figures 4 and 5 illustrate how the observational
span is changed according to various perspectives. Observe that this use of
’perspective’ is not a synonym for ’viewpoint’ as used by the RE community
to denote stakeholder’s requirements from a stakeholder’s perspective.

II. Level of detail in observation. Which is simply a ranking of either the
attribute domain (number of different distinguishable values for each at-
tribute, or the number of attributes/decomposition of attributes) or the span
of situations captured by continuous observation. E.g. an observation that
Actor A interacts with Actor B is high level, but the observation that Actor
A asks Actor B (about Patient P) is lower level.

III. Sequential span. This is the span in which we keep some aspects constant
and other aspect are allowed to vary. There are two alternatives:
– a natural succession of different situations in which one artifact or actor

is observed or maintaining the perspective. This is illustrated in Fig. 5b
and c. For example, observations from the perspective of one physician
using one (or more) information systems for a prolonged period of time

– a succession of different roles or contexts enacting through a situation
or a process (e.g. discharging patients), as illustrated in Fig. 5a.

4.4 Example Analysis

Examples of produced output of stage one are observation forms used in Study
2-4 (see Sect. 3). As a supplement to other RE methods, the outcome of the
data analysis and abstraction (e.g. scenarios, use cases, and information flow
sequence diagrams (see e.g. [17]) may be used in the requirements specifications
process. One interesting approach to field data analysis is to create communica-
tive acts profiles of various observed actors/situations [18]. Each event of the
observed situations is associated with one pre-defined communicative acts code,
and the results can be visualized through e.g. radar plots. This technique can for

272 I.D. Sørby and Ø. Nytrø

Fig. 4. a: Span of observation perspectives, b: Observations of detached situations

Fig. 5. a: Focus on one (or closely related) situation type(s) (e.g. the pre-rounds meet-
ing), b: Focus on one information system (e.g. the electronic patient record), c: Focus
on one actor (e.g. the physician)

instance be used to illustrate similarities, differences and variations in working
style and information source usage between individual healthcare workers, roles,
and hospital wards. It is also possible to create profiles of specific activities (e.g.
drug related events), in order to be able to elicit requirements for an information
system supporting this particular activity.

Figure 6 shows an example of a communicative acts profile for ChiefPhysician9
at Dept. of Cardiology during 24 pre rounds situations. The angular axes of the
plot show the 12 communicative acts that have been identified in the observational
data, and the radial axes indicate the number of each act found in the selected ob-
servational data set. The communicative act ’Navigate into common understand-
ing’ is abbreviated ’NCU’. The graph shows how paper-based (the patient chart,
patient record, patient list, Physician’s Desk Report), electronic (Electronic Pa-
tient Record, Patient Administrative System, WiseWeb (a web-based user inter-
face for X-rays pictures and radiology reports)), and human information sources
are used in 220 communicative acts during the 24 pre-rounds situations.

Towards a Tomographic Framework for Structured Observation 273

Fig. 6. Communicative Acts Profile for ChiefPhysician9 (Pre Rounds situations, Dept.
of Cardiology). Number of Comm. Acts: 220 (24 Pre Rounds situations).

5 Discussion

The basic idea with our approach is to be able to:

– keep some aspects constant
– constrain variation

along one or more of the dimensions described in Sect. 4.3, thus allowing more
detail or variation of observation along other dimensions, and more goal-directed
observation. The data collected from these studies can be seen as a ’map of clin-
ical reality’ with varying zooming options. The data from Study 2 and Study
4 are quite detailed, and provide valuable information about the actual infor-
mation and communication practice of several clinicians. This is in contrast to
other workflow/process models that are often created as a means to analyze
and improve current work practice in connection with the development of new
clinical information systems.

While Holzblatt [19] argue for the validity of ’consolidating’ multiple obser-
vations into general truths about users and situations, we do not have enough

274 I.D. Sørby and Ø. Nytrø

experience to claim that a similar approach is valid for our observations. The
accumulation of repeated observations is not intended to give greater confidence
in the results, even if that would be possible given enough time and observers.
It seems obvious that some of the methods of epidemiology could be used for
analysis. We have also tried to use various clustering and process mining tools
to try to give more insight into the observations, but with little success so far.

The quality of the recorded data depends to a great extent on the individual
observer(s) and the transcription/interpretation of the data. Less free-text en-
tries and more pre-defined codes makes the recording faster and possibly more
accurate, but there is also a risk of entering wrong codes and losing important
contextual information.

By various analysis of data gathered from observations it is possible to investi-
gate the effect of for instance introducing new information systems. Simulation,
based on real data from observations [2] may be a very powerful tool.

6 Conclusions and Future Work

We have used our observations both for making requirements and prototypes,
and as a basis for qualitative and quantitative descriptions of work practice,
information use and communicative practice. Presenting and analyzing the re-
sulting requirements, and corresponding prototypes, is beyond the scope of this
paper, but is the subject of further work. However, we have found that:

– observational frameworks must be adjusted to the domain and situation
iteratively.

– observations, after calibration, are repeatable among trained observers
– parallel surveys, with the same actors, give results that are ’idealized’ and

deviates considerably from what we observed [14]
– the ability to control and focus the observations makes the method agile and

efficient
– clinicians are used to being observed and followed by medical students, hence

hiring apprentices for observational studies is very convenient, non-disruptive
and efficient in our domain

We have gathered requirements for the mobile patient chart interface both
from existing commercial prototypes, by traditional use-case modeling, trough
participatory design and not least from ongoing design processes in hospitals.
The requirements developed are surprisingly different, and complementary. We
believe that structured observation as described here is an important supplement
when planning and designing user interfaces to computer systems in healthcare.

Acknowledgements

We would like to thank the staff at the University Hospital of Trondheim for
their cooperation during the observational studies. Thanks to Thomas Brox Røst
and the referees for their comments which helped improve this paper.

Towards a Tomographic Framework for Structured Observation 275

References

1. Sørby, I.D., Melby, L., Nytrø, Ø.: Characterizing cooperation in the ward: frame-
work for producing requirements to mobile electronic healthcare records. Int. Jour-
nal of Healthcare Technology and Management 7(6), 506–521 (2006)

2. Bossen, C., Jørgensen, J.B.: Context-descriptive prototypes and their application
to medicine administration. In: Proceedings of the 2004 conference on Designing
interactive systems: processes, practices, methods, and techniques, pp. 297–306.
ACM Press, Cambridge, MA, USA (2004)

3. Svanæs, D., Seland, G.: Putting the users center stage: Role playing and low-fi
prototyping enable end users to design mobile systems. In: CHI’04: Proceedings of
the SIGCHI conference on Human factors in computing systems, ACM Press, New
York, NY, USA (2004)

4. Bardram, J.E.: Scenario-based design of cooperative systems. In: The 3rd Inter-
national Conference on the Design of Co-operative Systems (COOP98), Cannes,
France (1998)

5. Maté, J., Silva, A. (eds.): Requirements Engineering for Sociotechnical Systems.
Information Science Publishing (2005)

6. Sommerville, I.: Making ethnography accessible: Bringing real-world experience
to HCI designers and software engineers. In: ICSE 2004 - Workshop Bridging
the Gaps Between Software Engineering and Human-Computer Interaction, Ed-
inburgh, Scotland (2004)

7. Hughes, J., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.: Presenting
ethnography in the requirements process. In: Proceedings of the Second IEEE
International Symposium on Requirements Engineering, 1995, pp. 27–34 (1995)

8. Reddy, M., Pratt, W., Dourish, P., Shabot, M.M.: Sociotechnical requirements
analysis for clinical systems. Methods of Information in Medicine 42(4), 437–444
(2003)

9. Allen, M., Currie, L.M., Graham, M., Bakken, S., Patel, V.L., Cimino, J.J.: The
classification of clinicians’ information needs while using a clinical information
system. In: AMIA Annu Symp Proc. 2003, pp. 26–30 (2003)

10. Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements elicitation and validation
with real world scenes. IEEE Transactions on Software Engineering 24(12), 1036–
1054 (1998)

11. Haumer, P., Heymans, P., Jarke, M., Pohl, K.: Bridging the gap between past
and future in RE: a scenario-based approach. In: Proceedings of the 4th IEEE
International Symposium on Requirements Engineering (RE’99), Limerick, Ireland,
pp. 66–73. IEEE Computer Society Press, Los Alamitos (1999)

12. Sørby, I.D., Melby, L., Seland, G.: Using scenarios and drama improvisation for
identifying and analysing requirements for mobile electronic patient records. In:
Maté, J.L., Silva, A. (eds.) Requirements Engineering for Sociotechnical Systems,
pp. 266–283. Information Science Publishing, Hershey (2005)

13. Sørby, I.D., Nytrø, Ø., Tveit, A., Vedvik, E.: Physicians’ use of clinical informa-
tion systems in the discharge process: An observational study. In: Engelbrecht,
R., Geissbuhler, A., Lovis, C., Mihalas, G. (eds.) Connecting Medical Informatics
and Bio-Informatics - Proceedings of MIE2005. Studies in Health Technology and
Informatics, vol. 116, IOS Press, Amsterdam (2005)

14. Sørby, I.D., Nytrø, Ø.: Does the EPR support the discharge process? A study on
physicians’ use of clinical information systems during discharge of patients with
coronary heart disease. Health Information Management Journal 34(4), 112–119
(2006)

276 I.D. Sørby and Ø. Nytrø

15. Kosmo, B., Wien, M.: Methods development for requirements elicitation for a
context-aware mobile patient chart (in Norwegian). Master’s thesis, Norwegian
University of Science and Technology (2005)

16. Kofod-Petersen, A., Aamodt, A.: Contextualised ambient intelligence through case-
based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) EC-
CBR 2006. LNCS (LNAI), vol. 4106, Springer, Heidelberg (2006)

17. Sørby, I.D., Røst, T.B.: Nytrø, Ø.: Empirical grounding of guideline implementation
in cooperative clinical care situations. In: ten Teije, A., Miksch, S., Lukas, P. (eds.)
AI Techniques in Healthcare: Evidence-based Guidelines and Protocols (workshop
at ECAI 2006), Riva del Garda, Italy, pp. 89–94 (2006)

18. Sørby, I.D.: Nytrø, Ø.: Analysis of communicative behaviour: Profiling roles and
activities. Third International Conference on Information Technology in Health
Care (ITHC 2007): Socio-technical approaches (Submitted)

19. Holtzblatt, K.: Contextual design. In: Jacko, J.A., Sears, A. (eds.) The Human-
Computer Interaction Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications. Human Factors and Ergonimics Series. Lawrence Erlbaum
Associates, Inc., pp. 941–963 (2003)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 277–291, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Quality Performance Model for Cost-Benefit
Analysis of Non-functional Requirements Applied to the

Mobile Handset Domain

Björn Regnell1,3, Martin Höst2,3, and Richard Berntsson Svensson3

1 Sony Ericsson, Lund, Sweden
http://www.sonyericsson.com

2 Ericsson, Lund, Sweden
http://www.ericsson.com

3 Lund University, Sweden
bjorn.regnell@telecom.lth.se
http://serg.telecom.lth.se

Abstract. In market-driven requirements engineering for platform-based devel-
opment of embedded systems such as mobile phones, it is crucial to market
success to find the right balance among competing quality aspects (aka non-
functional requirements). This paper presents a conceptual model that incorpo-
rates quality as a dimension in addition to the cost and value dimensions used in
prioritisation approaches for functional requirements. The model aims at sup-
porting discussion and decision-making in early requirements engineering re-
lated to activities such as roadmapping, release planning and platform scoping.
The feasibility and relevance of the model is initially validated through inter-
views with requirements experts in six cases that represent important areas in
the mobile handset domain. The validation suggests that the model is relevant
and feasible for this particular domain.

1 Introduction

The discipline of market-driven Requirements Engineering (RE) is different from
bespoke RE, in that it focuses on products offered to many customers on an open
market, rather than on a tailored product for one specific customer [15]. In this con-
text, products are often developed using a product-line approach [4] applying various
types of upstream decision-making [5] that combine market considerations with im-
plementation concerns in activities such as roadmapping [15], release planning [1]
and platform scoping [3].

There are approaches that address requirements prioritisation in a market-driven
context, e.g. [11], often with a focus on functional aspects. However, non-functional
requirements (quality attributes) are of major importance in market-driven RE, as
reported e.g. in a case study in the telecommunications domain in [7].

This paper presents a conceptual model called QUPER (QUality PERformance)
that incorporates quality as a dimension in addition to the cost and value (benefit)
dimensions used in prioritisation approaches for functional requirements. The model
aims at supporting discussion and decision-making in upstream RE related to, for
example, roadmapping, release planning and platform scoping.

278 B. Regnell, M. Höst, and R. Berntsson Svensson

The model is applied in the telecommunications domain to be used in RE for mo-
bile consumer products in a platform-based cross-company RE process in a distrib-
uted supplier-integrator setting [16]. As a first step, the feasibility and relevance of the
model is validated through interviews with requirements experts in six cases that
represent important areas in the mobile handset domain, using real requirements as
exemplars.1

The paper is structured as follows. Section 2 presents the general research approach
to model development and the research methodology applied in the validation. The
QUPER model is described in Section 3 along with its underlying assumptions. Sec-
tion 4 reports on findings of model validation from the analysis of six different cases
through interviews with domain experts. Section 5 puts the QUPER model into
context of related work. Section 6 gives a summary of the main conclusions.

2 Research Methodology

The presented work was conducted within the Merlin2 research project on embedded
systems development in collaboration. The research was carried out at two case com-
panies in the mobile handset domain with a supplier-integrator relationship. The
general objective of the research is to support management of non-functional re-
quirements, with the QUPER model as one major result, presented in Section 3. The
model has been developed in three main steps.

Step 1. Problem definition. The requirements engineering in platform-based mobile
handset development was investigated by focusing on in the interface between the
two case companies and the cross-company requirements engineering process. The
goal was to understand different requirements decision scenarios. The result of this
work is reported in [16], but in addition to these findings, the need for a cost-benefit
model including quality aspects to support roadmapping and scoping was identified.
High-level goals were elicited in order to capture the conjectures on what would make
such a model successful, as reported in Section 3.

Step 2. Model definition. The model definition was based on the input from step 1 and
the idea to extend traditional cost-benefit trade-off analysis with a quality dimension.
Based on the high-level goals and related work (see Section 5), the QUPER model
was defined comprising three views: a benefit view, a cost view, a roadmap view, and
the concepts of benefit breakpoints and cost barriers (see Section 3).

Step 3. Model validation. An evaluation of the model was carried out by assessing it
in six cases through interviews with experts of selected sub-domains. The objective of
the validation was to check whether QUPER describes well how the experts perceive
costs and benefits of non-functional requirements. If it is possible for them to estimate
breakpoints and barriers in different sub-domains and they find the model generally
applicable it indicates that the model can capture the quality aspects of the domain in
a relevant way and that it may be useful in requirements decision making. Some mi-
nor changes were made to the model wrt presentation and concept definition wording.

1 The actual requirements exemplars are not disclosed for confidentiality reasons.
2 http://www.merlinproject.org/

 A Quality Performance Model for Cost-Benefit Analysis 279

All interviews were carried out individually by the first author. First the QUPER
model was presented and then it was discussed in detail, using a semi-structured in-
terview approach. Table 1 includes the interview questions of the instrument used as a
checklist for coverage of relevant issues. The interview subjects were chosen to repre-
sent six sub-domains to give a rich picture. The sub-domains were selected to include
differences with respect to type of use cases and level of dependencies to hardware.
Each interview lasted for about 1-2 hours. The interviews were documented by note
taking. The notes were summarized into an interview report which was feed back to
each interviewee for validation. Only minor corrections and clarifications were found
in this step. Section 4 presents short summaries of interview findings.

Table 1. Interview instrument applied in semi-structured interviews

Background What is your current role and responsibility?
What is your background and experience in this area?

General What is your general view of the QUPER model?
Specific Please give examples of the most important quality indicators in your area?

Can you give rough estimates of benefit breakpoints?
How do benefit breakpoints change over time?
How are benefit breakpoints different for different market segments?
What types of costs are relevant?
Can you give a rough estimate of the location of cost barriers?
How do cost barriers change over time?

Conclusion Is there anything you would like to add?

3 The QUPER Model

The QUPER (QUality PERformance) model aims to support requirements prioritisa-
tion and roadmapping of quality aspects (aka non-functional requirements) at early
stages of release planning when making high-level scoping decisions and creating
roadmaps (for a general description of roadmapping in market-driven requirements
engineering see [15]). A major objective is to define a feature prioritisation model that
include a third dimension related to quality, as a complement to the two dimensions
cost and value that are used in prioritisation of functional requirements in e.g. [11].

QUPER was developed with the following hypotheses as a frame of reference:

• Quality is continuous. Quality aspects are assumed to have the potential of being
measured with a value on a continuous scale rather than being either included or
excluded for a certain release. The quality level is thus typically not viewed as ei-
ther good or bad, but rather as something with different shades of goodness on a
sliding scale.

• Quality is non-linear. For a quality aspect such as response time in a specific use
case, different variants of the following questions regarding changes in quality
level are relevant: Would a little faster be almost as valuable from a market per-
spective? Would a little slower be very much cheaper to implement? We thus as-
sume that a change in quality level may result in non-linear changes to both cost
and benefit, and that this non-linearity is of interest to release planning and road-
mapping.

280 B. Regnell, M. Höst, and R. Berntsson Svensson

Based on step 1 in the research methodology (Section 2) and on our pre-understanding
from discussions with domain practitioners, the following goals for the QUPER were
selected as a guide to the model development step:

• Robust to uncertainties. In practical cases, the relations among quality attributes
and their market value and implementation cost may be very complex and difficult
to estimate with high accuracy. Although it may be possible to define release plan-
ning as a mathematical optimisation problem, it may not be worthwhile to apply
complex mathematics or advanced computational algorithms to achieve "opti-
mum", if the input data to the optimisation process is highly uncertain anyway.

• Easy to use. The model should include only a few concepts that are easy to learn,
remember, understand and use by practitioners without requiring mathematical
skills. Hence, the goal is to provide roadmapping concepts for qualitative reasoning
on orders of magnitude rather than precise mathematical formulas or computational
algorithms.

• Domain-relevant. The model should be possible to combine with existing practice
and possible to tailor to a particular domain. In a practical setting, a model for
quality attribute roadmapping should be feasible to include as an add-on to the
working practice without costly interference with existing processes, techniques
and methods. While defining the concepts of QUPER, they were challenged
against real examples from the domain of mobile phones in the context of an exist-
ing platform-based systems development process applying product line engineering
concepts.

The two concepts of breakpoints and barriers emerged as a basis for model construc-
tion. A breakpoint is an important aspect of the non-linear relation between quality
and benefit, while a barrier represents an interesting aspect of the non-linear relation
between quality and cost. These concepts are the basis for the three views of the
model: (1) the benefit view of the relation between quality and benefit (value) in terms
of breakpoints, (2) the cost view of the relation between quality and cost in terms of
barriers, and (3) the roadmap view combining the cost and benefit views with assess-
ment of current situation, targets and competitors. The three views are illustrated in
Figures 1-3, respectively, and subsequently described.

The QUPER benefit view (Fig. 1) includes three breakpoints indicating principal
changes in the benefit level with respect to user quality perception and market value.
The first breakpoint is called utility breakpoint and represents the border between a
quality level that is so low that a product is not accepted on the market as users find
the quality level useless, and the level where a product starts to become useful and
thus have a potential market value. The second breakpoint, called differentiation
breakpoint, marks the shift from the useful quality range to a quality level which only
a few products (currently) reach, which makes them having a competitive market
proposition. The third breakpoint, called saturation breakpoint, imply a change in
quality level from competitive to excessive, where higher quality levels have no
practical impact on the benefit in the particular usage context considered.

 A Quality Performance Model for Cost-Benefit Analysis 281

Useful

Useless

Competitive

Excessive

Utility breakpoint Quality level

Benefit

Differentiation
breakpoint

Saturation
breakpoint

Fig. 1. The QUPER benefit view

Quality level

Cost

Cost barriers

Fig. 2. The QUPER cost view

The QUPER cost view (Fig. 2) includes the notion of cost barriers to represent the
non-linear nature of the relation between quality and cost. For a specific quality as-
pect in a specific context, we approximate the quality-cost relation to have two differ-
ent steepness ranges (in mathematical terms with differential coefficients increasing
beyond a certain threshold value). A cost barrier occurs when the cost characteristic
shifts from a plateau-like behaviour where an increase in quality has a low cost pen-
alty, to a sharp rise behaviour where an increase in quality has a high cost penalty.
There may be many cost barriers for a certain quality aspect depending on the context
and the type of cost considered. Costs can e.g. be investments in development effort
or cost per unit of hardware. A typical cost barrier may be the result of that a quality
increase is not feasible without a large reconstruction of the product architecture,
while a typical cost plateau is exemplified by the case where comparatively inexpen-
sive software optimisations may result in high gains of performance.

The QUPER roadmap view (Fig. 3) combines the benefit and cost views by posi-
tion the breakpoints and barrier together ordered on the same scale. This view enables
visualisation of benefit breakpoints and cost barriers in relation to the current quality
level of a product and the qualities of competing products. This view also combine the
notion of targets for coming releases with the aim of supporting roadmapping.

282 B. Regnell, M. Höst, and R. Berntsson Svensson

The quality levels on the horizontal axis of all three views are measured by quality
indicators that may be specific with respect to different entities such as feature, use
case, and market segment. Although, some quality factors are common for several
domains, the measure of what is good and bad quality may be different. The defini-
tion of quality indicators is the main issue in tailoring the QUPER model for a certain
domain and for a certain (set of) products.

When applying the QUPER model in non-functional requirements prioritisation
and roadmapping, the following steps are envisioned: (1) Define quality indicators;
(2) For each quality indicator, and for each relevant qualifier (feature, use case, seg-
ment) make estimations of (a) benefit breakpoints and (b) cost barriers; (3) Estimate
the current quality of own product (for a given release) and the quality of competing
products (at present or envisioned); (4) Visualize estimations, discuss and decide
targets for coming releases; (5) Communicate roadmaps as a basis for further re-
quirements engineering; (6) Revise roadmaps and iterate as estimates become more
certain or circumstances change.

There actual application of these steps in a real process is out of scope of this
model feasibility study. The process and method development is part of the next step
in further research. Issues on how to support expert estimation of breakpoints and
barriers and visualisation of NFR roadmaps are also issues of further work.

Current

Questionable
target

Quality level

Target release n1

Competitor B
Competitor A

Legend:
Utility breakpoint
Differentiation breakpoint
Saturation breakpoint
Cost barrier

Target release n2

Fig. 3. The QUPER roadmap view

4 Case Study Findings

The feasibility and relevance of the QUPER model described in Section 3 has been
validated in the mobile handset domain through a series of interviews with experts,
using the research methodology reported in Section 2. The study is based on six cases
in selected sub-domains representing examples of important parts of the different
technology areas that are included in the mobile handset domain. The studied sub-
domains complement each other in the sense that some are more hardware dependent
than others and some are more directly related to particular end-user services than
others. For confidentiality reasons, no details on actual estimates are given and the
findings are generalised to a non-classified abstraction level. The case study did not
render any major evolution to the model, but some minor changes in presentation and

 A Quality Performance Model for Cost-Benefit Analysis 283

wording in concept definitions were made, and incorporated in the model description
in Section 3.

4.1 Local Connectivity

The local connectivity sub-domain includes the capabilities of a mobile phone to
connect to local devices such as a personal computer while not requiring access to the
mobile network. Typical use cases include transferring music and synchronizing cal-
endars. Typical communication technology involves wireless, cable or infrared trans-
fer modes. The following findings were made for this sub-domain:

• Quality indicators. The data-transfer-rate is an important quality indicator meas-
ured in bits per second. Interoperability, usability, security and reliability are also
important quality aspects. One example of a usability indicator is the connection-
setup-time defined as the time it takes for users on average to do the settings and
installations required in order to enable transfer and synchronisation of data.

• Benefit breakpoints. Benefit breakpoints can be identified for several different use
cases, such as transfer music and synchronizing calendar. Often there is a discrep-
ancy between the theoretical maximum data-transfer-rate and what may be achiev-
able in practice. This discrepancy is not always easy to specify in advance or even
to measure consistently. Benefit breakpoints are dependent on market segments. A
high-end music mobile with a large memory has a more demanding utility break-
point for data-transfer-rate over serial bus interfaces compared to low-end termi-
nals optimized for basic phone services.

• Cost barriers. Different transfer technologies have different costs and achieving
the next level often requires development efforts and/or application specific hard-
ware with attractive cost-size-performance trade-off. New hardware technology
may completely shift the nature of the cost-quality relation.

In conclusion, for the local connectivity sub-domain, the case findings revealed that
breakpoints and barriers were identifiable for several quality indicators. Breakpoints
and barriers related to theoretical transfer rates are more easily identified, compared to
practical rates that may depend on many factors. Furthermore, it was noted that us-
ability and performance is tightly related. Quality levels are often expressed in terms
of terminology defined in standards.

4.2 Positioning

The positioning sub-domain includes the capabilities of a mobile phone to know its
geographical position and to provide services that are based on its position. Typical
use cases include navigation support in combination with maps, finding places and
locating friends nearby. The following findings were made for this sub-domain:

• Quality indicators. An important quality indicator is time-to-first-fix, defined as the
time from initiation of a positioning request until location data is provided, and
measured in seconds. Another important quality indicator is position-accuracy, de-
fined as the error margin in the given positioning data measured in meters. Differ-
ent types of technologies can be used for positioning, such as base station location

284 B. Regnell, M. Höst, and R. Berntsson Svensson

or satelite-based systems, and they have different characteristics in terms of time-
to-first-fix and position-accuracy.

• Benefit breakpoints. The utility, differentiation and saturation breakpoints depend
on which use case is considered. E.g., for finding places in a city, the time-to-first-
fix utility breakpoint is more demanding than compared to navigation support on
the sea. It was found that it was possible to estimate breakpoints in relation to dif-
ferent use cases. Utility and saturation is in some cases based on physical con-
straints such as distances between streets in a city. When new technology reaches
the market, users gain familiarity with position services and differentiation
breakpoints are moved forward as user expectations increase.

• Cost barriers. Costs are dependant on both hardware and software issues. Specific
hardware for reception of positioning signals needs to be cheap enough in order to
create mobile devices with attractive propositions on the market. Development in-
vestments in network infrastructure to increase performance also impact cost barri-
ers. Many different parts of the interface, e.g. the phone book, is potentially
affected by positioning services requiring upfront development investments and
potential refactoring of the user interface architecture. Anther cost factor in this
domain is related to energy consumption that has impact on battery life.

In conclusion, for the positioning sub-domain, the case findings revealed that break-
points and barriers were identifiable for several quality indicators. Many potential use
cases for future positioning services can be envisioned, all with their breakpoints and
barriers.

4.3 Java Platform

The java platform enables a mobile device to run java applications that can be
downloaded via local connectivity or over the network. Important users of the java
platform are the developers that develop attractive java applications for mobile con-
sumers to use. Important applications are various types of interactive games, in par-
ticular games that utilize the mobility aspect. The following findings were made for
this sub-domain:

• Quality indicators. Real-time performance is a very important quality indicator that
can be measured in many ways, for example application-start-up-time, data-save-
time, etc. and can be measured in seconds. Also quality indicators such as 3D-
graphics-frame-rate and number-of-polygons-per-second are important. Reliability
is also important and is measured in number-of-software-crashes-per-time-unit.
Another important quality indicator is compatibility in terms of how much plat-
form-specific-adaptation-effort is needed for an application to be compatible with a
certain java platform. This effort can be measured in hours.

• Benefit breakpoints. For graphics and streaming the benefit breakpoints can easily
be identified. Also application-start-up-time has clear utility, differentiation and
saturation breakpoints. Reliability and compatibility is more difficult to measure
but as available competing products can easily be tested it is possible to get a gen-
eral picture of differentiation among the set of mobiles currently on the market.

• Cost barriers. Cost barriers in quality requirements are often related to develop-
ment efforts directed towards performance optimisation. It is often easy to detect

 A Quality Performance Model for Cost-Benefit Analysis 285

existence of performance problems but not always easy to identify the best solu-
tion. New bottlenecks are exposed as known bottlenecks are taken care of. There-
fore a fixed effort strategy sometimes is utilised, meaning that a certain amount of
predetermined development effort is devoted to performance optimisation under a
concentrated period of time with clear goals of which performance quality indica-
tors to address. A major challenge is to estimate the relation between invested per-
formance optimisation effort and the effect in terms of improved performance.

In conclusion, for the java platform sub-domain the case findings revealed that break-
points and barriers were identifiable for several quality indicators. In particular, per-
formance breakpoints are easily identified. Performance cost barriers are connected to
software optimisation efforts and investments in architecture.

4.4 Mobile TV

Mobile TV is an area that is of strategic importance for future mobile products. Mo-
bile TV is enhanced with interactivity that enables users to watch streamed TV
programs live and interact with the show, with voting and chatting capabilities. The
usage patterns of consumers are still uncertain and the business models of content
providers and network operators are being defined. Technology is available and
evolving, while different standards are competing. The following findings were made
for this sub-domain:

• Quality indicators. Quality indicators related to user experience of video streaming
are central in this sub-domain. Typically, quality is indicated by video-frame-rate
measured in number of image frames per second, but the subjective user experi-
ence is dependent on many factors, such as performance of coding and decoding
including compression, error correction and radio reception sensitivity. Also video-
image-pixel-size measured in number of pixels horizontally times vertically is an
important quality indicator.

• Benefit breakpoints. Benefit breakpoints can be identified rather easily for mobile
TV and depends on market segment and the nature of the streamed content. Some
quality indicators related to performance tend to have a more either-or-nature in
terms of the utility-differentiation-saturation scale. Either there is not enough per-
formance for reaching utility or the performance level is approaching what is seen
as well above differentiation.

• Cost barriers. Cost barriers are related both to dedicated hardware and optimisa-
tion of software-implemented algorithms. Typically, performance issues are central
to development investments and passing utility breakpoints often requires breaking
a cost barrier. Sometimes differentiation can be reached through software optimisa-
tions and sometimes dedicated technology platform support is needed. As the num-
ber of suppliers of application specific hardware increases, prices drops and the
image of hardware cost barriers needs to be redrawn.

In conclusion, for the mobile TV sub-domain the case findings revealed that break-
points and barriers were identifiable for several quality indicators. The breakpoints
and barriers are more uncertain in the early stages of a new technology compared to
technology that has been available and reached a certain market maturity. Another
issue is standardisation, which impact on the definition of quality metrics by imposing

286 B. Regnell, M. Höst, and R. Berntsson Svensson

predefined discrete levels of performance, although not always with an obvious rela-
tionship to the perceived quality by a user performing a certain use case.

4.5 Memory

Memory technology is central to many applications in mobile handsets. Memory is
used not only for software that runs operating systems and applications but also for
content such as personal information management, music, images, video and other
files. The following findings were made for this sub-domain:

• Quality indicators. There are many different memory technologies and they differ
with respect to quality indicators such as memory-density measured in bytes,
physical-size-of-package measured in millimetres in three dimensions, and memory-
data-transfer-rate measured in bits per second. Reliability in terms of shock resis-
tance is also an issue when comparing hard disc memories with flash memories.

• Benefit breakpoints. Similarly to the "mega-pixel race" in the camera mobile seg-
ment, the memory-density is a metric that is often advertised as a major selling ar-
gument resulting in a "mega-byte race" especially for the music mobile segment.
The benefit breakpoints are dependant on the actual use case. For example,
multishot (consecutive photographing) require higher data transfer rates. Memory
hardware needs to be planned far in advanced to be able to manage sourcing and
supply as well as to enable integration into the technical platform. There are many
complex trade-offs based on uncertain prediction of future developments in the
memory business. Memory is cutting cross many different use cases and other sub-
domains are heavily dependent on memory qualities, which in turn affects the
breakpoint levels in that they need to be qualified with use case and segment.

• Cost barriers. Cost is mainly related to hardware costs, although development
costs for integrating new memory technologies into the technical platform is re-
lated to engineering effort and involves both hardware and software interfacing.
Cost per unit of memory devices is rapidly changing over time as new production
technologies arrive and fierce competition put pressure on prices. This makes the
expected cost barriers change over time, making trade-off analysis even more
difficult.

In conclusion, for the memory sub-domain the case findings revealed that breakpoints
and barriers were identifiable for several quality indicators, although qualification
with respect to use case and market segment is essential. Memory is cross-cutting in
the sense that many use cases are dependent on memory technology. Thus, break-
points and barriers need to be defined per use case and segment.

4.6 Radio Network Access

UMTS stands for Universal Mobile Telecommunications System and is a system
standardised by international standards organisations for the third generation mobile
network that makes it possible to use advanced internet services. This sub-domain
thus involves standardisation issues and requirements on the technical platform that
implements the access to the radio network. The following findings were made for
this sub-domain:

 A Quality Performance Model for Cost-Benefit Analysis 287

• Quality indicators. Primary quality indicators are the downlink- and uplink-data-
transfer-rate, as well as the packet-latency affecting quality of real-time data such
as voice and video conferencing.

• Benefit breakpoints. Different use cases have very different characteristics in terms
of benefit breakpoints. Also, different segments have different demands although
shifting as new technology generations arrive.

• Cost barriers. UMTS concerns the technical platform for mobile communication in
general, and involves subcontracted hardware and software based on patents and
standards. The costs are connected to cost-per unit for hardware and protocol soft-
ware, together with license fees. Another type of cost is related to the risk of lost
market opportunities, should technical platforms be delayed.

In conclusion, for the radio network access sub-domain the case findings revealed that
breakpoints and barriers were identifiable for several quality indicators, although cost
barriers are mainly connected to hardware costs. Furthermore, cost also depends on
the development of each new generation of platform architectures, where a new gen-
eration may require a large investment but often reduces hardware costs per unit and
at the same time enables higher quality.

4.7 Discussion of Case Study Findings

In general, it was possible to define benefit breakpoints and cost barriers for all six
sub-domains, supporting the relevance of the model. The interviewees acknowledged
the usefulness of the model, although open issues where pointed out:

• How many and which quality indicators should be managed? This is a challenge on
how to keep balance between the benefit of the information and the effort involved
in acquiring and maintaining the information. It also deals with the challenge of
tailoring the QUPER model to particular domains. The set of managed quality in-
dicators of course depend on the domain, the products and its strategic use cases.

• How to combine different quality indicators and trade-off among them? This is a
challenge of making prioritisation among several quality indicators, possibly by us-
ing existing prioritisation methods but for discrete values of the quality indicator,
and possibly by using the breakpoints of different quality indicators and comparing
them with other breakpoints of other quality indicators.

These and other issues are matters of further research when adapting the QUPER
model to a certain set of practices in a given process context, and thus making a
method to support practice based on the concepts of the model.

There were a number of factors encountered that where relevant to the qualification
of quality metrics and affected the positions of breakpoints:

• Use case. Different use cases often have different quality demands.
• Market segment. Different market segments, e.g. comparing low-end to high-end,

have different demands on quality.
• Feature maturity. As the products and markets mature and users get familiar with

features, expectations on quality often rise.

288 B. Regnell, M. Höst, and R. Berntsson Svensson

A number of different types of costs were identified in the six cases:

• Development effort (software and hardware).
• Cost per unit (hardware and indirectly software).
• Footprint, physical size (hardware and indirectly software).
• Energy consumption (hardware and indirectly software).
• Missed market opportunities vs. competitors (potential earnings).

In general, cost seems to have a non-linear relationship to the level of quality, which
supports the relevance of the QUPER cost model with its barriers. However, it seems
as the nearest barrier often is easier to identify than the barriers beyond. It is not until
a certain barrier is reached and passed that a more accurate location of the next barrier
can be determined.

Some sub-domains (memory, java platform and radio network access) were special
in that they were cutting across many use cases and applications. The benefit break-
points seem meaningful only when qualified to a certain context.

Some metrics have lower values for higher qualities (such as time-to-first-fix)
while other have higher values for higher qualities (such as frame-rate). When visual-
ising quality indicators in the QUPER benefit model it may be wise to define quality
indicators that all have a consistent higher value corresponding to a higher quality.
This can be achieved by for example inverting the metric or having the scale reversed
by subtracting the metric with a certain value representing an upper limit.

Many quality indicators are often related to standardised levels, which makes a
continuous scale transformed into a set of ordered discrete levels. Taking standards
into account in the definition of quality indicators seem inevitable in the telecommu-
nications domain. However, the relation between a technical quality defined by a
standard level and the perceived user experience in a real-life usage situation is not
always straight forward.

The extent to which concurrency among use cases is possible or desirable seem to
be a performance-driving factor. In consequence, it may be useful to elicit combina-
tions of use cases for which certain quality indicators may compete in terms of re-
sources that are bottlenecks of performance.

When introducing prioritisation techniques and roadmapping methodology it is
stressed by informants that application of techniques and methodology needs to be
simple and easy to learn and understand.

5 Related Work

Several models related to requirements prioritization and cost-benefit trade-off analy-
sis are introduced in the literature. In this section, a selection of decision making tech-
niques are compared with the QUPER model: Analytical hierarchical process (AHP)
[17], Kano [8, 14], and Quality function deployment (QFD) [9]. These models are
selected to represent typical approaches, although more variants and derivatives exists
that are not discussed here. Models related to negotiation and architecture assessment
may also be relevant to combine with QUPER, e.g. [12], but is out of scope of this
initial feasibility study. There are many multi-criteria decision making techniques that
are potentially relevant, but we have selected the subsequently described methods as
we find them particularly relevant to the concepts of the QUPER model.

 A Quality Performance Model for Cost-Benefit Analysis 289

Karlsson and Ryan [11] suggested using a cost-value approach for requirements
prioritization based on the AHP [17]. The cost-value approach uses a two-dimension
graph that displays the requirements value against its cost. AHP is used from a cus-
tomer and user perspective to assess the value of each requirement, followed by an
assessment of the requirements cost from an implementation perspective. The next
step is to plot these into a cost-value diagram, which is used to analyze and discuss
the requirements. This approach, supporting trade-off analysis and is mainly used for
functional requirements. Non-functional requirements can of course be included as
objects of prioritization in AHP, but as discrete objects are compared against each
other, the relation to a sliding scale is not explicitly addressed. The QUPER model
thus goes further by introducing a third dimension related to the continuous nature of
quality attributes. There are potential strategies for combining QUPER with AHP-
based approaches, e.g. by comparing breakpoints of different use cases. Such combi-
nations are out of scope of the presented study and may be objects of further studies.

Kano et al. [8, 14] developed a model for evaluating patterns of quality. The
evaluation is based on customer’s satisfaction with specific quality attributes. Kano’s
model explains the relationship between customer satisfaction and the degree of
achievement of a specific quality attribute in a two-dimension graph. This relationship
can be distinguished into three different categories: (1) attractive quality, (2) one-
dimensional quality, and (3) must-be quality. Similar to the QUPER model, Kano's
approach views quality relationships as non-linear. The Kano model, however, does
not include a cost dimension as in the QUPER model. Further, Kano's model is not
related to roadmapping. In addition, QUPER includes benefit breakpoints and cost
barriers to indicate important aspects of quality relations.

QFD [9] is a comprehensive, customer and user oriented approach to product de-
velopment. The QFD process starts by organizing the project, including the formation
of a cross-functional team, followed by the establishment of relationships among
requirements and then prioritization. The last step is to choose the requirements that
should be deployed during the development process. The QFD model includes a map
called house of quality (HOQ), which has several rooms where each room fulfills a
purpose of the QFD process. To fully implement QFD, customers and users need to
be visible; however, not all market-driven projects have access to customers and users
[9]. Furthermore, QFD measures quality attributes using a scale where no clear dis-
tinctions between the values are provided. While QFD is a complex and comprehen-
sive methodology that may require a complete change of current practice, QUPER is
a simple reference model to be used in combination with current practice to support
communication of quality attributes using a few, easy concepts. Matzler and Hinter-
huber [14] suggest an integration of Kano’s model into the QFD model. In a similar
manner, it may be possible to integrate QUPER with QFD and/or Kano if appropriate
for a given product development organization.

6 Conclusions

This paper presents the QUPER model for cost-benefit analysis of quality attributes
(non-functional requirements). The goal of the model is to be useful by being simple

290 B. Regnell, M. Höst, and R. Berntsson Svensson

and robust and yet relevant to high-level decision-making in activities such as road-
mapping, release planning and scoping.

QUPER is comprised of three views: the benefit view with the breakpoints of util-
ity, differentiation and saturation; the cost view with barriers indicating steep in-
creases of cost for elevated quality; the roadmap view combining the cost and benefit
views into an ordinal scale where competing products and future targets can be dis-
cussed in relation to the current quality attributes of a product.

The contribution of the QUPER model is based on our observation that quality as-
pects and non-functional metrics are often specified without explanation or rationale in
existing practices. An important issues regarding requirements prioritization is commu-
nication, which is a problem in current practice [6, 10, 13]. Lehtola and Kauppinen [13]
found that communication problems were a difficulty for understanding the importance
of a requirement. Managers need to have an understanding of the whole picture of re-
quirements priorities. QUPER addresses this challenge aiming at enriching the over all
picture through a better understanding also of non-functional requirements.

The feasibility and relevance of the QUPER model is validated through interviews
with experts in six cases representing sub-domains of the mobile handset domain. The
validation indicates that QUPER is feasible and relevant to the selected domain. We
also believe that the general concepts of QUPER are transferable to requirements
engineering for other domains of market-oriented product development, but this needs
to be investigated in further research. Other issues of further work include combining
the QUPER model with current practices, and to extend the model with a tailored
methodology. This would allow for a case study where the model is used in a pilot
case and actual roadmapping decisions are taken based on the methodology.

Acknowledgements. This work is supported by VINNOVA (Swedish Agency for
Innovation Systems) within the ITEA project MERLIN. We would like to give special
thanks to Magdalena Akke, Håkan Brinck, Mikael Ek, Anders Mellqvist, Mats
Tedenvall and Sven Tryding for their invaluable expert advice.

References

1. Carlshamre, P., Regnell, B.: Requirements Lifecycle Management and Relase Planning in
Market-Driven Requirements Engineering Processes. Int. Workshop on the Requirements
Engineering Process: Innovative Techniques, Models, and Tools to support the RE Proc-
ess. In: Proc. 11th IEEE Conf. on Database and Expert Systems Applications. Greenwich,
UK, pp. 961–965 (2000)

2. Carlshamnre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och dag, J.: An Industrial
Survey of Requirements Dependencies in Software Product Release Planning. 5th Int.
Symposium on Requirements Engineering. Toronto Canada, pp. 84–91 (2001)

3. deBaud, J.M., Schmid, K.: A systematic approach to derive the scope of software product
lines. In: Proc. IEEE Int. Conf. on Software Engineering. Los Angeles, USA, pp. 34-43
(1999)

4. Dikel, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J.: Applying software product-line
architecture. IEEE Computer 30, 49–55 (1997)

5. Ebert, C.: Requirements BEFORE the Requirements: Understanding the Upstream Impact.
In: Proc. 13th IEEE Int. Conf. on Requirements Engineering. Paris, France, pp. 117–124
(2005)

 A Quality Performance Model for Cost-Benefit Analysis 291

6. Grimshaw, D.J., Draper, G.W.: Non-functional requirements analysis: deficiencies in
structured methods. Information and Software Technology 43, 629–634 (2001)

7. Jacobs, S.: Introducing measurable quality requirements: a case study. In: Proc. IEEE Int.
Symposium on Requirements Engineering, pp. 172–179 (1999)

8. Kano, N., Nobuhiro, S., Takahashi, F., Tsuji, S.: Attractive quality and must-be quality.
Hinshitsu 14, 39–48 (1984)

9. Karlsson, J.: Managing Software Requirements Using Quality Function Deployment.
Software Quality Journal 6, 311–325 (1997)

10. Karlsson, L.: Dahlstedt, Å.G., Natt och Dag, J., Regnell, B., Persson, A.: Challenges in
Market-Driven Requirements Engineering - an Industrial Interview Study. In: Proc. 8th
Int. Workshop on Requirements Engineering: Foundation for Software Quality. Essen
Germany, pp. 37–49 (2002)

11. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Soft-
ware 14, 67–74 (1997)

12. Kazman, R., Hoh, P., Hong-Mei, C.: From requirements negotiation to software architec-
ture decisions. Information and Software Technology 47, 511–520 (2005)

13. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for Mar-
ket-driven Software Product Development. Software Process: Improvement and Prac-
tice 11, 7–19 (2006)

14. Matzler, K., Hinterhuber, H.H.: How to make product development projects more success-
ful by integrating Kano’s model of customer satisfaction into quality function deployment.
Technovation 18, 25–38 (1998)

15. Regnell, B., Brinkkemper, J.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer, Heidelberg (2005)

16. Regnell, B., Olsson, H.O., Mossberg, S.: Assessing Requirements Compliance Scenarios
in System Platform Subcontracting. In: Proc. 7th Int. Conf. on Product Focused Software
Process Improvement. Amsterdam The Netherlands, pp. 362–376 (2006)

17. Saaty, T.: The Analytical Hierarchy Process. McGraw-Hill, New York (1980)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 292–299, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Security Requirements for Civil Aviation with UML
and Goal Orientation

Robert Darimont1 and Michel Lemoine2

1 RESPECT-IT – BE
2 ONERA, DPRS/SAE – F

Robert.Darimont@skynet.be, Michel.Lemoine@onera.fr

Abstract. This paper presents a Requirements Engineering Process for Security
purposes. This process has been elaborated in the context of SAFEE (Security
of Aircraft in the Future European Environment), a large European IP
(Integrated Project), which aims at overcoming security failures that recently
occurred during the terrorist attacks of the 11th of September 2001, at the
deepest level of security, i.e. on board an A/C. This paper highlights both the
process that integrates several RE techniques, and its products, i.e. the
requirements documents. Lessons drawn are reported as conclusion.

Keywords: Goal Oriented Requirements, Security, Air Transport System.

1 Context

The security aspects, i.e. a combination of measures and human and material
resources intended to safeguard civil aviation against acts of unlawful
interference [1], are mandatory for any commercial air transport operation. Security
must be maintained in any A/C (aircraft) achieving the transport of passengers, cargo
or mail. The terrorist attacks of 9-11 [2] motivated the European Aeronautics industry
to develop SAFEE [3], an embedded security system able to prevent threats occurring
during flights. The project was subdivided into four sub-projects, as depicted in
Fig. 1.

− OTDS (On Board Threat Detection System) is mainly in charge of detecting
abnormal events and generating alerts within the A/C.

− TARMS (Threat Assessment and Response Management System) is responsible
for consolidating and fusing threat signals, and proposing courses of actions.
TARMS is alerted either by OTDS on board or by the ground.

− EAS/FRF (Emergency Avoidance System/ Flight Reconfiguration Function) is the
on-board system that reacts to threats appropriately. For instance EAS is able to
disconnect the pilot’s commands on TARMS request.

− DATA is responsible for security of data transmission between the A/C and the
ground.

 Security Requirements for Civil Aviation with UML and Goal Orientation 293

Hijack on Board

Radar
Tracking

Ground-
Datalink

 Air-ground
Datalink & Voice

Radar
Tracking

Cyber/Hijack
Attack

AOC

Cargo

ATM environment

Trajectory

OTDS

EAS/FRF

TARMS

DATA

Fig. 1. SAFEE synopsis. The above figure emphasizes the semi independence of each sub-
project, namely DATA, EAS/FRF, OTDS, and TARMS. As it can be noticed, TARMS plays a
central role.

2 Building Requirements for TARMS

It was clearly accepted, during the SAFEE kick-off meeting, that all the sub-projects
should work for one year rather independently of each other. In the TARMS team,
due to its central role, it was decided to set up a very strong RP (Requirements
Process), and not start any design before the end of the RP.

The team in charge of the requirements phase was composed of CS (Computer
Scientist) and experts in the Security fields for Air Transport, and A/C. The RP was
based on well known techniques supported by industrial tools. It was decomposed in
four steps:

− Step 1: Identifying end users and eliciting their needs.
− Step 2: representing the end user’s needs by a set of UML (Unified Modeling

Language) UCs (Use Case) [4].
− Step 3: Using GORE (Goal Oriented Requirements Engineering) to compensate

the lack of expressiveness of UCs (no way for representing conflicts, intentions,
vulnerabilities…) and to produce the EURD (End Users’ Requirements
Document).

− Step 4: Refining the EURD into the SRD (System Requirements Document) with
the help of Objectiver.

This four steps process is mainly sequential. Each one ends with a traditional V&V
(Validation and Verification) phase. The non-CS TARMS members were involved in
step 1, and in all V&V phases.

294 R. Darimont and M. Lemoine

2.1 Identifying End Users and Eliciting Needs - Step 1

End users’ needs have been collected from four different sources:

− The contract between the EC (European Commission) and the SAFEE consortium,
used as an informal Requirements Document, stating the high level goals to be
achieved.

− Interviews of stakeholders implied in the security of commercial flights: pilots,
cabin crew, sky marshals, security managers, ATCO (air traffic controllers),
security authorities, airlines …

− Existing security regulations for air navigation from the ICAO (International Civil
Aviation Organisation) and the ECAC (European Civil Aviation Conference).

− Other security projects in progress (like the Eurocontrol ERRIDS project aiming at
centralizing and dispatching security information about flights at the European level).

The interviews have been led by each partner in their own countries, according to
the sources available. In order to avoid biases and to benefit from a common base for
the requirements analysis, an interview framework has been built by the TARMS CS
team, and validated by all the TARMS members. This framework was decomposed in
three parts:

− Understanding threats by reviewing the conditions that guarantee a secure flight
and scenarios that could jeopardize those conditions.

− How threats are currently dealt with.
− How TARMS should deal with threats: not only what TARMS should do but also

what TARMS should NOT do.

Fig. 2. An example of Use Case. In the UC we have four actors, and eight services. ATCO,
wants to know potential threats, the flight intentions, and the meteorological situation the A/C
is encountering. ATCO is an active actor: he monitors the situation. The other actors are
passive actors. Actors communicate information to services, which are connected to them.

 Security Requirements for Civil Aviation with UML and Goal Orientation 295

The interview framework was purely textual but has been built with the
KAOS/Objectiver meta-model in mind. At the end of each interview, the interview
framework was filled in by the interviewer, and validated by the interviewee.

2.2 Use Cases - Step 2

For each interview the CS team has built a UC, as the one presented in Fig. 2. Each
UC is composed of:

− actors, i.e. people or external sub-systems that interact with the system to be
developed,

− services provided by the system to be developed.

2.3 Using GORE (Goal Oriented Requirements Engineering) - Step 3

KAOS [5], a GORE methodology supported by a formal tool Objectiver [6], has
been used to analyze all the fragments collected during step 1 and Step 2. The
process followed consists of elaborating a requirements model first, and next to
write the requirements documents according to the information in the model. Fig. 3
sums up the complete process followed to build the TARMS System
Requirements.

InterviewsSecurity regulations

Goal Model Threat Model

End users needs

Input from other groups

Requirements Model

For TARMS

TARMS SRD

Use cases

Fig. 3. Process followed to build the TARMS SRD

2.3.1 Modeling Goals
The security goals to reach, how they are operated and who are the responsible agents
for achieving them have been modelled as in Fig. 4. The goal model is based on all
the information fragments collected during the interviews, the UCs and regulation
documents. Traceability links between interview summaries or regulation clauses and
concepts in the model have been systematically set up in order to help end users
validate the model.

296 R. Darimont and M. Lemoine

(SR) Passengers not respecting
instructions considered(SR) Unruly passengers

(SR) Pending instructions
known

(SR) Flight phases known

(SR) A/C parameters
taken into account

(SR) Instructions
communicated to passengers

(SR) Compliance with the
instructions assessed

TA

Passenger
behaviour
restriction

(SR) Crew instructions to
passengers recorded as facts

(SR) TARMS informed of the
instructions given to the

passengers TARMS(Goal) (SR) A/C parameters
taken into account

Crew Member

(SR) Instructions communicated
by voice message encoded for

TARMS

(SR) Instructions communicated
through automated devices

notified to TARMS

SP3

(SR) Passengers not respecting
instructions considered

(diagram) (Text Explanation)

see

Concerns

see

see

Fig. 4. A fragment of the goal model. In the figure the top goal Passengers not respecting
instruction considered is decomposed into three sub-goals according to an AND refinement.
The sub-goal Pending instructions known is decomposed into three sub-goals, one Instruction
communicated to passengers being an expectation, i.e. a requirements to be met by the external
agent Crew Member, the others being respectively from left to right, a sub-goal, and a
requirement Crew instruction to passengers recorded as facts, to be met by the agent TARMS.

2.3.2 Modeling Threats
Threats put the security goals identified in the first model into jeopardy. Threats have
been modelled as KAOS obstacles as follows (Fig. 5):

− anti-goals wished by offenders and,
− vulnerabilities known on the system under attack, much in the sense of [7].

2.3.3 Producing the EURD
The requirements model produced contains about 1400 concepts: 25 agents (grouped by
hierarchies of roles), about a hundred objects, 500 goals (150 user needs, 350 goals on
the TARMS system, grouped together in 45 diagrams), 300 threats (anti-goals and
vulnerabilities), 150 requirements on TARMS and 300 expectations on its environment.

To produce the EURD, the requirements engineers just had to associate a
description for each goal diagram, define all the concepts concerned (the agents, the
domain), and define each user’s requirement (on the system) and expectation (on the
environment) precisely and the Objectiver tool makes the remaining automatically.

 Security Requirements for Civil Aviation with UML and Goal Orientation 297

Fig. 5. A fragment of the threat model. Weapons assembled by threatener is an anti-goal, i.e. a
goal that a threatener would like to achieve. This anti-goal is refined, from left to right, into
three anti-goals. Difficulty to detect bomb construction if in the toilet is a vulnerability, i.e. a
weakness of the system that the threatener could take advantage of.

2.4 Producing the SRD - Step 4

To refine the End Users’ requirements into System requirements, it was necessary:

− to resolve the conflicts resulting from the fusion of all the viewpoints of each end
user. These conflicts have been explicitly reported in the EURD.

− To associated a list of question to each diagram of the model developed in step 3.
The questions focus on how TARMS should contribute to satisfy end users’
requirement. The answers provide the raw material for modelling the TARMS
system requirements.

The SRD is produced in the way as the EURD. It is compliant with the IEEE-830
standard. It contains a glossary of all the specific terms used in the SRD (a by-product
of the Objectiver Object Model), a top-down presentation of the goal graph
motivating all the requirements and expectations, an inventory of all the
responsibilities for each SAFEE sub-system, the conceptual model of the domain and
the system (providing a first architecture of the system based on the problem to solve)
and a definition of interfaces between sub-systems.

The generated SRD is 200 pages long including 8 pages for the glossary.

3 Validation and Verification

3.1 Validating TARMS

A first validation of the model produced has been made inside the TARMS sub-
project. Each TARMS partner used the review edition of Objectiver to annotate the
diagrams. Then the requirements engineers collected all the annotations, reviewed
them and modified the model accordingly. When the requirements engineers were
unable to conciliate the issues raised by the reviewers’ annotations, those issues were
discussed during special validation meetings.

298 R. Darimont and M. Lemoine

It is important to notice that the non-CS TARMS partners have been rapidly
acquainted with Objectiver. Despite a larger number of concepts, compared to UML
Use Cases, the Objectiver goal models are simple enough to be validated by non RE
people.

3.2 Validating SAFEE

According to the way SAFEE has been decomposed initially, significant progress has
been observed for two years in each sub-project but mainly in isolation of each other.

At mid-term of the project (2004-2008), time was come to start consolidating and
unifying all the results produced so far.

As the building of TARMS requirements was considered as very successful by all
the SAFEE partners, it has been decided to extend the TARMS RP to all the other
sub-projects: OTDS, EAS/FRF, and DATA. This RP is in progress.

4 Conclusion: Lessons Learnt

This rather large experiment (18 man-month) has confirmed the necessity of a very
rigorous methodology for building the System Requirements Document. By
methodology, we mean: (i) using some rigorous techniques supported by tools, (ii)
following a dedicated process, (iii) setting up a team expert in RE. Here follow three
main lessons learnt form the use of this methodology.

4.1 UML Use Cases Are Not Sufficient to Elicit Requirements

UCs reveal to be a good way for documenting the future situation that is expected by
end-users, at a very high level. They have allowed representing partially what it is
expected from the system.

However, the UC notations are insufficient. Fusing different UCs in order to get a
global view was not possible. In particular, conflicts between agents cannot be
modeled and analyzed with UC notations. This observation confirms the more and
more general opinion that UML is more convenient for modeling solutions and less
the problem to be solved, which is precisely the aim of Requirements Engineering.

4.2 End Users Are More Able to Invalidate Than Validate

Some interviewees, not-CS at all, have been taught reading UML UCs. Most of them
have been able to invalidate diagrams, to explain why they disagree, for instance by
translating their understanding of a model fragment in natural language: most often
they are right!

However we do not trust interviewees when they claim that the UCs are right:
indeed a UCs might be wrong just because some information is missing, and the
interviewee has not seen it.

It is not surprising that the same lesson has been drawn from validation of the
Objectiver model.

 Security Requirements for Civil Aviation with UML and Goal Orientation 299

4.3 A GORE Model Is a Mandatory Referential

The SRD has been distributed to all the SAFEE members. Useful discussions were
triggered from the fact that the other SAFEE sub-projects, OTDS, EAS/FRF/ DATA,
were able to see what TARMS was expecting from them very precisely: some
services were not intended to be provided to TARMS, there were some discrepancies
about the nature of information to be exchanged, and overlapping functionalities were
discovered.

One of the main benefits of the approach has been to raise all those issues at the
requirement step. The result of discussions allowed all the SAFEE members to better
understand the responsibilities of each other and to agree on the interfaces between
the sub-projects: the approach has led them to share a common semantics of the
system to be developed.

References

1. Security, Amendment 11 of Annex 17, ICAO (2005)
2. The 9-11 Commission Report, Final Report of the National Commission on Terrorist

Attacks Upon the United States, Official Government Edition (2004) see also http://
www.gpoaccess.gov/911/

3. http://www.safee.reading.ac.uk/ contract n° AIP3-CT-2003-503521
4. Booch, G., Rambaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.

Addison Wesley, London (1998) ISBN: 0-201-57168-4, see also http://www.uml.org/
5. Bertrand P., Darimont R., Delor E., Massonet P., van Lamsweerde A.: GRAIL/KAOS: an

environment for goal driven requirements engineering. In: Proceedings ICSE’98 - 20th
International Conference on Software Engineering, IEEE-ACM, Kyoto (1998)

6. Objectiver, http://www.objectiver.com
7. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional

Anti-models. In: Proc. ICSE’04, 26th Int. Conf. On Software Engineering, Edinburgh,
ACM-IEEE (2004)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 300–305, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Challenges for Requirements Engineering and
Management in Software Product Line Development

Andreas Birk1 and Gerald Heller2

1 Software.Process.Management., Gutenbergstraße 99, D-70197 Stuttgart, Germany
andreas.birk@swpm.de

2 Hewlett Packard GmbH, Schickardstraße 25, D-71034 Böblingen, Germany
gerald.heller@hp.com

Abstract. Development of software product lines is particularly complex,
raising specific and advanced challenges for requirements engineering and
management. This paper gives an overview of these challenges, as they were
identified in three related investigations that involved several industrial
software product line organizations.

Keywords: Requirements management, software product lines, software
project management, program management, software release planning.

1 Introduction

The advantages of software product lines (SPL) do not come for free. They demand
mature software management and development practices, which are capable of coping
with new levels of organizational and architectural complexity. Requirements
engineering and management (REM) is a central task of product line development. It
must be capable to deal with factors like upfront development of a domain model, the
constant flow of requirements, a heterogeneous stakeholder community, a complex
development organization, long-term release planning, demanding software
architecture, and challenging testing processes. For successful product line develop-
ment, a collection of essential REM practices must be in place, which need to support
the meta project management capabilities. Many REM practices must be tailored
appropriately to the specific demands of product lines.

Surveying the specific REM challenges of SPL is important for both industrial
practice and research. Industry can better prepare and set up its projects and mitigate
risks. Research can identify needs for investigations, develop new techniques, and
evaluate existing techniques in the light of application problems. The software
engineering literature has pointed out that SPL development is more complex and
demanding than single product development (cf. [4], [7], [5]). This complexity has
also particular impact on REM. Of course, general challenges of REM (cf. [6], [10])
also reoccur in SPL. However, many of them appear in a different light, and some
new challenges are specific to SPL.

This paper describes challenges for requirements engineering and management that
arise in the context of industrial software product line development. They have been
derived from more than six years of industrial product line practice, complemented

 Challenges for Requirements Engineering and Management in SPL Development 301

with various discussions with SPL professionals from more than 15 software
organizations. Section 2 gives an overview of REM challenges reported in the
literature. The SPL-specific REM challenges are presented in Section 3. Section 4
contrasts the two categories of challenges and discusses their implications for SPL
practice and research.

2 A Brief Survey of REM Challenges

Investigations on REM challenges have been reported repeatedly over the past years.
Juristo, Moreno, and Silva provide an overview of those investigations and
complement it with their own interviews-based survey [6]. They distil the following
main challenges: REM tools, documentation, user involvement, traceability, adaption
of REM techniques to process context, and number of RE sources (e.g., stakeholders).

Weber and Weisbrod contribute a detailed, domain-specific list of REM challenges
from the automotive industry [10]. Among other challenges, they report issues with
requirements presentation, user-adaptable views, the need for an REM information
model, document-centric representation of requirements, distinction between problem
and solution space, requirements change, and recording of changes.

A classical reference on requirements challenges is the 1994 CHAOS report on
success of software projects [9]. It lists several important challenges to project success
that are closely related to REM: Lack of user input, incomplete requirements and
specifications, and changing requirements and specifications.

Overall, these reports on REM challenges mainly focus on process and tool
aspects. In addition, Weber and Weisbrod emphasize the role that information
representation and presentation have for effective REM. Juristo, Moreno, and Silva
point out that also the ability to adopt new REM practices is an important capability
of successful software organizations.

3 REM Challenges in SPL Development

The investigation of SPL-related REM challenges has been subject of a workgroup
effort of the German Computer Society (GI) from 2000 to 2006, in which also the
authors of this paper participated (cf. [8], [3], [1]). The workgroup wanted to
understand better how software organizations can successfully set up and manage
SPL, in particular with respect to REM-related practices. From 2004 on, special
attention was placed on the SPL capabilities of commercial REM tools.

The research approach of the workgroup was to identify and compare the various
practices found in the workgroup’s member organizations. In the first period, five
SPL organizations were involved. At the end of the second workgroup, experiences
from ten organizations were included. Case evidence for the workgroup results has
been reported in [8], [1], [2], [11]. These experiences were also consolidated using
published reports of SPL practices.

The workgroup identified four key practice areas for REM in SPL: Organization
and management, requirements engineering, balancing product- versus platform-
specific interests, and architecture. Table 1 provides an overview of the challenges
related to the four practice areas.

302 A. Birk and G. Heller

Table 1. REM-related SPL challenges identified in [8]

Category Challenges

Justification of the platform approach as a process model by a cost /
benefit-analysis

Independent platform team

Difficult cooperation between platform and product development teams

Proof of justification of the platform team

High communication overhead

Organization and
Management

Poor configuration management

Influence of the architecture on requirements negotiation is not taken
into account

No description of variability for domain analysis

Missing domain analysis and domain description

Discussions on design and not on requirements level

No explicit requirements process

Requirements
engineering

Missing tool support

Sequence of integrating requirements into the platform

No explicit prioritization of requirements

Realization of platform requirements in products

Product- vs.
platform-specific

Strong influence of the pilot client

No use of the architectural advantages Architecture

Poor description of the generic architecture

Starting from the above workgroup results, the authors of this paper have analysed
experiences from several product lines in more detail, including interviews with SPL
professionals from more than five additional organizations. The refined collection of
REM challenges derived during these investigations enables a deeper understanding
of the specific characteristics of SPL. It also highlights the need for further
improvement of REM practices. The results are organized according to key software
engineering tasks and development lifecycle phases. The remainder of this section
gives an overview of the results and lists the challenges.

An overall finding was that generally SPL requirements are considerably harder
than requirements for single-product development. The main reason is the inevitably
high inherent complexity of software product lines, which can be illustrated through
the following aspects:

• Two-stage RE phase: Product and platform
• Many product variants
• Long-living requirements
• Many different stakeholders
• Change management of requirements

 Challenges for Requirements Engineering and Management in SPL Development 303

• Versions and variants of requirements
• Tool support difficult to establish

The high complexity of SPL impacts REM in various respects. First of all, SPL
development involves entire programs instead of just a single project. So it requires
program management in addition to project management. This calls for advanced
coordination, communication, and decision practices in the realm of REM. SPL also
has a very long-term perspective. This increases the importance of portfolio and
release planning, requirements documentation, stakeholder-specific requirements
views, and change management. Project roles and organizational structures of REM
must be able to deal with those additional REM tasks. Furthermore, REM interacts
closely with software architecture, and the definition and maintenance of a domain
model is a SPL-specific task that also involves REM.

Finally, tool-related REM challenges in SPL are particularly hard [8]. In SPL
development, tools play a key role, because the complexities of SPL development can
hardly be managed without appropriate tool support. These complexities call for
enhanced tool support, which is not satisfied sufficiently well by available off-the-
shelf requirements management tools. The main limitations and deficiencies of
current requirements management tools in the context of SPL development are:

• Limited scalability functionality
• Lack or limitations of explicit variability support
• Deficiencies of role-based working environments (views)
• Limitations regarding configuration and change management

As a consequence from these limitations, most companies implement their own
tool solutions by customizing and extending off-the-shelf packages. While
commercial tool vendors do not yet pay particular attention to SPL-specific needs, a
few research prototypes from universities show that SPL support is well possible.

The following lists enumerate the identified detailed REM challenges in SPL.

REM in the realm of project and program management
• Keep strong requirements focus during project and program management
• Maintain common objectives across the teams
• Design REM practices to support program management (in particular with respect

to requirements change management, requirements estimation, and management of
dependencies between requirements and schedule)

Portfolio planning and requirements prioritization
• Adapt SPL requirements management to the portfolio planning process
• Establish REM practices to fit the specific needs of SPL platform requirements

prioritization (e.g., relative importance of products, release timelines, requirements
frequency across variants, and alignment of requirements with strategic goals as
defined in the SPL architecture)

Project roles and organization
• Adapt REM roles and processes to support the various organizational SPL set-ups
• Adapt to the coordinated processes established by program management

304 A. Birk and G. Heller

• Establish a domain analyst role and explicitly assign someone to it; make it work
effectively within the organizations' structure

Architecture documentation
• Document domain, platform and product architecture explicitly
• Generate architecture documentation from development artefacts
• Ease access to information about architectural dependencies and constraints
• Enable effective interaction between REM and architecture (e.g., task and role

definition with strong role of the domain analyst, architecture review board and
change control board, negotiation processes, and decision policies)

Requirements documentation
• Define meta model for requirements documentation
• Define stakeholder-specific views on requirements base
• Generate view-specific documents from the requirements base
• Ensure documentation and document quality
• Map requirements to products, releases, and variants
• Prepare for modeling different kinds of requirements status

REM-related communication
• Elicit and negotiate requirements from the very large number of users and product

sponsors involved in a software product line
• Negotiate requirements between products and platform
• Bring products and platform development in touch with user viewpoints

Tool support for REM
Establish tool support for REM in order to:

• Customize and extend off-the-shelf tools to suit particular SPL requirements
• Establish organizational policies and conventions for REM tool usage in order to

mitigate limitations of present REM tools

4 Summary and Conclusions

This paper gives an overview of challenges for requirements engineering and
management that occur in the development of software product lines. They have been
identified in three related investigations that involved several industrial software
product line organizations [8], [1]. The challenges occur mainly, because software
product line development is much more complex than single-product development.
This complexity has technical facets (e.g., very high number of features, feature
interaction, interrelations between architecture and requirements) as well as
organizational and managerial facets (e.g., very many stakeholders, many interrelated
projects and releases). Also, for most of the SPL-specific REM issues, REM tool
support is widely lacking, yet.

When comparing the REM challenges in industrial SPL development with current
research work in this area, the authors identify a gap with regard to topic areas

 Challenges for Requirements Engineering and Management in SPL Development 305

addressed and relative importance dedicated to each topic area. Academic research
pays much attention to variability modelling and related aspects that allow for the
application of formal software engineering concepts. Most of the perceived challenges
in industrial applications are related to procedural and organizational issues of project
and product management, documentation, and the management of complexity in
requirements representation and evolution.

Past research efforts have addressed only some of the identified categories of
challenges in considerable detail. For instance, detailed organizational models that
address the roles and responsibilities of REM in SPL are very rare. A stronger
interaction between research and industrial practice in these areas appears desirable.
Also efforts for industrial experience exchange on REM and SPL should be continued
and extended.

References

1. Beuche, D., Birk, A., Dreier, H., Fleischmann, A., Heller, G., Janzen, D., John, I., Galle,
H., Kolagari, R., von der Maßen, T., Wolfram, A. (eds.): Report of the GI Work Group.
Tools for Product Line Engineering, Aachener Informatik Bericht AIB-2006-14, ISSN
0935-3232, RWTH Aachen, Aachen, Germany (2006), http://www.gi-ev.de/fachbereiche/
softwaretechnik/re-pl/

2. Birk, A.: Three Case Studies on Initiating Product Lines: Enablers and Obstacles. In: Proc.
of the OOPSLA, PLEES Product Line Engineering Workshop, pp. 19–25 (2002)

3. Birk, A., Heller, G., John, I., von der Maßen, T., Müller, K., Schmid, K.: Product line
engineering: The state of the practice. IEEE Software 20(6), 52–60 (2003)

4. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison
Wesley, Upper Saddle River, NJ (2002)

5. Dikel, D.M., Kane, D., Wilson, J.R.: Software Architecture: Organizational Principles and
Patterns. Prentice Hall, Upper Saddle River, NJ (2001)

6. Juristo, N., Moreno, A., Silva, A.: Is the European Industry Moving toward Solving
Requirements Engineering Problems? IEEE Software 19(6), 70–77 (2002)

7. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering: Foundations,
principles, and techniques. Springer, Heidelberg (2005)

8. Schmid, K., Birk, A., Heller, G., John, I., Joos, S., Müller, K., von der Maßen, T.: Report
of the GI Work Group. Requirements Engineering for Product Lines. IESE-Report No.
121.03/E (2003)

9. The Standish Group. The Chaos Report (1994) http://www.standishgroup.com
10. Weber, M., Weisbrod, J.: Requirements Engineering in Automotive Development:

Experiences and Challenges. IEEE Software 20(1), 16–24 (2003)
11. Werner, M.P.: The value of the quality gateway. In: Proc. of the First International

Workshop on Learning Software Organisations and Requirements Engineering (LSO+RE),
Special issue of J.UKM, Journal of Universal Knowledge Management, pp. 77—84,
vol. 1(2) (2006)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 306–319, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ElicitO: A Quality Ontology-Guided NFR Elicitation
Tool

Taiseera Hazeem Al Balushi, Pedro R. Falcone Sampaio, Divyesh Dabhi,
and Pericles Loucopoulos

School of Informatics, University of Manchester, PO Box 88, Manchester M60 1QD, UK

Taiseera.Al-balushi@postgrad.manchester.ac.uk
{P.Sampaio,P.Loucopoulos}@manchester.ac.uk

D.Dabhi@student.manchester.ac.uk

Abstract. Despite the importance of capturing a precise and complete set of
requirements in the requirements engineering stage, there are few tools that
adequately support requirements analysis in the process of capturing quality
related requirements (non-functional requirements). This paper presents ElicitO,
a requirements elicitation tool aimed at empowering requirements analysts with
a knowledge repository that helps in the process of capturing precise non-
functional requirements (NFRs) specifications during elicitation interviews. The
approach is based on the application of functional and non-functional domain
ontologies (quality ontologies) to underpin the elicitation activities. The tool is
used as a memory aid to structure elicitation interviews, guide requirements
analysts with regard to the important quality aspects relating to a class of
applications, and support the development of precise requirements based on
characteristics and metrics available in quality model standards.

Keywords: non-functional requirements (NFRs), requirements engineering,
requirements elicitation, ontologies, tools, Protégé.

1 Introduction

Requirements elicitation is often regarded as the most critical stage of the entire
requirements engineering effort [1]. An adequate set of requirements, as defined by
[2], should enable users to have a comprehensive view of their system related needs
and a proper understanding of the constraints that will affect the quality of their
experience in using the system. On the other hand, the set of requirements should
also enable developers to obtain a precise and complete description of the functional
and non-functional aspects of the system. The IEEE Guide to Software Requirements
Specifications [3] defines a proper requirements specification as being: unambiguous,
complete, verifiable, consistent, modifiable, traceable, and usable during operations
and maintenance. To help achieving this, the requirements elicitation process should
consider: (1) the functional requirements which are associated with specific functions,
tasks, or behavior that the system must support and (2) the non-functional
requirements (NFR) or quality requirements that represent constraints on functional
requirements. NFRs are often regarded as the key success factor in building high

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 307

quality software [4], [5] enabling a systematic and pragmatic approach of building
quality into software systems [6]. Current elicitation approaches and tools such as
JAD [7], Domain Analysis [8], CORE [9] and Scenario based elicitation [10], [11],
[12] have focused on the identification, specification and management of functional
requirements, however, only a handful of tools addresses the issue of adequately
supporting non-functional requirements elicitation. The key challenges linked to
supporting NFRs elicitation are:

1. The depth/breadth of the scope of the qualities or NFRs involved in a particular
domain: Requirements analysts usually lack a deep understanding of relevant
quality requirements of an application domain, therefore needing additional
knowledge support in the process of asking the right question to elicit requirements
[13].

2. The precision of the NFRs elicited: Quality requirements are usually stated
informally (e.g., the system should be fast or the user interface should not be
cluttered) and few approaches define a quality model and/or attach metrics to non-
functional requirements (qualitative or quantitative measures of the requirements).

3. Tool and process support: Elicitation of NFRs is still treated as a pencil and paper
exercise with little support for processes and tools aimed at requirements
identification, validation and management.

This paper presents ElicitO, a requirements elicitation tool aimed at empowering
requirements analysts with a knowledge repository that helps in the process of
capturing precise non-functional requirements specifications during elicitation
interviews. The approach is based on the application of functional and non-functional
domain ontologies (quality ontologies) to underpin the elicitation activities. The tool
is used as a memory aid to structure elicitation interviews, guide requirements
analysts with regard to the important quality aspects relating to a class of applications,
and support the development of precise requirements based on characteristics and
metrics available in quality model standards.

The remainder of this paper is structured as follows: Section 2 gives a background
on ontologies and their application. Section 3 describes the quality ontology
underpinning ElicitO. Section 4 describes the ElicitO tool architecture. Section 5
presents a small case study to evaluate ElicitO. Section 6 presents some related work
on tools for supporting elicitation activities followed by a discussion in section 7.
Section 8, summarizes the paper, key contributions, and the future work.

2 Background

An ontology is an explicit specification of a shared conceptualization [14].
Ontologies provide a vocabulary for structuring a knowledge domain and for
describing specific situations in a domain [15], fostering a common understanding of
the structure of information among people or software agents [16] (e.g. GeneOntology
[16], WordNet[17]). Ontologies also support the reuse of domain knowledge (e.g.
Enterprise Ontology [18]), helping to make domain assumptions explicit. Ontologies

308 T.H. Al Balushi et al.

can also be applied to support requirements engineering activities providing the
following benefits:

1. Promote a shared domain vocabulary that can be used to avoid ambiguities arising
in projects involving teams of multiple requirements engineers and stakeholders.

2. The representation and reasoning capabilities enable the description of quality
constraints associated with the functional domain.

3. Ontologies are often used to encode specialized knowledge to support the
formulation of competency questions with regards to the quality requirements
relevant to a particular domain, facilitating the elicitation of a complete set of
quality requirements during stakeholders’ interviews.

Recently, quality ontologies are being used to capture quality properties of
helpdesk and customer relationship management systems [19] and others such as
in the TOVE quality Ontology[20], Bioinformatics applications such as in the
Qurator project [21], and quality of service requirements for service centric
systems [22].

3 The Quality Ontology Underpinning ElicitO

ElicitO is based on the use of functional and non-functional ontologies to develop an
ontology driven requirements elicitation method, guided by a standard quality model.
The quality model is encoded in the quality ontology, and automated by a
requirements elicitation tool. Fig. 1 illustrates the ElicitO framework. To develop the
functional and non-functional ontologies underpinning ElicitO, the ontology
development process proposed by Falbo and Menezes [23] was followed to identify
the goal of the ontology, structure the ontology, and formalize/implement the
ontology and its describes in more details as follows:

Identify the goal of the ontology
The ontology’s main objective is to help in promoting a shared understanding about a
functional domain as well as the relevant quality aspects of the domain. The ontology
encodes knowledge relating to the characteristics and metrics available in a standard
quality model (ISO/IEC 9126) [24], enabling the development of assertions stating
the quality properties of a functional element of the domain.

Structuring the ontology
The ElicitO approach/tool is based on two ontologies; the quality ontology and the
functional domain ontology. In this paper we provide an example ontology relating to
the functional domain of a university helpdesk. To structure the university domain
knowledge and its quality characteristics we used textbooks, quality and industry
standards, and interviews with domain experts (e.g. head of information services and
five help desk operators with more than 5 years of experience each) see Fig. 2. The
OMG’s Software Process Metamodel (SPEM)[25] was used to represent the ontology
development process.

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 309

Fig. 1. The ElicitO Requirements Elicitation Framework

The ISO/IEC 9126 quality model codified in the quality ontology supports the
representation of reusable knowledge about different quality characteristics, sub-
characteristics, and metrics. These quality factors are general and can be applied to
any application domain, however, the level of quality required and the order of
importance of these quality factors may vary from a domain to another and will be
further detailed during elicitation interviews.

Fig. 2. Initial University Ontology Development Process

310 T.H. Al Balushi et al.

Ontology formalization/implementation
After all the elements of the domain ontologies and the quality ontologies are
identified, they are implemented using Protégé-2000 [26], a comprehensive tool for
developing knowledge-based systems. The advantages of using Protégé to support
elicitation activities stem from:

1. An extensible knowledge model supporting the declarative representation and
reuse of requirements specifications.

2. A reasoning framework supporting the development of quality requirements as
constraints relating to the functional requirements.

3. Robust and well-documented tool supporting a customizable output file format and
user interface.

The implementation of the ElicitO ontologies in Protégé-2000 is illustrated in
Fig 3. The left-hand side of Fig 3 (A) shows how quality characteristics, sub-
characteristics and metrics of the quality model are mapped into a hierarchy. Further
details of the quality model implemented in ElicitO can be found in [19]. Fig 3 (B)
shows part of the functional domain ontology. The right-hand side of the figure
defines each class, relationships, and asserted conditions Fig 3 (C). One of the
important features of the Protégé is the built in reasoning capabilities allowing the
development of constraints on how the ontology should be used. This is achieved
through OWL expressions denoting domain restrictions/constraints [27], [28].

In developing ElicitO, there are two main sets of asserted conditions:

1. Metrics identification; on which all related metrics to a certain application domain
are identified:
 has_a _QualityMetric ∋ Num_of _links_ per page
 has_a_QualityMetrc ∋ Max_num_of_links_in_an_index_page
 has_a_QualityMetric ∋ Avg_num_of_words_per_page
 has_a_QualityMetric ∋ num_of_images_per_page
 has_a_QualityMetric ∋ page_download_speed
 has_a_QualityMetric ∋ Avg_num_of_colours_per_page
Later these metrics are defined as to which quality characteristic and sub-

characteristic they represent. This is to ensure ElicitO tool’s compliance to ISO/IEC
9126 standard. The example below shows how the metric (Num_of _links_ per page)
is represented:

 ∃ has_a_Quality Characteristic Usability
 ∃ has_a_Quality_SubCharacteristic Understandability
 ∃ measured_by Number

2. Relate the above defined quality metric to a certain domain function, The example
below shows the most important quality metric to the activity (FAQ):
 has_a_QualityMetric ∋ page_download_speed
 has_a_QualityMetric ∋ Avg_num_of_colours_per_page

 has_a _QualityMetric ∋ Num_of _links_ per page

These metrics are defined once and they are reusable across any other functional
domain activity (e.g. email support, library support, etc). The knowledge codified is
reusable across elicitation sessions enabling requirements analysts to configure a new
set of requirements for a specific systems development scenario.

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 311

A

B

C

Fig. 3. Quality Ontology in Protégé; (A) quality ontology, (B) functional domain ontology, (C)
rule/restriction

4 ElicitO Tool Goals and Architecture

Some of the goals of the ElicitO tool are:

1. Help to automate the time consuming process of identifying NFRs relevant to a
certain domain by having all relevant knowledge encapsulated in the ontology.

2. Help the requirements analysts in the process of requirements elicitation
disregarding his/her level of expertise in obtaining a rapid understanding of all
relevant functional and non-functional requirements of a given domain.

3. Decrease the occurrence of problems of understanding between stakeholders (e.g.,
enabling that all NFRs are uniformly treated across different elicitation interviews
conducted by different requirements analysts), thus, reducing the chances of
missing out important requirements or not treating requirements uniformly.

4. Capture the quality requirements for any other functional domain provided that the
specifications are made when the functional domain ontology is constructed. This
supports the reusability of the quality ontology.

The architecture of ElicitO is displayed in Fig. 4. The bottom layer is the ontology
layer where both the functional domain ontology and quality ontology are stored in

312 T.H. Al Balushi et al.

Protégé database. The application layer communicates with the ontology layer when
querying for domain knowledge and the related quality attributes via the Protégé API.
All query results and information that is displayed to the user is done via the graphical
user interface layer.

The implementation language used to build the application-layer and user-interface
layer was Java, as the Protégé environment is itself implemented in Java. The
underlying database for the storage of the requirement sessions was chosen to be
MySQL. The tool gives to users two options to store requirements elicitation sessions:
as a text file for importing in a word processing package; or as a proper relational
database in the MySQL database. The NetBeans Integrated Development
Environment (IDE) 5.0 platform was used and all the user-interfaces were built
within.

Fig. 4. ElicitO Tool Architecture

5 Using ElicitO in a Web Development Project

The ElicitO tool is currently being used to support requirements engineering activities
in connection with the Manchester Unity Web Project. The objective of the project is
to enhance the current website of the university by adding extra features specified by
different stakeholders’ views. To evaluate ElicitO, the authors attended a focus group
session which was one of the ongoing sessions aimed at enhancing the current
helpdesk website of the university. In a two hours focus group session the
participants were asked for what they want to have available on the website and what
the problems they come across using the website. Table 1 presents requirements
elicited from the focus group session. The amount of requirements collected was
limited and some can be regarded as very general and not clear enough. Requirements

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 313

are also unstructured with a mix of functional and non-functional requirements across
the document.

In contrast to the unstructured and ad-hoc pencil and paper exercise conducted
during focus group sessions, the interview process of requirements elicitation using
ElicitO benefits from the tool guidance with regard to the relevant quality
characteristics, sub-characteristics, and metrics relating to a functional element of the
domain that will underpin the formulation of a precise requirement statement. Fig. 5(a)
shows the user interface of the tool from which the requirements analysts and the
stakeholders interact. Once a certain activity is selected in the tool (e.g. FAQ) relevant
quality characteristics that can be discussed with stakeholders towards developing
NFR specifications are presented.

Table 1. Requirements captured without tool support

 User Requirements
R1 Provide information/pathway onto how to access web services

(i.e. web mail, network drive, etc.)
R2 FAQ should be clear and simple in answering users technical

problems
R3 Make the websites among different schools consistent
R4 Provide campus map when required
R5 Make the university regulations and policies easy to access
R6 Make students user names accessible to faculty when using

WebCT (e-learning) to register students
R7 Provide information on how to report a problem and to whom
R8 Provide information about exam timetables and venues
R9 Provide links to the outside world
R10 Highlight important events or alerts
R11 Update the staff directory frequently

The add requirements button allows the stakeholders to detail a quality
requirement, in the given example, the quality characteristics (efficiency) and their
associated sub-characteristics (time behavior) related to the functional activity FAQ.
The tool also allows the requirements analyst to ask more specific questions about
their quality requirements through metrics such as (page download speed) and the
stakeholders specified (15 seconds), see Fig. 5(b). Fig. 5(c) presents an example of
requirements obtained using ElicitO tool and after interviewing two of the participants
(Intranet project manager and the IT services manager) from the focus group (same
amount of time used during the focus group).

The NFRs captured in Fig. 5(c) using the ElicitO tool has an enhanced level of
precision and scope when compared to the general requirements elicited in focus group
sessions. The metrics in the ontology help in promoting a precise metrification of the
relevant quality aspects. This is due to the fact that the tool leverages the knowledge
repository of functional and non-functional requirements relevant to the domain

314 T.H. Al Balushi et al.

Fig. 5. (a): ElicitO GUI; (b): eliciting specific requirements; (c): requirements document

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 315

of discourse. The knowledge encoded in the ontology has a positive impact in
reducing the problem of scope (helping requirements analysts to focus on the relevant
aspects of the domain) and reducing the chances of missing out important aspects of
quality requirements. The tool also helps to promote effective communications as the
quality/functional requirements are better communicated with the stakeholders as they
are defined and broken down into a set of measurable metrics.

6 Related Work on Tools for Supporting Requirements Elicitation

Table 2 compares ElicitO with some other commercial and academic tools available
with respect to the focus of the tool, domain knowledge support, quality model
support, and metrics support. Focus of the tool, evaluates the tools on the basis of
their coverage to requirements engineering activities. Domain knowledge support,
evaluates the tools based on the availability of knowledge base in guiding the
requirements engineering activities. Quality model support, evaluates the tools with
respect to their explicit support for a quality model to help in providing a
comprehensive and standardized set of NFRs to be integrated in the elicitation
process. Metrics support, which helps in proving precise set of NFRs.

An important point to highlight is that ElicitO is unique in providing knowledge
support to the elicitation process based on ontologies, and jointly with QFD, provides
support for a standard quality model with well-defined quality metrics. Another
important point to emphasize is that whilst other tools have emphasized requirements
management, traceability, and prioritization, ElicitO focuses on support for non-
functional requirements elicitation and requirements reuse across different application
domains.

7 Discussion

There are four key aspects relating to the elicitation approach supported by the ElicitO
tool:

• Emphasis on requirements reusability, the reusability notion is often explored in
connection with code reuse, design reuse and object oriented development
approaches [29]. However, reuse can also be applied in connection with the
requirements phase where product quality requirements and general domain
features and functions are made explicit to be used in different projects. ElicitO
advocates this feature via the use of ontologies which support the reusability of
knowledge (requirements in our case). This helps in making the requirements
elicitation phase more effective as the domain assumptions are made explicit to
stakeholders and NFRs can be tailored depending on the needs of each individual
scenario.

316 T.H. Al Balushi et al.

Table 2. Comparison of requirements elicitation tools

Tools Focus of the tool Domain
knowledge
Support

Quality
Model
Support

Metrics
Knowledge
Support

ElicitO FR and NFRs
elicitation &
reusability

Application
Domains
encoded as
ontologies

ISO/IEC
9126

√

CaliberRM
20051

Enterprise
Requirements
management
(tractability &
collaboration)

Repository of
existing project
requirements

DOORS2 Requirements
management.
Requirements
modeling for
understandability
and reusability

Template of
requirements
documents
without specific
domain
knowledge

IBM Rational
Requisite
Pro 03/063

Groupware for
Requirements
management
(traceability &
impact analysis)

Reuse
requirements from
existing projects

QFD
/Capture V.44

Requirements
identification &
prioritization

 QFD √

NFR Assistant
[6]

NFR identification
and conflict
resolution

 List of NFRs
without
relating to
quality model

QM tool [30] Define a quality
model for an
application

Business
application
software features

ISO/9126

√

• Use of quality models to capture precise quality metrics; ElicitO is based on the

quality model ISO/IEC 9126 which encompasses a comprehensive set of product
quality characteristics. ISO/IEC 9126 has also been applied to many software
engineering projects/applications [4], [30], [31], [32], [33], [34]. Quality models
help in highlighting which quality attributes are important, their level of
importance, and their measurement methods. Adopting a quality model also helps
project managers with software product evaluation and risk identification [35].
For example, there is significant research on website quality models [36], [37],
[38] and also research that emphasizes a single quality dimension such as
usability [39] and security [40].

1 http://www.borland.com/us/products/caliber/index.html/
2 http://www.telelogic.com/corp/products/doors/
3 http://www-306.ibm.com/software/awdtools/reqpro/
4 http://www.qfdcapture.com/

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 317

• Emphasis on product/service quality; it is important to note that the authors use
NFRs and quality attributes interchangeably, this is because NFRs are often
viewed as systems properties or constraints [41] which are key elements to assess
the effectiveness of functional capabilities of a system, (e.g.; all call centers need
to handle calls and deal with customer’s requests (functional requirements).
However, factors such as how long the customer waits until he/she gets to speak
to an agent and/or how many calls can a call center handle at a time are key
factors representing the quality of call centers activities. Hence, NFRs help to
express the effectiveness of the functional capabilities of a system (product
quality).

• Focused at enhancing productivity; stored ElicitO ontologies help requirements
engineers to speed up requirements capture by navigating and completing NFRs
forms. The tool also helps in standardizing requirements across teams of
engineers.

8 Conclusions and Future Work

This paper presents ElicitO, a requirements elicitation tool providing automated
support for non-functional requirements elicitation. The tool applies functional and
non-functional domain ontologies to support requirements analysts with domain
knowledge to develop a comprehensive and precise set of requirements during
elicitation interviews. The paper discusses the elicitation approach supported by the
tool, the ontologies underpinning the tool, the tool architecture and the paper also
provides an example of how ElicitO is being used to support the development of
NFRs for a web engineering project at the University of Manchester. Future work will
be focused in developing requirements specifications across different domains to
assess the reusability of the quality ontology. We are also using the reasoning
capabilities supported by the knowledge management environment (Protégé) to
develop validation checks for captured requirements, enabling consistency checking
across requirements developed by teams of requirements analysts.

References

1. Brooks, F.: No sliver bullet-Essence and accidents of software engineering.
Computer 20(4), 10–19 (1987)

2. Saiedian, H., Dale, R.: Requirements engineering: making the connection between the
software developer and customer. Information and Software Technology 42(6), 419–428
(2000)

3. IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements
Specifications.

4. Azuma, M.: Applying ISO/IEC 9126-1 Quality Model to Quality Requirements
Engineering on Critical Software. In: Proceedings of the 3rd International Workshop on
Requirements Engineering for High Assurance Systems. Kyoto, Japan (2004)

5. Bordewisch, R., et al.: Non-Functional Aspects: Systems Performance Evaluation. In:
THOME, B. (ed.) Systems Engineering: Principles and Practice of Computer-Based
Systems Engineering, pp. 223–271. John Wiley & Sons Ltd, Chichester, UK (1993)

318 T.H. Al Balushi et al.

6. Chung, L., et al.: Non-Functional Requirements in Software Engineering. Kluwer
Academic Publishing, Norwell, Massachusetts. 472 (2000)

7. Wood, J., Silver, D.: Joint Application Development. Wiley, New York (1995)
8. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Software

Engineering Institute. Technical Report CMU/SEI-90-TR-021, Pittsburgh, PA (1990)
9. Mullery, G.P.: CORE: A method for controlled requirements specification. In: Fourth

International Conference on Software Engineering (1979)
10. Holbrook, H.I.: Scenario-based methodology for conducting requirements elicitation.

ACM SIGSOFT Software Engineering Notes 15(1), 95–104 (1990)
11. Maiden, N.A.M.: CREWS-SAVRE: Scenarios for Acquiring and Validating

Requirements. Automated Software Engineering 5(4), 419–446 (1998)
12. Sutcliffe, A., et al.: Supporting scenario-based requirements engineering. IEEE

Transactions on Software Engineering 24(12), 1072–1088 (1998)
13. Kassel, N.W., Malloy, B.A.: An Approach to Automate Requirements Elicitation and

Specification. In: Proceedings of the 7th IASTED International Conference on Software
Engineering and Applications. Marina Del Rey, CA, USA (2003)

14. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, in Formal Ontology in Conceptual Analysis and Knowledge Representation.
Kluwer Academic Publishers, Deventer, The Netherlands (1993)

15. Fikes, R., Farquhar, A.: Distributed repositories of highly expressive reusable ontologies.
IEEE Intelligent Systems 14(2), 73–79 (1999)

16. GeneOntology, http://www.geneontology.org
17. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
18. Uschold, M., et al.: The Enterprise Ontology. AIAI, The University of Edinburgh (1997)
19. AlBalushi, T., et al.: Performing Requirements Elicitation Activities Supported by Quality

Ontologies. In: Eighteenth International Conference on Software Engineering and
Knowledge Engineering. San Francisco, Knowledge Systems Institute Graduate School
(2006)

20. Kim, H.M., Fox, M.S., Gruninger, M.: An ontology of quality for enterprise modeling. In:
Proceedings of the Fourth Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1995 (1995)

21. Qurator (2005) http://www.qurator.org
22. Dobson, G., Lock, R., Sommerville, I.: Quality of Service Requirements Specification

using an Ontology. In: Proc. Workshop on Service-Oriented Computing Requirements
(SOCCER) Paris (2005)

23. Falbo, R.A., Menezes, C.S., Rocha, A.R.C.: A Systematic Approach for Building
Ontologies. In: Coelho, H. (ed.) IBERAMIA 1998. LNCS (LNAI), vol. 1484, Springer,
Heidelberg (1998)

24. ISO/IEC 9126-1:2001 Software engineering –Product quality – Part 1: Quality model.
25. Object Management Group. Software Process Engineering Metamodel Specification.

Version 1.1. January 2005, Technical Report 05-01-06,OMG (2005)
26. Protege (2000) The Protege Project, http://protege.stanford.edu
27. McGuinness, D.L., Harmelen, F.v.: OWL Web Ontology Language Overview. W3C

Recommendation (2004)
28. Knublauch, H., et al.: The Protégé OWL Plugin: An Open Development Environment for

Semantic Web Applications. In: Third International Semantic Web Conference.
Hiroshima, Japan (2004)

29. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesely Professional (1999)

 ElicitO: A Quality Ontology-Guided NFR Elicitation Tool 319

30. Carvallo, J.P., et al.: QM: A Tool for Building Software Quality Models. In: Proceedings
of the 12th IEEE International Conference of Requirements Engineering 2004, IEEE
Computer Society, Kyoto, Japan (2004)

31. Bhatti, S.: Why Quality?ISO 9126 Software Quality Metrics (Functionality) Support by
UML Suite. ACM SIGSOFT Software Engineering Notes 30(2), 1–5 (2005)

32. Cote, M., et al.: The Evolution Path for Industrial Software Quality Evaluation Methods
Applying ISO/IEC 9126:2001 Quality Model: Example of MITRE’s SQAE Method.
Software Quality Journal 31(1), 17–30 (2005)

33. Firesmith, D.: Using Quality Models to Engineer Quality Requirements. Journal of Object
Technology 2(5), 67–75 (2003)

34. Doerr, J., et al.: Non-functional requirements in industry - three case studies adopting an
experience-based NFR method. In: Proceedings of the 13th IEEE International Conference
on Requirements Engineering (2005)

35. Hayatt, L., Rosenberg, L.: A Software Quality Model and Metrics for Identifying Project
Risks and Assessing Software Quality. In: 8th Annual Software Technology Conference.
Utah (1996)

36. Cox, J., Dale, B.G.: Service quality and e-commerce: An exploratory analysis. Managing
Service Quality 11(2), 121–131 (2001)

37. Webb, H.W., Webb, L.A.: SiteQual: an integrated measure of Web site quality. Journal of
Enterprise Information Management 17(6), 430–440 (2004)

38. Olsina, L., Rossi, G.: Measuring Web application quality with WebQEM. Multimedia,
IEEE, vol. 9(4), pp. 20–29 (2002)

39. Nielsen, J.: Designing Web Usability: the practice of simplicity. New Riders Publishing
(1999)

40. Firesmith, D.: Engineering Security Requirements. Journal of Object Technology 2(1),
53–68 (2003)

41. Sommerville, I.: Software Engineering. 7th edn. Essex, England, Pearson Education
Limited (2004)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 320–334, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Exploring the Characteristics of NFR Methods –
A Dialogue About Two Approaches

Andrea Herrmann1, Daniel Kerkow2, and Joerg Doerr2

1 Institut für Informatik, Neuenheimer Feld 326, 69120 Heidelberg, Germany
andrea.herrmann@informatik.uni-heidelberg.de

2 Fraunhofer-Institut Experimentelles Software Engineering, Fraunhofer-Platz 1, 67661
Kaiserslautern, Germany

{joerg.doerr,daniel.kerkow}@iese.fraunhofer.de

Abstract. It is not easy to choose a method for eliciting, detailing and
documenting non-functional requirements (NFR) among the variety of existing
methods. In order to explore typical characteristics of such methods, we
compare two approaches which specify NFR: MOQARE and the IESE-NFR-
method. Both aim at deriving detailed requirements from quality attributes, but
use different concepts and processes. Our analysis led to ideas for incremental
improvement of each method and also to deeper insight into NFR methods.

Keywords: Non-Functional Requirements, Quality Modeling, Elicitation.

1 Introduction

There are several different methods for elicitation, detailing and documentation of non-
functional requirements (NFR), each of them with its specific strengths (e.g. [1-8]). It is
not easy to decide which of these methods to use for practical requirements engineering
(RE). Typically, not all characteristics of the method are spelled out explicitly, but only
emerge during the use of the methods.

In order to explore typical characteristics of NFR methods, and to learn about
strengths and weaknesses of NFR methods in particular, we compared those two
methods with each other which we applied in many case studies: MOQARE [6] and
the IESE-NFR-method [7,8], which both aim at deriving detailed requirements. The
main goal of this comparison is to improve each method by finding weaknesses of
one method and by improving these weaknesses by integrating strengths of the other
method. Therefore, we applied both to the same case study and compared our
experiences with the different processes and the requirements identified. We also
analyzed whether and how far it is possible to integrate both methods to create an
improved method which combines all strengths. Thereby we identified several ideas
for incremental improvement of each method. We found that there are method
characteristics which contradict each other and can not be realized by the same
method. Like other efforts, which compare RE methods [9,10], we originally aimed to
use predefined criteria for the comparison, such as those we claimed in [11]. But since
our goal was not to score a method or to decide which method is better, but to learn
more about RE methods, once we had analyzed the two case studies, we discovered in

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 321

a Dialogue according to [12,13] that the two methods mainly differed among the
following method characteristics:

1. A guided process to ease the method usage by less experienced personnel
and to support repeatability of the results

2. Derivation of measurable NFR to ease quality assurance
3. Reuse of artifacts to support completeness of the derived NFR, to support

learning and to avoid rework
4. Intuitive and creative elicitation of quality to capture also the hidden

requirements and thus support completeness
5. Focused effort for efficient elicitation and NFR prioritization to support

trade-off decisions
6. Handling dependencies between NFR to support trade-off decisions
7. Integration of NFR with Functional Requirements (FR)

While both methods share the goals behind these principles, they reach them partly

with similar means, partly with different means, and they emphasize those goals
differently.

This paper has the following structure: In section 2, we sketch the case study to
which we applied both methods. Sections 3 and 4 succinctly present the two NFR
methods, MOQARE and the IESE-NFR-method, which have been published in more
detail in [6,7,8,14]. Section 5 discusses how each method realizes each of the goals
and discusses the integration respectively incremental improvements to the methods
identified during the comparison. Section 6 pinpoints major tradeoffs between the
methods. Section 7 is the conclusion which also discusses future work.

2 Case Study

We applied both methods to the same system: a case study eliciting NFR on a
wireless network system used for monitoring and control of an industry plant. This
should help us understand similarities and peculiarities of the methods and their
results. The results differed in many aspects and were often not directly comparable.
For example it can not be determined which method elicited “more” NFR in a
quantitative sense. This is due to the different abstraction levels on which a
requirement can be expressed, and also due to time constraints during the case study
execution.

The NFR of the case study were first investigated with the IESE-NFR-method. In a
first prioritization step the customer rated the quality attributes efficiency, reliability
and maintainability to be most important. Then, two workshops took place with one
method expert and one company representative in the role of a customer writing down
a requirements specification for a subcontracting purpose. In the first workshop, the
quality attribute efficiency was analyzed: in a first session of 3 hours, a quality model
for efficiency was created from scratch (see also method description in Section 4); in
a second session of 2 hours efficiency requirements were elicited. In the second
workshop, the attributes reliability and maintainability were analyzed: in a first
session of one hour each, existing quality models were tailored to the project context

322 A. Herrmann, D. Kerkow, and J. Doerr

and in a second session of 2 hours each, reliability and maintainability requirements
were elicited. The output of the two workshops was 56 NFR, 52 of them (i.e., 93%)
were measurable and testable. Some examples of these NFR are also shown in Fig. 4,
more examples can be found in [14]. In parallel to the application of the IESE-NFR-
method, a design team started an implementation of a subsystem. Later in the project,
this design team was faced with the newly elicited NFR. The design team rated that
23 of the 56 NFR are important for their subsystem and that 9 of these NFR (i.e., 39%
of the relevant NFR) will lead to a change of this subsystem and in the end to major
rework of this subsystem. These figures show the importance of a thorough analysis
of NFR and possible consequences of neglecting them.

MOQARE was applied to the same system later and by different persons. The FR,
domain information about users and data to be managed, and the authorization
concept were given. Two persons participated in a workshop of 6 hours including a
one hour method presentation. One person was the MOQARE specialist and knew
nothing about the case study, and the other person knew the case study setting well,
but not MOQARE. Within the workshop, 19 quality goals (vague NFR) and 31
countermeasures (specific NFR) were identified. The countermeasures are certainly
not complete, as not all NFR were analyzed. Some of the results are shown in the
figures 1 and 2. The goal of the workshop was explicitly to investigate the method
characteristics and not to determine a complete set of requirements.

3 MOQARE

The starting point of the method MOQARE (Misuse-oriented Quality Requirements
Engineering) is a functional description or draft of a planned or existing system, its
business goals and quality goals. From the security RE, MOQARE adopts the general
idea to identify misuses [1-3] and thereof more detailed requirements. The method´s
result is a so-called misuse tree. The full description of the method can be found in
[6]. The misuse tree´s concepts are as follows (in italic): A system is developed and
used because it supports important business goals. These business goals might be
threatened by business damages which are caused by quality deficiencies of the
system. The quality goal describes more specifically which part and property of the
system supports the business goals. A quality goal is the combination of an asset and
a quality attribute (QA). Both have to be protected. We mainly use the QAs of ISO
9126 [15] – functionality (including the sub-factors security and interoperability),
reliability, usability, maintainability, portability, and efficiency. An asset is any part
of the system. By “system” we do not only include the software, hardware, network,
but also the physical building, the company, the administrators, maintainers and users
of the system. A quality deficiency means that the asset does not comply with the QA.
It is not necessarily the exact opposite of the QA. For example, if the quality goal is
“availability of data”, the quality deficiency can consist in temporary inaccessibility
for all users or for certain users, irreversible destruction of the data, manipulation of
the data, and many more. A misuse case describes a whole misuse scenario, including
misuser, threat and its consequences (e.g., quality deficiency). A threat is an action
which would threaten the quality goal and cause the quality deficiency. The threat is

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 323

usually performed by a misuser, who can be a person (hacker, end-users,
administrators, maintainers, developers, etc.), other systems or forces of nature like
fire and thunderstorm. Often, the threat is facilitated, made possible or even provoked
by a vulnerability. A vulnerability is any – even wanted – property of the system, if it
can be misused with respect to a quality goal. A misuse is prevented, mitigated or
detected by countermeasures. The countermeasures can be new FR, NFR on FR,
architectural requirements or other quality goals. In case of the latter, the quality goal
is refined further. Countermeasures regularly are quality goals, because QA depend
on each other, like in the case study the efficiency was supported by the availability of
the system, and this availability by safety, recoverability and maintainability. The aim
is achieve countermeasures which are described realizably so that they can be used for
architecture definition [16].

Since during such a top-down analysis one uncovers several business damages per
business goal, several quality deficiencies and quality goals per business damage, etc.
the results of this analysis are summarized in a misuse tree (or rather graph as some
countermeasures can refer to several misuse cases). The misuse tree developed during
the case study started with six business goals. Fig. 1 and Fig. 2 show two sub-trees
containing or starting with the quality goal “undisturbed production process”.

The requirement elicitation in MOQARE proceeds top-down within the misuse
tree and is guided by a four step process. The steps are typically performed in the
following order, but this is not obligatory, rather a guideline:

Fig. 1. Part of the case study misuse tree

324 A. Herrmann, D. Kerkow, and J. Doerr

Fig. 2. Another part of the case study misuse tree

1. find the quality goals (based on business goals, quality deficiencies, and
business damages)

2. describe misuses (including threat, misuser, vulnerabilities, consequences)
3. define countermeasures
4. for those countermeasures which are new quality goals, re-start at step 2

The reuse of knowledge is supported by checklists of QA, possible threats and
their countermeasures, as well as lists of assets, their vulnerabilities and
countermeasures. The completeness criterion for the NFR is that each business goal
must be linked to at least one business damage, each business damage be linked to at
least one quality deficiency, etc. The leaves of the misuse tree can only be
countermeasures, because standard solutions will be applied or quality goals which
are not analyzed further, either because they have a low priority or because other
stakeholders are responsible for their satisfaction. As there is a variety of potential
misuse cases, it is important to focus on the most important ones, i.e., the misuse
cases with a high probability or which cause a high damage.

4 The IESE-NFR-Method

The Fraunhofer IESE developed a systematic, experience-based method to elicit,
document, and analyze NFR, which is based on the ISO 9126 standard [15]. This
method results in a minimal and complete set of measurable and traceable NFR.

In the IESE-NFR-method, we deploy a systematic and enforced process that
distinguishes between two stages (see Fig. 3), a quality model tailoring and an NFR
elicitation stage. In Stage 1, QA are captured and refined in quality models that
typically have a tree structure. Each QA at the end of such a tree has a metric
attached. At that stage, experience from other projects (or even companies) is reused,
as the quality models are usually not created from scratch, but tailored from

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 325

experience based models. Thus, typically reference quality models are used. In
Stage 2, specific NFR are elicited, analyzed, and documented. A QA is a non-
functional characteristic, an NFR describes a specific value (or value domain) of a
QA that should be achieved in a specific project. Thereby, the NFR constrains a QA
by determining a value of a metric associated with the QA (see Fig. 4).

Similar to approaches such as [4], we use a notation based on goal graphs for
capturing the dependencies between the QA such as efficiency and maintainability in
reference quality models. The actual NFR are captured in documents intertwined with
FR and architectural decisions. With this approach, complicated dependencies are
captured in reference quality models, and do not have to be captured for each project.
It turned out that this type of quality models can be created for all QA of the ISO
9126 standard and can detail these high-level attributes to a measurable level.

Fig. 3. Overview of the IESE-NFR-method

In the following we describe the stages in more detail:

Stage 1: Quality Model Tailoring
In a first step of Stage 1, a prioritization questionnaire is used to focus the elicitation
and documentation process. This questionnaire helps to prioritize the QA. For the
highest ranked QA, the reference quality models are tailored in a workshop. In this
tailoring process, domain experts from the company tailor each quality model to the
needs of the project. The quality models also capture relationships and dependencies
between the QA in a so called dependency graph. After the tailoring, new
dependencies are identified. When using the method initially, it appeared to be
beneficial to involve an IESE-NFR-method expert in using our NFR method. The
output of this first stage is a tailored quality model. Based on this tailored quality
model and the dependency graph, the reference checklists and templates are tailored
to the specific project context. This tailoring of the checklists and templates is

326 A. Herrmann, D. Kerkow, and J. Doerr

Fig. 4. The relationship between QA, checklist questions and NFR

straightforward, as there is a clear correspondence between quality model elements
and checklist questions and template elements, respectively (see Fig. 4).

Stage 2: NFR Elicitation
A prerequisite for starting the second stage, i.e., the NFR elicitation, is that basic FR
and a high level system architecture (e.g., hardware components, networks, databases
available in the system) exist. We applied the method mostly in projects where Use
Cases were used to specify (parts of the) FR. It turned out that Use Cases are a
suitable input for this method. In this second stage, the tailored checklists and
templates are used in a workshop for the NFR elicitation. The checklists give
guidance and ask for measurable NFR. The templates help to identify the location in
the requirements document. We use rationales to justify each NFR. By using
rationales, unnecessary NFR become transparent, as often NFR are stated during the
workshop, and after asking for the rationale, it turns out that the NFR is not really
necessary.

Our method also provides basic requirements management support including a
dependency analysis on the elicited set of requirements. For example having a login
for security reasons might conflict with usability requirements to optimize the number
of clicks to perform an activity. In the dependency analysis, the interaction of the
elicited NFR is analyzed, resolved, and documented (see also [7]).

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 327

5 Same Goals, Different Means

After both methods had been applied to the case study we analyzed their
characteristics. In particular we wanted to understand in more detail by which means
does each of the methods reach the common underlying goal. Our aim was not to
judge which of the methods is better, but to see how the same goal can be achieved
with different means. Table 1 succinctly compares the two methods, followed by a
more detailed description of the differences in the text.

Table 1. Comparison of method goals and means

Goal MOQARE IESE-NFR-method
1) A guided process The structure of the misuse

tree defines the questions to
answer and the form of the
results. The questions can be
answered in arbitrary order.

Clearly defined systematic
process (see Fig. 3).

2) Measurable NFR Refinement of vague NFR
(=quality goals) to FR,
architectural requirements
or NFR on FR (Counter-
measures). They can be
quantified by metrics, but
need not.

Refinement of quality
attributes in quality models
with metrics at leaf-level.
Metrics are used to specify
NFR. NFR are not accepted
if they are not measurable,
so all NFR are measurable.

3) Reuse of artifacts Reuse of checklists, but no
process for reuse of project
artifacts and their
integration into the lists.

Reuse of artifacts (Quality
Models, checklists,
template).

4) Intuitive and
creative elicitation

Supported by the context-
rich Misuse Case scenarios
and the possibility to choose
the order of NFR elicitation,
but also by checklists.

Use cases for FR; but no
scenarios for NFR;
creativity support mainly
during tailoring, but this
depends on the moderator
of the tailoring stage.

5) Focus effort and
NFR prioritization

Focus on NFR which
support business goals.

Use of a prioritization
questionnaire, focus is on
the most important QA.

6) Dependencies The Misuse Tree documents
how QA support each other,
but conflicts are not
documented.

Use of Dependency Graphs
on Quality Model level and
incorporation of possible
dependencies into checklists
for elicitation step.

7) Integration of
NFR with FR

No direct integration of NFR
into FR document, but tool
support allows to link NFR to
FR.

Direct integration of the
NFR into the requirements
document which describes
the FR.

328 A. Herrmann, D. Kerkow, and J. Doerr

The seven goals presented above are now discussed in more detail, including their
significance, how and how well they are achieved by each method. Then we present
ideas for incremental improvement of the methods which arise from this comparison.

1) A guided process

General: A guided process could allow even less experienced personnel to use the
method and improves the repeatability of the result. But a strict process can also
hinder creativity.

Means: While the IESE-NFR-method prescribes a very systematic and enforced
process, in MOQARE the four steps of its process need not be performed in the given
order. The end of the NFR elicitation is defined by the completeness criterion on the
misuse tree.

Ideas for adaptation: Both solutions, the systematic process defined for the IESE-
NFR-method, and the less rigid process of MOQARE have their advantages. One
could prescribe a more strict process for MOQARE. This would be beneficial
especially if it is important to focus the effort on the most important requirements due
to time constraints.

2) Measurable NFR

General: Requirements are the basis for the realization and also for system tests
which ensure that the product satisfies those requirements. Thus, they must be
realizable and testable. Typically, metrics are used to make NFR testable. However,
quantitative expression of requirements is often difficult and arbitrary. For instance:
What does it mean to claim an availability of 98.7% in five years? Would an
availability of 97.8% change any design decision? Can a valid rationale for the
numbers be found? An unjustified quantification of a requirement doesn’t provide a
clear benefit. But the quantification of a justified requirement provides the benefit that
this requirement is testable.

Means: The idea of both methods is to refine vague NFR on the level of QA to obtain
more detailed NFR which can be realized and tested. In the IESE-NFR-method, the
systematic process ensures measurable NFRs as NFR can only be expressed by using
a metric provided from the experience based quality models. In MOQARE, the
resulting requirements (the countermeasures) are FR, architectural requirements or
NFR on FR. The MOQARE method allows defining measurable quality goals or
countermeasures but does not enforce it. (And consequently, in case studies, only few
metrics were defined so far.)

One can conclude that the IESE-NFR method demands to always define
measurable requirements, risking that they might be not justified, while MOQARE
only gathers metrics where they are valid, risking that the requirements are not all
measurable.

Ideas for adaptation: MOQARE could put more emphasize on defining metrics.
However, MOQARE has originally been designed for an easy transition to
architecture specification. This requires capturing the main quality issues. They do not
need to be measurable at that early state. So metrics should only be emphasized as
soon as they are needed to support quality assurance.

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 329

3) Reuse of artifacts

General: It is at the same time a common practice and one of the fundamental
principles in Software Engineering to learn from experience and to avoid rework by
reuse of artifacts. Good Software Engineering methods take advantage of this
principle and integrate iterative improvement cycles into the method [20,21]. This
learning cycle has two halves: The reuse of artifacts during RE on the one hand, and
on the other hand the production of new reusable knowledge during RE and its
addition to the artifacts. The reusable knowledge captured in the experience based
artifacts must be clearly separated from the project specific instantiation.

Means: In the IESE-NFR- method the experience-based quality model tailoring stage
and the project specific NFR elicitation stage are clearly separated. In the first, the
definition of quality is captured in the Quality Model. Typical means and metrics are
captured there. During the tailoring, these models mature more and more and provide
a reusable benefit for future quality requirements elicitation. Furthermore the
checklists and templates to elicit and document the NFR are also stored as experience-
based artifacts.

In MOQARE, experience based artifacts (the checklists for QA, assets, threats,
vulnerabilities, and countermeasures) exist and are used for identifying the project
specific requirements in the misuse tree. These lists so far do not mature
systematically with each usage of the method.

Ideas for adaptation: There are two ideas:

Idea 1: MOQARE Process: MOQARE could include a final evaluation phase in
which project specific knowledge is added to the checklists in the form of additional
items and also whole sub-trees, i.e., dependencies among concepts, beyond the misuse
– countermeasure relationships which are already documented in the checklists. In the
present case study, for instance, additionally to process specific misuse cases which
can probably not be reused, several misuse cases and countermeasures specific to
portable wireless access devices were identified which were not yet included in the
checklists but which can be expected to be reusable.

Idea 2: Tailoring the quality model with MOQARE: Another possibility of
integration would be to use the two- step workshop format of the IESE-NFR- method,
but to tailor the quality model with the cognitive process of MOQARE.

4) Intuitive and creative elicitation

General: In RE research we observe an – let us call this phenomenon “ilitisation”-
trend. This “ilitisation”-trend refers to the practice of making nouns out of adjectives,
in order to express the capability of a system to accomplish a certain quality attribute.
While these noun-adjectives are very helpful to represent abstract reductionism
models with single word labels attached on each element, they are not a good
communication means. They can be undifferentiated, ambiguous and lexically
incorrect. People when describing characteristics or situations, use words naturally in
stories and other opened accounts to convey the richness of past experience and future
anticipation [22]. Each stakeholder has his/ her own stories, reconstruction of the past,
values, goals and expectations for the future that lead him/ her to a certain
understanding of a quality characteristic. Rather than the “ilitisation”-capabilities such

330 A. Herrmann, D. Kerkow, and J. Doerr

context-rich stories (scenarios) are the structural units of identification with a
technical system [2,23] and also according to our experience, they allow the
participation of non-technical stakeholders as well.

Means: Misuse cases are a central and explicit concept of the MOQARE method and
have shown to be an effective tool to relate the NFR to the use cases and the usage
context of a system. This enhances validity, completeness and creativity.

Ideas for adaptation: The quality model tailoring stage of the IESE-NFR- method
has shown to make implicit use of imaginative cognitive processes among the
participants, but does not support these methodologically. The completeness, validity
and creativity of the resulting NFR would benefit from using imaginative techniques
during the tailoring stage. These could be applied in two ways:

Idea 1: Use scenarios and misuse cases as elements of MOQARE for the IESE-
NFR-method’s tailoring stage, or

Idea 2: Adopt the full-fledged MOQARE (as it is) technique for the tailoring stage.

5) Focus effort and NFR prioritization

General: When there are time or resource constraints, it is important to focus the
elicitation effort on the most important NFR and then to prioritize the requirements -
the FR as well as the NFR. Priorities allow focusing the effort during requirements
elicitation, but also during realization and help to solve conflicts among requirements.
Grounding the NFR of a system on business goals integrates the established principle
of business IT alignment into the process [24-27] and increases the validity of the
requirements.

Means: In the IESE-NFR-method, in stage 1 only the most relevant QA are identified
and analyzed further. In order to find out which are the most relevant characteristics,
an essential part of the method is the prioritization questionnaire. Based on
expectations about the future and answering questions about the past, the
questionnaire determines the most probable order of importance among all high level
QA (e.g., maintainability, reliability, usability, efficiency).

In MOQARE, there is no restriction concerning the QA to be regarded, but the
method is focused on those NFR which support business goals - directly or indirectly.
In the present case study, the six business goals were “uninterrupted production”,
“efficient work”, “data protection of private data”, “interoperability of new system
with legacy system”, “low maintenance cost”, “market entry with product before
competitors”. Several of them support a more abstract profit goal, but the more
detailed they are, the better for the analysis. The more a requirement supports a
business goal, the higher its priority.

Ideas for adaptation: Business goal grounding seems to be an important concept for
focusing the effort on the relevant quality characteristics. This concept could easily be
integrated into the IESE-NFR-method. Furthermore, the prioritization questionnaire is
a suitable means to focus on certain quality characteristics. The following integration
ideas became apparent:

Idea 1: Adopt MOQARE in the tailoring workshop to focus the effort on the QA
that are related to business goals.

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 331

Idea 2: Integrate questions towards business goals into the prioritization
questionnaire.

Idea 3: Integrate the IESE prioritization questionnaire into MOQARE.

6) Dependencies

General: In RE, conflicts are rather the rule than the exception. Conflicts arise among
NFR or among different stakeholders. In the past we were able to demonstrate the
benefits of systematic conflict and dependency management [7].

Means: The IESE-NFR- method captures stereotypical dependencies among QA
within so called dependency graphs. These graphs grow and mature over the time.
With each analysis of dependencies, these graphs are being improved. Using the
dependency graphs by transforming them into questions in the checklists enables a
systematical analysis of conflicts among palbable NFR and ensures their internal
consistency.

The MOQARE misuse tree documents contributions of quality goals and QAs to
each other (like safety and recoverability of a system improve its availability), but
conflicts are not documented and treated.

Ideas for adaptation: The dependency analysis in MOQARE could be enhanced in
several ways:

Idea 1: Adopting the IESE-NFR- dependency graphs to serve as an additional
reusable artifact which describes frequent QA dependencies

Idea 2: Integrating graphical dependency representation into the misuse tree by
using a special notation.

Idea 3: Not including dependency analysis in the requirements elicitation by
MOQARE but during architectural design (like in [16]).

7) Integration of NFR with FR

General: A requirements document benefits from a predefined structure, traceability
and corporate identity of paper formats and layouts. It is especially important that the
FR and NFR are integrated in the same documentation to make them directly usable
together.

Means: The result of the IESE-NFR-method is a complete requirements document,
integrating system requirements, FR and NFR into a traceable and well structured
documentation. The IESE-NFR-method does this by documenting the preexisting
information in the method’s Use Case based standard template and adding the NFR in
the same document according to a specified scheme, e.g., to Use Case diagrams and
scenario descriptions [14].

MOQARE does link misuse cases and countermeasures to FR (preferably in the
form of Use Cases), but this needs tool support and can not easily be done in the
graphical misuse tree or a text document due to complexity.

Ideas for adaptation: For converting the tree-based documentation produced by
MOQARE into industrially established formats for requirements documentation, extra
effort is required: Tool support is necessary, as well as a double classification of the
quality goals and countermeasures, which should additionally be classified as FR

332 A. Herrmann, D. Kerkow, and J. Doerr

(e.g. use cases), NFR on FR or architectural requirements. For instance the
requirement “the alarm reception must never be suppressed by the user” is a
countermeasure but at the same time a NFR on the FR “alarm reception”.

6 Tradeoffs

The previous section has shown that there are different means to achieve the same
goal. These different means can be combined and integrated into the methods to some
extent. However, we have found at least two beneficial characteristics, which are
contrary in their nature. We gained the impression, it might be impossible to integrate
all characteristics into a single method. Variants of the same method would be a
feasible way to integrate such contradicting characteristics. The method users would
have to make tradeoffs when they decide which variant to use. So far we have not
investigated all the implications of a combined method. Yet, there is at least the
following obvious tradeoff to be made:

Enabling Creativity vs. Strong guidance during refinement

It has been discussed that focusing the effort was a major benefit in the IESE-NFR-
method. One of the obvious strength of the MOQARE method is the intuitive
cognitive procedure and the explicit support of reasoning and story-telling [22]. The
free flow of associations is not hindered. With the IESE-NFR-method one obtains an
in-depth refinement of single (focused) QA, prioritized by the stakeholders. With
MOQARE one obtains a broader range of more abstract requirements which are
grounded in business goals. In MOQARE, optionally either specific quality goals can
be analyzed in depth as is done by the IESE-NFR-method or one misuse tree layer
after the other can be developed. It is also possible to document spontaneous ideas at
their right place in the misuse tree. This is enabled by the systematic misuse tree
structure. MOQARE like the IESE-NFR-method focuses on the most relevant aspects,
but not in terms of the highly prioritized QAs, but rather the most relevant threats and
misuse cases with respect to the business goals. Therefore, during a case study, most
of the QAs are discussed because they influence each other. For instance, the system
safety and recoverability support its availability.

Both aspects – the effort focusing and the openness for spontaneous ideas - proved
to be very beneficial for the derivation of NFR, but they seem to be contrary in their
nature and therefore impossible to realize by the same method.

7 Conclusion and Future Work

In this work, we compared two RE methods: MOQARE and the IESE-NFR-method,
which both aim at deriving detailed NFR. The main goal of this comparison was to
learn about the strengths and weaknesses of each method, in order to improve both
method. Weaknesses of one method can be improved by learning and integrating the
strengths of the other method. We applied both to the same case study to identify
common and different concepts and compared our experiences with the different
processes and the requirements identified.

 Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches 333

The two NFR-methods are similar in many aspects: They identify, detail and
document NFR. QA are the starting point for a more detailed analysis of the NFR. An
NFR describes the quality to be achieved in a specific project and is an instantiation
of a QA. Both methods support a systematic detailing of the NFR using clearly
defined concepts and are supported by a notation with tree structure. The objective of
both methods is to derive measurable NFR. Usually, the FR are known before the
detailed analysis of the NFR. Both methods aim at producing repeatable results which
are as independent of individual knowledge and creativity of the stakeholders as
possible. Therefore, they want to be understandable even for non-technical
stakeholders, guide the stakeholder by a process, and support the reuse of knowledge
by checklists and templates. Both methods aim at finding complete NFR, but focusing
on the most important ones. Although both methods have these same goals, their
differences lead to different results. It is partly possible to integrate characteristics of
one method to the other to profit from additional benefit. But we also found that there
are characteristics which contradict and can not be realized in the same method.

In a next step, we want to study the combined and improved methods. We want to
perform a cost-benefit analysis, whether the predicted benefit can be realized and if
so, with how much additional investment. Furthermore, there might appear some side-
effects by the improvements to the methods. In addition, further NFR methods could
be analogously considered for integration.

Acknowledgments. We thank Barbara Paech for the fruitful discussions and many
helpful comments.

References

1. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis.
15th Annual Computer Security Applications Conference, pp. 55–56 (1999)

2. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. TOOLS
Pacific 2000, pp. 120–131 (2000)

3. Sindre, G., Opdahl, A.L.: Templates for Misuse Case Description. REFSQ - International
Workshop on Requirements Engineering – Foundation for Software Quality, pp. 125–136
(2001)

4. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Boston, MA (2000)

5. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings 5th International Symposium on Requirements Engineering, pp. 249–263
(2001)

6. Herrmann, A., Paech, B.: Quality Misuse. REFSQ – International Workshop on
Requirements Engineering – Foundation for Software Quality (2005)

7. Kerkow, D., Doerr, J., Paech, B., Olsson, T., Koenig, T.: Elicitation and Documentation of
Non-functional Requirements for Sociotechnical Systems. In: Maté, Silva (ed.)
Requirements Engineering for Sociotechnical Systems, Idea Group, Inc. (2004)

8. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-Functional Requirements in
Industry - Three Case Studies Adopting an Experience-based NFR Method. In:
Proceedings 13th IEEE International Conference on Requirements Engineering, pp. 373–
384 (2005)

334 A. Herrmann, D. Kerkow, and J. Doerr

9. Diallo, M.H., Romero-Mariona, J., Sim, S.E., Richardson, D.J.: A Comparative Evaluation
of Three Approaches to Specifying Security Requirements. REFSQ - International
Workshop on Requirements Engineering – Foundation for Software Quality (2006)

10. Al-Subaie, H.S.F., Maibaum, T.S.E.: Evaluating the Effectiveness of a Goal-Oriented
Requirements Engineering Method. Fourth International Workshop on Comparative
Evaluation in Requirements Engineering (CERE), in conjunction with the International
Conference on Requirements Engineering (2006)

11. Paech, B., Kerkow, D.: Non-functional requirements engineering – quality is essential.
REFSQ - International Workshop on Requirements Engineering – Foundation for
Software Quality, pp. 237–250 (2004)

12. Bohm, D.: Der Dialog. Das offene Gespräch am Ende der Diskussionen. Stuttgart, Klett-
Cotta (1998)

13. Bohm, D., Factor, D., Garrett, P.: Dialogue - A proposal (1991) [December 29th 2006]
http://www.david-bohm.net/dialogue/dialogue_proposal.html

14. Doerr, J., Kerkow, D., von Knethen, A., Paech, B.: Eliciting Efficiency Requirements with
Use Cases. REFSQ - International Workshop on Requirements Engineering – Foundation
for Software Quality, pp. 23–32 (2003)

15. ISO 9126: International Standard ISO/IEC 9126. Information technology – Software
product evaluation – Quality characteristics and guidelines for their use.

16. Herrmann, A., Paech, B., Plaza, D.: ICRAD: An Integrated Process for Requirements
Conflict Solution and Architectural Design. IJSEKE (International Journal of Software
Engineering and Knowledge Engineering) 16(6) (To appear) (2006)

17. Cysneiros, L.M., Yu, E., Leite, J.C.S.P.: Cataloguing Non-Functional Requirements as
Softgoal Networks. In: Proceedings of Requirements Engineering for Adaptable
Architectures, 11th International Requirements Engineering Conference, pp. 13–20 (2003)

18. Sindre, G., Firesmith, D.G., Opdahl, A.L.: A Reuse Based Approach to Determining
Security Requirements. REFSQ - International Workshop on Requirements Engineering –
Foundation for Software Quality (2003)

19. Firesmith, D.G.: Specifying Reusable Security Requirements. Journal of Object
Technology 3(1), 61–75 (2004)

20. Ruhe, G., Bomarius, F.: Learning Software Organizations. Springer, Heidelberg (2000)
21. Houdek, F.: Software quality improvement by using an experience factory. In: Dumke, R.,

Lehner, F., Abran, A. (eds.) Software Metrics–Research and Practice in Software
Measurement, Deutscher Universitätsverlag, pp. 167–182. Springer, Heidelberg (1997)

22. Schank, R.C., Abelson, R.P.: Knowledge and Memory: The Real Story. Wyer, Jr. R.S.
(ed.) Knowledge and Memory: The Real Story. Hillsdale, NJ. Lawrence Erlbaum
Associates, pp. 1–85 (1995)

23. Cysneiros, L.N., Leite, J.C.S.P: Driving Non-Functional Requirements to Use Cases and
Scenarios. XV Brazilian Symposium on Software Engineering (2001)

24. Boehm, B., Rombach, H.D., Zelkowitz, M.V. (eds.): Foundations of Empirical Software
Engineering: The Legacy of Victor R. Basili. Springer, Heidelberg (2005)

25. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based
Software Engineering. Springer, Heidelberg (2005)

26. Cockton, G.: From quality in use to value in the world, CHI ’04 extended abstracts on
Human factors in computing systems. Vienna, Austria (2004)

27. Cockton, G.: Value-centred HCI. In: NordiCHI ’04. Proceedings of the Third Nordic
Conference on Human-Computer interaction, Tampere, Finland, October 23–27, 2004,
vol. 82, pp. 149–160. ACM Press, New York (2004)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 335 – 340, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining Reference Models for Modelling Qualities:
How Requirements Engineering Techniques Can Help∗

Thomas Rinke and Thorsten Weyer

University of Duisburg Essen, Software Systems Engineering
Schuetzenbahn 70, 45117 Essen, Germany

{thomas.rinke,thorsten.weyer}@sse.uni-due.de

Abstract. The acceptance of a software system by its users crucially depends
on the system’s ability to meet its quality requirements. In this context, the rele-
vant quality factors as well as their importance differ between domains,
between organizations, and even between development projects within an or-
ganization. The UML QoS-Profile proposes a flexible framework for modelling
quality requirements with the UML. However, the QoS-Profile does not offer
guidelines on how to derive relevant quality factors that can be used for model-
ling quality requirements with the UML. Even though reference modelling
techniques (e.g. domain engineering) provide an appropriate solution if suffi-
cient resources are available – they lack in scalability if this is not the case. In
this position paper we sketch a scalable approach for defining QoS reference
models that is based on well-established requirements engineering techniques.

Keywords: quality requirements, reference models, UML, quality models.

1 Introduction

Even if a system fulfils its functional requirements, it will usually be worthless to its
users if it does not meet its quality requirements; e.g., with respect to the quality fac-
tors performance or reliability (cf. e.g. [13]). Taking quality requirements into account
during the development process, therefore, is a crucial success factor for software
systems. Since more and more software development projects are model-based and
requirements models (e.g. Statecharts, Data Flow Diagrams) traditionally focused on
functional aspects of the system under development, the need to express quality re-
quirements together with functional requirements in requirements models arises.

The UML has become a widely accepted language for modelling structural and be-
havioural aspects of a system. However, possibilities to express quality requirements
with standard UML are very limited. Thus, extensions to the UML have been pro-
posed for modelling quality requirements; e.g. the UML profiles presented in [2], [9],
[11] can be used to model a fixed set of quality factors, like performance.

Yet, the relevant types of quality factors as well as their importance vary between
domains, between organizations, and even between development projects of one

∗ This work was partially funded by the German Federal Ministry of Education and Research

(BMBF) under grant 01-IS-E09-B (ranTEST) and grant 01-IS-F06-D (REMsES).

336 T. Rinke and T. Weyer

organization (cf. [5]). As a consequence, no fixed set of quality factors and concern-
ing modelling constructs will meet the different requirements. As a solution, the UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms [12] (QoS-Profile) introduces a general framework for the specification
of quality requirements. Within this framework, QoS reference models are created as
intermediate artefacts that define the relevant quality factors for a domain, an organi-
zation or a specific project. These factors are then employed for documenting the
actual quality requirements within UML models. Thus, an organization can tailor the
QoS quality reference models to its specific needs.

The process of creating QoS quality reference models, like any other analysis proc-
esses, requires experience and knowledge of relevant quality factors of the domain
(cf. [12]). Although the QoS-Profile specification includes a catalogue of generic
quality factors, these have to be refined for the specific context. Unfortunately, neither
the specification of the QoS-Profile [12], nor the literature provides guidance on how
to define or refine the relevant quality factors.

In our view, the definition of specific QoS quality reference models has large simi-
larities with the preparation of a requirements specification. Thus, we propose using
established requirements engineering techniques (e.g. context analysis, goals and
scenarios) to guide the development of a specific QoS quality reference model.

2 Modelling Quality Requirements with the UML QoS-Profile

The QoS-Profile provides a general framework for modelling quality requirements by
introducing stereotypes and corresponding attributes. A class stereotyped as
QoSCharacteristic (cf. Figure 1) represents a quality factor (as defined in 4), i.e. it
represents a quantifiable characteristic of the software [12]. An attribute of a Qo-
SCharacteristic is stereotyped as QoSDimension and is used for quantifying the
QoSCharacteristic. A QoSDimension is comparable to a lower level quality factor or
a quality attribute (as defined in [4]).

e.g. organization-specific e.g. project-specific

Quality Catalogue
(proposed by the QoS-Profile)

«QoSCharacteristic»
latency4SECompany

«QoSDimension»
maximumLatency: real
{unit = MaxLatUnit
direction = increasing
statisticalQualifier=maximum}

MaxLatUnit: string

«bind»

<MaxLatUnit→“msec“>

Process
Search Requests

«QoSCharacteristic»
latency4SearchEngine

Initialize
Search Engine

System Model
(activity diagram with qualities)

...

«QoSCharacteristic»
::QoSCatalog::Performance::

Latency::latency

«QoSDimension»
+ minimumLatency: real
{unit=MinLatUnit, …}
«QoSDimension»
+ maximumLatency: real
{unit=MinLatUnit, …}
…

MinLatUnit: string,
MaxLatUnit: string, …

QoS - Quality Reference Model

refers to

annotated quality

«QoSContract»
{context latency4SearchEngine
inv: maximumLatency <= 500.0}

Fig. 1. Modeling Quality Requirements with the QoS-Profile

Modelling quality requirements according to the QoS-Profile can be divided into the
creation of three distinct models (cf. [1], [12]) and is illustrated in Figure 1 with an ex-
ample of a fictitious company developing search engines. First, an organization-specific
quality reference model (a set of relevant QoSCharacteristics and QoSDimensions) is

 Defining Reference Models for Modelling Qualities 337

defined, for which definitions from the quality catalogue defined in the QoS-Profile can
be reused. The example in Figure 1 shows the organization-specific QoSCharacteristic

latency4SEcompany, which is based on the latency characteristic defined in the QoS-
Profile. Second, a project-specific quality model is derived by binding parameters in the
organization-specific model. In the example, the parameter MaxLatUnit is bound to mil-
liseconds resulting in a project-specific QoSCharacteristic latency4SearchEngine. Third,
quality requirements are modelled in system models (UML diagrams) by defining OCL
constraints stereotyped as QoSContract that reference the definitions in the project-
specific quality reference model. The example shows the documentation of a quality
requirement stating that processing search requests has to be completed within 500 milli-
seconds.

As it has been motivated above, the separation into these models allows organiza-
tions to define quality requirements according to their specific situation. This is possi-
ble without changing the language definition or language extension of UML, as it is
required when defining new profiles. However, it remains open how to perform the
definition of adequate QoS quality reference models. The remainder of this paper will
present our solution to this challenge.

3 The Definition of a Quality Reference Model as RE-Process

We consider the process of defining QoSCharacteristics and QoSDimensions (i.e. the
quality reference model according to the QoS-Profile) as a special kind of a require-
ments engineering process. In course of this specific requirements engineering proc-
ess, it has to be elicited, documented, negotiated and validated what types of quality
requirements should be stated within UML models. In the following we respectively
describe our view on the requirements engineering process (RE-Process), which we
then adapt for defining specific QoS quality reference models (QM-RE-Process).

3.1 The Three Dimensions of Requirements Engineering

RE-process: Jarke and Pohl [7], [13] define three dimensions of the RE-process:
specification, representation and agreement. Along the specification dimension the
RE-process tries to achieve a complete specification, along the agreement dimension
it strives for a common view among all stakeholders, and along the representation
dimension it desires conformance to defined documentation rules.

QM-RE-process: Rather than dealing with requirements for the system under devel-
opment, the QM-RE-process deals with requirements for the annotation of quality
requirements, which results in a quality reference model rather than a system specifi-
cation. Consequently, the specification dimension aims at a complete definition of
required QoSCharacteristics and QoSDimensions. The agreement dimension strives
for a consolidated view among all relevant stakeholders within the definition process.
In order to achieve progress in the representation dimension, final results should be
documented according to the QoS-Profile.

The QM-RE-process moves along the three dimensions just like the RE-process
does. Existing QoSCharacteristics and QoSDimensions might be modified or dis-
carded and new QoSCharacteristics and QoSDimension might be found. In parallel,

338 T. Rinke and T. Weyer

when the quality reference model is modified, the agreement on the resulting model
can decline and negotiation helps to achieve a common view among stakeholders in
the end. Rules for representing quality models are defined in the QoS-Profile. A
statement like “I need to know the allowed response time for a search request” can be
the reason for the specification of the QoSDimensions latency (cf. Figure 1), which
takes the process a step further along the representation dimension.

3.2 The Four Worlds for Structuring the Context

RE-process: In the RE-process, the system under development is understood as resid-
ing in a context that consists of context entities (stakeholders, documents and other
systems). In order to support a systematic analysis, the context can be structured by
four worlds (cf. [10], [7]): subject world, usage world, system world, and develop-
ment world. The subject world comprises context entities that are represented in the
system. The usage world consists of those context entities that are associated with the
subsequent usage of the system. The system world is characterized by the system
itself and its technical environment. The development world comprises context enti-
ties that are involved in the development of the system. Experience has shown that
considering the four worlds during the RE-process results in better requirements with
respect to completeness and correctness (cf. [13]).

QM-RE-process: Taken to the quality model, the subject world consists of the rele-
vant quality factors. The usage world describes how the quality model is used, e.g. to
annotate UML models, and especially who uses the quality model. Software tools that
are used to create or work on annotated UML models can be regarded as part of the
system world. The development world comprises everything that plays a part during
the definition of QoSCharacteristics and QoSDimensions, e.g., people, documents,
and tools. Examples are provided in Section 3.3.

3.3 The Activities of the RE-Process

RE-process: Three activities drive the RE-process along the three dimensions: elicita-
tion leads to progress along the specification dimension, documentation leads to pro-
gress along the representation dimension, and negotiation leads to progress along the
agreement dimension. These activities are supported by validation and management,
which play an important role in all three activities and thus dimensions.

QM-RE-process: The above five activities of the RE-process can be transferred to the
definition of a quality model. Due to space limitations, we only describe the results of
this transfer for the elicitation activity and provide examples with respect to a possible
instantiation in the QM-RE-Process.

Elicitation should start with a context analysis. The result may be seen as a refined
version of the aspects presented in section 3.2. The context analysis provides means
for considering all relevant stakeholders and the constraints that are present in the
four worlds. Software tools (system world), the quality manager (development world),
the QoS catalogue of the QoS-Profile [12] or the catalogue provided by ISO/IEC 9126
6 (subject world), and the developer or tester (usage world) might be identified in
these four worlds with respect to performance requirements.

 Defining Reference Models for Modelling Qualities 339

QoS - Quality Reference Model

«QoSCharacteristic»
latency4SearchEngine

«QoSDimension»
+ maximumLatency: real

Step 1:
Analyse context
and significance

Step 2:
Elicit goals from
relevant context entities

Step 3:
Gather scenarios and
scenario analysis

Step 4:
Derive reference model constructs
(e.g. QoSDimensions)

do
performance

testing

Tester

«QoSCharacteristic»
load4SearchEngine

«QoSDimension»
+ numberOfSimultaneousRequests: int

relevant environment (context)

significance levels

stakeholder document
quality-related
scenario content

goal

Scenario

… then I test the
response time
for three or four
different
system loads
…

Context entities: system

QM

usage
world

subject
world

system world

development
world

Fig. 2. Goal- and scenario-based derivation of Quality Reference Models

Scenario-based approaches (e.g. [3], [8]) have proven to be useful in requirements
engineering. Therefore we propose to use a goal- and scenario-based approach to
elicit the information necessary to derive a quality reference model, when all context
entities (i.e. stakeholders, documents and systems) have been identified and rated (e.g.
by allocating a level of significance). Depending on the available resources, the ap-
proach can consider more (e.g. also context entities which have a low level of signifi-
cance) or less (e.g. only context entities with have a high level significance) context
entities in the subsequent steps. The overall elicitation approach, which is composed
of four basic steps, is illustrated in the following example (see Figure 2).

− Step 1: During the context and significance analysis the tester has been identified
as a relevant stakeholder in the usage world.

− Step 2: Within an elicitation activity (e.g. questionnaire, interview, or workshop)
the tester states the goal of doing a performance testing.

− Step 3: To illustrate the goal, the tester then describes a scenario that depicts
her/his typical activities during performance testing. The tester mentions that
she/he has to perform tests with different system loads represented by different
number or users that simultaneously use the search engine.

− Step 4: The analysis of the scenario confirms the need for the latency characteristic.
Additionally, the need to express loads can be identified and expressed in a Qo-
SCharacteristic load with the QoSDimension numberOfSimultaneousRequests.
This represents an extension to the quality reference model from Figure 1 (details
of the QoSDimensions are omitted).

4 Conclusion and Future Work

The QoS-Profile [12] defines generic language constructs that are helpful for express-
ing quality requirements in UML models, but gives no methodological guidance on its
application. Especially, the definition of quality reference models in terms of Qo-
SCharacteristics (general quality factors) and QoSDimensions (measurable quality
attributes) is crucial for successfully applying this profile. In this position paper, we
have sketched how the definition of QoS quality reference models can benefit from
using adapted requirements engineering techniques.

340 T. Rinke and T. Weyer

This approach will help organizations to take relevant stakeholders (e.g. a tester),
documents (e.g. a safety standard) and tools (e.g. CASE-Tool) into account and to
define quality reference models that match their specific needs. Additionally the rat-
ing of context entities by allocating significance levels enables an early scalability of
this approach. Our experience shows that organizations strive for methodological
support with the application of the QoS-Profile, especially during the definition of a
quality reference model. Hence, we plan to conduct empirical studies to evaluate this
approach together with industry partners to gain further insights into its benefits as
well as its limitations.

Acknowledgments. We thank Klaus Pohl and Andreas Metzger for the helpful rema-
rks on an early draft of this paper.

References

1. Bernardi, S., Petriu, D.C.: Comparing two UML Profiles for Non-functional Requirements
Annotations: the SPT and QoS Profiles. In: Specification and Validation of UML models
for Real Time and Embedded Systems (SVERTS) (2004)

2. Cortellessa, V., Pompei, A.: Towards a UML profile for QoS: a contribution in the reli-
ability domain. In: Proc. of the 4th Intl. Workshop on Software and Performance
(WOSP’04), pp. 197–206 (2004)

3. Dardenne, A.: On the Use of Scenarios in Requirements Acquisition. Technical Report,
Department of Computer and Information Science, University of Oregon, Eugene (1993)

4. Institute of Electrical and Electronics Engineers (IEEE): IEEE Standard Glossary of Soft-
ware Engineering Terminology. IEEE Std. 610(12) (1990)

5. Institute of Electrical and Electronics Engineers (IEEE): Recommended Practice for Soft-
ware Requirements Specifications. IEEE Std. 830 (1998)

6. International Organization for Standardization (ISO): Software engineering – Product
quality – Part 1: Quality model. ISO/IEC 9126-1:2001 (2001)

7. Jarke, M., Pohl, K.: Establishing Visions in Context - Towards a Model of Requirements
Processes. In: Proc. of the 14th Intl. Conf. on Information Systems, pp. 23–34 (1993)

8. van Lamsweerde, A., Willemet, L.: Inferring Declarative Requirements Specifications
from Operational Scenarios. IEEE Transactions on Software Engineering 24(12)

9. de Miguel, M., Lambolais, T., Hannouz, M., Betgé-Bretzetz, S., Piekarec, S.: UML Exten-
sions for the Specification and Evaluation of Latency Constraints in Architectural Models.
In: Proc. of the Intl. Workshop on Software and Performance, pp. 83–88 (2000)

10. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos – Representing Knowledge
about Information Systems. ACM Transactions on Information Systems, vol. 8(4), pp.
325–362

11. Object Management Group: UML Profile for Schedulability, Performance, and Time
Specification. Version 1.1, formal/05-01-02 (2005)

12. Object Management Group: UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms. Version 1.0, formal/06-05-02 (2006)

13. Pohl, K.: The Three Dimensions of Requirements Engineering. In: Proceedings of the 5th
Conference on Advanced Information Systems Engineering, pp. 275–292 (1993)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 341–354, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrating an Improvement Model of Handling
Capacity Requirements with the OpenUP/Basic Process

Andreas Borg1, Mikael Patel2, and Kristian Sandahl1

1 Dept. of Computer and Information Science, Linköping University, Sweden
{andbo,krisa}@ida.liu.se
2 Ericsson AB, Linköping, Sweden
mikael.patel@ericsson.com

Abstract. Contemporary software processes and modeling languages have a
strong focus on Functional Requirements (FRs), whereas information of Non-
Functional Requirements (NFRs) are managed with text-based documentation
and individual skills of the personnel. In order to get a better understanding of
how capacity requirements are handled, we carried out an interview series with
various branches of Ericsson. The analysis of this material revealed 18 Capacity
Sub-Processes (CSPs) that need to be attended to create a capacity-oriented de-
velopment. In this paper we describe all these sub-processes and their mapping
into an extension of the OpenUP/Basic software process. Such an extension will
support a process engineer in realizing the sub-processes, and has at the same
time shown that there are no internal inconsistencies of the CSPs. The extension
provides a context for continued research in using UML to support negotiation
between requirements and existing design.

Keywords: Capacity Requirements, OpenUP/Basic, Method Plug-in, Eclipse
Process Framework, Process Improvement.

1 Introduction

This paper accounts for the design of a method plug-in for the Eclipse Process
Framework (EPF) [4] which realizes the improvements for the specification, usage,
and management of capacity requirements. In a previously reported case study [1] re-
garding good practice in the management of capacity requirements in large telecom-
munication systems at Ericsson we found that:

• Capacity requirements are well known at a high level of abstraction expressed in
terms of measures such as the number of mobile subscribers in a radio network.

• Capacity requirements are also known in the long-term range of about 10 years.
• There exists much written documentation and research about capacity. In a visit at

one site of Ericsson in Sweden we found over 1000 pages of information of “char-
acteristics” that comprises capacity.

In spite of this there are some serious complications in the daily work with capacity
requirements, especially in a model-based design environment with UML-2 [9]:

342 A. Borg, M. Patel, and K. Sandahl

• It is generally very hard to refine the requirements for a single release and for a
single design office. A mobile communication radio network is a complex product
where the developing organization is made up of a hierarchy in up to five levels:
network, node, subsystem, application and function.

• NFRs are often cross-cutting both use-cases and the classes, which means that
many system elements give their contribution to the overall capacity. Our original
hypothesis for this work is that annotated UML-models, undergoing semi-
automated transformation between different levels of abstraction and diagrams, can
maintain the capacity requirement information.

• Capacity requirements are also cross-cutting various disciplines, such as elicitation,
design and testing. This means that capacity requirements have to be negotiated
with what can be realistically implemented and tested in the current release. The
requirements need to be testable with different traffic modes, such as peak-hours,
week-end, night, at different system levels.

• Since the process model builds on the very use-case oriented Rational Unified
Process (RUP) [6], capacity requirements are not always visible in decision and
progress tracking. The textual knowledge available in supplementary documents of
RUP is thus not necessarily at hand when architectural decisions are made.

The research approach taken in this collaboration between Ericsson AB and
Linköping University has been to conduct an interview series amongst different sites
of Ericsson in order to achieve a good practice knowledge base. Initially, we tried to
focus the investigation on the usage of models of capacity, but the informants soon
convinced us of the need to study capacity requirements in a larger context spanning
several disciplines. The final analysis of the good practice ended up with 18 different
Capacity Sub-Process Areas (CSPs) which all have to be understood and at least par-
tially implemented before more technical research is meaningful.

In order to provide a sensible description of our process areas we set out to create a
method plug-in in EPF as an extension of the OpenUP/Basic [8] software process.
The receiver of our results is a process engineer, who can make final adaptation ac-
cording to the way of working of the developing unit at Ericsson or any other com-
pany. The reasons for this approach are:

• EPF is an open and free variant of Rational Model Composer (RMC), which is
used in Ericsson today.

• OpenUP/Basic is a minimal and extensible process. Our personal experience shows
that it is easier to extend than modify this process.

• EPF and also RMC allow process descriptions that can be reconfigured and com-
posed. This eases the integration of several specialized plug-ins. Currently many
different tools, including MS Word, are used to document processes at Ericsson.

• Tool vendors, such as Telelogic, are making Tool Mentor plug-ins in EPF to better
integrate process steps and tool usage. Other vendors, such as Borland, are in their
second release of tools built on the Eclipse platform. It is reasonable to believe that
Eclipse-built tools for code and processes will play an important role in industry
for the nearest future. Processes and tools are woven together with vendor-neutral
basic technology using open-source libraries, such as OpenUP/Basic.

• In research collaboration as ours, other universities and companies can join com-
mon interests and publication of results becomes meaningful for a broad audience.

 Integrating an Improvement Model of Handling Capacity Requirements 343

We believe that this approach is novel, even though there is related work regarding de-
velopment with respect to capacity/performance (e.g., [10]) and the representation of
NFRs in UML (e.g., [2]). We have combined ideas of publishing experience-based
process areas for requirements engineering (the most well-known example is [11]) and
work on using process improvement areas as a basis for process extensions, e.g., [7].

The remainder of this paper is organized as follows. Section 2 will account for the
research context and methods used. Section 3 will go through all CSPs with their ba-
sic definition and the changes of OpenUP/Basic. Section 4 contains a short discussion
followed by conclusions in Section 5.

2 Background

2.1 Context Description

Capacity in an Ericsson context can be briefly described as the service degree of a
mobile telecommunication system, e.g., how many subscribers that can be served si-
multaneously (compare to description in [3], p. 317). Capacity emphasizes that maxi-
mizing throughput, i.e., transactions per second, is of higher interest than minimizing
response time. Response time can be viewed as an upper limit for what is acceptable
for an isolated transaction, and maximizing capacity is then all about maximizing the
number of transactions within the response time limit.

A true challenge is to provide systems with the lowest cost per subscriber and
transaction, but also with the highest availability, 24/7 systems with 99.999+ % up-
time, and at the same time allow for scalability, i.e., the network size and the number
of subscribers to grow. The circumstance that the delivered systems must meet the
needs of today’s tele and data communication networks as well as tomorrow’s means
that more capacity is always needed, both in terms of bandwidth and transactions per
second. Thus, improving capacity is an issue during the entire life-cycle of the system
and with each development project, and it must be addressed in all development
phases. Generally, the improved capacity of a new increment is the combination of
better software but also new and faster hardware.

Telecommunication networks consist of several interacting systems, e.g., Radio
Network Access, Roaming and Routing Support, and Power and Bandwidth Control.
For 3G they are Radio Base Station, Radio Network Controller, and Media GateWay.
Within Ericsson system requirements are refined to several sub systems, nodes, which
contain multiple design units respectively. Requirements are generally modeled with
use cases and RUP [6] is the overall development process. The focus is on partition-
ing of functionality, interaction between objects, and behavior reuse.

2.2 Methodology Issues

The CSPs are empirically grounded in the sense that they are the result of an analysis
from an interview series on capacity [1]. The primary motivation of conducting the
interview series was to understand how capacity requirements and related issues are
tackled, in order to further improve software development with respect to capacity.
The series involved 17 practitioners at 4 different Ericsson sites in Sweden, and the

344 A. Borg, M. Patel, and K. Sandahl

analysis of the interview material resulted in 18 CSPs that need to be understood and
at least partially implemented before more technical research is meaningful.

These results, the CSPs, have now been formulated as a method plug-in1 in EPF
and OpenUP/Basic. This was done in a series of workshops where the authors of this
article has created solutions for discussion and then decided upon a common view.
The process we followed was that for each CSP, we identified which roles that are in-
volved, and for each role we reviewed the associated tasks and artifacts. The results
are described in Section 3. From a research process perspective this means that we
package the knowledge gained in the empirical investigation and make it available in
a form (a method plug-in in EPF) that can be easily adapted to the current practice
(RUP/RMC) of the development organization of Ericsson. This will also provide a
context for our continued, also technically oriented research.

As a first step towards validation of our results we have revisited one of the or-
ganizations that participated in the interview series. Both the CSPs and the capacity
method plug-in were considered relevant and correct. However, stronger support for
how to combine the CSPs with assessment of the organization’s current situation and
most needed improvement actions was requested in order to maximize usefulness.

Our general research method is empirical in the sense that we plan to evaluate costs
and benefits of CSPs and future technical results. However, in the instrumentation
phase it is important to construct artifacts for future use that are grounded from differ-
ent perspectives. Using the words from proponents of Multi-Grounded Theory (MTG)
[5], we claim that the CSPs are empirically grounded and that this paper contributes
internal grounding, and some theoretical grounding. Internal grounding means that we
translate our findings to a notation clearly displaying the purpose of the CSPs and that
the knowledge we have is coherent, complete and consistent. Theoretical ground
means that the research object is compared to already published theory in order to
avoid re-inventing concepts and ease comparison and abstraction. In this paper the
theoretical base is mainly represented by the OpenUP/basic process.

3 Capacity Sub-process Areas and OpenUP/Basic Extensions

3.1 Overview

The analysis showed that four capacity sub-process areas (CSPAs), each containing
several CSPs, need to be considered when developing for capacity.

1. Verification. Capacity requirements are generally known at the system level and
the application level. The primary concern in order to deliver the right capacity is
then to verify that the requirements have been satisfied in the system to be released
(or to describe needed improvements). At this stage the system can be considered
from a black box perspective to be loaded with test cases.

2. Measurement and tuning. This means to regard the system from a white box per-
spective and to observe its internal structure in order to improve capacity by the
means of tuning. E.g. hardware resources can be optimized in order to improve

1 The most recent version can be downloaded from http://www.ida.liu.se/~andbo/resources/

 Integrating an Improvement Model of Handling Capacity Requirements 345

capacity without code modification, but we also mean to gather further information
and tune hotspots (profiling, recompile with compiler optimization, relink code to
achieve better memory access patterns, recode hotspots algorithms, and so on).

3. Specification. Specification and refinement of capacity requirements to detailed
design specification and further to implementation. Requires detailed knowledge of
the system’s internal structure.

4. Estimation and prediction. Improving the ability to estimate and predict system
capacity. Requires good practices from previous sub-process areas and of the exe-
cution environment measurements (such as cost of operating system calls, memory
profile/access time, etc).

In each of the sub-sequent sections we will describe the CSPs and the added tasks and
artifacts necessary for OpenUP/Basic, version 0.9 [8]. The practical introduction of
the processes follows the maturity model approach in three steps:

1. For each CSP, assess whether it is in use, is partially used, or not used at all. If a
CSP is in use, integrate the elements from our plug-in into the standard process.

2. For each of the CSPAs, determine the next CSP. That can either be to fully imple-
ment a partially used CSP or to take up a CSP that is not used at all. For guidance,
the order of presentation of CSPs within each CSPA is the natural order of intro-
duction from our judgment.

3. Depending on where in the life-cycle the product is, select the topmost CSP(s) for
introduction. For instance, a new product development organization is more con-
cerned with prediction, whereas a mature product may focus on verification. Iterate
this improvement process.

3.2 Verification

3.2.1 Capacity Requirements Defined, Communicated, and Understood
Valid system level capacity requirements are fundamental for system verification and
improvement. Quantifying capacity requirements verifiably means that the number of
simultaneous subscribers, packages per second etc. must be clearly stated in an under-
standable way.

This was practiced at all visited sites. The affected tasks and artifacts are shown in
the table below. The major change is the specification of operational profiles used in
testing. Some of this information will go into the Supporting Requirements, but much
can be displayed in the annotation of the use cases.

Role Task Change Comment
Analyst Estimate opera-

tional profile
New The expected frequency of use has to be noted in the Use

Case artifact. This has to be done for several operational
modes.

Artifact Change Comment
Supporting Requirements Change Add a capacity subsection.
Use Case Change Annotate use cases with frequency of use, maybe in various

modes.

346 A. Borg, M. Patel, and K. Sandahl

3.2.2 Capacity Test Cases and Test Environment Defined, Implemented and
Executed Frequently

Valid capacity requirements need to be transformed into valid test cases that are fre-
quently executed in a well suited test environment. The key word is “frequently”
since recurring measurements enables early discovery of capacity problems, which
several interviewees of the original interview series [1] considered essential in order
to successfully develop for capacity. It is important to notice, though, that this does
not replace the need of good requirements and design work, since measurements
alone can not add wanted capacity to the system.

This has reached some parts of Ericsson and the affected tasks and artifacts are
mostly concerning the testing environment.

Role Task Change Comment
Tester Define Test

Environment
New Capacity tests imply a lot of work with an environment of

simulators, test equipment, test suite selection and data col-
lection.

Artifact Change Comment
Test Environ-
ment Specifi-
cation

New The test environment is a complex system that needs to be thoroughly
specified and tested itself. Without a good specification of the test envi-
ronment it is impossible to assess how well tests correspond to real use.

 Test Case Change The conditions for each test case have to be further elaborated, and
traced to the test environment.

 Test Report New Summarizes the Test Log and gives a statement of the quality of the
tested unit.

3.2.3 Multiple Load Scenarios Executed
The conditions under which a system will operate will vary. To cover expected (and
unexpected) variations in load conditions test cases need to be constructed and
executed for several traffic mixes. This is the best way to verify that the overall
system capacity is good enough, but there are reasons to execute separate use cases
and scenarios in isolation as well. By doing that the parts of the system that are
associated to a specific use case are stressed heavier, and this means that hotspots and
bottlenecks are easier to identify. This is also a good way of taking advantage of the
use case focus; use cases are always available in Ericsson development and are a vital
part of RUP and OpenUP/Basic.

A good example of the deployment of multiple load scenarios was observed in the
development of a generic platform that serves several applications. The affected tasks
and artifacts are the same as in the previous process area, in Section 3.2.2. Manage-
ment of load scenarios is confounded with the creation of the test environment.

3.2.4 Capacity Test Results Part of Project Reporting
Introducing capacity test reporting in standard development procedures (per shipment,
delivery, build, etc.) force focus to capacity testing and enables the possibility to learn
continuously from earlier testing experiences. This requires good understanding for
several aspects of capacity development and was not yet applied within Ericsson at
the time of the interview series [1]. However, the only development organization that
have been revisited after the interview series have recently customized their process
to cover capacity explicitly in their project reporting.

 Integrating an Improvement Model of Handling Capacity Requirements 347

Role Task Change Comment
Project Manager Assess results Change Collect capacity test results from the Test Report.

Artifact Change Comment
Status Assessment Change Include capacity test results.

3.3 Measurement and Tuning

3.3.1 Processing Load Measurement
Measuring processing load on various levels (processor, board, rack, system) is
essential to be able to distribute processing as close to optimal as possible.
Measurements can be used to tune the system so that processing is distributed as
evenly as possible among processes, threads, and load modules, and further on to
distribution among several processors. It might, for instance, occur that some
processors are heavily loaded whereas other processors have plenty of capacity
available. This means that the entire system will act as if it is heavily loaded when the
average load per processor is low. Thus, measuring load helps establishing problems
with distribution of processing and enables with that the possibility of significant
capacity improvement by changes in processing distribution. As shown below, this is
completely new to OpenUP/Basic.

Role Task Change Comment
Tester
Developer

Measure processing load
and resource utilization

New Check the distribution of load on different
levels, apply control to make it as even as
possible.

Artifact Change Comment
Test Report Change Include load and resource utilization test results.

3.3.2 General Resource Measurement
The reasoning from the previous capability can―and should―be extended to
embrace other resources as well: The utilization of memory, I/O resources, cache,
channels, etc. Examples of the latter are how long it takes for a certain message to
propagate through the system and how long time traffic is delayed in queuing. We
judged that it is sensible to measure both processing load and general resources at the
same time. Thus, the change to OpenUP/Basic is the same as in the table above,
Section 3.3.1.

3.3.3 Use Profiling to Identify and Measure Code Hotspots
Profiling is a well-known and powerful way of analyzing software systems at code
level. The key issue is to find out where in the code that most of the time is spent so
that bottlenecks can be avoided. There are two approaches to profiling:

1. Instrumentation means that the system is instrumented with probes that collect pro-
filing data while the application is running. Thus, the binary file is modified and it
is essential that instrumentation add as little overhead as possible.

2. Sampling. Is performed on the target environment and aggregates statistical sam-
ples that describe application performance and indicate bottlenecks.

The OpenUP/Basic extension introduces System Tuning as a new activity.

348 A. Borg, M. Patel, and K. Sandahl

Role Task Change Comment
Developer System

Tuning
New Improve system capacity based on input from profiling and

frequently run capacity tests.

Artifact Change Comment
Design Change Needs to be updated with the reaction to capacity tests.
Implementation Change Needs to be updated with the reaction to capacity tests.

3.3.4 Use Measurements to Drive Configuration
The measurements of the utilization of processors and other resources can be used to
create trouble reports or better requirements for the next release, but they can also be
used to reconfigure the current system. The processor load and other resource utilization
figures should drive system configuration of external parameters such as process priori-
ties and how memory is used. Thus, improvement can be made without editing code.

The OpenUP/Basic extension is the same as in Section 3.3.3 above. The source in-
formation for updating configuration is the same.

3.3.5 Use Profiling to Drive Capacity Improvement
Profiling offers the possibility of identifying hotspots and bottlenecks, and that
information indicates where actual changes in code can be considered. It is obvious
that code sections associated to bottlenecks are strong improvement candidates for
forthcoming builds.

3.3.6 Measure Quality of Test Cases
When measurements have been introduced it is also of interest to measure the quality
of the capacity test cases. There are several strategies to apply, but adding code
coverage facilities and possibilities to assess traffic model relevance are probably the
most important. This way the verification process can be verified, and test cases can
be modified to increase the code coverage level if necessary.

Artifact Change Comment
Test Report New Quality factors like code coverage need to be measured and described.

3.3.7 Involve Task Force
The creation of a task force consisting of specialists from various disciplines is a
standard way of dealing with urgent capacity problems (and other urgent problems as
well). However, organizing a task force that analyzes the system and the ongoing
project should be a rule rather than an exception. It is likely to believe that such cross-
functional specialist teams have good chances to have an even greater positive impact
when not brought together to fight fires, but to simply propose improvements.

Role Task Change Comment
Project
Manager

Assess
status

Change If there are severe capacity problems the Project Manager
needs to assign responsibility to a task force of highly compe-
tent personnel.

Artifact Change Comment
Status Assessment Change Needs to contain criteria for when to involve a task force.
Project Plan Change Affected if a task force is involved.

 Integrating an Improvement Model of Handling Capacity Requirements 349

3.4 Specification

3.4.1 Understood Refinement of Capacity Requirements to Design Specification
It is of vital importance that capacity requirements are refined to design specification
and further to implementation in a clearly understood way. Otherwise there is an ob-
vious risk that the most appropriate system architecture and accompanying design al-
ternatives are not chosen. For example, the numbers in the requirement “The radio
network shall support 35000 cells. The maximum number of neighbors per cell is
128.” strongly influence the choice of data structures. Thus, the example illustrates
that the numbers are important design information and that the overall requirements
perspective needs to be supplemented with “low-level” knowledge regarding how to
design for capacity.

Role Task Change Comment
Architect Analyze

Architecture
Requirements

Change Make capacity considerations explicit (e.g. choice of
data structures and execution complexity) based on
overall capacity requirements and the use cases with
annotated usage.

Artifact Change Comment
Architecture Change Needs to be updated with the reaction to capacity tests.

3.4.2 Capacity Budget for Sub Systems and Downwards
If capacity requirements are refined it is generally possible to specify resource
budgets. This can be done by distributing the overall time budget over the sub systems
and the same can be done for each sub system recursively. This kind of thinking was
observed to be widely spread in the development of a generic platform that serves
several applications. However, not primarily for the platform development as such,
but to inform application developers about the capacity “cost” associated to platform
primitives. Delivering primitives with a “capacity price tag” makes it possible for
application developers to perform capacity budget refinement.

Role Task Change Comment
Architect Develop the Architecture Change Should consider the capacity budget.
Architect Demonstrate the Architecture Change Should consider the capacity budget.

Artifact Change Comment
Architecture Change A section describing the capacity budget and its distribution is

required. Sequence diagrams should be included.
Architectural Proof-of-
Concept

Change Evaluation of the capacity budget to provide reasons of re-
distribution.

3.4.3 Augmented Design Model with Refined Capacity Requirements
If capacity requirements have been refined to design specifications and resource budg-
ets have been created it is possible to annotate design models with the specified capac-
ity requirements. Examples are (in terms of UML) to add the number of subscribers in
use case diagrams, time constraints in sequence diagrams, and defined multiplicity in
class diagrams. An example of the latter is “1 to number_of_subscribers” in-
stead of “1 to *”, where number_of_subscribers is directly linked to the cor-
responding attribute in the Use Case model (where the actual number is specified).

350 A. Borg, M. Patel, and K. Sandahl

This is an example of something that is not yet practiced within the company, and
it was also the main objective of the investigation at startup time.

Role Task Change Comment
Developer Design the

Solution
Change The annotated use cases should be refined all the way to

time constraints in sequence diagrams and defined multi-
plicity in class diagrams.

3.4.4 Test Cases Per Sub System Designed, Implemented, and Executed
If capacity requirements are refined and specified according to the above it is also
easier to create good test cases. Naturally, each sub system should be tested but it is
preferable that the sub systems are carefully tested with respect to the node
requirements. The capacity of an executable unit is what really matters to customers.

Role Task Change Comment
Developer Implement Developer Tests Change Tests should consider node requirements.
Developer Run Developer Tests Change Test runs involving node requirements.

3.5 Estimation and Prediction

The CSPs of the estimation and prediction CSP are generally related to the concept of
Software Performance Engineering (SPE) [10]. SPE includes strategies for measure-
ments and how these can be used to predict system performance, and it also suggests
several UML extensions for representing performance.

3.5.1 Measurement of Primitives
The ability to come up with reasonable estimates that can be used for the calculation
of valid predictions of capacity is based primarily on earlier experiences and detailed
knowledge regarding the system in scope. Measurement of system primitives is, for
the sake of estimation and prediction, even more important than the measurements
that have been suggested and described earlier. A typical example is the measuring of
the actual message passing cost within the system so that it can be included in the
calculations.

Role Task Change Comment
Tester Measurement of

Primitives
New The ability to come up with reasonable an estimate of

capacity is based primarily on earlier experience and
detailed knowledge regarding the system in scope.
Testers can measure the cost of e.g. message passing
in the previous iteration to us in calculation.

Developer Design Change Cost of primitives need to be expressed in design arti-
facts for the architect.

Developer Implementation Change Cost of primitives need to be expressed in implemen-
tation artifacts for the architect.

3.5.2 Prediction Model
There are several approaches that can serve as prediction models but all need the
measurement of primitives as required input. At least the following approaches need
to be considered:

 Integrating an Improvement Model of Handling Capacity Requirements 351

1. Spread sheets. Measurements of, e.g., processor load can be combined with meas-
urements of primitives in order to create capacity estimates for various operations
and to model e.g. overall throughput.

2. Using queue theory to calculate network capacity expressed in Erlang.
3. Applying a simulation model (e.g., discrete event simulation on the individual level

and Petri nets for overall throughput) to be able to predict the capacity as virtual
time. Also stress testing tools in order to simulate system behavior when develop-
ing next increment; the tool can be used to deny the system the estimated resources
(e.g., processors and memory) of a new feature to be able to predict capacity.

4. Performing data and/or control flow analysis to be able to predict capacity.
5. Modeling. UML diagrams must not be used for development activities exclusively,

but are well suited for estimation too. Naturally, diagrams created primarily for
prediction purposes can be used in development as well.

Role Task Change Comment
Architect Create Prediction

Model
New The activity to combine capacity estimates to a

prediction model for the system.

Artifact Change Comment
Prediction
Model

New Artifact describing the prediction model according to various options:
spread sheets, queue theory, simulation model, data and control flow
analysis, and UML modeling.

3.5.3 UML Model Extensions
The reason of extended use of UML models in requirements analysis, design, and
implementation is primarily to be able to compute elementary consistency checks on
the models, i.e., to assure that estimated figures fit together. Another option would be
to facilitate the prediction of hotspots that will be paid extra attention to improve
capacity. There are basically three maturity levels when considering capacity
requirements in a modeling context:

1. Being able to model the capacity of the current application release.
2. Being able to model the capacity of the current application release, including the

platform.
3. Being able to model the capacity of multiple releases in an incremental develop-

ment environment.

The diagrams that have been identified as most important to represent capacity are:

1. Use case diagrams. Model the system on a general level in an early phase, which
means that many other diagrams have relations to use case diagrams. Moreover,
use cases are centered on functional requirements and therefore use case diagrams
need to be annotated with NFR (like capacity) information too. The information
that need to be included is size (e.g. the number of subscribers), throughput (e.g.
packets/second), response time, and frequency (how often a use case is executed).

2. Sequence diagrams. The most straightforward way of annotating a sequence dia-
gram is to add the allowed time for specific operations so that they can be used for
refinement of capacity budgets. However, it is important to also model the cost of
message passing. Moreover, the use of sequence diagrams and capacity budgets
tend to concentrate on the performance of individual operations rather than on

352 A. Borg, M. Patel, and K. Sandahl

overall throughput. This means that the modeling should apply asynchronous mes-
sage passing when possible in order to facilitate maximum parallelism.

3. Class diagrams. Much of the capacity critical work has already been done when
class diagrams are created, but there are still important figures to bring into model-
ing. An obvious example is to specify multiplicity in a more precise way, e.g. “1
to number_of_subscribers” instead of “1 to *”. Optimally, num-
ber_of_subscribers is directly linked to the corresponding attribute in the
use case model (where the actual number is specified).

4. State diagrams. Expected user behavior and traffic can be modeled in state ma-
chines in order to identify hotspots, and the operations associated to frequent
transitions normally need to be paid extra attention with respect to capacity. The
diagram can also be transformed and run in a model-checker.

5. Deployment diagrams. Deployment diagrams show the physical structure of hard-
ware as well as software in the system. Even a simple configuration can be
extended to include several valuable measurements that highly influence overall
capacity, e.g. the processing speed and main memory of all machines involved, the
network interface, and the disk I/O if application and database servers. Such infor-
mation is essential when determining if the needed capacity is possible to achieve
altogether in the chosen configuration. A deployment diagram of the intended sys-
tem architecture should be created early in system development to highlight
physical limitations.

Cysneiros and Leite [2] have described an approach to trace NFRs to functional con-
ceptual models expressed in UML, including the integration of NFRs in use cases,
scenarios, class diagrams, sequence diagrams, and collaboration diagrams. To achieve
this they also propose a few extensions to some of the UML sublanguages, and UML
extensions are also suggested to represent performance within the context of SPE
[10]. However, our intentions are, if possible, to avoid suggestions that require exten-
sions to the UML-2 meta model for representing capacity.

4 Discussion

We summarize the mapping of the CSPs in the table below.

CSPA

No of
CSPs

No of CSPs
in use all
over Ericsson

No of CSPs in
use by some
Ericsson sites

No of changes to
OpenUP/Basic

No of new
elements in
OpenUP/Basic

Verification 4 1 2 5 4
Measurement
and Tuning

7 1 2 6 3

Specification 4 0 2 9 0
Prediction 3 0 1 2 3

The verification part is the most empirically grounded category and still requires
most of the changes if we count new elements to OpenUP/Basic as a heavier update
than changed elements. The major reason is that OpenUP/Basic has a very rudimen-
tary view of testing, totally neglecting the need of a working test environment apart
from a specification of test scripts. This is not applicable to a large telecommunication

 Integrating an Improvement Model of Handling Capacity Requirements 353

system. Testers are the most eager readers of the requirements specifications, so some
changes to the analyst’s documents are made. It is quite straight-forward to perform
the process improvement, but working according to the process will require signifi-
cant resources, as the development of a test environment and tools is a large develop-
ment project in itself. Since both current practice and OpenUP/Basic work with
use-cases the only improvement is the addition of operational profiles. The standard
way for OpenUP/Basic is to handle all NFRs in the artifact Supporting Requirements.
We strive for making this information more visible in models and as a starting point
we annotate use-cases.

The measurement and tuning CSPA is not a strong issue in OpenUP/Basic. One
reason for this is that these types of measures require advanced test environments and
consciously designed load cases. Since the testing environment is counted as an im-
provement of verification, the reader can get the false impression that measurement
and tuning requires only moderate process extension. The definition of measurements
and interpretation of the data will require very good expertise if this is put into prac-
tice. Consulted experts estimate that this area only can improve the capacity of an
existing system with about 30%.

Specification is more about adapting the routines to OpenUP/Basic than introduc-
ing new concepts. OpenUP/Basic is well elaborated when it comes to developing the
architecture. What we are asking for is to also take capacity into consideration in the
work. The new difficulty will be how to distribute the “capacity budget” over various
development teams.

Estimation and prediction is fairly new both to Ericsson practice and OpenUP/
Basic. However, since Ericsson are mostly developing new releases based on earlier
work this is an important part of the requirements engineering process. It is not mean-
ingful to start specifying unrealistic capacity requirements which will require a com-
plete re-engineering to become fulfilled. The requirements must be the result of a
negotiation between the market requirements and the present design. The process we
suggest draws on human expertise, but is an interesting field for continued research
where predicted behaviour of models is used to increase the quality of decisions. If a
first release is developed, prediction is based on theoretical models and simulation.

The method of tracing from roles to tasks and artifact was straight-forward. The
authors have all worked with roles before in method development so this was natural
to us but can also be recommended to others. Normally, the number of roles is far
lower than the number of tasks and artifacts. Thus, using roles as an “index” to these
elements is more efficient than browsing the lists of tasks and artifacts.

As regards the internal grounding of the CSPs we have found some common proc-
esses in OpenUP/Basic as regards the testing environment. No inconsistencies were
found. The resulting extension fulfils our needs and is well in line with the notation of
OpenUP/Basic.

5 Conclusions and Future Work

We have identified a commonly accepted definition of capacity and documented good
practices in the management of this quality factor. These practices are presented as a
set of 18 Capacity Sub-Processes. Each of these sub-processes is traced to roles, tasks,

354 A. Borg, M. Patel, and K. Sandahl

and artifacts in the OpenUP/Basic process. This is a minimal process derived from
RUP, and since RUP is already in use at Ericsson it is fairly straightforward to feed
back the results to its design organizations. By expressing our CSPs as an extension of
the OpenUP/Basic process we create a context for our continued research in making
capacity requirements visible in UML models. Our process extension can be used by
a process engineer to adapt the current processes and can be shared with anyone using
Eclipse Process Framework. The work with creating the process has not revealed any
inconsistencies amongst the empirically grounded CSPs.

Acknowledgements

The authors would like to thank the anonymous respondents for participating in the
interview series. This project was funded by Ericsson AB, the Swedish Foundation
for Strategic Research, and Vinnova.

References

1. Borg, A., Patel, M., Sandahl, K.: Good Practice and Improvement Model of Handling Ca-
pacity Requirements of Large Telecommunication Systems. In: The proceedings of the
14th IEEE International Requirements Engineering Conference (RE’06), 11-15 September
2006, Minneapolis/St. Paul Minnesota, USA, pp. 245–250 (2006)

2. Cysneiros, L.M., d. Leite, J.C.S.P.: Nonfunctional Requirements: From Elicitation to Con-
ceptual Models. IEEE Transactions on Software Engineering 30(5), 328–350 (2004)

3. Davis, A.M.: Software Requirements: Objects, Functions and States. Prentice Hall, Upper
Saddle River, New Jersey (1993)

4. Eclipse Process Framework Project (EPF) Accessed 28 March (2007) http://
www.eclipse.org/epf/

5. Goldkuhl, G., Cronholm, S.: Multi-grounded theory—Adding theoretical grounding to
grounded theory. In: The proceedings of the 2nd European Conference on Research Meth-
odology in Business and Management (ECRM’03), 20-21 March, Reading, UK (2003)

6. Kruchten, P.: The Rational Unified Process: An Introduction, 2nd edn. Addison-Wesley,
Reading, Massachusetts (2000)

7. Manzoni, L.V., Price, R.T.: Identifying Extensions Required by RUP (Rational Unified
Process) to Comply with CMM (Capability Maturity Model) Levels 2 and 3. Transactions
on Software Engineering 29(2), 181–192 (2003)

8. OpenUP Component, Accessed 28 March (2007) http://www.eclipse.org/epf/
openup_component/openup_index.php

9. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual, 2nd edn. Addison Wesley, Boston (2005)

10. Smith, C.U., Williams, L.G.: Performance Solutions. A Practical Guide to Creating Re-
sponsive, Scaleable Software. Addison-Wesley, London, UK (2002)

11. Sommerville, I., Sawyer, P.: Requirements Engineering A Good Practice Guide. John
Wiley and Sons, Chichester, Reprint June (2000)

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 355 – 366, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mal-Activity Diagrams for Capturing Attacks on
Business Processes

Guttorm Sindre

Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
Guttorm.Sindre@idi.ntnu.no

Abstract. Security is becoming an increasingly important issue for IT systems,
yet it is often dealt with as separate from mainstream systems and software de-
velopment and in many cases neglected or addressed post-hoc, yielding costly
and unsatisfactory solutions. One idea to improve the focus on security might
be to include such concerns into mainstream diagram notations used in informa-
tion systems analysis, and one existing proposal for this is misuse cases, allow-
ing for representation of attack use cases together with the normal legitimate
use cases of a system. While this technique has shown much promise, it is not
equally useful for all kinds of attack. In this paper we look into another type of
technique that could complement misuse cases for early elicitation of security
requirements, namely mal-activity diagrams. These allow the inclusion of hos-
tile activities together with legitimate activities in business process models.
Through some examples and a small case study, mal-activity diagrams are
shown to have strengths in many aspects where misuse cases have weaknesses.

Keywords: security requirements, business processes, fraud, activity diagrams,
social engineering.

1 Introduction

Security is often dealt with late in the development process, in detailed design or
coding, or patched in after the product was first delivered with security defects. But
this may be costly, especially if the initially chosen design turns out not to facilitate
the security needs discovered afterwards. Moreover, security has trade-offs with other
quality features such as usability and performance, and such trade-offs should be
decided early on. Hence there has been an increased focus on the need to capture
security concerns already in the analysis phase, e.g., [1], [2], [3], [4], as well as in the
design phase, e.g., [5], [6].

Many mainstream software developers have limited knowledge of security, and
standard methods for addressing security are often formal and heavyweight. For such
developers it would be easier to think about security early if it was integrated in the
analysis techniques that they use anyway. One proposal along these lines is misuse
cases [2], [7], which provide an opportunity for discussing security issues with a

356 G. Sindre

mainstream analysis technique (use cases). Advantages are that it encourages devel-
opers to think from the perspective of the attacker, thus promoting creativity in identi-
fying threats and potential vulnerabilities. Moreover, it facilitates communication
between developers, as well as with customers / users.

Yet, the technique is not necessarily fit for discussing all kinds of security threats.
As observed by [8] use cases are good for capturing “discrete services that are used in
clearly delimited episodes” (p. 59), but may be less appropriate for other kinds of
problems. Misuse cases share this shortcoming of use cases, and are best for capturing
threats and attacks just at the system boundary (whether that boundary delineates a
fully automated system or a human organization). They are less suitable for capturing
attacks that take place either inside or outside the system, for instance

• A virus or worm which starts performing certain actions. In this case, there
was an external attacker at one point in time, namely when the virus was cre-
ated or received to the system from elsewhere. But this external attacker need
not have any control of the virus anymore, and it could still be interesting to
capture the workings of the virus within the system.

• An insider who performs fraudulent actions within an organization. In particu-
lar, misuse cases will be of little use in capturing types of fraud that require the
collusion of several insiders within the system, and who may perform their ac-
tions at quite different times and as part of several different normal use cases.

• An outside attacker who needs several interactions with various persons or
systems inside the organization to achieve his malicious goals, as is often the
case for hackers and social engineers. Here, each of these interactions could be
captured as a misuse case, but this would not illustrate how a number of such
interactions are needed together to achieve the attackers goal.

But other models could complement misuse cases. Another type of representation
often used in the analysis phase is business process models (e.g., BPMN or UML
Activity Diagrams). Hence it could be considered whether the addition of a negative
dimension to business process diagrams could capture security concerns and possibly
other dependability concerns, too.

The rest of the paper is structured as follows: Section 2 introduces an extension to
the modeling notation of UML Activity Diagrams, to capture harmful activities of
malicious actors. Section 3 presents results from a case study where the notation was
tried out by modeling the 46 attack stories presented in a book about social engineer-
ing. Section 4 makes a comparison with related work, and section 5 concludes the
paper and outlines further work.

2 Mal-Activity Diagrams

The idea of Mal(icious)-Activity Diagrams is to use the same syntax and semantics as
for ordinary UML Activity Diagrams, only with the addition of the following:

• Malicious activities, shown with icons that are the inverse of normal activity
icons

• Malicious actors, indicated with swim-lanes where the actor name is shown as
inverse (i.e., white text on black background).

 Mal-Activity Diagrams for Capturing Attacks on Business Processes 357

• Malicious decision boxes (i.e., where the decision is made with a malicious pur-
pose) shown as the inverse of normal decision boxes.

As an example, consider the diagram of Figure 1. Looking first at the normal icons,
these describe the process of getting reimbursed for expenses in University X. As a
precondition, the professor has paid for some research related expense (e.g., books,
equipment, or a conference trip) out of his own pocket, and wants to get reimbursed.
Such a procedure is often preferable to having the university pay for the expense
directly, which might require a more bureaucratic application process up front. As
long as the total amount is below the personal research funds that the professor has
available for the year, reimbursement should normally be trivial:

• The professor completes an expense claim form. The completed form with at-
tachments to prove the expenses is forwarded to an accountant in the department.

• The accountant controls that all listed expenses are proven and that they add up to
the sum claimed. In case of a minor problem (e.g., slight miscalculation) the sec-
retary may simply correct this as part of the validation activity. In case of bigger
problems (e.g., missing receipts), the claim is returned to the professor asking for
more information. When the claim is OK, the accountant signs the form as vali-
dated and passes it on to the Head of Department.

• The HOD considers on a higher level whether the expense is justified according
to department policy. For instance, subscription to a scientific journal would be
OK, while subscription to a porn magazine would not – unless that professor’s
research area especially targets the analysis of such literature. Even if the funds
are research money allocated to the professor, they are not “his” to be used for
any private purpose. If an expense is disapproved, the professor will not be reim-
bursed. Otherwise, the HOD signs the expense claim as accepted, and it is for-
warded by internal mail to the Salaries department.

• Salaries finally reimburse the professor, transferring the approved amount of
money to his account, as well as sending the professor a paper statement of the
transfer.

The very preparation of the false claim takes place before our process begins, but
could for instance include retrieving other customers’ receipts from the trash bin of
the university bookshop, manipulating amounts on hand-written taxi receipts from a
conference trip, or passing off a brothel expense as a seminar fee, to more elaborate
schemes of co-manipulating several sources of information (e.g., the pdf of a flight
e-ticket, and the expense statement from the credit card company, so that the amounts
still match)1. Our process in Fig 1 starts with the submission of this false claim, and
can proceed in three different ways.

The least sophisticated scam is that the professor hopes that the control is sloppy,
thus simply submitting the false claim into the normal process. A more sophisticated
approach is the collusion between the professor and an accountant, who knowingly
validates false claims – perhaps for a share of the profit. Finally, the professor may try
to bypass the department’s internal claim control altogether, faking the signatures of

1 Please notice that this and other examples of professor misconduct in this paper are purely

fictitious and not based on any real cases that we know of.

358 G. Sindre

the Accountant and HOD and slipping the false claim into the envelope containing
legitimate claims from other department employees as this waits in the mail-room to
be picked up and sent to Salaries.

Fig. 1. Example mal-activity diagram: University professor embezzling research funds

It may be in the interest of the department to improve its internal processes to miti-
gate such fraud, and the diagram of Figure 1 is a much better basis for such a discus-
sion than a misuse case diagram would have been. While it would be straightforward
to make a misuse case diagram showing “Submit expense claim”, “Validate claim”
etc. as normal use cases, and “Submit false claim” etc. as misuse cases, such a dia-
gram would not show the sequence of activities and where the fraudulent activities
would fit in.

In this first example we started with a normal process, then adding mal-activities
for various threats against this process. Another possible way to use mal-activity dia-
grams would be to start with modeling a known fraud pattern, and then add defensive
processes to deal with this. Such an example is shown in Figure 2, resembling a scam
that was reported in Norwegian press just as this paper was being written, where an
entrepreneur had allegedly colluded with the manager of the school building services
of the country’s largest municipality, and over a couple of years invoiced close to 90
MNOK for construction and maintenance work not performed. Later they split the
profits.

 Mal-Activity Diagrams for Capturing Attacks on Business Processes 359

Fig. 2. Mal-activity diagram for collusive invoicing

By use of the inverted notation for mal-activities, Fig 2 clearly shows that the sup-
plier and manager are colluding in the fraud. The “Pay invoice” activity – although
necessary for the fraud to succeed and therefore shown on the Fraud side of the thick
swim-lane separator – is performed in good faith and therefore shown in normal nota-
tion. On the right hand side, some mitigation options are shown, which may form a
basis for discussing possible improvements of the municipality’s business processes
to avoid similar fraud in the future. The dashed arrows from the mitigation activities
into the fraud process suggest where in the process the mitigation activities would be
added. For instance, “Swap approval between persons” must be done before the “Ap-
prove invoice” activity, and “Check articles delivered” must be done before the “Pay
invoice” activity. In a modeling tool (or even on paper) it would have been preferable
to use color (e.g., red) rather than dashed arcs and nodes, but dashes have been chosen
here for printing purposes.

In the examples above, we have looked at fraud involving malicious insiders. An-
other type of security threat that may not always be easy to model with misuse cases,
is that of social engineering. Such attacks are not primarily based on computer skills,
but on duping employees to leak confidential information or perform other harmful
activities through some con act. In many cases, contact is made by phone, since this is
less risky than showing up personally. Now, of course, a phone conversation can
fairly easily be modeled as a use case, having a typical request-reply pattern matching
a use case path or scenario, and in the end accomplishing something of value for a
customer or attacker (e.g., making an order, obtaining confidential information). Still,

360 G. Sindre

many social engineering attacks are quite complex and hard to represent in a single
misuse case because they go through several stages, for instance needing a number of
phone calls to different persons, rather than just one. Typical stages are

• pretexting, i.e., finding fairly general (and not necessarily confidential) in-
formation about the target organization, such as names, phone and office
numbers of employees, organizational structure, when some key person will
be away (so that decisions will have to be taken by someone less experi-
enced), etc. Such information is needed by the social engineer to know when
and whom to attack, and to put on a convincing act. For a complex attack
pretexting alone can go on for weeks.

• bypassing the security defense of the organization, for instance by getting
hold of some means of authentication (password, employee number, social
security number, or a daily code used for verifying identities over the phone),
or by duping an employee into installing a backdoor to the IT system.

• obtaining the confidential information itself, or manipulating information, in
a way that cannot easily be tracked

Trying to describe in one misuse case path an attack which includes conversations
with several different persons over a longer term will easily get messy, as a use case is
normally meant to cover a short-time discrete interaction sequence between a user and
a system [8]. In this case, mal-activity diagrams could be a better option. To investi-
gate whether mal-activity diagrams could be appropriate for describing social engi-
neering attacks, a case study was performed, as discussed in the next section.

3 Case Study

The book “The Art of Deception” [9] by former notorious hacker Kevin D. Mitnick
describes in reasonable detail 46 social engineering attack stories. Although fictitious
names are used for persons and organizations, and some of the attacks may be imag-
ined rather than exact accounts of real incidents, the knowledge and experience of the
authors suggests that the outlined scenarios are realistic. Anyway, it is a better chal-
lenge for a new notation to try it out on examples developed by others than to use
only self-made examples specifically made for the purpose of demonstrating the vir-
tues of the new notation. Especially by trying the mal-activity notation on all the
scenarios from [9], and not just the ones best fitting, the notation would be put to
some test. The 46 attack stories varied quite a lot in complexity, from simple ones that
yielded diagrams with just 2 activities (typically the attacker interacting with only one
other person, making some devious request, and the duped employee complying with
this request), to more complex diagrams containing up to 15 activities and 7 swim-
lanes (i.e., the attacker having up to 6 different phone conversations in the course of
the attack). Figure 3 shows the mal-activity diagram for one of the 46 attack stories in
the book. In addition to standard activity diagrams and the aforementioned inverted
symbols, some extra notation was also found useful:

• Symbols on the left to indicate when the attacker initiates a new interaction
and what kind of interaction this is (e.g., phone, face-to-face, internet, …).
Also, a noun between quotes indicates the role that the attacker is assuming in

 Mal-Activity Diagrams for Capturing Attacks on Business Processes 361

each conversation. Otherwise – if it becomes unclear when one interaction is
over and the next starts -- the diagram may be confusing to read.

• In cases where the apparent request made by the social engineer is different
from the real (hidden) request, both are included in the activity naming: first
the apparent request, then the hidden one in parenthesis. If only the real re-
quest were written (e.g., download document) it might be hard to understand
what is so dangerous about it. On the other hand, if only the hidden requests
were written (e.g., download spy-ware), it would be hard to understand how
the employee could be fooled into it.

The attack of Fig 3 goes like this: In the first phone call, the attacker finds out
when the VP (who is the ultimate target) is not in office, camouflaged as an attempt to
find a suitable meeting time. Then in the next call, he obtains a list of new hires of the
company, under the ruse that these need to be sent new swipe cards for the parking
garage because there has been a technical problem with the card issuing machine
during the last month. A new hire is assumed the easiest victim for the third step,
calling fairly late when there are few persons in the building (and in particular, the VP
is not there, as the attacker has already established), pretending to be the VP and re-
questing the other person to go to the VP’s office and then (in the next call, to the
phone in that office) receive instructions to download a document from a web-site.
This results in the silent installation of a keystroke logger on the PC, preprogrammed
to send its output to a foreign mail-drop set up by the attacker, where he can later
browse for the confidential information he needs.

Of course, there are at least two preconditions for this attack to work: the new hire
must have access to the VP’s office (or they use cubicles, not closed offices) and the
VP’s PC must not require a password at start up. If the first did not hold, the attacker
might possibly have tried a night-guard, janitor or cleaner with keys to the offices
instead. If the second did not hold, it might have been necessary to dupe the VP him-
self or the VP’s secretary to install the spy-ware – but then of course under some
other pretense than being the VP. Yet, the general pattern of this attack is quite repre-
sentative of many social engineering attacks: First some pretext investigations to find
out enough about the target person and organization, then the real hard part of con-
vincing someone to perform something irregular, after which the objective of the
attack can be achieved.

The following findings were made from the case study:

• All 46 attack stories proved possible to model as mal-activity diagrams. But 12
of the 46 had only 2 swim-lanes, the attacker dealing with just one other per-
son, and could just as easily – or better – have been modeled by misuse cases.

• The usage of normal activity nodes together with inverted nodes was clearly
useful for distinguishing between the malicious activities of the attacker and
the activities of the duped employees. It could be interesting to look into more
levels of differentiation, e.g., malicious activities (black), legitimate activities
(white), and irregular activities performed in good faith (grey), the latter show-
ing cases where the employee is duped into breaking a business rule. For in-
stance, the new hire downloading a file to the VP’s PC without having verified
in any sound way that the caller really was the VP, would probably be an ex-
ample of a grey activity. But in most cases, the attack stories did not make it

362 G. Sindre

clear what business rules the target organizations had in the various situations
posed, hence this was not tried in the case study.

• To make the activity diagrams clearly readable in their own right, it may be
useful to explain on the side of the mal-activities what kind of interaction is
taking place (e.g., phone call, face-to-face meeting, internet communication,
…), as well as what role the social engineer is playing.

Fig. 3. Getting confidential info from VP’s PC (based on [9], pp 201-205)

Another observation is that models can be made more specific or more generic. In
the case study, we chose to make them specific (i.e., as close as possible to the book’s
attack story), since the exercise was to see if these could be faithfully represented. But
in many cases, generic models could be more useful. As already mentioned, the per-
son duped need not be a new hire, it could also be a cleaning person or similar. Also,
the software installed on the PC need not be a keystroke logger, it could also be a
backdoor allowing the attacker to log into the PC remotely and look for the informa-
tion he is after. With a more generic naming (e.g., mal-ware instead of spy-ware,
“employee who does not know the VP” instead of “new hire”) the model could cover
a broader range of cases. There are several possible usages for models like this:

• Discussing whether an organization has sufficient security – not only in terms of
technical measures, but also in terms of manual information processing routines,
security policies, and training to enable its employees to follow these policies.
Mal-activity models can be a basis for paper testing of the organizations security

 Mal-Activity Diagrams for Capturing Attacks on Business Processes 363

routines (and here thinking especially about manual routines, not technical pro-
tection), posing questions like: What would happen if somebody tried an attack
like this on our organization?

• Supporting creativity about different approaches to attack and defense. “Re-
verse thinking” (i.e., seeing things from the opposite side, asking the question
‘what should we do if we really wanted to fail?’) is a recognized approach for
creative thinking, and in security and fraud detection there is a huge need to be
creative to match the inventiveness of the crooks.

• As a basis for training. Employees have a far better chance to avoid being
duped by social engineers if they have an understanding of typical patterns of
attack. While pure textual descriptions can also be used for this purpose, mal-
activity diagrams may provide better overview and make it possible to distill
typical patterns of attack.

To really claim such advantages, the notation should be tried in contexts where the
security analysis of a concrete organization or the training of its employees is the
purpose. In the current case study, the purpose was a more limited one: to see if the
notation was suitable to represent the attack stories diagrammatically. For a first at-
tempt at validation, this is still considered useful.

4 Related Work

The mal-activity diagram is not the only notation utilizing inverted icons to indicate
security threats. Misuse cases [2], [7] is based on a similar idea. The difference be-
tween mal-activity diagrams and misuse case diagrams will be the same as the differ-
ence between normal activity diagrams and use case diagrams: they are good for
different purposes. Misuse case diagrams would give an overview over the normal
functions wanted in the system, as well as the threats posed by attackers, and in part
which threats are related to which normal function. However, they would not show
sequences of activities like an activity diagram, and therefore not exactly where a
certain malicious activity might fit into a business process, or how the process could
be changed to deal with it. Of course, a misuse case path would be able to describe a
sequence of actions. But just like use case paths these are most appropriate for dis-
crete interactions, between one user and the system (or in case of a phone conversa-
tion: between the customer and one employee). If the attacker makes a number of
phone calls to different employees, this would more appropriately be captured as a
series of misuse cases, and then it would be harder to illustrate how these fit together.

For the i* modeling language there have also been suggestions using inverted icons
to capture security threats [1]. For instance, the situation with the professor embez-
zling funds could also be modeled in i* – in addition to a normal professor agent
having the legitimate goal “Expenses be reimbursed” (for which he would depend on
the Salaries Dept in a strategic dependency model), there could also be an evil profes-
sor (inverted actor icon) with an inverted goal “Fake expenses be awarded” (again
depending on the Salaries dept to pay the money). The point here is not that mal-
activity diagrams are better than i*-diagrams, only that they complement each other.
An i* strategic dependency diagram would probably give a better overview of the
various actors involved and what each of them need to do their job, also the i*

364 G. Sindre

approach would have the advantage of being integrated with more formal styles of
expression. However, an i* diagram would not show the business process in the same
obvious way as an activity diagram. True, in an i* Strategic Rationale Model, goals
for each actor can be decomposed, for instance into tasks involved in achieving the
goal. But then, these tasks (resembling activities in an activity diagram) will be given
per actor, so still, these models do not show the end-to-end flow of the process as
obviously as a mal-activity diagram. Hence, it can be suggested that the various nota-
tions with inverted icons (misuse case diagrams, i*, mal-activity diagrams) might
complement each other, and could be used together, although such integration of
various techniques is not investigated in this paper.

Abuse frames [10] is another example of adapting an approach for “mainstream”
problem analysis to the domain of security. In contrast to problem frames, abuse
frames considers the system from the viewpoint of the attacker (which is what misuse
cases or mal-activity diagrams also try to do). Where normal problem frames have
requirements, abuse frames therefore have anti-requirements representing what an
attacker wants to achieve, e.g., “un-authorized editing”.

It is hard to claim that mal-activity diagrams will generally be better than other
techniques (e.g., i* or abuse frames), probably all have their pros and cons. One im-
portant criterion for practitioners may be how well a technique integrates with other
techniques that they are using anyway. So, if anyway using i*/Tropos, the security
extensions for these will probably be the best choice, and similarly for problem
frames / abuse frames. On the other hand, use case and activity diagrams are being
applied in a huge number of development projects, meaning that misuse cases and
mal-activity diagrams have a potential advantage in terms of its limited add-on to
current mainstream practice.

The fact that different approaches to security requirements complement each other
has also been observed by [11] in a case study comparing misuse cases, attack trees
and Common Criteria. One of the conclusions were that misuse cases were easy to
learn and use but generated output that was hard to analyze, whereas the other tech-
niques had somewhat complementary advantages and disadvantages.

Other researchers have also looked into adapting UML notations to security, in
particular UMLsec [5] and Secure-UML [6]. But these are more directed towards the
design level, whereas misuse cases and mal-activity diagrams are primarily meant to
address elicitation and early specification, and in particular the need for creativity in
imagining possible attacks. The design level focus has some advantages in opening up
a bigger potential for automation, for instance in UMLsec generating possible attacks
automatically from a given system architecture. Mal-activity diagrams would rather
be intended for usages in early stages when no system architecture is decided yet,
including manual tasks, and the purpose would be more to support human brainstorm-
ing for possible attacks than automated analysis. A proposal directly combining UML
activity diagrams with security is [12], proposing a UML 2.0 profile for activity dia-
grams to model secure business processes. That proposal is however quite different
from ours:

• The UML profile defines a number of stereotypes for various categories of se-
curity requirements (e.g., “Integrity”, “Privacy”, “Non-repudiation”), as well
as the stereotype “SecureActivity” as a subclass of Activity and “Security-
Role” as a subclass of Use Case Actor.

 Mal-Activity Diagrams for Capturing Attacks on Business Processes 365

• It also suggests some extra notation, for instance annotated lock symbols indi-
cating various types of security requirements.

• The resulting models are therefore suitable for depicting secure business proc-
esses (i.e., processes where security requirements have been addressed).

This is quite different from mal-activity diagrams, where the initial purpose is not
to model the secure business processes but rather to model the process as-is together
with the possible threats that attackers could perform towards these processes. Mal-
activity diagrams would therefore be more suitable for brainstorming about threats
and their mitigations, and for involving a wide variety of stakeholders due to the sim-
ple symbolism. The secure business process diagrams of [12] would instead be more
suitable for modeling the finished business process after the security problems had
been analyzed and a solution found.

5 Discussion and Conclusions

This paper has presented a new notation for capturing security threats and fraudulent
behavior in early stage information system analysis, namely that of mal-activity dia-
grams. In a way similar to misuse cases, it utilizes inverted icons for the malicious
activities of attackers, but otherwise bases itself on standard notation in common use
in mainstream systems development. For the examples in this paper, and in the re-
ported case study, we have based the notation on UML activity diagrams. But it could
be possible to apply the same scheme for other process model notations, like IDEF3,
BPMN, Petri nets, or notations based on data flow diagrams.

It must be admitted that the validation of the notation is currently quite limited: It
has been used to model 46 attack stories from a book about social engineering. But no
further use was made of these 46 models beyond the exercise of representing the
attack processes. So far, it has not been used in any real business process modeling or
systems development context. Yet, it seems intuitively promising, and just like nor-
mal use cases and activity diagrams complement each other, the same could be ex-
pected for misuse cases and mal-activity diagrams.

There are several directions of further work that will be pursued. First of all, the
notation should be tried out in more case studies, posing other challenges than the
currently performed study, and having the approach used by other people than just its
inventor. Experiments with students and practitioners would also be useful to investi-
gate whether the notation is easy to learn and use, whether diagrams made in the nota-
tion are easy to understand, and whether the notation is an effective aid for brain-
storming about security threats, fraud, and mitigation options. Finally, of course, it
would be interesting to try it out in real development projects, but that would necessi-
tate tool support. Using a MetaCASE tool already supporting UML activity diagrams,
it should be a minor job to extend this to support the few extra notational elements
introduced in mal-activity diagrams. In another direction, more theoretical issues
could be looked into, such as integrating mal-activity diagrams with more formal
techniques for business rule and security requirements specification.

366 G. Sindre

References

1. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a So-
cial Setting. 11th International Requirements Engineering Conference (RE’03), Monterey
Bay, CA, 8-12 September, pp. 151–160. IEEE Press, New York (2003)

2. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Require-
ments Engineering 10, 34–44 (2005)

3. van Lamsweerde, A., Brohez, S., De Landtsheer, R., Janssens, D.: Froim System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engi-
neering. In: Heytmeier, C., Mead, N. (eds.) 2nd International Workshop on Requirements
Engineering for High Assurance Systems (RHAS’03), Carnegie Mellon University, Sep-
tember 8, pp. 49–56. Monterey Bay, CA (2003)

4. Haley, C.B., Moffett, J., Laney, R., Nuseibeh, B.: Arguing Security: Validating Security
Requirements Using Structured Argumentation. 3rd Symposium on Requirements Engi-
neering for Information Security (SREIS 2005), Paris, France, (August 29, 2005)

5. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002 -
The Unified Modeling Language. Model Engineering, Concepts, and Tools. LNCS,
vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

6. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004)
7. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. In: Hender-

son-Sellers, B., Meyer, B. (eds.) TOOLS Pacific 2000, Sydney, pp. 120–131. IEEE CS
Press, Los Alamitos (2000)

8. Jackson, M.: Problem Frames. Addison-Wesley, London (2001)
9. Mitnick, K.D., Simon, W.L.: The Art of Deception: Controlling the Human Element of

Security. Wiley Publishing, Inc, Indianapolis (2002)
10. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using Abuse Frames to Bound the Scope of

Security Problems. In: Maiden, N.A.M. (ed.) 12th IEEE International Requirements Engi-
neering Conference (RE’04), Kyoto, Japan, IEEE (2004)

11. Diallo, M.H., Romero-Mariona, J., Sim, S.E., Richardson, D.J.: A Comparative Evaluation
of Three Approaches to Specifying Security Requirements. REFSQ’06, Luxembourg
(2006)

12. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Capturing Security Requirements in
Business Processes through a UML 2. In: Roddick, J.F., Benjamins, V.R., Si-Saïd Cherfi,
S., Chiang, R., Claramunt, C., Elmasri, R., Grandi, F., Han, H., Hepp, M., Lytras, M.,
Mišić, V.B., Poels, G., Song, I.-Y., Trujillo, J., Vangenot, C. (eds.) ER 2006 Workshops.
LNCS, vol. 4231, pp. 6–9. Springer, Heidelberg (2006)

Towards Feature-Oriented Specification and
Development with Event-B

Michael R. Poppleton

School of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
mrp@ecs.soton.ac.uk

Abstract. A proposal is made for the development of a feature-oriented reuse
capability for safety-critical software construction using rigorous methods. We
précis the Event-B language - the evolution of the B-Method of J.-R. Abrial [1]
- a leading formal method for safety-critical software development. Current and
new infrastructure for scalable development with Event-B is outlined, and con-
trasted with support required for feature-oriented development. The proposal is
illustrated by a small example of feature-oriented construction and refinement
with Event-B.

1 Introduction

1.1 Background and Rationale

We will introduce this paper with a little history of the development of our interest in
applying feature-orientation to a formal development method.

Our ongoing work in the current EU project RODIN1 [22] illustrates a product-line
approach to the rigorous engineering of structural generic requirements for a subsystem
- failure management and detection - of aircraft engine control. An avionics control
system represents - as do its support systems - a software product line [19], that is
where multiple variants of essentially the same software system are required, to meet a
variety of platform, functional, or other requirements. This is moreover a safety-critical
product line, motivating the use of the most rigorous methods available, in our case, the
B [1] and Event-B [20] methods of J.-R. Abrial.

Event-B is a state-based language for the specification and refinement-based devel-
opment of a system model, with automated verification built in to the process. It repre-
sents the new generation of the classical B language of J.-R. Abrial [1]. Its syntax and
semantics are rigorously defined, enabling the automatic production of correctness ver-
ification conditions (or proof obligations) that can be discharged with theorem prover
support. The Event-B language and its comprehensive tooling environment - including
inter alia project database, syntax analyser, provers, animators, a test case generator -
are under production in project RODIN.

1 RODIN - Rigorous Open Development Environment for Open Systems: EU IST Project IST-
511599, http://rodin.cs.ncl.ac.uk

P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 367–381, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

368 M.R. Poppleton

Our RODIN industrial partner’s failure management system (FMS) is a product line
of a particular kind: each airframe is characterized by its sensor and actuator fit, their
physical and operating range characteristics, and failure detection procedures. Each
such system configuration can be described as an instance of a single generic con-
figuration model that describes the structural constraints each instance must satisfy. For
example, each failure test relates to at least one sensor, each test operates under at least
one dynamic condition on system state, each sensor has a defined operating range, etc.

In general the critical system product line will manifest significant commonalities
and variabilities [10] of behaviour and configuration. Considering the FMS application
in this light, it became clear that the initial, abstract model was made up of four require-
ments features, or goals (in the sense of van Lamsweerde [23]): (i) detection of a sensor
failure, (ii) failure confirmation (reducing sensitivity to noise), (iii) applying detection
only under the appropriate condition, and (iv) taking appropriate action on detection of
evidence of failure. These feature models are distinct in requirements terms but interact
in terms of shared variables and events. In a product line setting they can be instantiated,
combined and refined in various ways. They could be reused in various combinations
in different contexts within or even beyond the FMS domain.

One conclusion of our project experience is that a feature-oriented approach would
have a clear value in managing reuse and instantiation in the rigorous construction of
an FMS, and thus other safety-critical software product lines.

Since the early work on features, e.g. [15], feature-oriented approaches have become
prominent contributors to software reuse [11,7], especially for product lines [16].

In a longstanding annual conference series [4,12,21], formal verification techniques
have been extensively examined for the feature interaction problem, originally aris-
ing in telecommunications. Beyond that there is some evidence of formal verification
(as opposed to construction) techniques being applied to feature-oriented development.
Feature models defined with differing degrees of genericity, binding into the software
construction process at different points, have been validated formally [24]. Formal fea-
ture model-checking [op.cit.] and product line architectural model-checking for com-
monalities of robustness and fault-tolerance have been applied [18]. However, formal
refinement-based approaches - in the classical sense of Hoare, He, Back et al [13,6]
- largely remain to be applied either to feature-oriented development or to software
product lines.

1.2 Formal Feature-Orientation

The mechanism for large-scale structuring in Event-B, similar to that of other model-
based formal methods, is decompositional: in Fig. 1(b) a single, “abstract” model M
is developed and decomposed into components {fi}. The components are refined to
more “concrete” form {fri} and these concrete refinements are then recomposed into
model MR in a particular way that guarantees that MR refines M. This process is re-
peated at subsequent refinement steps. Section 2.3 will show that this is a complexity
management mechanism for specifications, not concerned with requirements or feature
engineering.

In this work we propose a compositional method for feature-oriented working with
Event-B, as shown in Fig. 1(a). The atomic unit of modelling, and starting point of

Towards Feature-Oriented Specification and Development with Event-B 369

f1 f2

 M

refines/
decomposes

refines/
decomposes

refines refines

fr2fr1

 MR

refines/
decomposes

refines/
decomposes

refines

f1 f2

 M

composes

composes

refines refines

fr2fr1

 MR

refines

composes

composes

(a) (b)

Fig. 1. Composition and decomposition of models through refinement

specification work, will be the feature. To go with existing mechanisms for the special-
ization (or instantiation) and refinement of generic features, we propose a mechanism
of feature composition. This is a more general process than the inversion of decompo-
sition: we seek a method to compose features {fi} into a composite M, which is mono-
tonic with respect to the composition of their feature refinements {fri} into composite
MR - that is, MR must then refine M (Fig. 1(a) must commute).

Our contribution is thus a statement of requirements for a set of tool-implemented,
syntactic transformations for feature instantiation and composition with Event-B. Also,
we present a simple vending machine product line development as a case study analysis
that generated these requirements. We will refer back to the decomposition mecha-
nism of Event-B because our broad proposal is essentially a generalized inversion of
it. Whilst fully enabling the use of verification capabilities of Event-B, the proposal is
only the precursor of the semantic work necessary to establish the full benefits of reuse,
such as

– the propogation of proven feature correctness properties through composition,
– the discovery of particular ways of doing composition of concrete feature refine-

ments to guarantee commutatitivity of Fig. 1(a).

Section 2 introduces the Event-B language and briefly describes its two mechanisms
for scalable development. Section 3 presents a small example feature-oriented devel-
opment to demonstrate what can be done in feature terms with the existing CSP and
Event-B notations. Section 4 presents the proposal for tool-supported feature composi-
tion in Event-B. In conclusion the proposal is restated, re-examined in relation to the
existing decomposition of refinement mechanism, and further work is discussed.

2 The Event-B Language and Method

This section is a précis of parts of [20], the Event-B language definition.

370 M.R. Poppleton

2.1 Basics

Event-B is designed for long-running reactive hardware/software systems that respond
to stimuli from user and/or environment. The set-theoretic language in first-order logic
(FOL) takes as semantic model a transition system with guarded transitions between
states. The correctness of a model is defined by an invariant property, i.e. a predicate, or
constraint, which every state in the system must satisfy. More practically, every event
in the system must be shown to preserve this invariant; this verification requirement
is expressed in a number of proof obligations (POs). In practice this verification is
performed either by model checking or theorem proving (or both).

To date, classical B verification tools in use at Southampton have been mainly

– ProB [17], the model-checker for B developed at Southampton and Düsseldorf.
ProB syntax checks, animates, and model checks B models and combined B+CSP
models. It also provides refinement-checking for B, B+CSP models of two vari-
eties: trace refinement and singleton-failures refinement.

– B4free [9], a prover originally from ClearSy, the authors of the commercial Ate-
lierB [2] toolkit.

A new integrated toolset for Event-B is under construction in project RODIN.
In Event-B the two units of structuring are the machine of dynamic variables, events

and their invariants, and the context of static data of sets, constants and their axioms.
Every machine sees at least one context.

The unit of behaviour is the event. An event E acting on (a list of) state variables v,
subject to enabling condition, or guard G(v) and generalized substitution, or assignment
R(v), has syntax

E =̂ SELECT G(v) THEN R(v) END (1)

That is, when the state is such that the guard is true, this enables the state transition
defined by R(v), known as a generalized substitution because it denotes a nondetermin-
istic transition. Next we give syntax for a such a substitution, or assignment R(v) and
its semantic model in a before-after predicate. Note that t, v are in general variable lists.

ANY t WHERE Q(t, v) THEN v := F(t, v) END (2)

∃ t • (Q(t, v) ∧ v′ = F(t, v)) (3)

This defines a t-indexed nondeterministic choice between those transitions v′ = F(t, v)
for which Q(t, v) is true2. t is intrepreted as an input from the environment. Syntactic
sugar is available: CHOICE is used for an explicit choice between a small number of as-
signments, and parallel (||) is used to enumerate single-variable assignments. Examples
appear in section 3.2.

An event E works in a model (comprising a machine and at least one context) with
constants c and sets s subject to axioms (properties) P(s, c) and an invariant I(s, c, v).
Thus the event guard G and assignment with before-after predicate R take s, c as pa-
rameters. Two of the consistency proof obligations 3 (POs) for event E defined as (1)

2 The deterministic assignment is simply written v := F(v).
3 See [20] for the others.

Towards Feature-Oriented Specification and Development with Event-B 371

are FIS (feasibility preservation) and INV (invariant preservation):

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃ v′ • R(s, c, v, v′) (4)

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′) ⇒ I(s, c, v′) (5)

2.2 Refinement

In order to progress towards implementation, the process of refinement is used. The
term refinement is used both to refer to the process of transforming models, and to the
more concrete model which refines the abstract one. A refinement is a (usually) more
elaborate model than its predecessor, in an eventual chain of refinements to code; see
Fig. 24.

variables

invariants

events

variables

invariants

events

abstract
machine

M

concrete
machine

N

sets

constants

properties

sets

constants

properties

concrete
context

D

abstract
context

C

sees

sees

refines refines

Fig. 2. Machine and context refinements

The refinement of a context is simply the addition of new sets, constants and axioms
to it.

To refine a machine, all variables v are replaced by new ones w, some simply by
renaming - i.e. of the same type and meaning - and others by variables of different
type. For example, a set variable s might be refined to a sequence ss, thus adding the
concrete structure of ordering. Existing events are transformed to work on the new
variables. New events can be defined; that is, the behaviour of an abstract event E can be
refined by some sequence of E and new events. The new behaviour will usually reduce
nondeterminism; for example, nondeterministic selection from the set s is refined by
the sequence of events first; first(ss) to get the second element from the sequence.

When model N(w) refines M(v), it also has an invariant J(s, c, v, w) which can in-
clude M’s variables v. This is called a “gluing invariant” and has the function of relating
abstract variables v to concrete ones w mathematically. Following the above example,
J(s, ss) =̂ s = ran(ss).

In Fig. 2, M sees C, N refines M and D refines C, then N sees D. It is also possible
for C not to be refined, in which case N sees C.

As for simple machines, there are proof obligations for refinement; we just present
one here. We assume axioms P(s, c), and abstract, concrete invariants I(s, c, v) and
J(s, c, v, w) respectively. An abstract event with guard G(s, c, v) and before-after pred-
icate R(s, c, v, v′) is refined by a concrete event with guard H(s, c, w) and before-after

4 Figure from [20].

372 M.R. Poppleton

predicate S(s, c, w, w′). The main refinement obligation INV REF states that any before-
state pair (v, w) related through J where w steps to w′ through S, is matched by some
J-related (v′, w′) where v steps to v′ through R:

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ∧ S(s, c, w, w′)
⇒ ∃ v′ • (R(s, c, v, v′) ∧ J(s, c, v′, w′)) (6)

2.3 Structuring Mechanisms

We complete this account of Event-B by outlining its two structuring mechanisms:
generic instantiation and decomposition of refinement.

Generic Instantiation. Here, a prior development {(Mi, Ci)} (of machines, refine-
ments, and contexts) is treated as generic. This is a mechanism of substitution of iden-
tifiers in the generic development with those of the development in hand, say machine
N and context D. The substitution must be proved to satisfy the axioms of the generic
development.

At its simplest such generic instantiation enables direct substitution of identifiers in
generic contexts with specific data from the development in hand. More generally it
allows, at a point in a development when a refinement is sought, a library of generic
developments to be searched for a candidate. The generic candidates can differ in the
identity of static data, provided the development provides at least matching static data
structure and axioms; it may in general provide more than that. Generic instantiation
should be a valuable supporting mechanism for instantiation in software product lines.

Decomposition of Refinement. The approach of decomposition [3] in Event-B is the
inverse of the usual compositional approach in software design and programming. The
motivation is an engineering one, to decompose the design of a single model and its
refinement into a number of smaller components and component refinements. Corre-
spondingly, each proof task should be smaller, thus more capable of automatic proof.

In section 1.2 we saw that the decompositional approach of Fig. 1(b) is interpreted
as a commuting diagram, provided the decomposition and component refinements are
done in the right way. This is very much a matter of structural (i.e. model and refine-
ment) engineering, rather than the inverse of some feature-oriented, or compositional
requirements structuring method.

3 An Example Development

We choose as a small illustrative example a product family of vending machines - Fig.3
below gives a feature model. Possible variabilities between machines include

Payment mode: traditional coin, credit card, smartcard, or no payment - free items
from a generous employer - are four options. The first three may appear in any
combination on a machine.

Towards Feature-Oriented Specification and Development with Event-B 373

Delivery mechanism: the usual item delivery is sequential - an array of horizontal
racks facing the user. The user chooses an item (rack) number. An alternative is
carousel, where items are shelved in a single, vertically mounted circular rack fac-
ing the user. Here, the next item for delivery is predetermined by the contents of
the rack.

Extending the domain to say, drinks vending, would extend the variability here.

A key technique offered by Event-B for variability specification is refinement. Ide-
ally, a single abstract, generic model describes the essential, common goals of all in-
stances of the product line, and thus incorporates all variabilities. In practice it will not
always be possible to abstract to this extent; certain features may be optional in the most
abstract model.

For the vending machine, three generic features are composed to form the abstract
model: item selection and inventory features are composed either with or without an op-
tional payment feature. For each of the resulting two abstract - we shall call them level 0
- models, a tree of refined models introduces the variabilities in all meaningful combina-
tions. These combinations are defined by the feature model. The above two variabilities,
representing implementation technology choices, can be introduced through refinement
in this way.

Figure 3 gives the feature model in the style of [5], which work includes a tool Fea-
turePlugin for feature modelling and product line feature-oriented system instantiation.
Since the tool is agnostic as to implementation language, it is principle deployable for
a future feature-oriented Event-B. Each box in the figure represents a model of a single
feature in Event-B. The vending machine comprises features for

– select/cancel: user selection of an item/cancellation of selection (mandatory)
– payment/clear: accepting payment/clearing payment (which may involve giving

change or returning money) (optional)
– deliver/reload: item delivery/ machine reload, i.e. stock control (mandatory)

These requirements are packaged as three features in the abstract model, in order to
illustrate some of the technicalities of feature-oriented specification in B. Each feature
consists of two events named as per the feature name, and supporting data.

deliver/reload is refined to either sequential or carousel (we might call this an al-
ternative refinement). pay/clear is refined by one or more of coin, smartcard, or credit
card payment (called a multiple refinement). The constraint links at the bottom of the
figure indicate that the clear feature is required in support of all three payment options.

3.1 A Behavioural View in CSP

For this discussion we instantiate feature pay/clear in top-level model 0. It is useful at
this point to give a behavioural view of the vending machine model. This view is given
in CSP [14] in Fig. 4 for illustration only in this paper5. The feature composition is
shown in colour: select/cancel in green, pay/clear in blue, and deliver/reload in red6.

5 An integration of B and CSP exists [8] and is implemented in ProB (sec. 2.1), but is beyond
the scope of this paper.

6 This colour-coded feature marking, inspired by [11], is not part of the CSP language.

374 M.R. Poppleton

VM

select/
cancel

pay/
clear

deliver/
reload

sequential carousel

credit cardsmartcardcoinclear

[1..3]
“or” refinements

“and” refinements

�

�
�

Fig. 3. Vending machine - feature model

Each event name represents an invocation of that event from the B model, which is
composed from the 3 B features. The events full, itemAvail, etc. represent boolean tests
on data in the B model, i.e. are communications between the two models.

SELECT =

pay

 cancel VM
select

RELOAD

deliver

cancel

clear

clear

VM

VM

RELOAD =

VM =

not_full reload VM
| full VM

(itemAvail SELECT | not_itemAvail VM)

RELOAD

Fig. 4. Vending machine - behavioural model in CSP

The vending machine process VM starts with a choice (�) between two options:
(i) process RELOAD and (ii) a prefixed choice (|) between processes SELECT and
VM, depending on whether some suitable item is available for selection. RELOAD will
either reload the machine or not, depending on whether it is already full or not, and then
proceed to VM. SELECT gives a choice between the selection process and RELOAD.
The selection process comprises item selection, followed by payment, delivery of the
item, and clearing payment/issuing change, with a cancellation option at each stage.
Cancellation is of course followed by clearing payment/issuing change if payment has
already been made.

A CSP model describes explicitly the possible event sequences the system might
undergo. This is in contrast to the model-based, or state-based nature of B, which is
designed to define atomic data transitions. While the syntax of a B event makes clear
the data changes during that atomic event, allowed event sequences - or traces - are
only implicitly and semantically defined in terms of sequences of invocations of enabled
events. This behavioural nature of the CSP model gives a more direct picture of how
the traces of the composite system are composed of sub-traces from the features.

Towards Feature-Oriented Specification and Development with Event-B 375

Notice how in Fig. 4 it is not clear that any of the 3 features offers a desirable be-
havioural property: we might expect a feature to be deadlock-free - preventing the sit-
uation where none of its events are enabled. That is, we might expect to see, say, blue
events happening without being interspersed by events of other colours (e.g. deliver or
cancel). More formally we might expect to see the colours in the CSP graph restricted
to strongly connected subgraphs.

While such a notion of deadlock-freedom may be attractive, it cannot be a require-
ment of a feature, which can offer other kinds of functional coherence. For example
in pay/clear pay records the fact of payment being accepted, and clear abstracts over
both the issuing of change, and the clearing of payment received. The two events are
logically separated by the functions (provided by other features) of item delivery, or
payment cancellation. We will return to this point in the following section.

Note that Fig. 4 only describes the behaviour of this particular feature composition.
For the behaviour of a standalone feature, or a different composition, different CSP
models are required.

3.2 Feature Specification in Event-B

Each of the 3 abstract (level 0) features is specified as a B model. It is a very abstract
model, in a sense mimicing the behavioural picture of Fig. 4 by simply recording the
changing state of affairs in boolean variables. More structure, data and algorithm - such
as collection of payment, identification of selected item - is layered in later by refine-
ment. Figures 5 and 6 give two partial feature definitions as partial B models for features
pay/clear and deliver/reload respectively. Each feature is of course specified for reuse
in settings other than the vending machine and must constitute syntactically correct B,
and should be verified, in the first instance, in isolation as usual.

Machine payClear0 has two booleans paid, selected to record that the user has paid
for, and selected his chosen item, respectively. The initialisation is as nondeterministic
as possible to allow specialization - i.e. reduction of nondeterminism - in composi-
tion. Thus initial states appropriate to the feature in isolation may be appropriate in
some compositions but not others. Here, the feature invariant allows selected, paid to
be initialised nondeterministically from B, the constant data of this abstract feature
model. Since - at the level of the single feature - this is the only meaningful selec-
tion of constant data in this example, we do not use a context. In general however, a
feature model will require a feature context - here, payClear0ctx, say - as well as a
machine.

Provided an item has been selected but payment has not yet been made, event pay
records payment in paid. If payment has been made, and the item is no longer selected7,
event clear records payment not made. Thus clear abstracts both over giving change
where necessary, and recording the payment cleared from the system.

Figure 6 specifies feature deliver/reload. This B model has three boolean variables:
selected as before, itemAvail to indicate the required item is available for selection, and
full to indicate the vending machine is full. There is a little more to this invariant: if an

7 The item can be deselected by some event outside this feature, such as deliver or cancel.

376 M.R. Poppleton

MACHINE payClear0
VARIABLES paid, selected
INVARIANT paid ∈ B ∧ selected ∈ B

INITIALISATION paid :∈ B || selected :∈ B

OPERATIONS
pay =

SELECT paid = false ∧ selected = true
THEN paid := true
END;

clear =
SELECT paid = true ∧ selected = false
THEN paid := false
END

Fig. 5. Partial pay/clear - level 0

item is selected, it must be available, and if the VM is full then the required item must
be available. Event deliver models delivery of an item. Details such as decrementing the
item count are left for refinement. Provided the item required is selected and available,
deliver will de-select the item, set full to false, and assign itemAvail nondeterministi-
cally. The next required item may or may not be available. Note that there is no concept
of payment in this feature.

These three feature models have been model-checked with ProB, although this is of
limited value because of the deadlocking that arises in each feature model as discussed
in section 3.1.

MACHINE deliverReload0
VARIABLES selected, itemAvail, full
INVARIANT selected ∈ B ∧ itemAvail ∈ B ∧ full ∈ B

∧ (selected = true ⇒ itemAvail = true)
∧ (full = true ⇒ itemAvail = true)

INITIALISATION
CHOICE selected := false || full := false || itemAvail :∈ B

OR selected := false || full := true || itemAvail := true
OR selected := true || full :∈ B || itemAvail := true
END

OPERATIONS
deliver =

SELECT selected = true ∧ itemAvail = true
THEN selected := false || itemAvail :∈ B || full := false
END;

reload = ...

Fig. 6. Partial deliver/reload - level 0

Towards Feature-Oriented Specification and Development with Event-B 377

4 Composition of Features

We illustrate composition by giving a partial composite B model including event de-
liver in Fig. 7. We will define composition mechanisms that are automatable as far as
possible, while supporting the creative user design input that will usually be necessary.

Note that the text-level composition of n feature models involves the composition
of more than n modules: in general (unlike the example) each feature will have at least
one generic context defining static data. In composing the features, other objectives may
be being addressed: further information may be added (refinement of context), and/or
product line specialization may be performed (generic instantiation of context).

MACHINE vending0
VARIABLES selected, paid, itemAvail, full
INVARIANT selected ∈ B ∧ paid ∈ B ∧ itemAvail ∈ B ∧ full ∈ B

∧ (selected = true ⇒ itemAvail = true)
∧ (full = true ⇒ itemAvail = true)

INITIALISATION
paid := false ||
CHOICE selected := false || full := false || itemAvail :∈ B

OR selected := false || full := true || itemAvail := true
END

OPERATIONS
...
deliver =

SELECT paid = true ∧ selected = true ∧ itemAvail = true
THEN selected := false || itemAvail :∈ B || full := false
END;

reload = ...

Fig. 7. Partial VM - level 0

1. Identifiers: Selection of identifiers in the composed model - machine and context -
may require user input. In our example the identifiers in all three features have been
chosen to harmonize variables: e.g. selected in payClear0 represents the same vari-
able as selected in selCancel0. In general the user may need to change identifiers
to harmonize on a variable, e.g. if sel and selct in two composing features represent
the same variable, then rename sel to selct. Alteratively she may need to change
identifiers to distinguish between variables: e.g. paid in payClear0 may represent a
different variable from paid in some other feature concerned with payment.

2. Data: sets, constants, variables: All identifiers are concatenated in their respective
sections of the composed model (sets, constants in context; variables in machine).

3. Constraints: axioms and invariant: These predicates are conjoined in their respec-
tive sections of the composed model (axioms in context; invariant in machine). The
user may strengthen these predicates manually. The well-definedness of the com-
posite axioms and invariant are checked by the context PO - “A context of sets and

378 M.R. Poppleton

constants exists subject to the axioms” - and the initialization PO - “The initializa-
tion establishes the invariant”.

4. Initialization: Feature initialization clauses are composed - in an automatable man-
ner - by (i) placing all variable assignments in parallel (i.e. as a variable list assign-
ment), and within that (ii) composing multiple assignments to a single variable by
intersection of transition sets. That is, by x :: 1..5 || x :: {2, 4, 6} (“assign to x
any natural between 1 and 5, and in parallel assign to x one of 2, 4 or 6”) we mean
x :: {2, 4}. Suitable nondeterminism in feature initializations - supported by feature
contexts - will give scope for this. In any event, the feasibility of such a composed
initialization is checked in the initialization PO.

In the example user constraints are imposed on the composed initialization:
selected, paid are fixed false since a VM must start without a selection and payment.

5. Events: Distinct events are concatenated in the composite machine. Multiple in-
stances of an event e from multiple features8 are composed in the same way as
multiple initialisations; these might be thought of as feature views of the event e.
Where event views arise, there are two aspects to event composition:

– Guards: The view guards are conjoined. User manual guard strengthening is
permitted: in the example, deliver is strengthened with paid = true, required
in a system with payment. Similarly, select is strengthened with paid = false,
since selection always precedes payment in our composite model. A new guard
satisfiability PO is required to check the composite guard is not vacuously false.

– Assignments: These are composed as for initialization. User manual constraint
of the composed assignment is permitted. Well-definedness of the composite
assignment is verified by the event consistency PO - “This event re-establishes
the invariant”.

We can think of guard and invariant strengthening as forms of specialization of a
simple composition of feature specifications. The feature model Fig. 3 of this composed
abstract VM with payment could be annotated with an expression something like the
following:

(+)([payClear0, deliverReload0, selCancel0],
[(deliver,gs, paid = true),

(select,gs, paid = false)])

This denotes a specialization which is a function of the composition of these three
features, named in the first (sequence) argument. The second argument gives the se-
quence of event specializations mentioned above. In the general case the specialization
would include details of identifier substitutions within the composed features.

The composite model has been fully model-checked with ProB.

4.1 Towards Feature Refinement

Figure 8 shows the extent of the practical VM work to date, giving some practical
confidence in this enterprise of feature-orientation in Event-B. We have ProB-model-
checked the abstract models (level 0), i.e. three features and one composite VM. We

8 In the vending machine multiple instances of an event do not arise as each event is unique to
its feature. In the FMS however this does happen.

Towards Feature-Oriented Specification and Development with Event-B 379

have constructed and model-checked a refinement model (level 1) for each of the three
feature models and for the composite VM. We have also refinement-checked each of
these four refinements. To summarize the verification completed, all models and solid-
line refinements in Fig. 8 have been checked.

payClear0

deliverReload0 selectCancel0

VM0

VM1

payClear1

deliverReload1 selectCancel1

Fig. 8. Vending machine - modelling and verification

Each feature refinement model, and the composed refinement model have been con-
structed as before, albeit containing more concrete design structure and algorithm -
space constraints prevent us elaborating here.

5 Conclusion and Further Work

Via case study experimentation we have proposed a syntactic procedure for compos-
ing feature models in Event-B. Our experiment gives some confidence that when using
the procedure (i) design and compose abstract features, (ii) design and check (con-
crete) feature refinements, (iii) compose the concrete feature refinement models, then
the composite concrete model should refine the abstract one. This is a flexible mecha-
nism requiring tool support as suggested in sec. 4.

We next consider the extent to which our new feature composition mechanisms break
the existing decomposition of refinement mechanism in Event-B, and the implications
of this fact. Note that in Fig. 1(b) every line is a refinement: each component is refined
by its respective composite. In our feature-compositional approach, only the vertical
lines in Fig. 8 for the feature refinements (step (ii) above) are definitely refinements;
ongoing theoretical work will seek guarantees that the composition mechanisms we use
will produce a refinement of the composite model.

1. User-strengthening of composite axioms and invariant is problematic as it breaks
the possibility of the composite model refining each feature.

2. An event guard may be manually strengthened in refinement, as we have done for
deliver and select. However, refinement requires that the concrete model does not
deadlock more often than the abstract one; thus if one event guard strengthens, other

380 M.R. Poppleton

events must be adapted, or new ones added in the concrete model to compensate.
This remains to be investigated.

3. Similar problems arise with manual strengthening of the composition of initialisa-
tions and event assignments.

4. Composition of multiple event, or initialisation viewpoints is not defined in the
decomposition of refinement mechanism. The implications of this remain to be
investigated.

In summary, although there may be certain simple feature composition scenarios that
are compatible with - i.e. represent the inverse of - the Event-B decomposition of re-
finement mechanism Fig. 1(b), in general decomposition will not be directly applicable.
That is, work is required to investigate the extensibility of the mechanism to guarantee
that composing feature refinements is equivalent to refining composed features. Practi-
cal case study work - as in this paper - will provide evidence of specification patterns
that afford compositionality; this will guide the theoretical work. It is unlikely that
such guarantees will emerge for the fully general procedures for feature refinement and
composition that we sketch here. Theoretical results defining specification patterns that
guarantee composition will serve as methodological guidance to developers, in princi-
ple whilst using tool support.

Fig. 1(a) represents the theory of refinement-preserving composition mappings that
we seek. That is, given a set of features {f0i}, each instantiated with data {argsi} we
might compose these using some mechanism Comp(args)({Insti(argsi)(fi)}) to give
the abstract composed model comp0. The question is, under what conditions can this
composition mechanism - or some adaptation of it - be applied to the refined features
{f1i} in order to produce a refinement of comp0 ?

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.-R., Clear, Sy.: Atelier-B (1998)
http://www.atelierb.societe.com/index uk.htm

3. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae, pp. 1001–1026 (2006) (in press)

4. Amyot, D., Logrippo, L. (eds.): Proceedings FIW ’03, Seventh International Workshop on
Feature Interactions in Telecommunication and Software Systems, Ottawa, Canada. IOS
Press, Amsterdam (2003)

5. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: feature modeling plug-in for Eclipse. In:
Eclipse ’04: Proceedings of the 2004 OOPSLA workshop on Eclipse technology eXchange,
pp. 67–72. ACM Press, New York, NY, USA (2004)

6. Back, R.J.R.: A calculus of refinements for program derivations. Acta. Informatica 25,
593–624 (1988)

7. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, Springer, Heidelberg (2005)

8. Butler, M., Leuschel, M.: Combining csp and b for specification and property verification.
In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 221–236.
Springer, Heidelberg (2005)

http://www.atelierb.societe.com/index_uk.htm

Towards Feature-Oriented Specification and Development with Event-B 381

9. Cansell, D., Abrial, J.-R., et al.: B4free. A set of tools for B development (2004), from
http://www.b4free.com

10. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering.
IEEE Software, pp. 37–45 (November/December 1998)

11. Czarnecki, K., Antkiewicz, A.: Mapping features to models: A template approach based on
superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp.
422–437. Springer, Heidelberg (2005)

12. Gilmore, S., Ryan, M.: Language Constructs for Describing Features: Proceedings of the
FIREworks Workshop. Proceedings of the FIREworks Workshop. Springer, Heidelberg
(2001)

13. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R.
(eds.) ESOP86: European Symposium on Programming. LNCS, vol. 213, Springer, Heidel-
berg (1986)

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International (1985)
15. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering In-
stitute, Carnegie-Mellon University (November 1990)

16. Lee, K., Kang, K.: Feature dependency analysis for product line component design. In: ICSR,
pp. 69–85 (2004)

17. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method. Technical
report, Electronics and Computer Science, University of Southampton (2006)

18. Lutz, R., Gannod, G.: Analysis of a software product line architecture: an experience report.
Journal of Systems and Software 66, 253–267 (2003)

19. Macala, R., Stuckey, Jr. L., Gross, D.: Managing domain-specific, product-line development.
IEEE Software, pp. 57–67 (May 1996)

20. Métayer, C., Abrial, J.-R., Voisin, L.: Event-B Language. Technical Report Deliverable 3.2,
EU Project IST-511599 - RODIN (May 2005) http://rodin.cs.ncl.ac.uk

21. Reiff-Marganiec, S., Ryan, M.D. (eds.): Proceedings ICFI 2005: Feature Interactions in
Telecommunications and Software Systems VIII, Leicester. IOS Press, Amsterdam (2005)

22. Snook, C., Poppleton, M., Johnson, I.: The engineering of generic requirements for failure
management. In: Kamsties, E., Gervasi, V., Sawyer, P.(eds.) Proc. Eleventh International
Workshop on Requirements Engineering: Foundation for Software Quality, pp. 145–160,
Oporto, March 2005, Essener Informatik Beitraege (2005)

23. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proc.
RE’01 - International Joint Conference on Requirements Engineering, pp. 249–263, Toronto,
August 2001, IEEE (2001)

24. Zhang, W., Zhao, H., Mei, H.: A propositional logic-based method for verification of feature
models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.
115–130. Springer, Heidelberg (2004)

http://www.b4free.com
 http://rodin.cs.ncl.ac.uk

Author Index

Aksit, Mehmet 247
Al Balushi, Taiseera Hazeem 306
Alkkiomäki, Ville 190
Aurum, Aybüke 109

Berntsson Svensson, Richard 277
Birk, Andreas 300
Borg, Andreas 341
Boyd, Stephen 203
Brinkkemper, S. 93

Dabhi, Divyesh 306
Daneva, Maya 116
Darimont, Robert 292
Davis, Alan 129
Diepen, G. 93
Dieste, Oscar 129
Doerr, Joerg 320

Fricker, Samuel 144

Gallina, Barbara 63
Gervasi, Vincenzo 203
Gorschek, Tony 144
Greenwood, J. 175
Guelfi, Nicolas 63, 78

Heller, Gerald 300
Herrmann, Andrea 320
Heymans, Patrick 1, 18
Hickey, Ann 129
Höst, Martin 277

Jones, S. 175
Juristo, Natalia 129

Kerkow, Daniel 320

Laukaitis, Algirdas 218
Lemoine, Michel 292
Li, C. 93

Lockerbie, James 33
Loucopoulos, Pericles 306

Maiden, Neil A.M. 33, 175
Manning, S. 175
Matulevičius, Raimundas 18
Moreno, Ana 129
Myllyperkiö, Petri 144

Ncube, Cornelius 33
Noppen, Joost 247
Nytrø, Øystein 262

Paech, Barbara 1
Patel, Mikael 341
Perrouin, Gilles 78
Pohl, Klaus 48
Poppleton, Michael R. 367

Regnell, Björn 277
Rinke, Thomas 335

Sampaio, Pedro R. Falcone 306
Sandahl, Kristian 341
Sawyer, Pete 1
Schneider, Kurt 160
Sikora, Ernst 48
Sindre, Guttorm 355
Smolander, Kari 190
Sørby, Inger Dybdahl 262

van den Akker, J.M. 93
van den Broek, Pim 247
Vasilecas, Olegas 218

Weyer, Thorsten 335
Wieringa, Roel 116
Winkler, Stefan 232
Wohlin, Claes 109

Zarvić, Novica 116
Zowghi, Didar 203

	Title
	Preface
	Organization
	Table of Contents
	REFSQ 2007 International Working Conference on Requirements Engineering: Foundation for Software Quality
	Introduction
	The Program
	Goal-Driven RE
	Products and Product Lines
	Value Based RE and the Value of RE
	Requirements Elicitation
	Requirements Specification
	Industrial Experience of RE
	Requirements Quality and Quality Requirements

	Concluding Remarks
	Appendix

	Comparing Goal Modelling Languages: An Experiment
	Introduction
	Theory
	Goal Modelling Languages
	Quality Evaluation
	Semiotic Quality Framework
	Quality Framework Application

	Experiment Design
	Results
	Analysis Method
	Goal Model Evaluation
	Language Evaluation
	Threats to Validity

	Discussion
	Language Quality
	Goal Model Quality

	Lessons Learnt and Future Work
	References

	Automatically Generating Requirements from i* Models: Experiences with a Complex Airport Operations System
	Introduction
	The VANTAGE System
	i* System Models for VANTAGE
	REDEPEND
	Requirements Generation Patterns in REDEPEND
	Requirements Generation Features

	Requirements Generation for VANTAGE
	Requirements Generation Process
	Requirements Review Process
	Three Research Questions

	Results
	Research Questions Revisited
	Conclusion and Lessons Learned
	References

	Structuring the Co-design of Requirements and Architecture
	Introduction
	The Need for the Co-design of Requirements and Architectural Artefacts: A Simplified Example
	Overview on the Proposed Co-design Method
	Key Artefacts
	The Five Sub-processes
	Conclusion and Experience
	References

	A Template for Requirement Elicitation of Dependable Product Lines
	Introduction
	Background
	Software Product Lines
	Dependability
	Use Case Scenario-Based Elicitation

	Eliciting SPL Dependability
	DOMET Extension
	UCET Extension

	Case Study
	Lessons Learned from the Template Usage
	Non Use-Case-Based Requirements Elicitation for SPLs
	Conclusion and Future Works
	References

	Flexible Requirements Analysis Approach for Software Product Lines
	Introduction
	Current Approaches for SPL Analysis
	Product Derivation by Configuration
	Product Derivation by Transformation
	Discussion

	FIDJI Analysis Model
	Product Analysis Through Model Transformations
	Transformation Language
	Derivation Constraints
	Derivation Process

	Example
	Analysis Model
	Product Derivation

	Conclusions
	References

	Integrated Requirement Selection and Scheduling for the Release Planning of a Software Product
	Introduction
	Example of Release Planning Problem
	Problem Illustration

	A First Analysis
	Precedence Constraint and Requirement Dependency
	Scheduling Without Precedence Constraint
	Scheduling Without Team Division

	An ILP Model for Requirement Scheduling
	Problem Formulation

	A Combined Model for Requirement Selection and Scheduling
	Formulating the ILP Model
	Extensions of the Model

	Prototype
	Simulation Tests
	Results of the Simulation 1: The Influence of Dependencies on Project Plan
	Results of the Simulation 2: Model Comparison

	Conclusion and Future Research
	References

	A Value-Based Approach in Requirements Engineering: Explaining Some of the Fundamental Concepts
	Introduction
	Background
	History of “Value” Concept
	Defining Value

	Challenges to Requirements Engineers
	Discussion
	Conclusion
	References

	Value-Based Requirements Engineering for Value Webs
	Introduction
	Problems with Traditional ISP in Value Webs
	Solutions
	Example
	Discussion and Further Research
	References

	A Quantitative Assessment of Requirements Engineering Publications – 1963–2006
	Introduction
	Research Method
	Research Questions
	Data Collection

	Results
	Earliest Papers
	Publication Volume and Trends
	Publication Types and Outlets
	Author Productivity and Authorship Patterns
	Organization Types
	Author Affiliations
	National Analysis

	Limitations
	Future Research
	Subjects of Research
	Idea Creation and Use
	Maturity of Research

	Summary and Conclusions
	References

	Handshaking Between Software Projects and Stakeholders Using Implementation Proposals
	Introduction
	Background
	Implementation Proposal Concept and Handshaking Process
	Implementation Proposals
	Handshaking Process

	Preliminary Experiences
	Related Work
	Conclusions and Future Work
	References

	Generating Fast Feedback in Requirements Elicitation
	Introduction: Slow Feedback in Requirements Elicitation
	Analyzing Information Flow
	The Role of Information Flow in Software Projects
	Basic Concepts of the FLOW Modelling Technique
	Typical Information Flows During Requirement Analysis

	Applying the “By-product Approach”
	The By-product Approach
	Application to Fast Feedback Interviews: The Vision

	A Technique to Generate Fast Feedback
	Fast Feedback Needs Tool Support
	Fine Tuning Is Essential for Tool and Technique
	Fast Feedback Output

	Related Work and Discussion
	Conclusions
	References

	Informing the Specification of a Large-Scale Socio technicalSystem with Models of Human Activity
	Introduction
	DMAN and the RESCUE Process
	Concepts Used in Models of Human Activity for DMAN
	Basic Concepts
	Additional Concepts for Structuring Models of Human Activity

	Human Activity and Use Case Modeling in DMAN
	Data Collection and Generation of Human Activity Models
	Usefulness of HAD Concepts
	Overview of Relationships Between HADs and UCDs
	Use of Individual Concepts from the Human Activity Descriptions

	Discussion
	References

	Integration Use Cases – An Applied UML Technique for Modeling Functional Requirements in Service Oriented Architecture
	Introduction
	Integration Use Cases
	Graphical Integration Use Case Diagram
	Textual Integration Use Case Specification

	Project View
	An Example Business Process

	Service Repository View
	Tools
	Practical Experiences and Conclusion
	References

	Optimal-Constraint Lexicons for Requirements Specifications
	Introduction
	Optimal-Constraint Process – Design Goals
	Design Goal #1: To Be Readable
	Design Goal #2: To Be Sufficiently Expressive
	Design Goal #3: To Be Unambiguous

	Optimal-Constraint Process – Description
	Introducing Replaceability
	Optimal-Constraint Process

	Optimal-Constraint Process – Design Decisions and Rationale
	Parts of Speech to Constrain
	Shallow Parsing and Word Sense Disambiguation
	Similarity Measurement

	Applying the Process – Example
	Limitations and Future Work
	Replaceability Measure
	Integrating with Constrained Grammars

	Conclusion
	References

	Integrating All Stages of Information Systems Development by Means of Natural Language Processing
	Introduction
	General Framework of the Solution
	Business Knowledge Bases and Formal Concept Analysis
	Vector Space Representation of the Conceptual Model
	Self-organizing Map of the IS Conceptual Model
	Experiment
	Conclusion
	References

	Information Flow Between Requirement Artifacts. Results of an Empirical Study
	Introduction and Motivation
	Related Work
	The Survey
	Results
	Methods, Tools, and Artifacts
	Change and Inconsistency
	Flow of Information Between Artifacts

	Discussion and Conclusion
	References

	Imperfect Requirements in Software Development
	Introduction
	Problem Statement
	An Example: Traffic Management System
	Imperfect Software Requirements as Input of the Software Design Process

	Software Design with Imperfect Information
	A Trace Model for Artifacts and Relations
	The Fuzzy Requirement Concept
	Optimization of the System Functionality Trade-Off

	Analysis of the Approach Using the Example Case
	Analysis with Fuzzy Requirements

	Related Work
	Decision Models and Imperfection Support of Software Processes
	Traceability of Intermediate Design Artifacts in Software Engineering

	Conclusions
	References

	Towards a Tomographic Framework for Structured Observation of Communicative Behaviour in Hospital Wards
	Introduction
	Background and Related Work
	Observational Studies in Hospital Wards
	Study 1: Characterizing Complex Cooperative Situations
	Study 2: The Patient Discharge Process
	Study 3: Drug Prescription and Administration Situations
	Study 4: Following Physicians
	Lessons Learned

	A Framework for Structured Observation
	Definitions
	Framework Application
	Focusing and Iterative Development of Observation Forms
	Example Analysis

	Discussion
	Conclusions and Future Work
	References

	A Quality Performance Model for Cost-Benefit Analysis of Non-functional Requirements Applied to the Mobile Handset Domain
	Introduction
	Research Methodology
	The QUPER Model
	Case Study Findings
	Local Connectivity
	Positioning
	Java Platform
	Mobile TV
	Memory
	Radio Network Access
	Discussion of Case Study Findings

	Related Work
	Conclusions
	References

	Security Requirements for Civil Aviation with UML and Goal Orientation
	Context
	Building Requirements for TARMS
	Identifying End Users and Eliciting Needs - Step 1
	Use Cases - Step 2
	Using GORE (Goal Oriented Requirements Engineering) - Step 3
	Producing the SRD - Step 4

	Validation and Verification
	Validating TARMS
	Validating SAFEE

	Conclusion: Lessons Learnt
	UML Use Cases Are Not Sufficient to Elicit Requirements
	End Users Are More Able to Invalidate Than Validate
	A GORE Model Is a Mandatory Referential

	References

	Challenges for Requirements Engineering and Management in Software Product Line Development
	Introduction
	A Brief Survey of REM Challenges
	REM Challenges in SPL Development
	Summary and Conclusions
	References

	ElicitO: A Quality Ontology-Guided NFR Elicitation Tool
	Introduction
	Background
	The Quality Ontology Underpinning ElicitO
	ElicitO Tool Goals and Architecture
	Using ElicitO in a Web Development Project
	Related Work on Tools for Supporting Requirements Elicitation
	Discussion
	Conclusions and Future Work
	References

	Exploring the Characteristics of NFR Methods – A Dialogue About Two Approaches
	Introduction
	Case Study
	MOQARE
	The IESE-NFR-Method
	Same Goals, Different Means
	Tradeoffs
	Conclusion and Future Work
	References

	Defining Reference Models for Modelling Qualities: How Requirements Engineering Techniques Can Help∗
	Introduction
	Modelling Quality Requirements with the UML QoS-Profile
	The Definition of a Quality Reference Model as RE-Process
	The Three Dimensions of Requirements Engineering
	The Four Worlds for Structuring the Context
	The Activities of the RE-Process

	Conclusion and Future Work
	References

	Integrating an Improvement Model of Handling Capacity Requirements with the OpenUP/Basic Process
	Introduction
	Background
	Context Description
	Methodology Issues

	Capacity Sub-process Areas and OpenUP/Basic Extensions
	Overview
	Verification
	Measurement and Tuning
	Specification
	Estimation and Prediction

	Discussion
	Conclusions and Future Work
	References

	Mal-Activity Diagrams for Capturing Attacks on Business Processes
	Introduction
	Mal-Activity Diagrams
	Case Study
	Related Work
	Discussion and Conclusions
	References

	Towards Feature-Oriented Specification and Development with Event-B
	Introduction
	Background and Rationale
	Formal Feature-Orientation

	The Event-B Language and Method
	Basics
	Refinement
	Structuring Mechanisms

	An Example Development
	A Behavioural View in CSP
	Feature Specification in Event-B

	Composition of Features
	Towards Feature Refinement

	Conclusion and Further Work
	References

	Author Index

