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Abstract. The residual variance estimation problem is well-known in
statistics and machine learning with many applications for example in the
field of nonlinear modelling. In this paper, we show that the problem can
be formulated in a general supervised learning context. Emphasis is on
two widely used non-parametric techniques known as the Delta test and
the Gamma test. Under some regularity assumptions, a novel proof of
convergence of the two estimators is formulated and subsequently verified
and compared on two meaningful study cases.

1 Introduction

The residual variance estimation problem is well-known in machine learning
and statistics under various contexts [1,2]. Residual variance estimation can be
viewed as the problem of estimating the variance of the part of the output that
cannot be modelled with the given set of input variables. This type of information
is valuable and gives elegant methods to do model selection [2].

While there exist numerous applications of residual variance estimators to
supervised learning [3], time series analysis [4] and machine learning [5,2,6],
it seems that a rigorous and general framework for analysis is still missing.
For example, in [2] and [7] the theoretical model assumes additive noise and
independent identically distributed (iid) variables.

The principal objective of this paper is to define such a general framework
for residual variance estimation by extending its formulation to the non-iid case.
The model is chosen to be realistic from the point of view of supervised learning.
Secondly, we view two well-known residual variance estimators, the Delta test [8]
and the Gamma test [7] in the general setting and we discuss their convergence
properties. Based on the theoretical achievements, our general approach seems
to open new directions for future research and it appears of fundamental nature.

The paper is organized as follows: in section 2, we formulate the framework
for residual variance estimation in supervised learning. In section 3, we discuss
nearest neighbors and prove a novel theoretical result for empirical moments
of nearest neighbor distances for later use. In sections 4 and 5 we discuss the
Delta test and the Gamma test with some theoretical proofs. Sections 6 and 7
complete the presentation illustrating our experimental results and conclusions.
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2 Residual Variance Estimation

By residual variance estimation we mean estimating the lowest possible mean
squared error (MSE) in a given regression problem based on data. An abstract
formulation of the problem is the goal of this section. Our approach is mainly in-
tended for data-derived modeling using stationary models and is a generalization
of the formulation discussed in [7].

2.1 Basic Definitions

Before stating the general form of the problem of residual variance estimation,
we provide some general definitions that are needed in the subsequent treatment.
Our starting point is standard: we assume that (Ω, F , P) is a probability space
with the σ-algebra F of events and the probability measure P . The random
vectors (Zi)∞i=1 = (Xi, Yi)∞i=1 are independently distributed taking values in
IRn+1 with distributions given by the joint densities pi(x, y) (w.r.t. the Lebesgue
measure). The scalar variables (Yi) model the output of a system, whereas (Xi)
describe the input. In practice, only a finite sample (Xi, Yi)M

i=1 is available and
the number of samples M is the critical quantity when performing any statistical
inference.

In what follows, we will make the technical assumption that the distributions
corresponding to the densities pi are equivalent; that is, almost surely pi(x, y) = 0
implies pj(x, y) = 0 for any pairs (i, j) and (x, y). Justified by the fact that, in
practice, most random variables are bounded, we also assume that the vectors
(Xi, Yi) take values in the unit cube [0, 1]n+1.

2.2 Statement of the Problem

In this section, we state the problem of residual variance estimation in the general
case of independent observations from the point of view of supervised learning.
The novelty of our approach is that we do not assume an additive noise model
and independent identically distributed inputs, like in [7], for example.

In the regression (supervised learning) problem, the goal is to build a model
between the variables (Xi) and (Yi) given a finite sample (Xi, Yi)M

i=1; this can
be done in diverse ways including linear models and neural networks. The goal
is to minimize a cost function, typically, the MSE between the model and the
outputs. In this case, the problem reduces to finding the function g : [0, 1]n → IR
that minimizes

LM (g) =
1
M

M∑

i=1

E[(Yi − g(Xi))2], (1)

even though, in practice, the expectations usually have to be estimated by av-
eraging over the samples available.

The estimation of the residual variance is the inverse of this problem: the
goal is to find the minimum value that the cost LM can achieve on the set of
bounded measurable functions. Denoting the set of bounded and measurable
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functions on [0, 1]n by B([0, 1]n), formally, the problem consists of computing
VM = infg∈B([0,1]n) LM (g). The value VM is the variance of the residual and
it describes the magnitude of the part of the output that remains unexplained
with the theoretically optimal model. From the data-derived modelling point of
view, the quantity VM is the best possible MSE one can achieve using a learning
machine. It is not difficult to see that an estimate for VM is very useful, as it
gives a bound after which we may conclude that a model is overfitting [3].

The following proposition characterizes the solution of the problem from the
theoretical point of view.

Proposition 1. The function that minimizes the cost in equation 1 is given by

g(x) =
M∑

i=1

pi(x)E[Yi|Xi = x]
∑M

i=1 pi(x)
. (2)

If the stationarity condition E[Yi|Xi = x] = E[Yj |Xj = x] holds for all i, j > 0,
then g(x) = E[Yi|Xi = x] for any i > 0.

Proof. Define the density function q(x, y) = M−1 ∑M
i=1 pi(x, y) and assume that

the random variable (X̃, Ỹ ) is distributed according to q. Then, it can be seen
that LM (g) = E[(Ỹ −g(X̃))2], which implies that the optimal function g is given
by g(x) = E[Ỹ |X̃ = x]. It is a well-known fact that the conditional expectation
gives the optimal function in the sense of L2-norm [9]. Hence, starting from the
definition of abstract conditional expectations [9], it is possible to show that g
is of the form defined in equation 2.

3 Nearest Neighbors

The concept of nearest neighbors [7] has found its applications in various fields
including non-parametric regression and classification. Our goal is to use nearest
neighbors based estimators to approximatively solve the problem of residual
variance estimation presented in section 2.2.

The definition of the nearest neighbor is based on the use of a proximity
measure to determine similarity between points. Here, we choose the Euclidean
metric, which is the most widely used choice and natural in absence of prior
information. In such a setting, the nearest neighbor of a point is given by

N [i, 1] = argmin1≤j≤M,j �=i‖Xi − Xj‖. (3)

The k-th nearest neighbor is defined recursively as

N [i, k] = argmin1≤j≤M,j �=i,N [i,1],...,N [i,k−1]‖Xi − Xj‖, (4)

that is, the closest point after removal of the preceeding neighbors. The corre-
sponding distances are defined as di,k,M = ‖Xi − XN [i,k]‖. We also define

δM,α,k =
1
M

M∑

i=1

dα
i,k,M (5)
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which is the empirical α-moment for the distances to the k-th nearest neighbor.
It is worthwhile noticing that the existence of densities for the variables (Xi)M

i=1
ensures that the nearest neighbors are uniquely defined, which would not be the
case for discrete valued data.

Interestingly, we have the following novel extension of the moment bound in
[10], which shows that δM,α,k goes to zero with the rate M−α/n. This result is
also the best rate one can hope for without assumptions on the instrinsic dimen-
sionality of the data; see, for example, the work of Evans on nearest neighbor
distributions [7]. In the following proposition, the notation Sn means the volume
of the unit ball in IRn and B(x, r) the open ball of radius r and center x in IRn.

Proposition 2. With probability one for 0 < α ≤ n,

δM,α,k ≤ 9αk2α/nM−α/n. (6)

Proof. Our proof is essentially deterministic. We start by fixing a realization of
the sample (Xi)M

i=1 and a point x ∈ [0, 1]n. Suppose that x ∈ B(Xj , dj,k,M ) for
some 0 < j ≤ M . Then, if we define the new sample (X̃i)M+1

i=1 as the union of
(Xi)M

i=1 and x with X̃M+1 = x, we know that in this new sample x = X̃Ñ [j,l]
for some 0 < l ≤ k, where the l-th nearest neigbor is taken in the augmented
sample. However, for any choice of r, the number of elements in the set

Ix,r = {0 < i ≤ M : X̃Ñ [i,r] = x} (7)

is bounded by 3nr (see [11] and [7]). This, on the other hand, implies that the
number of elements in the set

Ix = {0 < i ≤ M : X̃Ñ[i,r] = x, for some 0 < r ≤ k} = ∪k
r=1Ix,r (8)

is bounded by (with the notation | · | for cardinality)

|Ix| ≤
k∑

r=1

|Ix,r| ≤ 1
2
k(k + 1)3n ≤ k23n. (9)

Thus, if we pick a point x, it can belong to at most k23n different k-th nearest
neighbor balls B(Xj , dj,k,M ). Denoting by IB(x,r) the indicator function of the
ball B(x, r) and observing that δM,α,k can be written as an integral, we have
(using di,k,M ≤

√
2)

δM,n,k =
S−1

n

M

M∑

i=1

∫

IRn

IB(Xi,di,k,M )(x)dx

=
S−1

n

M

∫

B(0,3)

M∑

i=1

IB(Xi,di,k,M)(x)dx ≤ 9nk2

M
. (10)

By Jensen’s inequality [9] it can be shown that δM,α,k ≤ δ
α/n
M,n,k which implies

that δM,α,k ≤ 9αk2α/nM−α/n finishing the proof.
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4 Delta Test

Delta test is one of the simplest way to solve the residual variance estimation
problem of section 2. The main advantages of this method are robustness and in-
tuitivity, which make it an ideal tool for the applier in low dimensional problems.
For some applications of this method we refer, for example, to [8,6].

The idea in Delta test is that similar inputs in the input space tend to produce
similar outputs, the difference being caused by statistical fluctuations in the
output. To state the Delta test in mathematical terms, we define the sums

γM,k =
1

2M

M∑

i=1

(Yi − YN [i,k])2. (11)

Then, the Delta test approximates the noise variance VM (see section 2.2) as
VM ≈ γM,1. Asymptotically, one would expect this approximation to be a good
one. Indeed, next we will give a novel proof of asymptotic unbiasedness in a
stationary setting.

Proposition 3. Assume that for i, j > 0 and x ∈ [0, 1]n the following two sta-
tionarity conditions hold with the residual variance V = VM independent of M :

E[Yi|Xi = x] = E[Yj |Xj = x] (12)
E[(Yi − E[Yi|Xi = x])2|Xi = x] = V (13)

and also assume that the function f(x) defined by f(x) = E[Y1|X1 = x] is
continuous. Then for any choice k > 0, E[γM,k] − VM → 0 as M → ∞. In
addition, the convergence γM,k − E[γM,k] → 0 holds in probability.

Proof. By independence of the samples: E[Yi−f(Xi)|Xi, XN [i,k], YN [i,k]]= E[Yi−
f(Xi)|Xi] = 0. Based on this observation we conclude that

E[(Yi − f(Xi))(YN [i,k] − f(XN [i,k]))]
= E[(YN [i,k] − f(XN [i,k]))E[Yi − f(Xi)|Xi, XN [i,k], YN [i,k]]] = 0. (14)

Set Δi,kf = f(Xi)−f(XN [i,k]) and Zi,k = (Δi,kf)2+2(Yi−YN [i,k]−Δi,kf)Δi,kf .
Then, by algebraic manipulation and equation 14

E[(Yi −YN [i,k])2] = E[(Yi − f(Xi))2]+E[(YN [i,k] − f(XN [i,k]))2]+E[Zi,k]. (15)

The first term in the right hand side is VM . By the assumptions, E[(YN [i,k] −
f(XN [i,k]))2] = VM and, thus, we only need to show that E[Zi,k] → 0. By
the boundeness of the output, |Zi,k| ≤ 7|Δkf |. Choose now ε, δ > 0 such that
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‖x − z‖ < ε implies that |f(x) − f(z)| < δ/7 for any vectors x, z ∈ [0, 1]n. Then,
by proposition 2 (with I(·) the indicator function)

1
M

M∑

i=1

|Zi,k| = δ +
7
M

M∑

i=1

I(di,k,M > ε) ≤ δ +
7

Mε

M∑

i=1

di,k,M

≤ δ + 63k2/nε−1M−1/n. (16)

Thus, for any δ > 0, lim supM→∞ |E[γM,k] − VM | ≤ δ which concludes the first
part of the proof. For the result γM,k−E[γM,k] → 0 we refer to [7], chapter 7 (the
proof in [7] can be straightforwardly generalized to the non-iid case). It seems,
moreover, possible to prove almost sure convergence using similar techniques, as
discussed in [11].

The first question that arises from our proof is the speed of convergence. It
has been shown in a more restricted setting that the bias of the estimator is of
order M−2/n (see [10]). Based on this result we may conclude that, from the
theoretical point of view, the rate of convergence of the Delta test is reasonable
up to the dimension four. However, for the reason that it cannot take advantage
of linearity in the mapping between the inputs and outputs, we suggest using it
with caution in dimensions higher than two.

It is worthwhile noticing that replacing condition 13 by E[(Yi − E[Yi|Xi =
x])2|Xi = x] = E[(Yj − E[Yj |Xj = x])2|Xj = x] for all i and j (allowing the
optimal residual to be place dependent) seems mainly a technical detail.

5 Gamma Test

Because the Delta test is not expected to give accurate estimates of residual vari-
ance in dimension higher than four, we discuss in this section an improvement of
the method which suits better high dimensional supervised learning problems,
the Gamma test. The Gamma test is a well-known method with many applica-
tions in machine learning and nonlinear statistics [2]. The convergence has been
proven in [7] in a restricted iid setting.

The idea in Gamma test is to assume an approximately linear relationship
between γM,k and δM,2,k (equations 5 and 11). Then, the estimate for the resid-
ual variance VM is obtained by minimizing the cost function (for some k > 1)
C(a, b) =

∑k
l=1(γM,l − a − bδM,2,l)2, and taking VM ≈ a. The validity of the

assumption made when specifying the cost function C(a, b) is by no means triv-
ial. Discussion on this subject can be found in [7] in an iid setting. The next
proposition extends the convergence result in [7].

Proposition 4. Assume that almost surely lim infM→∞ δM,2,2/δM,2,1 > 1 and
assumptions of proposition 3 hold. Then the Gamma test estimate converges in
probability to VM as M goes to infinity.
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Fig. 1. The experimental results. The solid lines corresponds to the mean absolute
deviation from the correct residual variance of Delta test and the dashed to the Gamma
test. Figure (a) corresponds to the first experiment and (b) to the second.

Proof. We define Ek[δM,2,l] = 1
k

∑k
l=1 δM,2,l and Ek[γM,l] in a similar way. Then,

the Gamma test estimator can be written in closed form as

VM ≈ Ek[γM,l] −
Ek[δM,2,l]

∑k
l=1(δM,2,l − Ek[δM,2,l])(γM,l − Ek[γM,l])∑k

l=1(δM,2,l − Ek[δM,2,l])2
. (17)

Denoting the second term in the right hand side by Uk, we notice that, by propo-
sition 3, it is enough to show that Uk → 0. Under the condition δM,2,2/δM,2,1 > c
for some c > 1, we have the inequality

δM,2,k − Ek[δM,2,l] =
1
k

k∑

l=1

(δM,2,k − δM,2,l) ≥ 1 − c−1

k
δM,2,k. (18)

Next, note that Ek[δM,2,l] ≤ δM,2,k and |δM,2,l − Ek[δM,2,l]| ≤ δM,2,k. We may
conclude that |Uk| ≤ C(k)max0<l≤k |γM,l − Ek[γM,l]| for some constant C(k)
which depends only on k. However, by proposition 3, γM,l − Ek[γM,l] → 0 for
0 < l ≤ k, which implies that Uk → 0 (in probability).

The condition lim infM→∞ δM,2,2/δM,2,1 > 1 seems to hold in practical situa-
tions. However, there exists counter-examples where it does not hold and, thus,
some assumption on the densities (pi)∞i=1 is required. Partially this question has
been answered in [7], but the non-iid case is still unexplored. Another open ques-
tion is the speed of convergence of the Gamma test. For discussion see [10], where
it is conjectured that the (worst-case) bias of the estimator is of order M−3/n,
which suggests that in dimensions up to three fast convergence is expected.

6 Experiments

To compare the Delta test and the Gamma test we present two experiments.
In the first case, we simulated samples from the highly nonlinear model Yi =
sin(πX

(1)
i ) sin(πX

(2)
i ) + εi with (εi) independent zero-mean Gaussian noise with
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variance 0.01. In the second case, the model is Yi = 1
2 sin(πX

(1)
i ) sin(πX

(2)
i ) +

1
2 sin(X(3)

i ) sin(X(4)
i )+εi. In both experiments the mean absolute deviation from

the true value is estimated by averaging over 100 simulations. In each experi-
ment the samples (Xi)M

i=1 are independent, half of them being sampled from the
uniform distribution on [−1, 1]n and the other half from the multidimensional
normal distribution (with zero mean and diagonal covariance matrix 1

4 I) limited
to [−1, 1]n. For the Gamma test we fix k = 10 as proposed in [2].

The results are presented in figure 1. Despite the nonlinearity of the problems,
both methods are able to give good estimates in the first experiment, whereas
the second one is more challenging due to higher dimensionality of the input
space and much more samples are needed for good estimates.

7 Conclusions

In this paper, the residual variance estimation problem is stated in the supervised
learning context. Two numerical methods for solving it are presented with proofs
of convergence. Clearly, the Gamma test improves the accuracy of the Delta test.
However, while the estimators converge rapidly in low dimensional problem, high
dimensional nonlinear problems still pose a challenge both from theoretical and
practical point of views. Our formulation of the residual variance estimation
problem opens new directions for future research. For example, it is of interest to
investigate non-stationary systems. Non-parametric residual variance estimators
seem to be able to give solutions under relatively weak conditions while at the
same time being easy to implement.
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