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Abstract. In this paper the activity of a spiking neuron A that re-
ceives a background input from the network in which it is embedded
and strong inputs from an excitatory unit E and an inhibitory unit I is
studied. The membrane potential of the neuron A is described by a jump
diffusion model. Several types of interspike interval distributions of the
excitatory strong inputs are considered as Poissonian inhibitory inputs
increase intensity. It is shown that, independently of the distribution of
the excitatory inpu, they are more efficiently transmitted as inhibition
increases to larger intensities.

1 Introduction

The model we consider here has been at first introduced in [3] and deeply ana-
lyzed in [4]. There we observed that as the importance of the inhibitory inputs
increases, the model responds with higher efficiency to excitatory inputs. In this
paper we investigate on the robustness of such a result. We test whether the
property of the model we observed in [4] is due to the choice of the excitatory
interspike interval distribution or if it is intrinsic of the structure of the model. To
this purpose, we consider four different alternative excitatory interspike interval
distributions, each one of them showing different features and different effects
on the model. And we study the efficiency of the excitatory input transmission
as the inhibition increases. The results discussed in the following allow to con-
clude that the behavior observed in [4] can be generalized to a larger variety of
excitatory interspike interval distribution. So that it is possible to state that the
result is due to the structure of the model.
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2 The Model

The equations. The membrane potential of a neuronal cell is described by the
jump diffusion process V = {Vt, t ≥ 0}, i.e. the random variable Vt gives the prob-
abilistic description of the membrane potential at time t. Each time the process
V crosses a given constant threshold S, we assume that the cell fires and gives an
output spike. Hence the times of firing of the cell are given by the successive values
taken by the random variable T = inf{t ≥ 0 : Vt ≥ S} , V0 < S, that is the so
called first passage time of the stochastic process across the threshold S. We
assume that the process V is given by the following equation

Vt = V0 +
∫ t

0

(
−1

θ
Vs + μ

)
ds + σWt + a+N+

t + a−N−
t , (1)

where V0 < S, a+ > 0 and a− < 0 are constant, the processes N+ = {N+
t , t ≥ 0}

and N− = {N−
t , t ≥ 0} are two independent counting processes, μ ∈ R, θ > 0,

σ > 0 and the process W = {Wt, t ≥ 0} is a standard Brownian motion. The
process V is called a jump diffusion process since it is the sum of a continu-
ous part, where we recognize the Ornstein-Uhlenbeck diffusion process, and two
counting processes, the processes N+ and N−. So that V has continuous sample
paths except in the points of discontinuity corresponding to the times of occur-
rence of events in the processes N+ and N−, where upward or downward jumps
of constant amplitudes a+ and a− take place. Let us recall that the Ornstein
Uhlenbeck process X = {Xt, t ≥ 0} is the solution of the following stochastic
differential equation

dXt =
(

−1
θ
Xt + μ

)
dt + σdWt

X0 = Xrest. (2)

In this paper we consider the process N− a Poisson process of intensity λ−,
i.e. with inter-events distributed as Exponential random variables of parame-
ter λ−. While we assign to the process N+ different inter-events probability
distributions, namely the followings:

1. inter-events distributed according to the random variable T IG, Inverse Gaus-
sian of parameters (SIG/μIG, S2

IG/σ2
IG) with probability density function

gIG(t) =
SIG√

2πt3σIG

exp
[
− (SIG − μIGt)2

2σ2
IGt

]
(3)

2. inter-events distributed according to the random variable T OU, first passage
time of an Ornstein Uhlenbeck process (2) of parameters (μOU, θOU, σOU).
The probability density function of the random variable T OU is not known
in closed form, but it can be simulated.

3. inter-events distributed according to the random variable T Γ , given by

T Γ =

⎧⎨
⎩

T Γ
1 ∼ Gamma (α1, β1) with probability 0.5,

T Γ
2 ∼ Gamma (α2, β2) with probability 0.5.

(4)
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4. inter-events distributed according to the random variable T NET, first pas-
sage time of a jump diffusion process VNET given by (1) where the processes
N+ and N− are both independent Poisson processes of parameters λ+

NETand
λ−

NET.

After each crossing of the threshold S the process V is reset to V0 + N+
T + N−

T ,
where T is the time of occurrence of the crossing. This means that the counting
processes are not reset to N+

0 and N−
0 after the crossings of the threshold and

that the spike train generated by (1) is not a renewal process [4].

Interpretation of the equations. The jump diffusion model (1) above in-
troduced describes the membrane potential of the nerve cell evolving in time
according to the depolarization and hyperpolarization caused by the inputs the
cell receives. The weak and many inputs arriving from the network in which the
cell is embedded are summed together in the continuous part of the process V .
On the other hand the strong and few inputs that have a large impact on the
membrane potential are treated separately and described by the two counting
processes N+ and N−. Figure 1-a gives a graphical interpretation of model (1).
The membrane potential of the cell A is given by the jump diffusion process V ,
obtained summing together weak inputs arriving from the network surrounding
cell A (the arrows in Fig. 1-a) and strong inputs coming from an excitatory
unit, cell E, and an inhibitory unit, cell I. The original formulation of the model
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Fig. 1. Model (1) describes the membrane potential of the cell A, as the sum of the
inputs arriving from the surrounding network, the excitatory unit E and the inhibitory
unit I (panel a). Interspike interval histogram of the spike train of cell E when distrib-
uted as T IG (panel a), T OU (panel b), T Γ (panel c) and T NET (panel d).

arrives to equation (1) from Stein’s model, and inherit from there the two count-
ing processes N+ and N− Poisson distributed. We analyzed such case deep in
details in [4]. There we found that as the frequency of the inhibitory strong in-
puts, λ−, increases, the efficiency of the excitatory unit E, i.e. the number of
spikes in the spike train of the cell E that excite cell A, increases too. In this
paper we are interested in understanding whether this result is due to the Pois-
son distribution of the counting process N+, that gives the times of firing of
the cell E, or if it can be generalized to other distributions. For that reason we
choose four different distributions of the events in the process N+, T IG, T OU, T Γ
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and T NET, and for each of them we study the excitatory efficiency of unit E on
the cell A as the inhibitory frequency λ− increases. Each one of the excitatory
interevents distribution has been chosen for the properties of the spike train it
generates. In Figure 1 the ISI histograms of the cell E when the intervents are
distributed according to T IG (panel b), T OU (panel c), T Γ (panel d) and T NET

(panel e) are plotted. We choose T IG in order to make the cell E firing with ISIs
distribution with very large variance, while we choose T OU so that cell E fires
with large refractory period (with no short lags). Moreover we chose T Γ and
T NET because they make cell E firing with bimodal ISIs distribution. When we
choose T Γ , cell E fires with two well distinct and randomly merged characteristic
times (the two modes of the histogram). On the other hand, when we consider
T NET, cell E fires with two characteristic times, the shorter one of them much
less frequent than the larger one. Let us underline that the interspike intervals in
Fig. 1-e correspond to the output of a small network (cf. Fig. 1-a). This fact in-
duces correlations between successive spikes that are absent when the excitatory
spikes come from the bimodal distribution T Γ (cf. Fig. 1-d).

3 Results

The study of the model (1) is performed in two steps.
First of all the spike train of the cell A is simulated. To this purpose we

had to adapt the classical techniques to simulate diffusion processes (cf. [2]) to
the simulation of jump diffusion processes (cf. [4]). Concerning the simulation
of the spike trains of the cells E and I, we proceed with suitable methods in
each case. The generation of pseudo-random numbers Exponentially distributed
and Gamma(α, β) distributed is trivial thanks to the classical method of inverse
transformation of a uniformly distributed pseudo-random number. While to gen-
erate pseudo-random numbers Inverse Gaussian distributed we follow a method
for inverse transformations with multiple roots (cf. [4]). Finally, to generate the
spike train of the cell E when the inter-events are distributed as T NET, we have
to simulate them running the same algorithm that produces the firing times of
the cell A, but with N+ and N− Poisson distributed.

The study of the simulated spike trains of the cells A, E, and I is performed
plotting histograms of the interspike interval (ISI) distribution of the cell A
and with the analysis of the autocorrelation and crosscorrelation histograms of
the three cells. To plot autocorrelograms and crosscorrelograms we follow the
method proposed by [1] using the program available at http://openAdap.net/.
For each distribution of the excitatory unit E, we plot the excitatory efficiency
as a function of the parameter λ−, where we define excitatory efficiency the
number of events in the spike train of the cell E that excite cell A (provoking
its discharge). To evaluate such number of events we calculate the area of the
peak around the lag zero above the upper confidence limit in the crosscorrelation
histograms between cells A and E.

The threshold level is fixed at S = 10 mV with V0 = 0 mV and the jump ampli-
tudes are a+ = −a− = 5 mV. The values of the parameters of the continuous part
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of process V are fixed as μ = 0.98 mVms−1, θ = 10 ms and σ2 = 0.05 mV2ms−1.
The parameter μ cannot be directly interpreted from a biological point of view. We
choose a value such that μθ < S. This inequality defines the so called subthresh-
old regime of the Ornstein Uhlenbeck process, meaning that the process crosses
the threshold just thanks to the random component W . Finally, in order to have
a biologically compatible frequency of firing of the cell A, the value of σ is fixed
as stated above. The parameter of the inhibitory frequency of firing varies from
λ− = 10 to λ− = 30 ev/s. On the other hand the parameters of the excitatory
distributions are chosen such that the frequency of firing of the cell E is always
maintained in the range [20 ev/s, 30 ev/s].
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Fig. 2. Analysis of model (1) when the excitatory interspike intervals are T IG distrib-
uted. ISIs histograms of cell A for λ− = 10 (panel a), λ− = 20 (panel b) and λ− = 30
ev/s (panel c). Autocorrelation histograms of cells A, E and I (panel d) and crosscorre-
lation histograms of the cells (A,E), (A,I) and (E,I) for λ− = 20 ev/s (panel e). Firing
rate of cell A as a function of λ− (panel f) and excitatory efficiency as a function of
λ− (panel g).

Excitatory Intervents T IG distributed. Let us fix the parameter of the In-
verse Gaussian distribution as follows: SIG = 10 mV, μIG = 0.3 mVms−1 and
σ2

IG = 3 mV2ms−1. So that we obtain an excitatory spike train that fires with
large variance and also for relatively short lags.

The results are illustrated in Fig. 2. In panels a-b-c the ISI histograms of cell
A are plotted as λ− increases. No significant differences are appreciable from
the histograms. The analysis of crosscorrelation histograms (cf. Fig. 2-g) shows
that the excitatory efficiency increases as λ− increases (so that cell A is more
inhibited and its firing frequency decreases, cf. Fig. 2-f).

Excitatory Intervents T OU distributed. Let us fix the parameter of the
Ornstein Uhlenbeck distribution of the excitatory events as follows: μOU = 0.98
mVms−1, θOU ms and σ2

OU = 0.05 mV2ms−1. So that we obtain an excitatory
spike train that fires with relatively large lags and a large refractory period.

The results are illustrated in Fig. 3. In panels a-b-c the ISI histograms of cell
A are plotted as λ− increases. The ISI distribution is distinctly bimodal and the
first peak loses probability mass as the cell A is more inhibited. The analysis
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Fig. 3. Analysis of model (1) when the excitatory interspike intervals are T OU distrib-
uted. ISIs histograms of cell A for λ− = 10 (panel a), λ− = 20 (panel b) and λ− = 30
ev/s (panel c). Autocorrelation histograms of cells A, E and I (panel d) and crosscorre-
lation histograms of the cells (A,E), (A,I) and (E,I) for λ− = 20 ev/s (panel e). Firing
rate of cell A as a function of λ− (panel f) and excitatory efficiency as a function of
λ− (panel g).

of crosscorrelation histograms (cf. Fig. 3-g) shows that the excitatory efficiency
increases as λ− increases (so that cell A is more inhibited and its firing frequency
decreases, cf. Fig. 3-f).

Excitatory Intervents T Γ distributed. Let us fix the parameter of the two
Gamma distributions that build T Γ as follows: α1 = 30, β1 = 0.5 and α2 =
15, β2 = 0.5. So that we obtain an excitatory spike train that fires with two
characteristic times, the two modes of the ISI distribution of the excitatory
spike train respectively (cf. Fig. 1-c).

The results are illustrated in Fig. 4. In panels a-b-c the ISI histograms of
cell A are plotted as λ− increases. The ISI distribution is weakly bimodal and
the tail gains probability mass as the cell A is more inhibited. The analysis
of crosscorrelation histograms (cf. Fig. 4-g) shows that the excitatory efficiency
increases as λ− increases (so that cell A is more inhibited and its firing frequency
decreases, cf. Fig. 4-f).

Excitatory Intervents T NET distributed. Let us fix the parameter of the
process VNET as follows: SNET = 10 mV and aNET

+ = −aNET
− = 5 mV, μNET = 0.98

mVms−1, θNET = 10 ms and σ2
NET = 0.05 mV2ms−1 and λ+

NET = λ−
NET = 10 ev/s.

So that we obtain an excitatory spike train that fires with two characteristic
times, with the shorter lag that is less frequent rather than the larger one (cf.
Fig. 1-d).

The results are illustrated in Fig. 5. In panels a-b-c the ISI histograms of
cell A are plotted as λ− increases. The ISI distribution is weakly bimodal and
the tail gains probability mass as the cell A is more inhibited. Notice that the
excitatory input ISI distribution is very similar to the ISI distribution of the
cell A. The analysis of crosscorrelation histograms (cf. Fig. 5-g) shows that the
excitatory efficiency increases as λ− increases (so that cell A is more inhibited
and its firing frequency decreases, cf. Fig. 5-f).
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Fig. 4. Analysis of model (1) when the excitatory interspike intervals are T Γ distrib-
uted. ISIs histograms of cell A for λ− = 10 (panel a), λ− = 20 (panel b) and λ− = 30
ev/s (panel c). Autocorrelation histograms of cells A, E and I (panel d) and crosscorre-
lation histograms of the cells (A,E), (A,I) and (E,I) for λ− = 20 ev/s (panel e). Firing
rate of cell A as a function of λ− (panel f) and excitatory efficiency as a function of
λ− (panel g).

4 Discussion

We discussed here the results obtained in the study of models (1) as the frequency
of firing of the inhibitory unit I increases, and for different choices of interevents
distribution of the excitatory spike train of unit E.

We selected four different probability distributions we denoted as T IG, T OU,
T Γ and T NET. Each one of such choices produces excitatory spike trains with
specific features we were interested in and has different impact on the firing of
cell A. Let us notice that when we choose T IG, the cell A fires with unimodal
ISIs histogram, while the other choices produce bimodal ISIs distributions, with
more separated peaks in the case T OU and more mixed peaks in the case T Γ .
Finally the choice T NET, makes the cell A fire with ISIs distribution very similar
to the ISIs distribution of the excitatory unit E. The examples discussed confirm
that in the small network modeled with (1) the inhibitory cells play an active
role in signal transmission. Indeed, despite the variety of dynamics exhibited,
the response of cell A to the excitatory spikes from cell E, as the inhibitory
effect from unit I increases, exhibit the same trend, i.e. the excitatory efficiency
increases as the inhibitory frequency of firing increase (cf. Fig. 2-g, 3-g, 4-g and
5-g). In other words, the more the cell A is inhibited, the better it responds to
excitatory inputs. Let us recall that we define excitatory efficiency the number of
events in the spike train of the cell E that excite cell A provoking its discharge.
This feature has been at first analyzed in [4], where in model (1) the two count-
ing processes N+ and N− were considered both Poisson processes. We test here
the robustness of such property with respect to changes of the excitatory distri-
bution of firing. It is now possible to state that such feature is typical of model
(1) in its general formulation and that it is not due to the particular choice of the
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Fig. 5. Analysis of model (1) when the excitatory interspike intervals are T NET dis-
tributed. ISIs histograms of cell A for λ− = 10 (panel a), λ− = 20 (panel b) and
λ− = 30 ev/s (panel c). Autocorrelation histograms of cells A, E and I (panel d) and
crosscorrelation histograms of the cells (A,E), (A,I) and (E,I) for λ− = 20 ev/s (panel
e). Firing rate of cell A as a function of λ− (panel f) and excitatory efficiency as a
function of λ− (panel g).

excitatory distribution performed in the previous work. Moreover we can state
that such property is connected to the internal structure of the model and to
the composition of a continuous diffusive part of the model with the strong
discontinuities produced by the counting processes. From a biological point of
view we could say that the superposition of stimuli of different intensities (i.e.
weak and very frequent ones with strong and less numerous ones) can facilitate
the neuronal transmission of the excitatory signal. In particular more important
inhibitory stimulation makes the cell more efficient in responding to excitatory
inputs. Such result, here tested in a larger validity, confirms the hypothesis that
inhibitory neuronal cells may have a relevant role in neuronal coding and in
information transmission, rather than only in keeping a balance of firing in the
brain.
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