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Abstract. A quite challenging research field in the artificial intelligence domain 
is the design and evaluation of agents handling automated negotiations on 
behalf of their human or corporate owners. This paper aims to enhance such 
agents with techniques enabling them to predict their opponents’ negotiation 
behaviour and thus achieve more profitable results and better resource 
utilization. The proposed learning techniques are based on MLP and GR neural 
networks (NNs) that are used mainly to detect at an early stage the cases where 
agreements are not achievable, supporting the decision of the agents to 
withdraw or not from the specific negotiation thread. The designed NN-assisted 
negotiation strategies have been evaluated via extensive experiments and are 
proven to be very useful.  
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1   Introduction 

Automated negotiations constitute an emerging research field in the artificial 
intelligence domain [1]. In this framework, building intelligent agents adequate for 
participating in negotiations and acting autonomously on behalf of their owners is a 
very complex and demanding task [2]. In automated negotiations three main aspects 
need to be considered [3][4][5]: (i) negotiation protocol and model, (ii) negotiation 
issues, and (iii) negotiation strategies that the agents will employ. 

Negotiating agents aim to address their requirements of their human or corporate 
owners as efficiently as possible. As defined in [5], “Negotiation is a form of 
interaction in which a group of agents, with conflicting interests and a desire to 
cooperate try to come to a mutually acceptable agreement on the division of scarce 
resources”. These resources do not only refer to money, but also include other 
parameters, over which the agents’ owners are willing to negotiate, such as product 
quality features, delivery conditions, guarantee, etc. [6]. In this framework, agents 
operate following predefined rules and procedures specified by the employed 
negotiation protocol [4]. Furthermore, the negotiating agents use a reasoning model 
based on which their response to their opponent’s offers are formulated [7]. This 
policy is widely known as the negotiation strategy of the agent [8]. 
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This paper1 is mainly concerned with the design of negotiation strategies for 
autonomous agents. The proposed strategies are adequate for single-issue bilateral 
negotiations, where agents have strict deadlines. Learning techniques based on MLP 
and GR Neural Networks (NNs) are employed by the client agents, in order to predict 
their opponents’ behaviour and achieve a timely detection of unsuccessful 
negotiations. The proposed NN-assisted strategies have been empirically evaluated 
and turn out to be highly effective with regards to the duration reduction of the 
threads that cannot lead to agreements. 

The rest of the paper is structured as follows. In Section 2, the basic negotiation 
framework is presented and the formal problem statement is provided. Section 3 
describes the NN-assisted strategies proposed as well as the main aspects of the NNs 
employed. Section 4 presents the experiments conducted, while Section 5 summarizes 
and evaluates the results of these experiments. Finally, in Section 6 conclusions are 
drawn and future research plans are described. 

2   The Automated Negotiation Framework Basics 

This paper studies a single issue, bilateral automated negotiation framework. Thus, 
there are two negotiating parties (Client and Provider) that are represented by mobile 
intelligent agents. The agents negotiate over a single issue based on an alternating 
offers protocol [9][10] aiming to maximize the utilities of the parties they represent. 

We hereafter consider the case where the negotiation process is initiated by the 
Client Agent (CA) that sends to the Provider Agent (PA) an initial Request for 
Proposal (RFP) specifying the features of the service/product its owner is interested to 
obtain. Without loss of generality, it is assumed that the issue under negotiation is the 
price of the product or service. Thus, the PA negotiates aiming to agree on the 
maximum possible price, while the CA aims to reduce the agreement price as much as 
possible. Once the PA receives the RFP of the CA, it either accepts to be engaged in 
the specific negotiation thread and formulates an initial price offer, or rejects the RFP 
and terminates the negotiation without a proposal. At each round, the PA sends to the 
CA a price offer, which is subsequently evaluated by the CA against its constraints 
and reservation values. Then, the CA generates a counter-offer and sends it to the PA 
that evaluates it and sends another counter-offer to the CA. This process continues 
until a mutually acceptable offer is proposed by one of the negotiating agents, or one 
of the negotiators withdraws from the negotiation, in case for example its time 
deadline is reached without an agreement being in place. Thus, at each negotiation 
round, the agents may: (i) accept the previous offer, in case their constraints are 
addressed, (ii) generate a counter-offer, or (iii) withdraw from the negotiation. 

Quantity a
lp  denotes the price offer proposed by negotiating agent a  during 

negotiation round l . A price proposal b
lp  is always rejected by agent a  if 

[ ]a
M

a
m

b
l ppp ,∉ , where [ ]a

M
a
m pp ,  denotes agent- a ’s acceptable price interval. In case 

an agreement is reached, we call the negotiation successful, while in case one of the 
                                                           
1 This work has in part been supported by the project “Amigo - Ambient intelligence for the 

networked home environment” (www.amigo-project.org), funded by the European 
Commission in the 6th Framework Programme under the contract number IST 004182. 
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negotiating parties quits, it is called unsuccessful. In any other case, we say that the 
negotiation thread is active. The objective of our problem is to predict the PA’s 
behaviour in the future negotiation rounds until the CA’s deadline expires. More 
specifically, the negotiation problem studied can formally be stated as follows: 

Given: (i) two negotiating parties: a Provider that offers a specific good and a 
Client that is interested in this good’s acquisition, (ii) the acceptable price interval 
[ ]C

M
C
m pp ,  for the Client, (iii) a deadline CT  up to which the Client must have 

completed the negotiation with the Provider, (iv) the final negotiation round index CL  

for the Client, (v) a round threshold d
CL  until which the Client must decide whether to 

continue being engaged in the negotiation thread or not, and (vi) the vector 

{ }P
l

P
l pP = , where 12 −= kl  and ⎥⎦

⎥
⎢⎣

⎢=
2

,...,1
d
CL

k , of the prices that were proposed by 

the Provider during the initial 1−d
CL  negotiation rounds, find (i) the 

vector { }P
l

P
l pP '' = , where 1'2' −= kl  and C

d
C L

L
k ,...,1

2
' +⎥⎦

⎥
⎢⎣

⎢= , of the prices that will be 

proposed by the Provider during the last d
CC LL −  rounds, and (ii) decide on whether 

the Client should continue being engaged in the specific negotiation thread or not. 

3   A Negotiation Strategy Based on Neural Networks 

The policy employed by negotiating agents in order to generate a new offer is called 
negotiation strategy. In principle, three main families of automated negotiation 
strategies can be distinguished: time-dependent, resource-dependent and behaviour-
dependent strategies [3]. These strategies are well defined functions that may use 
various input parameters in order to produce the value of the issue under negotiation 
to be proposed at the current negotiation round. The mechanism proposed in this 
paper enhances any of the legacy strategies with learning techniques based on Neural 
Networks (NNs). In the studied framework, the NN-assisted strategies are used by the 
CA in order to estimate the future behaviour of the PA. This section presents the 
proposed NN-assisted strategy and describes the specifics of the NNs employed. 

3.1   Enabling PA Behaviour Prediction 

As already mentioned, the research presented in this paper aims to estimate the 
parameters governing the PA’s strategy enabling the CA to predict the PA’s future 
price offers. The objective is to decide at an early round whether to aim for an 
agreement with the specific PA, or withdraw from the negotiation thread as early as 
possible, if no agreement is achievable. For this purpose, two different Neural 
Networks (NNs) have been employed. These NNs are trained off-line with proper 
training sets and are then used during the on-line negotiation procedure whenever the 
CA requires so. The procedure starts normally, and as long as there are enough 
proposals made by the PA, the CA uses the NNs to make a reliable prediction of its 
opponent’s strategy. This only requires a few negotiation rounds (compared to the 
CA’s deadline expiration round) and this is the main reason why this technique turns 
out to be extremely useful.  
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Most negotiation strategies are based on an offer generation procedure that 
gradually gives ground on the value of the issue under negotiation towards a mutual 
agreement [3]. In addition to the [ ]a

M
a
m pp ,  interval that represents the range of 

potential price offers of agent a , there are mainly 3 other parameters that determine 
the agent’s negotiation strategy: ak , pL  and β . Parameter [ ]1,0∈ak  determines the 

initial offer made by the agent at 0=t , while 0>β  is the concession rate. In the 

study presented in this paper, ak  does not lie among the parameters for prediction as 
it is safely assumed that it is equal to the PA’s initial price offer. pL  represents the 

PA’s deadline. Depending on the value of β , three strategy types are distinguished 
[3]: Boulware ( 1<β ) where the agent sticks to its initial offer until the deadline is 
close to expiring, Conceder ( 1>β ) where the agent starts conceding to its reservation 
value fairly quickly, and Linear ( 1=β ) where the agent concedes by the same 
amount at each negotiation round. Without loss of generality, we focus on the case 
where the PA follows a polynomial strategy of arbitrary concession rate and timeout.   

The CA negotiates based on a legacy strategy until round d
CL . Then, the CA makes 

use of the NNs to obtain estimations β  and pL . Round d
CL  will be hereafter called 

the prediction round. In the experiments conducted we have 30=d
CL  and 100=CL . 

Based on the history of the PA’s price offers, NNs attempt to produce a valid 
estimation of the PA’s offer generation function. Then, the CA may determine 
whether the current negotiation thread can lead to an agreement or this is not feasible 
given the CA’s deadline. Thus, the NN-assisted strategy enables the CA to save time 
and withdraw early from negotiation threads that will not result in agreements.  

3.2   The Neural Networks Employed 

Lately, Neural Networks (NNs) have been extensively used in real world applications, 
as they can be trained to approximate the responses originating from most of the 
physical or not systems. This behaviour can be modelled so that output estimation 
with similar inputs is feasible and accurate. In practice, there are two main kinds of 
NN architectures, the feedforward NNs and the feedback or recurrent ones applied in 
totally different problem domains [11]. In our framework, where the prediction of a 
continuous function is required, we selected to study two types of NNs with no 
feedback loops: the multilayer perceptron (MLP) NN and the Generalized Regression 
(GR) NN. The latter is a special case of a Radial Basis Function (RBF) NN that is 
more appropriate for on-line function approximation [11].  

A MLP is a common NN architecture applied in various domains, where solutions 
to diverse and difficult problems are required [12]. Critical parameters affecting the 
NN’s performance are: the number of hidden layers, their corresponding neurons, the 
NN’s weights and the hidden layers’ transfer functions.  The former are decided by 
the complexity of the problem and most of the times require extensive experiments to 
identify an adequate solution [13]. Regarding the network weights, the MLPs use the 
error back-propagation algorithm [14] to train their values on the supervised learning 
phase. For the transfer functions we can select among various different species [15].  
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On the other hand, the RBF NNs [11] have been used mainly for interpolation in 
multidimensional spaces. This method requires a network architecture that is strict 
and rather impractical for real world applications, as it supposes a NN that is as large 
in nodes as the number of the different data points. Thus, we should seek for ways to 
reduce this size. In this paper we are using a GR NN that is suitable for function 
approximation with arbitrary accuracy [16]. 

As the NNs will be used by usually resource limited autonomous agents, the NNs’ 
sizes need to be reduced as much as possible. Furthermore, for the same reason, the 
time required for prediction, and the storage resources required by the NNs need to be 
very limited, while the NNs’ estimation accuracy needs to be significantly high. 
Driven by the design principles above, in the remainder of this section we focus on 
reasoning over the specific characteristics demonstrated by the NNs employed. 

For the MLP, we used a training function based on the Levenberg-Marquardt 
algorithm [13] as it is the most convenient for such problems. Each training vector 
forms the history of PA’s offers until round 30 (as 30=d

CL ). Thus, the MLP can be 

used after round 30 to provide predictions for the future PA offers. The set of training 
vectors derives from the application of different values for parameters β  and pL  to 

the polynomial function f . The input vectors are generated for the following values 

of the specified output parameters: β =[0:0.1:0.9 1:1:10], ak =[0] and pL =[30:30:300]. 

From the above values we can see that 19x1x10=190 different vectors have been 
applied, each for 200 epochs. The 190 output vectors above are the target of the 
MLP’s training. The size of the MLP is 23 neurons on the single hidden layer (log-
sigmoid transfer function) and 3 output neurons (linear). This architecture was proven 
to be the best solution when different networks were tested for estimation efficiency 
after exhaustive experiments for the MLP architecture. Similarly to the MLP training, 
we used for the GR training input vectors of 30 values for polynomial function f , 

with all the possible combinations of the following targets: β =[0.1:0.1:0.9 1:0.5:10], 
ak =[0] and 

pL =[30:30:300]. Note here that the required vectors (28x1x10=280) are 

much more than the MLP and the required neurons are thus 280 (1 for each pattern). 
This was expected, as RBF (and thus GR) NNs tend to have bigger sizes compared to 
MLP NNs for the same problem. After exhaustive experiments, we selected the 
spread parameter to be equal to 0.075 instead of the default (1.0), in order to fit data 
precisely instead of a smoother and less precise fit [13].  

Both NNs are employed by CAs and can provide reliable prediction of the PA’s 
behaviour, once sufficient input samples (proposals) are available. The experiments 
conducted and the NNs performance evaluation are presented in Sections 4 and 5.  

4   Experiments 

In this section, the experiments conducted to evaluate the performance of the designed 
MLP and the GR NNs concerning the estimation of the future behaviour of the 
negotiating PA are presented. The first experiments’ family aims to compare the 
actual behaviour of the PA with the one predicted by the MLP and the GR NNs, when 
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[ ] [ ]100,0, =P
M

P
m pp , 200=PL  and [ ]10,1.0∈β . The sample values for β  are derived 

from a uniformly distributed random vector of 100 values in the aforementioned area: 
50 1<β  (Boulware) and 50 1>β  (Conceder). The estimated parameters include: the 
future PA offers until the 100th negotiation round, the minimum PA price offer until 
then and the PA’s concession rate ( β ). The second experiment family investigates 

the case where [ ] [ ]100,0, =P
M

P
m pp , 1=β  and ]250,150[∈PL . The sample values for 

PL  are: 150:1:250. The estimated parameters include: the future PA price offers until 
the 100th negotiation round and the minimum PA price offer until then. 

(a) (b)  

Fig. 1. Actual PA price offer and PA price offer predicted by (a) a MLP-NN and (b) a GR-NN, 
for 100 negotiation rounds when 200=PL , 0=P

mp , 100=P
Mp  and ]10,1.0[∈β  

The results of the two families of experiments are depicted in Figures 1 and 3a  
(1st experiment set), Figure 2 (2nd experiment set), and Figure 3b (both experiment 
sets). In Figures 1a and 2a, the MLP NN estimation for the PA’s price offer is 
depicted (as a blue surface) against the actual PA offer (represented by the red sphere 
marks) for the 1st and the 2nd experiment family respectively. In Figures 1b and 2b, 
the same parameters are illustrated but there the GR NN is employed instead of the 
MLP NN. 

As illustrated in Figure 1, the MLP- and the GR-NN perform very similarly 
managing to accurately predict the PA’s price offer in principle. In the same Figure, 
one may observe that both NNs are used until the 58th experiment (i.e. for 8.2≤β ). 

For higher concession rates, an agreement is reached before the 30th round and the NN 
is not necessary for opponent behaviour prediction. As depicted in Figure 2, the MLP- 
and the GR-NN perform almost identically estimating the PA’s price offer with low 
error margin. However, the deviation between the actual and the estimated PA offers 
increases as the round index increases and the PA timeout decreases. This is due to 
the fact that both NNs have a tendency to slightly underestimate PA’s concession rate, 
especially when 5.0≥β (Figure 3a). Finally, as depicted in Figure 3b, with regards to 

the estimation of the PA’s concession rate, the MLP slightly outperforms the GR. A 
brief analysis of all above findings is presented in Section 5. 

 



158 I. Roussaki, I. Papaioannou, and M. Anangostou 

 

Fig. 2. Actual PA price offer and PA price offer predicted by (a) an MLP-NN and (b) a GR-
NN, for 100 negotiation rounds when 1=β , 0=P

mp , 100=P
Mp  and ]250,150[∈PL  

 

Fig. 3. (a) Actual and estimated (by MLP and GR NNs) concession rate values when 
200=PL , 0=P

mp , 100=P
Mp  and ]10,1.0[∈β . (b) Actual and estimated (by MLP and GR 

NNs) PA minimum price offer for all the experiments conducted in both families. 

5   Evaluation 

In Table 1 comparative results for two experiment families are illustrated with regards 
to the mean estimation errors of the MLP and the GR NNs concerning the PA price 
offer, the PA minimum price offer and the PA’s concession rate. For all experiment 
families we have [ ] [ ]100,0, =P

M
P
m pp . The rest of the parameter settings are presented 

in the table’s first column, while at the second column the number of the experiments 
where the NN estimation was used is depicted. The results presented in the rest of the 
table indicate that the MLP NN slightly outperforms the GR NN with regards to the 
PA (minimum) price offer estimation demonstrating 0.5% - 2.6% higher accuracy in 
average. However, the opposite stands concerning the PA beta estimation, as the GR 
NN provides more accurate estimations by more than 3% in average. 
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Table 1. Comparative results concerning the mean estimation error of the two NN-assisted 
negotiation strategies for the PA price offers, for the PA min offer and the PA concession rate 

Mean [price-offer 
estimation error] 

Mean [min-price-
offer estim. error]

Mean [beta 
estimation error] Experiment Settings 

Times NN-
estimation 
was used MLP GR MLP GR MLP GR 

]10,1.0[∈β , 200=PL 4118 0.97% 2.12% 0.41% 2.80% 15.65% 8.26% 

]250,150[∈PL , 1=β  7171 1.21% 1.71% 8.26% 8.91% 12.51% 12.73% 
OVERALL 11289 1.12% 1.86% 5.40% 6.68% 13.92% 10.72% 

 
As already stated, the enhanced strategies use the NN estimation for the minimum 

acceptable price of the PA to decide whether they should continue being engaged in 

the specific negotiation thread or not. In case C
M

P
m pp > , where P

mp  is the price offer 

made by the PA to the CA upon the CA’s deadline expiration (in our study at round 
100), the CA terminates the negotiation at round 30. In Table 2, evaluation results for 
the two NN-assisted negotiation strategies are illustrated for both experiment families 
assuming that 50=C

Mp 2. The experiment settings are presented in the table’s first 

column, while at the second column the number unsuccessful negotiation threads 
(UNTs) is depicted. These unsuccessful negotiations are due to the fact that 

C
M

P
m pp > . The third column indicates that the duration of the UNTs is always equal 

to 100=CL 3 in case no opponent behaviour prediction mechanism is used. The next 
pair of columns illustrates the number of UNTs that were detected by the NNs at 
round 30, while the subsequent pair of columns presents the UNTs’ elimination ratio, 
i.e. the ratio of UNTs that were correctly identified by the NNs as unsuccessful and 
terminated before the expiration of the CAs deadline. It should be mentioned that the 
MLP NN manages to identify ~91% of the UNTs in average, while the GR NN 
detects ~83% of the UNTs in average. The last two pairs of columns illustrate the 
mean duration of the UNTs and the mean UNT duration decrease with regards to the 
case where no opponent behaviour prediction mechanism is used. It should be 
highlighted that the MLP-NN assisted negotiation strategy achieves ~64% reduction 
of the UNTs’ duration in average, while the GR-NN assisted strategy manages to 
reduce the UNTs’ duration by ~58%. This is highly significant as the CA has the time 
to get engaged in approximately another two negotiation threads that may lead to 
agreements. Of course, as expected and as one may also observe in Figure 3b, the 
lower (higher) quantity C

Mp is, the more (less) cases of UNTs occur and the higher 

(lower) mean UNTs’ duration decrease is achieved by the NN-assisted strategies.  
With regards to the elimination of the UNTs, the MLP-assisted strategy clearly 

outperforms the GR-assisted negotiation strategy. However, with regards to the 
processing/time resources required, the GR NN outperforms by far the MLP NN. As 
presented in Table 3, the mean training time required by the MLP NN (i.e. 203 sec) is 
approximately 1450 times higher in average than the time required by the GR NN  

                                                           
2 We selected the C

Mp to be equal to the median value in the PA’s acceptable price interval. 
3 To be more accurate, the duration of UNTs is equal to: ( )PC LL ,min . However, in this paper’s 

study, we always have PC LL < , and thus the duration of UNTs is equal to CL . 
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(i.e. 0.14 sec). This happens due to the fact that the MLP NN training is a highly 
complex procedure requiring forward and backward passes of weight updates in order 
to render them stable. And although the training vectors required for the MLP are far 
less compared to the GR, the former requires 200 passes (epochs) of these vectors in 
order to be adequately trained. But as the NNs are trained only one time (off-line), 
these time resources required are not that significant. However, the NN simulation 
time required (on-line) is a more suitable measure of comparison. This is comparable 
for the two NNs as shown in Table 3, as the simulation time required by the MLP NN 
(i.e. 0.024 sec) is just ~26% higher in average than the one required by the GR NN 
(i.e. 0.019 sec). Nevertheless, the mean storage resources required by the GR NN (i.e. 
172 KB) are approximately 4 times higher in average than the storage resources 
required by the MLP NN (i.e. 172 KB), as the overall number of neurons used by the 
MLP NN is just 26, while the GR NN requires 283 neurons in total. For the reasons 
above, it is estimated that a MLP NN is more appropriate for assisting negotiating 
intelligent agents to estimate their opponent’s behaviour at an early negotiation round 
in case the agent values a timely detection of unsuccessful negotiation threads. 

Table 2. Comparative results concerning the unsuccessful negotiation thread detection by the 
two NN-assisted negotiation strategies 

# UNTs 
detected at 
round 30 

UNTs’ 
elimination 

ratio 

Mean UNTs’ 
duration 

Mean UNTs’ 
duration 
decrease 

Experiment  
Settings 

# Unsuc. 
Negot. 

Threads 
(UNTs) 

Mean 
duration 
of UNTs 
(no NN) MLP GR MLP GR MLP GR MLP GR 

]10,1.0[∈β ,

200=PL , 50=C
Mp

50 100 49 49 98.0% 98.0% 31.4 31.4 68.6% 68.6% 

]250,150[∈PL ,

1=β , 50=C
Mp  

51 100 43 35 84.3% 68.6% 41.0 52.0 59.0% 48.0% 

OVERALL 101 100 92 84 91.1% 83.2% 36.2 41.8 63.8% 58.2% 

Table 3. Comparative results for the time and storage resources required by the NNs used 

NN Type 
Experiment 

set size 
Times NN 
estim. used 

Mean training 
time 

Mean simul. 
time 

# neurons 
required 

Mean storage 
requirements 

MLP 20301 11289 203.00 sec 0.024 sec 30-23-3 45 KB 
GR 20301 11289 0.14 sec 0.019 sec 30-280-3 172 KB 

6   Conclusions and Future Plans 

Using Neural Networks to enhance intelligent agents that negotiate over a single 
issue, turns out to be extremely useful, leading to substantial duration reduction of 
unsuccessful negotiation threads. When the CA uses the NN-assisted strategies it is 
capable of predicting its opponent’s behaviour with significant accuracy, thus getting 
aware of the potential outcome of the negotiation. Both the MLP and the GR NNs 
demonstrate average opponent price offer estimation error lower than 2% and PA min 
acceptable price estimation error ~6%. Additionally, the unsuccessful negotiations are 
detected by the MLP NN in more than 90% of the cases in average, demonstrating 
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~8% better overall performance than the GR NN. In a nutshell, the CA is enhanced 
with the ability to avoid a possible unprofitable or even unachievable agreement. This 
leads to minimization of the required resources and maximization of the CAs overall 
profit from a series of threads for a single commodity. After these promising results, 
we are now working on alternative NN architectures and on the design of a hybrid CA 
strategy that coupling the NN estimations with legacy strategies from the very first 
round. Finally, we aim to study scalability aspects and lead autonomous agents 
deliberate over negotiation, as well as to apply our techniques on PAs following 
arbitrary strategies, a highly challenging task in the automated negotiation field. 
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