
Probabilistic Aggregation of Classifiers for
Incremental Learning�

Patricia Trejo1, Ricardo Ñanculef1, Héctor Allende1, and Claudio Moraga2,3

1 Universidad Técnica Federico Santa Maŕıa,
Departamento de Informática, CP 110-V Valparáıso, Chile

{ptrejo,jnancu,hallende}@inf.utfsm.cl
2 European Centre for Soft Computing 33600 Mieres, Asturias, Spain

3 Dortmund University, 44221 Dortmund, Germany
mail@claudio-moraga.eu

Abstract. We work with a recently proposed algorithm where an en-
semble of base classifiers, combined using weighted majority voting, is
used for incremental classification of data. To successfully accommodate
novel information without compromising previously acquired knowledge
this algorithm requires an adequate strategy to determine the voting
weights. Given an instance to classify, we propose to define each vot-
ing weight as the posterior probability of the corresponding hypothesis
given the instance. By operating with priors and the likelihood models
the obtained weights can take into account the location of the instance
in the different class-specific feature spaces but also the coverage of each
class k given the classifier and the quality of the learned hypothesis.
This approach can provide important improvements in the generaliza-
tion performance of the resulting classifier and its ability to control the
stability/plasticity tradeoff. Experiments are carried out with three real
classification problems already introduced to test incremental algorithms.

1 Introduction

Machine learning actually offers an interesting number of methods and tools for
intelligent data analysis and knowledge discovery. Most of these techniques are
developed for static environments, that is for scenarios where data to be mined
is completely gathered before the analysis. This data is also supposed to be rep-
resentative of all the patterns of interest. However, every time is more common
to find applications where data become available over time in batches of obser-
vations, potentially containing new information that is necessary to discriminate
and analyze to update the knowledge that has been obtained previously. These
kind of situations also arise when we are dealing with “active learning” in which
the sets of training data can be provided only one after the other. Please refer
to [10], [9] and [8] for different approaches to incremental learning.
� This work was supported in part by Research Grant Fondecyt (Chile) 1040365,

7060040 and 1070220. Partial support was also received from Research Grant BMBF
(Germany) CHL 03-Z13 and Research Grant DGIP-UTFSM (Chile).

F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 135–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 P. Trejo et al.

Recently, a methodology for incremental classification has been proposed in
[8], [7] and [3] which consists in using an ensemble of base classifiers [5], com-
bined using weighted majority voting [6]. Section 2 of this paper provides a brief
description of the incremental classification problem and the main structure of
this ensemble algorithm.

In the latter approach, the adequate definition of the voting weights is critical
to control the appropriate tradeoff between plasticity or adaptation to new con-
texts and stability or preservation of existing knowledge (please see [4] and [8] for
a discussion about the stability/plasticity dilemma). In section 3, we propose to
define the voting weights of each hypothesis h as the posterior probability of the
hypothesis given the instance to classify: P (h|x). In this framework, class-specific
probabilities can be introduced decomposing the likelihood P (x|h) of the model
in class conditional likelihoods P (x|h, k) and then aggregating among classes
using the so called law of total probability. Resulting voting weights take into
account the location of the instance in the different class-specific feature spaces
but also the prior probability of each class k given the classifier P (k|h). Further
generalizations of the proposed method can be obtained by manipulating priors
or the likelihood models. For example, the traditional approach of using the ac-
curacy for determining the voting weights can be introduced as priors P (h) on
the set of classifiers.

In the final section of this paper we discuss the experimental results obtained
in three real classification problems whose results have been already reported in
[3] and [7] using incremental algorithms.

2 An Ensemble Approach for Incremental Learning

In this paper we study the problem of incremental classification, where each
example z = (x, y) consists of a feature vector x ∈ R

n and a label y which can
take a finite set of values k = 1, 2, . . . , K indicating the class of the instance.
As against the standard approach to learning from examples, in an incremental
environment, data is available over time t in batches or groups of observations
St. Given this framework, the task of an incremental algorithm [8] , [7] , [3] is
learning the new information contained in St without forgetting the knowledge
previously acquired from S1, . . . , St−1. Re-learning using the entire training set
S1

⋃
S2

⋃
. . . St is a possible but not very efficient solution. Hence a usual addi-

tional restriction over an incremental algorithm is to only require access to the
actual dataset St and the actual model.

In [8] Polikar et al. proposed a new algorithm for incremental learning named
Learn++, which is based in the now extensively analyzed AdaBoost algorithm [2]
designed for batch classification. The main structure of this algorithm, improved
subsequently in [7] and [3] , is sketched as algorithm (1). When a new set Sj

of observations becomes available, a new set of classifiers is created with the
purpose of learning the data presumably containing new knowledge. This is
achieved resampling the new observations with weights proportional to the error
of the existing model in the new data. Each classifier ht just created is stacked
with the classifiers generated previously to update the current ensemble Ht.

Probabilistic Aggregation of Classifiers for Incremental Learning 137

Algorithm 1. Structure of the Learn++ Algorithm
Initialize T = 0
foreach batch of observations Sj of size mj do

INI Initialize the sampling weights d0(i) of each example i = 1, . . . , mj

for t = T + 1, . . . , T + Tj do
Set the sampling distribution to Dt = dt(i)/ m

j=1 dt(j).
RES Generate a set of examples Xt sampling Sj according to Dt.

repeat
Train a base classifier with Xt to obtain ht.
Compute the weighted error of ht on Sj , εt = i:ht(xi)� =yi

Dt(i).
until εt < 1/2

AGG Compute the ensemble hypothesis Ht(x) using an aggregation algorithm
over the set of classifiers h1, h2, . . . , ht.

Compute the weighted error of Ht on Sj , Et = i:Ht(xi)� =yi
Dt(i)

Compute the confidence of Ht, αt = log((1 − Et)/Et)
UPD Update the sampling weights

dt+1(i) = dt(i) × e−αt , if Ht(xi) = yi

1 , otherwise (1)

Recall the current number of classifiers T = j
i=1 Ti.

AGG For any x, compute the final ensemble decision HT (x) applying an aggregation
algorithm over the complete set of classifiers h1, h2, . . . , hT .

Initialization of the sampling weights dt differs between different implemen-
tations of the algorithm. In [3] and [7] the error of the existing ensemble on the
new batch of observations is computed and then the weight update rule of step
with label (UPD) of algorithm (1) is applied. This is made to attempt that the
algorithm focuses from the first classifier on the instances containing novel infor-
mation. It should be recalled on the other hand, that the distribution update rule
of AdaBoost is only dependent of the performance of the last created classifier
ht, whereas that of Learn++ is based on the performance of the entire ensemble
Ht. This rule allows Learn++ to focus on the observations of the current batch
that potentially contain novel information with respect to classifiers created for
previous batches.

As described in [4], incremental learning usually represents a tradeoff between
stability and plasticity. A completely stable classifier will not accommodate any
new information but a completely plastic classifier will not conserve previous
knowledge. A central issue of the algorithm defined above is hence, the aggre-
gation procedure used to combine the classifiers. Although no classifiers are
discarded, the ability of the algorithm to preserve previous knowledge and ac-
commodate novel information strongly depends on the relative importance that
each classifier has in the decisions taken by the final ensemble hypothesis. If for
example we use a weighted majority voting algorithm that tends to assign small
weights to the classifiers created for the last batch of data, we will obtain an
extremely stable but poorly flexible algorithm, and viceversa.

138 P. Trejo et al.

3 Aggregation of Classifiers for Incremental Learning

This section is devoted to define a majority voting aggregation mechanism ap-
propriate for incremental classification based on algorithm (1). In ensemble ap-
proaches that use a weighted voting mechanism for combining classifier outputs,
each classifier ht votes with a weight wt on the class it predicts. The final deci-
sion is the class that cumulates the highest total weight from all the classifiers
[5].

In [8], Polikar et al. proposed the AdaBoost aggregation strategy for using
within the algorithm (1). Voting weights are computed as log((1− ηt)/ηt) where
ηt is the training error of ht. Although this procedure seems reasonable in a
batch classification problem, in incremental environments this rule becomes not
optimal. Since different batches will contain instances from different locations
of the feature space, classifiers corresponding to different batches are modelling
different patterns and hence the performances of these classifiers are not directly
comparable.

An idea to overcome this problem is to use non-constant voting weights but
instance-dependent weights. In [3] , Gangardiwala et al. proposed to modify the
original aggregation strategy of the algorithm (1) and to consider weights that
depend on the location of the instance to classify in the feature space. The voting
weights are heuristically computed as wt(x) = mink 1/δtk(x), where, δtk is the
class-specific mahalanobis distance of the test instance to the data used to train
the classifier. If Xt is set of input instances used to train the classifier ht and Xtk

is the subset of X corresponding to the instances of class k, with k = 1, . . . , K,
the k-th class-specific distance of an input instance x to Xt is computed as

δtk(x) = (x − μtk)
′ · C−1

tk · (x − μtk) (2)

where μtk is the mean and Ctk the covariance matrix of Xtk. This approach
introduces important improvements with respect to the use of constant weights.

In this paper, we propose to define the voting weight wt(x) of the classifier ht,
for predicting the instance x, as the posterior probability of the classifier given
the instance, that is wt(x) = P (ht|x). Using the Bayes rule, this probability can
be expressed in terms of a likelihood model P (x|ht) and a prior P (ht) on the
classifier.

P (ht|x) =
P (x|ht) × P (ht)

P (x)
(3)

To obtain a reasonable likelihood model we propose to decompose the condi-
tional probability P (x|ht) partitioning between the different classes k = 1, . . . , K
and introducing the class-conditional probabilities P (x|ht, k). By the so called
law of total probability we obtain that

P (x|ht) =
K∑

k=1

P (x|ht, k)P (k|ht) (4)

Probabilistic Aggregation of Classifiers for Incremental Learning 139

That is, we compute the likelihood of x supposing that the event Ak = “x
is of class k” is true and then we average among the different events Ak with
weights P (k|ht) corresponding to the the prior probability of the event Ak given
the classifier ht. For the class-specific likelihoods P (x|ht, k) we propose to use a
simple class-specific gaussian model on the data used to train the classifier ht.
Using the notation introduced for equation (2) we can write

P (x|ht, k) = N × exp
(
−(x − μtk)

′ · C−1
tk · (x − μtk)

)
= N × exp(−δtk) (5)

where N is a normalizing constant. Note that this probability is inversely propor-
tional to the class-specific mahalanobis distance δtk(x). Now, since the selected
likelihood model depends on the data used to train the classifier, it seems rea-
sonable to use as the prior P (k|ht) the fraction of such data that belongs to the
class k, that is the relative coverage of this class with respect to the classifier
ht. If Xt denotes the set of input instances used to train the classifier and Xtk

the subset of X corresponding to the instances of class k, this can be written as
P (k|ht) = |Xtk|/|Xt| where | · | denotes cardinality.

To determine the weights wt(x) the only thing that is missing is to model the
prior P (ht) on the set of classifiers. A simple choice is to use uniform priors,
such that any classifier have the same prior probability of classifying well the
instance x. After calculating (3) and discarding the constant terms, this leads
to the following weights,

ŵt(x) =
K∑

k=1

exp (−δtk) × |Xtk|
|Xt|

(6)

Note that the resulting weights take into account not only the location of the
instance in the different class-specific feature spaces, but also the coverage of
each class k given the classifier. This can prevent the situation where a classifier
ht has been trained with instances Xtk of a given class k very similar to the
instance to classify xtest but this has not seen enough examples of the class k to
generalize well.

It should be noted that the whole set of classifiers generated after a new
batch of observations have arrived to the system are generated to learn the new
information contained in these observations. Resampling makes that different
classifiers work with partially different data sets, however this behavior is the
strategy used to distribute the original problem between the different classifiers
that, as a group, are learning the same underlying data. Hence it makes sense
to compute the probabilities P (ht|x) only one time per batch, immediately after
the first resampling of the data, that has the task of identifying the observations
that presumably contain new information. In this approach, we call Global Prob-
abilistic, all the classifiers created for a given batch of data Sk receive the same
weight, that is computed using the equation (6) with the set of observations Xt

obtained after step with label (RES) of algorithm (1) has been applied for the
first time with the actual batch.

140 P. Trejo et al.

The proposed framework to determine the voting weights can be easily mod-
ified by manipulating the likelihood models and the priors on the clases or
the set of classifiers. For example, we could introduce priors proportional to
the accuracy of the classifier ht as in the AdaBoost algorithm. By defining
P (ht) = log((1 − ηt)/ηt) where ηt is the training error of ht, we obtain the
weights:

ŵt(x) =

(
K∑

k=1

exp (−δtk) × |Xtk|
|Xt|

)

× log((1 − ηt)/ηt) (7)

Priors can also be used to model the dynamics of the learning problem. For
example, we could impose priors inversely proportional to the age of the models.

4 Experiments and Conclusions

In this section we present the results obtained with three incremental classifi-
cation problems already studied in [7] and [3]. The benchmarks are the Vehicle
Silhouettes database, the Wine Recognition database and the Optical Character
Recognition database from UCI [1]. Multilayer perceptrons were used as base
classifiers trained using the backpropagation algorithm, as in previous works
with algorithm (1). In the tables we use the following names for the algorithms:
Learn++ for algorithm (1) as proposed in [3], where weights are computed using
the inverse of the mahalanobis distance as defined in equation (2); Probabilistic
Uniform for algorithm (1) but using the voting weights we have proposed in
equation (6) and Probabilistic with accuracy-based Priors when using the voting
weights we have proposed in equation (7). The approach named Global Proba-
bilistic was discussed in the previous section.

The Vehicle Silhouettes Database consists of 4 classes and 18 attribut-
tes. To simulate incremental learning, the database was split in three batches
S1, S2, S3 of training observations and one test dataset Stest following exactly the
same class distribution proposed in [3]. The Wine Recognition Database con-
sists in 3 classes and 13 attributes. This database was split in two batches S1, S2
of training observations and one test dataset Stest following the class distribution
proposed in [7]. Finally, the Optical Digits Database (OCR) consists in 10
classes and 64 attributes. This database was split in three batches S1, S2, S3 of
training observations and one test dataset Stest following the guidelines of [7] for
determining the class distribution. In the three benchmarks, data distributions
were deliberatively designed to test the ability of the algorithm in dealing with
the stability/plasticity tradeoff.

Tables (1), (2) and (3) show 95%-confidence intervals for the percentage
of correct classification obtained with the different algorithms in the three
benchmarks. Each row of this table corresponds to the performance obtained
in the corresponding dataset (S1, S2, S3, Stest) after the training session indi-
cated in the columns. Recall that in the training session i the algorithm has

Probabilistic Aggregation of Classifiers for Incremental Learning 141

seen the training sets S1, . . . , Si−1 and has to incrementally learn the new “in-
coming batch” Si (results in Si+1, Si+2, . . . are provided to observe the relative
improvement in the i + 1, i + 2, . . . learning session). In the first two problems,
the three proposed algorithms show a better ability to accommodate novel in-
formation without catastrophically forgetting previous knowledge. This behavior
finally leads to better generalization performance as can be observed comparing
the last row of these tables. In the last data set however, our algorithms do not
improve the performance of Learn++ but show comparable results.

Table 1. Best performance results obtained with the Vehicle Silhouettes Database.
These results were achieved with 4 classifiers and 10 neurons for Learn++, 10 classifiers
and 5 neurons for Probabilistic Uniform, 10 classifiers and 5 neurons for Probabilistic
with accuracy-based Priors; and 6 classifiers and 20 neurons for Global Probabilistic.

Learn++ Probabilistic Uniform
1 2 3 1 2 3

S1 66.3 ∼ 74.5 64.1 ∼ 70.2 62.7 ∼ 68.3 S1 75.2 ∼ 84.1 73.6 ∼ 79.9 73.0 ∼ 78.4
S2 73.4 ∼ 81.9 81.8 ∼ 89.9 74.7 ∼ 83.3 S2 87.6 ∼ 100. 99.0 ∼ 100. 95.5 ∼ 99.6
S3 89.1 ∼ 96.4 89.0 ∼ 95.9 93.1 ∼ 96.6 S3 87.2 ∼ 100. 86.7 ∼ 100. 99.3 ∼ 100.
Stest 70.4 ∼ 74.4 71.1 ∼ 74.7 70.0 ∼ 73.8 Stest 72.6 ∼ 78.7 71.8 ∼ 79.1 76.3 ∼ 77.9
Probabilistic with accuracy-based Priors Global Probabilistic

1 2 3 1 2 3
S1 82.4 ∼ 88.9 81.2 ∼ 86.8 80.1 ∼ 84.7 S1 71.0 ∼ 77.8 70.7 ∼ 75.3 70.4 ∼ 74.9
S2 87.7 ∼ 100. 98.1 ∼ 100. 93.7 ∼ 100. S2 88.7 ∼ 100. 98.3 ∼ 100. 97.8 ∼ 100.
S3 87.2 ∼ 100. 85.5 ∼ 100. 97.9 ∼ 100. S3 87.0 ∼ 100. 87.9 ∼ 100. 98.3 ∼ 100.
Stest 74.4 ∼ 80.5 73.6 ∼ 80.4 77.6 ∼ 80.1 Stest 75.0 ∼ 81.8 75.9 ∼ 81.5 79.1 ∼ 80.8

Table 2. Best performance results obtained with the Wine Recognition Database.
These results were achieved with 2 classifiers and 5 neurons for Learn++, 2 classifiers
and 20 neurons for Probabilistic Uniform, 2 classifiers and 10 neurons for Probabilistic
with accuracy-based Priors; and 8 classifiers and 10 neurons for Global Probabilistic.

Learn++ Probabilistic Uniform
1 2 1 2

S1 99.5 ∼ 100. 92.8 ∼ 96.3 S1 99.5 ∼ 100. 97.0 ∼ 98.8
S2 48.5 ∼ 49.3 97.8 ∼ 99.2 S2 48.4 ∼ 49.2 98.5 ∼ 99.6
Stest 70.2 ∼ 71.8 93.6 ∼ 96.9 Stest 70.7 ∼ 72.1 94.7 ∼ 97.5
Probabilistic with accuracy-based Priors Global Probabilistic

1 2 1 2
S1 98.9 ∼ 99.9 97.1 ∼ 98.9 S1 99.4 ∼ 100. 97.2 ∼ 98.9
S2 48.5 ∼ 49.2 98.4 ∼ 99.7 S2 49.1 ∼ 49.4 97.9 ∼ 99.6
Stest 70.2 ∼ 72.1 93.9 ∼ 97.4 Stest 71.2 ∼ 72.5 96.7 ∼ 99.0

The results described above correspond to the best test performance obtained
after experimenting with different number of neurons nH = 5, 10, 20 and base

142 P. Trejo et al.

classifiers M = 2, 4, 6, 8, 10. The testing results for the different combinations of
this parameters are omitted due to space limitations, however, the improvements
in the first two data sets and the comparable results in the third data set are
uniform among different combinations of parameters. We indicate in each table
the number of neurons and classifiers used within each algorithm.

Finally, the computational complexity of our algorithms is comparable to
that of Learn++. The only additional computation are the class-specific priors
P (k|ht). The algorithm Global Probabilistic, on the other hand, does not com-
pute the weights one time per classifier but one time per batch and hence, the
complexity is clearly lower. It is interesting to note that this faster algorithm is
the most effective of the three algorithms we have proposed, except in the third
data set.

Table 3. Best performance results for analyzed algorithms in the OCR Database.
These results were achieved with 2 classifiers and 20 neurons for the four algorithms.

Learn++ Probabilistic Uniform
1 2 3 1 2 3

S1 99.9 ∼ 100. 98.7 ∼ 99.1 99.3 ∼ 99.4 S1 99.9 ∼ 100. 98.5 ∼ 98.9 98.0 ∼ 98.4
S2 53.6 ∼ 53.8 99.9 ∼ 100. 99.2 ∼ 99.5 S2 53.6 ∼ 53.8 99.9 ∼ 100. 99.0 ∼ 99.3
S3 21.2 ∼ 21.3 40.7 ∼ 41.1 99.8 ∼ 99.9 S3 21.2 ∼ 21.3 40.7 ∼ 41.0 99.9 ∼ 100.
Stest 59.4 ∼ 59.6 77.6 ∼ 78.0 97.6 ∼ 97.8 Stest 59.4 ∼ 59.6 77.6 ∼ 77.9 96.3 ∼ 96.7
Probabilistic with accuracy-based Priors Global Probabilistic

1 2 3 1 2 3
S1 99.9 ∼ 100. 98.5 ∼ 98.9 97.9 ∼ 98.4 S1 99.7 ∼ 99.8 98.0 ∼ 98.4 97.2 ∼ 97.6
S2 53.6 ∼ 53.8 100. ∼ 100. 99.1 ∼ 99.3 S2 53.6 ∼ 53.8 99.1 ∼ 99.4 98.0 ∼ 98.5
S3 21.2 ∼ 21.3 40.6 ∼ 40.9 99.9 ∼ 100. S3 21.2 ∼ 21.3 40.4 ∼ 40.8 97.9 ∼ 98.1
Stest 59.5 ∼ 59.6 77.5 ∼ 78.0 96.3 ∼ 96.8 Stest 59.4 ∼ 59.5 77.5 ∼ 77.8 96.2 ∼ 96.6

References

1. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
2. Freud, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and

application to boosting. Journal of Computer and System Sciences 55(1), 119–137
(1997)

3. Gangardiwala, A., Polikar, R.: Dynamically weighted majority voting for incre-
mental learning and comparison of three boosting based approaches, Joint Conf.
on Neural Networks (IJCNN 2005), pp. 1131–1136 (2005)

4. Grossberg, S.: Nonlinear neural networks: principles, mechanisms and architec-
tures. Neural Networks 1(1), 17–61 (1988)

5. Kuncheva, L.: Combining pattern classifiers: Methods and algorithms, Wiley In-
terScience (2004)

6. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and
Computation 108(2), 212–261 (1994)

Probabilistic Aggregation of Classifiers for Incremental Learning 143

7. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++.mt: A new approach to incre-
mental learning. In: MCS 2004. LNCS, vol. 3077, pp. 52–61. Springer, Heidelberg
(2004)

8. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning
algorithm for supervised neural networks, IEEE Transactions on systems, man,
and cybernetics Part C: applications and reviews, 31(4), 497–508 (2001)

9. Vijayakumar, S., Ogawa, H.: RKHS based functional analysis for exact incremental
learning. Neurocomputing 29, 85–113 (1999)

10. Widmer, K., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23, 69–101 (1996)

	Introduction
	An Ensemble Approach for Incremental Learning
	Aggregation of Classifiers for Incremental Learning
	Experiments and Conclusions

