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Abstract. In this paper, we consider reinforcement learning in systems
with unknown environment where the agent must trade off efficiently be-
tween: exploration(long-term optimization) and exploitation (short-term
optimization). ε−greedy algorithm is a method using near-greedy action
selection rule. It behaves greedily (exploitation) most of the time, but
every once in a while, say with small probability ε (exploration), instead
select an action at random. Many works already proved that random ex-
ploration drives the agent towards poorly modeled states. Therefore, this
study evaluates the role of heuristic based exploration in reinforcement
learning. We proposed three methods: neighborhood search based ex-
ploration, simulated annealing based exploration, and tabu search based
exploration. All techniques follow the same rule ”Explore the most unvis-
ited state”. In the simulation, these techniques are evaluated and com-
pared on a discrete reinforcement learning task (robot navigation).

1 Introduction

In reinforcement learning [1], [2] it is necessary to introduce a process of trial
and error designed to maximize rewards obtained from environment. This trial
and error process is called an exploration. Exploration plays a fundamental role
in any active learning system. Whenever a learning system learns to control an
unknown environment, two opposing objectives have to be combined. On the
one hand, in order to identify a suboptimal controller the environment must
be sufficiently explored. For example a robot facing an unknown environment
has to spend time moving around and acquire knowledge of its environment.
On the other hand experiences made during learning must also be considered
for action selection in order to minimize the costs of learning (e.g. in terms
of negative reward). E.g. although a robot has to explore its environment, it
should avoid collisions with obstacles, once it received some negative reward for
collisions. Thus for efficient learning, actions should be generated such that the
environment is explored and pain is avoided.

Because there is a trade-off between exploration and exploitation (avoiding
bad rewards) [7], [8], balancing of them is very important. This is known as
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the exploration-exploitation dilemma. The schema of the exploration is called a
policy. There are many kinds of policies such as ε− greedy, Boltzmann distribu-
tions, softmax, weighted roulette and so on. In these existing policies, exploring
is decided by using stochastic random numbers as its generator, according to
the reference value and the provided criterions). They belong to the class of
undirected exploration methods.

The most uninformed undirected exploration technique is the random walk
[5], [6], which completely ignores costs and negative rewards from the environ-
ment. The term undirected is due to this observation: exploration is ensured
only by randomness. Exploration by modified probability distributions is typi-
cally found in reinforcement learning literature. The probability distribution for
action selection is drawn by the utility estimate of each action.

A different class of exploration methods is methods that use directed explo-
ration. This class, introduced in [4] under the name of active exploration. Di-
rected exploration techniques memorize exploration-specific knowledge which is
used for guiding the exploration search. The exploration is thus not completely
random, as in undirected exploration. Examples of directed exploration methods
are frequency-based, recency-based and error-based exploration [3].

In order to efficiently utilize exploration for learning process, in this paper,
we investigate the idea that exploration is a way to combine heuristic search
in a reinforcement learning framework. Briefly, we may perform exploitation-
exploration of reinforcement learning using three of most basic heuristic search
algorithm: neighborhood search, simulated annealing and tabu search. These
heuristic searches have been applied successfully to combinatorial optimization
problems and combined with learning algorithms [9], [10]. It is for the reason
that set of environment states is so large, and the agent could not explore each
states in the environment with infinite visits. Therefore, we decided to focus
on the use of heuristics based exploration. Unlike the ε − greedy exploration
techniques, heuristic based exploration uses heuristic and memorized knowledge
about previous learning to direct the exploration. In [11], the authors investi-
gated the idea that applied online search techniques to reinforcement learning.
Search techniques were utilized to find a better trajectory rather than executing
the greedy policy with respect to the approximated value function. An adap-
tive simulated annealing based reinforcement learning method [12] utilized the
power of global optimization methods such as simulated annealing to cope with
poor convergence properties for difficult problems. This method considered a
batch formulation for the reinforcement learning problem, unlike almost the on-
line formulation always used. In this paper, we proposed three heuristic based
exploration techniques based on a) neighborhood search, b) simulated anneal-
ing search, and c) tabu search. All follow the same rule ”Explore the most
unvisited state”. They are similar to ε − greedy in that they still behave greed-
ily with probability 1 − ε, but every once in a while, with small probability
ε, they not choose random action otherwise they choose the action by using
heuristic.
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The rest of this paper is organized as follow. The next section is reinforce-
ment learning algorithm. In Section 3, heuristic based exploration methods are
presented. Sections 4 reports simulations and experimental results respectively.
Concluding remarks follow in Section 5.

2 Reinforcement Learning

Reinforcement learning [2] is a sub-area of machine learning concerned with how
an agent ought to take actions in an environment so as to maximize some notion
of long-term reward. Reinforcement learning algorithms attempt to find a policy
that maps states of the world to the actions the agent ought to take in those
states.

One of the most important breakthroughs in reinforcement learning was the
development of an off-policy Temporal Difference control algorithm known as
Q-learning. Its simplest form, one-step Q-learning, is defined by

Q(st, at) = Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a) − Q(st, at)] (1)

In this case, the learned action-value function, Q, directly approximates Q∗, the
optimal action-value function, independent of the policy being followed. This
dramatically simplifies the analysis of the algorithm and enabled early conver-
gence proofs. The policy still has an effect in that it determines which state-
action pairs are visited and updated. However, all that is required for correct
convergence is that all pairs continue to be updated. Under this assumption and
a variant of the usual stochastic approximation conditions on the sequence of
step-size parameters, Qt has been shown to converge with probability 1 to Q∗.
The Q-learning algorithm is shown in procedural form in Fig. 1

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from susing policy derived from Q (e.g., ε − greedy)
Take action a, observe r, s’
Q(s, a) ← Q(s, a) + α[r + γmaxa′Q(s′, a′) − Q(s, a)]
s ← s′;

until s is terminal

Fig. 1. Q-learning: An off-policy TD control algorithm

ε−greedy is method using near-greedy action selection rule. It behaves greed-
ily most of the time to select the best action suggested by the Q function with
a probability of ε, and it selects a random action with probability of (1 − ε).
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3 Heuristic Search Based Exploration

Unlike the ε − greedy exploration techniques described so far, heuristic explo-
ration uses heuristic and memorized knowledge about previous learning to direct
the exploration. In this section, we will describe heuristic exploration techniques
one by one based on a) neighborhood search, b) simulated annealing search,
and c) tabu search. All follow the same rule ”Explore the most unvisited state”.
Implementing this rule which is different from each heuristic techniques will be
in turn illustrated.

3.1 Neighborhood Search Based Exploration

For each state, we use one variable to store the chosen action actionlast(state) of
the previous visit. And N(s, actionlast(s)) is the neighborhood action set in the
next visit to state s. Using neighborhood search based exploration, we choose the
action for the current state to be based on N(s, actionlast(s)). And randomly
choosing one action a ∈ N(s, actionlast(s)) for the current state. Therefore, when
the robot explores, the random action is chosen only in the set of neighborhood
actions of the last visiting’s action. This method is different from ε − greedy at
which exploration’s action is chosen in a narrowed set and closer action to the
previous action in comparison to ε − greedy exploration’s action set. Neighbor-
hood search based exploration is illustrated as following:

1.(Initialization) Q(s, a) = 0;
1.1 Robot starts at state snow = starting state.
1.2 (Action choosing)
+) With probability q0, action is chosen greedily : a = argmaxQ(snow, a).
+) else with probability 1 − q0: Randomly select an action a ∈
N(snow, actionlast(snow)).
2. (Update and termination)
2.1 Take action a, observe next state snext and reward.
2.2 Update Q-value (snow, a)
2.3 actionlast(snow) ← a; snow ← snext

2.4 If the next state is destination state and termination criteria not apply,
then return to step 1.1, else return to 1.2

3.2 Simulated Annealing Based Exploration

Simulated annealing based exploration works similarly to neighborhood search
based exploration by searching the set of all possible actions, but reducing the
chance of getting stuck in a poor local optimum by allowing moves to inferior
actions (inferior action which has lower Q-value in terms of negative reward.
Lower Q-value means worse future predicted result) under the control of a ran-
domized scheme. Specifically, if a choice from one action actionlast(s) to another
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neighboring but inferior action a results in a change in value ΔQ, the action a
is still accepted if:

exp(−ΔQ/T ) > R where ΔQ = Q(s, a) − Q(s, actionlast(s)) (2)

and T is a control parameter, and R ∈ [0, 1] is a uniform random number. The
parameter T is initially high, allowing many inferior actions to be accepted, and
is slowly reduced to a value where inferior actions are nearly always rejected.
There is the concept of simulated annealing approach. It is called the thermo-
dynamic process of annealing in physics. Consequently, the simulated annealing
based exploration is summarized as following:

1.(Initialization) Q(s, a) = 0;
1.1 Robot starts at state snow = starting state.
2 (Action choosing)
2.0 Cooling schedule: T ← αT
2.1 With probability q0, action is chosen greedily : a = argmaxQ(snow, a).
2.2 else with probability 1 − q0: Randomly select an action a ∈
N(snow, actionlast(snow)):
a) if Q(snow, a) > Q(snow, actionlast(snow)) then accept action a ;
b)otherwise: If action a satisfies Eq. (2) then accept a, else return to 2.2
3. (Update and termination)
3.1 Take action a, observe next state snext and reward.
3.2 Update Q-value (snow, a)
3.3 actionlast(snow) ← a; snow ← snext

3.4 If the next state is destination state and termination criteria not apply,
then return to step 1.1, else return to 2

We choose the cooling schedule as following: after each episode the tempera-
ture parameter is reduced by a geometric schedule: T ← αT (α in the range 0.9
to 0.99).

3.3 Tabu Search Based Exploration

Tabu Search, also like simulated annealing, is based on neighborhood search, but
in a deterministic way which tries to model human memory processes. Memory
is implemented by the implicit recording of previously-seen state-action pair.
These centre on the creation of a tabu list of moves which have been made in
the recent past of the exploration, and which are tabu or forbidden for a certain
number of iteration. This help agent to avoid re-revisiting, and serves also to
promote a diversified search of the solutions.

One objective in Tabu Search is to encourage exploration of parts of solution
space that have not been visited previously. This can be achieved in practice by
prohibiting the reversal of previous state-action pairs. So we prohibit the reversal
of the most recent state-action pairs only. Recency may be construed as a fixed
parameter (the tabu tenure of a move), or it may be allowed to vary dynamically
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during the search. We use the basic concept of tabu search that was derived
from neighborhood search description. In the tabu search based exploration, a
history record H is kept of the state-action pairs previously encountered during
the search, so that the neighborhood N(snow, a) is modified to N(H, snow, a) as
follows:

1.(Initialization) Q(s, a) = 0;
1.1 Robot starts at state snow = starting state.
1.2 (Action choosing)
+) With probability q0, action is chosen greedily : a = argmaxQ(snow, a).
+) else with probability 1 − q0: Randomly select an action a ∈
N(H, snow, actionlast(snow)).
2. (Update and termination)
2.1 Take action a, observe next state snext and reward.
2.2 Update Q-value (snow, a)
2.3 actionlast(snow) ← a; pair(snow, a) ← tabu; H = H + {pair(snow, a)}
2.4 for all pairs ∈ H pair.tabuLength ← pair.tabuLength − 1; remove pairs
from H which have tabuLength == 0
2.5 snow ← snext. If the next state is destination state and termination
criteria not apply, then return to step 1.1, else return to 1.2

The pair state-action is marked tabu when the agent at that state chooses
that action. And the length of tabu time is decreased at each move of the agent.

4 Simulation and Experimental Results

We test all exploration methods on the two-dimensional robot navigation task
as depicted in Fig. 2(a). The task is to navigate the robot (top-left) to its goal
position (right margin right) with as few steps as possible. This navigation task
is called random gridworld task. In this evaluation, we used 30 × 30 feasible
gridworld in which the goal state can be reached from any free state. The blocked
states are black. Therefore, the state space consists of roughly 900 states which
are represented by its x-y-coordinates in the grid. Each time the robot has 4
valid actions (south, north, east, and west), each of which corresponds to one
neighbor in the grid. There are three kinds of rewards. If the robot collides
against the block or wall, it moves back to the previous state but receives the
negative reward -1. Positive reward 1 is only received when entering the goal
position. And the zero reward is received when moving to a new free state which
is not the goal position. At the beginning, no a priori information is provided to
guide the search of the goal, and the Q-values are initialized randomly.

We compared three proposed strategies with ε − greedy strategy. In the sim-
ulation, we used following parameters setting: q0 = 0.8 is also used for all tech-
niques, learning rate α = 0.1, discount rate γ = 0.9. With SA based method:
cooling rate α = 0.9, initial temperature T = 800. Table 1 shows the comparison
of the complexity of the first trial. Complexity of the first trial is an impor-
tant characteristic of the exploration techniques investigated is the number of
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actions required for the first trial. In this first run there is no knowledge about
the environment available, thus the Q-values are initialized randomly. The table
illustrated the average number of steps required for the first run averaged over
20 experiments each. The third column of Table 1 shows the average steps over
all trials so far (over 3000 × 20 trials, each experiments have 3000 trials). And
the forth column shows the shortest path (number of steps from original position
to destination).

Table 1. Complexity of the first trial

Exploration technique Average steps
per the first trial

Average steps
per trial

Shortest path
(steps)

ε − greedy 32.198 190 70
Neighborhood based exploration 23.804 186 68
Simulated annealing based 18.728 179 63
Tabu search based 19.274 184 66

These results describe that heuristic based explorations seem to be more ef-
ficient in terms of expected search steps for finding the goal in the beginning.
And ε − greedy exploration takes in this particular task much more steps.

Figure 2 shows convergence comparison of all techniques (for clear comparison
at the convergent stage, only the trials after 400 were displayed). Neighborhood

(a) (b)

(c) (d)

Fig. 2. a) The task is to navigate the robot (top-left rectangle) to its destination (right
rectangle) on the shortest possible path. b), c), d) Convergence comparisons.
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based exploration seems smoother than ε−greedy when the algorithm converges.
This smoothness can be explained that: because neighborhood based exploration
only chooses the neighboring action to the previous action, so that the exploring
action can not be so far from the convergent action. Therefore the trials in the
convergent stage is looked like smooth. Tabu search based exploration seems
not only improve the smoothness of convergent stage but the shortest path
convergence also. Simulated annealing based exploration seems to be the best.
It found the shortest path in comparison with the other.

5 Conclusion

This paper discussed about the fundamental heuristic based exploration in re-
inforcement learning. We proposed three exploration models based on heuristic
search: neighborhood search based, simulated annealing based, and tabu search
based. These techniques utilize heuristic search to drive the exploration part in
the learning process. They are similar to ε − greedy in that they still behave
greedily with probability 1−ε, but every once in a while, with small probability ε,
they not choose random action otherwise they choose the action by using heuris-
tic. The experimental results show that in robot navigation problem, heuristic
based exploration methods worked better than ε − greedy method on aspects:
complexity of the first trial, and finding the shortest path.
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