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Abstract. Training data sets containing outliers are often a problem for
supervised neural networks learning algorithms. They may not always
come up with acceptable performance and build very inaccurate models.
In this paper new, robust to outliers, learning algorithm based on the
Least Trimmed Squares (LTS) estimator is proposed. The LTS learning
algorithm is simultaneously the first robust learning algorithm that takes
into account not only gross errors but also leverage data points. Results
of simulations of networks trained with the new algorithm are presented
and the robustness against outliers is demonstrated.

1 Introduction

Feedforward neural networks (FFNs) are often considered as universal tools and
find their applications in areas such as function approximation, pattern recogni-
tion, or signal and image processing. One of the main advantages of using FFNs
is that they usually do not require, in the learning process, exact mathematical
knowledge about input-output dependencies. In other words, they may be re-
garded as model-free approximators [5]. They learn by minimizing some kind of
an error function to fit training data as close as possible. Such learning scheme
doesn’t take into account a quality of the training data, so its performance de-
pends strongly on the fact whether the assumption, that the data are reliable
and trustable, is hold. This is why when the data are corrupted by the large
noise, or when outliers and gross errors appear, the network builds a model that
can be very inaccurate.

In most real-world cases the assumption that errors are normal and iid, simply
doesn’t hold. The data obtained from the environment are very often affected
by noise of unknown form or outliers, suspected to be gross errors. The quantity
of outliers in routine data ranges from 1 to 10% [4]. They usually appear in
data sets during obtaining the information and pre-processing them when, for
instance, measurement errors, long-tailed noise, or results of human mistakes
may occur.

Intuitively we can define an outlier as an observation that significantly devi-
ates from the bulk of data. Nevertheless, this definition doesn’t help in classifying
an outlier as a gross error or a meaningful and important observation. To deal
with the problem of outliers a separate branch of statistics, called robust sta-
tistics [4,6], was developed. Robust statistical methods are designed to act well
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when the true underlying model deviates from the assumed parametric model.
Ideally, they should be efficient and reliable for the observations that are very
close to the assumed model and simultaneously for the observations containing
larger deviations and outliers.

The other way is to detect and remove outliers before the beginning of the
model building process. Such methods are more universal but they do not take
into account the specific type of modeling philosophy (e.g. modeling by the
FFNs). In this article we propose a new robust FFNs learning algorithm based
on the least trimmed squares estimator.

The most popular FFNs learning scheme makes use of the backpropagation
(BP) strategy and a minimization of the mean squared error (mse). Until now,
a couple various robust BP learning algorithms have been proposed. Generally,
they take advantage of the idea of robust estimators. This approach was adopted
to the neural networks learning algorithms by replacing the mse with a loss error
function of such a shape that the impact of outliers may be, in certain conditions,
reduced or even removed.

Chen and Jain [1] proposed the Hampel’s hyperbolic tangent as a new error
criterion, with the scale estimator β that defines the interval supposed to contain
only clean data, depending on the assumed quantity of outliers or current errors
values. This idea was combined with the annealing concept by Chunag and Su
[2]. They applied the annealing scheme to decrease the value of β, whereas Liano
[8] introduced the logistic error function derived from the assumption of the er-
rors generated with the Cauchy distribution. In a recent work Pernia-Espinoza et
al. [9] presented an error function based on tau-estimates. An approach based on
the adaptive learning rate was also proposed [13]. Such modifications may signif-
icantly improve the network performance for corrupted training sets. However,
even these approaches suffer from several difficulties and cannot be considered
as universal (also because of properties of applied estimators). Besides, very few
of them have been proposed until today and they exploit the same basic idea,
so we still need to look for new solutions.

2 Robust LTS Learning Algorithm

The least trimmed squares estimator (LTS), introduced by Rousseuw [10,11], is
a classical high break-down point robust estimator, similar to the slower con-
verging least median of squares (LMS) [10]. The estimator and its evaluations
are often used in linear and nonlinear regression problems, in sensitivity analysis,
small-sample corrections, or in simple detecting outliers. The main difference be-
tween the LTS estimator and the least sum of squares, but also M-estimators, is
obviously the operation performed on residuals. In this case however, robustness
is achieved not by replacing the square by another function but by superseding
the summation sign with something else.

Let us consider the general nonlinear regression model:

yi = η(xi, θ) + εi, i = 1, . . . , n, (1)
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where yi represents the dependent variable, xi = (xi1, . . . , xik) the independent
input vector, and θ ∈ Rp denotes the underlying parameter vector. The random
error term εi is a sequence of iid random variables with a continuous distribution
function. The nonlinear least trimmed squares estimator is then defined as:

θ̂ = arg min
θ∈Rp

h∑

i=1

(r2)i:n, (2)

where (r2)1:n ≤ . . . ≤ (r2)n:n are the ordered squared residuals r2
i (θ) = {yi −

η(xi, θ)}2. The trimming constant h must be chosen as n/2 < h ≤ n to pro-
vide that n − h observations with the largest residuals do not directly affect
the estimator. Under certain assumptions the estimator should be robust not
only to outliers [14] but also to the leverage points (grossly aberrant values of
xi)[12]. Such property is obviously rather theoretical but it explains why the
LTS method is very often in use. Moreover, unlike the LMS, the LTS converges
like n−1/2 having the same asymptotic efficiency at the normal distribution as
the M estimator called Huber skipped mean. Besides, its objective function is
smoother than in the case of the LMS, which makes it possible to be applied
also for the gradient based FFNs learning algorithms.

For simplicity, let us consider a simple three layer feedforward neural network
with one hidden layer. The net is trained on a set of n training pairs:
{(x1, t1), (x2, t2), . . . , (xn, tn)}, where xi ∈ Rp and ti ∈ Rq. For the given input
vector xi = (xi1, xi2, . . . , xip)T , the output of the jth neuron of the hidden layer
may be obtained as:

zij = f1(
p∑

k=1

wjkxik − bj) = f1(inpij), for j = 1, 2, . . . , l, (3)

where f1(·) is the activation function of the hidden layer, wjk is the weight
between the kth net input and jth neuron, and bj is the bias of the jth neuron.
Then the output vector of the network yi = (yi1, yi2, . . . , yiq)T is given as:

yiv = f2(
l∑

j=1

w′
vjzij − b′v) = f2(inpiv), for v = 1, 2, . . . , q. (4)

Here f2(·) denotes the activation function, w′
vj is the weight between the vth

neuron of the output layer and the jth neuron of the hidden layer, and b′v is the
bias of the vth neuron of the output layer. Now, we introduce the robust LTS
error criterion, based on the Least Trimmed Squares estimator. The new error
function is defined as:

ELTS =
h∑

i=1

(r2)i:n. (5)

In this case, (r2)1:n ≤ . . . ≤ (r2)n:n are ordered squared residuals of the form

r2
i = {

q∑

v=1

|(yiv − tiv)|}2. (6)
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The trimming constant h must be carefully chosen because it is responsible for
the quantity of patterns suspected to be outliers.

We assume, for simplicity, that weights are updated according to the gradient-
descent learning algorithm but this can be extended to any other gradient-based
algorithm. Then to each weight is added (α denotes a learning coefficient):

Δwjk = −α
∂ELTS

∂wjk
= −α

∂
∑h

i=1(r
2)i:n

∂ri

∂ri

∂wjk
, (7)

Δw′
vj = −α

∂ELTS

∂w′
vj

= −α
∂
∑h

i=1(r
2)i:n

∂ri

∂ri

∂w′
vj

, (8)

where
∂ri

∂wjk
= f ′

2(inpiv)w′
vjf

′
1(inpij)xik, (9)

and
∂ri

∂w′
vj

= f ′
2(inpiv)zij . (10)

The main problem that may occur here is calculating the ELTS derivative. It
is not continuous and it can be written as:

∂
∑h

i=1(r
2)i:n

∂ri
=

{
2ri for r2

i ≤ (r2)i:h
0 for r2

i > (r2)i:h
(11)

As it was experimentally demonstrated, such shape of the derivative function is
smooth enough for the BP learning algorithm.

In the use of robust learning algorithms, there exist some problems, concerning
mainly the choice of a starting point for the method. In fact, we can divide it
into two tasks: choosing initial network parameters, and choosing the right scale
estimator. If the initial weights of the network are not properly selected, the
learning process may move in the wrong direction and the algorithm may stack
in a local minimum. In this case the network performance might become very
poor. The scale estimator or its equivalent (here, the trimming constant h) is
responsible for the amount of outliers that are to be rejected during the training,
it’s clearly evident then, that if h is incorrect, gross errors may be regarded as
good data and desired points may be discriminated.

Following [1], we decided to use our LTS robust algorithm after a period of
training by the traditional BP algorithm to set the initial parameters. We pro-
posed two strategies of choosing the trimming parameter h. In the first approach
we assumed a predefined value of h, depending on expected percentage of out-
liers in the training data (LTS1). In this case, additional a-priori knowledge of
the error distribution is needed, so the strategy is not very useful. The second
approach (LTS2) is to choose h by using the median of all errors as:

h = ‖{ri : |ri| < c ∗ median(|ri|), i = 1 . . . n}‖, (12)

where c = 1.483 for the MAD scale estimate [6]. Errors used for calculating h
were the errors obtained after the last epoch of the traditional backpropagation
algorithm, so the value of h is set constant for the training process.
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3 Simulation Results

The LTS learning algorithm was tested on function approximation tasks. In
this paper we present only a few of many different testing situations. The first
function to be approximated is y = x−2/3 proposed in [1], the second one is a
two-dimensional spiral given as x = sin y, z = cos y.

To simulate real data containing noise and outliers we used different models,
defined as follows:

– Clean data without noise and outliers;
– Data corrupted with the Gross Error Model: F = (1 − δ)G + δH , where F

is the error distribution, G ∼ N(0.0, 0.1) and H ∼ N(0.0, 10.0) are Gaussin
noise and outliers and occur with probability 1 − δ and δ (data Type 1);

– Data with high value random outliers (Type 2), proposed in [9] of the form
F = (1 − δ)G + δ(H1 + H2 + H3 + H4), where:

• H1 ∼ N(15, 2),
• H2 ∼ N(−20, 3),
• H3 ∼ N(30, 1.5),
• H4 ∼ N(−12, 4).

– Data with outliers generated from the Gross Error Model, injected into the
input vector xi (Type 3).

The performances of the traditional backpropagation algorithm (BP), robust
LMLS algorithm, and the both variations of the novel robust LTS algorithm, LTS1
and LTS2, were compared. The tested algorithms were employed to teach a sim-
ple three-layer network with one or two inputs (depending on a problem), one out-
put and ten hidden sigmoid neurons. We used the conjugate gradient optimization
method [3]. Each algorithm was run 100 times for each task, then a mean MSE for
the networks learnt with the given algorithm was calculated. The mean MSE was
obtained by testing the nets on the clean data generated as points lying on the ap-
proximated curves. Simulation results were gathered in tables and the exemplary
network responses for the testing data were shown in figures.

Looking at the Table 1 we can see that for the clean data of the first task, all
algorithms act relatively well but the error is slightly bigger for the LTS2. We
didn’t considered here the LTS1 criterion because, in this case, it’s equivalent

Table 1. The mean MSE for the 100 trials for the networks trained to approximate
function of one variable

Clean
Data

Data with gross er-
rors (Type 1)

Data with high
value outliers
(Type 2)

Data with gross er-
rors in the input
vector (Type 3)

Algorithm δ = 0.0 δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.2
BP 0.0007 0.0398 0.0809 1.7929 4.0996 0.0140 0.0180

LMLS 0.0007 0.0061 0.0088 0.0050 0.0053 0.0151 0.0177
LTS1 - 0.0054 0.0056 0.0632 0.1454 0.0104 0.0120
LTS2 0.0013 0.0049 0.0067 0.0051 0.0061 0.0112 0.0149
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Table 2. The mean MSE for the 100 trials for the networks trained to approximate
two-dimensional spiral

Clean
Data

Data with gross er-
rors (Type 1)

Data with high
value outliers
(Type 2)

Data with gross er-
rors in the input
vector (Type 3))

Algorithm δ = 0.0 δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.1 δ = 0.2
BP 0.0000 0.3967 0.7722 24.9154 0.0014 0.0057

LMLS 0.0000 0.0584 0.1442 0.0682 0.0006 0.0034
LTS1 - 0.0318 0.0390 1.7108 0.0001 0.0023
LTS2 0.0006 0.0284 0.0534 0.0311 0.0007 0.0023
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Fig. 1. Simulation results for the network trained to approximate one dimensional
function (data Type 1): backpropagation algorithm (dash- dot line), LMLS alg. (dashed
line), LTS1 alg. (dotted line), LTS2 alg. (solid line)
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Fig. 2. Simulation results for the network trained to approximate one dimensional
function (data Type 3): backpropagation algorithm (dash- dot line), LMLS alg. (dashed
line), LTS1 alg. (dotted line), LTS2 alg. (solid line)
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Fig. 3. Simulation results for the network trained to approximate two-dimensional
spiral (data Type 1): backpropagation algorithm (dash- dot line), LMLS alg. (dashed
line), LTS1 alg. (dotted line), LTS2 alg. (solid line)

with a simple squared error. For the data containing gross errors, the two vari-
ations of the LTS present the best performance and it is hard to say, which of
them is better. For the data with high value outliers (Table 1) only LTS2 and
LMLS ensure good fitting to the testing data, while LTS1, though still better
than the BP algorithm, acts rather poor.

After analysing results obtained for the data containing outliers injected into
input vectors, we can notice that the situation is different here. All algorithms,
including the one with Mse criterion, has similar level of error. Moreover, the
influence of leverage points in the input vector to the training process seems to
be smaller than in the case of outliers. Nevertheless, the algorithms LTS1 and
LTS2 showed the best performance and the error of the LTS1 is even over 25%
better than for the Lmls and BP.

Results obtained for the second approximation task are, generally, similar.
Observing the Table 2 we may notice that none of the algorithms has problems
with learning on the clean data. For the data containing outliers, the superiority
of the LTS algorithm is clearly evident. The LTS2 acts well also for the high
value outliers, showing the lowest error. Besides, for gross errors in the input
vector also the LTS1 and LTS2 appear to be the best.

To summarise, one can notice that both LTS algorithms showed performance
better than other two algorithms for the data containing gross errors in the
input, as well as in the output vector. Obviously, they also act well for the clean
data. For the data with high value outliers they are not so reliable but they still
act significantly better than usual BP algorithm with the Mse criterion function.

4 Summary

In this paper a novel robust LTS learning algorithm was proposed. As it was
experimentally demonstrated, it behaves better than traditional algorithm, and
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robust Lmls algorithm, in the presence of outliers in the training data. Moreover,
it is simultaneously the first robust learning algorithm that takes into account
also gross errors injected into the input vector of the training patterns (leverage
points). Especially in its second version (LTS2), with median error used to set
the trimming constant h, it can be considered as simple and effective mean to in-
crease learning performance on the contaminated data sets. It doesn’t need any
additional a-priori knowledge of the assumed error distribution to ensure rela-
tively good training results in any conditions. The robust LTS learning algorithm
can be easily adapted to many types of neural networks learning strategies.
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