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Abstract. The analysis of functional data, is a common task in bioinfor-
matics. Spectral data as obtained from mass spectrometric measurements
in clinical proteomics are such functional data leading to new challenges
for an appropriate analysis. Here we focus on the determination of classi-
fication models for such data. In general the available approaches for this
task initially transform the spectra into a vector space followed by train-
ing a classifier. Hereby the functional nature of the data is typically lost,
which may lead to suboptimal classifier models. Taking this into account
a wavelet encoding is applied onto the spectral data leading to a compact
functional representation. Further the Supervised Neural Gas classifier
is extended by a functional metric. This allows the classifier to utilize
the functional nature of the data in the modeling process. The presented
method is applied to clinical proteom data showing good results.

Keywords: supervised neural gas, functional, data analysis, clinical pro-
teomics, wavelet analysis, spectra preprocessing.

1 Introduction

Applications of mass spectrometry (ms) in clinical proteomics have gained
tremendous visibility in the scientific and clinical community [10,4]. One major
objective is the search for potential classification models for cancer studies. For
this purpose, efficient analysis and visualization of large high-dimensional data
sets derived from patient cohorts is crucial. Additionally, it is necessary to apply
statistical analysis and pattern matching algorithms to attain validated signal
patterns. Here we focus on the determination of classification models discriminat-
ing between multiple classes. A powerful tool to achieve such models with high
generalization abilities is available with the prototype based Supervised Neural
Gas algorithm (SNG) [11]. Like all nearest prototype classifier algorithms, SNG
heavily relies on the metric d, usually the standard euclidean metric. For high-
dimensional data as they occur in proteomic patterns, this choice is not adequate
due to two reasons, first the functional nature of the data should be kept as far as

F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 1036–1044, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Supervised Neural Gas for Classification 1037

possible, second the noise present in the data set accumulates and likely disrupts
the classification taking a standard euclidean approach. Thus, a functional repre-
sentation of the data with respect to the used metric and a weighting or pruning
of especially (priory not known) irrelevant function parts of the inputs, would be
desirable. Therefore we focus on a functional distance measure as recently pro-
posed in [6] which will be referred as functional metric. Further feature selection
is applied based on a statistical pre-analysis of the data. Hereby a discriminative
data representation is necessary. The extraction of such discriminant features
is critical for spectral data and typically done by a parametric peak picking
procedure. This peak picking is often focus of criticism because peaks may be
insufficiently detected and the functional nature of the data is partially lost. To
avoid this difficulties we focus on a wavelet encoding of the spectral data to get
discriminative features. Thereby the obtained wavelet coefficients are sufficient
to reconstruct the signal, still containing all relevant information of the spectra.
However this better discriminating set of features is typically more complex and
hence a robust approach to determine the desired classification model is needed.
The paper is organized as follows: first the bioinformatic methods, namely the
wavelet encoding of the spectral data and the SNG algorithm with the functional
distance measure is presented. In the second part the clinical data are described
and the introduced methods are applied in the analysis of the proteom spectra
followed by some experiments, the paper is closed by the conclusions.

2 Bioinformatic Methods

The classification of mass spectra involves in general the two steps peak pick-
ing to locate and quantify positions of peaks within the spectrum and feature
extraction from the obtained peak list. In the first step a number of procedures
as baseline correction, optional denoising, noise estimation and normalization
must be applied. Upon these prepared spectra the peaks have to be identified
by scanning all local maxima and the associated peak endpoints followed by a
S/N thresholding such that one obtains the desired peak list.

The procedure of baseline correction and recalibration (alignment) of multiple
spectra is standard, and has been done using ClinProTools in this paper (details
in [4])1. Here we propose an alternative feature extraction procedure preserving
all (potentially small) peaks containing relevant information by use of the dis-
crete wavelet transformation (DWT). The feature extraction has been done by
Wavelet analysis using the Matlab Wavelet-Toolbox2, due to the local analysis
property of wavelet analysis the features can still be related back to original mass
position in the spectral data which is essential for further biomarker analysis.
In a first step a feature selection procedure using the Kolmogorov-Smirnoff test
(KS-test) was applied. Thereby the test was used to identify features which show
a significant (p < 0.01) discrimination between the two groups (cancer,control).

1 Biomarker software available at http://www.bdal.de
2 The Matlab Wavelet-Toolbox can be obtained from www.mathworks.com
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This is done in accordance to [12] were also a generation to a multiclass exper-
iment is given. The roughly reduced set has been further processed by SNG to
obtain a classification model with a small, ranked set of features, crossvalidated
by a 10-fold cross validation procedure.

2.1 Feature Extraction and Denoising by Bi-orthogonal Discrete
Wavelet Transform

Wavelets have been developed as powerful tools [1,7] used for noise removal and
data compression. The discrete version of the continuous wavelet transform leads
to the concept of a multiresolution analysis (MRA). This allows a fast and stable
wavelet analysis and synthesis. The analysis becomes more precise if the wavelet
shape is adapted to the signal to be analyzed. For this reason one can apply the
so called bi-orthogonal wavelet transform[2] which uses two pairs of scaling and
wavelet functions. One is for the decomposition/analysis and the other one for
reconstruction/synthesis. The advantage of the bi-orthogonal wavelet transform
is the higher degree of freedom for the shape of the scaling and wavelet function.
In our analysis such a smooth synthesis pair was chosen to avoid artifacts. It
can be expected that a signal in the time domain can be represented by a small
number of a relatively large set of coefficients from the wavelet domain. The
spectra are reconstructed in dependence of a certain approximation level L of the
MRA which can be considered as a hard-thresholding. The denoised spectrum
looks similar to the reconstruction as depicted in Figure 1. The starting point
for an argumentation is the simplest example of a MRA which can be defined
by the characteristic function χ[0,1). The corresponding wavelet is the so-called
Haar wavelet. Assume that the denoised spectrum f ∈ L2(R) has a peak with
endpoints 2jk and 2j(k + 1), the integral of the peak can be written as

∫ 2j(k+1)

2jk

f(t)dt =
∫

R

f(t)χ[2jk,2j(k+1))(t)dt

Obviously the right hand side is the Haar DWT scaling coefficient cj,k = 〈f, ψj,k〉
at scale a = 2j and translation b = 2jk. One obtains approximation- and detail-
coefficients [2]. The approximation coefficients describe a generalized peak list of
the denoised spectrum encoding primal spectral information and depending on
the level L which is determined with respect to the measurement procedure. For
linear MALDI-TOF spectra a device resolution of 500−800Da can be expected.
This implies limits to the minimal peak width in the spectrum and hence, the
reconstruction level of the Wavelet-Analysis should be able to model correspond-
ing peaks. A level L = 4 is appropriate for our problem (see Figure 1). Applying
this procedure including the KS-test on the spectra with an initial number of
22306 measurement points per spectrum one obtains 602 wavelet coefficients
used as representative features per spectrum, still allowing a reliable functional
representation of the data. The coefficients were used to reconstruct the spectra
and the final functional representation was based on the maximal intensity val-
ues at the mass positions encoded by the wavelet coefficients. Subsequently, the
data were processed by SNG in a 10-fold cross validation procedure.
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Fig. 1. Wavelet reconstruction of the spectra with L = 4, 5, x-mass positions, y-
arbitrary unit. The original signal is plotted with the solid line. One observes that
a wavelet analysis with L = 5 is to rough to approximate the sharp peaks.

2.2 Supervised Neural Gas for Functional Data

Supervised Neural Gas (SNG) is considered as a representative for prototype
based classification approaches as introduced by Kohonen. Different prototype
classifiers have been proposed so far [5,9,3,11] as improvements of the original
approach. The SNG has been introduced in [11] and combines ideas from the
Neural Gas algorithm (NG)introduced in [8] with the Generalized learning vector
quantizer (GLVQ) as given in [9]. Subsequently we give the basic notations and
some remarks to the integration of alternative metrices into Supervised Neural
Gas (SNG). Details on SNG including convergence proofs can be found in [11].

Let us first clarify some notations: Let cv ∈ L be the label of input v, L a set
of labels (classes) with #L = NL. Let V ⊆ R

DV be a finite set of inputs v. LVQ
uses a fixed number of prototypes (weight vectors, codebook vectors) for each
class. Let W = {wr} be the set of all codebook vectors and cr be the class label
of wr. Furthermore, let Wc= {wr|cr = c} be the subset of prototypes assigned
to class c ∈ L.

The task of vector quantization is realized by the map Ψ as a winner-take-all
rule, i.e. a stimulus vector v ∈ V is mapped onto that neuron s ∈ A the pointer
ws of which is closest to the presented stimulus vector v,

Ψλ
V →A : v �→ s (v) = argminr∈Adλ (v,wr) (1)

with dλ (v,w) being an arbitrary differentiable similarity3 measure which may
depend on a parameter vector λ. For the moment we take λ as fixed. The neuron
s (v) is called winner or best matching unit. The subset of the input space

Ωλ
r = {v ∈V : r = ΨV →A (v)} (2)

which is mapped to a particular neuron r according to (1), forms the (masked)
receptive field of that neuron forming a Voronoi tesselation. If the class infor-
mation of the weight vector is used, the boundaries ∂Ωλ

r generate the decision
boundaries for classes. A training algorithm should adapt the prototypes such
that for each class c ∈ L, the corresponding codebook vectors Wc represent the
3 A similarity measure is a non-negative real-valued function, which, in contrast to a

distance measure does not necessarily fulfill the triangle inequality and the symmetry
property.
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class as accurately as possible. This means that the set of points in any given
class Vc = {v ∈V |cv = c}, and the union Uc =

⋃
r|wr∈Wc

Ωr of receptive fields of
the corresponding prototypes should differ as little as possible.

Supervised Neural Gas (SNG) constitutes a combination of GLVQ and NG.
Again, let Wc= {wr|cr = c} be the subset of prototypes assigned to class c ∈ L
and Kc its cardinality. Further we assume to have m data vectors vi. As pointed
out in [11], the neighborhood learning for a given input vi with label c is applied
to the subset Wc. The respective cost function is

CostSNG (γ) =
m∑

i=1

∑
r|wr∈Wci

hγ (r,vi,Wci) · f (μλ(r,v))
C (γ, Kci)

(3)

with f (x) = (1 + exp (−x))−1 , hγ (r,v,W) = exp
(
−kr(v,W)

γ

)
and μλ(r,v) =

dλ
r−dλ

r−
dλ
r +dλ

r−
whereby dλ

r− is defined as the squared distance to the best matching

prototype but labeled with cr− �= cv, say wr− and dλ
r = dλ (v,wr). The neigh-

borhood cooperativeness makes sure that prototypes are spread faithfully among
data of their respective classes. Note that limγ→0 CostSNG (γ) = CostGLV Q

holds [11]. Hence, for vanishing neighborhood the SNG also becomes optimal in
the sense of margin analysis, as detailed below. However, if the neighborhood
range γ is large, typically at the beginning of the training, the prototypes of one
class share their responsibilities for a given input. Hence, neighborhood cooper-
ation is involved such that initialization of the prototypes is not longer crucial.
Given a training example (vi, ci) all prototypes wr ∈ Wci and the closest wrong
prototype wr− are adapted. Taking now

ξ+
r =

2 · dλ
r−

(dλ
r + dλ

r−)2
and ξ−r =

2 · dλ
r

(dλ
r + dλ

r−)2
(4)

we get the update rules

	wr = ε+ · ξ+
r ·

f ′|μλ(r,v) · hγ (r,vi,Wci)
C (γ, Kci)

· ∂dλ
r

∂wr
(5)

	wr− = −ε− ·
∑

r|wr∈Wc

ξ−r ·
f ′|μλ(r,v) · hγ (r,vi,Wci)

C (γ, Kci)
·

∂dλ
r−

∂wr−
(6)

We remark that only for correct prototypes the neighborhood cooperativeness
is applied. Yet, one could also include neighborhood cooperation for wrong pro-
totypes. However, as shown in [11] this yields instabilities of learning.

Incorporation of a Functional Metric to SNG. As pointed out before, the
similarity measure dλ (v,w) is only required to be differentiable with respect to
λ and w. The triangle inequality has not to be fulfilled necessarily. This leads to
a great freedom in the choice of suitable measures and allows the usage of non-
standard metrics in a natural way. We now review the functional metric as given
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in [6], the obtained derivations can be plugged into the above equations leading
to SNG with a functional metric, whereby the data are functions represented by
vectors and, hence, the vector dimensions are spatially correlated.

Common vector processing does not take the spatial order of the coordinates
into account. As a consequence, the functional aspect of spectral data is lost. For
proteom spectra the order of signal features (peaks) is due to the nature of the
underlying biological samples and the measurement procedure. The masses of
measured chemical compounds are given ascending and peaks encoding chemical
structures with a higher mass follows chemical structures with lower masses. In
addition multiple peaks with different masses may encode parts of the same
chemical structure and hence are correlated.

Lee proposed a distance measure taking the functional structure into account
by involving the previous and next values of xi in te i-th term of the sum, instead
of xi alone. Assuming a constant sampling period τ , the proposed norm is:

Lfc
p (v) =

(
D∑

k=1

(Ak−1 (v) + Ak+1 (v))p

) 1
p

(7)

with

Ak (v) =

{
τ
2 |vk| if 0 ≤ vkvk−1
τ
2

v2
k

|vk|+|vk−1| if 0 > vkvk−1
Bk (v) =

{
τ
2 |vk| if 0 ≤ vkvk+1
τ
2

v2
k

|vk|+|vk+1| if 0 > vkvk+1
(8)

are respectively of the triangles on the left and right sides of xi. Just as for Lp,
the value of p is assumed to be a positive integer. At the left and right ends of the
sequence, x0 and xD are assumed to be equal to zero. The derivatives for the func-
tional metric taking p = 2 are given in [6]. Now we consider the scaled functional
norm where each dimension vi is scaled by a parameter λi > 0 λi ∈ (0, 1] and∑

i λi = 1. Then the scaled functional norm is:

Lfc
p (λv) =

(
D∑

k=1

(Ak−1 (λv) + Ak+1 (λv))p

) 1
p

(9)

with

Ak (λv) =

{
τ
2λk |vk| if 0 ≤ vkvk−1
τ
2

λ2
kv2

k

λk|vk|+λk−1|vk−1| else
Bk (λv) =

{
τ
2λk |vk| if 0 ≤ vkvk+1
τ
2

λ2
kv2

k

λk|vk|+λk+1|vk+1|else
(10)

The prototype update changes to:

∂δ2
2 (x,y, λ)

∂xk
=

τ2

2
(2 − Uk−1 − Uk+1) (Vk−1 + Vk+1)	k (11)
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with

Uk−1 =

⎧⎨
⎩

0 if 0 ≤ 	k	k−1(
λk−1�k−1

λk|�k|+λk−1|�k−1|
)2

else
, Uk+1 =

⎧⎨
⎩

0 if 0 ≤ 	k	k+1(
λk+1�k+1

λk|�k|+λk+1|�k+1|
)2

else

Vk−1 =

{
1λk if 0 ≤ 	k	k−1

λk|�k|
λk|�k|+λk−1|�k−1| else

, Vk+1 =

{
1λk if 0 ≤ 	k	k+1

λk|�k|
λk|�k|+λk+1|�k+1| else

and 	k = xk−yk Using this parametrization one can emphasize/neglect different
parts of the function for classification. This distance measure can be put into
SNG as shown above and has been applied subsequently in the analysis of clinical
proteom spectra.

3 Analysis of Proteomic Data

Subsequently the proposed data processing scheme is applied to clinical ms spec-
tra taken from a cancer study. Thereby we focus on a reliable encoding and
analysis of the spectral data as well as on the generation of a classification
model indicating discriminative features.

3.1 Clinical Sample Preparation and MS Data Acquisition

Sample preparation and profile spectra analysis were carried out using the
CLINPROT system (Bruker Daltonik, Bremen, Germany). Plasma samples
from 45 cancer patients and 50 controls were prepared using the MB-WCX Kit
(Bruker Daltonik, Bremen, Germany). Purifications were performed according
to the product description. Sample preparation onto the Anchor Chip target was
done using HCCA matrix. Profiling spectra were generated on a linear autoflex
MALDI-TOF MS (Bruker Daltonik, Bremen, Germany).

3.2 Analysis with Supervised Neural Gas

The preprocessed set of spectra and the corresponding wavelet coefficients are
now analyzed using the Supervised Neural Gas Algorithm (SNG) extended by a
functional metric. We reconstructed the spectra based upon the discriminative
wavelet coefficients determined by the Kolmogorov-Smirnoff test as explained
above. In a second step maximal intensities for the ranges encoded by the wavelet
coefficients has been determined. The spectra are subsequently considered only
upon these maximal intensities leading to a significant reduced representation
of the spectra as depicted in Figure 2 but still sufficient to keep all necessary
information as evaluated by experts. This leads to a complexity reduction of
the signals as well as to a smoothing of the spectral signal. Here we used the
full spectra for parametrized functional norm i.e. all λi = 1. The original signal
with approx. 22000 sampling points had been processed with only 600 remaining
points still incoding the significant parts of the signal relevant for discrimination
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(a) L4 Reconstruction
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(c) SNG Reconstruction

Fig. 2. Visualization of the different representations of the spectral data with respect
to wavelet encoding and feature selection. The first figure shows a part of the original
spectra for the two classes reconstructed with L = 4. The second figure shows the
same part after encoding by wavelet analysis and KS-Test application as explained
before one clearly observed that dominating common peaks are removed. The third
figure shows the reduced representation of the spectra by linear interpolation between
maximal intensities at encoding regions, as finally used for the modeling.

between the classes. The SNG classifier with functional metric obtains a cross-
validation accuracy of 84% using functional metric and 82% by use of standard
Euclidean metric, in addition the standard deviation of the different crossvali-
dation runs is smaller using the functional metric. Thereby the results with the
wavelet processed spectra are slightly better than using standard peak lists, with
81% crossvalidation accuracy.

4 Conclusions

The presented initial data interpretation of proteom data demonstrate that
the functional analysis and model generation using SNG with functional met-
ric in combination with a wavelet based data preprocessing provides an easy
and efficient detection of classification models and a good analysis of the high-
dimensional data. The usage of wavelet encoded spectra features is especially
helpful in detection of small differences which maybe easily ignored by standard
approaches as well as to significantly reduce the number of points needed in
further processing steps. Thereby the signal must not be reduced to peak lists
but could be preserved in its functional representation. SNG was able to process
high-dimensional functional data and observed good regularization. By use of
the Kolmogorv-Smirnoff test we found a ranking of the features related to mass
positions in the original spectrum which allows for identification of most rele-
vant feature dimensions which was used for the reduction of the large number
of wavelet coefficients and to prune irrelevant regions of the spectrum. In fu-
ture analysis it could be interesting to reduce the feature set by incorporating
knowledge about fractionation of the chemical compounds leadings to multiple
related peaks of the same source. Alternatively one could optimize the scaling
parameters of the functional norm directly during classification learning by so
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called relevance learning as shown in [3] for scaled Euclidean metric. Conclu-
sively, wavelet based spectra encoding in combination with SNG equipped by a
functional metric is an interesting alternative to standard approaches allowing
more flexibility in problem modeling as well as the control of the data processing
task. It combines efficient model generation with automated data pretreatment
and intuitive analysis.

Acknowledgment. The authors are grateful to M. Kostrzewa and T. Elssner for
providing the clinical proteom data (both Bruker Daltonik Leipzig, Germany).
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