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1 Introduction

Lattice theory has been proposed lately in Computational Intelligence (CI) with
the potential to both unify and cross-fertilize [4,8]. An objective of this paper is
to present recent advances based on fuzzy interval numbers, or FINs for short.

A FIN is a unifying data representation used for fuzzy numbers, intervals,
real numbers, probability distribution functions, etc. Rigorous analysis of FINs,
towards an improved design, can be pursued based on lattice theory. A FIN can
be interpreted as an (information) granule [13]. In conclusion, FINs can be em-
ployed for improving a number of popular neural- and fuzzy- paradigms including
(fuzzy) adaptive resonance theory (ART) [7], self-organizing maps (SOMs) [6],
and fuzzy inference systems (FISs) [5]. Two novelties of this work include, first,
an analysis of interval type-2 (IT2) fuzzy sets [12] and, second, an extension
of the fuzzy lattice reasoning (FLR) algorithm based on a similarity measure
function in the space of FINs.

The layout of this paper is as follows. Section 2 summarizes the operation of
popular neural/fuzzy paradigms. Section 3 outlines fuzzy interval number (FIN)
mathematics. Section 4 presents unified extensions and improvements. Finally,
section 5 concludes by summarizing the contribution of this work.

2 Fuzzy-ART, SOM, and FIS Operation

This section illustrates the operation of three popular Computational Intelligence
paradigms, namely fuzzy-ART, SOM, and FISs.
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2.1 Fuzzy Adaptive Resonance Theory (Fuzzy-ART)

The original fuzzy-ART neural network for clustering regards a two-layer ar-
chitecture [1]. Layer F1 of fuzzy-ART fans out an input vector to the fully-
interconnected neurons in layer F2. A layer F2 neuron filters an input vector x
by computing vector x ∧ w, where w is the code (vector) stored on interlayer
links. More specifically, an entry of vector x ∧ w equals the minimum of the
corresponding (positive real number) entries of vectors x and w. A version of
algorithm fuzzy-ART for training is briefly described in the following.

Algorithm fuzzy-ART (for training)

ART-1: Do while there are more inputs.
Apply the complement coding technique to represent input

[xi,1, ..., xi,N ] ∈ [0, 1]N by xi = [xi,1, ..., xi,N , 1−xi,1, ..., 1−xi,N ] ∈ R2N ,
i = 1, ..., n. Then, present xi to the (initially) “set” neurons in layer F2.

ART-2: Each layer F2 neuron with code wj ∈ R2N computes its choice (Weber)
function Tj = |xi ∧ wj |/(α + |wj |).

ART-3: If there are no “set” neurons in layer F2 then memorize input xi.
Else, competition among the “set” neurons in layer F2: Winner is neu-
ron J such that TJ

.= argmax
j

Tj .

ART-4: Similarity Test : (|xi ∧ wJ |/|xi|) ≥ ρ, where |xi ∧ wJ |/|xi| is the match
function and ρ ∈ (0, 1] is the user-defined vigilance parameter.

ART-5: If the Similarity Test fails then “reset” the winner neuron; goto step
ART-3 to search for a new winner.

Else, replace the winner neuron code wJ by xi ∧ wJ ; goto step
ART-1.

We remark that |x| above equals, by definition, the sum of vector x (positive)
entries. Parameter “α”, in the choice (Weber) function Tj, is a very small positive
number. After training each neuron defines a cluster by a hyperbox.

The corresponding testing phase is carried out by winner-take-all competition
based on the choice (Weber) function.

It turns out that fuzzy-ART operates by conditionally enlarging hyperboxes
in the unit N−dimensional hypercube. An input is always a trivial hyperbox,
i.e. a N−dimensional point. By attaching class labels to hyperboxes, a neural
network for classification emerges, namely fuzzy-ARTMAP (neural network).

2.2 Self-Organizing Map (SOM)

Kohonen’s self-organizing map (SOM) architecture for clustering [10] includes a
2-dimensional L × L grid (or, map) of neurons (or, cells). Each cell Ci,j stores a
vector mi,j = [mi,j,1, ..., mi,j,N ]T ∈ RN , i = 1, ..., L, j = 1, ..., L. Vectors mi,j

are called code vectors and they are initialized randomly. A version of algorithm
SOM for training is briefly described next.
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Algorithm SOM (for training)

SOM-1: Initialize randomly the neurons on the L × L grid.
Repeat the following steps a user-defined number Nepochs of epochs,

t = 1, ..., Nepochs.
SOM-2: For each training datum xk ∈ RN , k = 1, ..., n carry out the following

computations.
SOM-3: Calculate the Euclidean distance d(mi,j ,xk), i, j ∈ {1, ..., L}.
SOM-4: Competition among the neurons on the L × L grid: Winner is neuron

(I, J) .= arg min
i,j∈{1,...,L}

d1(mi,j ,xk).

SOM-5: Assimilation Condition: Vector mi,j is in the neighborhood of vector
mI,J on the L × L grid.

SOM-6: If the Assimilation Condition is satisfied then compute a new value
m′

i,j :

m′
i,j = mi,j + a(t)(xk − mi,j) = [1 − a(t)]mi,j + a(t)xk, (1)

where a(t) ∈ (0, 1) is a decreasing function in time (t).

After training, each cell Ci,j defines a cluster by code vector mi,j .
The corresponding testing phase is carried out by winner-take-all competition

based on the Euclidean distance d1(., .).
SOM operates by conditionally moving nodes on a 2-dimensional grid (Fig. 1).

An input is always a N−dimensional point. By attaching class labels to nodes,
a neural network for classification may emerge.

(a) (b)

Fig. 1. The SOM neural network for clustering operates by conditionally moving nodes
on a 2-dimensional grid. (a) Initial node placement. (b) Node placement after training.

2.3 A Fuzzy Inference System (FIS)

A fuzzy inference system, or FIS for short, includes a knowledge base of fuzzy
rules “if Ai then Ci”, symbolically Ai → Ci, i = 1, . . . , L. Antecedent Ai is typ-
ically a conjunction of N fuzzy statements involving N fuzzy numbers, moreover



Unified Analysis and Design 83

consequent Ci may be either a fuzzy statement or an algebraic expression; the
former is employed by a Mamdani type FIS based on expert knowledge [11],
whereas the latter is employed by a Takagi-Sugeno-Kang (TSK) type FIS based
on input-output measurements [14,15].

Based typically on fuzzy logic, a FIS input vector x ∈ RN activates in paral-
lel rules in the knowledge-base by a fuzzification procedure; next, an inference
mechanism produces the consequents of activated rules; the partial results are
combined; finally, a real number vector is produced by a de-fuzzification proce-
dure. Fig. 2 shows a Mamdani type FIS, involving triangular fuzzy membership
functions in L fuzzy rules R1, . . . , RL. The antecedent (IF part) of a rule is the
conjunction of N fuzzy statements, whereas the consequent (THEN part) of a
rule is a single fuzzy statement.

A FIS implements a function f : RN → K, where K is either discrete or
continuous; e.g. the Mamdani FIS in Fig. 2 implements a function f : RN → R.

IF AND … AND THEN

IF AND … AND THEN

defuzzificationfuzzification

YL
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Fig. 2. A Mamdani type FIS with N inputs x1, . . . , xN , one output y1, and L fuzzy rules
R1, . . . , RL. This FIS, including both a fuzzification and a defuzzification procedure,
implements a function f : RN → R.

Various FISs have been developed for inducing a function f : RN → RM from
n pairs (x1, y1), (x2, y2), . . . , (xn, yn) of training data vectors. It turns out that
the design of a FIS typically boils down to a parameter optimization problem,
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which seeks minimization of the LSE (error) function
√∑N

i=1 ||f(xi) − yi||. In
particular, the design of a FIS concerns, first, an estimation of parameters which
specify both the location and shape of fuzzy sets involved in the (fuzzy) rules
of a FIS and, second, it may also concern the computation of the parameters of
consequent algebraic equations in a TSK type FIS.

3 Fuzzy Interval Number (FIN) Mathematics

Some elementary mathematical lattice definitions are summarized next.
A lattice is a partially ordered set (L, ≤) any two of whose elements have both

a greatest lower bound, denoted by x ∧ y, and a least upper bound, denoted by
x∨y. If x ≤ y (or, y ≤ x) then two lattice elements x and y are called comparable;
otherwise, x and y are called incomparable, symbolically x||y.

A useful function in a lattice (L, ≤) is a positive valuation function v : L → R,
which (by definition) satisfies (1) v(x) + v(y) = v(x ∧ y) + v(x ∨ y), and (2)
x < y ⇒ v(x) < v(y). Note that a positive valuation in a crisp lattice (L, ≤)
implies a metric function d : L × L → R+

0 given by d(x, y) = v(x ∨ y) − v(x ∧ y).
Given (1) a product lattice (L, ≤) = (L1, ≤1) × . . . × (LN , ≤N), and (2) a

positive valuation v : Li → R in each constituent lattice (Li, ≤i), i = 1, ..., N
then both a positive valuation v : L → R is given by v(x1, . . . , xN ) = v1(x1) +
. . . + vN (xN ), and countably infinite Minkowski metrics dp are given in L by

dp(x,y) = [dp
1(x1, y1) + ... + dp

N (xN , yN )]1/p, (2)

where p = 1, 2, . . . and di(xi, yi) = vi(xi∨yi)−vi(xi∧yi), xi, yi ∈ Li, i = 1, . . . , N .
Of particular interest here is lattice (τ(L), ≤), where τ(L) denotes the set

of intervals1 in L partially-ordered by set-inclusion. The diagonal of a lattice
interval in τ(L) is defined as follows.

Definition 1. Let (L, ≤) be a lattice. The diagonal of an interval [a, b] ∈ τ(L),
a, b ∈ L with a ≤ b, is defined as a nonnegative real function diagp : τ(L) → R+

0
given by diagp([a, b]) = dp(a, b), p = 1, 2, ...

In the following we focus on lattices stemming from the set R of real numbers.
It turns out that (R, ≤) is a lattice including only comparable elements. Hence,
lattice (R, ≤) is called totally-ordered or, equivalently, chain. In chain (R, ≤)
any strictly increasing function vh : R → R is a positive valuation, whereas any
strictly decreasing function θh : R → R is an isomorphic function2 .

3.1 Generalized Intervals and Extensions

Generalized intervals are a basic instrument for FIN analysis, later.

1 An interval [a, b] is defined as the set [a, b] .= {x : a ≤ x ≤ b}.
2 Given two lattices (L1, ≤) and (L2, ≤) a function ψ : L1 → L2 is called isomorphic if

both “x ≤ y in L1 ⇔ ψ(x) ≤ ψ(y) in L2” and “ψ is onto L2”
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Definition 2. (a) A positive generalized interval of height h is a map μh
a,b :

R → {0, h} given by μh
a,b(x) =

⎧⎨
⎩

h, a ≤ x ≤ b

0, otherwise
, where h ∈ (0, 1]. (b) A negative

generalized interval of height h is a map μh
a,b : R → {0, −h} given by μh

a,b(x) =⎧
⎨
⎩

−h, a ≥ x ≥ b

0, otherwise
, where a > b and h ∈ (0, 1].

We remark that a generalized interval is a “box” function, either positive or
negative. In the interest of simplicity a generalized interval will be denoted as
[a, b]h, where a ≤ b (a > b) for a positive (negative) generalized interval.

The set of positive (negative) generalized intervals of height h is denoted by
Mh

+(Mh
−). The set of generalized intervals of height h is denoted by Mh, i.e.

Mh = Mh
− ∪ Mh

+. It turns out that the set Mh of generalized intervals is partially
ordered; more specifically, Mh is a mathematical lattice [4] with lattice meet and
join given, respectively, by [a, b]h ∧ [c, d]h = [a ∨ c, b ∧ d]h and [a, b]h ∨ [c, d]h =
[a ∧ c, b ∨ d]h. Moreover, the corresponding lattice order relation [a, b]h ≤ [c, d]h

in Mh is equivalent to “c ≤ a”.AND.“b ≤ d” (Fig. 3).
Given both a strictly increasing function vh : R → R and a strictly decreas-

ing function θh : R → R, a positive valuation in lattice (Mh, ≤) is given by
vMh([a, b]h) = vh(θh(a)) + vh(b). Hence, a metric in lattice (Mh, ≤) is given by
dMh([a, b]h, [c, d]h) = [vh(θh(a ∧ c)) − vh(θh(a ∨ c))] + [vh(b ∨ d) − vh(b ∧ d)].
For example, choosing both θh(x) = −x and vh such that vh(x) = −vh(−x) it
follows positive valuation function vMh([a, b]h) = vh(b) − vh(a); furthermore, it
follows metric dMh([a, b]h, [c, d]h) = [vh(a∨c)−vh(a∧c)]+ [vh(b∨d)−vh(b∧d)].

The space Mh of generalized intervals is a real linear space with

– addition defined as [a, b]h + [c, d]h = [a + c, b + d]h.
– multiplication (by k ∈ R) defined as k[a, b]h = [ka, kb]h.

A subset C of a linear space is called cone if for all x ∈ C and a positive real
number λ > 0 we have λx ∈ C. It turns out that both Mh

+ and Mh
− are cones.

Let (Mh, ≤)∂ = (Mh, ≤∂) denote the dual (lattice)3 of lattice (Mh, ≤). Then,
(Mh, ≤) = (Mh × Mh, ≤∂ × ≤) is a lattice. In the following we introduce a
positive valuation function in lattice (Mh, ≤).

Proposition 1. Let function vMh : Mh → R be a positive valuation function in
a lattice (Mh, ≤). Then, function vMh : Mh × Mh → R given by vMh([κh, λh]) =
vMh(λh) − vMh(κh) is a positive valuation in lattice (Mh, ≤).

The proof of proposition 1 will be shown elsewhere for lack of space.
It follows a metric dMh : M

h × M
h → R+

0 given by dMh([A, B]h, [C, D]h) =
[vMh(A ∨ C) − vMh(A ∧ C)] + [vMh(B ∨ D) − vMh(B ∧ D)].

3 The dual (denoted by ≥) of an order relation ≤ is, by definition, the inverse of ≤.
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Fig. 3. Lattice- join (u∨w) and meet (u∧w) for all different pairs of generalized inter-
vals of height h. Different fill-in patterns are used for partially overlapped generalized
intervals. (a) “Intersecting” positive generalized intervals. (b) “Nonintersecting” posi-
tive generalized intervals. (c) “Intersecting” negative generalized intervals. (d) “Non-
intersecting” negative generalized intervals. (e) “Intersecting” positive and negative
generalized intervals. (f) “Nonintersecting” positive and negative generalized intervals.

3.2 Fuzzy Interval Numbers (FINs)

Consider the following definition.

Definition 3. A Fuzzy Interval Number, or FIN for short, is a function F :
(0, 1] → M such that (1) F (h) ∈ Mh, (2) either F (h) ∈ Mh

+ (positive FIN), or
F (h) ∈ Mh

− (negative FIN) for all h ∈ (0, 1], and (3) h1 ≤ h2 ⇒ {x : F (h1) 
=
0} � {x : F (h2) 
= 0}.

A FIN F can be written as the set union of generalized intervals; in particular,
F = ∪

h∈(0,1]
{[a(h), b(h)]h}, where both interval-ends a(h) and b(h) are functions

of h ∈ (0, 1]. The set of FINs is denoted by F. More specifically, the set of positive
(negative) FINs is denoted by F+ (F−). Fig. 4 shows a positive FIN Fp.
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Fig. 4. A positive FIN Fp = ∪
h∈(0,1]

{Fp(h)} is the set-union of positive generalized

intervals Fp(h), h ∈ (0, 1] such that h1 ≤ h2 ⇒ {x : F (h1) �= 0} � {x : F (h2) �= 0}.

We define an interval-FIN as F = ∪
h∈(0,1]

{[a(h), b(h)]h}, where both a(h) and

b(h) are constant, i.e. a(h) = a and b(h) = b. In particular, for a = b an interval-
FIN is called trivial-FIN. In the aforementioned sense F+ includes both (fuzzy)
numbers and intervals.

We remark that a FIN is a mathematical object, which can be interpreted
either as a possibility distribution (i.e. a fuzzy number) or as a probability dis-
tribution. In any case, a FIN can be interpreted as an (information) granule. Note
that granular computing is considered an emerging computational paradigm [13].

An ordering relation has been introduced in F as follows: F1 ≤ F2 ⇔ F1(h) ≤
F2(h), ∀h ∈ (0, 1]. It turns out that F is a mathematical lattice. The following
proposition introduces a metric in F.

Proposition 2. Consider metrics dMh : Mh × Mh → R+
0 in lattices (Mh, ≤),

h ∈ (0, 1]. Let F1, F2 ∈ (F, ≤). A metric function dF : F × F → R+
0 is given by

dF(F1, F2) =

1∫

0

dMh(F1(h), F2(h))dh (3)

Addition and multiplication are extended from Mh to F as follows.

– The product kF1, where k ∈ R and F1 ∈ F, is defined as Fp : Fp(h) = kF1(h),
h ∈ (0, 1].

– The sum F1 +F2, where F1, F2 ∈ F is defined as Fs : Fs(h) = (F1 +F2)(h) =
F1(h) + F2(h), h ∈ (0, 1].

We remark that the product kF1 is always a FIN. It turns out that both F+
and F− are cones. When both F1 and F2 are in cone F+ (F−) then the sum
F1 +F2 is in cone F+ (F−). However, if F1 ∈ F+ and F2 ∈ F− then F1 +F2 might
not be a FIN. Our interest here is in the metric lattice cone F+ of positive FINs.
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3.3 Interval Type-2 FINs

Generalized type-2 fuzzy sets, or simply type-2 fuzzy sets, are an extension of
type-1 (regular) fuzzy sets such that the membership grade of a type-2 fuzzy set
is a type-1 fuzzy set [16]. There is a growing interest in type-2 fuzzy systems [3].

Type-2 literature has predominantly become concerned with interval type-2
(IT2) fuzzy sets, that is a subset of type-2 fuzzy sets such that the membership
grade is an interval in order to alleviate a number of computational problems.

Fig. 5 shows two convex fuzzy sets, i.e. Fu(x) and fl(x), such that fl(x) ≤
Fu(x), ∀x ∈ R. We point out that intervals [fl(x), Fu(x)], x ∈ R can be used for
representing a IT2 fuzzy set with lower and upper membership functions fl(x)
and Fu(x), respectively. In the aforementioned sense, a fuzzy set, of either type-1
or type-2, is described “vertically”.

IT2 fuzzy sets are an interpretation of IT2 FINs introduced next.

0 8 10 20

0.35

0.73

1

 F

u

 f

l

 x

Fig. 5. Both upper- and lower- FIN membership functions are represented vertically.
The corresponding IT2 FIN is described vertically by intervals [fl(x), Fu(x)], x ∈ R.

Definition 4. A IT2 FIN is an interval [A, B] of FINs such that A ≤ B.

Fig. 6 shows two (convex) FINs interpreted as fuzzy sets.
The difference is that a FIN is described “horizontally” by the α-cuts of a

fuzzy set defined (the α-cuts) between dots on a horizontal line, e.g. the line

0 6.38 8 10 12 13.62 20

0.35

0.85

1

 F

u

 f

l

 x

Fig. 6. Both upper- and lower- FIN membership functions are represented horizontally
by lattice-ordered generalized intervals fl(h), Fu(h), h ∈ (0, 1]. The corresponding IT2
FIN is described horizontally by intervals [fl(h), Fu(h)], h ∈ (0, 1]. Note the extension
inserted to the lower FIN membership function, at x = 10, in order to normalize it.
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through membership grade 0.35 in Fig. 6. Note that an extension was inserted
to the lower FIN membership function, at x = 10, in order to normalize it.

Based on the previous analysis it can be shown that the set F, of IT2 FINs, is
lattice-ordered. A IT2 FIN can be interpreted either as a IT2 fuzzy set or as an
interval of probability distribution functions (PDFs). The following proposition
introduces a metric in F.

Proposition 3. Consider metrics dMh : M
h × M

h → R+
0 in lattices (Mh, ≤),

h ∈ (0, 1]. Let F1, F2 ∈ (F, ≤). A metric function dF : F × F → R+
0 is given by

dF(F1, F2) =

1∫

0

dMh(F1(h), F2(h))dh (4)

4 Unified Extensions and Improvements

Based on a Minkowski metric dp of Eq. (2) above, this section delineates exten-
sions of ART/SOM neural networks as well as of fuzzy inference systems (FISs)
in the metric lattice cone F+ of positive FINs.

4.1 Fuzzy Lattice Reasoning (FLR)

Algorithm fuzzy lattice reasoning (FLR) was described lately as a lattice data do-
main extension of fuzzy-ARTMAP based on a lattice inclusion measure function
[9]. Note also that, lately, were presented versions of the FLR algorithm based
on similarity measures instead of an inclusion measure function [2]. A likewise
extension is presented in this section based on a similarity measure (function).
A rigorous definition of the latter function is introduced next.

Definition 5. A similarity measure in a set S is a function τ : S × S → (0, 1],
which satisfies the following conditions.

(S1) τ(a, b) = 1 ⇔ a = b.
(S2) τ(a, b) = τ(b, a).
(S3) 1

τ(a,b) + 1
τ(x,x) ≤ 1

τ(a,x) + 1
τ(x,b) .

We remark that condition S1 requires that two set S elements a and b are “most
similar” to each other if and only if a and b coincide. Condition S2 requires that
an element a is so much similar to an element b as b is to a (Commutativity).
Condition S3 requires that if two elements a and b are “little” similar to each
other, i.e. 0 < τ(a, b) << 1 and, moreover, an element x is “very” similar to one
of a or b then x has to be “little” similar to the other one of a and b. A similarity
measure function can be defined based on a metric as shown next.

Proposition 4. If function d : S × S → R+
0 is a metric then function τd :

S × S → (0, 1] given by τd(a, b) = 1/(1 + d(a, b)) is a similarity measure.
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Algorithm FLR for training

FLR-0: A set RB = {(u1, C1), ..., (uL, CL)} is given, where ui ∈ FN
+ and Ci ∈ C,

i = 1, ..., L is a class label in the finite set C.
FLR-1: Present the next input pair (xi, ci) ∈ FN

+ × C, i = 1, ..., n to the initially
“set” RB.

FLR-2: If no more pairs are “set” in RB then store input pair (xi, ci) in RB;
L ← L + 1; goto step FLR-1.

Else, compute the similarity measure τ(xi, ul), l ∈ {1, ..., L} regard-
ing input xi ∈ FN

+ to all “set” elements ui ∈ FN
+ , i = 1, ..., L in RB.

FLR-3: Competition among the “set” pairs in the RB: Winner is pair (uJ , CJ)
such that J

.= arg max
l∈{1,...,L}

τ(xi, ul). In case of multiple winners, choose

the one with the smallest diagonal diag1(.) size.
FLR-4: Assimilation Condition: Both (1) diag1(xi ∨ uJ) is less than a user-

defined threshold size Dcrit, and (2) ci = CJ .
FLR-5: If the Assimilation Condition is not satisfied then “reset” the winner

pair (uJ , CJ); goto step FLR-2.
Else, replace the winner hyperbox uJ by the join-interval xi ∨ uJ ;

goto step FLR-1.

We remark that the join-interval xi ∨ uJ of two positive FINs ui, uJ ∈ F+ is
computed as (xi ∨ uJ)(h) .= xi(h) ∨ uJ(h), h ∈ (0, 1].

The corresponding testing phase is carried out by winner-take-all competition
based on the similarity measure function τ(., .).

There are inherent similarities as well as substantial differences between fuzzy-
ARTMAP and the FLR. In particular, both fuzzy-ARTMAP and FLR carry
out learning rapidly in a single pass through the training data by computing
hyperboxes in their corresponding data domains.

Advantages of FLR over fuzzy-ARTMAP include (1) granularity, and (2)
flexibility as summarized next. (1) The FLR handles positive FINs, includ-
ing both (fuzzy) numbers and intervals in the Euclidean space RN ; whereas
fuzzy-ARTMAP deals solely with intervals in the unit-hypercube. (2) It is pos-
sible to optimize FLR’s behavior by tuning an underlying positive valuation
function v as well as an isomorphic function θ; whereas fuzzy-ARTMAP im-
plicitly uses, quite restrictively, only v(x) = x and θ(x) = 1 − x in a data
dimension.

Fuzzy-ARTMAP’s proliferation problem, that is the proliferation of hyper-
boxes/clusters, is inherited to the FLR. However, the FLR is equipped with a
metric function tool, hence it is possible to reduce “in principle” the number of
its clusters in FN

+ .
Another drawback of FLR, also inherited from fuzzy-ARTMAP, is that the

learned clusters (in particular their total number, size, and location) depend on
the order of presenting the training data. A potential solution is to employ an
ensemble of FLR classifiers in order to boost performance stably [4].
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4.2 Incremental Granular SOM (grSOM)

A granular SOM (grSOM) algorithm for learning (training) is presented next as
a straightforward extension of SOM in metric lattice cone F+ of positive FINs.

A grSOM algorithm for training

GR-0: Define the size L of a L × L grid of neurons. Each neuron can store both
a N -dimensional FIN Wi,j ∈ FN

+ , i, j ∈ 1, ..., L and a class label Ci,j ∈ C,
where C is a finite set. Initially all neurons are uncommitted.

GR-1: Memorize the first training data pair (x1, C1) ∈ FN
+ × C by committing,

randomly, a neuron in the L × L grid.
Repeat the following steps a user-defined number Nepochs of epochs, p =
1, ..., Nepochs.

GR-2: For each training datum (xk, Ck) ∈ FN
+ × C, k = 1, ..., n “reset” all L × L

grid neurons. Then carry out the following computations.
GR-3: Calculate the Minkowski metric d1(xk, Wi,j) between xk and committed

neurons Wi,j i, j ∈ {1, ..., L}.
GR-4: Competition among the “set” (and, committed) neurons in the L × L

grid: Winner is neuron (I, J) whose weight WI,J is the nearest to xk, i.e.
(I, J) .= arg min

i,j∈{1,...,L}
d1(xk, Wi,j).

GR-5: Assimilation Condition: Both (1) Vector Wi,j is in the neighborhood of
vector WI,J on the L × L grid, and (2) CI,J = Ck.

GR-6: If the Assimilation Condition is satisfied then compute a new value W ′
i,j

as follows:
W ′

i,j
.=

[
1 − h(k)

1+dK(WI,J ,Wi,j)

]
Wi,j + h(k)

1+dK(WI,J ,Wi,j)
xk.

Else, “reset” the winner (I, J); goto GR-4.
GR-7: If all the L×L neurons are “reset” then commit an uncommitted neuron

from the grid to memorize the current training datum (xk, Ck).
If there are no more uncommitted neurons then increase L by one.

We remark that function h(k), in the training phase step GR-6, reduces
smoothly from 1 down to 0 with the epoch number k. The above algorithm
is called, in particular, incremental-grSOM.

The corresponding testing phase is carried out by winner-take-all competition
based on the Minkowski metric d1(., .).

A fundamental improvement of the incremental-grSOM over SOM is the
sound capacity of the incremental-grSOM to rigorously deal with granular data
including both fuzzy numbers and intervals represented by FINs.

4.3 Novel FIS Analysis and Design

In contrast to alternative, “parametric” function estimation methods including
statistical regressors, ARMA models, and multilayer perceptrons a FIS induces
rules from the training data. Moreover, it is widely recognized that a FIS can
produce better results than alternative function approximation methods and,
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usually, a fuzzy logic explanation is sought. A set-theoretic explanation has been
proposed lately [5] by seeking an answer to the following question: How many
fuzzy numbers are there? Or, in other words, what is the cardinality (card(Fn))
of the set Fn of fuzzy numbers? It follows a non-obvious mathematical result.

Proposition 5. It holds card (Fn) = ℵ1, where ℵ1 is the cardinality of the set
R of real numbers.

In other words, there are as many fuzzy numbers as there are real numbers.
Proposition 5 leads to novel perspectives regarding the capacity of FIS for func-
tion approximation as explained in the following.

In the first place it is interesting to calculate the cardinality of the set F of
all functions f : RN → RM . Using cardinal arithmetic it follows that card(F) =
ℵℵ1

1 = (2ℵ0)ℵ1 = 2ℵ1 = ℵ2 > ℵ1. Unfortunately a general function f0 in F is
practically useless because it lacks a capacity for generalization. More specifically,
knowledge of a function f0 values f0(x1), ...f0(xn) at a number of points x1, ..., xn

cannot imply the value of function f0 at a different point xn+1 
= xi, i = 1, . . . , n.
Consider now a parametric family of models, e.g. polynomials, ARMA mod-

els, statistical regressors, multilayer perceptrons, etc. Any of the aforementioned
families is characterized by a capacity for generalization. Moreover, due to the
finite number p of parameters involved, the cardinality of any of the aforemen-
tioned families of models equals ℵp

1 = (2ℵ0)p = 2ℵo = ℵ1.
It might be thought that ℵ1 is an adequately large number of models to choose

a “good” model from. Unfortunately the latter is not the case. Consider, for
instance, the family of polynomials which includes ℵ1 models. It is well known
that a polynomial may not approximate usefully a set (x1, y1), ..., (xn, yn) of
training data points due to “overfitting”; hence a polynomial may not be useful
for generalization. It turns out that the family of FISs combines cardinality ℵ2
with a capacity for (local) generalization as explained next.

It has been shown in proposition 5 that the cardinality of the set Fn of fuzzy
numbers equals card (Fn) = ℵ1. A Mamdani type FIS can be regarded as a
function m : FN

n → FM
n . Using standard cardinal arithmetic it follows that the

cardinality of the set M of Mamdani type FIS equals card (M) = ℵℵ1
1 = ℵ2 > ℵ1.

In conclusion, Mamdani- type FIS can implement, in principle, ℵ2 functions.
The same is true of Sugeno-type FIS.

It was explained that a general function f : RN → RM lacks a capacity for
generalization. Fortunately this is not the case for a FIS of Mamdani-, or Sugeno-
type due to the non-trivial (interval) support of the fuzzy numbers involved in a
FIS’ fuzzy rule base. More specifically an input vector x = (x1, . . . , xn), within
a fuzzy rule’s interval of support, activates the corresponding rule; there follows
a FIS’ capacity for (local) generalization. In conclusion the family of FIS models
combines “in principle” a cardinality ℵ2 with a capacity for generalization in
function f : RN → RM approximation problems.

Note that, lately, FINs were used for novel FIS analysis and design based
on metric topology techniques [5]. In addition, extensive statistical “hypothesis
testing” has demonstrated that genetically optimized positive valuation func-
tions can result in substantial improvement in applications using FINs [6].
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5 Conclusion

This chapter was meant as a reference towards proliferating the employment of
FINs in neural/fuzzy applications. In addition to a capacity to rigorously deal
with granular inputs, an important advantage of the proposed techniques is the
introduction of tunable nonlinearities based on positive valuation functions.

There is ample experimental evidence suggesting that FIN extensions of ART,
SOM, and FIS can comparatively improve performance in classification and regres-
sion applications [4,5,6,7,9]. Furthermore, note that IT2 FIN extensions of both
ART and SOM neural networks are straightforward in the context of this work.
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