Computability and Incomputability

Robert I. Soare

Department of Mathematics
University of Chicago
Chicago, Illinois 60637-1546
soare@uchicago.edu

Abstract. The conventional wisdom presented in most computability
books and historical papers is that there were several researchers in the
early 1930’s working on various precise definitions and demonstrations of
a function specified by a finite procedure and that they should all share
approximately equal credit. This is incorrect. It was Turing alone who
achieved the characterization, in the opinion of Goédel. We also explore
Turing’s oracle machine and its analogous properties in analysis.

Keywords: Turing a-machine, computability, Church-Turing Thesis,
Kurt Goédel, Alan Turing, Turing o-machine, computable approxima-
tions, effectively continuous functions on reals, computability in analysis,
strong reducibilities reexamined.

1 The Modern Era of Computability Theory

Mathematicians have studied algorithms and calculation at least since the time
of the Babylonians and later Euclid (c. 330 B.C.). However, it was only in the
modern period which began in the 1930’s that mathematicians were able to
give precise formal models which characterized the informal notion of a finite
procedure, and harness these models in what evolved into modern computers.
The modern period of the theory of computability can be split into three periods.

1. A-Definability Era: 1931-1935
2. Recursion Theory Era: 1935-1995
3. Computability Era: 1996-present

1.1 Transition from A-Definable to Recursive in 1935

Kleene arrived as a graduate student of Church in Princeton in 1935 and worked
on showing that a large class of number theoretic functions were A-definable.
Kleene gave lectures to audiences of mathematicians but was disappointed that
they were unfamiliar with the A-calculus definitions and failed to appreciate
Kleene’s work.

In the spring of 1934 Gédel moved to Princeton and gave his lectures on the
“general recursive functions.” Both Kleene and Church immediately switched

S.B. Cooper, B. Léwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 705{715, 2007.
© Springer-Verlag Berlin Heidelberg 2007

706 R.I. Soare

from the A-definable formalism to the Herbrand-Godel general recursive func-
tions. Church introduced the use of “recursive” as an adverb to mean
“computable,” e.g. “recursively enumerable,” and Kleene later introduced the
term “recursive function theory.” The term “recursive” had previously meant
“inductive,” but in 1935 under Church and Kleene, it acquired the meaning
“computable” for the sake of explaining the results to mathematicians unfamil-
iar with the A-definable terminology.

1.2 Transition from Recursive to Computable in 1996

By 1995 the computer revolution had brought computers and their concepts and
terminology into everyday lives. One of the biggest influences was the introduc-
tion in 1981 of the IBM personal computer (PC) which meant that more and
more ordinary people had a PC on their desks by 1995. Not only scientists but
the general population recognized the basic concepts and terminology of com-
puting, but very few recognized the terminology of “recursive.” Those who did
associated it with “inductive” not “computable.”

Soare wrote a paper Computability and Recursion [1996] whose content was
delivered in an invited address at the International Congress for Logic, Method-
ology and Philosophy of Science in Florence in August, 1995.

He pointed out that in the 1930’s the principal founders of Computability The-
ory, Turing and Gédel, never used the term “recursive” to mean computable and
explicitly rejected such suggestions. The field was ripe for a change of terminol-
ogy to make itself better understood by the public, just as Kleene and Church
had changed terminology. Soare’s paper suggested that using the term “com-
putable” would not only be more recognizable by the public, but would be more
scientifically and historically accurate. By the time the American Mathematical
Society international meeting on the subject was held in Boulder, Colorado in
1999 (see Soare [2000]) the majority of the researchers had changed to the com-
putability terminology, and the title of the conference was now Computability
Theory and its Applications: Current Trends and Open Problems.

1.3 Three Main Points in [1996]

Soare’s paper [1996] on computability was not by itself responsible for the change
which took place from 1996 to 1999 with “recursive” replaced by “computable.”
The seeds of change were already there. However, Soare’s paper made three main
points which have been subsequently confirmed.

1. The subject is about computability, not recursion, not A-definability, not
Post canonical systems. The subject is about studying functions which can
be “computed by a finite procedure,” to use the words of Godel [1934].

2. It was Turing, not Kleene, not Church, not Post, not even Godel. It was
Turing alone who: (1) gave the first convincing formal definition of a com-
putable function (Turing a-machine); (2) proved that the informal notion
coincided with this formal one; (3) defined the universal Turing machine;

Computability and Incomputability 707

and (4) defined the Turing oracle machine (o-machine), the central concept
in computability.

3. Finally, if we use terminology and notation of computability as Turing did,
and indicate our interest in wider questions beyond narrow technical ones
as Turing did, then we can form connections with other diverse researchers
also interested in other aspects of computability.

This has indeed happened since 1996. An organization called Computability
and Complezity in Analysis (CCA) has held several meetings, the most recent in
November, 2006, in Gainesville, Florida. A related organization, Computability
in Europe (CIE), is sponsoring this conference and this paper. Both have at-
tracted a large, diverse collection of members. The lectures reflect a much wider
range of interests in computability than in recursion theory a decade or so ago.
Could either organization have attracted so many members today with the term
“recursion” in place of “computability” in the title?

2 Defining Computability in the 1930’s

2.1 Several Formalisms Emerge

Godel’s Incompleteness Theorem [1931] not only solved the first Hilbert question
on whether a formal system could prove its own consistency, but it generated a
lot of interest in Hilbert’s second question, the Entscheidungsproblem, decision
problem, described in Hilbert and Ackermann [1928] for first order logic. Hilbert
had characterized this as the fundamental problem of mathematical logic. In
Princeton Alonzo Church had introduced a precise formal system called the A-
calculus (now used as a programming language), but by 1931 he knew only that
the successor function and addition were A-definable. Stephen Kleene arrived in
Princeton in 1931 as a student of Church, and Church put him to work adding to
the knowledge of A-definable functions. The first version of Church’s A-notation
was shown to be inconsistent by Rosser and Kleene, but Church and Kleene
focused on a more restricted version now known as the A-calculus.. By 1934
Kleene had shown that virtually all common functions in number theory algebra
were A-definable.

Godel, by then the most famous and respected mathematical logician in the
world, moved to Princeton in 1934. In [1931] he had introduced two elements
which would play an important role in computability: the use of primitive recur-
sive functions to code configurations; and the use of sequences to code a sequence
of syntactical objects such as a proof. However, Godel knew that the primitive
recursive functions did not exhaust all the computable functions. In the spring
of 1934 Gédel [1934] gave a series of lectures, recorded by Kleene and Rosser,
modifying an idea of Herbrand to produce what Godel called a general recur-
sive function to distinguish it from the 1931 functions he had called “recursive
function” (“rekursiv” in German). By 1936 Godel’s terminology was changed by
Church and Kleene so that “recursive function” came to mean “general recursive
function” and the adjective “primitive” was added to the earlier notion.

708 R.I. Soare

2.2 Towards a Computability Thesis

The history of the development of a thesis characterizing the computable
functions is fascinating. Godel [1934] wrote:

Godel Considers a Thesis in [1934]

“[Primitive] recursive functions have the important property that, for
each given set of values for the arguments, the value of the function can

be computed by a finite procedure?.”

Footnote 3.

“The converse seems to be true, if, besides recursion according to scheme
(V) [primitive recursion], recursions of other forms (e.g., with respect to
two variables simultaneously) are admitted. This cannot be proved, since
the notion of finite computation is not defined, but it serves as a heuristic
principle.”

We shall return to this quote, especially the second paragraph (his footnote 3),
which gives us crucial insight into Gddel’s thinking about the computability
thesis and his later pronouncements about the achievements of Turing versus
others.

Church’s Thesis “Thoroughly Unsatisfactory”. Largely on the basis of
the evidence of the large class of number theoretic functions shown to be
A-definable by Kleene, and based also on his own intuition, Church proposed
privately to Godel the first version of Church’s Thesis. Around March, 1934,
Church suggested to Godel that the notion of “A-definable” be identified with “ef-
fectively calculable” (which was Church’s term for what we now call “intuitively
computable.”)

Godel strongly rejected this suggestion of Church which he called “thoroughly
unsatisfactory.” Undeterred by this encounter with Godel, Church changed for-
mal definitions from “)-definable” to the (Herbrand-Godel) (general) recursive
functions just introduced by Godel in his lectures in 1934. This time without
consulting Godel, Church presented on to the American Mathematical Society
on April 19, 1935, his famous proposition published in 7936 and known since
Kleene [1952] as Church’s Thesis.

Thesis 1 (Church’s Thesis) [1935] and [1936]. “In this paper a definition of
recursive function of positive integers which is essentially Gddel’s is adopted.
It is maintained that the notion of an effectively calculable function of positive
integers should be should be identified with that of a recursive function, ...”

Church always presented this as a definition of an effectively calculable function,
not as a thesis. It was Kleene who much later called it a Thesis [1943] and
finally [1952] called it “Church’s Thesis.” Using the identification of solvable
problems with those solved by a recursive function, Church went on to exhibit
an unsolvable problem in mathematics, and hence a negative solution to Hilbert’s
Entscheidungsproblem.

Computability and Incomputability 709

2.3 Church and Kleene Collect Evidence

By the beginning of 1936 Church had become ever more confident of his for-
mal definition of effectively calculable function and its application to unsolvable
problems. He had announced his work [1935] to the American Mathematical So-
ciety. Church’s major paper [1936] had been submitted and would soon appear
on recursive functions and the definition of effectively calculable functions. In an
abstract received by the American Mathematical Society in July, 1935, which
would soon appear as Kleene [1936b], Kleene had announced the equivalence
of the formal definitions of A-definable and recursive, which Kleene and Church
had shown.

Kleene had introduced a third formalism, the p-recursive functions, the least
class of functions closed under the former schemes (I)-(V) for the primitive
recursive functions and also scheme (VI) the least number operator, 1 (x) =
(ny)[0(x,y) = 0]. This definition was derived (as Kleene pointed out) from
Godel’s [1931] paper with its use of coding of syntax using primitive recursive
functions. Also received on July 1, 1935, was an abstract of the paper to appear
as Kleene [1936] in which Kleene stated that every (general) recursive function is
p-recursive. This gives a useful and succinct formalism, but it is entirely deriva-
tive of Gddel [1931] because its two key ingredients are the primitive recursive
functions used for coding as in Godel and the idea of coding of syntax (or here
coding steps in the computation).

The coincidence of these formal definitions of effectively calculable function
gave Church more confidence that he had indeed correctly captured the informal
notion of finite procedure. By January, 1936 Church had already written this for
his major paper Church [1936] to appear shortly.

“The fact, however, that two such widely different and (in the opinion
of the author) equally natural definitions of effective calculability turn
out to be equivalent adds to the strength of the reasons addressed below
for believing that they constitute as general a characterization of this
notion as is consistent with the usual intuitive understanding of it.”

2.4 Stalemate at Princeton in Early 1936

Church had accumulated more and more evidence for his case, but he still did not
have the approval of one man who counted most to him and to the community
in mathematical logic. Godel continued to reject Church’s Thesis. He was not
convinced by the confluence argument above even though he himself had supplied
virtually all the essential mathematical ingredients in [1931] and [1934] for the
work by Church and Kleene including the (general) recursive functions, and the
use of primitive recursive functions and coding of sequences of syntactical objects
later used by Kleene in the p-recursive functions and 7' predicate and normal
form. Why did Gdédel reject Church’s Thesis by early 1936, and why did he not
put forward a thesis himself in 19347

710 R.I. Soare

Godel’s Doubts. First, Godel had hinted in footnote 3 of [1934] quoted above
in that if other recursions were added they might comprise all mechanically
calculable functions. However, in a letter to Martin Davis dated February 15,
1965, Godel wrote as follows.

“...It is not true that footnote 3 is a statement of Church’s Thesis. The
conjecture stated there refers to the equivalence of “finite (computation)
procedure” and “recursive procedure.” However, I was, at the time of
these lectures, not at all convinced that my concept of recursion com-
prises all possible recursions ...”

-Gadel 1965, letter to Martin Davis

Second, Godel had written in footnote 3,

“This cannot be proved, since the notion of finite computation is not
defined, but it serves as a heuristic principle.”

For Godel a crucial ingredient was to analyze the intrinsic nature of the notion
of “finite procedure” not just prove the confluence of various formal definitions
as Church and Kleene had done. In January, 1936 Godel not only believed that
this had not yet been done, but he also expressed some doubt as to whether
“finite procedure” could be formally analyzed at all or whether it must serve
only “as a heuristic principle.”

3 Turing Breaks the Stalemate

Those gathered at Princeton, Gédel, Church, Kleene, Rosser, and Post nearby,
constituted the most distinguished and powerful group of scholars in the world
working on the notion of a computable function, and yet as the year 1936 began
they could not agree. At that moment stepped forward a twenty-two year old
youth. Well, not just any youth. Alan Turing had already proved the Central
Limit Theorem in probability theory (not knowing it had been previously proved,
see Zabell [1995]), and as a result Turing had been elected a Fellow of King’s
College, Cambridge.

The work of Hilbert and Gdédel had already attracted interest at Cambridge
University where topologist Professor M.H.A. (Max) Newman gave lectures on
Hilbert’s Entscheidungsproblem in 1935. Alan Turing attended. Turing’s mother
had a typewriter which fascinated him as a boy. He designed his automatic ma-
chine (a-machine) as a kind of typewriter with an infinite carriage over which
the reading head passes with the ability to read, write, and erase one square
at a time. Equally important with this Turing machine was Turing’s analysis of
the intuitive conception of a “function produced by a mechanical procedure.” In
a masterful demonstration, which Robin Gandy considered as precise as most
mathematical proofs, Turing analyzed the informal nature of functions com-
putable by a finite procedure, and demonstrated that they coincide with those
computable by an a-machine. Also Turing [1936, p. 243] introduced the universal
Turing machine which has great theoretical and practical importance.

Computability and Incomputability 711

Thesis 2 (Turing’s Thesis [1936]). A function on the integers is computable
by a finite procedure if and only if it is computable by a Turing a-machine.

Church [1936] had tried to give a similar informal argument for Church’s Thesis
but Gandy [1988, p. 79] and especially Sieg [1994, pp. 80, 87] in their excellent
analyses brought out the weakness in Church’s argument. In 1936 Turing’s was
the only convincing demonstration of any thesis that a formal definition captured
the informal notion of computable.

4 Godel’s Opinion of Turing’s Work

Godel’s reaction was swift and emphatic. He never accepted Church’s Thesis,
but he accepted Turing’s Thesis at once

“That this really is the correct definition of mechanical computability
was established beyond any doubt by Turing.”
-Gaodel 1937 Notes in Nachlass [1935]

“ But I was completely convinced only by Turing’s paper.”
-Gadel: letter to Kreisel of May 1, 1968 [Sieg, 1994, p. 88].
“...one [Turing] has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending
on the formalism chosen.”
-Gadel, Princeton Bicentennial, [1946, p. 84].

“...For the concept of computability, however, although it is merely a
special kind of demonstrability or decidability, the situation is different.
By a kind of miracle it is not necessary to distinguish orders, and the
diagonal procedure does not lead outside the defined notion.”

—Gadel: [1946, p. 84], Princeton Bicentennial

“The greatest improvement was made possible through the precise defini-
tion of the concept of finite procedure, ... This concept, ...is equivalent
to the concept of a ‘computable function of integers’ ... The most sat-
isfactory way, in my opinion, is that of reducing the concept of finite
procedure to that of a machine with a finite number of parts, as has
been done by the British mathematician Turing.”

—Gadel [1951, pp. 304-305], Gibbs lecture

1 Godel was interested in the intensional analysis of finite procedure. He never believed
the arguments and confluence evidence which Church presented to justify his Thesis.
On the other hand Gdédel accepted immediately not only Turing machines, but more
importantly the analysis Turing gave of a finite procedure. The fact that Turing
machines were later proved extensionally equivalent to general recursive functions
did not convince Godel of the intrinsic merit of the other definitions.

712

R.I. Soare

“...due to A.M. Turing’s work a precise and unquestionably adequate
definition of the general concept of formal system can now be given, the
existence of undecidable arithmetical propositions and the non-demon-
strability of the consistency of a system in the same system can now be
proved rigorously for every consistent formal system containing a certain

amount of finitary number theory.”
-Godel’s Postscriptum to Godel [1934], see Davis, [1965].

4.1 Godel on Church’s Thesis
In June, 1964, Godel remarked (see Davis [1965, p. 72]).

“See A. Turing [1936] and the almost simultaneous paper by E.L. Post
[1936]. As for previous equivalent definitions of computability, which,
however, are much less suitable for our purpose, see A. Church [1936].”

4.2 Kleene Said About Turing

“Turing’s computability is intrinsically persuasive” but “A-definability is
not intrinsically persuasive” and “general recursiveness scarcely so (its
author Gddel being at the time not at all persuaded).”

-Stephen Cole Kleene [1981b, p. 49]

“Turing’s machine concept arises from a direct effort to analyze computa-
tion procedures as we know them intuitively into elementary operations.
Turing argued that repetitions of his elementary operations would suf-
fice or any possible computation. For this reason, Turing computability
suggests the thesis more immediately than the other equivalent notions
and so we choose it for our exposition.”

-Stephen Cole Kleene, second book [1967, p. 233]

4.3 Church Said About Turing

5

After Turing’s discovery in April, 1936, Professor Newman suggested that he
go to Princeton to take his Ph.D., which he did under Church. Turing’s thesis
in 1939 was on ordinal logics, an attempt to get around Gdédel’s incomplete-
ness theorem by adding new axioms. In an obscure part of his paper Turing

Computability by a Turing machine, “ has the advantage of making
the identification with effectiveness in the ordinary (not explicitly de-
fined) sense evident immediately—i.e., without the necessity of proving

preliminary theorems.”
-Alonzo Church, [1937], Review of Turing [1936]

Turing Defines Oracle Machines

[1939, §4] wrote,

Computability and Incomputability 713

“Let us suppose we are supplied with some unspecified means of solving
number-theoretic problems; a kind of oracle as it were. ...this oracle
...cannot be a machine.

With the help of the oracle we could form a new kind of machine
(call them o-machines), having as one of its fundamental processes that
of solving a given number-theoretic problem.”

There are several ways that a Turing machine with oracle may be defined.
We prefer the definition in Soare [1987, p. 46] of a machine with a head which
reads the work tape and oracle tape simultaneously. Any of these definitions
gives the definition of a Turing functional &4 (x) = y. The crucial point is that
any definition must produce a computably enumerable (c.e.) set V. as the grap
of &,

Ve = {{ovzy : 92(z) =y}

These Turing computable functionals are exactly like the more general contin-
uous functions on Cantor space 2¢ but relativized to an oracle set X C om. A
continuous function on Cantor space is one with graph VX for some z C w. Is a
a researcher in analysis wants to work on the slightly different space of the real
numbers with the usual topology in analysis given by open balls B; with rational
center and rational radius as the basic open sets, then the description is exactly
analogous. If the function is continuous, then the inverse of a basic open set B;
is set of balls c.e. in X for some read X C w.

In September, 1939, Turing entered the world of British crypotography and
did not develop the notion of oracle machine further. Post [1944] began to ex-
plore the notion of oracle machines and their associated definition of Turing
reducibility B <t A, and Post studied a number of stronger less general re-
ducibilities, such as 1-reducible, m-reducible, btt-reducible, tt-reducible (truth
table reducible). The full Turing reduciblity was not well understood until at
least a decade later with the Kleene Post [1954] paper finding Turing incompa-
rable sets below (V.

Many problems in the real world are not explicitly computable but are limit
computable. The function f may be represented as f(z) = limg f(z, s) for some
computable function f(ax, s). These problems in turn can be looked at via oracle
machines. Consider the halting problem K = {e:e€ W, }.

Lemma 1. [Limit Lemma] A is limit computable iff A <1 K.

Many processes can be looked at as having a fixed finite control, but an oracle
which may be changed as external conditions warrant, i.e., an oracle K at stage
s which goes to a limit K = Us K. Thus, the concept of Turing’s oracle machine
(o-machine) is the most important in the subject of computability at both the
theoretical and practical level.

A number of textbooks on computability theory follow Post’s lead by defining
a Turing a-machine in chapter 1 and not defining a Turing o-machine and Turing

2 The term “graph” for this set is becoming standard by analogy with the graph of
partial computable (p.c.) function ¢ which is the same but with out the o.

714 R.I. Soare

functionals until a much later chapter, spending the intermediate chapters on
the intermediate reducibilities or other smaller themes. This is analogous to
having a calculus textbook delay the definition of continuous or differentiable
function until chapter 10 spending the time on derivates of special functions
like polynomials. We should proceed as quickly to the full definition of a Turing
functional ¢4 and its graph V, defined above.

References

[Church, 1936] Church, A.: An unsolvable problem of elementary number theory.
American J. of Math. 58, 345-363 (1936)

[Church, 1937] Church, A.: Review of Turing 1936. J. Symbolic Logic 2(1), 42-43
(1937)

[Davis, 1965] Davis, M.: The Undecidable. Basic Papers on Undecidable Propositions,
Unsolvable Problems, and Computable Functions. Raven Press, Hewlett, New
York (1965)

[Davis, 1982] Davis, M.: Why Gédel did not have Church’s Thesis. Information and
Control 54, 3-24 (1982)

[Gandy, 1980] Gandy, R.: Church’s thesis and principles for mechanisms, In: The
Kleene Symposium, North-Holland, pp. 123-148 (1980)

[Gandy, 1988] Gandy, R.: The confluence of ideas in 1936, In: Herken, pp. 55-111
(1988)

[Godel, 1931] Godel, K.: Uber formal unentscheidbare sitze der Principia Mathematica
und verwandter systeme. I, Monatsch. Math. Phys. vol. 38 pp. 173-178 (1931)
(English trans. in Davis 1965, pp. 4-38, and in van Heijenoort, pp. 592616 (1967)

[Godel, 1934] Gédel, K.: On undecidable propositions of formal mathematical systems,
Notes by Kleene, S.C., Rosser, J.B. (eds.) on lectures at the Institute for Advanced
Study, Princeton, New Jersey, 30 pp (Reprinted in Davis 1965 [3, 39-74] (1934)

[Godel, 1937] Godel, K.: Undecidable diophantine propositions, In: Gédel, pp. 156-175
(1995)

[Godel, 1946] Godel, K.: Remarks before the Princeton bicentennial conference of prob-
lems in mathematics, Reprinted in: Davis 1965 [3], pp. 84-88 (1946)

[Godel, 1951] Godel, K.: Some basic theorems on the foundations of mathematics and
their implications, In: Godel pp. 304-323 (This was the Gibbs Lecture delivered
by Godel on December 26, 1951 to the Amer. Math. Soc.) (1995)

[Godel, 1964] Godel, K.: Postscriptum to Godel 1931, written in 1946, printed in Davis
pp. 71-73 (1965)

[Hilbert, Ackermann] Hilbert, D., Ackermann, W.: Grundziige der theoretischen Logik.
In (English translation of 1938 edition, Chelsea, New York, 1950), Springer, Berlin
(1928)

[Hodges, 1983] Hodges, A.: Alan Turing: The Enigma, Burnett Books and Hutchinson,
London, and Simon and Schuster, New York (1983)

[Kleene, 1936] Kleene, S.C.: General recursive functions of natural numbers. Math.
Ann. 112, 727-742 (1936)

[Kleene, 1943] Kleene, S.C.: Recursive predicates and quantifiers. Trans. A.M.S. 53,
41-73 (1943)

[Kleene, 1952] Kleene, S.C.: Introduction to Metamathematics, Van Nostrand, New
York. Ninth reprint 1988, Walters-Noordhoff Publishing Co., Groningén and
North-Holland, Amsterdam (1952)

Computability and Incomputability 715

[Kleene, 1967] Kleene, S.C.: Mathematical Logic. John Wiley and Sons, Inc, New York,
London, Sydney (1967)

[Kleene, 1981] Kleene, S.C.: Origins of recursive function theory. Annals of the History
of Computing 3, 52-67 (1981)

[Kleene, 1987] Kleene, S.C.: Reflections on Church’s Thesis. Notre Dame. Journal of
Formal Logic 28, 490-498 (1987)

[Kleene, 1988] Kleene, S.C.: Turing’s analysis of computability, and major applications
of it, In: Herken, pp. 17-54 (1988)

[Kleene, Post, 1954] Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of re-
cursive unsolvability. Ann. of Math. 59, 379-407 (1954)

[Post, 1936] Post, E.L.: Finite combinatory processes—formulation, J. Symbolic Logic
vol. 1 pp. 103-105 (1936). Reprinted in Davis, pp. 288-291 (1965)

[Post, 1944] Post, E.L.: Recursively enumerable sets of positive integers and their de-
cision problems, Bull. Amer. Math. Soc. vol. 50, pp. 284-316 (1944). Reprinted
in Davis, pp. 304-337 (1965)

[Sieg, 1994] Sieg, W.: Mechanical procedures and mathematical experience. In: George,
A. (ed.) Mathematics and Mind, Oxford Univ. Press, Oxford (1994)

[Soare, 1987] Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Com-
putable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

[Soare, 1996] Soare, R.I.: Computability and recursion. Bulletin of Symbolic Logic 2,
284-321 (1996)

[Soare, 2000] Soare, R.I.: Extensions, Automorphisms, and Definability, In: Cholak,
P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and its Ap-
plications: Current Trends and Open Problems, American Mathematical Society,
Contemporary Math. #257, American Mathematical Society, Providence, RI, pps.
279-307 (2000)

[Soare, cta] Soare, R.I.: Computability Theory and Applications, Springer-Verlag, Hei-
delberg (To appear)

[Turing, 1936] Turing, A.M.: On computable numbers, with an application to the
Entscheidungsproblem. In: Proc. London Math. Soc. ser. 2 vol. 42 (Parts 3 and 4)
pp- 230-265 (1936) [Turing, 1937 A correction, ibid. vol. 43, pp. 544-546 (1937)

[Turing, 1939] Turing, A.M.: Systems of logic based on ordinals. In: Proc. London
Math. Soc. vol. 45 Part 3 pp. 161-228 (1939) reprinted in Davis, pp. 154-222
(1965)

[Zabell, 1995] Zabell, S.L.: Alan Turing and the Central Limit Theorem. American
Mathematical Monthly 102(6), 483-494 (1995)

	Computability and Incomputability
	The Modern Era of Computability Theory
	Transition from λ-Definable to Recursive in 1935
	Transition from Recursive to Computable in 1996
	 Three Main Points in [1996]

	Defining Computability in the 1930's
	Several Formalisms Emerge
	Towards a Computability Thesis
	Church and Kleene Collect Evidence
	Stalemate at Princeton in Early 1936

	Turing Breaks the Stalemate
	Gödel's Opinion of Turing's Work
	Gödel on Church's Thesis
	Kleene Said About Turing
	Church Said About Turing

	Turing Defines Oracle Machines

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

