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Abstract. We study possible spectrums of torsion free Abelian groups.
We code families of finite sets into group and set up the correspondence
between their algorithmic complexities.

1 Introduction

Studying model theory and theory of algorithms gives us another branch of
science - computable model theory. We say that the model is computable if it’s
main set, predicates and functions are recursive, and all functions and predicates
are effectively enumerated. We may think these models as “the only ones that
can be applied in computer science and that can be presented on some computer”
or “the ones we can exactly imagine” etc. Note that we don’t think about time
or space complexity of algorithms - this is another subject for studying.

Starting with abstract computable models, we try to apply some results or
their variations to effective algebra. In particular, computable fields, Boolean
algebras and groups are widely studying.

We generalize the notion of computable model replacing in it’s definition all
words “recursive” by “X-recursive”, where X is some countable set. That means
that we can ask someone on some steps of given program whether x ∈ X or
not, for arbitrary x. It’s not easy to imagine, how can we apply it in computer
science. We can think that this “oracle” is some physical experiment - but is
there any physicist who knows everything about halting problem?.. That means
that we need some methods to answer the question:

Question. Let A be a model, and suppose that A has copies, computable in a
fixed family of Turing degrees respectively. Does it necessarily follow that A has
a computable copy?

If A is a Boolean algebra, and it has a low copy, then the answer is “yes”[1].
There is another related question:

Question. Given a structure A what can we say about {deg(Â) : Â � A}?
For an arbitrary structure, this family of degrees (called degree spectrum) can

be enough complicated and reach, but does not contain 0-degree or low degrees.
Wehner [7] built a graph that has presentations exactly in non-recursive degrees
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(see also [4] for alternative proof). Miller R. [3] built a linear order, that has all
noncomputable Δ0

2 - copies, but does not have a computable one. These results
give us examples of algorithmic “anomaly” and shows the variety and richness
of pure and applied computable algebra.

We study possible spectrums of torsion free Abelian groups. For torsion free
Abelian group the key notion is its rank. In this paper we study algorithmic
properties of groups in the case of infinite rank, and we obtain the following:

Theorem. For any family R of finite sets there exists a torsion free Abelian
group GR of infinite rank, such that GR has X-computable copy iff R has ΣX

2 -
computable enumeration.

Interpretation of a family, that can be obtained by relativization of Wehner’s
result, gives us the corollary:

Theorem. There exists a torsion free Abelian group G of infinite rank, such
that G has X-computable copy iff X ′ >T 0′, i.e. has exactly nonlow copies.

2 Basic Notions

We need some basic notions and facts from computability theory, theory of
groups and computable model theory. For better background see also [5], [6]
and [2]. We suppose that the reader knows the elementary properties of recursive
functions and recursively enumerable sets.

Definition 1. A set A is recursive with respect to a set B (A ≤T B), if its
characteristic function is B-recursive. That means that it can be computed by
Turing machine with “oracle” B. If A ≤T B and B ≤T A then A ≡T B. It’s
obvious that ≡T is the relation of equivalence. The equivalence classes for ≡T

are called degrees.

Definition 2. Let K = {x: ΦA
x (x) ↓} = {x: x ∈ WA

x }. This set is denoted by A′

and called the jump of a set A.

Index A in ΦA
x (x) means that Φ is (partially) recursive with respect to a set A.

It’s clear how to define the n-th jump of A (A(n)) using the same construction for
A(n−1). Jump is well-defined on degrees, and iteration of jumps induces hierarchy,
that is called arithmetical:

X ∈ ΣY
n ↔ X is r.e. in Y (n−1).

Definition 3. We say that a set A ≤T ∅′ is low if A′ ≡T ∅′, and it is n-low if
A(n) ≡T ∅(n).

Definition 4. Let R = {Ri|i ∈ ω} and ν : ω →on R. The set Sν � {〈n, i〉|n ∈
ν(i)} is called enumeration of R. We also refer to ν as an enumeration of R,
using a simple fact, that having Sν we can recollect the map ν and vice versa.

We will follow the tradition of enumeration theory in defining computable
enumeration:
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Enumeration ν is called ΣX
n -computable if Sν ∈ ΣX

n (and X-computable if
Sν ∈ ΣX

1 ).

Now let G be a countable group.

Definition 5. A group 〈G, ·〉 is called computable group if | G | ⊆ N is a recur-
sive set and the operation · is presented by some recursive function.

We define A-computable groups by substitution of the word “recursive” by
“A-recursive” in the definition above.

Definition 6. Let 〈G, +, 0〉 be a torsion free Abelian group (i.e for all a 
= 0,
0 
= n ·a � a + a + ... + a

︸ ︷︷ ︸

n

). The elements g0, ..., gn ∈ G are linearly independent

if, for all c0, ..., cn ∈ Z, the equality c0g0 + c1g1 + ... + cngn = 0 implies that
ci = 0 for all i. An infinite set is linearly independent if every finite subset is
linearly independent. A maximal linearly independent set is called a basis, and
the cardinality of any basis is called the rank of G.

As for vector spaces, it can be proved that the notion of rank is proper, i.e. all
maximal linearly independent sets have the same cardinality.

Fix a canonical listing of prime numbers:

p1, p2, ..., pn, ...

Definition 7. Let g ∈ G. Then pk|g � (∃h ∈ G)(pkh = g) and

hp(g) =

{

max{k : pk|g}, if this maximum exists,
∞, else.

The infinite sequence χ(g) = (hp1(g), ..., hpn(g), ...) is called the characteristic of
element g.

Now we are ready to define one of the basic notions in Abelian groups theory.

Definition 8. Given two characteristics, (k1, ..., kn, ...) and (l1, ..., ln, ...), we
say that they are equivalent, (k1, ..., kn, ...) � (l1, ..., ln, ...), if kn 
= ln only for
finite different n, and only if these kn and ln are finite. This relation is ob-
viously an equivalence relation, and the corresponding equivalence classes are
called types.

It can be easily proved that linear dependant elements has the same type. That
means that we can give a proper definition of type of group in the case of rank 1.
The following theorem is the key result for torsion free Abelian groups of rank 1:

Theorem 1 (Baer, see [6]). Let G and H be torsion free Abelian groups of
rank 1. Then G is isomorphic to H iff they have the same type.

Proof (sketch).
We can choose any nonzero g ∈ G and h ∈ H , and it will be necessarily χ(g) �
χ(h). Then we extract the finite number of roots receiving g′ ∈ G and h′ ∈ H
with identical characteristics. We define isomorphism ϕ : G → H starting with
g′ → h′.
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3 Constructing The Group

Theorem 2. For any family R of finite sets there exists a torsion free Abelian
group GR of infinite rank, such that GR has X-computable copy iff R has ΣX

2 -
computable enumeration.

Proof.
Notation. We fix the family of finite sets denoted by R and it’s ΣX

2 -computable
enumeration νX with corresponding SX

ν � {〈n, i〉|n ∈ νX(i)} ∈ ΣX
2 . Without

loss of generality, we can assume that ∅ ∈ R.
We will use the fact, that every ΣX

2 -relation can be presented as {〈i, k〉 :
(∃<∞x)PX(x, 〈i, k〉)}, where PX is some recursive in X relation. We fix T X

such that
SX

ν = {〈i, k〉 : (∃<∞x)T X(x, 〈i, k〉)}.

The scheme of proof is the following:
Given a ΣX

2 -computable enumeration νX of R we build a r.e. in X presenta-
tion GX ⊆ Qω of group GR =

⊕

k∈ω

⊕

m∈ω Gk,m, where rank(Gk,m) = 1. Since
Qω is computable, then GX must have a computable copy as a r.e. subgroup
(see [2]).

Then, to make inverse step, we need to construct some ΣX
2 -computable enu-

meration if we have some X-computable presentation of GR.

This is the idea of building a group:
1. Fix a computable listing of prime numbers {pn}n∈ω and canonical enumer-

ation of (nonempty) finite sets {Dn}n∈ω.
2. Build a group such that any νX(k) corresponds to ω linearly independent

elements gk,m, and for all m, n, k:

¬(p∞n |gk,m) ⇐⇒ (Dn ⊆ νX(k)).

3. To build a group, enumerate T X(x, 〈i, k〉) until a new x for some pair 〈i, k〉
appeared. If we have found such x, add pn-roots to elements gk,m for all n, such
that i ∈ Dn.

First we define a procedure Root(〈i, k〉, tn〈x,i,k〉, Y
n
〈x,i,k〉), that adds prime roots

to elements gk,m. Y n
〈x,i,k〉 is the “memory” of this procedure, and tn〈x,i,k〉 is it’s

“counter of steps”.

Root(〈i, k〉, tn〈x,i,k〉, Y
n
〈x,i,k〉) :

For all n′ ∈ Y n
〈x,i,k〉, add pn′ -root to gk,tn

〈x,i,k〉
. If i ∈ Dtn

〈x,i,k〉
, then Y n+1

〈x,i,k〉 :=
Y n
〈x,i,k〉 ∪{tn〈x,i,k〉} and add ptn

〈x,i,k〉
-root to gk,m, m ≤ tn〈x,i,k〉. If i /∈ Dtn

〈x,i,k〉
, then

Y n+1
〈x,i,k〉 := Y n

〈x,i,k〉.
Finally, let tn+1

〈x,i,k〉 := tn〈x,i,k〉 + 1.
End of procedure.

Let Search(〈i, k〉, l) � μx(x ≥ l ∧ T X(x, 〈i, k〉)).
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Construction.

Step 0. Fix a computable presentation of Qω and numbers for gk,m (we can
suppose that gk,m is an element of a form (0, 0, ..., 0, 1

︸ ︷︷ ︸

pm
k

, 0, 0, ...)).

For all i, k, x, let l0〈i,k〉 = 0, t0〈x,i,k〉 = 0, Y 0
〈x,i,k〉 = ∅.

Step s. We denote by GX
s the part of GX that has been constructed by the step

s. For all {(g1, ..., gn) : gi ∈ GX
s , gi ≤ s, n ≤ s}, add to GX

s linear combinations
{m1g1 + ... + mngn : mi ≤ s} (if they were not already added).

Make s steps in computation of Search(〈i, k〉, ls〈i,k〉), 〈i, k〉 ≤ s.
If Searchs(〈i, k〉, ls〈i,k〉) ↓= x for some i, k, x, then ls+1

〈i,k〉 := x + 1, and 〈x, i, k〉
gets attention. Suppose Rs

〈x,i,k〉 � Root(〈i, k〉, ts〈x,i,k〉, Y
s
〈x,i,k〉), and

〈x1, i1, k1〉, ..., 〈xj , ij , kj〉

be the listing of all triples, that have got attention by this moment. Perform
Rx1,s

〈i1,k1〉, then perform the next, ..., and finally R
xj,s

〈ij ,kj〉
1.

End of construction.

Lemma 1. GX , built by construction, is torsion free Abelian group and has
computable in X copy.

Proof. The first statement is clear: G ⊆ Qω by construction. The second is true
because the algorithm of building GX is effective with oracle X , i.e. G is X-r.e.,
and G ⊆ Qω, that is computable (again see [2]).

Lemma 2. For any k and m, ¬(p∞n |gk,m) in GX iff (Dn ⊆ νX(k)).

Proof. νX(k) is finite, and i ∈ νX(k) iff

(∃<∞x)T X(x, 〈i, k〉),

That means that in the procedure Search after some moment no “new” x for
〈i, k〉 will appear for all i ∈ νX(k).

We notice that the existence of such step follows from two key properties: R
contains only finite sets and i ∈ νX(k) iff “there is only finitely many x, such
that T X(x, 〈i, k〉).”

We can make a conclusion that after this step, roots that correspond to subsets
of νX(k), will not be added by procedures Root to elements of a form gm,k.

Now let n ∈ {l : Dl � νX(k)}. That means that Dn contains i /∈ νX(k) and

(∃∞x)T X(x, 〈i, k〉),

i.e. infinitely many triples of a form 〈x, i, k〉 will get attantion. Therefore proce-
dures Root will add infinetly many pn-roots to elements gm,k. This completes
the proof of lemma.
1 Remember that the procedure Root(〈i, k〉, s, Y s

〈x,i,k〉) defines the value of Y s+1
〈x,i,k〉 and

ts+1
〈x,i,k〉.
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Lemma 3. Let νX and νY be enumerations of R. Then two groups GX and GY

(built using construction for νX and νY respectively) are isomorphic.

Proof. First fix enumeration νX . Notice that ω identic elements {gk,m}m∈ω (in
GX), corresponds to one νX(k), and gk1,m1 and gk2,m2 are linearly independent
for 〈k1, m1〉 
= 〈k2, m2〉.

We add roots to gk,m in such a way that GX is a direct sum:

GX =
⊕

k∈ω

⊕

m∈ω

GX
k,m,

where GX
k,m corresponds to element gk,m (and therefore codes νX(k), i.e. GX

k,m �
GX

k,n for all m, n and fixed k), and rank(GX
k,m) = 1.

Now we fix νY , and build GY . We receive a group of the similar form

GY =
⊕

k∈ω

⊕

m∈ω

GY
k,m.

All sets from Ri ∈ R are finite, therefore νX(k) and νY (t), coding the same
Ri ∈ R in enumerations, give us elements of the same type: these elements have
only finitely many finite roots, and these roots correspond to the same prime
numbers. By Baer Theorem we have the isomorphism of groups of rank 1.

The last problem is to show that the direct sum has the same structure. But
by construction we always have exactly ω subgroups, coding the same Ri ∈ R,
even if there are repetitions in coding of Ri in enumeration.

We showed that both GX and GY are isomorphic to

GR =
⊕

k∈ω

Gk,

where Rk ∈ R is coded by Gk =
⊕

m∈ω Gk,m, Gk,m
∼= Gk,m′

Given ΣX
2 enumeration of R we can build a r.e. group GX that has a computable

copy. It is a presentation of

GR =
⊕

k∈ω

⊕

m∈ω

Gk,m.

Now we need an inverse step, i.e. to construct some ΣX
2 -computable enumer-

ation if we have some X-computable presentation of GR.

Proposition 1. There exists an algorithm, that for any computable in X pre-
sentation GX of GR (defined above for R) gives ΣX

2 -enumeration of R.

Proof.
We define X-p.r.f. r as follows:

r(g, n, k) =

{

1, if GX |= pk
n|g,

r(g, n, k) ↑, else.
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We define also X ′-recursive function r̂:

r̂(g, n, k) =

{

1, if r(g, n, k) ↓= 1,

0, if r(g, n, k) ↑ .

Using r̂ we can check (with oracle X ′) the existence of prime roots for any
g ∈ GX . If there is a pair 〈n, k〉, such that r̂(g, n, k) = 0, then g has only finitely
many pn-roots.

We identify elements from G with there codes in GX .

Construction.

Step 0: Let all m0
t be undefined.

Step s:
Substep s,1: For g ∈ GX , such that g ≤ s and ms−1

g is undefined, compute
r̂(g, m, k) for m, k ≤ s. If there exist gi, mi, ki ≤ s, such that r̂(gi, mi, ki) =
0 ∧ (∀n < ki)(r̂(gi, mi, n) = 1), then suppose ms

gi
= mi

2. For every such gi add
to the enumeration all pairs

{〈j, gi〉 : j ∈ Dms
gi

}.

Substep s,1: For g ∈ GX , such that g ≤ s and ms−1
g is defined, compute

r̂(g, m, k) for m, k ≤ s. If there exist gi, mi, ki ≤ s, such that r̂(gi, mi, ki) =
0∧ (∀n < ki)(r̂(gi, mi, n) = 1∧Dms−1

gi
⊂ Dmi , then for every such gi, add to the

enumeration pairs
{〈j, gi〉 : j ∈ Dmi \ Dms−1

gi
},

and then suppose ms
gi

= mi.

End of Construction.

Lemma 4. Described algorithm builds the enumeration of R.

Proof. Remember that
GR =

⊕

k∈ω

⊕

m∈ω

Gk,m,

where rank(Gk,m) = 1 and Gk,m
∼= Gk,m′ (for any m, m′). For every gk,m ∈ Gk,m

we have the following:

¬(p∞n |gk,m) ⇐⇒ (Dn ⊆ RX
k ).

Let g ∈ G. Then g = rk1,m1gk1,m1 + ... + rkt,mtgkt,mt for some gk1,m1 ∈
Gk1,m1 , ..., gkt,mt ∈ Gkt,mt . But G is the direct sum, and g is the linear combi-
nayion of linear independent elements. It is easy to see that

(∀k)((¬p∞k |g) ⇐⇒
∨

j=1,...,t

(Dk ⊆ Rkj )),

2 We can suggest (for every i) mi be the minimal one with this property.
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i.e. the characteristic of g is the g.l.b. of characteristics of components. That
means that g codes the union of all subsets, coded by it’s components.

Algorithm let us to move higher and higher along the subsets of some Rkj ,
until we reach this Rkj . After we reach it, there will be no new pairs of a form
〈l, g〉 added in enumeration. That means that we enumerate Rkj , and we do it
for all elements of R, and only this elements could be enumerated.

Lemma 5. Enumeration built by algorithm (for GX) is ΣX
2 .

Proof. The function r̂(g, n, k) is recursive in X ′. That means that the Procedure
is effective in X ′, and enumeration is ΣX

2 .

We set up a correspondence between ΣX
2 -enumerations of R and computable in

X presentations of GR. This completes the proof of theorem.

The following result is one of the possible applications of the previous theorem:

Theorem 3. There exists a torsion free Abelian group G of infinite rank, such
that G has X-computable copy iff X ′ >T 0′, i.e. has exactly nonlow copies.

Proof (sketch). First we relativize the result of Wehner [7]. This gives us the fam-
ily of finite sets that has ΣX

2 (X ′ >T 0′) enumerations, but has no Σ2 enumera-
tion. Then we apply construction from previous theorem for this family of sets.

4 Questions

We suggest some related problems.

Question 1. Is it possible to build a torsion free Abelian group with copies ex-
actly in none-recursive degrees? Can we generalize our second theorem for the
case of lown-degrees, for arbitrary n?

At the case of finite rank the answer for the first part is “no” (for the second
part it is also natural to get “no”). But in general case the question is open -
there is no uniform procedure for coding of any given property into torsion free
Abelian groups, especially coding respecting effectiveness.

Question 2. What can we say about Abelian p-groups? Can we build a p-group
with any of these properties?

Studying p-groups from these point of view is very interesting and needs some
new ideas and methods to be developed.
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