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Abstract. In this paper we survey previous work by the authors defin-
ing a complexity measure for certain continuous time systems. Starting
point are energy functions of a particular structure. Global minimizers
of such energies correspond to solutions of a given problem, for example
an equilibrium point of an ordinary differential equation. The structure
of such energies is used to define complexity classes for continuous prob-
lems and to obtain completeness results for those classes. We discuss as
well algorithmic aspects of minimizing energy functions.

1 Introduction

The use of analog systems as computational models has attracted increasing
interest in recent years. One way to formalize computation in this framework is
to consider a differential equation and follow a trajectory until a solution, e.g.,
an equilibrium point, is reached. There are many interesting and open problems
related to such an approach, ranging from the question of setting up a complexity
theoretic framework for such dynamical systems (including notions of complexity
classes, reducibility, completeness etc.) to concrete solution algorithms. For an
excellent up to date survey on related questions see [3] and the literature cited
in there. An older yet very readable survey is [6].

In this paper we discuss a general framework for measuring the complexity of
analog systems introduced in [4].

Based on the notion of a problem we define complexity classes in dependence
of the structural complexity of certain energy functions. Those functions are
related to the solutions of a problem instance through their global minimizers.
This gives a way to introduce complexity classes which mimic classical P and
NP as well as the polynomial hierarchy, and to obtain completeness results.

Both the strength and weakness of this approach may be are its abstractness.
On the negative side one might expect a complexity theory for continuous time
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systems to be more concrete. However, on the positive side the approach is not
based on how to specify a complexity measure for following a trajectory.

Section 2 recalls the definition of a problem and introduces the above men-
tioned complexity classes in our model. We then discuss the main results con-
cerning completeness for the introduced classes. In Section 3 we outline how the
approach can be made more concrete by adding as well a measure for following
trajectories. As examples we consider linear system solving and the perceptron
learning algorithm.

Proof details can be found in [4].

2 The General Framework

A problem in our setting is defined as a binary relation over the space R
∞ :=⊕

i≥1
R

i of finite sequences of real numbers.

Definition 1. A problem Π is a relation in R
∞ × R

∞. Solving a problem

means that on input d ∈ R
n for some n ∈ N, a vector y ∈ R

k for some k ∈ N is
computed such that (d, y) ∈ Π. Usually we require the output dimension k to be
polynomially related to n, i.e. there exists a polynomial p such that k = p(n) for
all n ∈ N.

Remark 1. We shall frequently use the notation Π(d) to denote a solution y such
that (d, y) ∈ Π, even though Π may not be a function.

Example 1. The following examples are typical for our framework:

a) The problem of solving linear equations is given by

Π := {(A, b, y)|A ∈ R
m×n, b ∈ R

m, y ∈ R
n such that A · y = b}.

In terms of Definition 1 we thus have d := (A, b).
b) The problem of finding a separating hyperplane for two classes X+ ⊂ R

n,
X− ⊆ R

n of patterns is given by

Π := {(X+, X−, w, δ)|wT x ≥ δ ∀ x ∈ X+, wT x ≤ −δ ∀x ∈ X−}.

Again, in terms of Definition 1 it is d := (X+, X−) and y := (w, δ).
c) Consider a dynamical system dx

dt = F (x(t)) for which an equilibrium point
is searched. This can be formalized in different ways. One appropriate pos-
sibility is to consider d := F as the first component of a problem Π and to
look for a y which is an equilibrium point of F . Thus

Π = {(F, y) ∈ R
∞ × R

∞ | y is an equilibrium of
dx

dt
= F (x(t))} .

The above definition requires F to be representable in a certain way as a
point in R

∞. This is, for example, the case if F is given as a rational function.
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We are interested in characterizing the complexity of a problem through the
structure of certain energy functions in the following sense. Such energies are
associated to the problem in a uniform way by considering a family {En}n∈N

of functions for each dimension n. Every En is a function depending on two
blocks d and w of variables. The block d ∈ R

n is taken to represent an input
instance of a problem Π. The block w ∈ R

m will be related to a solution y of Π
for input d. Once more, the dimension m should be polynomially related to n,
that is m = q(n) for a polynomial q. This polynomial is given together with the
family {En}.

Moreover, for each n and fixed d ∈ R
n the function w → En(d, w) is supposed

to have a global minimum. Such a minimum w∗ can be used by an additional
(computationally easy to perform) algorithm to yield a solution of the particular
instance d for our problem.

Another main point of the definition is the way how these energies can be
computed. This will be crucial for defining a complexity measure later on. We
use straight-line programs for this purpose.

Definition 2. (Straight-line programs) For an operation set O a straight-

line program of input dimension T over O is a sequence β1, . . . , β� of opera-
tions defined as follows. Every βi is either of the form βi := c for a constant c ∈ R

or of the form βi := βj◦βk, where ◦ ∈ O and j, k ∈ {−T+1, . . . , 0, 1, . . . i−1}. For
any T -dimensional real input x1, . . . , xT , to the first T registers β−T+1, . . . , β0
we assign the values β−T+1 := x1, β−T+2 := x2, . . . , β0 := xT . A computation
of the program then proceeds in the obvious manner assigning the corresponding
values to the βi, i ≥ 1. The result is supposed to be computed in β�. The size or
computation time of the program is the number � of operations performed.

In our framework, input variables for an SLP are chosen as d1, . . . , dn and
w1, . . . , wq(n). Thus, T = n + q(n). We are interested in computing a real valued
function En : R

n+q(n) → R. We want to combine SLPs in a uniform way in order
to relate them to functions from R

∞ → R
∞.

Definition 3. A family E := {En}n∈N of SLPs, every En of input dimension
n + q(n) ∈ N for a fixed polynomial q, is called to be uniformly polynomi-

ally bounded if there exists an algorithm which on input n ∈ N, computes a
description of En and runs in polynomial time with respect to n. We call such a
family an SLP energy family.

In this paper we restrict the operation set O to be {+, −, ∗}, but more general
sets are thinkable, see [4]. Thus, our energies basically are multivariate polyno-
mials and can be treated in the framework of the BSS model of computation,
see [2]. We suppose the reader to be familiar with this model.

2.1 Complexity Classes

For defining the complexity of a problem we now look for the structure of related
families of energy functions. At this level the complexity of a problem will be
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independent of the question how to find a global minimum of an energy. The
latter problem is addressed in the next section.

Next, we introduce certain complexity classes denoted by U,NU, and PU
that are relevant in our framework.

Definition 4. Let Π be a problem.
a) Π belongs to the class U if there exists an SLP energy family {En}n together

with another family {Nn} of SLPs which is uniformly given by a polynomial
time BSS machine such that the following is true:
i) There is a fixed polynomial q such that every En is a map En : R

n ×
R

q(n) → R;
ii) For any fixed d ∈ R

n the function w → En(d, w) is unimodal;
iii) If w∗ is a global minimizer of w → En(d, w) for given d, then we can

compute a solution Π(d) using the SLP Nq(n), i.e. (d, Nq(n)(w∗)) ∈ Π.
b) Problem Π belongs to class NU if items i) and iii) above hold, but w →

En(d, w) has not to be unimodal. Clearly, it is U ⊆ NU.
c) Π belongs to the continuous-time polynomial hierarchy PU if the following

holds: there exist an SLP energy family {En}n and a function N : R
∞ → R

∞

computable by a uniform family of SLPs in polynomial time such that:
i) There is a fixed polynomial q such that every En is a map En : R

n ×

R
n1 × R

n2 × . . . × R
nk → R, where

k∑

i=1
ni = q(n).

ii) If for given d the point w∗
1 is a solution for the choice of variables w1 in

the optimization problem

min
w1

max
w2

. . . min
wk

En(d, w1, . . . , wk),

then we can compute a solution of Π for input d as (d, N(w∗
1)). The same

should hold w.r.t. every ŵ1 such that max
w2

. . . min
wk

En(d, ŵ1, . . . , wk) does

not exist. Above, the last optimization operation is min if k is odd and
max if k is even. The problem belongs as well to PU if the optimization
starts with max .

The classes U and NU can be seen as a natural counterparts of P and NP in
our framework. We thus conjecture the obvious inclusion U ⊂ NU to be proper.

In order to speak about complete problems finally the following definition is
needed.

Definition 5
a) Let Π1 and Π2 be two problems. We say that Π1 is SLP-reducible in

polynomial time to Π2 if there exist two functions φ and φ∗ from R
∞ →

R
∞, both computable in polynomial time by a uniform SLP in the BSS model

of computation, such that

∀d ∈ R
∞ Π1(d) = φ∗ (Π2 (φ(d)))

Note that since Π2 (φ(d)) might not be unique (cf. Remark 1) we require Φ∗

to compute a solution of Π1(d) for any possible value of Π2 (φ(d)) .
b) A problem Π ∈ NU is NU-complete if every other problem in NU is

SLP-reducible in polynomial time to Π. Similarly for PU-completeness.
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2.2 Completeness Results

The following results show the existence of complete problems for NU and PU.
For proofs we refer to [4].

Theorem 1
a) There exist NU-complete problems with respect to the operation-set O :=

{+, −, ∗} and SLP-reducibility.
b) The following quadratic optimization problem is NU-hard with respect to

the operation set given in a): Given a linear objective function f : R
n →

R together with finitely many constraints h1(x) = 0, . . . , hm(x) = 0, x ∈
R

n, where the hi are polynomials of degree at most 2, find a solution point
of min{f(x)|hi(x) = 0, 1 ≤ i ≤ m}. Thus, QP is the problem defined by
tuples (f, h1, . . . , hm, x) such that x is a global minimizer of the constrained
optimization problem min f(x) subject to hi(x) = 0, 1 ≤ i ≤ m.

For the polynomial hierarchy it can be shown

Theorem 2. The following problem is PU-complete under SLP reductions: Gi-
ven a polynomial f of degree 4 in n blocks w, X2, . . . , Xn of variables, compute
a minimizer of the function

w → max
X2

min
X3

. . . max
Xn

f(w, X1, . . . , Xn)

Again, the last optimization operation is min if n is odd and max if n is even.

To get a rough idea of how the proof works consider a problem in NU with
an input d and attached energy w → En(d, w). The decision problem: Given z
and d, does z minimize w → En(d, w) is in co-NPR over the reals. Using the
common reduction arguments from [2] one realizes that by means of a max-
min problem such a minimizer can be found (if existing). In general, a related
argument establishes the problem in the statement to be PU-complete by finding
a reduction of a given problem in the hierarchy to the former that increases the
number of alternations of max and min by one.

We consider it to be important in our framework to extend the list of complete
problems.

3 A Discretization for Trajectory Following: Guiding
Examples

The framework analyzed above results in a split of the relevant parts contributing
to the complexity of continuous time problems. The first deals with the structure
and the SLP complexity of an underlying energy function. As mentioned in
the introduction, this is advantageous in that the approach is independent of
concrete measures for following trajectories of the given ODE. On the other
side, this approach remains abstract when it comes to approximating concrete
solutions. Thus, a second part contributes to the complexity of a problem. There
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is so far no real consensus about what a unifying approach for measuring this
second part should be. For a much deeper discussion of different approaches we
refer once more to [3].

In this final section we discuss briefly one natural such attempt. It adds a
typical measure for the steepest descent algorithm finding minima of energy
functions occuring in the above approach. We outline the resulting complexity
statements for the first two problems of Example 1. Not surprising, the results
obtained that way resemble well known properties for numerical solutions of
those problems. Since most of the calculations are quite standard we just outline
them.

Let {En}n be an SLP energy family as above. W.l.o.g. we assume that 0 is
the minimal value for each En. For the moment we fix the input d ∈ R

n and
suppress it and its size n notationally, i.e., instead of En(d, w) we write E(w).
Choosing a start value w0 we consider (see [8] for more on terminal dynamics)
the terminal attractor equation

d

dt
w(t) = −E0

σ
· DwE(w(t))
‖DwE(w(t))‖2 , (1)

where E0 := E(w0) and σ > 0 is fixed, together with its Euler-discretization

wk+1 = wk − τ · E0

σ
· DwE(wk)
‖DwE(wk)‖2 (2)

with step size τ > 0. It is easy to see that the exact solution w̃(t) of (1) for t < σ
satisfies

E(w̃(t)) = E0 · (1 − t

σ
), t ∈ [0, σ).

Thus, the terminal attractor approaches a point with energy value 0 in finite
time t = σ. The following theorem addresses the complexity of the discretization
procedure (2).

We shall first study the number of discretization steps necessary in order to
achieve a point w∗ such that the energy value satisfies E(w∗) ≤ ε for a given
precision ε > 0. The theorem below is proven by a straightforward calculation
using Taylor’s formula.

Theorem 3. Let E be an energy function as above and let E0 denote the energy
value for a starting point w0 (see below). For a pair (ε1, ε2), ε1 > ε2 > 0 consider
the differential equation

d

dt
w(t) = −E0

σ
· DwE(w(t))
‖DwE(w(t))‖2 ,

and its Euler-discretization

wk+1 = wk − τ · E0

σ
· DwE(wk)
‖DwE(wk)‖2

Suppose that there exist bounds L(ε1, ε2) and H(ε1, ε2) on the set Ω(ε1, ε2) :=
{w̃ ∈ Ω|ε1 ≥ E(w̃) ≥ ε2} such that:
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(i) ‖DwE(w̃)‖ ≥ L(ε1, ε2) > 0 for all w̃ ∈ Ω(ε1, ε2) as well as
(ii) ‖D2

wE(w̃)‖ ≤ H(ε1, ε2) for all w̃ ∈ Ω(ε1, ε2), where the norm is the operator
norm corresponding to the Euclidean vector norm.

Then starting from a point w0 in Ω(ε1, ε2) a point w∗ such that E(w∗) ≤ ε2
can be reached in

k(ε1, ε2) := O

(
ε21 · H(ε1, ε2)
ε2 · L(ε1, ε2)2

)

many discretization steps of step size

τ(ε1, ε2) = O

(
ε2 · L(ε1, ε2)2 · σ

ε21 · H(ε1, ε2)

)

.

After having reduced the energy value below ε2 we let ε2 play the role of
ε1 and choose a new target value for the energy. This results in considering a
sequence {εk}k∈N which is used in the steepest descent algorithm until we have
reduced the energy below a given accuracy ε. The number of iteration steps then
is given by

K∗
∑

k=1

1
2

·
H(εk−1, εk) · ε2k−1

L(εk−1, εk)2 · εk
, (3)

where ε0 := E0 is the first energy value we start with. The goal now is to deter-
mine how this sum depends on the required accuracy ε and to choose reasonable
sequences {εk} to keep it as small as possible.

A typical choice is given by εk := E0
2k . Then K∗ in the above formula has to

be taken such that E0
2K∗ ≤ ε for a given precision ε > 0, i.e. K∗ := �log(E0

ε ).

Remark 2.
(a) It should be clear from the above arguments that the ratio κ(E, εk−1, εk) :=
H(εk−1,εk)
L(εk−1,εk)2 can be interpreted as a condition number for the problem of mini-
mizing the energy on the set Ω(εk−1, εk). The limit behaviour of κ(E, εk−1, εk)
for k → ∞ for an optimal sequence {εk} is a measure of the conditioning of
minimizing the energy.
(b) The above analysis can be carried out for other numerical procedures as well
(e.g., for higher degree discretizations). Since we want to focus on outlining the
general framework we restrict ourselves to the Euler-method.

Clearly, with respect to applying a concrete numerical algorithm like the Euler
method additional requirements related to the energies are necessary. One such
is that an approximation of a global minimum still can be used to obtain (for
example through the SLP family {Nn} of Definition 4) a suitable approximation
of a solution of the given problem. Here follow two classical problems that can
be treated completely that way.
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3.1 Example: Linear Systems

Let us consider a square linear system A · x = b with regular matrix A ∈ R
n×n.

Define an energy

E(A, b, w) =
1

‖b‖2 · ‖A · w − b‖2 ,

where ‖ • ‖ denotes the Euclidean norm. We have

DwE(w̃) = 2 · AT · (A · w̃ − b)
‖b‖2 and D2

wE(w̃) = 2 · AT · A

‖b‖2 .

A is regular, so E is unimodal and the only critical point w∗ of E is the solution.
It clearly satisfies E(w∗) = 0. Moreover,

‖DwE(A, b, w̃)‖ = 2 · ‖(AT )−1‖ · ‖AT · (A · w̃ − b)‖
‖(AT )−1‖ · ‖b‖2

≥ 2 · ‖A · w̃ − b‖
‖(AT )−1‖ · ‖b‖2

=
2 ·

√
E(A, b, w̃)

‖A−1‖ · ‖b‖
Thus, in the terminology of Theorem 3 we get for ε1 > ε2 > 0 the bounds

H(ε1, ε2) ≤ 2 · ‖AT ‖ · ‖A‖
‖b‖2 and L(ε1, ε2) ≥ 2 · √

ε2

‖A−1‖ · ‖b‖ .

For an application of Theorem 3 we choose the sequence εk := 1
2k , ε0 := 1 =

E(0) =: E0, a step size τ(εk−1, εk) := 4σ·ε2k
ε2k−1·‖A‖2·‖A−1‖2 and get as a bound on

the number of steps

1
2

·
K∗
∑

k=1

2 · ‖AT ‖ · ‖A‖
‖b‖2 ·

(
1

2k−1

)2

· (2k)2

4
· ‖A−1‖2 · ‖b‖2

=
K∗∑

k=1
‖A‖2 · ‖A−1‖2

= ‖A‖2 · ‖A−1‖2 · �log(1
ε )

since K∗ := �log(1
ε ) iterations are sufficient to reduce the energy to a value ≤ ε.

Several remarks are in charge. The quantity ‖A‖ · ‖A−1‖ of course is well
known as the condition number of a square matrix. So it is no surprise that
in comes into our analysis. The complexity of the algorithm to minimize the
energy also depends (besides on the number of iterations) on the complexity of
evaluating DwE. Thus, the approach taken in the previous section is important
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as well here. The latter evaluation complexity is bounded by the complexity of
performing two matrix-vector multiplications, which is O(n2). Thus, for well-
conditioned families of matrices, i.e, if the condition number can be bounded
by a (known) constant, we get a number O(n2 · log 1

ε ) of arithmetic operations.
Note that in this case the step sizes can be easily computed as well.

A related example can be found in [1], where the ranking problem for webpages
is considered.

3.2 Example: Separating Hyperplane

In this subsection we want to show how our general framework gives back qual-
itatively the results obtained by the well known Perceptron learning algorithm,
see [5]. Relations between the perceptron algorithm and steepest descent meth-
ods have been studied previously, see, for example, [7].

Given two finite sets X+, X− of points in R
n and a δ > 0, the task is to find

a w ∈ R
n such that

wT · x ≥ δ ∀ x ∈ X+ and wT · x ≤ −δ ∀ x ∈ X− . (4)

An energy for this problem can be defined as:

E(X+, X−, w) :=
∑

x∈X+

β(wT · x − 2 · δ) +
∑

x∈X−

β(−wT · x − 2 · δ) ,

where

β(t) :=
{

t4 t ≤ 0
0 t > 0

The idea behind using this energy is as follows: First, it is not hard to see
that E is twice differentiable and unimodal. If w is a hyperplane doing a correct
separation, then for x ∈ X+ we obtain wT ·x ≥ δ > 0; similarly for x ∈ X−. The
energy is not necessarily vanishing in such a separating hyperplane w; however,
E is vanishing in 2 · w. Note that β is penalizing those hyperplanes that do not
separate the test sets sufficiently good, even though such a hyperplane might
solve the initial problem. Note as well that any w satisfying E(w) < δ4 is a
separating hyperplane, even though it might not be a global minimizer of E.

We compute upper and lower bounds according to Theorem 3.

i) Let ε1 > ε2 > 0. We compute an upper bound for ‖D2
wE(X, w)‖ on the

set Ω(ε1, ε2). Instead of the operator norm ‖D2
wE‖2 induced by the Euclidean

vector norm we use the well-known estimation

‖D2
wE‖2 ≤

√
‖D2

wE‖1 · ‖D2
wE‖∞ ,

where ‖ • ‖∞ denotes the maximal sum of absolute values of row entries and
‖ • ‖1 does the same for the column sums.
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Suppose that for X := X+ ∪ X− it is |X | =: m, i.e. there are m many test
points; let BX > 0 denote a bound such that ‖x‖∞ ≤ BX for all x ∈ X. For
i, j ∈ {1, . . . , n} we get

∂2E

∂wi∂wj
=

∑

x∈X+

wT ·x<2·δ

12 · (wT · x − 2 · δ)2 · xi · xj+

+
∑

x∈X−
wT ·x>−2·δ

12 · (wT · x + 2 · δ)2 · xi · xj .

Using norm equivalence in R
n : ‖z‖2 ≤

√
n · ‖z‖4 ∀ z ∈ R

n together with the
assumption that w ∈ Ω(ε1, ε2) easy calculations result in

‖D2
wE(X, w)‖∞ ≤ 12 · n2 · √

ε1 · B2
X

as well as

‖D2
wE(X, w)‖1 ≤ 12 · n2 · √ε1 · B2

X

and thus the same bound holds for ‖D2
wE(X, w)‖2.

ii) For obtaining a lower bound for ‖DwE(X, w)‖ on Ω(ε1, ε2) consider once
more a separating hyperplane w̃ and apply the Cauchy-Schwartz inequality

‖DwE(X, w)‖2 ≥ ‖w̃‖−1
2 · |w̃T · DwE(X, w)| .

Now

|w̃T ·DwE(X, w)| ≥ 4δ ·
∑

x∈X+

wT ·x<2δ

|wT ·x−2δ|3+
∑

x∈X−
wT ·x>−2δ

|wT ·x+2δ|3 ≥ 4·δ ·E(w)
3
4 .

using the norm inequality ‖z‖3 ≥ ‖z‖4 for any z ∈ R
n, where ‖z‖p :=

(
n∑

i=1
zp

i

) 1
p

for p ∈ N.
Altogether, we obtain as lower bound on Ω(ε1, ε2) :

‖DwE(w)‖2 ≥ 4 · ‖w̃‖−1
2 · δ · ε

3
4
2 .

iii) With these bounds we can compute the number of steps necessary to get
an ε-approximate solution. We apply Theorem 3 with the following quantities:
ε0 := E(X, 0) = 16 · m · δ4; εk := E(ε0)

2k , ε > 0 fixed and

H(εk−1, εk) ≤ 12 · n · B2
X · √

εk−1 , L(εk−1, εk) ≥ 4 · δ · ‖w̃‖−1
2 · ε

3
4
k

for any separating hyperplane w̃; the latter should be taken in the analysis so
to minimize the norm (note that w̃ is not used in the algorithm).
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Thus, the number of steps to reduce the energy from εk−1 to εk is bounded
by

1
2

·
H(εk−1, εk) · ε2k−1

L(εk−1, εk)2 · εk
≤ 3√

2
· n2 · B2

X · ‖w̃‖2
2

δ2 .

With K∗ := O(log E0
ε ) many iterations we thus need

O

(
n2 · B2

X · ‖w̃‖2
2

δ2 · log
E0

ε

)

many steps. Finally, recalling that ε < δ4 is a sufficient choice for obtaining a
separating hyperplane we end up with

O

(
n2 · B2

X · ‖w̃‖2
2

δ2 · log m

)

many steps for the Euler-discretization. For the computation of the gradient in
each step an upper bound of order O(n · m) is obvious.

These bounds pretty well correspond to the bounds known from the percep-
tron convergence theorem, see [5]. The important difference is that our algorithm
results as just one specific example from a much more general framework, that
hopefully can be applied to a larger class of problems as well.

4 Conclusion and Acknowledgement

We have studied a framework for measuring the complexity of analog systems.
The latter is based on the notion of a problem. In its more abstract part the ap-
proach allows to define complexity classes independently of particular trajectory
following algorithms. The existence of complete problems for such classes was
established. In a second part we considered steepest descent algorithms for dis-
cretized versions of our problems resulting in a concrete running time analysis.
Two such examples were discussed.

We still believe that a lot of questions have to be investigated. To get a better
overview what has been done so far and which problems are waiting to be solved
let us finally refer once again to the survey by Bournez and Campognolo [3].

We would like to thank the anonymous referees for some helpful remarks.
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