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Abstract. We expose a strict hierarchy within monotone monadic strict
NP without inequalities (MMSNP), based on the number of second-order
monadic quantifiers. We do this by studying a finer strict hierarchy within
a class of forbidden patterns problems (FPP), based on the number of
permitted colours. Through an adaptation of a preservation theorem of
Feder and Vardi, we are able to prove that this strict hierarchy also
exists in monadic strict NP (MSNP). Our hierarchy results apply over a
uniform signature involving a single binary relation, that is over digraphs.

1 Introduction

Answering a question of Fagin, Martin Otto proved in [1] that there is a strict
hierarchy in monadic NP (MNP) – the monadic fragment of existential second-
order logic – based on the second-order quantifier rank, i.e. the number of
second-order quantifiers. The strictness of the hierarchy is proved with a uniform
signature involving two binary relations. It is worth noting that this hierarchy
was known to collapse to its first level in the very restricted case of word struc-
tures (strings). In fact, MNP with a single second-order quantifier is as powerful
as the whole of monadic second-order logic – not just its existential fragment – on
word structures, capturing exactly the class of regular languages [2,3,4].

In this paper we search for a similar, second-order quantifier-rank-based, hi-
erarchy within monadic strict NP (MSNP), and its monotone inequality-free
fragment (MMSNP). We note that the problems involved in Otto’s proof are
not monotone, and in any case require first-order existential quantification –
placing them outside MSNP. We achieve our hierarchy theorems by proving
a strict hierarchy within a class of forbidden patterns problems (FPP), intro-
duced in [5,6] to provide a combinatorial characterisation for MMSNP, based
on the number of permitted colours. Specifically, we are able to prove that the
digraph colourability problem k + 1-Col is expressible in the k + 1th level of
FPP, but is not expressible in the kth level. We can then derive that 2k+1-Col

is expressible in the k + 1th level of MMSNP (respectively, MSNP), but is not
expressible in the kth level. We work in FPP to expose a finer hierarchy than
that in MMSNP; informally we demonstrate a complexity jump between the
problems k-Col and k + 1-Col, and not just between 2k-Col and 2k+1-Col.
For the reader more familiar with the Ehrenfeucht-Fräıssé method, we provide
in the appendix an overview of how the hierarchy result for MMSNP (and con-
sequently MSNP) may be so obtained. Like Otto, we do not require extensional
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relations of increasing arity for our hierarchy results; we work with a uniform
signature involving a single binary relation, i.e. on digraphs.

MMSNP was studied by Feder and Vardi [7] because of its close relationship
with the non-uniform constraint satisfaction problem CSP(T ) – for an input
structure A, does A admit a homomorphism to a fixed template T ? Not only
can every CSP(T ) be easily recast as some MMSNP query ψT , but it is now
known that, for every ψ in MMSNP, there is a Tψ such that the query evaluation
problem for ψ and CSP(Tψ) are polynomial-time equivalent [7,8]. If one were to
consider classes of non-uniform constraint satisfaction problems CSP

k in which
the template was restricted to being of size ≤ k, then it would be virtually
immediate that this hierarchy was strict and, indeed, separated by the problems
k-Col. Essentially, one could not express the problem k+1-Col as a CSP whose
template T has less than k + 1 vertices, since then the k + 1-clique Kk+1, which
is plainly k + 1-colourable, would manifest as a no-instance. The relationship
between the size of a CSP template T and the number of colours required to
express it as a FPP, is explored in [5]. Certainly any CSP whose template T is
of size k can be expressed as a FPP whose forbidden patterns involve k colours.
However, this relationship is not known to hold in the converse, and, therefore,
proving the corresponding strict hierarchy in FPP does not appear to be trivial.

Following the necessary preliminaries, the paper is organised as follows. In
Section 3 we prove the hierarchy result for FPP and in Section 4 we derive the
related result for MMSNP. In Section 5 we demonstrate how to adapt a certain
preservation theorem of Feder and Vardi to derive the same hierarchy in MSNP.
At the end of the paper sits an appendix, in which we show how our results may
be obtained through the ubiquitous Ehrenfeucht-Fräıssé games.

2 Preliminaries

In this paper, the only structures we consider are finite, non-empty digraphs. A
digraph G consists of a finite vertex set V (G) together with an edge set E(G) ⊆
V (G) × V (G). For a positive integer k, let [k] be the set {0, . . . , k − 1}. A k-
coloured digraph is a pair (G, ck) where G is a digraph and ck is a function from
V (G) to the colour set [k] (note that we do not require that a colouring be
‘proper’, i.e. we do not force adjacent vertices to take different colours). If the
range of ck is the singleton {i}, then we refer to (G, ck) as i-monochrome.

A homomorphism between the digraphs G and H is a function h : V (G) →
V (H) such that, for all x, y ∈ V (G), (x, y) ∈ E(G) implies (h(x), h(y)) ∈ E(H).
A homomorphism between the k-coloured digraphs (G, ck

G) and (H, ck
H) is a

digraph homomorphism h : G → H that also respects the colouring of G, i.e.,
for all x ∈ V (G), ck

H(h(x)) = ck
G(x). Existence (respectively, non-existence) of

a homomorphism between entities P and Q is denoted P −→ Q (respectively,
P −→/ Q).

Let Kk be the antireflexive k-clique, that is the digraph with vertex set [k]
and edge set {(i, j) : i �= j}. Define the problem k-Col to be the set of digraphs
G which admit a homomorphism to Kk. We describe digraphs G s.t. G ∈ 2-Col
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as bipartite. An edge of the form (x, x) in a digraph G is described as a self-loop;
a digraph with no self-loops is said to be antireflexive. It is a simple observation
that a digraph with a self-loop cannot map homomorphically into an antireflexive
digraph.

Let Rk be some finite set of k-coloured digraphs. Define the forbidden pat-
terns problem FPP(Rk) to be the set of digraphs G for which there exists a
k-colouring ck

G such that, for all (H, ck
H) ∈ Rk, (H, ck

H)−→/ (G, ck
G). Intuitively,

FPP(Rk) is the class of digraphs for which there exists a k-colouring that for-
bids homomorphism from all of the k-coloured digraphs of Rk, whence we refer
to Rk as the set of forbidden patterns. Define FPP

k to be the class of problems
FPP(Rk), where Rk ranges over all finite sets of k-coloured digraphs, and let
FPP be ∪i∈ωFPP

i.
The logic k-monadic NP (MNP

k) will be considered that fragment of monadic
existential second-order logic that allows at most k second-order quantifiers. The
logic k-monadic strict NP (MSNP

k) is that fragment of MNP
k that involves

prenex sentences whose first-order quantification is purely universal. We may
therefore consider MSNP

k to be the the class of sentences ϕ of the form

∃M∀v Φ(M,v),

where M is an k-tuple of monadic relation symbols and Φ is quantifier-free.
In these logics, we refer to k as the second-order quantifier rank. The logic
k-monotone MSNP without inequalities (MMSNP

k) is defined similarly, but
with the additional restriction that Φ be of the form

∧

i

¬(αi(v) ∧ βi(M,v)),

where: αi is a conjunction of positive atoms, involving neither equality nor re-
lations from M; and βi is a conjunction of positive or negative atoms, involving
only relations from M. Define MNP (respectively, MSNP, MMSNP) to be
∪i∈ωMNP

i (respectively, ∪i∈ωMSNP
i, ∪i∈ωMMSNP

i). The following hierar-
chy theorem for MNP is due to Otto.

Theorem 1 ([1]). For all k, MNP
k ⊆ MNP

k+1 but MNP
k �= MNP

k+1.

Furthermore, the following is straightforward.

Proposition 1. For all k, we have the inclusions FPP
k ⊆ FPP

k+1, MSNP
k ⊆

MSNP
k+1 and MMSNP

k ⊆ MMSNP
k+1.

Proof. For the first part, let FPP(Rk) be a problem of FPP
k. Construct Rk+1

from Rk by the addition of a k-monochrome copy of K1. Since the extra colour
is now forbidden, it is plain to see that FPP(Rk+1) = FPP(Rk).

For the second part, let ∃M0 . . . ∃Mk−1∀v Φ be a sentence of MSNP
k, and

v be one of the variables of v. Then ∃M0 . . . ∃Mk−1∃Mk∀v Φ ∧ ¬Mk(v) is an
equivalent sentence of MSNP

k+1.
The third part may be proved in the same manner. ��

The contribution of this paper will be to prove that these inclusions are strict.
The following result ties together FPP and MMSNP.
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Theorem 2 ([5]). The class of problems expressible in MMSNP
k coincides

exactly with the class of problems that are finite unions of problems in FPP
2k

.

Example 1. Let us consider the problem 2-Col. This is a forbidden patterns
problem FPP(R2), where R2 consists of two coloured digraphs (P1, c

2
0) and

(P1, c
2
1), which are 0- and 1-monochrome, respectively, where P1 is the digraph

with vertex set {0, 1} and a single edge (0, 1). In the following depiction, we may
view the white vertices as coloured 0, and the black vertices as coloured 1.

, }R2 := {
2-Col may also be expressed by the sentence ϕ of MMSNP

1:

∃M∀u∀v ¬(E(u, v) ∧ M(u) ∧ M(v)) ∧ ¬(E(u, v) ∧ ¬M(u) ∧ ¬M(v)).

Define the chromatic number of a digraph G to be the minimal k such that G ∈
k-Col. We define the symmetric closure of a digraph G, denoted Sym(G), over
the same vertex set as G, but with edge set {(x, y), (y, x) : (x, y) ∈ E(G)}. For
k ≥ 3, let Ck be the undirected k-cycle, that is the digraph with vertex set [k] and
edge set {(i, j), (j, i) : j = i + 1 mod k}. Define the odd girth of an antireflexive,
non-bipartite digraph G to be the minimal odd k s.t. Ck is (isomorphic to) an
induced subdigraph of Sym(G) (note that this is always defined). We define the
odd girth of an antireflexive, non-bipartite coloured digraph likewise. It may
be easily verified that, if two digraphs G and H have odd girth γG and γH ,
respectively, with γG ≤ γH , then G−→/ H .

We require the following lemma, originally proved by Erdös through the prob-
abilistic method [9], but for which the citation provides a constructive proof.

Lemma 1 (See [10]). For all i, one may construct a digraph Bi whose chro-
matic number and odd girth both strictly exceed i.

3 A Strict Hierarchy in FPP

In this section we aim to prove that there is a strict hierarchy in FPP given by
the number of colours allowed in the set R. We will establish this through the
following theorem.

Theorem 3. For each k ≥ 1, k + 1-Col ∈ FPP
k+1 but k + 1-Col /∈ FPP

k.

Proof. (k + 1-Col ∈ FPP
k+1.) This follows similarly to Example 1. k + 1-Col

is expressed by FPP (Rk+1), where Rk+1 consists of k + 1 coloured digraphs
(P1, c

2
0), . . . , (P1, c

2
k), in which, for 0 ≤ i ≤ k, (P1, c

2
i ) is i-monochrome.

(k + 1-Col /∈ FPP
k.) Suppose that k + 1-Col ∈ FPP

k, and is expressed
by FPP (Rk) where Rk is a finite set of k-coloured digraphs. We are therefore
claiming that, for all digraphs G:

(∗) G ∈ k + 1-Col iff exists ck
G s.t. ∀ (H, ck

H) ∈ Rk (H, ck
H)−→/ (G, ck

G).

First, we aim to prove that, for every i, Rk must contain some i-monochrome
bipartite digraph. Suppose, for some i, it does not. Let the maximum odd girth of



546 B. Martin and F. Madelaine

the coloured digraphs of Rk be γ; if all members of Rk possess a self-loop or are
bipartite, set γ := 3. Set μ to be 1 + max{k, γ}. By Lemma 1, we can construct
a graph Bμ whose chromatic number and odd girth both strictly exceed μ. We
now deduce from (∗) the absurdity Bμ ∈ k + 1-Col, since the i-monochrome
colouring of Bμ forbids homomorphism from all of the coloured digraphs of Rk

(recall that any bipartite members of Rk are not i-monochrome).
Now we aim to prove that Kk+1 /∈ FPP (Rk). Consider any k-colouring ck

of Kk+1; there must be distinct vertices x and y such that ck(x) = ck(y), let
their colour be i. But we know that Rk contains an i-monochrome bipartite
digraph, which plainly maps homomorphically into (Kk+1, c

k) (in fact into its
i-monochrome subdigraph K2 induced by {x, y}). By definition, we deduce that
Kk+1 /∈ FPP(Rk).

Finally, we reach a contradiction since Kk+1 is plainly in k + 1-Col. ��

4 A Strict Hierarchy in MMSNP

We now show how to adapt the previous proof to generate the following1.

Theorem 4. For k ≥ 0, 2k+1-Col ∈ MMSNP
k+1 but 2k+1-Col /∈ MMSNP

k.

Proof. (2k+1-Col ∈ MMSNP
k+1.) This follows similarly to Example 1. 2k+1-

Col may be expressed by the following sentence of MMSNP
k+1:

∃M0 . . . ∃Mk∀u∀v
∧

i∈[2k+1]

¬(E(u, v) ∧ Ψi(M0, . . . , Mk, u, v)),

where Ψi(M0, . . . , Mk, u, v) is

(¬)i0M0(u) ∧ (¬)i0M0(v) ∧ (¬)i1M1(u) ∧ (¬)i1M1(v) ∧
. . . ∧ (¬)ikMk(u) ∧ (¬)ik Mk(v)

where ij is the j + 1th digit in the binary expansion of i.
(2k+1-Col /∈ MMSNP

k.) Suppose that 2k+1-Col ∈ MMSNP
k. By Theo-

rem 2, this implies that 2k+1-Col is the union, for some s, of the forbidden
pattern problems FPP(R2k

0 ), . . . , FPP(R2k

s−1). In a similar vein to before, we
can deduce that, for each j (0 ≤ j < s), R2k

j contains, for each i (0 ≤ i < 2k),
an i-monochrome bipartite digraph. The proof concludes as before. ��

Remark 1. Our proof can actually go further, yielding not just 2k+1-Col /∈
MMSNP

k, but also 2k + 1-Col /∈ MMSNP
k.

5 A Strict Hierarchy in MSNP

We say that a class of finite digraphs C is closed under inverse homomorphism iff
whenever we have G−→H and H ∈ C we also have G ∈ C. Similarly, a class of
1 By abuse of notation, we write that a class of digraphs belongs to a logic precisely

when that class is expressible in the logic, e.g. 2k+1-Col ∈ MMSNP
k+1.
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finite digraphs is antireflexive iff each digraph within it is antireflexive. It follows
straight from our definition that, for each k, the class k-Col is both antireflexive
and closed under inverse homomorphism. The following is from [11], and is an
example of a preservation theorem.

Theorem 5 ([11]). For every ψ ∈ MSNP s.t. the class of finite models of ψ is
closed under inverse homomorphism, there exists ψ′ ∈ MMSNP s.t. ψ and ψ′

agree on all finite models.

In fact, we will require a variant on their proof, to derive the following theorem
(whose proof we defer to the end of this section).

Theorem 6. For every ψ ∈ MSNP
k s.t. the class of finite models of ψ is

both antireflexive and closed under inverse homomorphism, there exists ψ′ ∈
MMSNP

k s.t. ψ and ψ′ agree on all finite models.

We are now in a position to state and prove the main result of this section.

Theorem 7. For each k ≥ 0, 2k+1-Col ∈ MSNP
k+1 but 2k+1-Col /∈ MSNP

k.

Proof. Membership follows as in Theorem 4
(2k+1-Col /∈ MSNP

k.) Note that 2k+1-Col is an antireflexive class that is
closed under inverse homomorphism. By the previous theorem that implies that
it may be expressed in MSNP

k+1 only if it may be expressed in MMSNP
k+1,

which we know it can not – by Theorem 4. ��

Proof (of Theorem 6). We show how to adapt the proof of Theorem 3 of [11].
In [11], they demonstrate how, if ψ0 is a sentence of MSNP whose finite models
form a class closed under inverse homomorphism, to construct a sequence of
sentences culminating with ψ5 in MMSNP s.t. ψ0 and ψ5 agree on all finite
models. Unfortunately, it is not the case that the second-order quantifier rank is
preserved: in their construction of ψ2 from ψ1 it may be necessary to introduce
new second-order monadic relations. In all other of their translations, the second-
order quantifier rank is preserved. Our proof uses the additional constraint of
antireflexivity to amend the translation from ψ1 to ψ2 into something very simple
that does preserve the second-order quantifier rank. This is the only area in which
our proof differs from theirs. We now sketch the proof.

Starting with a sentence ψ0 of MSNP
k whose finite models form an antireflex-

ive class that is closed under inverse homomorphism, we will describe a sequence
of sentences culminating in ψ5 that is in MMSNP

k and agrees with ψ0 on all
finite digraphs. We may assume that ψ0 is in prenex form with its quantifier-free
part in conjunctive normal form, where we interpret each clause as a negated
conjunction. That is, ψ0 is of the form

∃M∀v
∧

i

¬(
∧

j

αij(M,v))

where each αij is atomic.
From ψ0 we generate ψ1 by enforcing that, if distinct u and v occur in some

negated conjunct, then u �= v also occurs in that conjunct. If this is not already



548 B. Martin and F. Madelaine

the case, then we split the negated conjunct in two, one involving u �= v and
the other involving u = v, whereupon, in the latter case, we may substitute all
occurrences of v with u, dispensing with the equality.

From ψ1 we generate ψ2 by removing any atomic instances of ¬E(v, v). From
ψ2 we generate ψ3 by removing any negated conjuncts that contain either an
instance v �= v or both atoms E(u, v) and ¬E(v, u). From ψ3 we generate ψ4 by
removing all negative atoms. Finally, from ψ4 we generate ψ5 by removing all
inequalities. It is transparent that ψ5 is in MMSNP

k. It remains for us to settle
the following.

Lemma 2. Let ψ0 be a sentence of MSNP
k in the required form. Then, on the

class of finite digraphs,

(i) ψ0 is equivalent to ψ1,
(ii) ψ1 is equivalent to ψ2 (since ψ1 describes an antireflexive class),

(iii) ψ2 is equivalent to ψ3,
(iv) ψ3 is equivalent to ψ4, and
(v) ψ4 is equivalent to ψ5 (since ψ4 describes a class closed under inverse

homomorphism).

(i) and (iii) are trivial (and appear in [11]). Part (ii) is transparent. Parts (iii)
and (iv) are non-trivial and appear as Lemmas 8 and 7, respectively, in [11]. ��

6 Further Work

The problems in Otto’s proof of the strict hierarchy in MNP are colouring
problems of a kind. However, they demand highly regular structures that, in some
sense, make them less natural than the problems k-Col. It would be interesting
to know whether the problems 2k-Col separate the hierarchy in MNP; that is,
whether 2k+1-Col can be proved inexpressible in MNP

k. Our attempts to use
Ehrenfeucht-Fräıssé games (even Ajtai-Fagin games) to settle this have not, thus
far, succeeded.
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Appendix

An Ehrenfeucht-Fräıssé Game for MMSNP
Ehrenfeucht-Fräıssé games traditionally provide the preferred method for sepa-
rating logics. Here we state the relevant Ehrenfeucht-Fräıssé game for MMSNP

and give its methodology theorem. We are then able to give an alternative proof
of Theorem 4.

For digraphs G and H , the game Gm
q (G, H) is played between two players,

Spoiler and Duplicator, and proceeds as follows.

– Spoiler chooses a 2m-colouring c2m

G of G;
– Duplicator responds with a 2m-colouring c2m

H of H .
– Spoiler places q pebbles a0, . . . , aq−1 on H ;
– Duplicator responds with q pebbles b0, . . . , bq−1 on G.

Duplicator wins iff the resultant relation {(a0, b0), . . . , (aq−1, bq−1)} is a partial
homomorphism from (H, c2m

H ) to (G, c2m

G ).
Let MMSNP

m
q be that fragment of MMSNP

m in which the first-order part
of the sentences has quantifier-rank bounded by q (owing to the restricted syntax
of MMSNP, we may equivalently consider q to be a bound on the number of
first-order variables). The next theorem ties together the game and the logic; a
proof, based on the connection between FPP and MMSNP appears at the end
of the section (although it is possible to derive a more conventional proof similar
to that given by Fagin for his original game for MNP [12]).

Theorem 8 (Methodology). For digraphs G and H the following are equiv-
alent.

– Duplicator has a winning strategy in the game Gm
q (G, H).

– For all ϕ ∈ MMSNP
m
q , G |= ϕ implies H |= ϕ.

We are now in a position to give another proof of Theorem 4.

Theorem 9 (a.k.a. Theorem 4). For each m ≥ 0, 2m+1-Col /∈ MMSNP
m.

Proof. Suppose that 2m+1-Col were expressible by a sentence ψm
q ∈ MMSNP

m
q ,

for some q. Set μ to be 1+max{2m+1, q}. Note that the digraph Bμ, constructed
as in Lemma 1, is not in 2m+1-Col. We aim to prove that Duplicator has a
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winning strategy in the game Gm
q (K2m+1 , Bμ), which, taken with the previous

methodology theorem, leads to a contradiction.
Let Spoiler give a 2m-colouring of K2m+1 , and let x and y be some distinct

vertices that are given some same colour i (such vertices clearly must exist). Du-
plicator chooses the i-monochrome colouring of Bμ. Now Spoiler places q pebbles
on Bμ. Crucially, because of the enormous odd girth of Bμ, the subdigraph in-
duced by these q pebbles must be bipartite. It therefore homomorphically maps
onto the subdigraph K2 of K2m+1 induced by the set {x, y}, and we are done. ��

Proof (of Theorem 8). Let FPP
m
q be that subclass of FPP

m in which all the
forbidden patterns in Rm have size bounded by q. We require the following,
more sophisticated, version of Theorem 2, also proved in [5].

• The class of problems expressible in MMSNP
m
q coincides exactly with the

class of problems that are finite unions of problems in FPP
2m

q .

By this result, it suffices to prove that the following are equivalent.

(i) Duplicator has a winning strategy in the game Gm
q (G, H).

(ii) For all R2m

0 , . . . , R2m

s−1, whose members are of size bounded by q, we have
that G ∈

⋃
i∈[s] FPP(R2m

i ) implies H ∈
⋃

i∈[s] FPP(R2m

i ).

[(i) ⇒ (ii)] Consider a winning strategy for Duplicator in the game Gm
q (G, H),

and any sequence of sets of forbidden patterns,each of whose members is bounded
in size by q, R2m

0 , . . . , R2m

s−1 . Further assume that G ∈
⋃

i∈[s] FPP(R2m

i ). It
follows that there is some i ∈ [s] s.t. G ∈ FPP(R2m

i ). We will prove that
H ∈ FPP(R2m

i ) whereupon H ∈
⋃

i∈[s] FPP (R2m

i ) is immediate. Take the
2m-colouring c2m

G of G that witnesses its membership of FPP (R2m

i ), and con-
sider Duplicator’s response c2m

H on H to it in her winning strategy in the game
Gm

q (G, H). We claim that this witnesses the membership of H in FPP (R2m

i ); for,
otherwise, if some forbidden pattern – of size bounded by q – of R2m

i mapped
homomorphically into (H, c2m

H ) then it would also map homomorphically into
(G, c2m

G ), by the winning strategy of Duplicator, which is a contradiction.
[¬(i) ⇒ ¬(ii)]. Given a winning strategy for Spoiler in the game Gm

q (G, H),
we will construct a set of forbidden patterns R2m

, each of whose size is bounded
by q, such that G ∈ FPP (R2m

) but H /∈ FPP (R2m

). Taking Spoiler’s winning
strategy, consider the size ≤ q induced subdigraph H ′ of H that he pebbles with
a0, . . . , aq−1. Let R2m

be the set of all 2m-colourings of H ′. Now, G ∈ FPP(R2m

)
and this is witnessed by Spoiler’s initial colouring c2m

G of G in his winning strat-
egy. But H /∈ FPP (R2m

) since any colouring of H admits homomorphism from
itself, and consequently from the same colouring restricted to its induced subdi-
graph H ′. ��


	Hierarchies in Fragments of Monadic Strict $NP$
	Introduction
	Preliminaries
	A Strict Hierarchy in FPP
	A Strict Hierarchy in MMSNP
	A Strict Hierarchy in MSNP
	Further Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




