
The Complexity of Quickly ORM-Decidable Sets

Joel David Hamkins1, David Linetsky2, and Russell Miller3

1 The College of Staten Island of CUNY and
The CUNY Graduate Center

jdh@hamkins.org
http://jdh.hamkins.org

2 The CUNY Graduate Center
365 Fifth Avenue, New York NY 10016

dlinetsky@gc.cuny.edu
https://wfs.gc.cuny.edu/DLinetsky/www/

3 Queens College of CUNY and
The CUNY Graduate Center
Russell.Miller@qc.cuny.edu

http://qcpages.qc.cuny.edu/math/faculty/miller.htm

Abstract. The Ordinal Register Machine (ORM) is one of several dif-
ferent machine models for infinitary computability. We classify, by com-
plexity, the sets that can be decided quickly by ORMs. In particular, we
show that the arithmetical sets are exactly those sets that can be decided
by ORMs in times uniformly less than ωω. Further, we show that the
hyperarithmetical sets are exactly those sets that can be decided by an
ORM in time uniformly less than ωCK

1 .

Keywords: Ordinal, ordinal computation, infinite time computation,
computability, register machine, arithmetical hierarchy, hyperarithmeti-
cal hierarchy, complexity.

1 Introduction

The Ordinal Register Machine (ORM) is one of several different machine models
for infinitary computability that can be found in the literature. They are a
direct generalization of classical register register machines that differ from their
classical counterparts in that they are permitted to contain arbitrary ordinal
values in their registers and to run for ordinal time. At limit times, the program
state of an ORM is determined by taking a limit inferior (liminf) of the previous
states and the content of a register is defined to be the liminf of the values that
appeared in it at all previous times. ORMs have been shown to be extremely
powerful; the sets of ordinals that they can compute from finitely many ordinal
parameters have been characterized by Koepke ([5]) as precisely the constructible
sets of ordinals, that is, those found in the Gödel constructible universe, L.

We noticed a curious difference between ORMs and infinite time Turing ma-
chines, however, much lower down in the hierarchy, in terms of the lengths of
time that these machines take to decide arithmetic truth. Specifically, the nat-
ural recursive algorithm for deciding arithmetic truth with ORMs takes time

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 488–496, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://jdh.hamkins.org
https://wfs.gc.cuny.edu/DLinetsky/www/
http://qcpages.qc.cuny.edu/math/faculty/miller.htm


The Complexity of Quickly ORM-Decidable Sets 489

unbounded in ωω, while with infinite time Turing machines this can be done
before ω2 (see [2]). For infinite time Turing machines, each limit allows one to
decide two additional quantifiers, with Σ0

2n truth being decidable in time ωn,
and one pushes already into the hyperarithmetical hierarchy at time ω2. But
with ORMs, although the first limit allows one essentially to decide three quan-
tifiers, one needs infinitely many additional limits (time ω2) to go even just a
little bit further and decide the Δ0

4 sets. In general with ORMs, we prove that in
time ωn+1, one decides exactly the Δ0

3n+1 sets. It follows that ORMs really do
need this extra time to decide arithmetic truth in comparison with infinite time
Turing machines. We conclude the paper by proving that for hyperarithmetical
truth, however, ORMs require time up to ωck

1 , just as for infinite time Turing
machines.

2 Arithmetical Sets

Given their demonstrated power, it is certainly clear that ORMs can decide any
arithmetical set. However, it is not immediately clear how long such computa-
tions actually require. To begin with, we take the case of some relatively simple
arithmetic sets and provide a general description of the algorithm used to decide
membership in them.

Lemma 1. Every Σ0
3 and Π0

3 subset of ω can be decided by an ORM in ω + 2
steps.

Proof. Let A = {t | ∃x∀y∃zR(t, x, y, z)}, where R is finite time decidable. We
describe a program to determine whether t ∈ A.

Start with t in R1 (register 1) and 0 ∈ R2 (register 2). The program consists
of a large loop, each step of which consists of the following:

– For the current element n ∈ R2, decode n = 〈x, y, z〉, check whether R(t, x,
y, z) and

(∀y′ < y)(∃z′)[〈x, y′, z′〉 < n & R(t, x, y′, z′)] , (1)

and
(∀z′)[〈x, y, z′〉 < n → ¬R(t, x, y, z′)] . (2)

– If all three of these hold, then we have evidence at step n that (∀y′ ≤
y)(∃z′)R(t, x, y, z′) for a larger y the we had found before this step. In this
case, copy x into register R0.

– If not, then increment R0 by 1.
– Finally, increment register R2 by 1 and start over.

Notice that all of these tasks can be accomplished in finite time while using
finitely many registers by making use of a program which computes R as a
subroutine.

We run this loop ω many times. At stage ω, we compare the values in R0
and R2. If they are equal, then we zero the output register and halt. Otherwise,
we write 1 in the output register and halt. Clearly, at the limit stage R2 will



490 J.D. Hamkins, D. Linetsky, and R. Miller

contain ω. If R2 and R0 are equal at this point, then no x was was copied into
register R0 more than finitely often. Hence, ∀x∃y∀z ¬R(t, x, y, z), i.e., t /∈ A and
0 is written in the output register. On the other hand, if R0 does not contain ω,
then it has some finite value x0. This can only be the case if infinitely often more
evidence was found that x0 was a witness to the property ∀y∃z R(t, x, y, z). It
immediately follows that ∃x∀y∃z R(t, x, y, z), and hence we have that t ∈ A and
we output 1.

To decide membership in a Π0
3 set, simply reverse the outputs. 	


Using the algorithm described above, we can push on a little further into the
arithmetical hierarchy:

Lemma 2. Every Δ0
4 set can be decided in time less than ω2.

Proof. Let A ∈ Δ0
4. Then A and ω \ A have Σ4 definitions:

A = {t | ∃x R(t, x)} (3)
ω \ A = {t | ∃x R′(t, x)} (4)

where R, R′ ∈ Π0
3 . To decide if t ∈ A, we begin searching for an x so that either

R(t, x) or R′(t, x). By Lemma 1, we can decide R, R′ in ω + 2 steps. Thus, we
can decide whether t lies in A in ω · n steps, for some n ∈ ω. 	


These initial results are easily extended to cover all arithmetical sets. This next
lemma give the easy direction of the main theorem to come.

Lemma 3. Every arithmetic set is ORM-decidable in time uniformly less than
ωω. Indeed, if A ∈ Δ0

3n+1, then A is ORM-decidable in time less than ωn+1.

Proof. We proceed by induction on n. The case n = 0 is clear; it simply asserts
the classical fact that Δ0

1 sets are finite time decidable. In fact, the previous
lemma gives the case n = 1 as well. Now, suppose the result holds below n and
let A ∈ Δ0

3n+1. Then A and ω \ A have Σ3n+1 definitions:

A = {t | ∃x R(t, x)} (5)
ω \ A = {t | ∃x R′(t, x)} (6)

where R, R′ ∈ Π0
3n. Then, R = {t | ∀x∃y∀z Q(t, x, y, z)}, where Q ∈ Σ0

3n−3 ⊆
Δ0

3n−2. By the inductive hypothesis, Q is ORM-decidable in time less than ωn.
So, we simply apply the algorithms described in Lemmas 1 and 2, using the
program that decides Q as a subroutine. In this manner, we can decide A in
time less than ωn+1. 	


3 Characterizing the Quickly Decidable Sets

We now prove the harder direction, that in time uniformly less than ωω, ORMs
do not escape the arithmetical hierarchy. The Main Theorem provides a charac-
terization of the sets decidable by ORMs in times strictly less than ωω.



The Complexity of Quickly ORM-Decidable Sets 491

Theorem 1. The subsets of ω that are ORM-decidable (using arbitrary ordinal
parameters!) in time uniformly less than ωω are exactly the arithmetical sets.
In particular, a set A is ORM-decidable in time less than ωn+1 if and only if
A ∈ Δ0

3n+1.

This theorem should be contrasted with its analogue for Infinite Time Turing
Machines (ITTMs) found in [2], which states that every arithmetic set can be
decided by an ITTM in time uniformly less than ω2. Of course, ITTMs are able
to do this by making use of their infinite tape memory on which they are able to
write out oracles that can be later referred to in order to greatly speed up later
computations. ORMs, on the other hand, can store only finitely many ordinals
and are thus unable to use this type of strategy. Instead, they must recompute
the information required to preform a computation each time it is required.

Before we prove this main result, we provide some definitions and develop
some of the key ideas involved. In order to analyze the descriptive complexity
of a set that is decidable in time less than ωn, for some n ∈ ω, we need to
be able to talk about ORM configurations in a first order fashion. Since the
register contents of an ORM are arbitrary ordinals, in order to accomplish this,
we require a method of coding these ordinals as natural numbers.

Definition 1. For any ordinal α < ωω · 2, let �α� = 〈m, n0, . . . , nk〉 where
m ∈ {0, 1} and α = ωω · m + ωk · nk + · · · + ω · n1 + n0 < ωω. Furthermore, let
≺ be the order on these codes such that �α� ≺ �β� if and only if α < β.

Now, since ORM programs are finite and can make use of only finitely many
registers, we may also code an ORM configuration as a natural number.

Definition 2. An ORM configuration consists of a program state and the con-
tents of each register. In the case that a computation uses only ordinals less than
ωω ·2, then we use the above coding to code each of the its configurations as some
natural number C ∈ ω.

The statement of Theorem 1 allowed for arbitrary ordinal parameters while
Definition 1 only allows us to code ordinals smaller than ωω · 2. The next result
shows that this is in fact sufficient.

Lemma 4. Given any ORM program P , finite sequence of ordinals
−→
β < ωω,

and any ordinal parameter β > ωω, P (
−→
β , β) ↓= γ < ωω in time less than ωω if

and only if P (
−→
β , ωω) ↓= γ, and they do so in exactly the same number of steps

(where P (−→α ) ↓ means that program P converges on inputs −→α ).

Proof. The idea of the proof is that the ordinal β is much too large for the ORM
algorithm to make use of in such a short time; any such β operates identically
to ωω itself in any computation. Specifically, we prove the result by induction
on time. On one ORM, M, we run P (

−→
β , β), while on a second ORM, M′, we

run P (
−→
β , ωω). It is not hard to see that at every time t, the machine state of

M is the same as that of M′, and if any register in M contains a value < ωω,
then the corresponding register of M′ contains the same value. Moreover, any



492 J.D. Hamkins, D. Linetsky, and R. Miller

register of M has value β + γ, with β > ωω, if and only if the corresponding
register in M′ has value ωω + γ. At limit times we use the fact that for any
α < ωω, α + ωω = ωω. 	

In fact, the above proof goes through if every occurrence of ωω in the statement
of the lemma is replaced by any ordinal of the form ωα. Now, given the method
of Definition 2 for coding machine configurations, we now define a relation that
will allow us to describe how two configurations relate to each other relative to
a particular program.

Definition 3. Let C, C′ ∈ ω be codes for two ORM configurations, α < ωω

and let P ∈ ω be the code for an ORM-program. Define relation R ⊆ ω4 by:
R(C, C′, P, �α�) if and only if the configuration coded by C′ follows the con-
figuration coded by C in exactly α steps under the operation of the program
coded by P . Also, for any ordinal α < ωω, define the relation Rα ⊆ ω3 by
Rα(C, C′, P ) ↔ R(C, C′, P, �α�).

Of course, in order to make use of this relation, we need to know that it can be
expressed in a first order fashion. This is taken care of by the next result.

Lemma 5. For each ordinal α < ωω, the relation Rα(C, C′, P ) is arithmetical.
Indeed, if α = ωk ·nk + · · ·+ω ·n1+n0, then the statement Rα(C, C′, P ) is Δ0

3k+1.

Proof. By induction on k where α = ωk · nk + · · · + ω · n1 + n0. Clearly R1 is
finite time computable, and hence Δ0

1. Suppose the result holds below k and
that α = ωk · nk + · · · + ω · n1 + n0. Clearly, Rα(C, C′, P ) holds if and only if
there is a configuration C′′ such that Rωk·nk

(C, C′′, P ) and Rβ(C′′, C′, P ), where
β = ωk−1·nk−1+· · ·+ω·n1+n0. The latter relation is arithmetical by assumption,
so we need only consider Rωk·nk

(C, C′′, P ).
Now, if nk > 1, then Rωk·nk

(C, C′′, P ) is equivalent to asserting that there
exist configuration D0, . . . , Dnk

such that C = D0, C′′ = Dnk
, and that Rωk(Di,

Di+1, P ) for i < nk, i.e., each configuration follows the previous one in ωk steps.
Thus, it suffices to consider the case nk = 1, which asserts that C leads to C′′

in ωk steps. Using the relation for smaller ordinals, and our coding of smaller
ordinals as natural numbers, we can simply write out the liminf definition as a
first order sentence and see that it is indeed arithmetical.

Indeed, by the remarks above, it suffices to show that Rωk(C, C′, P ) ∈ Π0
3k,

from which it follow that Rα(C, C′, P ) ∈ Δ0
3k+1, where α = ωk ·nk+· · ·+ω ·n1 ·n0.

To see that this is so, we give the portion of the liminf definition which bounds
its complexity, that is, we look closely at how to say that the value of the nth

register, C′(n), is equal to some ordinal ξ.

C(n) = ξ iff (∀�β� ≺ �ξ�)(∃�γ� ≺ �ωk�)(∀D)(∀�δ� � �γ�)
[(

�δ� ≺ �ωk� & R(C, D, P, �δ�)
)

→ �D(i)� � �β�
]

& (∀�β� ≺ �ωk�)(∃D)(∃�γ� � �β�) (7)
[R(C, D, P, �γ�) & �D(i)� � �ξ�]

Assuming inductively that R(C, D, P, �γ�) ∈ Δ0
3k−2, for all γ < α, it follows that

the above sentence is indeed Π0
3k, and hence that Rα(C, C′, P ) ∈ Δ0

3k+1. 	




The Complexity of Quickly ORM-Decidable Sets 493

Putting together all of these pieces, we can now go ahead and prove the main
result of this section.

Proof (of Theorem 1). Suppose A is decidable in time less than ωn+1 (by pro-
gram P , say). Then, x ∈ A if and only if

(∃C)(∃n) [Rα(x∗, C, P ) & n = �α� & C halts with output 1] (8)

if and only if

(∀C)(∀n) [(Rα(x∗, C, P ) & n = �α�) → C halts with output 1] , (9)

where x∗ is the start configuration with x in the input register. Hence, since
Rα(x∗, C, P ) is Δ0

3n+1, it follows that A ∈ Δ0
3n+1. 	


4 Deciding Hyperarithmetical Sets

Of course, ORMs are capable of deciding membership in sets much more complex
than the arithmetical sets. In this final section we present two results concern-
ing hyperarithmetical sets. The first shows that the uniformity in time found
in Theorem 1 is necessary, i.e., there are hyperarithmetical sets that can be de-
cided in time less than ωω (but not uniformly so). The second result gives a
characterization of the sets decidable in times uniformly less than ωCK

1 , the first
non-recursive ordinal, as precisely the hyperarithmetical sets.

Theorem 2. There exist hyperarithmetic sets that are ORM-decidable in time
less than ωω (not uniformly). Indeed, the ωth jump of zero, ∅(ω), is such a set.

Proof. We show that ∅(ω) can be computed in time less than ωω by describing an
algorithm that accomplishes this. Of course, Theorem 1 ensures that this can’t be
done in time uniformly less than ωω. The algorithm requires that we simulate a
stack machine (as in [5] and [3]) with two stacks on an ORM. To decide whether
(n, k) ∈ ∅(ω), i.e., whether k ∈ ∅(n) we proceed as follows: First, we run the
algorithm which computes whether k ∈ ∅(n) using an ∅(n−1)-oracle. When the
algorithm queries the oracle as to whether some natural number k′ ∈ ∅(n−1), push
n−1 onto stack 1, and push ω ·(n−1)+k′ onto stack 2 and run this same program
over again. We push ω · (n − 1) + k′ instead of just k′ because when deciding
whether k′ ∈ ∅n−1 we may have to make a query about some number l > k′.
However, pushing l onto stack 2 would violate the stack protocol, which requires
that any number pushed onto a non-empty stack must be smaller than the
number preceding it. This recursive process will eventually decide membership
in k ∈ ∅(ω). Moreover, an analysis of the algorithm shows that it always halts
in time less than ωω, but that for every m ∈ ω there is some 〈n, k〉 ∈ ω such
that the computation that decides whether 〈n, k〉 ∈ ∅(ω) takes more than ωm

steps. 	




494 J.D. Hamkins, D. Linetsky, and R. Miller

Finally we characterize the sets decidable by an ORM in time less than some
recursive ordinal.

Theorem 3. The sets that are ORM-decidable in time less than ωCK
1 are exactly

the hyperarithmetic sets.

We prove this result using a sequence of lemmas. To begin with, we will show
that every hyperarithmetical set is decidable in time less than some recursive
ordinal. In order to this, we use a result of Shoenfield (see [9] or exercise 16-93
in [7]), which states that every hyperarithmetical set is Turing reducible to some
element of a particular series of sets. The sets are defined using the usual jump
operator; we denote the jump of a set D by D′.

Lemma 6 (Shoenfield). Define a sequence of sets Dα, for 0 < α < ωCK
1 , as

follows:
D0 = ω ;

Dα+1 = Dα ∩ (Dα)′ ; (10)

Dα =
⋂

β<α

Dβ , if α is a limit ordinal.

Then, A ∈ Δ1
1 if and only if A ≤T Dα for some α < ωCK

1 .

Of course, in order for Lemma 6 to be useful, we need to know that each of the
Dα’s is ORM-decidable in time less than some recursive ordinal, which we take
care of in the next result.

Lemma 7. For every α < ωCK
1 , Dα is ORM-decidable in time less than some

β < ωCK
1 .

Proof. We proceed by induction on α. Suppose that Dα is ORM-decidable in
time less than β, where β < ωCK

1 . For any x ∈ ω, to determine whether x ∈
Dα+1, we need to determine whether x ∈ Dα (requiring time < β) and whether
x ∈ (Dα)′, which may require up to ω queries about Dα and possibly one more
step to determine that x /∈ (Dα)′. Thus, Dα+1 can be decided in time at most
β · ω + 1, which is again a recursive ordinal since ωCK

1 is closed under ordinal
arithmetic.

Now suppose that α is a limit and the result holds for all γ < α. Define the
function fα : α → ωCK

1 by f(γ) = δ if and only if δ is least such that Dγ is
ORM-decidable in time less than δ. Now, if we want to decide whether some
x ∈ Dα, we need to decide whether it is in Dγ for each γ < α. Thus, Dα should
be decidable in time at most ε :=

⋃
γ<α fα(γ). Thus, if can show that ε < ωCK

1 ,
we are done.

We note that Dα ∈ LωCK
1

for each α < ωCK
1 , and that the notion of ORM

computability can be defined in a Δ0 way in LωCK
1

. Thus, the graph of fα is Δ0

definable in LωCK
1

. So, since ωCK
1 is an admissible ordinal, and thus satisfies Σ1

replacement, it follows that ε = ran fα ∈ LωCK
1

, and hence that ε < ωCK
1 . 	




The Complexity of Quickly ORM-Decidable Sets 495

Lemmas 6 and 7 essentially complete the proof of the backwards direction of
Theorem 3. To see this, suppose that A is hyperarithmetical, i.e., that A ∈ Δ1

1.
Then, by Lemma 6, we have that A ≤T Dα for some α < ωCK

1 . By Lemma 7,
we can decide Dα is time less than some β < ωCK

1 . Thus, it follows that we can
decide A in time at most β · ω < ωCK

1 . Hence, every hyperarithmetical set can
be decided by an ORM in time less than some recursive ordinal.

All that remains now is to show the converse. In order to this, we will make
use of Kleeene’s O, which provides natural number notations for every recursive
ordinal. We will not define O, but the standard definitions and results concerning
O may be found in any standard text on the subject. We will follow the notation
found in [1]. Thus, for any n ∈ O, we write |n|O to denote the ordinal denoted
by n and we denote the standard order relation on O by <O so that a <O b if
and only if |a|O < |b|O. We now complete the proof of Theorem 3 by proving
the following lemma.

Lemma 8. If A ⊆ ω is ORM-decidable in time less than some recursive ordinal,
then A ∈ Δ1

1.

Proof. Suppose that A ⊆ ω is ORM-decidable, by the program P , in time less
than α for α < ωCK

1 . Fix some a ∈ O so that |a|O = α. Then, the set S :=
{b | b <O a} ⊆ ω is recursively enumerable and provides a set of notations for
all ordinals less than α. Using S, we can mimic Definition 2 and code any ORM
configuration having register contents less than α as natural numbers. For any
C, C′ ∈ ω coding two such configurations, let us say that QP (C, C′, n) holds if
and only if the configuration coded by C′ follows that coded by C, under the
operation of the program P , in exactly |n|O many steps.

We claim that for any n ∈ S the relation QP (C, C′, n) ∈ Δ1
1. This is easily

shown by induction. Let n ∈ S and suppose that the result holds for all m <O n.
If |n|O = β + 1, then n = 2m for m ∈ S, m <O n, and |m|O = β. In this case,
QP (C, C′, n) ∈ Δ1

1 if and only if (∃D)[QP (C, D, m)&QP (C, D, 2)] (note: |2|O=1).
Thus, by the induction hypothesis, it follows that QP (C, D, n) ∈ Δ1

1. On the
other hand, if |n|O is a limit ordinal, then we must unravel the lim inf definition
as we did in the proof of Lemma 5, except that we use codes from S and the
order <O instead of ≺. To do this, we require only quantifiers over ω, which
do not increase the complexity. Hence, the relation QP (C, C′, n) ∈ Δ1

1 for every
n <O a.

The theorem now follows immediately, since x ∈ A if and only if

(∃C)(∃n ∈ S)
[
QP (x∗, C, n) & C halts with output 1

]
(11)

if and only if

(∀C)(∀n ∈ S)
[
QP (x∗, C, n) → C halts with output 1

]
, (12)

where x∗ is the start configuration with x in the input register, and all other
registers set to zero. Hence, A ∈ Δ1

1 and is thus hyperarithmetical. 	




496 J.D. Hamkins, D. Linetsky, and R. Miller

References

1. Ashe, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy.
In: Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam
(2000)

2. Hamkins, David, J., Lewis, A.: Infinite Time Turing Machines. J. Symbolic
Logic 65(2), 567–604 (2000)

3. Hamkins, David, J., Miller, R.: Post’s Problem for Ordinal Register Machines. (To
appear in this volume)

4. Jech, Thomas.: Set Theory. The Third Millenium Edition. In: Springer Monographs
in Mathematics, Springer, Heidelberg (2003)

5. Koepke, Peter.: Ordinals, Computations, and Models of Set Theory: A Tutorial
at Days in Logic, Coimbra, Portugal. Tutorial Material. (accessed January 2006)
http://www.mat.uc.pt/∼kahle/dl06/koepke.pdf

6. Koepke, Peter.: Turing Computations on Ordinals. J. Symbolic Logic 11(3), 377–397
(2005)

7. Rogers, Hartley Jr.: Theory of Recursive Functions and Effective Computability.
The MIT Press, Cambridge (1967)

8. Sacks, G.E.: Higher Recursion Theory. In: Perspectives in Mathematical Logic,
Springer, Heidelberg (1990)

9. Shoenfield, Joseph, R. (eds.): Recursion Theory. Lecture Notes in Logic. Springer,
Heidelberg (1993)

http://www.mat.uc.pt/ ~kahle/dl06/koepke.pdf

	The Complexity of Quickly ORM-Decidable Sets
	Introduction
	Arithmetical Sets
	Characterizing the Quickly Decidable Sets
	Deciding Hyperarithmetical Sets



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




