
Physics and Computation:
The Status of Landauer’s Principle

(Extended Abstract)

James Ladyman

Department of Philosophy, University of Bristol

1 Introduction

Realism about computation is the view that whether or not a particular physical
system is performing a particular computation is at least sometimes a mind-
independent feature of reality. The caveat ‘at least sometimes’ is necessary here
because a realist about computation need not believe that all instances of com-
putation should be realistically construed. The computational theory of mind
presupposes realism about computation. If whether or not the human nervous
system implements particular computations is not a natural fact about the world
that is independent of whether we represent it as doing so, then the computa-
tional theory of mind fails to naturalise the mind. Realism about computa-
tion is also presupposed by attempts to use computational principles such as
Landauer’s Principle to dispel Maxwell’s Demon. Realism about computation
has been challenged by Hilary Putnam and John Searle among others. Various
arguments have been put forward purporting to show that any physical system
of sufficient complexity trivially implements all computations. Ladyman et al.
(2007) offer a precisification and general proof Landauer’s Principle. In order to
do this they present an analysis of what it is for a physical process to imple-
ment a logical transformation. In this paper, their analysis is explained and its
implications for realism about computation and the use of Landauer’s Principle
in foundational debates is assessed.

When we are concerned with the logical form of a computation and its for-
mal properties then it can be theoretically described in terms of functions and
relations between abstract entities. However, actual computation is realised by
some physical process, and the latter is of course subject to physical laws and
the laws of thermodynamics in particular. It is therefore important to consider
whether or not there are any systematic connections between the logical proper-
ties of computations consider abstractly and the thermodynamical properties
of their realizations. Rolf Landauer (1961) proposed such a general connec-
tion, known as Landauer’s Principle, namely that the erasure of information
in any computational device is necessarily accompanied by an appropriate in-
crease in the thermodynamic entropy of the device and/or its environment. This
result is often generalised as follows: (a) any logically irreversible process must
result in an entropy increase in the non-information bearing degrees of free-
dom of the information-processing system or its environment; (b) any logically
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reversible process can be implemented thermodynamically reversibly (see for
example Charles Bennett 2003). Landauer’s Principle is the subject of much de-
bate. In particular, John Norton (2005) and Owen Maroney (2005) both argue
that Landauer’s Principle has not been shown to hold in general.

In order to clarify the status of Landauer’s Principleis it is necessary to pre-
cisely define a computation, and what it means to say that a computation is
physically realized. In particular, this paper offers precise definitions of logical
irreversibility and thermodynamic irreversibility, and a detailed analysis of what
it means for a physical system to implement a logical transformation. The result
of this analysis is the notion of an L-machine. This is a hybrid physical-logical
entity that combines a physical device, a specification of which physical states of
that device correspond to various logical states, and an evolution of that device
which corresponds to the logical transformation L. Landauer’s Principle can be
restated and generalized to the claim that the logical irreversibility of L implies
thermodynamic irreversibility of every corresponding L-machine.

Everyone agrees that there are both logically reversible and irreversible trans-
formations, and that every logically reversible transformation is implementable
in a thermodynamically reversible way, and that any such transformation can
also be implemented in a thermodynamically irreversible way. Everyone also
agrees that a logically irreversible transformation can be implemented in a ther-
modynamically irreversible way. So the issue is whether there are any logically
irreversible transformations that can be implemented in a thermodynamically
reversible way (as illustrated in table 1).

Table 1. A table representing the different possibilities for logical and thermodynamic
reversibility. This paper addresses the issue of whether any logically irreversible trans-
formation can be implemented thermodynamically reversibly.

Possibilities
Thermodynamically

reversible
Thermodynamically

irreversible
Logically
reversible � �

Logically
irreversible ? �

It is important to make a clear distinction between the logical and physical
domains, and to avoid talk of logical ‘processes’ and refer instead to logical
transformations and their implementation by families of physical processes. The
term ‘process’ always refers to a physical process in which a system starts in some
particular state and is guaranteed to end in some particular state1. Landauer’s

1 In general, the particular end state may be a probabilistic mixture of thermodynamic
states, but usually the final state is not such a mixture. Although, in the former
case, the system may be supposed to actually be in some specific component of the
mixture, it is not guaranteed to end up in that component, and so this component
state cannot be considered as the final state of the process.
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Principle is only considered in the general and precise form introduced above: If L
is logically irreversible, then every L-machine is thermodynamically irreversible2.

2 Logical Irreversibility

A logical transformation is a mathematical operation, consisting of a single-
valued map L from a finite set X of input states, into a finite set Y of output
states (i.e. each input state is mapped by L to a unique output state). For ex-
ample, consider the case of binary-valued logic, in which the input and output
states are bit-strings (with 0 and 1 usually representing ‘false’ and ‘true’ respec-
tively); the mapping L can be represented by a truth table, or as a digital circuit
constructed from some set of universal gates (e.g. NAND and COPY). A logical
transformation is logically reversible if and only if L : X → Y is a one-to-one
(injective) mapping3. Hence with a reversible logical transformation, it is possi-
ble to uniquely reconstruct the input state from the output state. If L is not a
one-to-one mapping, then it is logically irreversible.

It is crucial that there is a distinction between a logical transformation, which
is a map from a set of logical states to a set of logical states, and a physical
process, which is a change in a physical system whereby it goes from a particular
physical state to a particular physical state. It follows that it makes no sense
to talk of the implementation of a logical transformation by a physical process,
rather in so far as logical transformations are implemented using physical sys-
tems, they are implemented by a family of processes. For the physical system to
implement the logical transformation reliably, the family of processes must take
each of the physical states that represent the logical input states to the appropri-
ate physical state, that is the one that represents the right logical output state
(The point here is clear in the case of a truth table, where each member of the
family of processes corresponds to a single row). The notion of implementation
of a logical transformation by a physical device is discussed in section 4 below.

3 Thermodynamic Irreversibility

Thermodynamic irreversibility is a feature of physical processes, expressed by
the second law of thermodynamics. There is much controversy about how the
latter can be justified on the basis of statistical mechanics. Without assum-
ing anything about the relationship between phenomenological thermodynamics
and statistical mechanics, its is assumed that the second law stated in terms of
thermodynamic entropy is valid.

In thermodynamics various operational assumptions are made that allow the
definition of the thermodynamic entropy of individual macroscopic states (up to
2 An L-machine is just the most general way of capturing the idea of physically im-

plementing a logical transformation L.
3 Note that whether or not L is surjective is irrelevant for the present paper. This is

because if there are output states that do not get arrived at by the implementation
of the transformation these are irrelevant to thermodynamic considerations.
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a constant)4. This is almost universally accepted, however, there is controversy
about the assignment of entropy to probabilistic mixtures of macrostates (for
example, see Norton (2005)). For example, consider the mixture of macrostates
Mi, with probabilities qi. Assuming that the assignment of entropy to such a state
is legitimate, it might be supposed that it is simply the average of the individual
entropies S(Mi); explicitly,

∑
i qiS(Mi). However, it is common to also include a

term to represent the contribution to the entropy of the probability distribution
itself; explicitly:

Smixture =
∑

i

qiS(Mi) − k
∑

i

qi ln qi (1)

The latter term is an information theoretic entropy and its inclusion in ther-
modynamic calculations currently lacks rigorous foundational justification5. La-
dyman et al (2007) offers a proof of Landauer’s Principle that depends on the
use of the information theoretic entropy and a proof that is independent of it.

Consider a system in a heat reservoir at temperature T undergoing some
thermodynamic process p. If ΔSsys(p) is the change in the entropy of the system
during the process p, and ΔQ(p) is the heat flow from the system into the
reservoir during the same process, then the second law requires that

∀ p, ΔSsys(p) +
ΔQ(p)

T
≥ 0 (2)

Identifying ΔSres(p) = ΔQ(p)/T as the entropy change of the heat reservoir,
define

ΔStot(p) = ΔSsys(p) + ΔSres(p) (3)

as the total entropy change of the system and reservoir together. The second law
can then be restated in the familiar form

∀p, ΔStot(p) ≥ 0 (4)

i.e. total entropy is non-decreasing over time.
A process p is thermodynamically reversible if and only if ΔStot(p) = 0.
If ΔStot(p) > 0, the physical process p cannot be run in reverse, as the reverse

process p′ would have ΔStot(p′) < 0, and hence violate the second law. Therefore
any process p for which ΔStot(p) > 0 is thermodynamically irreversible. As is well
known, there are a number of formulations of the second law that are provably
equivalent to this, modulo certain assumptions.

A family of physical processes is thermodynamically irreversible if and only if
at least one of its members is. This is important for the definition of irreversibility
for L-machines in the next section.

4 See, for example, Fermi (1936), Chapter IV.
5 However, such a justification is the subject of work in progress by Ladyman, Presnell

and Short.
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4 Implementing a Logical Transformation with a Physical
Device

In order to analyze the connection between logical transformations, and phys-
ical thermodynamic processes, it is necessary to consider what it means for a
physical system to implement a logical transformation. As stated above, a phys-
ical system can only implement a logical transformation through a family of
processes. To physically implement a logical transformation, there must be: A
physical device, a specification of which physical states of that device correspond
to the possible logical states (call the former representative states), and a time
evolution operator of that device. This combined system is an L-machine. Note
that L names a particular logical transformation, so there are LAND-machines,
and so on.

The time evolution operator must generate the relevant family of processes,
and the reliability of the implementation consists in the time evolution operator
being such as to ensure that whichever of the representative physical states the
device is prepared in, it ends up in the appropriate representative state. This
insistence on generality is an important difference between the present approach
and that of Maroney (2005) who considers only individual processes.

Furthermore, it is important to note that the time evolution operator must
encode everything about the behaviour of the device, and so the possibility of
an external agent intervening during its operation is ruled out. In particular this
prohibits any such external agent affecting the time evolution of the system by
making use of information about its state while it is running. In other words,
intelligent agents (such as demons) may be introduced only if their knowledge
and actions affecting the operation of the device are included in the specification
of the L-machine and its time evolution. Heuristically, suppose that the interac-
tion between the L-machine and the rest of the world is limited to the setting
of the input state and the pressing of the ’go’ button.

Formally, an L-machine is an ordered set

{D, {Din(x)|x ∈ X} , {Dout(y)|y ∈ Y } , ΛL} (5)

consisting of

– A physical device D, situated in a heat bath at temperature T .
– A set {Din(x)|x ∈ X} of macroscopic input states of the device, which are

distinct thermodynamic states of the system (i.e. no microstate is a compo-
nent of more than one thermodynamic state). Din(x) is the representative
physical state of the logical input state x.

– A set {Dout(y)|y ∈ Y } of distinct thermodynamic output states of the device.
Dout(y) is the representative physical state of the logical output state y. Note
that the set of input states and output states may overlap.

– A time-evolution operator ΛL for the device, such that

∀ x ∈ X, ΛL(Din(x)) = Dout(L(x)). (6)
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An L-machine {D, {Din(x)|x ∈ X}, {Dout(y)|y ∈ Y }, ΛL} physically imple-
ments L in the following sense. If D is prepared in the input state Din(x) cor-
responding to the logical input state x ∈ X , and is then evolved using ΛL, it
will be left in the output state Dout(y) corresponding to the logical output state
y = L(x) ∈ Y . This physical process is denoted by px.

x
L−−−−−→ y

∥
∥
∥

∥
∥
∥

Din(x) −−−−−→
ΛL

Dout(y)

Fig. 1. An illustration of the relationship between the logical states x and y and their
representative physical states Din(x) and Dout(y), showing the logical transformation
L and the physical time evolution operator ΛL

Note that the labelling of the states is essential to the identity of a L-machine.
For example, exactly the same device and time-evolution operator could be used
as part of both an LAND-machine, and an LOR-machine by the appropriate
relabelling of the physical input and output states.

Consider the thermodynamics of the process px. If the entropy of the system
in the state Din(x) is Sin(x), the entropy of the system in state Dout(L(x))
is Sout(L(x)), and the heat flow from the system into the reservoir during the
process is ΔQ(px) = TΔSres(px), the total entropy change ΔStot(px) for the
process will be given by

ΔStot(px) = Sout(L(x)) − Sin(x) +
ΔQ(px)

T
≥ 0. (7)

This particular process will be thermodynamically reversible if ΔStot(px) = 0.
Note that in the commonly considered case in which the initial and final entropies
of the system are the same, ΔStot is proportional to the heat flow from the system
into the reservoir. Furthermore if the initial and final energies of the system are
the same as well, then from the first law of thermodynamics, this heat flow is
equal to the work done on the system.

An L-machine is thermodynamically reversible if and only if for all x ∈ X,
ΔStot(px) = 0 (i.e. if all of the processes px are thermodynamically reversible).
An L-machine is therefore thermodynamically irreversible if there exists an x ∈
X for which ΔStot(px) > 0.

Note implementing L by implementing some other ‘stronger’ L′ from which
the outputs of L can be deduced is ruled out; for example, the logical trans-
formation L′ corresponding to the combination of L and keeping a copy of the
input. Formally, a logical transformation L′ is stronger than a logical transforma-
tion L just in case, for every input x, L(x) can be recovered from L′(x), but for at
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least one x, L′(x) cannot be recovered from L(x). It follows that if L′ is stronger
than L, then, for every x, L(x) = L∗(L′(x)), where L∗ is a logically irreversible
transformation6. In general an implementation of a logically stronger L′ is not
an implementation of L, and is unfaithful in the following sense: it allows that,
for some x, more can be learnt about the value of x from the output L′(x) than
from L(x) itself. Allowing that L can be implemented by the implementation
of a logically stronger transformation L′ must also be ruled out because it begs
the question at issue here by implicitly assuming that Landauer’s Principle is
false: it would always be possible to implement a logically irreversible process
by implementing a stronger logically reversible process, and all sides agree that
this could be done in a thermodynamically reversible way.

Note also that in the above definition a unique representative state is assigned
to each logical state as this makes for a clear and simple analysis. However, in
general it could be allowed that more than one physical state represents the
same logical state, in which case, for each x, Din(x) would be replaced by a
set {D

(1)
in (x), D(2)

in (x) . . .} of distinct physical states (and similarly for each y).
Call such a generalisation a ‘multi-L-machine’. The condition (6) on the time-
evolution operator of the device would then generalise in an obvious way to

∀ x ∈ X, ∀ D
(i)
in (x), ∃ D

(j)
out(L(x)) : ΛL(D(i)

in (x)) = D
(j)
out(L(x)). (8)

By definition, each representative state is a physically distinguishable macro-
state, so assume that the device can be prepared in a specific D

(i)
in (x), and it

can be determined which of the D
(j)
out(y) it ends up in. Hence, a refinement of

any multi-L-machine, is the multi-L-machine obtained by choosing a particular
representative state for each logical input state, and their corresponding output
states, and keeping the device and time evolution operator the same.

For many multi-L-machines, every refinement is an L-machine and in such
cases nothing is gained by considering the generalisation. However, in every other
case there exists a refinement which under relabelling of its output states is an
L′-machine, for some L′ that is logically stronger than L. This is unfaithful in
the sense defined above, and hence is ruled out. Furthermore, without ruling out
these cases then, for any logically irreversible L, a machine that implements L
merely in virtue of the fact that it is stipulated that for every logical input state x,
the same physical state represents x and L(x), where the time evolution operator
is the identity operator could be considered. This clearly trivialises the notion of
implementing a logical transformation. It is ruled out by the prescription above
since it could be used to implement the logically stronger identity operation.

On the basis of the above definitions it is possible to prove Landauer’s Prin-
ciple from the Kelvin statement of the Second Law of Thermodynamics using a
thermodynamic cycle.

6 Note that L′(x) can itself be logically irreversible, such as the logical transformation
L′ corresponding to the combination of LAND and keeping a copy of the second
input bit. L′ is stronger than LAND but is still logically irreversible.
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