
Circuit Complexity of Regular Languages

Michal Koucký

Mathematical Institute of the Academy of Sciences of Czech Republic
Žitná 25, CZ-115 67 Praha 1, Czech Republic

koucky@math.cas.cz

Abstract. We survey our current knowledge of circuit complexity of
regular languages. We show that regular languages are of interest as lan-
guages providing understanding of different circuit classes. We also prove
that regular languages that are in AC0 and ACC0 are all computable by
almost linear size circuits, extending the result of Chandra et al. [5].

Keywords: regular languages, circuit complexity.

1 Introduction

Regular languages and associated finite state automata occupy a prominent po-
sition in computer science. They come up in a broad range of applications from
text processing to automatic verification. In theoretical computer science they
play an important role in understanding computation. The celebrated result of
Furst, Saxe and Sipser [6] separates circuit classes by showing that the regular
language PARITY is not in AC0, the class of languages that are computable
by bounded-depth polynomial-size circuits consisting of unbounded fan-in And,
Or gates and unary Not gates. The result of Barrington [1] shows that there
are regular languages that are complete for the class NC1, the class of languages
computable by logarithmic-depth circuits consisting of fan-in two And, Or gates
and unary Not gates. Recently in [8], regular languages were shown to separate
classes of languages computable by ACC0 circuits using linear number of gates
and using linear number of wires. The ACC0circuits are similar to AC0 circuits
but in addition they may contain unbounded fan-in Mod-q gates.

There is a rich classification of regular languages based on properties of their
syntactic monoids (see e.g. [17,16]). (The syntactic monoid of a regular language
is essentially the monoid of transformations of states of the minimal finite state
automata for the language. See the next section for precise definitions.) It turns
out that there is a close connection between algebraic properties of these monoids
and computational complexity of the associated regular languages. In this article
we survey our current knowledge of this relationship from the perspective of
circuit complexity and we point out the still unresolved open questions. Beside
that we provide a proof that all regular languages that are in AC0 and ACC0

are recognizable by AC0 and ACC0 circuits, resp., of almost linear size.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 426–435, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Circuit Complexity of Regular Languages 427

2 Preliminaries on Monoids

In order to understand regular languages one needs to understand their finite
state automata. It turns out that the proper framework for such a study are
associated transformation monoids. We recall few elementary concepts regarding
monoids. A monoid M is a set together with an associative binary operation
that contains a distinguished identity element 1M . We will denote this operation
multiplicatively, e.g., for all m ∈ M , m1M = 1Mm = m. For a finite alphabet Σ,
an example of a monoid is the (free) monoid Σ∗ with the operation concatenation
and the identity element the empty word. Except for the free monoid Σ∗, all the
monoids that we consider in this paper will be finite.

An element m ∈ M is called an idempotent if m = m2. Since M is finite,
there exists the smallest integer ω ≥ 1, the exponent of M , such that for every
m ∈ M , mω is an idempotent. A monoid G where for every element a ∈ G there
is an inverse b ∈ G such that ab = ba = 1G is a group. A monoid M is called
group-free if every group G ⊆ M is of size 1. (A group G in a monoid M does
not have to be a subgroup of M , i.e., 1M may differ from 1G).

For a monoid M the product over M is the function f : M∗ → M such
that f(m1m2 · · ·mn) = m1m2 · · ·mn. The prefix-product over M is the func-
tion Πp : M∗ → M∗ defined as Πp(m1m2 . . . mn) = p1p2 · · · pn, where for
i = 1, . . . , n, pi = m1m2 · · · mi. Similarly we can define the suffix-product over M
as a function Πs : M∗ → M∗ defined by Πs(m1m2 . . . mn) = s1s2 · · · sn, where
si = mimi+1 · · · mn. For a ∈ M , the a-word problem over M is the language
of words from M∗ that multiply out to a. When we are not concerned about a
particular choice of a we will refer to such problems as word problems over M .

For monoids M, N , a function φ : N → M is a morphism if for all u, v ∈ N ,
φ(uv) = φ(u)φ(v). We say that L ⊆ Σ∗ can be recognized by M if there exist
a morphism φ : Σ∗ → M and a subset F ⊆ M so that L = φ−1(F). A trivial
variant of Kleene’s theorem states that a language L is regular iff it can be recog-
nized by some finite monoid. For every such L there is a minimal monoid M(L)
that recognizes L, which we call the syntactic monoid of L, and the associated
morphism νL : Σ∗ → M(L) we call the syntactic morphism of L. The syntactic
monoid M(L) of L happens to be the monoid of state transformations gener-
ated by the minimum state finite automaton recognizing L, i.e. every element of
M(L) can be thought of as a map of states of the automaton to itself.

2.1 Boolean Circuits

Boolean circuits are classified by their size, depth and type of gates they use.
For us the following classes of circuits will be relevant. NC1 circuits are circuits
of logarithmic depth consisting of fan-in two And and Or gates, and unary
Not gates. Because of the bound on the depth and fan-in, NC1 circuits are of
polynomial size. AC0, AC0[q], ACC0, TC0 circuits are all of constant depth and
polynomial size. AC0 circuits consist of unbounded fan-in And and Or gates,
and unary Not gates whereas AC0[q] circuits contain in addition unbounded fan-
in Mod-q gates. (A Mod-q gate is a gate that evaluates to one iff the number

428 M. Koucký

of ones that are feed into it is divisible by q.) ACC0 circuits are union of AC0[q]
circuits over all q ≥ 1. Finally, TC0 circuits are circuits consisting of unbounded
fan-in And, Or and Maj gates, and unary Not gates. (A Maj gate is a gate
that evaluates to one iff the majority of its inputs is set to one.)

There are two possible measures of the circuit size—the number of gates and
the number of wires. As these two measures usually differ by at most a square
the difference in these measures is usually not important. As we will see for us
it will make a difference. Unless we say otherwise we will mean by the size of a
circuit the number of its gates.

Beside languages over a binary alphabet we consider also languages over an
arbitrary alphabet Σ. In such cases we assume that there is some fixed encoding
of symbols from Σ into binary strings of fixed length, and inputs from Σ∗ to
circuits are encoded symbol by symbol using such encoding. We use similar
convention for circuits outputting non-Boolean values.

There is a close relationship between a circuit complexity of a regular language
L and the circuit complexity of a word problem over its syntactic monoid M(L).
One can easily establish the following relationship.

Proposition 1

1. If a regular language L is computable by a circuit family of size s(n) and
depth d(n) and for some k ≥ 0, νL(L=k) = M(L) then the product over its
syntactic monoid M(L) is computable by a circuit family of size O(s(O(n))+
n) and depth d(O(n)) + O(1).

2. If the product over a monoid M is computable by a circuit family of size s(n)
and depth d(n) then any regular language with the syntactic monoid M is
computable by a circuit family of size s(n) + O(n) and depth d(n) + O(1).

The somewhat technical condition that for some k, νL(L=k) = M(L) is unfortu-
nately necessary as the language LENGTH(2) of strings of even length does not
satisfy the conclusion of the first part of the claim in the case of AC0 circuits.
However, the first part of the proposition applies in particular to regular lan-
guages that contain a neutral letter, a symbol that can be arbitrarily added into
any word without affecting its membership/non-membership in the language.
For L ⊆ Σ∗, L=k means L ∩ Σk.

3 Mapping the Landscape

It is folklore that all regular languages are computable by linear size NC1 circuits.
Indeed by Proposition 1 it suffices to show that there are NC1 circuits of linear
size for the product of n elements over a fixed monoid M : recursively reduce
computation of a product of n elements over M to a product of n/2 elements
over M by computing the product of adjacent pairs of elements in parallel.
Turning such a strategy into a circuit provides a circuit of logarithmic depth
and linear size. Thus we can state:

Theorem 1. Every regular language is computable by NC1 circuits of linear size.

Circuit Complexity of Regular Languages 429

Can all regular languages be put into even smaller circuit class? A surprising
result of Barrington [1] indicates that this is unlikely: if a monoid M contains
a non-solvable group then the word problem over M is hard for NC1 under
projections. Here, a projection is a simple reduction that takes a word w from a
language L and maps it to a word w′ from a language L′ so that each symbol of
w′ depends on at most one symbol of w and the length of w′ depends only on
the length of w. Thus, unless NC1 collapses to a smaller class such as TC0, NC1

circuits are optimal for some regular languages. The theorem of Barrington was
further extended by Barrington et al. [2] to obtain the following statement.

Theorem 2 ([1,2]). Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC1 under projections.

An example of a monoid with a non-solvable group is the group S5 of permuta-
tions on five elements. Thus for example the word problem over the group S5 is
hard for NC1 under projections.

Chandra, Fortune and Lipton [5] identified a large class of languages that are
computable by AC0 circuits.

Theorem 3 ([5]). If a language L has a group-free syntactic monoid M(L)
then L is in AC0.

The regular languages with group-free syntactic monoids have several alternative
characterizations. They are precisely the star-free languages, the languages that
can be described by a regular expression using only union, concatenation and
complement operations but not the operation star where the atomic expressions
are languages {a} for every a ∈ Σ. They are also the non-counting languages,
the languages L that satisfy: there is an integer n ≥ 0 so that for all words x, y, z
and any integer m ≥ n, xymz ∈ L iff xym+1z ∈ L.

The proof of Chandra et al. uses the characterization of counter-free regular
languages by flip-flop automata of McNaughton and Papert [9]. Using this char-
acterization one only needs to prove that the prefix-product over carry semigroup
is computable by AC0 circuits. The carry semigroup is a monoid with three el-
ements P, R, S which multiply as follows: xP = x, xR = R, xS = S for any
x ∈ {P, S, R}. The carry semigroup is especially interesting because of its rela-
tion to the problem of computing the addition of two binary numbers.

Chandra et al. also prove a partial converse of their claim.

Theorem 4 ([5]). If a monoid M contains a group then the product over M is
not in AC0.

Their proof shows how a product over a monoid with a group can be used to
count the number of ones in an input from {0, 1}∗ modulo some constant k ≥ 2.
However, by the result of Furst, Saxe and Sipser [6] that cannot be done in AC0

so the product over monoids containing groups cannot be in AC0.
There is still an apparent gap between Theorems 3 and 4. Namely, the lan-

guage LENGTH(2) of words of even length is in AC0 although its syntactic
monoid contains a group. This gap was closed by Barrington et al. [2].

430 M. Koucký

Theorem 5 ([2]). A regular language is in AC0 iff for every k ≥ 0, the image
of L=k under the syntactic morphism νL(L=k) does not contain a group.

Surprisingly, there is a beautiful characterization of these languages using regular
expressions provided by [2]. L is in AC0 iff it can be described by a regular ex-
pression using operations union, concatenation and complement with the atoms
{a} for every a ∈ Σ and LENGTH(q) for every q ≥ 1. LENGTH(q) is the
language of all words whose length is divisible by q.

The remaining gap between regular languages with group-free monoids and
monoids that contain non-solvable groups was essentially closed by Barrington:

Theorem 6 ([1]). If a syntactic monoid of a language contains only solvable
groups then the language is computable by ACC0 circuits.

An example of such a language is the language PARITY of words from {0, 1}∗
that contain an even number of ones. There is a very nice characterization of also
these languages by regular expressions of certain type. For this characterization
we need to introduce one special regular operation on languages. For a language
L ⊆ Σ∗ and w ∈ Σ∗, let L/w denote the number of initial segments of w
which are in L. For integers m > 1 and 0 ≤ r < m we define 〈L, r, m〉 =
{w ∈ Σ∗; L/w ≡ r mod m}. Straubing [14] shows that the syntactic monoid of
a language contains only solvable groups iff the language can be described by
a regular expression built from atoms {a}, for a ∈ Σ, using operations union,
concatenation, complement and 〈La, r, m〉, for any a ∈ Σ, m > 1 and 0 ≤ r < m.

The above results essentially completely classify all regular languages with
respect to their circuit complexity—they are complete for NC1, they are com-
putable in AC0 or otherwise they are in ACC0. It is interesting to note that the
class TC0 does not get assigned any languages unless it is equal either to NC1

or ACC0. Proving that a regular language with its syntactic monoid containing
non-solvable group is in TC0 would collapse NC1 to TC0. Currently not much
is known about the relationship of classes ACC0, TC0, and NC1 except for the
trivial inclusions ACC0⊆TC0⊆NC1.

4 Circuit Size of Regular Languages

In the previous section we have shown that all regular languages are computable
by linear size NC1 circuits. Can anything similar be said about regular languages
in AC0 or ACC0? The answer may be somewhat surprising in the light of the
following example. Let Th2 be the language over the alphabet {0, 1} of words
that contain at least two ones. This is clearly a regular language and it is in AC0:
check for all pairs of input positions whether anyone of them contains two ones.
However this gives an AC0 circuit of quadratic size and it is not at all obvious
whether one can do anything better. Below we show a general procedure that
produces more efficient circuits. We note here that the language Th2 as well
as all the threshold languages Thk for up-to even poly-logarithmic k are in fact
computable by linear size AC0 circuits [12]. The construction of Ragde and

Circuit Complexity of Regular Languages 431

Wigderson [12] is based on perfect hashing and it is not known if it could be
applied to other regular languages.

Despite that we can reduce the size of constant depth circuits computing
regular languages as follows. Assume that a regular language L and the product
over its syntactic monoid is computable by O(nk)-size constant-depth circuits.
We construct O(n(k+1)/2)-size constant-depth circuits for product over M(L):
divide an input x ∈ M(L)n into consecutive blocks of size

√
n and compute the

product of each block in parallel; then compute the product of the
√

n block
products. This construction can be iterated constantly many times to obtain:

Proposition 2. Let L be a regular language computable by a polynomial-size
constant-depth circuits over arbitrary gates. If the product over its syntactic
monoid M(L) is computable by circuits of the same size then for every ε > 0,
there is a constant-depth circuit family of size O(n1+ε) that computes L.

A substantial improvement comes in the work of Chandra et al. [5] who prove:

Theorem 7 ([5]). Let g0(n) = n1/4 and further for each d = 0, 1, 2, . . . ,
gd+1(n) = g∗d(n). Every regular languages L with a group-free syntactic monoid
is computable by AC0 circuits of depth O(d) and size O(n ·g2

d(n)), for any d ≥ 0.

Here g∗(n) = min{i; g(i)(n) ≤ 1}, where g(i)(·) denotes g(·) iterated i-times.
Hence, Chandra et al. prove that almost all languages that are in AC0 are com-
putable by circuit families of almost linear size. Clearly the same is true for
the product over group-free monoids. We generalize this to all regular languages
computable in AC0.

Theorem 8. Let gd(n) be as in Theorem 7. Every regular languages L in AC0

is computable by AC0 circuits of depth O(d) and size O(n ·g2
d(n)), for any d ≥ 0.

The proof is a simple extension of the result of Chandra et al. We need to
establish the following proposition that holds for all languages in AC0.

Proposition 3. Let for every n ≥ 0, the image of L=n under the syntactic
morphism νL does not contain any group. Then there is a k ≥ 1 and a group-free
monoid M ⊆ M(L) such that for all w ∈ Σ∗, if k divides |w| then νL(w) ∈ M .

Due to space limitations we omit proofs of Proposition 3 and Theorem 8 from
this version of the paper. They can be found in the full version of the paper.

Chandra et al. prove actually the even stronger statement that the prefix-
problem of these regular languages is computable in that size and using that
many wires. We use the technique of Chandra et al. [5] together with the regular
expression characterization of languages to show a similar statement for the reg-
ular languages in ACC0. (Alternatively, we could use Thérien’s characterization
of regular languages in ACC0 [17].)

Theorem 9. Let gi(n) be as in Theorem 7. Every regular language L that is
computable by ACC0 circuits is computable by ACC0 circuits of size O(n ·g2

i (n)).

432 M. Koucký

The following general procedure that allows to build more efficient circuits for
the prefix-product over a monoid M from circuits for the product over monoid
M and less efficient circuits for the prefix-product over M is essentially the
procedure of Chandra et al. Together with the inductive characterization of
regular languages by regular expressions it provides the necessary tools to prove
the above theorem. Let g : N → N be a non-decreasing function such that for
all n > 0, g(n) < n, and M be a monoid with the product and prefix-product
computable by constant-depth circuits.

CFL procedure:
Step 0. We split the input x ∈ Mn iteratively into sub-words. We start with x
as the only sub-word of length n and we divide it into n/g(n) sub-words of size
g(n). We iterate and further divide each sub-word of length l > 1 into l/g(l) sub-
words of length g(l). Hence, for i = 0, . . . , g∗(n) we obtain n/g(i)(n) sub-words
of length g(i)(n).
Step 1. For every sub-word obtained in Step 0 we compute its product over M .
Step 2. Using results from Step 1 and existing circuits for prefix-product, for
each sub-word of length l > 1 from Step 0 we compute the prefix-product of the
products of its l/g(l) sub-words.
Step 3. For each i = 1, . . . , n, we compute the product of x1 · · · xi by computing
the product of g∗(n) values of the appropriate prefixes obtained in Step 2.

Let us analyze the circuit obtained from the above procedure. Assume that we
have existing circuits of size s(n) and constant depth ds for computing product
over M and of size p(n) and constant depth dp for computing prefix-product
over M . Then the above procedure gives a circuits of depth 2ds + dp and size

g∗(n)∑

i=0

n

g(i)(n)
· s(g(i)(n)) +

g∗(n)−1∑

i=0

n

g(i)(n)
· p

(
g(i)(n)

g(i+1)(n)

)
+ n · s(g∗(n)).

We demonstrate the use of the above procedure. Let M be a monoid such that
the product over M is computable by polynomial size constant-depth circuits.
Let ε > 0. Proposition 2 gives us circuits of size s(n) = O(n1+(ε/2)) for computing
the product over M . By choosing g(n) = n/2 we obtain the following proposition.

Proposition 4. Let L be a regular language computable by a polynomial-size
constant-depth circuits over arbitrary gates. If the product over its syntactic
monoid M(L) is computable by similar circuits then for every ε > 0, there is
a constant-depth circuit family of size O(n1+ε) that computes the prefix-product
over the monoid M(L).

Proposition 4 states clearly something non-trivial as a näıve construction of a
prefix-product circuit would provide at least quadratic size circuits. By setting
g(n) = g2

i (n) we obtain the following key lemma from the CFL procedure.

Lemma 1. Let gi(n) be as in Theorem 7. Let M be a monoid. If there is a
size O(n · gi+1(n)) depth ds circuit family for computing product over M and

Circuit Complexity of Regular Languages 433

a size O(n · g2
i (n)) depth dp circuit family for computing prefix-product over M

then there is a size O(n · g2
i+1(n)) depth 2ds + dp circuit family for computing

prefix-product over M .

It is trivial that if we can compute the prefix-product over some monoid M by
O(n · g2

i (n)) circuits then we can also compute the product by the same size
circuits. The above lemma provides essentially the other direction, i.e., building
efficient circuits for the prefix-product from circuits for the product.

These two claims are sufficient to prove Theorem 9. We omit the proof due
to space limitations. The proof can be found in the full version of this paper.

5 Wires vs. Gates

It is a natural question whether all languages that are in AC0 and ACC0 could be
computed by AC0 and ACC0 circuits, resp., of linear size. This is not known, yet:

Problem 1. Is every regular language in AC0 or ACC0 computable by linear-size
AC0 or ACC0 circuits?

One would be tempted to conjecture that this must be the case as O(n · gd(n))
may not look like a very natural bound. However, as we shall see further such an
intuition fails when considering the number of wires in a circuit. As we mentioned
earlier, Chandra et al. in fact proved Theorem 3 in terms of wires instead of
gates. A close inspection of our arguments in the previous section reveals that
our Theorems 8 and 9 also hold in terms of wires. Hence we obtain:

Theorem 10. Let L be a regular language, d > 0 be an integer and functions
gd be as in Theorem 7.

– If L is in AC0 then it is computable by AC0 circuits with O(ng2
d(n)) wires.

– If L is in ACC0 then it is computable by ACC0 circuits with O(ng2
d(n)) wires.

Interestingly enough the wire variant of Problem 1 was answered negatively:

Theorem 11 ([8]). There is a regular language in AC0 that requires AC0 and
ACC0 circuits of depth O(d) to have Ω(n · gd(n)) wires.

The language from the theorem is the simple language U = c∗(ac∗bc∗)∗. Al-
though we have described it by a regular expression using the star-operation
it is indeed in AC0. What is really interesting about this language is that it is
computable by ACC0 circuits using a linear number of gates.

Theorem 12 ([8]). The class of regular languages computable by ACC0 circuits
using linear number of wires is a proper subclass of the languages computable by
ACC0 circuits using linear number of gates.

It is not known however whether the same is true for AC0.

Problem 2. Are the classes of regular languages computable by AC0 circuits
using linear number of gates and liner number of wires different?

434 M. Koucký

[8] provides a precise characterization of regular languages with neutral letter
that are computable by AC0 and ACC0 circuits using linear number of wires.

Theorem 13 ([8]). Let L be a regular language with a neutral letter.

– L is computable by AC0 circuits with linear number of wires iff the syntac-
tic monoid M(L) satisfies the identity (xyz)ωy(xyz)ω = (xyz)ω, for every
x, y, z ∈ M(L).

– L is computable by ACC0 circuits with linear number of wires iff the syntactic
monoid M(L) contains only commutative groups and (xy)ω(yx)ω(xy)ω =
(xy)ω, for every x, y, z ∈ M(L).

Due to space limitations we omit here several other beautiful characterizations
of the language classes from the previous theorem [8,15,16].

6 Conclusions

We have demonstrated that regular languages are very low on the ladder of
complexity—they are computable by almost linear size circuits of different types.
Still they provide important examples of explicit languages that separate differ-
ent complexity classes. It is not much of an exaggeration to say that the current
state of the art circuit separations are based on regular languages. Regular lan-
guages could still provide enough ammunition to separate say ACC0 from NC1.
Such a separation is currently a major open problem.

Several other questions that may be more tractable remain also open. We
already mentioned the one whether all languages that are in AC0 and ACC0

are computable by linear size constant-depth circuits. The language U defined
in the previous section is particularly interesting as it is the essentially simplest
regular language not known to be computable by linear size AC0 circuits. It is
also closely related to Integer Addition: if two binary represented numbers can
be summed up in AC0 using linear size circuits then U is computable by linear
size circuits as well. We can state the following open problem of wide interest:

Problem 3. What is the size of AC0 and ACC0 circuits computing Integer
Addition?

(Previously an unsupported claim appeared in literature that Integer Addition
can be computed by linear size AC0 circuits [12,7].) If U indeed is computable by
linear size AC0 circuits then it presents an explicit language that separates the
classes of languages computable in AC0 using linear number of gates and using
linear number of wires. Such an explicit language is already known [8] however
that language is not very natural and was constructed explicitly to provide this
separation. If U is not computable by AC0 circuits of linear size then neither is
Integer Addition. We conclude with yet another very interesting problem that
reaches somewhat outside of the realm of regular languages.

Problem 4. What is the number of wires in AC0 and ACC0 circuits computing
Thk, for k ∈ ω(n)?

Circuit Complexity of Regular Languages 435

Acknowledgements

Theorem 9 was obtained jointly with Denis Thérien. I would like to thank him
for allowing me to publish the proof here and for sharing with me his insights
on regular languages. I am grateful to Pascal Tesson and anonymous referees
for useful comments that helped to improve this paper. Partially supported by
grant GA ČR 201/07/P276 and 201/05/0124.

References

1. Barrington, D.A.: Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. Journal of Computer and System Sciences 38(1),
150–164 (1989)

2. Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages
in NC1. Journal of Computer and System Sciences 44(3), 478–499 (1992)

3. Barrington, D.A.M., Thérien, D.: Finite Monoids and the Fine Structure of NC1.
Journal of ACM 35(4), 941–952 (1988)

4. Chandra, A.K., Fortune, S., Lipton, R.J.: Lower bounds for constant depth circuits
for prefix problems. In: Proc. of the 10th ICALP, pp. 109–117 (1983)

5. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative
functions. Journal of Computer and System Sciences 30, 222–234 (1985)

6. Furst, M., Saxe, J., Sipser, M.: Parity, circuits and the polynomial time hierarchy.
Mathematical Systems Theory 17, 13–27 (1984)

7. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity.
In: Proc. of the 28th STOC, pp. 30–36 (1996)

8. Koucký, M., Pudlák, P., Thérien, D.: Bounded-depth circuits: Separating wires
from gates. In: Proc. of the 37th STOC, pp. 257–265 (2005)

9. McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press, Cam-
bridge (1971)

10. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Chap. 10
in Handbook of language theory, vol. I, pp. 679–746. Springer, Heidelberg (1997)

11. Pudlák, P.: Communication in bounded depth circuits. Combinatorica 14(2), 203–
216 (1994)

12. Ragde, P., Wigderson, A.: Linear-size constant-depth polylog-threshold circuits.
Information Processing Letters 39, 143–146 (1991)

13. Schwentick, T., Thérien, D., Vollmer, H.: Partially ordered two-way automata: a
new characterization of DA. In: Proc. of DLT, pp. 242–253 (2001)

14. Straubing, H.: Families of recognizable sets corresponding to certain varieties of
finite monoids. Journal of Pure. and Applied Algebra 15(3), 305–318 (1979)

15. Tesson, P., Thérien, D.: Restricted Two-Variable Sentences, Circuits and Commu-
nication Complexity. In: Proc. of ICALP, pp. 526–538 (2005)

16. Tesson, P., Thérien, D.: Bridges between algebraic automata theory and complexity
theory. The Complexity Column, Bull. EATCS 88, 37–64 (2006)

17. Thérien, D.: Classification of Finite Monoids: the Language Approach. Theoretical
Computer Science 14, 195–208 (1981)

18. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. In: Texts
in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (1999)

	Circuit Complexity of Regular Languages
	Introduction
	Preliminaries on Monoids
	Boolean Circuits

	Mapping the Landscape
	Circuit Size of Regular Languages
	Wires vs. Gates
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

