
Confluence of Cut-Elimination Procedures
for the Intuitionistic Sequent Calculus

Kentaro Kikuchi

RIEC, Tohoku University
Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

kentaro@nue.riec.tohoku.ac.jp

Abstract. We prove confluence of two cut-elimination procedures for
the implicational fragment of a standard intuitionistic sequent calculus.
One of the cut-elimination procedures uses global proof transformations
while the other consists of local ones. Both of them include permutation
of cuts to simulate β-reduction in an isomorphic image of the λ-calculus.
We establish the confluence properties through a conservativity result on
the cut-elimination procedures.

Keywords: Sequent calculus, Cut-elimination, Confluence, λ-calculus,
Explicit substitution.

1 Introduction

Gentzen’s cut-elimination theorem [4] has long been a great influence on logic
and theoretical computer science. Recent development of structural proof theory
is revealing the computational aspect of cut-elimination procedures in the same
sense that proof transformations in natural deduction play through the Curry-
Howard correspondence [7]. In [8], the author identified a subset of proofs in a
standard sequent calculus that correspond to simply typed λ-terms, and defined
a reduction relation on those proofs that precisely corresponds to β-reduction
of the simply typed λ-calculus. Since the reduction relation is simulated by a
local-step cut-elimination procedure, the system of proof terms for the sequent
calculus can be considered as a syntactical extension of the λ-calculus including
reductions. It is worth noticing that the correspondence holds also for the type-
free case, so the reduction system in [8] can simulate the type-free λ-calculus,
which means that it is strong enough to represent all computations.

In this paper, we study confluence of a cut-elimination procedure based on
the one introduced in [8]. Since the reduction system in [8] is not confluent,
we modify one of the reduction rules to a more restricted form. The resulting
system is still strong enough to simulate β-reduction in the isomorphic image
of the λ-calculus. We also consider another cut-elimination procedure which
includes global proof transformations in the style of [2]. The reduction system
representing the cut-elimination procedure is similar to one considered in [3],
which uses meta-operations like meta-substitution in the λ-calculus.

It is well-known that a local-step cut-elimination procedure has a similarity
to explicit substitution calculi. Our proof method is essentially the one often

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 398–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Confluence of Cut-Elimination Procedures 399

used in the field of explicit substitutions (see, e.g. [1]), called the interpretation
method [6]. This method projects reduction steps with explicit substitutions
onto those using meta-substitution, and reduces the confluence problem of an
explicit substitution calculus to that of the original λ-calculus. To apply this
method to the case of a cut-elimination procedure, we need to find an appropri-
ate reduction using meta-operations. Although meta-operations are used in the
reduction system for the global cut-elimination procedure mentioned above, it
turns out that the system is not appropriate for a target calculus of the method
because proving confluence of it has a delicate matter that is not present in the
case of the usual λ-calculus. So we define another reduction relation on a certain
class of proof terms, and first prove its confluence by the method of parallel
reduction [10]. Confluence of the two cut-elimination procedures is inferred from
confluence of this reduction by the interpretation method.

Danos et al. [2] proved confluence of their cut-elimination procedures with
global proof transformations, depending on confluence of proof nets [5]. In this
paper, we give a direct proof of confluence of a similar cut-elimination proce-
dure, using proof terms and meta-operations on them. Our method works also
for cut-elimination procedures consisting of local proof transformations and for
underlying untyped calculi allowing non-terminating computations.

The paper is organized as follows. In Section 2 we introduce sequent calculus
and cut-elimination procedures. In Section 3 we study a subcalculus and meta-
operations from the reduction systems. In Section 4 we define another reduction
relation and prove its confluence. In Section 5 we prove confluence of the cut-
elimination procedures. In Section 6 we conclude by suggestions for future work.

To save space we omit details of proofs, but a full version with all details is
available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 Sequent Calculus and Cut-Elimination Procedures

In this section we introduce a term notation for proofs in a standard sequent
calculus for intuitionistic implicational logic, following [8]. Our cut-elimination
procedures are represented as reduction rules for those terms.

First, the set of raw terms for sequent proofs is defined by the grammar:
t ::= x | λx.t | 〈xt/x〉t | [t/x]t where x ranges over a denumerable set of variables.
〈 / 〉 and [/] are function symbols like explicit substitutions and not meta-
substitution ([/] is called the cut-constructor). We use letters x, y, z, w for
variables and t, s, r, u for terms. The notions of free and bound variables are
defined as usual, with an additional clause that the variable x in 〈ys/x〉t or
[s/x]t binds the free occurrences of x in t. The set of free variables of a term
t is denoted by FV (t). We often use the notation 〈xs/y〉t to denote 〈xs/y〉t
if x /∈ FV (s) ∪ FV (t). The symbol ≡ denotes syntactical equality modulo α-
conversion; so for example, 〈zr/x〉〈xs/y〉t ≡ 〈zr/w〉〈ws/y〉t.

The term assignment for sequent proofs of intuitionistic implicational logic is
given in Table 1. We define a context, ranged over by Γ , as a finite set of pairs
{x1 : A1, . . . , xn : An} where the variables are pairwise distinct. The context

400 K. Kikuchi

Table 1. Sequent calculus and local cut-elimination

Ax
Γ, x : A � x : A

L ⊃ Γ � s : A Γ, y : B � t : C

Γ,x : A ⊃ B � 〈xs/y〉t : C
y /∈ Γ

R ⊃ Γ, x : A � t : B

Γ � λx.t : A ⊃ B
x /∈ Γ Cut

Γ � s : A Γ, x : A � t : B

Γ � [s/x]t : B
x /∈ Γ

〈xs/y〉t is used for 〈xs/y〉t when x /∈ FV (s) ∪ FV (t). In that case we assume x /∈ Γ
in the rule L ⊃.

(1) [t/x]y → y (y 	≡ x)

(2) [t/x]x → t

(3) [s/x](λy.t) → λy.[s/x]t

(4) [r/z]〈xs/y〉t → 〈x([r/z]s)/y〉[r/z]t (x 	≡ z)

(5) [r/x]〈xs/y〉t → [r/x]〈x([r/x]s)/y〉[r/x]t if x ∈ FV (s) ∪ FV (t)

(6) [z/x]〈xs/y〉t → 〈zs/y〉t
(7′) [〈xs/y〉t/z]〈zs′/w〉t′ → 〈xs/y〉[t/z]〈zs′/w〉t′

(Beta) [λz.r/x]〈xs/y〉t → [[s/z]r/y]t

(Perm1) [[r/x]〈xs/y〉t/z]〈zs′/w〉t′ → [r/x][〈xs/y〉t/z]〈zs′/w〉t′

(Perm2) [u/w][λz.r/x]〈xs/y〉t → [[u/w](λz.r)/x][u/w]〈xs/y〉t

Γ, x : A denotes the union Γ ∪{x : A}, and x /∈ Γ means that x does not appear
in Γ . For precise representation of proofs by terms, we should specify formulas
on binders, but we will omit them for brevity. If x /∈ FV (s) ∪FV (t) in the term
〈xs/y〉t, we assume x /∈ Γ in the rule L ⊃, which means the formula A ⊃ B is
introduced without implicit contraction.

The reduction rules in Table 1 define a cut-elimination procedure consisting
of local proof transformations. The reduction relation →cut is defined by the
contextual closures of these reduction rules. We use +→cut for its transitive clo-
sure, and ∗→cut for its reflexive transitive closure. These kinds of notations are
also used for the notions of other reductions in this paper.

The reduction system without the rule (Beta) is denoted by x. This subcal-
culus plays an important role in this paper and is studied in detail in Section 3.

The reduction rules (1) through (5) correspond to cut-elimination steps that
permute a cut upwards through its right subproof. The rules (6) and (7′) cor-
respond to steps permuting a cut upwards through its left subproof. The rule
(Beta) corresponds to the key-case which breaks a cut on an implication into
two cuts on its subformulas. The rules (Perm1) and (Perm2) permute two cuts

Confluence of Cut-Elimination Procedures 401

Table 2. Global cut-elimination

(Beta) [λz.r/x]〈xs/y〉t → [[s/z]r/y]t
(left) [u/x]〈xs/y〉t → 〈{{u}}s/y〉t if u is not of the form λz.r

(right) [u/x]r → {u/x}r if r is not of the form 〈xs/y〉t

where { / } and 〈{{ }} / 〉 are the meta-operations defined as follows:

{u/x}y =def y (y 	≡ x)
{u/x}x =def u

{u/x}(λy.t) =def λy.{u/x}t

{u/x}〈zs/y〉t =def 〈z({u/x}s)/y〉{u/x}t (z 	≡ x)
{u/x}〈xs/y〉t =def [u/x]〈x({u/x}s)/y〉{u/x}t

{u/x}[s/y]t =def [{u/x}s/y]{u/x}t

〈{{z}}s/y〉t =def 〈zs/y〉t
〈{{λz.r}}s/y〉t =def [λz.r/x]〈xs/y〉t

〈{{〈zs′/w〉r}}s/y〉t =def 〈zs′/w〉〈{{r}}s/y〉t
〈{{[s′/w]r}}s/y〉t =def [s′/w]〈{{r}}s/y〉t

with some restrictions. In (Perm1), the left rule over the lower cut is another cut,
and the right rules over both cuts must be L ⊃ that introduces the cut-formula
without implicit contraction. In (Perm2), the right rule over the lower cut is
another cut, which must construct a proof corresponding to a redex of the rule
(Beta).

The original cut-elimination procedure in [8] uses the following rule (7) instead
of (7′):

(7) [〈xs/y〉t/z]r → 〈xs/y〉[t/z]r

This rule makes the cut-elimination procedure non-confluent (e.g., the critical
pair w ← [〈xs/y〉t/z]w → 〈xs/y〉[t/z]w is not joinable). For a confluent cut-
elimination procedure, it is therefore necessary to restrict reductions. The rule
(7′) restricts the rule (7) so that the right rule over the cut must be L ⊃ that
introduces the cut-formula without implicit contraction. As shown in [8], this
cut-elimination procedure is still strong enough to simulate β-reduction in the
isomorphic image of the λ-calculus.

Table 2 presents another cut-elimination procedure which includes global
proof transformations. The cut-elimination procedure is implemented by reduc-
tion rules that use meta-operations { / } and 〈{{ }} / 〉 , analogously to proof
transformations in natural deduction. The operation 〈{{ }} / 〉 corresponds to
the cut-elimination process where the right rule over the cut is L ⊃ introducing
the cut-formula without implicit contraction, and the cut is permuted upwards
through its left subproof. Note that the conditions of (left) and (right) make the
cut-elimination procedure first permute a cut upwards through its right subproof

402 K. Kikuchi

and then through its left subproof. The reduction relation generated by the rules
(Beta), (left) and (right) is denoted by →gcut.

The following lemma is immediate from the definition of { / } .

Lemma 1. If x /∈ FV (t) then {u/x}t ≡ t.

Proof. By induction on the structure of t.
�

3 The Subcalculus x and Meta-operations

In this section we study properties of the subcalculus x which is the reduction
system in Table 1 without the rule (Beta). In the typed case, it corresponds
to the cut-elimination steps except the key-case, i.e., the case where both left
and right rules over the cut rule introduce the cut-formula. We show that the
subcalculus x is strongly normalizing and confluent, and investigate its relation
to the meta-operations in Table 2.

First we give a technical definition to prove strong normalization of the sub-
calculus x.

Definition 1. A term [s/x]t is called an application term if t is one of the
forms: [u/w]〈xs′/y〉t′, 〈xs′/y〉t′ and [〈xs′/y〉t′/z]〈zs′′/w〉t′′, where x occurs only
once in t.

Lemma 2. If [s/x]t is an application term and t →x t′, then [s/x]t′ is also an
application term.

Proof. It suffices to check each case.
�

Proposition 1. The subcalculus x is strongly normalizing.

Proof. The proof is by interpretation. We define a function h as follows:

h(x) =def 1
h(λx.t) =def h(t) + 1
h(〈xs/y〉t) =def h(s) + h(t) + 1

h([s/x]t) =def

{
(h(s) + 1)2 × h(t) if [s/x]t is an application term
(h(s) + 1)2×h(t) otherwise

and observe that if t →x t′ then h(t) > h(t′). If t ≡ [s/x]r is an application term
and r →x r′, then we use Lemma 2.
�

Proposition 2. The subcalculus x is confluent.

Proof. By Newman’s Lemma, it suffices to check the local confluence. There are
two critical pairs caused by the rules (7′) and (Perm1), and by (Perm1) and
(Perm1), both of which are joinable.
�

As a result, we can define the unique x-normal form of each term.

Confluence of Cut-Elimination Procedures 403

Definition 2. The unique x-normal form of a term t is denoted by x(t).

A term in which every cut-constructor forms a redex of the rule (Beta) is called
a Beta-term. The relation between Beta-terms and x-normal forms is as follows.

Proposition 3. t is a Beta-term if and only if t is in x-normal form.

Proof. The only if part is by induction on the structure of Beta-terms. We prove
the if part by induction on the structure of t. Suppose that t is in x-normal form.
Then by the induction hypothesis, all subterms of t are Beta-terms. Now, if t is
not a Beta-term then t is of the form [u/x]r(�≡ [λz.r′/x]〈xs/y〉t′) where u, r are
Beta-terms. In this case, t is an x-redex, which is a contradiction.
�
The next lemma shows that the subcalculus x correctly simulates the meta-
operations on Beta-terms.

Lemma 3. Let u, t, s be Beta-terms. Then

1. [u/x]t ∗→x {u/x}t,
2. [u/x]〈xs/y〉t ∗→x 〈{{u}}s/y〉t. Moreover, 〈{{u}}s/y〉t is a Beta-term, hence

x([u/x]〈xs/y〉t) ≡ 〈{{u}}s/y〉t.
Proof.

1. By induction on the structure of t.
2. By induction on the structure of u.
�

Next we show that →gcut is sufficient to reach x-normal forms.

Lemma 4. Let u, s, t be Beta-terms. Then

1. [u/x]〈xs/y〉t ∗→gcut x([u/x]〈xs/y〉t),
2. {u/x}t

∗→gcut x({u/x}t).

Proof.

1. If u ≡ λz.r then [u/x]〈xs/y〉t ≡ x([u/x]〈xs/y〉t). If u is not of the form λz.r,
then [u/x]〈xs/y〉t′ →left 〈{{u}}s/y〉t′ ≡ x([u/x]〈xs/y〉t′) by Lemma 3 (2).

2. By induction on the structure of t.
�
Lemma 5. t

∗→gcut x(t).

Proof. By induction on the structure of t.
�
The following lemmas are essential to the parallel reduction method in the next
section. Note that {u/x}〈{{t}}s/y〉t′ ≡ 〈{{{u/x}t}}s/y〉t′ instead of Lemma 7
does not hold in general; for example, {z/x}〈{{x}}w/y〉w′ ≡ [z/x]〈xw/y〉w′ �≡
〈zw/y〉w′ ≡ 〈{{{z/x}x}}w/y〉w′. This makes it difficult to apply a direct parallel
reduction method to →gcut. So we consider the meta-operation { / } followed
by x-reductions to x-normal forms (i.e., x({ / })), and in the next section we
define another reduction relation that matches such operation.

Lemma 6. 〈{{〈{{u}}s/y〉t}}s′/y′〉t′ ≡ 〈{{u}}s/y〉〈{{t}}s′/y′〉t′.
Proof. By induction on the structure of u.
�

404 K. Kikuchi

Lemma 7. Let u, t, s, t′ be Beta-terms. Then
x({u/x}〈{{t}}s/y〉t′) ≡ 〈{{x({u/x}t)}}x({u/x}s)/y〉x({u/x}t′).
In particular, if x /∈ FV (s) ∪ FV (t′) then
x({u/x}〈{{t}}s/y〉t′) ≡ 〈{{x({u/x}t)}}s/y〉t′.

Proof. By induction on the structure of t.
�

Lemma 8. Let u, s, t be Beta-terms with y /∈ FV (u). Then
x({u/x}x({s/y}t)) ≡ x({x({u/x}s)/y}x({u/x}t)).

Proof. By induction on the structure of t.
�

4 Confluence of β-Reduction

In this section we introduce another reduction relation on Beta-terms and show
that it is confluent by the parallel reduction method [10]. Confluence of the two
cut-elimination procedures is proved using projections onto this reduction.

The reduction relation →β on Beta-terms is defined by the contextual closure
of the rule:

(β) [λz.r/x]〈xs/y〉t → x({x({s/z}r)/y}t)

This reduction relation is indeed an extension of β-reduction on pure terms (i.e.,
the isomorphic image of λ-terms) in [8].

Proposition 4. Let t, t′ be Beta-terms.

1. If t →β t′ then t
+→cut t′.

2. If t →β t′ then t
+→gcut t′.

Proof. By induction on the reduction relation →β . We treat the case where the
reduction is at the root. Then

[λz.r/x]〈xs/y〉t0 →Beta [[s/z]r/y]t0
∗→x x([x([s/z]r)/y]t0) (∗)
≡ x([x({s/z}r)/y]t0) (by Lemma 3 (1))
≡ x({x({s/z}r)/y}t0) (by Lemma 3 (1))

where the step (∗) can also be established with ∗→gcut by Lemma 5.
�

The parallel reduction ⇒ for →β is defined by the rules in Table 3.

Lemma 9. For every Beta-term t, t ⇒ t.

Proof. By induction on the structure of t.
�

Confluence of Cut-Elimination Procedures 405

Table 3. Parallel reduction

x ⇒ x (pr1)
t ⇒ t′

λx.t ⇒ λx.t′ (pr2)
s ⇒ s′ t ⇒ t′

〈xs/y〉t ⇒ 〈xs′/y〉t′ (pr3)

r ⇒ r′ s ⇒ s′ t ⇒ t′

[λz.r/x]〈xs/y〉t ⇒ [λz.r′/x]〈xs′/y〉t′ (pr4)

r ⇒ r′ s ⇒ s′ t ⇒ t′

[λz.r/x]〈xs/y〉t ⇒ x({x({s′/z}r′)/y}t′)
(pr5)

Lemma 10

1. If t →β t′ then t ⇒ t′.
2. If t ⇒ t′ then t

∗→β t′.
3. If u ⇒ u′, s ⇒ s′ and t ⇒ t′ then 〈{{u}}s/y〉t ⇒ 〈{{u′}}s′/y〉t′.
4. If u ⇒ u′ and t ⇒ t′ then x({u/x}t) ⇒ x({u′/x}t′).

Proof.

1. By induction on the reduction relation →β .
2. By induction on the definition of t ⇒ t′.
3. By induction on the definition of u ⇒ u′.
4. By induction on the definition of t ⇒ t′.
�

Definition 3. For each Beta-term t, the term t� is defined inductively as fol-
lows:

1. x� =def x,
2. (λx.t)� =def λx.t�,
3. (〈xs/y〉t)� =def 〈xs�/y〉t�,
4. ([λz.r/x]〈xs/y〉t)� =def x({x({s�/z}r�)/y}t�).

Lemma 11. If t ⇒ t′ then t′ ⇒ t�.

Proof. By induction on the definition of t ⇒ t′.
�
Lemma 12. If t ⇒ t1 and t ⇒ t2 then there is t′ such that t1 ⇒ t′ and t2 ⇒ t′.

Proof. By Lemma 11.
�
Theorem 1. The reduction relation →β is confluent.

Proof. By Lemmas 10 and 12.
�
Lemma 13. Let u, t be Beta-terms.

1. If u →β u′ then x({u/x}t) ∗→β x({u′/x}t).
2. If t →β t′ then x({u/x}t) ∗→β x({u/x}t′).

Proof. These are derived from Lemmas 9 and 10.
�

406 K. Kikuchi

5 Confluence of Cut-Elimination Procedures

In this section we complete the proofs of confluence of the cut-elimination pro-
cedures. We also establish a conservativity result among the cut-elimination
procedures and β-reduction on Beta-terms.

Lemma 14

1. x(〈{{u}}s/y〉t) ≡ 〈{{x(u)}}x(s)/y〉x(t),
2. x({u/x}t) ≡ x({x(u)/x}x(t)).

Proof.

1. By induction on the structure of u.
2. By induction on the structure of t.
�

The next two lemmas show that the cut-elimination procedures project onto
β-reduction on Beta-terms.

Lemma 15. If t →gcut t′ then x(t) ∗→β x(t′).

Proof. By induction on the reduction relation →gcut.
�

Lemma 16. If t →cut t′ then x(t) ∗→β x(t′).

Proof. If t →x t′ then x(t) ≡ x(t′). So it suffices to show that if t →Beta t′ then
x(t) ∗→β x(t′). This is proved in a similar way to Lemma 15.
�
Now we have a conservativity result among the reductions on Beta-terms.

Theorem 2. For any Beta-terms t, t′, the following are equivalent.

1. t
∗→gcut t′

2. t
∗→cut t′

3. t
∗→β t′

Proof. By Lemmas 15 and 16, and Proposition 4.
�

We are now ready to show that the reduction relations →gcut and →cut are
confluent, using confluence of →β on Beta-terms (Theorem 1). The results also
hold in the typed case, so that confluence of the cut-elimination procedures
follows.

Theorem 3

1. The reduction relation →gcut is confluent.
2. The reduction relation →cut is confluent.

Proof.

1. Suppose that t
∗→gcut t1 and t

∗→gcut t2. Then by Lemma 15, x(t) ∗→β x(ti)
(i = 1, 2), so by confluence of →β, there is a Beta-term t′ such that x(ti)

∗→β

t′ (i = 1, 2). Since x(ti)
∗→gcut t′ by Theorem 2 and ti

∗→gcut x(ti) by Lemma
5, we have ti

∗→gcut t′ (i = 1, 2).
2. Similar, using Lemma 16 instead of Lemma 15.
�

Confluence of Cut-Elimination Procedures 407

6 Conclusion

We have proved confluence of global and local cut-elimination procedures, using
proof terms for a standard sequent calculus of intuitionistic logic. For the inter-
pretation method to work, we have introduced β-reduction on Beta-terms, and
proved its confluence by the method of parallel reduction. Then confluence of
the two cut-elimination procedures has been obtained through projections onto
the β-reduction. Additionally, we have established a conservativity result among
the cut-elimination procedures and the β-reduction. Note that our proofs are
also effective in the type-free case allowing non-terminating computations.

The problem on substitution lemmas (cf. the remark before Lemma 6) was
also pointed out in [11, page 136] for the case of the classical sequent calculus.
In future work, we will investigate the relation between their observations and
ours, and develop proofs of confluence for some cut-elimination procedures in
the classical sequent calculus.

Acknowledgements. This work was inspired by Stéphane Lengrand’s conjec-
tures on confluence of cut-elimination procedures that simulate β-reduction. The
work was partially supported by the Japanese Ministry of Education, Culture,
Sports, Science and Technology, Grant-in-Aid for Young Scientists (B) 17700003.

References

1. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization.
Theoretical Computer Science 211, 375–395 (1999)

2. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic.
The Journal of Symbolic Logic 62, 755–807 (1997)

3. Esṕırito Santo, J.: Revisiting the correspondence between cut elimination and nor-
malisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

4. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift, 39: pp. 176–210, pp. 405–431, English translation in [9 pp. 68–131]
(1935)

5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
6. Hardin, T.: Résultats de confluence pour les règles fortes de la logique combinatoire

catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris
VII (1987)

7. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pp. 479–490. Academic Press, San Diego (1980)

8. Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic se-
quent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 120–134. Springer, Heidelberg (2006)

9. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland (1969)
10. Takahashi, M.: Parallel reductions in λ-calculus. Information and Computa-

tion 118, 120–127 (1995)
11. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical

logic. Fundamenta Informaticae 45, 123–155 (2001)

	Confluence of Cut-Elimination Procedures for the Intuitionistic Sequent Calculus
	Introduction
	Sequent Calculus and Cut-Elimination Procedures
	The Subcalculus x and Meta-operations
	Confluence of $\bm{\beta}$-Reduction
	Confluence of Cut-Elimination Procedures
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

