
Some Notes on Degree Spectra of the Structures

Iskander Kalimullin

Kazan State University, Kazan, 420008, Kremlevskaya str. 18, Russia
Iskander.Kalimullin@ksu.ru

Abstract. In the paper the problem of existence of an algebraic struc-
ture with the degree spectra {x : x �≤ b} is studied for arbitrary degree b.

1 Restrictions on the Degree Spectra

A representation of a countable algebraic structure A is any isomorphic copy
of A with the universe, which is a subset of ω (the set of natural numbers
with zero). Under degree spectrum Sp (A) of a countable algebraic structure
A we understand the collection of Turing degrees of atomic diagrams of all
representations of A.

The following well-known result presents the first restriction on possible degree
spectra.

Theorem 1 (Knight [8]). Let A be a countable structure in a finite language.
Then precisely one of the following two statements holds:

1. For any two Turing degrees c ≤ d, if c ∈ Sp (A), then also d ∈ Sp (A) (i.e.,
the degree spectrum is closed upwards).

2. Sp (A) = {0}. (The structures with this property is called trivial).

Each finite structure is an obvious example of a trivial structure, but there are
also infinite trivial structures, such as the infinite complete graph.

In this paper we will consider only the nontrivial countable structures in finite
languages. Theorem 1 shows that for nontrivial structures the degree spectrum
is simply a collection of all degrees x such that the structure is x-computable.

One of important and interesting area of studying non-computable structures
is to describe which collections of degrees closed upward are realizable as a
degree spectra of structures (or, of some special kind of structures such as linear
orderings, Boolean algebras, groups, etc.). It is easy to check that the class of
such collections is closed under intersection: for any structures A and B there a
structure C such that Sp (A) ∩ Sp (B) = Sp (C).

There are is a lot of various papers devoted to this direction (see e.g. [1],
[3], [4], [9], [11], [13] etc.). In particular, by [11] for any degree a the collection
{x : x ≥ a} is realizable as spectrum of a structure.

There are also more surprising examples: Slaman [12] and, independently,
Wehner [14], constructed structures with the degree spectrum {x : x > 0}. An
easy relativization shows that for any degree b the collection {x : x > b} is
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also realizable as a spectrum. In the present paper we will try to obtain a more
strong relativization: for a degree b to find a structure with the degree spectrum
{x : x �≤ b}. We will see that for some degrees b this is not possible (Corollaries 4
and 5).

This problem is related to the following question posed by Miller [9]:

Question 1. (Miller). Does for any incomparable degrees a and b there exist a
linear ordering L such that a ∈ Sp (L) and b /∈ Sp (L)?

As it follows from the next theorem the answer on this question is negative.
Hence, there is a degree b such that, at least, the collection {x : x �≤ b} is not
realizable as a spectrum of linear ordering.

Theorem 2 ([7]). For each degree a > 0 there is a degree b incomparable with
a such that b′ ≤ a′ and for any linear ordering L

a ∈ Sp (L) =⇒ b ∈ Sp (L).

Corollary 1. There is a low degree b (i.e., b′ = 0′), such that Sp (L) �= {x :
x �≤ b} for any linear ordering L.

Note that, in comparison with the linear orderings, in the general case (Theo-
rem 7) for any low degree b we have some structure Ab such that Sp (Ab) =
{x �≤ b}.

The proof of Theorem 2 is just a more uniform version of the Richter’s result,
which is about only one ordering:

Theorem 3 (Richter [11]). For every degree a > 0 and any linear ordering L
such that a ∈ Sp (L) there is a degree b such that a �≤ b and b ∈ Sp (L). (And
hence, the collection {x : x ≥ a} is realizable as a degree spectrum of a linear
ordering if and only if a = 0).

Returning to algebraic structures in general, one can recall the following folklore
result (see e.g. [13]).

Theorem 4. (Folklore). Let A be a nonempty countable collection of degrees
without least element and A be a structure such that A ⊆ Sp (A). Then there is
a degree b such that a �≤ b for all a ∈ A, and b ∈ Sp (A).

Corollary 2. (Folklore). If A is a nonempty countable collection of degrees
without least element, then the collection ∪a∈A{x : x ≥ a} is not realizable
as a spectrum of an algebraic structure.

Corollary 3. (Folklore). If a0 and a1 are incomparable, then the collection {x :
x ≥ a0} ∪ {x : x ≥ a1} is not realizable as a spectrum of an algebraic structure.

For Theorem 4 the same uniformization is also possible:
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Theorem 5 ([7]). Let A be a nonempty countable collection of degrees without
least element. Then there is a degree b such that a �≤ b for all a ∈ A, and for
any algebraic structure A

A ⊆ Sp (A) =⇒ b ∈ Sp (A).

Applying the last theorem with A = {a0, a1} for a pair of incomparable degrees
a0 and a1, we get following

Corollary 4. There is a degree b, such that Sp (A) �= {x : x �≤ b} for any
algebraic structure A.

The construction of the degree b in the proof of the Theorem 5 essentially uses
a list of all structures (up to isomorphism) which are computable relative to any
element of A. By this reason, it is very difficult to give an upper bound for the
degree b from Corollary 4.

The following result is more weak than Theorem 5, but it has more construc-
tive proof. This allows to bound the degree b by the double-jump.

Theorem 6 ([7]). For any degree a0 > 0 there are degrees a1 ≤ a′′
0 and b ≤ a′′

0
such that a0 �≤ b, a1 �≤ b, and for any algebraic structure A

{a0,a1} ⊆ Sp (A) =⇒ b ∈ Sp (A).

Corollary 5. There is a degree b ≤ 0′′, such that Sp (A) �= {x : x �≤ b} for
any algebraic structure A.

An essential idea of the proof of Theorem 6 is to use the following not difficult
lemma:

Lemma. For any set A there is a noncomputable set A1 ≤T A′′, and there is a
partially A′′-computable function θ such that for any e ∈ ω

WA
e is c.e. in A1 ⇐⇒ θ(e) ↓ ⇐⇒ WA

e = Wθ(e).

Here WA
e is the standard numbering of all A-c.e. sets. In particular, the condition

above is an effective version of deg(A) ∩ deg(A1) = 0.

In fact, the degree a1 in Theorem 6 is the degree of the set A1 from the lemma
applied with A ∈ a0. Such set A1 allows to bound existential types of structures
A such that {a0,a1} ⊆ Sp (A): they must be c.e. and θ gives their c.e. indices.

2 The Structures with the Degree Spectra {x : x �≤ b}

In spite of Corollaries 4 and 5 there are a lot of nonzero degrees b such that the
collection {x : x �≤ b} is a degree spectrum of a structure. Moreover, we can
build such structures for any low degree b.
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Theorem 7 ([5]). For any low degree b there is a structure A such that Sp (A)=
{x : x �≤ b}.

The proof of this theorem is based on the same ideas as the proof of Wehner’s
result [14] on the structure with the degree spectrum Sp (A) = {x : x > 0}.

Namely, we first fix some effective coding S �→ Γ (S) of countable families S
of subsets of ω into a irreflexive symmetric graphs Γ (S) (see [3], [10]), such that
for any degree x

x ∈ Sp (Γ (S)) ⇐⇒ S is uniformly c.e. in x.

For example, we can define Γ (S) as the graph with the vertices A, Bi,j,X (where
i, j ∈ ω, X ∈ S), Ci,j,X (where i ∈ ω, j ∈ X ∈ S) and the edges {A, Bi,0,X}
(where i ∈ ω, X ∈ S), {Bi,j,X , Bi,j+1,X} (where i, j ∈ ω, X ∈ S), {Bi,j,X , Ci,j,X}
(where i ∈ ω, j ∈ X ∈ S).

Then for a low degree b it is sufficient to find a countable family S such that
for all degrees x

S is uniformly c.e. in x ⇐⇒ x �≤ b. (1)

For the case b = 0 Wehner [14], in fact, considered the family

F = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= Wn},

where Wn is the standard numbering of all c.e. sets. By the Recursion Theorem,
we immediately get that F is not uniformly c.e. (otherwise for every n we can
effectively enumerate a set not equal to Wn). Note that, in the original proof
Wehner used a direct diagonalization instead of using the Recursion Theorem. By
this reason his definition is more complicate, but it can be equivalently reduced
to the same form as the family F .

Now to build a family S = FB satisfying the equivalence (1) with b = deg(B),
b′ = 0′, it is sufficient to consider the easy analogue of F :

FB = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= WB
n },

where WB
n is the standard numbering of all B-c.e. sets. To prove that for all x

FB is uniformly c.e. in x ⇐⇒ x �≤ deg(B).

it is necessary to use the fact that, if B′ ≡T ∅′, then the predicate KB
0 (m, n) ⇐⇒

m ∈ WB
n is a Δ0

2-predicate.
By this reason, Theorem 7 can not be extended to non-low degrees b by the

same way. For example, for b = 0′ the predicate K∅′

0 is Σ0
2-complete, although

the theorem can be extended to such b.

Theorem 8 ([6]). For any c.e. degree b there is a structure A such that Sp (A)
= {x : x �≤ b}.

For a c.e. set B the following family S = EB satisfies the equivalence (1) with
b = deg(B):

EB = {{n} ⊕ F : n ∈ ω & F ∈ P & F �= WB
n },



Some Notes on Degree Spectra of the Structures 393

where P is the family of all c.e. set, which are images of injective primitive
recursive functions. Here such P is used because it is an example of sufficiently
rich family which is uniformly c.e. and contains only infinite sets (in contrast
with the infinite computable sets and the infinite c.e. sets).

We finish the section by the following remark. Theorems 7 and 8 give examples
when a nontrivial union of two degree spectra is again a degree spectrum (by
Corollary 3 this is not possible for such unions as {x : x ≥ a0} ∪ {x : x ≥ a1}).
Indeed, it is sufficient to take three different low (or c.e.) degrees a,b, c such
that a ∩ b = c. Then, obviously,

{x : x �≤ a} ∪ {x : x �≤ b} = {x : x �≤ c},

and each of these three collections is a degree spectrum. It follows from the next
section (Corollary 7 and Theorem 11), that if a and b are low then the union
{x : x �≤ a}∪{x : x �≤ b} is a degree spectrum even though a∩b does not exist.

3 Some Other Degree Spectra Derived from the Families

The proof of Theorem 7 is based on the fact, that the predicate “m ∈ WB
n ” is

Δ0
2, if B′ ≡ ∅′. This established the idea to change the numbering εB(n) = WB

n

by an arbitrary numbering ν : ω → 2ω such that the predicate “m ∈ ν(n)” is
Δ0

2, so called a computable numbering of Δ0
2 sets. Let

F(ν) = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= ν(n)},

and hence for the family FB from the previous section we have FB = F(εB).
Note that the class of degree spectra of graphs Γ (F(ν)) is closed under inter-

section. Moreover, it is easy to check, that for any numberings ν, η : ω → 2ω

Sp (Γ (F(ν))) ∩ Sp (Γ (F(η))) = Sp (Γ (F(ν + η))),

where ν + η is the standard sum of numberings: for all n ∈ ω

(ν + η)(2n) = ν(n); (ν + η)(2n + 1) = η(n).

Theorem 9 describes the degree spectra of the graphs Γ (F(ν)), where the
predicate ”m ∈ ν(n)” is Δ0

2.

Theorem 9 ([5]). Let ν be a computable numbering of Δ0
2 sets. Then for a set

X ⊆ ω the following conditions are equivalent:

1. deg(X) ∈ Sp (Γ (F(ν)));
2. there is a computable function f : ω2 → ω such that for all m, n ∈ ω we have

WX
f(n,m) �= ν(n), {k ∈ ω : k < m} ⊆ WX

f(n,m), and WX
f(n,m) is finite;

3. there is a computable function f : ω2 → ω such that for all m, n ∈ ω we have
WX

f(n,m) �= ν(n) and {k ∈ ω : k < m} ⊆ WX
f(n,m).
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As a corollary, we get that for computable numberings ν of Δ0
2 sets degree spectra

of graphs Γ (F(ν)) have the same behavior on non-low degrees.

Corollary 6. If x′ > 0′ and ν is a computable numbering of Δ0
2 sets, then

x ∈ Sp (Γ (F(ν))).

Indeed, if ∅′ <T X ′ then a computable function f , such that

WX
f(n,m) = X ′ ∪ {k ∈ ω : k < m},

satisfies the condition 3 of Theorem 9 (since X ′ /∈ Δ0
2).

For some computable numberings ν of Δ0
2 sets the description of Sp (Γ (F(ν)))

can be made more easy. Namely, we say that a numbering ν is an LR-numbering,
if for some computable functions L, R : ω → ω we have

ν(n) = ν(L(n)) ⊕1 ν(R(n))

for each n ∈ ω, where

X ⊕1 Y = {〈2x, y〉 : 〈x, y〉 ∈ X} ∪ {〈2x + 1, y〉 : 〈x, y〉 ∈ Y }

is the bijection between 2ω × 2ω and 2ω. In fact, for the next theorem no matter
which of X ⊕1 Y or the standard X ⊕ Y = {2x : x ∈ X} ∪ {2x + 1 : x ∈ Y } is
used in the definition of LR-numberings, but we prefer to use ⊕1 instead of ⊕
for the sake of Corollary 7.

Theorem 10 ([5]). Let ν be a computable LR-numbering of Δ0
2 sets. Then for

a degree x the following conditions are equivalent:

1. x ∈ Sp (Γ (F(ν)));
2. the family of all x-c.e. sets is not a subset of the image of ν (i.e. there is an

x-c.e. set Z /∈ {ν(n) : n ∈ ω}).

Note that the numbering ν(n) = WB
n is an LR-numbering for any B ⊆ ω. Thus,

Theorem 10 is a generalization of Theorem 7.
Let X ⊕2 Y be the another bijection between 2ω × 2ω and 2ω:

X ⊕2 Y = {〈x, 2y〉 : 〈x, y〉 ∈ X} ∪ {〈x, 2y + 1〉 : 〈x, y〉 ∈ Y }.

For numberings ν and η define the numbering ν×η as follows: for every n, m ∈ ω

(ν × η)(〈n, m〉) = ν(n) ⊕2 ν(m).

By the obvious identity

(A ⊕1 B) ⊕2 (C ⊕1 D) = (A ⊕2 C) ⊕1 (B ⊕2 D)

it follows, that if ν and η are LR-numberings then ν×η is also an LR-numbering.
Now the next corollary follows immediately:
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Corollary 7. Let ν and η be computable LR-numberings of Δ0
2 sets. Then ν +η

and ν × η are also computable LR-numberings of Δ0
2 sets, and

Sp (Γ (F(ν))) ∩ Sp (Γ (F(η))) = Sp (Γ (F(ν + η))),

Sp (Γ (F(ν))) ∪ Sp (Γ (F(η))) = Sp (Γ (F(ν × η))).

Note that for the LR-numberings εB = WB
n , B′ ≡T ∅′, Corollary 7 can be

strengthen:

Theorem 11 ([5]). If B′ ≡T ∅′, then for any computable numberings ν of Δ0
2

sets
Sp (Γ (F(ν))) ∪ Sp (Γ (F(εB))) = Sp (Γ (F(ν × εB))).

4 Further Questions

The questions from this paragraph are closely related to the results from the
previous three paragraphs. Namely, seeing Theorem 2 it is interesting to find
two different degrees which compute the same (up to isomorphism) collection
of linear orderings. By a result of Knight (see e.g. [1]) this two degrees must be
incomparable.

Question 2. Are there two incomparable degrees a and b such that for any linear
ordering L

a ∈ Sp (L) ⇐⇒ b ∈ Sp (L)?

Also, it is not so clear how to find the degree b in Theorem 5 more effectively.
In particular:

Question 3. Let a0 and a1 be incomparable arithmetical degrees. Is there an
arithmetical degree b such that a0 �≤ b, a1 �≤ b, and for any algebraic structure
A

{a0,a1} ⊆ Sp (A) =⇒ b ∈ Sp (A)?

The related questions are about possible extensions of Thorems 7 and 8:

Question 4. Does for any degree b ≤ 0′ there exist a structure A such that

Sp (A) = {x : x �≤ b}?

Question 5. Is there a structure A such that

Sp (A) = {x : x �≤ 0′′},

or, at least, Sp (A) = {x : x �≤ 0(n)} for some n ≥ 2?
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Finally, Theorem 10 allows for any uniformly Δ0
2 family C, which is closed under

left and right parts of ⊕1 (i.e., if X ⊕1 Y ∈ C then X ∈ C and Y ∈ C), to create
a structure with the degree spectra

S(C) = {x : (∃Z /∈ C)[Z is x-c.e.]}.

For example, consider the family Δ−1
ω of all ω-c.e. sets. Recall, that a set A is

ω-c.e. if there are computable functions f and g such that for all x ∈ ω

A(x) = lims f(x, s) and card {s : f(x, s) �= f(x, s + 1)} < g(x).

Then S(Δ−1
ω ) consists from the degrees of sets X such that the Turing jump X ′ is

not ω-c.e. Note that the condition X ′ ∈ Δ−1
ω is not equivalent to a computability

of X (for example, for the sets constructed for the Original Friedberg-Muchnik
Theorem).

The family Δ−1
ω is the first infinite level of Ershov Hierarchy [2]. The closest

levels are Σ−1
ω and Π−1

ω . Namely, A ∈ Σ−1
ω , if there are a computable function

f and a partially computable fucntion g such that for all x ∈ ω we have A(x) =
lims f(x, s),

x ∈ A =⇒ g(x) is defined, and

g(x) is defined =⇒ card {s : f(x, s) �= f(x, s + 1)} < g(x).

The level Π−1
ω consists from the complements of sets from Σ−1

ω . The families
Σ−1

ω and Π−1
ω are again uniformly Δ0

2 families C, closed under left and right
parts of ⊕1, but it is not clear, are the collections S(Σ−1

ω ) and S(Π−1
ω ) equal to

S(Δ−1
ω ):

Question 6. Is there a set X ⊆ ω such that X ′ ∈ Σ−1
ω − Δ−1

ω ?

Question 7. Is there a set X ⊆ ω such that X ′ ∈ Π−1
ω − Δ−1

ω ?
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