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Abstract. In this paper I describe the general principles of learning
as data compression. I introduce two-part code optimization and ana-
lyze the theoretical background in terms of Kolmogorov complexity. The
good news is that the optimal compression theoretically represents the
optimal interpretation of the data, the bad news is that such an optimal
compression cannot be computed and that an increase in compression
not necessarily implies a better theory. I discuss the application of these
insights to DFA induction.
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1 Learning as Compression

Since the beginning of science in antiquity, the idea that the complexity of the
world can be explained in terms of some simple first principles has fascinated
researchers. In modern methodology of science this notion is studied under vari-
ous guises: Occams razor [7], the minimal description length (MDL) principle [8],
two-part-code optimization [11], learning as data compression [21] etc. Although
there has been some debate about this principle with fierce opponents [7] and
strong defenders [21], until recently the view of learning as data compression
did not seem to have much practical value. Lots of learning algorithms in fact
perform some kind of data compression, but this was not a guiding principle
of their design [9; 20]. Two developments in the last five years have changed
this perspective quite fundamentally : 1) a better understanding of the mathe-
matics behind compression, specifically Kolmogorovs structure function [11; 10]
and 2) the application of existing implementations of compression algorithms to
approximate the ideal (and uncomputable) Kolmogorov complexity as pioneered
by Cilibrasi and Vitanyi [5; 6]. At this moment we have not only a much better
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understanding of the theoretical issues behind data compression, but there is
also a wealth of interesting and successful applications. Due to limited space in
this paper I will restrict myself to a description of the general principles and a
study of the application of MDL to DFA induction [1; 4]. In the tutorial itself I
will also describe a number of other applications (e.g. Normalized Compression
Distance) [5] and I will touch on some philosophical issues: the relation between
data compression, thermodynamics and human cognition [2].

Take a cup of coffee and pour some cream in it (See Figure 1). Take a pic-
ture of it with your digital camera. In the beginning the cream will be just an
uninteresting blob. Stir slowly and make pictures of various stages that have
nice patterns. Continue until the cream has dissolved and your cup has an even
brown color. Drink the coffee, then look at the file size of the different pictures.
If your camera uses an adequate compression algorithm you will find that the
file size has increased up to a certain point and then decreases. The compres-
sion algorithm of your camera reflects the complexity of the data set until the
moment that the complexity has reached a global equilibrium and is beyond its
resolution. In this experiment we have a system that evolves in time, the cup of
coffee, and a data set of observations, the pictures. The crux of this experiment
is that the size of the individual pictures somehow reflects the ‘interestingness’
of the system. In the beginning there is a lot of order in the system. This is not
very interesting. In the end there is an equilibrium that also has little cognitive
appeal.

In general science, in the study of human cognition and even in art we seem to
have an interest in systems that have a complexity in the ‘sweet spot’ between
order and chaos, between boredom and noise. The ‘interestingness’ of these data
sets is somehow related to compressibility. It will prove useful to describe these
compressions in terms of a so-called two-part-code: a description of a general
class of sets, the model code and an element or a set of elements of this set, the
data-to-model-code [11; 10].

Let me give some examples:

– Symmetry. This is one of the most fundamental ordering principles in na-
ture. Most living creatures have symmetry: plants, trees, predator, prey. If
a data set has symmetry it means that we only have to describe half of
it (the data-to-model-code) plus some information about the nature of the
symmetry of constant length (the model-code). In the limit such a data set
can be compressed to at least half its size. In terms of generating languages
symmetry is context free: a symmetric data set can be produced by a sim-
ple memoryless central process. Discovering symmetry in a data set can be
seen as a very simple learning problem. It can easily be discovered in linear
time.

– Repetition. In order to describe a repeating pattern I only have to give
a description of the generating pattern (the data-to-model-code) and some
information about the way the pattern repeats itself (the model-code). Rep-
etition is more complex than symmetry in the sense that it presupposes a
generating process with a memory: in terms of languages repetition is context
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Fig. 1. Facticity scores for mixing black and white paint. The facticity of a data x
is the product of the normalized entropy K(x)/U(x) and the normalized randomness
deficiency (U(x) − K(x))/U(x). Configuration 4 has the best balance between order
and chaos and thus would be the most ‘interesting’ one. The scores have been cal-
culated using JPEG, followed by RAR compression. Maximal entropy U(x) has been
approximated by adding 400 % noise to the images. The standard entropy K(x) is
approximated by the file size after compression.

sensitive. Finding repeating patterns in a data set is also a basic learning
problem that can be solved in time n logn [3].

– Grammar. A corpus of a language could be described in terms of the gram-
mar G (the model-code) of the language and a set of indexes corresponding
to an enumeration of the sentences in the corpus (the data-to-model-code). If
the size of the corpus is large enough in relation to the size of the grammar
G then this description in terms of two will be shorter than an extensional
description of the sentences in the corpus. Finding this description is a well
studied learning problem. If the language is regular then the task of approxi-
mating the smallest DFA consistent with a set of sentences is NP-hard [14; 4].

– Program.V We could ask ourselves, given a certain data set: what would
be the shortest program generating this data set in a certain programming
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language, or, even more general, we could try to find the shortest combi-
nation of a Turing machinenoindent Ti (the model-code) and a program P
(the data-to-model-code). In a sense this would be, from a computational
point of view, the ultimate compression possible and the Turing machine Ti

would be the ultimate ‘explanation’ of the data set. Needless to say that
because of the Halting problem there is no algorithm that will construct this
ultimate compression for us. The problem is undecidable. Still, conditional
to the programming language we choose, the notion of the shortest pro-
gram generating a certain data set is well defined. Kolmogorov complexity
studies these optimal compressions from the perspective of universal Turing
machines [10].

Here I have described four classes of learning problems (varying from very
easy, via NP-hard, to undecidable) as compression problems where the task
is to find a two-part code compression for a data set. Apparently there is a
deep connection between data compression and learning. In this tutorial I will
also describe the theory behind these phenomena and explain how they can be
used to develop algorithms to analyze data sets and understand the way they
work.

2 MDL as Two-Part Code Optimization

It is important to note that two part code optimization is a specific application of
MDL. The majority of work on MDL is closer in spirit to the statistical than to
the Kolmogorov complexity world. Rather than two-part codes, one uses general
universal codes for individual sequences; two-part codes are only a special case.
We give the traditional formulation of MDL [9; 8]:

Definition 1. The Minimum Description Length principle: The best the-
ory to explain a set of data is the one which minimizes the sum of

– the length, in bits, of the description of the theory and
– the length, in bits, of the data when encoded with the help of the theory

Let M ∈ M be a model in a class of models M, and let D be a data set. The
prior probability of a hypothesis or model M is P (M). Probability of the data
D is P (D). Posterior probability of the model given the data is:

P (M |D) =
P (M)P (D|M)

P (D)

The following derivation [9] illustrates the well known equivalence between MDL
and the selection of the Maximum A posteriori hypothesis in the context of Shan-
non’s information theory. Selecting the Maximum A Posteriori hypothesis
(MAP):
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MMAP ≡ argmaxM∈M P (M |D)

= argmaxM∈M (P (M)P (D|M))/P (D)

(since D is constant)

≡ argmaxM∈M (P (M)P (D|M))

≡ argmaxM∈M log P (M) + log P (D|M)

≡ argminM∈M − log P (M) − log P (D|M)

where according to Shannon − log P (M) is the length of the optimal model-code
in bits and − logP (D|M) is the length of the optimal data-to-mode-code in bits.
This implies that the model that is chosen with Bayes’ rule is equal to the model
that MDL would select:

MMAP ≡ MMDL

The formula argminM∈M− logP (M)− logP (D|M) indicates that a model that
generates an optimal data compression (i.e. the shortest code) is also the best
model. This is true even if M does not contain the original intended model as
was proved by [11]. It also suggests that compression algorithms can be used
to approximate an optimal solution in terms of successive steps of incremental
compression of the data set D. This is not true as was shown by [1]. Yet this
illicit use of the principle of MDL is common practice.

In order to understand these results better we must answer two questions 1)
What do we mean by the length of optimal or shortest code and 2) what is
an independent measure of the quality of a model M given a data set D? The
respective answers to these questions are prefix-free Kolomogorov complexity and
randomness deficiency.

2.1 Kolmogorov Complexity

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S. For
example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be
encoded in a ‘theory neutral’ way. Below we will use the natural numbers and
the binary strings interchangeably. In the rest of the paper we will interpret the
set of models M in the following way:

Definition 2. Given the correspondence between natural numbers and binary
strings, M consists of an enumeration of all possible self-delimiting programs
for a preselected arbitrary universal Turing machine U . Let x be an arbitrary bit
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string. The shortest program that produces x on U is x∗ = argminM∈M(U(M) =
x) and the Kolmogorov complexity of x is K(x) = |x∗|. The conditional Kol-
mogorov complexity of a string x given a string y is K(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to be
random if K(x) ≥ |x|.

This makes M one of the most general model classes with a number of very
desirable properties: it is universal since all possible programs are enumerated,
because the programs are self-delimiting we can concatenate programs at will,
in order to create complex objects out of simple ones we can define an a-priori
complexity and probability for binary strings. There are also some less desirable
properties: K(x) cannot be computed (but it can be approximated) and K(x)
is asymptotic, i.e. since it is defined relative to an arbitrary Turing machine U
it makes less sense for objects of a size that is close to the size of the definition
of U . Details can be checked in [10]. We have:

argminM∈M − log P (M) − log P (D|M) =

argminM∈MK(M) + K(D|M) = MMDL (1)

Under this interpretation of M, the length of the optimal code for an object is
equivalent to its Kolmogorov complexity.

In this paper I will often use the notions of typicality and incompressibility
of elements of a set, e.g. in those cases where I state that the vast majority of
elements of a set have a certain quality. This might at first sight sound a bit
inaccurate. To show that this notion actually has an exact definition I give the
following theorem due to Li and Vitányi [10] pg. 109):

Theorem 1. Let c be a positive integer. For each fixed y, every finite set A of
cardinality m has at least m(1 − 2−c) + 1 elements x with C(x|y) ≥ log m − c.

Proof: The number of programs of length less than log m − c is

log m−c−1∑

i=0

2i = 2logm−c − 1

Hence, there are at least m − m2−c + 1 elements in A that have no program of
length less than log m − c.

This shows that in the limit the number of elements of a set that have low
Kolmogorov complexity is a vanishing fraction. In the limit a typical element of
a set is a random element. In general the vast majority of elements of a set is
not compressible. One of the problems with Kolmogorov complexity is that it
specifies the length of a program but tells us nothing about the time complexity
of the computation involved. Therefore Kolmogorov complexity can not be used
directly to prove lower bounds for the time complexity of problems.
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2.2 Randomness Deficiency

It is important to note that objects that are non-random are very rare. To make
this more specific: in the limit the density of compressible strings x in the set
{0, 1}≤k for which we have K(x) < |x| is zero [10]. The overwhelming majority
of strings is random. In different words: an element is typical for a data set if
and only if it is random in this data set. In yet different words: if it has maximal
entropy in the data set. This insight allows us to formulate a theory independent
measure for the quality of models: randomness deficiency.

We start by giving some estimates for upper-bounds of conditional complexity.
Let x ∈ M be a string in a finite model M then

K(x|M) ≤ log |M | + O(1) (2)

i.e. if we know the set M then we only have to specify an index of size log |M |
to identify x in M . Consequently:

K(x) ≤ K(M) + log |M | + O(1) (3)

The factor O(1) is needed for additional information to reconstruct x from M and
the index. Its importance is thus limited for larger data sets. These definitions
motivate the famous Kolmogorov structure function:

hx(α) = min
S

{log |S| : x ∈ S, K(S) ≤ α} (4)

Here α limits the complexity of the model class S that we construct in order to
‘explain’ an object x that is identified by an index in S. Let D ⊆ M be a subset
of a finite model M . We specify d = |D| and m = |M |. Now we have:

K(D|M, d) ≤ log
(

m

d

)
+ O(1) (5)

Here the term
(
m
d

)
specifies the size of the class of possible selections of d elements

out of a set of m elements. The term log
(
m
d

)
gives the length of an index for this

set. If we know M and d then this index allows us to reconstruct D.
A crucial insight is that the inequalities 2 and 5 become ‘close’ to equalities

when respectively x and D are typical for M , i.e. when they are random in M .
This typicality can be interpreted as a measure for the goodness of fit of the
model M . A model M for a data set D is optimal if D is random in M , i.e. the
randomness deficiency of D in M is minimal. The following definitions formulate
this intuition. The randomness deficiency of D in M is defined by:

δ(D|M, d) = log
(

m

d

)
− K(D|M, d), (6)

for D ⊆ M , and ∞ otherwise. If the randomness deficiency is close to 0, then
there are no simple special properties that single D out from the majority of
data samples to be drawn from M .
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The minimal randomness deficiency function is

βx(α) = βD(α) = min
M

{δ(D|M) : M ⊇ D, K(M) ≤ α}, (7)

If the randomness deficiency is minimal then the data set is typical for the
theory and with high probability future data sets will share the same character-
istics, i.e. minimal randomness deficiency is also a good measure for the future
performance of models. For a formal proof of this intuition, see [11].

We now turn our attention to incremental compression. Equation 1 gives
the length of the optimal two-part-code. The length of the two-part-code of an
intermediate model Mi is given by:

Λ(Mi, d) = log
(

mi

d

)
+ K(Mi) ≥ K(D) − O(1) (8)

This equation suggests that the optimal solution for a learning problem can be
approximated using an incremental compression approach. This is indeed what
a lot of learning algorithms seem to be doing: find a lossy compression of the
data set finding regularities. This holds for such diverse approaches as near-
est neighbor search, decision tree induction, induction of association rules and
neural networks. There is a caveat however; [1] have shown that the randomness
deficiency not necessarily decreases with the length of the MDL code, i.e. shorter
code does not always give smaller randomness deficiency, e.g. a better theory.
This leads to the following observations [1]:

– The optimal compression of a data set in terms of model and a data-to-model
code always gives the best model approximation “irrespective of whether the
‘true’ model is in the model class considered or not” [11]1.

– This optimal compression cannot be computed.
– Shorter code does not necessarily mean a better model.

These observations show that the naive use of the MDL principle is quite risky.

3 A Case Study: MDL and DFA Induction

In the domain of machine learning pure applications of MDL are rare, mainly
because of the difficulties one encounters trying to define an adequate model
code and data-to-model code. The field of grammar induction studies a whole
class of algorithms that aims at constructing a grammar by means of incremen-
tal compression of the data set represented as a digraph. This digraph can be
seen as the maximal theory equivalent with the data set. Every word in the data
1 This is true only in this specific computational framework of reference. In a proba-

bilistic context, both for Bayesian and MDL inference, the assumption that the true
model is in the model class considered can sometimes be crucial - this also explains
why in Vapnik-Chervonenkis type approaches, complexity is penalized much more
heavily than in MDL [12]).
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set is represented as a path in the digraph with the symbols either on the edges
or on the nodes. The learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering of the nodes in the
graph. None of these algorithms explicitly makes an explicit estimate of the MDL
code. Instead they use heuristics to guide the model reduction. After a certain
time a proposal for a grammar can be constructed from the current state of the
compressed graph. Examples of such algorithms are SP [23; 22], EMILE [15; 16],
ABL [18], ADIOS [19] and a number of DFA induction algorithms, specifically
evidence driven state merging (EDSM), [17; 24]. In this paragraph we present
a sound theoretical basis to analyze the performance and idiosyncrasies of DFA
induction in an MDL context [4]. We will follow the presentation in [20]. The
general methodology for applying two-part-code optimization to a certain learn-
ing problem is:

– Design an approximation of the optimal model code. Such a model code
should reflect structural changes in the model complexity in an adequate
way and should at the same time be computationally feasible. In this case
we will use a simple count on the nodes and edges.

– Design an approximation of the optimal data-model-code with the same
desiderata, for details see below.

– Select a compression algorithm that is computationally feasible and heuris-
tically adequate. We will use standard evidence driven state merging with
MDL as optimization criterion.

– Define a start state for the learning process. This will be the so-called Max-
imal Canonical Automaton, the graph that exactly generates the data set
from one start state.

– Define an adequate stop condition for the compression process. In this case
we will simply limit the computation time.

Fig. 2. Compressing a DFA (model) by means of state merging, given some set of
positive examples S+
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Fig. 3. Two DFA generating S+. L1 is the shortest model, but L2 generates the shortest
MDL code.

We start with some relevant observations. We will restrict ourselves to lan-
guages in {0.1}∗. The class of DFA is equivalent to the class of regular languages.
We call the set of positive examples D+ and the set of negative examples D−.
The complement of a regular language is a regular language. Consequently the
task of finding an optimal model given D+ is symmetric to the task of finding
an optimal model given D−. The task of finding the minimum DFA consistent
with a set of positive and negative examples is decidable. We can enumerate all
DFA’s according to their size and test them on the data set. Yet this minimum
DFA cannot be approximated within polynomial time [14].

The task of finding the smallest DFA consistent with a set of positive examples
is trivial. This is the universal DFA. Yet the universal DFA will in most cases
have a poor generalization error. MDL is a possible candidate for a solution here.
Suppose that we have a finite positive data set representing an infinite regular
language. The task is then to find a DFA with minimum expected generalization
error over the set of infinite regular languages consistent with D+. MDL in
theory identifies such a DFA.

Definition 3. A partition π of a set X is a set of nonempty subsets of X such
that every element x in X is in exactly one of these subsets. B(s, π) ⊆ X indi-
cates the subset of the partition π of which x is an element.

Definition 4. Let A = (Q, Σ, δ, q0, F ) be a DFA. The quotient automaton A/π
= (Q′, Σ, δ′, B(q0, π), F ′) derived from A on the basis of a partition π of Q is
defined as follows:
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– Q′ = Q/π = {B(q, π)|q ∈ Q},
– F ′ = {B ∈ Q′|B ∩ F �= ∅},
– δ′ : (Q′ × Σ) → 2Q′

: ∀B, B′ ∈ Q′, ∀a ∈ Σ, B′ ∈ δ′(B, a) iff ∃q, q′ ∈ Q, q ∈
B, q′ ∈ B′ and q′ ∈ δ(q, a).

We say that the states in Q that belong to the same block B are merged.

We give without proof:

Lemma 1. If an automaton A/π is derived from an automaton A by means of
a partition π then L(A) ⊆ L(A/π).

The relevance of these definitions for grammar induction lies in the fact that
we can increase or decrease the generality of the automaton and the associated
language inclusion hierarchies by means of splitting and merging states. We now
develop an adequate data to model code based on the idea that a positive data
sample has an entropy in each node of the DFA.

Definition 5. Let A be a DFA. An index set for A is a set that associates a
unique natural number with each string that is accepted by A. The index set
relative to certain data set D ⊆ L(A) is ID = {i|i ∈ N, L(A)(i) ∈ D}. The
initial segment associated with an index set D and L(A) is the set I≤D = {i|i ∈
N, ∃j ∈ ID : j ≥ i}, i.e. the set of all natural numbers that are smaller than or
equal to an index in ID. The maximal entropy of ID in I≤D is log

(|I≤D |
|ID|

)
, where

|I≤D| is a measure for the total number of sentences in the language up to the
sentence in D with the highest index and |ID| is the size of D.

The notion of an initial segment is introduced to make the argument work for
infinite languages. We have K(D|A) ≤ K(ID) + O(1) ≤ log

(|I≤D |
|ID |

)
+ O(1).

Suppose that f is an accepting state of a DFA A, with index set I and that
D ⊆ L(A).

Definition 6. The maximal state entropy of f given D is I≤D,f = log
(|I≤D,f |

|ID,f |
)
,

where I≤D,f and ID,f identify those indexes that are associated with strings that
are accepted in f .

These theoretical definitions can be used to define a nearly optimal data-to-
model code.

Suppose A is a DFA suggested as an explanation for a data set D. A has
i accepting states and j non-accepting states. Since we use both positive and
negative examples A must be functionally complete (i.e. have an outgoing arrow
for each element of the lexicon from each state). Suppose l is the maximal length
of a string in the data set D. D+ is the set of positive examples, D− the set
of negative examples, d+ is the number of positive examples, d− the number
of negative examples. There are 2l+1 − 1 binary strings with length ≤ l. Call
this set N , then n+ is the number of strings accepted by A and n− is the number
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of strings not accepted by A. A partitions N in two sets: N+ and N−. N+ is
partitioned in i subsets by the i accepting states of A and N− is partitioned in j
subsets by the j non-accepting states of A. The correct data-to-model code has
size:

log(
∏

i

(
n+

i

d+
i

)
×

∏

j

(
n−

j

d−j

)
) =

∑

i

(log
(

n+
i

d+
i

)
) +

∑

j

(log
(

n−
j

d−j

)
) (9)

One can read this as follows. The formula specifies an index for the data set
D given the data set N . There are i pieces of code for the positive states, and
j pieces of code for the negative states. If there are states that do not generate
elements for D then their contribution to the length of the code is 0. When
applying this formula to DFA induction one must estimate the values using
the Stirling formula or an integral over log n!2. Remember that from an MDL
perspective we are only interested in the length of the index, not its specific
value. The beautiful thing is that this index can always be used: for positive
examples, for complete examples and even for only negative examples.

We have tried this MDL approach on the problem set of the Abbadingo DFA
inference competition [17]. We were able to solve problems 1, 2, A, B, C, D,
and R. In comparison, standard EDSM can solve all these problems, and also
problems 3, 4, 6, and S. So, indeed, it seems that MDL is not a very reliable
guide for the compression of a DFA. At least, EDSM is better.

4 Conclusion

I have described the general principles behind two-part code optimization. I
have studied MDL in terms of two-part code optimization and randomness de-
ficiency for DFA induction. In this framework we noted that 1) Shorter code
does not necessarily lead to better theories, e.g. the randomness deficiency does
not decrease monotonically with the MDL code, 2) contrary to what is sug-
gested by the results of [13] there is no fundamental difference between positive
and negative data from an MDL perspective, 3) MDL is extremely sensitive to
the correct calculation of code length. Using these ideas we have implemented
a MDL variant of the EDSM algorithm [17]. The results show that although
MDL works well as a global optimization criterion, it falls short of the perfor-
mance of algorithms that evaluate local features of the problem space. MDL
can be described as a global strategy for featureless learning. In the tutorial
I will describe recent developments like normalized compression distance
(NCD) and also present some philosophical reflection on the data compression
and thermodynamics.

2 The formula log
(

n
k

)
can be approximated by: log

(
n
k

)
≈

∫ n

n−k
logx dx −

∫ k

1 logx dx,
which is easy to compute. Already for k = 65 the error is less than 1% and rapidly
decreasing.
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[11] Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model

selection. IEEE Trans. Information Theory 50(12), 3265–3290 (2004)
[12] Grünwald, P.D., Langford, J.: Suboptimal behavior of Bayes and MDL in classi-

fication under misspecification. Machine Learning (2007)
[13] Gold, E.: Mark, Language Identification in the Limit. Information and Con-

trol 10(5), 447–474 (1967)
[14] Pitt, L., Warmuth, M.K.: The Minimum Consistent DFA Problem Cannot be

Approximated within any Polynomial. Journal of the ACM 40(1), 95–142 (1993)
[15] Adriaans, P., Vervoort, M.: The EMILE 4.1 grammar induction toolbox. In: Adri-

aans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484,
pp. 293–295. Springer, Heidelberg (2002)

[16] Vervoort, M.: Games, walks and Grammars, Thesis University of Amsterdam
(2000)

[17] Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
learning competition and a new evidence-driven state merging algorithm. In: Adri-
aans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484,
pp. 1–12. Springer, Heidelberg (2002)

[18] van Zaanen, M., Adriaans, P.: Alignment-Based Learning versus EMILE: A Com-
parison. In: Proceedings of the Belgian-Dutch Conference on Artificial Intelligence
(BNAIC), pp. 315–322. Amsterdam, the Netherlands (2001)

[19] Solan, Z., Horn, D., Ruppin, E., Edelman, S.: Unsupervised learning of natural
languages. PNAS 102(33), 11629–11634 (2005)
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