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Abstract. For a pseudojump operator V X and a Π0
1 class P , we con-

sider properties of the set {V X : X ∈ P}. We show that there always
exists X ∈ P with V X ≤T 0′ and that if P is Medvedev complete,
then there exists X ∈ P with V X ≡T 0′. We examine the consequences
when V X is Turing incomparable with V Y for X �= Y in P and when
W X

e = W Y
e for all X, Y ∈ P . Finally, we give a characterization of the

jump in terms of Π0
1 classes.
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Pseudojump operators have been of great interest in computability theory and
were explicitly introduced by Jockusch and Soare in [7]. If φX

e is the eth partial
computable functional with oracle X , then WX

e = {n : φX
e (n) ↓} and the eth

pseudojump operator Je maps X to X ⊕ WX
e . In particular, the jump operator

J(X) = X ′ = {e : φX
e (e) ↓} is also a pseudojump operator. We will often denote

a pseudojump operator by V and let V X denote the pseudojump of X . Friedberg
[3] constructed a noncomputable c.e. set A such that A′ ≡T 0′. The fundamental
theorem for pseudojumps, from [7], states that for any index e, there exists a
noncomputable c.e. set A such that Je(A) ≡T 0′. This generalizes the result of
Friedberg that A′ ≡T 0′ for some noncomputable c.e. set A. On the other hand,
if V X is obtained from the construction of a lowX set, then (V A)′ = A′, so that
if V A ≡T 0′, then A′ = 0′′. In each of these examples, X <T V X for all X . We
will say that a pseudojump operator V is strongly nontrivial if X <T V X for
all X . In the recent paper [2], it was shown that for any pseudojump operator
V with A <T V A for all c.e. sets A, there exist Turing incomparable c.e. sets A
and B such that V A ≡T V B ≡T 0′.
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The study of pseudojump operators is a natural extension of the study of c.e.
sets and degrees, which are fundamental in computability theory. Another natu-
ral extension is the study of effectively closed sets (Π0

1 classes), which are sets of
reals and play an important role in many areas of computable mathematics. The
degrees of members of Π0

1 classes is of great interest here. For example, every
Π0

1 class Q ⊆ 2N has a member of c.e. degree, but there exist Π0
1 classes with

no computable member. A survey of results on Π0
1 classes may be found in [1].

In this paper, we consider the interaction between pseudojump operators and
Π0

1 classses, in particular how pseudojump operators act on Π0
1 classes. Recent

work of Simpson [8] on the Medvedev degrees of Π0
1 classes has characterized the

complete degrees in several ways. The main result is that if V is a pseudojump
operator and P is a Medvedev complete Π0

1 class, then there exists X ∈ P with
V X ≡T 0′. (It follows that there exist infinitely many such X ∈ P .)

We also give a new characterization of the jump in terms of Π0
1 classes and

consider for a Π0
1 class Q, properties of the set {V X : X ∈ Q}. That is, we

examine the consequences of having WX
e = WY

e for all X ∈ Q and of having
WX

e Turing incomparable with WY
e for all X �= Y in Q.

It is easy to find a nonempty Π0
1 class P and a pseudojump operator V such

that V X �=T 0′ for any X ∈ P . For example, if P contains only computable
elements and V X is lowX , then X ′ ≡ 0′ for all X ∈ P . Our intuition is that if
P is complicated enough, then it should have a member with V X ≡T 0′.

For Π0
1 classes with no computable members, we still might not have a c. e.

member or even a member of c.e. degree with V X ≡T 0′. We can find examples of
such special Π0

1 classes with no members X of c. e. degree such that V X ≡T 0′.
Jockusch [4] constructed a Π0

1 class P with no c. e. members at all. Jockusch
and Soare [5] constructed a Π0

1 class Q such that for any c. e. degree b and any
X ∈ P , if X ≤T b, then b = 0′. Thus if X has c. e. degree and X ∈ Q, then
X ≡T 0′, so that if V X ≤T 0′, then V X ≡T X , so that V fails to be strongly
non-trivial. Recall that the Low Basis Theorem of Jockusch and Soare [6] shows
that any nonempty Π0

1 class P ⊆ 2N must contain a member of low degree. The
previous result implies that this member need not have c.e. degree.

Since V X ≤T X ′ for any set X and any pseudojump operator V , the following
is an immediate corollary of the low basis theorem. We sketch a proof in prepa-
ration for the main theorem. Let K denote the Halting Problem {e : φe(e) ↓}.

Proposition 1. For any pseudojump operator V and any nonempty Π0
1 class

P , there exists X ∈ P with V X ≤T K.

Proof. This is an easy modification of the Low Basis Theorem [6]. Let P = [T ]
and fix e such that V X = WX

e = {m : φX
e (m) ↓}. For each a, define the

computable tree
Ua = {σ ∈ {0, 1}∗ : φσ

e (a) ↑}.

Then [Ua] = {X : φX
e (a) ↑}. Now define a sequence of Π0

1 trees {Sn : n < ω} as
follows. Let S0 = T and for each n, define

Sn+1 =

{
Sn ∩ Un, if Sn ∩ Un is infinite,
Sn, otherwise.
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Now let S = ∩nSn and Q = [S] = ∩n[Sn]. By assumption, P is nonempty so
that T is infinite and it follows from the construction, by induction, that each
Sn is infinite. Thus Q is nonempty.

The construction is computable in K and therefore {n : Sn ∩ Un is infinite}
is computable in K. Now for X ∈ [Sn+1], it is clear that if Sn ∩ Un is infinite,
then n /∈ V X . On the other hand, if Sn ∩ Un is finite, then [Sn] ∩ [Un] = ∅, so
that for X ∈ [Sn], n ∈ V X . This gives a definition of V X using K. Note that for
any X, Y ∈ Q, we have V X = V Y . �


We now turn to the main result. Let Q be the computable Boolean algebra
of clopen sets in {0, 1}N. A clopen set is simply a finite union of intervals. A
Π0

1 class P is said to be productive if there is a computable splitting function
g : N → B such that, for any e, if Pe ∩ P is nonempty, then both Pe ∩ P ∩ g(e)
and Pe ∩ P − g(e) are nonempty. Simpson showed that a Π0

1 class is productive
if and only if it is Medvedev complete. The Medvedev complete classes are the
most difficult in the sense that if Q is Medvedev complete and P is any Π0

1 class,
then there exists a computable map Φ mapping Q into P .

Theorem 1. Let V be a pseudojump operator V and let P be a Medvedev com-
plete Π0

1 class. Then there exists X ∈ P with V X ≡T K.

Proof. Let P = Pc = [T ] be Medvedev complete and let g be a splitting function
for P . We now give a modification of the proof of Proposition 1 above. The idea
is that the Halting Problem K will be coded into V X via a function f : N → Q,
computable in V X , such that

X ∈ f(n) ⇐⇒ n ∈ K.

Fix e such that V X = WX
e and let Ua be defined as above. Now define

the sequences {Rn : n < ω} and {Qn : n < ω} of Π0
1 classes as follows. Let

R0 = P = Pc and let

Rn =

{
Qn ∩ [Un], if Qn ∩ [Un] is nonempty,

Qn, otherwise.

Let Rn = Pr(n). By the construction, Rn is a nonempty subset of P , so that
Rn ∩ g(r(n)) and Rn − g(r(n)) are both nonempty subsets of P . Then define

Qn+1 =

{
Rn ∩ g(r(n)), if n ∈ K,

Rn − g(r(n)), otherwise.

As before, let Q = ∩nQn. It follows by induction that each tree each Qn is
nonempty and hence Q is nonempty. Once again, the construction is computable
in K and it follows as in the proof of Proposition 1 that, for X ∈ Q, V X ≤T K
and that, for any X ∈ Q,

(∗) V X = {n : Qn ∩ [Un] is nonempty}.
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On the other hand, suppose that X ∈ Q and we use V X as an oracle. Note
that X ≤T V X so that we can also use X in our computation from V X . Then we
can recursively compute the function r(n) as follows. Informally, we can compute
Rn using V X and then we can compute Qn+1 using X .

More formally, we may define functions r and q, computable from V X , so that
Rn = Pr(n) and Qn = Pq(n). That is, Q0 = P , so q(0) = c. Given q(n), we have

Pr(n) =

{
Pq(n) ∩ [Un], if n ∈ V X ,

Pq(n), otherwise.

Then we have

Pq(n+1) =

{
Pr(n) ∩ g(r(n)), if X ∈ g(r(n)),
Pr(n) − g(r(n), otherwise.

It follows that the functions q(n) and r(n) are computable from V X . Finally
K ≤T V X since

n ∈ K ⇐⇒ X ∈ g(r(n)).

Note that in fact V X ≡T K for all X ∈ Q.
To obtain infinitely many X with V X ≡T K, note that for any σ such that

P ∩ I(σ) �= ∅, P ∩ I(σ) is also Medvedev complete. This is because the splitting
function for P is easily adapted to a splitting function for P ∩ I(σ). This means
that for every σ such that P ∩ I(σ) �= ∅, there exists X ∈ I(σ) with V X ≡T K.
Thus there are infinitely many such X ∈P. �


Although the class Q constructed in the theorem is not a Π0
1 class, it is a strong

Π0
2 class with the property that {V X : X ∈ Q} is a singleton and this unique

V X is ≤T K. It seems natural to consider the question of a Π0
1 class P where

V X is unique for X ∈ P . A classical result is that if P = {X} itself is a singleton,
then X is computable. By our definition, V X = V Y implies that X = Y , so we
consider just WX

e .

Proposition 2. Let P be a Π0
1 class and suppose that WX

e = WY
e = WP for

all X, Y ∈ P .

(a) The unique WX
e for X ∈ P is a c.e. set.

(b) If X ≤T WX
e for all X, then X ≤T WP , so that P is countable and therefore

has a computable member.
(c) Suppose that X ≤T WX

e for all X and further that WR
e <T K for any

recursive R. Then WP <T K.

Proof. Fix a computable tree T such that P = [T ].

(a) Claim: a ∈ V X ⇐⇒ (∃n)[(∀σ ∈ {0, 1}n ∩ T → a ∈ V σ).

Suppose first that a ∈ V X for all X ∈ P . Then by compactness, there exists
m such that a ∈ V X�m for all X ∈ P . Let S = {σ ∈ {0, 1}m : P ∩ I(σ) �= ∅} =
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{X�m : X ∈ P}. For σ ∈ {0, 1}m − S, T contains only finitely many extensions
of σ. Thus we can find n > m such that τ�m ∈ S for all τ ∈ {0, 1}n ∩ T . This n
satisfies the formula above.

Next suppose that n exists as in the formula. Then for every X ∈ P , a ∈ V X�n

and therefore a ∈ V X .
(b) There can be only countably many X ≤T WP , so it follows from (a) that

P is countable and hence P has a computable member.
(c) Finally, let R be a computable member of P which exists by (b). Then for

any X ∈ P , V X = V R <T K. �


For the other extreme, suppose that V X is Turing incomparable with V Y for
all X �= Y in P . It was also shown in [6] that there exist Π0

1 classes containing
continuum many elements, with each pair Turing incomparable. This will serve
as an example with V X = X .

Of course if V X = X ′, then any Π0
1 class Q must contain X with V X = K and

therefore if nontrivial, Q must contain distinct X, Y with V X ≡T K ≡T V Y .

Proposition 3. Let WX denote either WX
e or X ⊕ WX

e and suppose that P is
an infinite Π0

1 class such that WX and WY are Turing incomparable for any
X, Y ∈ P . Then there is no X ∈ P such that K ≤T WX .

Proof. Suppose by way of contradiction that K ≤T WX for some X ∈ P . Since
P is infinite, there is some Y ∈ P with Y �= X . Let n be the least such that
X(n) �= Y (n) and let Q = P ∩ I(Y �n + 1). By Proposition 1, there exists Z ∈ Q
with WZ ≤T K ≤T V X . �


Finally, we observe that Π0
1 classes may be used to define the jump and also

pseudojumps.

Proposition 4. For any set X, {e : X ∈ Pe} ≡T X ′.

Proof. Let WX = {e : X ∈ Pe}. Then WX ≤T X ′ since

e ∈ WX ⇐⇒ (∀n)X�n /∈ We.

For the completeness, use the s-m-n theorem to define a computable function f
such that

Pf(e) = {X : φX
e (e) ↑}.

Then
e ∈ X ′ ⇐⇒ f(e) /∈ WX

gives a reduction of X ′ to WX . �


One can define a pseudojump using Π0
1 classes as follows. Let πi(P ) be the

projection of P onto the ith coordinate, where πi(X) = Y means that X =
〈X1, X2, . . .〉 and Y = Xi.
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Then let
V X

e = {i : X ∈ πi(Pe)}.

It can be seen that V X
e ≡T X ′ when Pe is a particular Medvedev complete class,

such that πi(P ) runs over all Π0
1 classes. It is an interesting question whether

every pseudojump can be expressed in this form.
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