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Abstract. For a pseudojump operator V= and a IT{ class P, we con-
sider properties of the set {V* : X € P}. We show that there always
exists X € P with VX <7 0’ and that if P is Medvedev complete,
then there exists X € P with VX =1 0. We examine the consequences
when V¥ is Turing incomparable with VY for X # Y in P and when
WX = WY for all X,Y € P. Finally, we give a characterization of the
jump in terms of IT{ classes.
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Pseudojump operators have been of great interest in computability theory and
were explicitly introduced by Jockusch and Soare in [7]. If ¢X is the eth partial
computable functional with oracle X, then WX = {n : ¢X(n) |} and the eth
pseudojump operator .J, maps X to X @ W.X. In particular, the jump operator
J(X)=X"={e:¢X(e) |} is also a pseudojump operator. We will often denote
a pseudojump operator by V and let VX denote the pseudojump of X. Friedberg
[3] constructed a noncomputable c.e. set A such that A’ =r 0’. The fundamental
theorem for pseudojumps, from [7], states that for any index e, there exists a
noncomputable c.e. set A such that J.(A) = 0’. This generalizes the result of
Friedberg that A’ =7 0’ for some noncomputable c.e. set A. On the other hand,
if VX is obtained from the construction of a lowX set, then (V4) = A’, so that
if VA =7 0, then A’ = 0”. In each of these examples, X <7 V¥ for all X. We
will say that a pseudojump operator V is strongly nontrivial if X <r VX for
all X. In the recent paper [2], it was shown that for any pseudojump operator
V with A <7 V4 for all c.e. sets A, there exist Turing incomparable c.e. sets A
and B such that VA =r VE =, 0.
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The study of pseudojump operators is a natural extension of the study of c.e.
sets and degrees, which are fundamental in computability theory. Another natu-
ral extension is the study of effectively closed sets (ITY classes), which are sets of
reals and play an important role in many areas of computable mathematics. The
degrees of members of IT{ classes is of great interest here. For example, every
II? class Q C 2% has a member of c.e. degree, but there exist IT¥ classes with
no computable member. A survey of results on II{ classes may be found in [I].

In this paper, we consider the interaction between pseudojump operators and
IIY classses, in particular how pseudojump operators act on IT{ classes. Recent
work of Simpson [§] on the Medvedev degrees of 1T classes has characterized the
complete degrees in several ways. The main result is that if V' is a pseudojump
operator and P is a Medvedev complete IT{ class, then there exists X € P with
VX =7 0. (It follows that there exist infinitely many such X € P.)

We also give a new characterization of the jump in terms of IT{ classes and
consider for a IT{ class @, properties of the set {VX : X € Q}. That is, we
examine the consequences of having WX = WY for all X € @Q and of having
WX Turing incomparable with WY for all X # Y in Q.

It is easy to find a nonempty II{ class P and a pseudojump operator V such
that VX #£7 0’ for any X € P. For example, if P contains only computable
elements and V¥ is low™, then X’ = 0’ for all X € P. Our intuition is that if
P is complicated enough, then it should have a member with VX =7 0/,

For ITY classes with no computable members, we still might not have a c. e.
member or even a member of c.e. degree with VX =1 0'. We can find examples of
such special I1{ classes with no members X of c. e. degree such that VX =7 0.
Jockusch [] constructed a IT{ class P with no c. e. members at all. Jockusch
and Soare [5] constructed a IT{ class @ such that for any c. e. degree b and any
X € P, if X <7 b, then b =0'. Thus if X has c. e. degree and X € @Q, then
X =7 0, so that if VX < 0’, then VX =1 X, so that V fails to be strongly
non-trivial. Recall that the Low Basis Theorem of Jockusch and Soare [6] shows
that any nonempty 119 class P C 2% must contain a member of low degree. The
previous result implies that this member need not have c.e. degree.

Since VX <7 X' for any set X and any pseudojump operator V, the following
is an immediate corollary of the low basis theorem. We sketch a proof in prepa-
ration for the main theorem. Let K denote the Halting Problem {e : ¢.(e) | }.

Proposition 1. For any pseudojump operator V and any nonempty 119 class
P, there exists X € P with VX <p K.

Proof. This is an easy modification of the Low Basis Theorem [6]. Let P = [T
and fix e such that VX = WX = {m : ¢X(m) |}. For each a, define the
computable tree

Ua = {0 €{0,1}": ¢7(a) T}
Then [U,] = {X : ¢ (a) 1}. Now define a sequence of II trees {S, : n < w} as
follows. Let So = T and for each n, define
S, NU,, if S, NU, is infinite,
Sn+1 - .
S, otherwise.
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Now let S = N,S, and Q = [S] = N,[S,]. By assumption, P is nonempty so
that T is infinite and it follows from the construction, by induction, that each
Sy, is infinite. Thus @ is nonempty.

The construction is computable in K and therefore {n : S,, N U, is infinite}
is computable in K. Now for X € [S,,41], it is clear that if S, N U, is infinite,
then n ¢ VX. On the other hand, if S,, N U, is finite, then [S,] N [U,] = 0, so
that for X € [S,,], n € VX. This gives a definition of V¥ using K. Note that for
any X,Y € Q, we have VX = VY. |

We now turn to the main result. Let Q be the computable Boolean algebra
of clopen sets in {0,1}". A clopen set is simply a finite union of intervals. A
II? class P is said to be productive if there is a computable splitting function
g : N — B such that, for any e, if P. N P is nonempty, then both P. N P N g(e)
and P.N P — g(e) are nonempty. Simpson showed that a IT{ class is productive
if and only if it is Medvedev complete. The Medvedev complete classes are the
most difficult in the sense that if Q is Medvedev complete and P is any I1{ class,
then there exists a computable map @ mapping @ into P.

Theorem 1. Let V' be a pseudojump operator V- and let P be a Medvedev com-
plete IIY class. Then there exists X € P with VX =7 K.

Proof. Let P = P. = [T] be Medvedev complete and let g be a splitting function
for P. We now give a modification of the proof of Proposition [ above. The idea
is that the Halting Problem K will be coded into VX via a function f : N — Q,
computable in VX, such that

X e f(n) <= nekK.

Fix e such that VX = WX and let U, be defined as above. Now define
the sequences {R,, : n < w} and {Q, : n < w} of I1{ classes as follows. Let
Ry =P = P. and let

R QnN U], if Q,N[U,] is nonempty,
" Qn, otherwise.

Let R, = P,(,). By the construction, R, is a nonempty subset of P, so that
R, Ng(r(n)) and R, — g(r(n)) are both nonempty subsets of P. Then define

Oy — R, Ng(r(n)), ifnek,
"R, - g(r(n)), otherwise.

As before, let Q@ = N, Q,. It follows by induction that each tree each @, is
nonempty and hence @ is nonempty. Once again, the construction is computable
in K and it follows as in the proof of Proposition [ that, for X € Q, VX < K
and that, for any X € Q,

(%) VX ={n:Q,N[U,] is nonempty}.
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On the other hand, suppose that X € @ and we use VX as an oracle. Note
that X <p VX so that we can also use X in our computation from VX. Then we
can recursively compute the function r(n) as follows. Informally, we can compute
R,, using VX and then we can compute Q, 1 using X.

More formally, we may define functions r and ¢, computable from VX, so that
R, = P.(ny and Q, = Py(,). That is, Qo = P, so q(0) = c. Given ¢(n), we have

P Pymy N[Uy], ifne VX,
rn) — Py, otherwise.

Then we have

P,

_ {P«n) Ng(r(n)), if X € g(r(n)),
q(n+1)

Prny —g(r(n), otherwise.

It follows that the functions ¢(n) and r(n) are computable from VX. Finally
K <7 VX since
neK < X €g(r(n)).

Note that in fact VX =¢ K for all X € Q.

To obtain infinitely many X with VX =4 K, note that for any o such that
PnlI(o)#0, PNI(o) is also Medvedev complete. This is because the splitting
function for P is easily adapted to a splitting function for P N I(o). This means
that for every o such that PN I(o) # 0, there exists X € I(o) with VX =1 K.
Thus there are infinitely many such X €P. O

Although the class @ constructed in the theorem is not a II{ class, it is a strong
II9 class with the property that {VX : X € Q} is a singleton and this unique
VX is <p K. It seems natural to consider the question of a IT{ class P where
VX is unique for X € P. A classical result is that if P = { X} itself is a singleton,
then X is computable. By our definition, VX = VY implies that X =Y, so we
consider just W.X.

Proposition 2. Let P be a IIY class and suppose that WX = WY = Wp for
all X, Y € P.

(a) The unique WX for X € P is a c.e. set.

(b) If X <p WZX for all X, then X <7 Wp, so that P is countable and therefore
has a computable member.

(c) Suppose that X <7 WX for all X and further that WE <1 K for any
recursive R. Then Wp <p K.

Proof. Fix a computable tree T such that P = [T7].
(a) Claim: a € VX «= (In)[(Vo € {0,1}"NT — a€Ve).

Suppose first that a € VX for all X € P. Then by compactness, there exists
m such that a € VX" for all X € P. Let S = {o € {0,1} : PN I(0) # 0} =
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{X[m:X € P}. For 0 € {0,1}" — S, T contains only finitely many extensions
of 0. Thus we can find n > m such that 7[m € S for all 7 € {0,1}" NT. This n
satisfies the formula above.

Next suppose that n exists as in the formula. Then for every X € P, a € VX"
and therefore a € VX,

(b) There can be only countably many X <7 Wp, so it follows from (a) that
P is countable and hence P has a computable member.

(¢) Finally, let R be a computable member of P which exists by (b). Then for
any X € P, VX =V <1 K. g

For the other extreme, suppose that VX is Turing incomparable with VY for
all X # Y in P. It was also shown in [6] that there exist IT{ classes containing
continuum many elements, with each pair Turing incomparable. This will serve
as an example with VX = X,

Of course if VX = X’ then any IT{ class Q must contain X with VX = K and
therefore if nontrivial, @ must contain distinct X,Y with VX =7 K =7 VY.

Proposition 3. Let WX denote either WX or X @ WX and suppose that P is
an infinite I1Y class such that W and WY are Turing incomparable for any
X,Y € P. Then there is no X € P such that K <p WX.

Proof. Suppose by way of contradiction that K <7 W¥ for some X € P. Since
P is infinite, there is some Y € P with Y # X. Let n be the least such that
X(n) #Y(n) and let @ = PNI(Y[n+ 1). By Proposition[I] there exists Z € Q
with W2 <y K <p VX, O

Finally, we observe that IT{ classes may be used to define the jump and also
pseudojumps.

Proposition 4. For any set X, {e: X € P.} =r X'.
Proof. Let WX = {e: X € P.}. Then W¥ < X’ since
ee WX — (Yn)X[n ¢ W..

For the completeness, use the s-m-n theorem to define a computable function f
such that

Py ={X : ¢ (e) 1}
Then

ec X' — fle)g WX
gives a reduction of X’ to W¥. O
One can define a pseudojump using ITY classes as follows. Let m;(P) be the

projection of P onto the ith coordinate, where m;(X) = Y means that X =
<X17X2, .. > and Y = ‘XZ
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Then let
VX ={i: X em(P.)}.

It can be seen that V.X =7 X’ when P, is a particular Medvedev complete class,
such that 7;(P) runs over all II{ classes. It is an interesting question whether
every pseudojump can be expressed in this form.
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