
K-Trivial Closed Sets and Continuous Functions

George Barmpalias1, Douglas Cenzer2,�, Jeffrey B. Remmel3,
and Rebecca Weber4

1 School of Mathematics, University of Leeds,
Leeds LS2 9JT, England

georgeb@maths.leeds.ac.uk
2 Department of Mathematics, University of Florida,

P.O. Box 118105, Gainesville, Florida 32611
cenzer@math.ufl.edu

3 Department of Mathematics, University of California, San Diego
La Jolla, CA 92093-0112

jremmel@ucsd.edu
4 Department of Mathematics, Dartmouth College,

Hanover, NH 03755-3551
rweber@math.dartmouth.edu

Abstract. We investigate the notion of K-triviality for closed sets and
continuous functions. Every K-trivial closed set contains a K-trivial real.
There exists a K-trivial Π0

1 class with no computable elements. For any
K-trivial degree d, there is a K-trivial continuous function of degree d.1
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1 Introduction

The study of algorithmic randomness has been an active area of research in
recent years. The basic problem is to quantify the randomness of a single real
number. Here we think of a real r ∈ [0, 1] as an infinite sequence of 0’s and 1’s,
i.e as an element in 2N. There are three basic approaches to algorithmic ran-
domness: the measure theoretic, the compressibility and the betting approaches.
All three approaches have been shown to yield the same notion of (algorithmic)
randomness. Here we will only use notions from the compressibility approach,
incorporating a number of non-trivial results in this area. For background and
history of algorithmic randomness we refer to [11,10,13].

Prefix-free (Chaitin) complexity for reals is defined as follows. Let M be a
prefix-free function with domain ⊂ {0, 1}∗. For any finite string τ , let KM (τ) =
min{|σ| : M(σ) = τ}. There is a universal prefix-free function U such that, for
any prefix-free M , there is a constant c such that for all τ

KU (τ) ≤ KM (τ) + c.

� Corresponding author.
1 This research was partially supported by NSF grants DMS 0532644 and 0554841.

Remmel was also partially supported by NSF grant DMS 0400507.
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We let K(σ) = KU (σ). Then x is said to be random if there is a constant c such
that K(x�n) ≥ n − c for all n. This means a real x is random exactly when its
initial segments are not compressible.

In a series of recent papers [1,2,3,4], P. Brodhead, S. Dashti and the authors
have defined the notion of (algorithmic) randomness for closed sets and continu-
ous functions on 2N. Some definitions are needed. For a finite string σ ∈ {0, 1}n,
let |σ| = n. For two strings σ, τ , say that τ extends σ and write σ ≺ τ if |σ| ≤ |τ |
and σ(i) = τ(i) for i < |σ|. For x ∈ 2N, σ ≺ x means that σ(i) = x(i) for
i < |σ|. Let σ�τ denote the concatenation of σ and τ and let σ�i denote σ�(i)
for i = 0, 1. Let x�n = (x(0), . . . , x(n − 1)). Two reals x and y may be coded
together into z = x ⊕ y, where z(2n) = x(n) and z(2n + 1) = y(n) for all n. For
a finite string σ, let I(σ) denote {x ∈ 2N : σ ≺ x}. We shall call I(σ) the interval
determined by σ. Each such interval is a clopen set and the clopen sets are just
finite unions of intervals. Now a nonempty closed set P may be identified with
a tree TP ⊆ {0, 1}∗ where TP = {σ : P ∩ I(σ) �= ∅}. Note that TP has no dead
ends. That is, if σ ∈ TP , then either σ�0 ∈ TP or σ�1 ∈ TP . For an arbitrary
tree T ⊆ {0, 1}∗, let [T ] denote the set of infinite paths through T . For a detailed
development of Π0

1 classes, see [5].
We define a measure μ∗ on the space C of closed subsets of 2N as follows.

Given a closed set Q ⊆ 2N, let T = TQ be the tree without dead ends such that
Q = [T ]. Let σ0, σ1, . . . enumerate the elements of T in order, first by length
and then lexicographically. We then define the code x = xQ = xT by recursion
such that for each n, x(n) = 2 if both σn

�0 and σn
�1 are in T , x(n) = 1 if

σn
�0 /∈ T and σn

�1 ∈ T , and x(n) = 0 if σn
�0 ∈ T and σn

�1 /∈ T . We then
define μ∗ by setting

μ∗(X ) = μ({xQ : Q ∈ X}) (1)

for any X ⊆ C and μ is the standard measure on {0, 1, 2}N. Informally this means
that given σ ∈ TQ, there is probability 1

3 that both σ�0 ∈ TQ and σ�1 ∈ TQ

and, for i = 0, 1, there is probability 1
3 that only σ�i ∈ TQ. In particular, this

means that Q∩I(σ) �= ∅ implies that for i = 0, 1, Q∩I(σ�i) �= ∅ with probability
2
3 . Brodhead, Cenzer, and Dashti [2] defined a a closed set Q ⊆ 22N

to be (Martin-
Löf) random if xQ is (Martin-Löf) random. Note that the equal probability of
1
3 for the three cases of branching allows the application of Schnorr’s theorem
that Martin-Löf randomness is equivalent to prefix-free Kolmogorov randomness.
Then in [2,3], the following results are proved. Every random closed set is perfect
and contains no computable elements (in fact, it contains no n-c.e. elements).
Every random closed set has measure 0 and has box dimension log2

4
3 .

A continuous function F : 2N → 2N may be represented by a function f :
{0, 1}∗ → {0, 1}∗ such that the following hold, for all σ ∈ {0, 1}∗.
– |f(σ)| ≤ |σ|.
– σ1 ≺ σ2 implies f(σ1) ≺ f(σ2).
– For every n, there exists m such that for all σ ∈ {0, 1}m, |f(σ)| ≥ n.
– For all x ∈ 2N, F (x) =

⋃
n f(x�n).

We define the space F of representing functions f : {0, 1}∗ → {0, 1}∗ to be those
which satisfy clauses (1) and (2) above. There is a one-to-one correspondence
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between F and {0, 1, 2}N defined as follows. Enumerate {0, 1}∗ in order, first by
length and then lexicographically, as σ0, σ1, . . .. Thus σ0 = ∅, σ1 = (0), σ2 =
(1), σ3 = (00), . . .. Then r ∈ {0, 1, 2}N corresponds to the function fr : {0, 1}∗ →
{0, 1}∗ defined by declaring that fr(∅) = ∅ and that, for any σn with |σn| ≥ 1,

fr(σn) =

{
fr(σk), if r(n) = 2;
fr(σk)�i, if r(n) = i < 2.

where k is such that σn = σk
�j for some j. Every continuous function F has

a representative f as described above, and, in fact, it has infinitely many repre-
sentatives. We define a measure μ∗∗ on F induced by the standard probability
measure on {0, 1, 2}N. Brodhead, Cenzer, and Remmel [4] defined an (Martin-
Löf) random continuous function on 2N which has a representation in F which
is Martin-Löf random. The following results are proved in [1,4]. Random Δ0

2
continuous functions exist, but no computable function can be random and no
random function can map a computable real to a computable real. The image
of a random continuous function is always a perfect set and hence uncountable.
For any y ∈ 2N, there exists a random continuous function F with y in the image
of F . Thus the image of a random continuous function need not be a random
closed set. The set of zeroes of a random continuous function is a random closed
set (if nonempty).

There has been a considerable amount of work on studying reals whose com-
plexity is “low” or trivial from the point of view of randomness. Chaitin defined a
real x to be K-trivial if K(x�n) ≤ K(1n)+O(1). We recall that there are noncom-
putable c.e. sets which are K-trivial and that the K-trivial reals are downward
closed under Turing reducibility. The latter is a highly non-trivial result of Nies
[15] who also showed that the K-trivial reals form a Σ0

3-definable ideal in the
Turing degrees. In particular, this means that if α and β are K-trivial, then the
join α ⊕ β is also K-trivial.

The main goal of this paper is to study K-triviality for closed subsets of 2N

and for continuous functions on 2N. We define a closed set Q to be K-trivial if
the code xQ is K-trivial and we define a continuous function F : 2N → 2N to be
K-trivial if it has a representing function f ∈ F which is K-trivial.

2 K-Trivial Closed Sets

Since every K-trivial real is Δ0
2, we have that every K-trivial closed set is a

strong Π0
2 class. Note also that the canonical code of a Π0

1 class has c.e. degree
and that there are K-trivial reals with non-c.e. degree. Hence there are K-trivial
closed sets which are not Π0

1 classes.
Analogous to the existence of c.e. K-trivial reals, we will construct several

examples of K-trivial Π0
1 classes. Note that a Π0

1 class P is said to be decidable
if the canonical tree TP is computable, which is if and only if the canonical code
for P is computable. Thus we want to construct K-trivial Π0

1 classes which are
not decidable. The degree of a closed set Q is the degree of the tree TQ and also
the degree of the canonical code for TQ.
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We begin with those non-decidable Π0
1 classes with the simplest structure,

that is, countable classes with a unique limit path. Our first construction relies
on the following notion. If A = {a0 < a1 < · · · } is an infinite set, then A
is said to be retraceable if there is a partial computable function φ such that
φ(an+1) = an for all n. The initial subsets of A are A together with the finite
sets {a0, . . . , an−1} for each n. Dekker and Myhill [9] showed that every c.e.
degree contains a retraceable Π0

1 set A. Cenzer, Downey, Jockusch and Shore [6]
showed that a Π0

1 set A is retraceable if and only if the family I(A) of initial
subsets is a Π0

1 class. Clearly I(A) has unique limit element A.

Theorem 1. For any noncomputable K-trivial c.e. degree d, there exists a
K-trivial Π0

1 class P of degree d such that P has a unique, noncomputable limit
element.

Proof. Let A be a retraceable Π0
1 set of degree d. Then A is K-trivial and

noncomputable and is the unique limit element of the Π0
1 class P = I(A) as

shown above. It remains to show that the tree TP has the same degree as A.
Certainly TP ≤T A, since

σ ∈ TP ⇐⇒ (∀i < |σ|)[σ(i) = 1 → (i ∈ A & (∀j < i)(j ∈ A → σ(j) = 1))].

On the other hand, A ≤T TP since

a ∈ A ⇐⇒ (∃σ ∈ {0, 1}a+1)(σ ∈ TP & σ(a) = 1). ��

We next construct a K-trivial class having only computable members.

Theorem 2. For any K-trivial c.e. degree d, there exists a K-trivial Π0
1 class

of degree d with unique limit path 0ω and all elements computable.

Proof. Let B be a co-c.e. set of degree d and let Q = {0ω} ∪ {{n} : n ∈ B}.
Clearly Q has all elements computable and unique limit element 0ω. It is easy
to check that TQ ≡T B. ��

Next we wish to obtain a Π0
1 class with no computable members (a special Π0

1
class) such that the code for the class is K-trivial. To do so we rely heavily on
the fact that K-triviality is closed under Turing equivalence. Note first that since
the K-trivials form an ideal in the Turing degrees, the separating class for two
K-trivial sets A, B will be K-trivial, as the set of its extendible nodes (and hence
its code) is Turing-equivalent to A⊕ B. It remains to show there are recursively
inseparable K-trivial sets. The following proof due to Steve Simpson.

Theorem 3. There is a K-trivial Π0
1 class with no computable members.

Proof. Let B be a noncomputable c.e. K-trivial set. Split B into disjoint noncom-
putable c.e. A1, A2 as in the Friedberg splitting theorem. Ohashi [17] observed
that the proof of the Friedberg splitting theorem in fact gives that A1, A2 are
recursively inseparable. By the downward closure of K-triviality, they are also
K-trivial. Let S be their separating class. Then by the discussion above, S is a
special K-trivial Π0

1 class. ��
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Now a separating class always has measure zero. Next we construct K-trivial
classes of arbitrarily large positive measure yet still containing no computable
members. The proof makes use of the well-established cost function method from
the area of algorithmic randomness, first used in Kucera-Terwijn [14] and later
made explicit, e.g. in Downey-Hirschfeldt-Nies-Stephan [12].

Theorem 4. There is a K-trivial Π0
1 class (of arbitrarily large measure) with

no computable paths (thus perfect).

Proof. There is a well established framework for constructing K-trivial reals in
the Cantor space 2ω in terms of cost functions. A good presentation of this can
be found in Nies [16]. It is clear that the same method applies to the space 3ω.
Let K be the prefix-free complexity and

cost(x, t) =
∑

x<w≤t

2−Kt(w).

It is well known that limx supt cost(x, t) = 0. In order to construct a K-trivial
Π0

1 class P it suffices to give a monotone approximation (Pt) to P (in the sense
that Pt ⊇ Pt+1) such that if ct is the code for Pt and xs is the least number such
that cs−1(x) �= cs(x) then ∑

s>0

cost(xs, s) ≤ 1. (2)

Indeed in [16] it is shown that c is K-trivial iff it has a Δ0
2 approximation (ct)

which satisfies (2). To make sure that there are no computable paths through P
it suffices to satisfy the following requirements:

Re : Φe is total ⇒ Φe �∈ P

where (Φe) is an effective enumeration of all Turing functionals with binary
values. The strategy for Re is to modify the code c at some stage so that the
tree represented by c no longer extends some initial segment of Φe. This is done
by switching a 2 in c to a 0 or 1 according to which has the desired effect. First
note that each ct will consist of all 2’s except for a finite initial segment, so we
will find a suitable digit to switch. Second note that when we change a position
in c from 2 to something else (0 or 1), we can effectively adjust the tail of c (the
digits after the modified digit) so that the code describes the tree that we get
if we cut that branch from the branching node corresponding to the 2 above.
This means that if we let Re act on c in the way described above, we get an
approximation to P which is co-c.e. (so P is a Π0

1 class).
The last consideration is that Re cannot change digit n at stage s unless

cost(n, s) < 2−(e+1). This will make c K-trivial. Let N
[e] be the e-th column

of N, i.e. the set of numbers of the form 〈e, t〉 for some t ∈ N where 〈., .〉 is a
computable bijection from N × N to N. The symbol � denotes restriction of the
object that precedes it to the numbers < x. For example Φe � x ↓ means that
Φe is defined at all arguments < x. All parameters in the construction are in
formation and only have current values which correspond to the current stage.
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Construction. At stage s look for the least e < s such that Re has not acted
and there is a positive x ∈ N

[e] with the property that

– Φe � x ↓ and is on Ps

– cost(k(x, s), s) < 2−(e+1), where k(x, s) is the position of node Φe � (x − 1)
in the code cs of Ps.

If there is no such e go to the next stage. Otherwise note that since Re has not
acted and x ∈ N

[e], no strategy has chopped any branch from node Φe � (x − 1)
and so the latter is branching. Now switch k(x, s) from 2 to 1−Φe(x−1) (so that
Φe � x �∈ P ) and let larger positions describe the tree that we get by chopping
that branch. Go to the next stage.

For the verification, the comments before the description of Re explain why
the approximation (ct) defined in the construction corresponds to a co-c.e. ap-
proximation of P , so that P is a Π0

1 class. Each Re is satisfied by the standard
cost-function argument: there is some x0 such that for all x > x0 and all s,
cost(x, s) < 2−(e+1) (by the properties of cost). Finally c is K-trivial since the
approximation (ct) given in the construction satisfies (2) (that each Re acts at
most once and contributes cost at most 2−(e+1)). Finally note that by choosing
the witnesses x sufficiently large we can make sure that P has measure arbitrar-
ily close to 1. ��

Theorem 5. If P is a K-trivial Π0
1 class then the leftmost path is a K-trivial

real.

Proof. The leftmost path is computable from the (code of the) Π0
1 class P

and since K-triviality is downward closed under Turing reductions it must be
K-trivial. ��

By Nies’ top low2 theorem (see [11]), there is a low2 c.e. degree above all
K-trivial degrees. By Theorem 5, this means that the sets computed by it form
a basis for the K-trivial Π0

1 classes (while no incomplete c.e. degree has this
property with respect to all Π0

1 classes). The following theorem shows that such
a c.e. degree cannot be low. Note however that there are low PA degrees, i.e.
low degrees such that the sets computed by them form a basis for all Π0

1 classes.
The corresponding problem for K-trivial reals—whether there is a low degree
bounding all K-trivials—is a major open problem.

Theorem 6. If A is c.e. and low then there is a K-trivial Π0
1 class which con-

tains no A-computable paths. In other words, there is no c.e. low set A such that
the sets computed by A form a basis for the K-trivial Π0

1 classes.

Proof. This is similar to the proof that for every c.e. low A there is a K-trivial
B such that B �≤T A (in the same way that the proof of Theorem 4 is similar to
the construction of a non-computable K-trivial set). If the reader is not familiar
with that construction, (s)he might like to have a look at it [16]. We wish to
follow the construction of Theorem 4 only now we need to satisfy the following
more demanding requirements:

Re : ΦA
e is total ⇒ ΦA

e �∈ P.
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In general it is impossible to satisfy these requirements but if we know that A
is low we can use the following trick (due to Robinson) to succeed. During the
construction we will ask ∅′ a Σ0

1(A) question (for the sake of Re). Note that
since A is low, ∅′ can answer such questions. At each stage we will only have an
approximation to ∅′ and so we will get a correct answer possibly after a finite
number of false answers. Requirement Re will use witnesses (in the sense of the
proof of Theorem 4) from N

[e]. We will ask the following:

Is there a stage s and a witness x such that
– ΦA

e � x[s] ↓ with correct A-use and ΦA
e � x[s] ∈ Ps

– cost(k(x, s), s) < 2−(ne+e+3)

where ne is the number of times that some branch of P has been pruned
(i.e. some digit of c has been changed) for the sake of Re?

First notice that the above question refers to the partial computable sequences
(Ps), (ne[s]) which are defined during the very construction. By the recursion
theorem we can ask such questions and approximate the right answers: given any
partial computable sequence (P ′

s) of Π0
1 classes and uniformly partial computable

sequences (n′
e[s]), we will effectively define a construction in which the questions

refer to the given parameters. All of these constructions will define a sequence
(Ps) of Π0

1 classes which monotonically converges to a K-trivial Π0
1 class P which

however does not necessarily satisfy the other requirements; also each will define
a uniformly partial computable sequence (ne[s]). The (double) recursion theorem
will give a construction in which the questions asked actually refer to (Ps) and
(ne[s]). Such a construction will succeed in satisfying all requirements. Let g(e, s)
be a computable function approximating the true answer to the questions above,
when these are set to refer to the given parameters (P ′

s), (n′
e[s]).

Construction. For stage s and each e < s such that there is an unused x ∈ N
[e]

satisfying ΦA
e � x[s] ∈ Ps and cost(k(x, s), s) < 2−(ne[s]+e+3) (where ne[s] is as

above) do the following. Wait for a stage t ≥ s such that g(e, t) = 1 or the
computation ΦA

e � x[s] has been spoiled. In the first case switch k(x, s) from 2 to
1− Φe(x− 1) (so that Φe � x �∈ P ) and let larger positions describe the tree that
we get by chopping that branch (say that x has been used); proceed to stage
s+1. In the latter case do nothing and test the next value of e. If the above has
run over all e < s and we are still at stage s, go to stage s + 1.

For the verification, note that if x is unused at some stage, then currently
all nodes of the xth level of P are branching. So each construction defines a
(possibly finite) monotone sequence of clopen sets Ps (and so a Π0

1 class P as
a limit). Also, for every values of the input (P ′

s), (n′
e[s]) the resulting class P is

K-trivial as the condition (2) from the proof of Theorem 4 holds (at any stage at
most one requirement acts and the cost of that action is small by construction).
By the double recursion theorem there is a construction such that

ne[s] = n′
e[s] ∧ Ps = P ′

s

for all s, e; i.e. the input and output as (double) partial computable sequences are
the same. This construction must be total (in the sense that it passes through all
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stages) since every search halts (for example if ΦA
e � x[s] ∈ Ps, cost(k(x, s), s) <

2−(ne[s]+e+3) and the computation is true then g(e) has to settle at 1 as it
guesses correctly). Finally suppose that Re is not satisfied. This means that the
answer to the e-question is a negative one. So g(e) would settle to 0 (since it
approximates the correct answer to the e-question) and Re would act finitely
often. But then the cost requirement (in particular ne) would remain constant
and (by the properties of cost) for some large enough x, s the computation
ΦA

e [s] � x will be correct and ΦA
e � x[s] ∈ Ps, cost(k(x, s), s) < 2−(ne[s]+e+3)

which is a contradiction. ��

3 K-Trivial Continuous Functions

In [4], the notion of randomness was extended to continuous functions on 2N.
Thus it will be natural to consider K-trivial continuous functions. It was shown
in [4] that a random continuous function maps any computable real to a random
real. It follows immediately from the closure under join of K-trivial degrees that
a K-trivial continuous function maps any computable real to a K-trivial real. It
was shown in [4] that the set of zeroes of a random continuous function is either
empty or random. It follows by downward closure of the K-trivial degrees that
the set of zeroes of a K-trivial continuous function is either empty or K-trivial.

We consider a continuous functions F : 2N → 2N always in terms of one its
representing functions f : 2<N → 2<N, or, equivalently, in terms of the code of
one of its representing functions. Note that by slowing the convergence of the
function on finite strings, we may code information into the code of the function.
Hence the codes of a given function on Cantor space are always closed upwards
in the Turing degrees, so the K-degree of a function should be the K-degree of
the canonical code, that which converges as rapidly as possible. However, the
canonical code of a function F may be computed from any code, so it follows
from the downward closure of K-triviality that F is K-trivial if and only if the
canonical code is K-trivial.

Theorem 7. For any K-trivial degree d, there is a continuous function F :
2N → 2N with canonical code of degree d. Moreover, if d is c.e., F may be
chosen to have left-c.e. canonical code.

Proof. Let A = {a1, a2, . . .} be a set of degree d. We define F monotonically
increasing such that F (0ω) = 0ω and F (1ω) = χA, the characteristic function of
A. We work via f : 2<N → 2<N. To begin, let f(0) = 0(a1+1) and f(1) = 0a11.
Now suppose we have defined f(σ) = τ for |σ| = n−1, and that an −an−1 = m.
Then let f(σ0) = τ0m and f(σ1) = τ0m−11. It is clear that f ≡T A, so f is of
degree d. Furthermore, if d is a c.e. degree and A is chosen c.e., the code given
by f will be left-c.e., as shown by an analysis of the construction.

The code for f may be thought of as composed of blocks of length 2n for
n ≥ 1, in order of increasing size, corresponding to different levels of the tree. At
level n, if n− 1 /∈ A, the block will be all zeros. If n− 1 ∈ A and |A � n| = k, the
block will consist of 2k subblocks of 2n−k bits each, beginning with a subblock
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of all zeros and alternating to end with a subblock of all 1s. Thus the structure
of the nth block is determined entirely by whether n − 1 is in A, and if so, how
many values < n − 1 are also in A.

Given an enumeration of A as As, s ∈ ω, we may define an approximation
to the function F with corresponding canonical code Cs. We show that as s
increases, a bit of Cs holding a one may only change to zero if a preceding bit
changes from zero to one; this shows that Cs is an increasing approximation.
As the enumeration As is computable by assumption, the canonical code of F
is then left-c.e. Without loss of generality we consider a single level of the tree,
n, and a single stage, s. If the corresponding block of Cs−1 is all zeros, this level
causes no trouble at stage s: either it remains all zeros or half of its zeros change
to ones. If the nth block of Cs−1 is half zeros and half ones, then enumeration
into A at stage s may cause the subblocks to multiply and rearrange. However,
this only occurs when some k < n − 1 enters As, causing the corresponding
earlier level to change from all zeros to half zeros and half ones. ��

4 Medvedev Degrees of K-Trivial Classes

The degrees of difficulty of K-trivial closed sets should be of interest. Simp-
son [18], Cenzer and Hinman [7] and others have developed the subject of the
Medvedev (or strong) degrees of Π0

1 classes. Here P ≤M Q means that there is
a computable function mapping Q into P . The Medvedev degrees form a lat-
tice where the meet operation is the disjoint union and the join is the product,
P ⊗ Q = {α ⊕ β | α ∈ P and β ∈ Q}. There is a least degree 0M consisting of
the classes with a computable member and a highest degree 1M which can be
viewed as a universal Π0

1 class. A related structure are the Muchnik (or weak)
degrees, where P is weakly reducible to Q if for every β ∈ Q there exists α ∈ P
such that α ≤T β.

One general problem is where the K-trivial Π0
1 classes fit into the Medvedev

(or Muchnik) degrees of the Π0
1 classes. We have only a few results so far.

Since the K-trivial reals form an ideal in the Turing degrees, it follows that the
family of Π0

1 classes which contain a K-trivial real form an ideal in the lattice
of Medvedev degrees (and also in the lattice of Muchnik degrees). The following
proposition says that the K-trivial Π0

1 classes are closed under the meet and the
join operation in the Medvedev degrees.

Proposition 1. The K-trivial Π0
1 classes are closed under disjoint unions and

under products.

Proof. The degree of the code of the disjoint union of two Π0
1 classes is the join

of the degrees of the codes of these Π0
1 classes. The same holds for products and

since K-triviality is invariant in the Turing degrees and closed under join (in the
Turing degrees) the proposition follows. ��

Note however that K-triviality (for Π0
1 classes) is not closed under Medvedev

equivalence. For example the least Medvedev degree contains Π0
1 classes with
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computable leftmost path but with a canonical code which computes the halt-
ing problem. Hence we could call a Medvedev degree K-trivial if it contains a
K-trivial class. Since there is no c.e. complete K-trivial real and any Medvedev
complete Π0

1 class is also c.e. complete, it follows that no K-trivial Π0
1 class is

Medvedev complete. A relevant question is whether there a top Medvedev degree
among the K-trivials, or even a maximal one.

Theorem 8. There is no maximal K-trivial Medvedev or Muchnik degree.

Proof. Given any K-trivial Π0
1 class Q it suffices to construct a K-trivial Π0

1
class P which is not weakly reducible to Q. Indeed, in that case P ⊗ Q would
be K-trivial strongly above Q and not weakly below Q. We argue as follows. By
the Low Basis Theorem, Q contains a member α of low Turing degree. Now by
Theorem 6, there is a K-trivial Π0

1 class P with no path computed by α. This
means that P is not weakly reducible to Q. ��

The above proof also shows that there is no Π0
1 class P which has low canonical

code and is weakly above all K-trivial Π0
1 classes.
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