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Abstract. Computability theoretic learning theory (machine inductive
inference) typically involves learning programs for languages or functions
from a stream of complete data about them and, importantly, allows
mind changes as to conjectured programs. This theory takes into ac-
count algorithmicity but typically does not take into account feasibility
of computational resources. This paper provides some example results
and problems for three ways this theory can be constrained by compu-
tational feasibility. Considered are: the learner has memory limitations,
the learned programs are desired to be optimal, and there are feasibil-
ity constraints on obtaining each output program and on the number of
mind changes.

1 Introduction and Motivation

Let N = the set of non-negative integers. Computability theoretic (a.k.a recursion
theoretic) learning [28,36] typically involves a scenario as depicted in (1) just
below.

Data d0, d1, d2, . . .
In−→ M

Out−→ Programs p0, p1, p2, . . . . (1)

In (1), d0, d1, d2, . . . can be, for example, the elements of a (formal) language
L ⊆ N or the successive values of a function f : N → N; M is a machine; and, for
its successful learning, later pi’s ≈ compute the L or f . We will consider different
criteria of successful learning of L or f by M . Ex-style criteria require that all
but finitely many of the pi’s are the same and do a good job of computing the L
or f . Bc-style criteria are more relaxed and powerful [4,12,15] and do not require
almost all pi’s be the same.

In the present paper we survey some illustrative, top down, computational
resource restrictions on essentially the paradigm of (1). In some sections we
work instead with simple variants of (1).

In Section 2 below, d0, d1, d2, . . . are the elements of a language and the pi’s are
usually type-0 grammars [26] (equivalently, r.e. or c.e. indices [39]) for languages.
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In Section 2 we consider restrictions on the ability of machines M to remember
prior data and conjectures. The motivation, in addition to space-complexity
theoretic, is from cognitive science. We will provide some open problems too.
Much of the material of Section 2 is from [8,13].

In Section 3 below, the di’s are successive values of functions f in some
complexity theoretically interesting subrecursive classes and the pi’s can be
programs in some associated subrecursive programming systems [40]. A not-
necessarily-realized desire is that successful later programs pi are not too far from
optimally efficient.1 We provide some examples (from [10]) showing how com-
putational complexity of those later pi’s, which are successful at computing the
f ’s, is affected by the size of the subrecursive class to be learned.

The paradigm of (1) is sometimes called learning in the limit, and the M in (1)
can be thought of as computing an appropriately typed, limiting functional.
One speaks of M ’s transitions from outputting pi to outputting pi+1 as mind
changes.2 Restrictions on the number of such mind changes have been extensively
studied in the literature, beginning with [5,15]. [21] first considered counting
down mind changes from notations for possibly transfinite constructive ordinals
and proved results to the effect that counting down from bigger constructive
ordinals gave more learning power. See also [1,29].3 In (1), the time to calculate
each pi may be infeasible, and the total time to reach the successful pi’s may not
be algorithmic [17]. In Section 4 below, we present some previously unpublished
very preliminary work on top down, feasible variants of (1), and we indicate
problems we hope will be worked out in the future [14]. The rough idea, explained
in more detail in Section 4 below, is that: 1. one restricts the M of (1) to iterating
a type-2 feasible functional in the sense of [27,30,35], and 2. one counts down,
with another type-2 feasible functional, the allowed mind changes from feasible
notations for constructive ordinals.4

2 Memory-Limited and U-Shaped Language Learning

Informally, U-shaped learning is as follows. For B a task to learn a desired
behavior, U-shaped learning occurs when, while learning B, a learner learns B,
then the learner unlearns B, and, finally, the the learner relearns B. U-shaped
learning has been empirically observed by cognitive psychologists in various areas
of child development. Examples include understanding of various (Piaget-like)

1 This will be for cases, unlike in Blum Speed-Up Theorems [36], where there are
optimally efficient programs.

2 Learning in the limit is essential, for example, for the iterated forward difference
method for fitting polynomials to data [25], where the number of mind changes
required depends on the degree of the polynomial generating the data.

3 Outside computability theoretic learning, [2] characterizes explicitly Ershov Hierar-
chy levels [20,19] by constructive ordinal notation count down.

4 For example, algorithmic counting down mind-changes from any notation w for the
smallest infinite ordinal ω is equivalent to declaring if and when a first mind change
is made and then declaring the finite number of further mind changes allowed.
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conservation principles [42], e.g., the interaction between object tracking and
object permanence, and verb regularization [34,37,42,43]. Here is an example of
the latter. In English, a child first uses spoke, the correct past tense form of the
verb speak. Then the child incorrectly uses speaked. Lastly, the child returns to
using spoke.

One main question of the present section: is U-shaped learning necessary for
full learning power? I.e., are there classes of tasks learnable only by returning
to abandoned, correct behavior?

For example, [3,7] answered formalized versions of the previous question for
computability theoretic learning without memory limitations. The answer de-
pends interestingly on the criteria of successful learning: roughly, for criteria of
power strictly between Ex and Bc-styles [9] (and also for Bc-style), U-shaped
learning is necessary for full learning power. Humans have memory limitations,
both for previously seen data and, to some extent, for previously made conjec-
tures. In the present section we discuss the necessity of U-shaped learning of
grammars for whole formal languages and in models with such memory restric-
tions. First, though, we discuss in detail the cases without memory limitations.

A sequence T of natural numbers and #’s is a text for a language L ⊆ N ⇔def
L = {T (i) | T (i) �= #}. The # represents a pause. The only text for the empty
language is an infinite sequence of #’s. The present section employs a variant
of (1) where di is T (i) with T a text for a language, and the pi’s are either
r.e. indices or they are ?’s. ?’s signal that M has no program to conjecture.

In the rest of the present section we restrict our attention to Ex-style criteria
of success.
Formally: a learner M TxtEx-learns a class of languages L ⇔def, for all L ∈ L,
on all texts T for L, M eventually stabilizes to outputting a single program
successfully generating L.

For a language class learning criterion, C-learning, such as TxtEx-learning
just defined and variants defined below, we write C to stand for the collection
of all languages classes L such that some machine M C-learns each L ∈ L.

A learner M is Non-U-Shaped (abbreviated: NU) on a class L that M TxtEx-
learns ⇔def, on any text for any language L in L, M never outputs a sequence
. . . , p, . . . , q, . . . , r, . . ., where p, r accept/generate L, but q doesn’t.

Next we discuss three types of memory limited language learning models from
the prior literature [11,22,33,44].
Iterative Learning: M It-learns a class of languages L ⇔def M TxtEx-learns
L but M has access only to its own just previous conjecture (if any) and to its
current text datum.

m-Feedback Learning is like It-learning, but, while the learner has access to
its just previous conjecture and to the current text datum, it can also make m
simultaneous recall queries, i.e., queries as to whether up to m items of its choice
have already been seen in input data thus far.

n-Bounded Example Memory Learning is also like It-learning, but, while the
learner has access to its just previous conjecture and to the current text datum,
it remembers up to n previously seen data items that it chooses to remember.
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For m, n > 0, m-Feedback and n-Bounded Example Learning are incompara-
ble, but separately make strict learning hierarchies increasing in m, n [11].

N.B. For the cases of m, n > 0, it is completely open as to whether U-shapes
are necessary for full power of m-Feedback and n-Bounded Example Learning!

Results about the necessity of U-shapes for It-learning and for more severely
restricted variants of the other models just above have been obtained and some
are discussed below. For It-learning, U-shapes are not needed:

Theorem 1 ([13]). NUIt = It.5

Memoryless Feedback Learners are restricted versions of Feedback Learners
above: for m > 0, an MLFm-learner has no memory of previous conjectures
but has access to its current text datum and can make m > 0 simultaneous
recall queries — queries as to whether up to m items of its choice have already
been been seen in input data. The MLFm learning criteria form a hierarchy
increasing in m: MLFm ⊂ MLFm+1 [8].

Theorem 2 ([8]). U-shaped learning is necessary for each level of this hierar-
chy: for m > 0, NUMLFm ⊂ MLFm.

Bounded Memory States Learners [32] are restricted variants of Bounded Ex-
ample Learners above: for c > 1, a BMSc-Learner does not remember any
previous conjectures, has access to current text datum, and can store any one of
c different values it chooses in its memory. This latter corresponds exactly to re-
membering log2(c) bits. The BMSc learning criteria form a hierarchy increasing
in c > 1: BMSc ⊂ BMSc+1 [32].

Theorem 3 ([8]). U-shaped learning is not needed for 2-Bounded Memory
States Learners: NUBMS2 = BMS2.

Open Questions: is U-shaped learning necessary for BMSc-learning with c > 2?
Humans remember some bits, remember some prior data, can recall whether
they’ve seen some data, and, likely, store their just prior conjecture. Is U-shaped
learning necessary for such combinations?

3 Complexity of Learned Programs

Results in the present section are selected from many in [10], and we employ (1)
in the case that di is f(i), where f ∈ F ⊆ R0,1, the class of all (total) computable
functions : N → {0, 1}.

Suppose a ∈ N∪{∗}. a is for anomaly count. When a = ∗, a stands for finitely
many.

F ∈ Exa ⇔def (∃M)(∀f ∈ F)
[M fed f(0), f(1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt = pt+1 = · · · ∧ pt computes f
— except at up to a inputs ]].
5 As per our convention above, It, respectively NUIt, stands for the collection of all

languages classes L such that some machine M It-learns, respectively NUIt-learns,
each L ∈ L.
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F ∈ Bca ⇔def (∃M)(∀f ∈ F)
[M fed f(0), f(1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt, pt+1, . . . each computes f —
except at up to a inputs]].

Turing machines herein are multi-tape.
For k ≥ 1, Pk =def the class of all {0, 1}-valued functions computable by

Turing Machines in O(nk) time, where n is the length of the input expressed in
dyadic notation.6 P =def

⋃
Pk.

Let slow be any fixed slow growing unbounded function ∈ P1, e.g., ≤ an
inverse of Ackermann’s function as from [16, Section 21.4]. Qk =def the class
of all {0, 1}-valued functions computable in O(nk · log(n) · slow(n)) time. Pk ⊂
Qk ⊂ Pk+1. The first proper inclusion is essentially from [24,26] and appears to
be best known.

P ∈ Ex0. Pk ∈ Ex0 too (where each output conjecture runs in k-degree
polytime).

CF , the class of all characteristic functions of the context free languages [26],
∈ Ex0 [23].

From [15] (with various credits to Bārzdiņš, the Blums, Steel, and Harrington):
Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Ex∗ ⊂ Bc0 ⊂ Bc1 ⊂ · · · ⊂ Bc∗, and R0,1 ∈ Bc∗.

We introduce some basic, useful notation.
(∀∞x) means for all but finitely many x ∈ N.
U =def {f ∈ R0,1 | (∀∞x)[f(x) = 1]} (⊂ P1). U is an example of a class of

particularly easy functions.
ϕTM

p =def the partial computable function : N → N computed by Turing
machine program (number) p.

ΦTM
p (x) =def the runtime of Turing machine program (number) p on input x,

if p halts on x, and undefined, otherwise.
ΦWS

p (x) =def the work space used by Turing machine program (number) p on
input x, if p halts on x, and undefined, otherwise.

Clearly, U ⊂ REG, the class all characteristic functions of regular
languages [26].

f [n] =def the sequence f(0), . . . , f(n − 1).
M(f [n]) =def M ’s output based only on f [n].
Of course, since finite automata do not employ a work tape, ∃M witnessing

REG ∈ Ex0 such that (∀n, x)[ΦTM
M(f [n])(x) = |x| + 1 ∧ ΦWS

M(f [n])(x) = 0].
A result of [41] is strengthened by

Theorem 4 ([10]). Suppose k ≥ 1 and that M witnesses either Qk ∈ Ex∗ or
Qk ∈ Bc0 (special case: M witnesses Qk ∈ Ex0).
Then: (∃f ∈ U)(∀k-degree polynomials p)
(∀∞n)(∀∞x)[ΦTM

M(f [n])(x) > p(|x|)].

If we increase the generality of a machine M to handle Qk instead of merely Pk,
this forces the run-times of M ’s successful outputs on some easy f ∈ U worse
6 The dyadic representation of an input natural number x =def the x-th finite string

over {0, 1} in lexicographical order, where the counting of strings starts with zero
[40]. Hence, unlike with binary representation, lead zeros matter.
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than any k-degree polynomial bound, i.e., to be suboptimal. But, for learning
only Pk, this need not happen. Hence, we see, in Theorem 4, ones adding slightly
to the generality of a learner M produces final, successful programs with a
complexity deficiency. Another complexity deficiency in final programs caused
by learning too much is provided by the following

Theorem 5 ([10]). Suppose M Ex∗-learns CF and k, n ≥ 1(special case: M
witnesses CF ∈ Ex0). Then there is an easy f , an f ∈ U , such that, if p is M ’s
final program on f , for some distinct x0, . . . , xn−1, program p uses more than k
workspace squares on each of inputs x0, . . . , xn−1.

In [10] there are further such complexity deficiencies in final programs caused
by learning too much, again where the deficiencies are on easy functions. As-
suming NP separates from P (with NP also treated as a class of {0, 1}-valued
characteristic functions of sets ⊆ N), then one gets a complexity deficiency in
final programs caused by learning NP instead of P . There is a similar result in
[10] for BQP, a quantum version of polynomial-time [6], in place of NP — as-
suming BQP separates from P . In these results the complexity deficient learned
programs have unnecessary non-determinism or quantum parallelism.

4 Feasible Iteration of Feasible Learning Functionals

The material of this section not credited to someone else is from [14].
One-shot Ex-style procedures output at most a single (hopefully correct)

conjectured program [28]. Feasible deterministic one-shot function learning can
be modeled by the polytime multi-tape Oracle Turing machines (OTMs) as
used in [27] (see also [30,35]). We call the corresponding functionals basic feasible
functionals. These polytime OTMs have a query tape and a reply tape. To query
an oracle f , an OTM writes the dyadic representation of an x ∈ N on the query
tape and enters its query state. The query tape is then erased, and the dyadic
representation of f(x) appears on the reply tape. The cost model is the same as
for non-oracle Turing machines, except for the additional cost of a query to the
oracle. This is handled with the length-cost model, where the cost of a query is
max(|f(x)|, 1), where |f(x)| is the length of the string on the reply tape.7 The
next three definitions provide the formal details re the polytime constraint on
basic feasible functionals.

Definition 1 ([30]). The length of f : N → N is the function |f | : N → N such
that |f | = λn.max({|f(x)| | |x| ≤ n}).

Definition 2 ([30]). A second-order polynomial over type-1 variables g0, ..., gm

and type-0 variables y0, ..., yn is an expression of one of the following five forms:

7 N.B. For the present section, then, the general paradigm (1) from Section 1 above
is modified to allow the machine M to query input functions f for their values —
instead of M ’s merely passively receiving the successive values of such f ’s.
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a
yi

q1 + q2
q1 · q2
gj(q1)

where a ∈ N, i ≤ n, j ≤ m, and q1 and q2 are second-order polynomials over −→g
and −→y .

Definition 3 ([30]). Suppose k ≥ 1 and l ≥ 0. Then F : (N → N)k ×N
l → N is

a basic feasible functional if and only if there is an OTM M and a second-order
polynomial q, such that, for each input (f1, ..., fk, x1, ..., xl),

(1) M outputs F (f1, ..., fk, x1, ..., xl), and
(2) M runs within q(|f1|, ..., |fk|, |x1|, ..., |xl|) time steps.

In the context of learning in the limit, we are interested in how to define fea-
sible for limiting-computable type-2 functionals. This is discussed below, but,
first, is presented some background material on notations for constructive
ordinals.

Ordinals are representations of well-orderings. The constructive ordinals are
just those that have a program, called a notation, which specifies how to build
them (lay them out end to end, so to speak) [39]. Let O be Kleene’s system of
notations for each constructive ordinal [39], importantly, with the accompanying
<o relation on O. We omit details but refer the reader to the excellent [39].

Everyone knows how to use (notations for) finite ordinals for counting down.
As indicated in Section 1 above, we have in mind iterating basic feasible learn-

ing functionals with feasible counting down of iterations from feasible notations
for constructive ordinals, We want to see worked out the details of this model of
feasible for Ex learning. We believe we have a correct formalization of the con-
cept of feasible notations and feasible counting down. From space limitations,
below we present very simple examples only.

Here is a promised very simple example. It is based on a system of notations
we call Oω. Oω provides notations for all and only the finite ordinals and ω, the
first infinite ordinal. This restricted system especially reduces the complexity of
computing notations. Oω =def N. For u ∈ Oω, if u is even, u is a notation for
the (finite) ordinal u/2. Otherwise, u is a notation for the (infinite) ordinal ω.
For even x, y ∈ Oω , x < y ⇒ x <Oω y, and for any even x and odd y, x <Oω y.
No other pairs of numbers satisfy the <Oω relation. For x ∈ N, x is defined as
the notation for the finite ordinal x, and, in this system, x = 2x.

Next we present one of many ways to define feasibly iterated feasible learning.
We are interested to investigate more ways and are currently pursuing this. For
t ∈ N, 0t is (by definition) the string of 0’s of length t. It is common in complexity
theory to call 0t a tally. We write ε for 0t when t = 0.

Below ϕ is acceptable [39] and has a linear time implementation of S-m-n [40].
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Definition 4. Suppose u ∈ Oω. A set of functions S is Itru-feasibly learnable
if and only if there exist basic feasible functionals H : (N → N) × N → N and
F : (N → N) × N → N such that for all f ∈ S, there exists k ∈ N such that,

(1) F(f, ε) ≤Oω u,
(2) F(f, 0t+1) <Oω F(f, 0t), for all t < k,
(3) F(f, 0k) = 0(= 0), and
(4) ϕH(f,0k) = f .

Definition 5. S ranges over classes of computable functions.
ItruBffEx= {S|S is Itru-feasibly learnable}.

When an F from above counts down from a notation in Oω for ω, it is allowed to
jump to a notation for any finite ordinal. Let S0 be the example set of functions
f such that f has the following properties:
(a) f(0) > 1,
(b) f(1) > 1,
(c) f(x) = 1, for exactly one x, where 1 < x ≤ 2|f(0)| + |f(1)|,
(d) f(x) = 0, everywhere else. We have the following

Theorem 6. S0 ∈ (ItrwBffex - ItrnBffex), where w is any notation in Oω for
the ordinal ω, and n is the notation in Oω for a finite ordinal n ∈ N.

The particular scheme of feasibly iterating basic feasible learning functionals in
Definitions 4 and 5 above requires the count-down function to bottom out at
0 = 0, so one can tell when the iterations are done (and can suppress all the
programs output but the last). We were initially surprised that, even for a scheme
like this, we get a learning hierarchy result like in the just above theorem. We can
prove that, for finite ordinals n ∈ N, the ItrnBffex hierarchy collapses. As noted
above, we are interested in the investigation of more ways for feasibly iterating
basic feasible learning functionals. We’d like variant results where one cannot
suppress all the output programs but the last. Here is another feasible notation
system, this one for Oω2 , where, for the lineartime computable pairing function
< ., . > from [40], the notation for ω2 is 0, and that for ordinals ω × a + b < ω2

is 1+ < a, b > — with <Oω2 defined in the obvious way. We can prove hierarchy
results similar to the above for this system.

It is interesting to question the feasible learnability of the example class above,
S0 ∈ ItrwBffex. Of course, the counting down and the ordinal notations were all
feasible as well as was the basic feasible functional H . Nevertheless, we can prove
that, for Ex-learning of S0, the total learning time of infinitely many f ∈ S0 is
inherently exponential in |f(0)| — while being polynomial in |f(1)|. However,
S0 is analyzable in terms of parameterized complexity [18]. For parameter k > 1,
let Sk

0 = (S0 ∩ {f | f(0) ≤ k}). Then each Sk
0 is infinite and feasibly learnable.

We would like to see this sort of phenomenon more generally analyzed and
understood — including in more sophisticated settings.

We would also like to see studied probabilistic variants of feasibly iterated
feasible learners — this toward producing practical generalizations of Valiant’s
PAC learning [31] and Reischuk and Zeugmann’s [38] stochastically finite learn-
ing. These latter involve, probabilistic, one-shot learners.
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